Chapter 8

Judging the Quality of
Test Items: Item Analysis

INTRODUCTION

An item merely written 1s not complete. Once an idea for a test item
has been conceived and articulated according to the rules for writing good
items, the important task of determining its quality remains. If it is flawed,
it must be improved or discarded. To accomplish such analysis for items,
the writer must employ a precise methodology to systematically uncover
information about an item, and then make judgments about it based on that
information. In educational and psychological assessment, suchjudgments
revolve around detecting and reducing errors in measurement, which can
be in the form of either systematic bias or random error. This chapter
explores the concept of measurement error first by explaining it and then
by discussing strategies for determining the degree to which it may exist
and how the sources for error can be reduced. By alleviating the causes of
measurement error, the quality of particular test items correspondingly
increases.

Two basic approaches can be used to unearth errors in measurement:
through judgments by knowledgeable people using established criteria and
through appropriate statistics. A variety of procedures exists for both, and
both can address systematic bias as well as random error. This chapter
describes the most widely practiced forms of these approaches for detect-
ing both kinds of measurement error.
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Throughout this chapter, the reader should keep in mind that many of
the techniques of item analysis are grounded in either classical or modern
test theory. In most instances, describing the theory in detail is beyond the
scope of this book; therefore, this chapter will frequently refer the reader to
other sources devoted to measurement theory for more thorough explana-
tions.

Additionally, throughout this chapter various statistics will be cited as
useful for analyzing particular data. The formulas for these statistics are
not described in this book, because in most test-development contexts, the
calculations required by the mathematical algorithms are accomplished
with the aid of a computer. Many statistical programs are available for both
large and small computers that will compute these statistics. While com-
puters are not required for figuring most of the statistics presented in this
book—in fact, many can easily be done either by hand or with the aid of
only a pocket calculator—they are commonly used and do make the task
more convenient. Instead, this chapter focuses on understanding the aims
and reasons for a particular analytical look at items, as well as learning the
procedures needed to accomplish it.

The following topics are covered in this chapter:

* measurement error

* item analysis

validating the content of items

judgmental approaches to item analysis

item statistics

* item parameters

item bias

MEASUREMENT ERROR

The reader has already been introduced to the concept of measurement
error in Chapter 2, where it was discussed in relation to describing the
purpose for test items. It was explained there that error is inherent in
measuring educational achievements and psychological constructs. Here,
the description of measurement error focuses upon techniques for detect-
ing its presence and reducing the sources from whence it arose. These
unwanted sources could be wording in items that is confusing to examin-
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ees, information in items that is not factually accurate, lack of congruence
between an item and the objective it is intended to assess, and more. While
measurement error cannot be completely eliminated in psychological as-
sessment as it is currently practiced, keeping the sources of error to a
minimum will contribute to making items better.

Description of Measurement Error

Measurement error can be simply described as the amount of deviation
an examinee’s score on a set of test items would exhibit if the test was
administered to that examinee an infinite number of times, under identical
conditions. The more those scores disperse, the greater the error of mea-
surement. Of course, in real life, no examinee is given a set of test items an
infinite number of times, so the measurement error must be estimated from
a single administration. But, it can be estimated with precision. The
precision with which a score is estimated is expressed in the term standard
error of measurement. Theoreticians conceive of this relationship with the
following equation:

True score = Observed score — Measurement error

where: True score 1s the score an examinee would obtain if
no error was present, and

Observed score is the score an examinee actually received
during a real-life test administration.

The true score is conceptualized as the mean score the examinee
would have received by averaging his or her score from the infinite
number of test administrations theoretically done. The standard error of
measurement may be graphically represented as the distribution of scores
around the true score for an individual. Figure 8.1 displays this graphical
representation for two examinees, one of low ability and one of high
ability.
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Figure 8.1 Display of standard error of measurement for
different abilities.
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These highlighted points about measurement error are important to
understand if one wishes to use properly the techniques of item analysis.
The reader should be aware, however, that this description of measurement
error scarcely touches the surface of the theory behind this topic. Re-
searchers have written extensively about the theory of measurement error,
from Thorndike’s 1904 classic An Introduction to the Theory of Mental
and Social Measurements, to the excellent 1986 text by Crocker and
Algina, Introduction to Classical and Modern Test Theory. In between,
dozens of fine books were written that describe in detail test theory and
errors of measurement (e.g., Cronbach, 1984; Ebel & Frisbie, 1986;
Gulliksen, 1950; Lindquist, 1936; Lord, 1952; Lord & Novick, 1968;
Nunnally, 1978) to which the interested reader is referred.

Keeping Measurement Error in Perspective

One should realize, however, that the presence of error in psychologi-
cal assessments 1S not so serious a problem as it first appears. There are a
number of reasons why this is so. First, it is easy to overstate the impor-
tance of error in mental measurements because seemingly little is under-
stood about psychological processes and how they may be assessed. This 1s
in itself not too great a problem when one considers that our understanding
of many aspects of the physical realm is similarly limited. In fact, psycho-
logical measurements are probably no more plagued by error than are
measurements in other areas of science. Furthermore, some small amount
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of measurement error probably does not harm most scientific investiga-
tions, whether in the physical realm or the psychological domain.

Another reason why the importance of error in measurement is often
exaggerated is that the terminology and methods used for describing it can
have an imposing appearance to persons unfamiliar with the statistics
involved. Since many aspects of measurement error can be conveniently
expressed in mathematical terms—and later in this chapter we will explore
some of the techniques for doing so—it is difficult for untutored persons to
regard such numbers with perspective. Mathematical models for describ-
ing measurement error, with their specialized nomenclature and elaborate,
Greek-lettered symbols, are seemingly impressive. This makes it easy to
overstate their importance.

While it is worthwhile to keep the issue of measurement error in
perspective, the skilled item developer identifies and reduces sources of
error throughout the item-construction process. By identifying and reduc-
ing the sources for measurement error, the quality of the items will be
correspondingly improved. Therefore, it is important to learn about error
in this context and discover strategies that will help to reduce it, while
simultaneously keeping perspective on the concepts of measurement error.

UNDERSTANDING ITEM ANALYSIS

Item analysis is the process by which test items are examined criti-
cally. Its purpose is to identify and reduce the sources of error in measure-
ment. Writers routinely perform item analysis so that they may gauge the
quality of items and discard those which are unacceptable, repair those
which can be improved, and retain those which meet criteria of merit.

Item analysis is accomplished in either of two ways: through numeri-
cal analysis on by judgmental approaches. In numerical item analysis, the
statistical properties of particular test items are examined in relation to a
response distribution. This definition requires that someone has already
prepared a numeric description of test items after they have been adminis-
tered to a group of examinees, as is done in a field trial for examination
development. The primary purpose for field trials of items 1s, of course, to
collect appropriate data for reviewing them.

While the field trial of items is necessary to gather the data for analysis
of individual items, this text does not discuss the process of conducting a
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field trial. A field trial is itself a procedure involving myriad consider-
ations, such as how items should be ordered on a test form or distributed
among various test forms, how to determine an appropriate sample, and
necessary considerations of the size of that sample. Although these issues
are important to constructing a good test instrument, they are more prop-
erly concerns for test developers rather than item writers, and therefore
they are not addressed here. The reader can easily identify sources in
which these issues are fully addressed, such as Allen and Yen (1979),
Crocker and Algina (1986), Nunnally (1987), Thorndike (1982), and many
others.

Judgmental approaches to analyzing items involve asking people to
comment on particular items according to some criteria. The persons asked
for comment might be content-area experts, editorial specialists, or even
examinees. Judgmental reviews have two guiding principles: each re-
viewer must be qualified for the task, and the task itself must be a
systematic process. In this context, a systematic process means that a
methodology is defined and that criteria for the review are available. Both
numerical analysis and judgmental review are important ways for writers
to learn about the items they have written. Each of these avenues to
analyzing items will be explored in appropriate sections of this chapter.

VALIDATING THE CONTENT OF ITEMS

It was explained in Chapter 3 that evidence for valid test-score inter-
pretations is not inherent in the item-construction process but must be
gathered through a systematic validation study. Such a study will typically
be an examination of content-related evidence for validity. The procedures
used for gathering content-related evidence for validity can also be of
enormous help in determining the quality of test items. The item writer can
use the information uncovered through this systematic study to examine
and improve items.

A content-validation study usually seeks to establish a consensus of
informed opinions about the degree of congruence between particular test
items and specific descriptions of the content domain that is intended to be
assessed by those items. This typically requires convening a panel of
expert judges who rate the item-to-content congruence according to some
established criteria.

Two principal methods are used to gather the opinions of experts about
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the congruence between a content domain and specific test items. In the
first method, judges are given the objective descriptions and test items that
have already been matched by the intention of the item writer. In other
words, the item writer, who will have constructed an item intentionally to
reflect a particular domain or objective, will tell the judges which item is
supposed to be matched with which description. The role of the judges,
then, is to confirm or reject the opinion of the item writer.

Of course, an appropriate form for recording the opinions of the judges
will be needed. The form for recording judges’ ratings should allow for
more than just a yes-versus-no matching by permitting judges to record
degrees of congruence—typically, one designation recording a strong
match, a second designation noting a moderate match or uncertainty, and a
third designation denoting a poor match or no match at all. These three
categories are all that is necessary; finer discriminations are of little
practical value and could needlessly complicate the consensus-building
process. Also, a space on the form should be provided where judges can
comment on the rationale for a given opinion. An example of such a form
is given in Table 8.1.

Another, and stronger, approach to gaining consensus among expert
judges of item-objective congruence is to refrain from informing the
judges beforehand of the item writer’s intended match. In this approach,
the judges are simply given the items and the objectives without any
indication of which item is meant to be matched with which objective.
Each judge will indicate his or her perceived match on a rating sheet, and a
project coordinator will tally the responses. A consensus of judges’ opin-
ions as to a particular item-objective match is considered content-related
evidence for validity. Table 8.2 offers a sample of a rating form that can be
used for this data-gathering technique. Variations may be made in the
forms displayed in Tables 8.1 and 8.2 to suit particular circumstances.

As a further means of enhancing the rigor of this judging process, the
judges may be assigned to a “blind” panel, that is, they do not meet in face-
to-face sessions, nor do they know the identity of the other panelists.
Opinions of the panelists are gathered by a project coordinator through
telephone or mail contacts. Because the panelists do not meet, the consen-
sus would presumably be uncontaminated by specious persuasion, or by
the effects of personal prestige, rank, or charisma.

In most instances four or five judges rating each test item will suffice;
however, if a large number of items are to be rated, the items may be split



260 Constructing Test Items

into two or more groups, and four or five judges for each group of items
will be needed. For tests that have a cut-off score and significant conse-
quences for examinees, then more judges—possibly as many as ten or
even fifteen—are recommended. Under no circumstance should one per-
son be the sole judge in a content-validation study, especially the person
who wrote the test item. Unrecognized prejudices, chauvinistic perspec-
tives, or other biases can too easily go unnoticed when one judges one’s
own work.

The judges should be both expert in the subject area they are assessing
and trained for the matching task. A judge’s subject-area competence is
requisite to his or her selection because any subject has many details that
could go unnoticed by a novice. Training the judges for the matching task
is equally important, for the task requires more skill than may be imagined
at first glance. Chapter 4 included a thorough discussion of strategies for
arriving at an item-objective match and could be used as a training guide.

Quantifying Results of Judge Opinions

Once the relevant data from the judges’ evaluation of items has been
gathered, the information must be analyzed and interpreted. This means
determining whether a consensus of opinions has been achieved. The item
writer, seeking to get feedback about the quality of items, must decide how
many judgments matching a particular test item to a specific objective
must coincide in order to declare that a consensus of opinion has been
achieved. There is no precisely established number, but the consensus
should be quite evident; e.g., if there are five judges, four must agree, or if
there are ten judges, eight must agree.

Although simply tabulating the number of opinions that agree is
undoubtably the most popular method, other procedures are sometimes
preferable. Some of these methods require quantitative approaches and
may be more precise than tallies. For example, if there is the presumption
(often made) that for every test item there should be one, and only one,
clear match to a skill or objective, an index of the item-objective congru-
ence may be derived (Rovinelli and Hambleton, 1977; Hambleton, 1980).
For this procedure, judges would be instructed to assign a +1 if there is a
strong match between an item and an objective, a 0 if ajudge is uncertain
whether congruence exists, and a -1 if the item does not match the
objective. The rating form displayed in Table 8.1 is an example of a form
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Table 8.1 ltem-Objective Congruence Rating Form

Name

Instructions: Read Objective #1 below. Next, read the first item in the test
booklet. Consider carefully the degree to which the item is congruent with
the skill. Rate the congruence according to this scheme:

H = high degree of congruence
M = medium degree of congruence
L = low degree of congruence or uncertainty

If you have comments about the congruence of this item, record them in
the space provided. After you have finished with this item, proceed to the
second item, and thereafter to all subsequent items, rating each in the
same manner.

Objective #1
Use mathematical techniques to solve real-life problems.

Rating Comment

ltem #1
ltem #2
ltem #3
ltem #4
ltem #6
ltem #9

Objective #2

Use the properties of two- and three-dimensional figures to perform geo-
metrical calculations.

Rating Comment

ltem #3
ltem #5
ltem #8
ltem #10
ltem #11
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Table 8.2 Judge’s Summary Sheet for the tems/Objectives Match-
ing Task (Sample)

ltems/Objectives Matching Task

Reviewer: Date:

Content Area:

First, read carefully through the lists of domain specifications and test
items. Your task is to indicate whether or not you feel each test item is a
measure of one of the domain specifications. It is, if you feel examinee
performance on the test item would provide an indication of an examinee’s
level of performance in a pool of test items measuring the domain specifi-
cation. Beside each objective, write in the test item numbers correspond-
ing to the test items that you feel measure the objective. In some in-
stances, you may feel that items do not measure any of the available
domain specifications. Write these test item numbers in the space pro-
vided at the bottom of the rating form.

Objective Matching Test ltems
1
2
3

4

No Matches

From R. K. Hambleton “Validating the test scores” (p. 225) in R. A. Berk (Ed.), A
Guide to Criterion-Referenced Test Construction, 1984, Baltimore: The Johns
Hopkins University Press.
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that accommodates this quantification scheme.

A formula indicating that any particular item, k, is congruent with a
specific skill or objective, 1, can be applied to the judges’ ratings. This
formula is:

(N- Z Xi]k *N Z Xi]k_z Xiik

— _j=1 =1 j< 1

0 2(N-1)n

In this formula, I, is the index value, i and k are as described above, N
is the number of skills or objectives, and n is the number of judges. The X,
is simply the rating assigned by a particular judge for the congruence
between a given item and a specific objective. The Z is of course the
symbol for summation.

Although rather imposing at first glance, this formula is actually
straightforward and can be easily worked through with a set of data. For
example, suppose a test has 36 items that are intended to assess five
specific objectives. For this example, suppose the item-objective congru-
ence rating of interest is between the test’s first item and the test’s second
objective. (In other words, “How well does item #1 match objective #27”)
Now, imagine nine judges have rated the item for its congruence to the
objective. One of the judges rated the item as a poor match (or -1), one of
the judges rated the item as a moderate match (or 0), and seven of the
judges rated the item-objective match as strong (or +1). The sum of the
nine judges’ ratings is 6 (i.e., (-1) + 1(0) + 8(+1) = 6). Applying these
numbers to the item-objective congruence formula yields the following:

_ (5-1)6+5(6)-6 (46+30-6 24+30-6 48

k™ 2(6-1)9 2@ - @9 7z ¥

This formula will yield an index score from +1 to -1. A +1 would be
obtained if all the judges agree that there is a strong item-objective match.
Conversely, if none of the judges agree that an item is matched to one and
only one skill or objective, the formula will yield an index of -1.

For the item writer, this index can provide information useful for
gauging the quality of an item in either of two ways: by using the item-
objective congruence index either as a relative standard or as an absolute
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standard. When the index is viewed as a relative standard, the statistic for
any particular item is judged in relation to its power (i.e., its proximity to
+1) compared to the power of the index for the other items considered. For
example, if the index value were computed for each of 50 items and it
proved to be comparatively low for, say, six, of the items, then the six
would be suspect and should be reviewed.

To use the index in an absolute sense, the item writer must establish a
criterion level for the index, above which items would be passed, and
below which items would be reviewed for their success in fulfilling a test’s
objective. This criterion level may be set by deciding the poorest level of
judges’ rating that would be acceptable. In the computational example
above there were nine judges. The criterion might be that at least seven of
the judges should rate the item as strongly congruent to a given objective.
This standard would yield a criterion for the index of .78. Hence, .78 would
be the floor value for accepting the congruence for any particular match of
an item with an objective. In the example above, the index was .67—below
the .78 criterion—indicating that the content of that particular item should
be examined by the item writer for its appropriateness as a measure of the
objective.

Alternative Quantification Schemes

Klein and Kosecoff (1975) describe a variation of this tally method
which includes examinees’ performance data in the congruence process.
This procedure may be slightly more rigorous than merely tallying judges’
ratings; however, it is probably less precise than computing an item-
objective index. Also, Polin and Baker (1979) offer an item-review scale
consisting of six dimensions: domain description, content limits, distractor
limits, distractor domain or response criteria, format, and directions plus a
sample item. A rater reviews an item and scores it on each of the six
dimensions according to prescribed criteria. This procedure is intended to
provide information useful to discovering the relationship between “what
test writers have wrought and the original test specification” (p. 2). Al-
though an exploratory study of this methodology produced mixed results,
the approach does represent a useful attempt to judge content-related
evidence for validity.
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USING LEADING QUESTIONS IN ITEM ANALYSIS

Judgmental approaches to analyzing items can be very effective meth-
ods for improving items. Obviously, the item-congruence index discussed
in the preceding section is a judgmental approach, but there are other
methods involving judgment as well, such as the technique of asking
leading questions to appropriate people. For example, if the items are be
included on a test for assessing school children, asking teachers to review
and discuss items informally with the item writer is often worthwhile. No
particular form is needed for this discussion, but some guiding questions
might focus the task. Such questions might include the following:, “In your
opinion, will this item be confusing to students?”; “Do you notice any
language that might be offensive on stereotyping to students?”’; “Do you
believe the distractors are plausible?”; “Are there any vocabulary words in
the item that you imagine will be unfamiliar to students at this age or grade
level,”; “Are the graphics clear?”

Another group to whom the item writer can turn is persons in the same
category as future examinees. If a test is being developed for, say, fifth-
graders, the opinions of students who are in the fifth grade can be valuable.
Again, the same guiding questions used with teachers can be used for
discussion with students.

There are two principal disadvantages to this technique of informal
discussion. First, it is often difficult to manage the logistics for such visits.
They may be hard to arrange in schools, because teachers and administra-
tors could view this as an interruption of valuable instructional time. Or, if
the test is to be used for licensing, one frequently does not know before-
hand who will take the test and an appropriate group cannot be easily
identified.

The second disadvantage to the technique of informal discussion is
that it consumes enormous amounts of time. It is the author’s experience
that in a typical 50-minute classroom period, perhaps only three or four test
items will be discussed. This drawback might be alleviated if the writer
were to select from a pool of freshly prepared items only a few for
discussion, and then consider the other items based on what has been said
by students about the selected items.

Regardless of the logistical difficulties in managing an informal dis-
cussion of items, the practice can be extremely valuable to improving
items and has been used with students as early as the second grade. In fact,
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students of all ages frequently demonstrate remarkable insight into the
reasons for asking a particular question, and they can diagnose specific
flaws 1in items and suggest improvements.

While informal discussion of items with an appropriate group is not a
widely practiced technique for analyzing items, it is highly recommended.
It can yield specific improvements in items and—perhaps even more
importantly—it can help the writer become sensitive to examinees in ways
that may be difficult to describe but are nevertheless extremely valuable.

ITEM STATISTICS

A number of statistics can be used to indicate particular features of test
items. Researchers (Crocker & Algina, 1986) categorize these indices by
the parameters which are commonly examined:

1. Indices that describe the distribution of responses to a single item
(i.e., the mean and variance of the item responses),

2. Indices that describe the degree of relationship between response
to the item and some criterion of interest, and

3. Indices that are a function of both item variance and relationship to
a criterion.

Some of the commonly used statistics for describing these item param-
eters are p-values, variance, and a variety of item discrimination indices,
such as the point-biserial estimate of correlation, the biserial correlation
coefficient, and the phi correlational estimate. Each of these statistical

indices 1s important for a specific purpose in item analysis, and each will
be described.

The Proportion Correct Index

Probably the most popular item-difficulty index for dichotomously
scored test items is the p-value. The p-value is merely a shorthand way of
expressing the proportion of examinees who responded correctly to a
particular item. It may be most clearly explained by using a few simple
examples. Suppose a given item was administered to 100 examinees, and
80 of them responded correctly. In such a case, the p-value is .8, indicating
that 80 percent of the examinees responded correctly to the item. If another
item were administered to a group of 311 examinees and 187 of them
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responded correctly, the p-value would be .60 (i.e., 187 + 312 = .60). Table
8.3 presents a simple table of p-values for a hypothetical five-item test.

Table 8.3 P-Values for a Five-ltem Test

ltem Number p-value

.68
45
91
.36
.48

NP WN

The p-value for an item does not by itself indicate whether an item is
good or bad; rather, it merely represents a difficulty index relative to the
particular group of examinees to whom the item was administered. If the
same item were administered to a different group of examinees, the p-
value would probably not be identical.

The group-referent aspect of the p-value is termed sample dependence,
meaning that any given p-value is dependent upon the particular group to
whom the item was administered. This sample dependence characteristic
for the index can be easily seen by imagining that a given item is adminis-
tered to third-grade students and again to sixth-graders. Since these two
groups are not from the same total population, the p-values yielded by the
two groups would probably be different. The item would have two p-
values, one indicating its difficulty relative to third-graders, and the other
showing its difficulty for students in the sixth grade. Each p-value depends
upon which sample of examinees is tested. This is what is meant by saying
the p-value is sample dependent.

Of course, if a sample of examinees is carefully selected to represent a
larger population, then the p-value for the sample can be interpreted as
similar to a value that would have been obtained had the item been
administered to the entire population. (Subject to the limits of the sampling
design.) Conversely, if a group of examinees is not selected from a larger
population by a method that allows generalizations, then the index is
meaningful only to that particular group of examinees.

It 1s important to understand the sample-dependence feature for p-
values because it is one of the most salient aspects of p-values. As we shall
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see later, other statistics have been developed which attempt to define a
difficulty index independent of a particular sample of examinees.

Using P-values for Item Analysis

P-values are of enormous help to a writer during item analysis. By
understanding p-values and interpreting them correctly, the writer can see
how an item is performing in relation to a given group of examinees, as
was displayed in Table 8.3. However, they can also be used to give the item
writer a more complete description of an item’s performance. For instance,
p-values can aid in detecting some common writers’ mistakes, such as
making apparent wording in an item that is evidently confusing to examin-
ees, recognizing flawed distractors, and identifying inadvertently miskeyed
items. The index can allow the writer to see how an item is performing for
examinees within the same population who differ in ability. Each of these
uses for the p-value will be explained in turn, but first, the p-value must be
displayed in a manner that facilitates such interpretations.

While Table 8.3 presented p-values for a group of items in a test, in
item analysis work, p-values are typically displayed singly. Additionally,
for item analysis, p-value 1is computed for each response alternative: the
correct option and all of the distractors. Further, when p-values are dis-
played in this manner, it is customary to also report the number of examin-
ees who omitted the item. Table 8.4 presents an example of p-values
reported for every response alternative to a single test item as well as the
number of examinees who omitted the item.

Table 8.4 P-Values for a Single Test ltem

A B C* D omits  Total
Number 28 17 197 41 3 286
p-value 10 .06 69 14

*correct response
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As can be seen in Table 8.4, the p-values reveal much data useful to
writers trying to improve items. In this instance, the correct response is
indexed at .69, indicating that for most tests of general achievement the
item is neither too difficult nor too easy for this group of examinees. Also,
as a group, examinees have selected all of the distractors, which may
signify that none is rejected out-of-hand. Often, this is a good indicator of
the quality of an item; however, since comparatively few examinees (six
percent) selected option B, it may be worthwhile to examine this distractor
for possible improvements.

It is common in most general assessments of academic achievement
for a test developer to specify limits for item difficulty. Often, such limits
for p-values are that the set of items on the test can range from a low of .40
to a high of .80. There are, of course, many instances when other limits for
item difficulty will be appropriate. The writer should be aware of the test
developer’s limits for item difficulty values, as they can guide the writer in
deciding which items should be reviewed.

Now, note the p-values for another item, displayed in Table 8.5. In this
instance, p-values reveal several flaws in the item. Apparently, examinees
find this item confusing since their responses are widely scattered among
the response alternatives. The correct response, A, attracted fewer examin-
ees (27 percent) than did one of the distractors, C (45 percent). And
distractor B was apparently so implausible than no one responded to it.
Also, a comparatively large number of examinees omitted responding to
the item, which may be another indication that the item is confusing. Taken
together, these findings suggest a seriously flawed item.

Table 8.5 P-Values for a Poor Test ltem

A* B C D omits  Total
Number 77 0 130 63 16 286
p-value 27 .00 45 22

*correct response
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Lest the reader imagine that an item so fraught with error would not be
produced by serious item writers, the reader should be aware that flaws in
items frequently do not become apparent until they are subject to the
scrutiny of item analysis. Remember, constructing good test items is not a
process that ends with the initial writing; it demands rigorous scrutiny of
the item as well.

Miskeyed Items

Another useful feature of p-values for item development work is for
identifying items that have been miskeyed. Regretfully, miskeying items is
all too common in item preparation. In many instances it is an understand-
able lapse. Sometimes the tedium of producing many items can cause
writers to be lax in attending to detail, and an item will be miskeyed. At
other times, the ambiguity of ill-conceived or poorly worded items is not
immediately noticed, and the correct response may not be apparent. Occa-
sionally, when a particular item is designed to assess a complex cognitive-
processing skill, the subtleties of language or the difficulty of the content
result in miskeying items.

Miskeyed items often become obvious when the item writer examines
a table of p-values that display widely different results from what had been
anticipated. For example, Table 8.6 displays statistics for a sample test
item in which the item writer perceived one correct response (B), but
examinees uniformly selected another response alternative (A). In this
case, the item is a good item, but one that had been miskeyed.

Table 8.6 P-Values for a Miskeyed Test ltem

Response

Alternative A B* C D omits  Total
Number 202 31 28 25 0 286
p-value 71 A1 10 9

*correct response
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Comparing p-values for High-
and Low-Achieving Subpopulations

Sometimes it is useful to compare subgroups of the examinee popula-
tion to determine how an item is performing. For this analysis, the popula-
tion is often divided into two groups, a high-achieving group and a low-
achieving group. Typically, the groups are examinees whose total score on
a test comprise the top 27 percent of all examinees, and those whose scores
place them in the bottom 27 percent of the examinees. The figure 27
percent is chosen because it is used in some computational algorithms for
determining internal reliability indices and Kelly (1939) demonstrated that
this number will provide a stable index of differences between high and
low ability groups. For this analysis, the principal focus is on determining
how well the item is functioning for the extremes of the ability range. Table
8.7 displays item data for this analysis.

Table 8.7. P-Values for Examinee Subgroups on a Single Test ltem

Response

Alternative A B* C D omit
upper 27% 29 61 .08 .02

lower 27% 31 27 31 A1 6
difference -.02 34 -.23 -.09

*correct response

Note that the item statistics displayed in Table 8.7 reveal that the
difference between the examinee subpopulatioris is 34 percent for the
correct response. This is a rather large difference which may signify that
the item was not especially difficult for high-ability examinees (the top
group) but was quite difficult for low-ability examinees (the bottom group).
For many kinds of assessments, this difference is a desirable feature for an
item. Also, heed the fact that the difference between the groups for all other
response alternatives is a negative value. Such negative values indicate
that fewer high-ability examinees selected the distractor than did low-
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ability examinees. Again, usually, this is a positive feature for an item.
Still, writers should pay attention to the fact that the difference between the
groups for response alternative A is a scant .02 percent. This suggests that
option A should be reviewed.

Comparing Several Subpopulations

Frequently in item analysis several segments of a population of exam-
inees are compared. Each segment, or subpopulation, of the total group of
examinees represents an ability stratum. Ideally, the examinees are grouped
into segments, or subpopulations, by their performance on an outside
criterion, such as another measure of analogous content with similar
reliability. In practice, however, such external measures are rarely avail-
able; hence, the test itself is usually used as a measure of examinees’
ability. For this purpose, the total test score is used.

When the total population to whom the test has been administered is
large (about 200 examinees or more), typically five groups are formed,
each representing about 20 percent of the distribution of scores on the test.
A sample of responses reported by fifths of the population distribution is
presented in Table 8.8, which will be described momentarily.

The procedure for splitting the population is straightforward. First, a
frequency distribution of scores is prepared. Then, exact scores are noted
at the 20th, 40th, 60th, and 80th percentile points, yielding five ranges of
scores. Test scores within each of these ranges become the criterion into
which particular examinee scores are grouped. Because most populations
exhibit skewed distributions, not every group will have precisely 20 per-
cent of the examinee population, but most groups should be fairly close to
20 percent.

Often, when the examinee population is divided into fifths, it is useful
to display p-values graphically. Such a representation makes it easy to
identify the relative position of each segment of the examinee population.
Flaws in items that may go otherwise unnoticed, are revealed by viewing
the number of examinees for each distractor for the various subpopula-
tions, as well as the p-values. Table 8.8 displays a graphical representation
of an item with the corresponding numbers for each subpopulation and
overall p-values.

Notice in 8.8 that the top fifth of the population (that is, the highest
scorers on the total test) also achieved the highest number of correct
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Table 8.8 Graphical Representation of an Item Including ltem
Statistics.

1st + &
2nd + ®
3rd + @
4th 4+ ®
5th + o
-+ - 1 t t ; f ? : t

top fifth 8 17 207 11
next fifth 11 39 223 25
next fifth 16 53 183 32
next fifth 17 61 113 29
lowest fifth 43 70 106 39

Noooo

p-value 07 .18 .64 .10

* correct response

responses on this particular item, followed by the next fifth who achieved
the next-highest number of correct responses, and so forth, until the lowest
fifth is shown achieving the lowest number of correct responses. For a
group-referenced interpretation, this item seems to be behaving very well
since one would anticipate that the examinees who are most able in the
tested construct would also have the greatest proportion correct on any
particular item. Notice also that the lower-ability groups increasingly

chose an incorrect response alternative.
Table 8.9 similarly displays data for a different item. Notice, here that
the item is not performing very well and needs to be revised. As can be
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seen, no examinee, regardless of ability, selected distractor A. It adds no
information to the test and should be dropped or modified. Also, more
examinees at every level of ability selected response alternative C rather
than the intended correct response, B. This could indicate poor wording.
And, as shown in the graphical representation, the two lowest achieving
groups outperformed the highest achieving group. This is a clear sign to
examine the item for confusing wording or for observing the phenomenon
of proactive inhibition (a concept discussed in Chapter 4). In either case,
this item needs major repair. It does show, however, an example of using
graphical representation and numerical analysis for improving items.

Table 8.9 Graphical Representation of a Poorly Performing item.

1st + ®

2nd + ®

3rd + [ )

4th 4+ &

5th + ®

—

-
—
-

_:
0 10 20 30 40 50 60 70 80 90 100

top fifth 0 27 111 21 0
next fifth 0 23 116 21 0
next fifth 0 16 123 13 0
next fifth 0 10 83 32 0
lowest fifth 0 2

p-value 00 M 43 15

* correct response
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Item Discrimination Indices

Discrimination is another important concept for judging the quality of
items. Actually, we were examining discrimination for items in the preced-
ing section, but it may not have been conceptually understood. Discrimina-
tion for items may be conceptually understood as the relationship between
the difficulty of an item and the ability of the examinees. Simply put, item
discrimination is an index for determining differences among individual
examinees on the subject matter or psychological construct being assessed.
It relies upon a fundamental assumption, which is that examinees who
exhibit mastery of the subject or high ability in the construct are presumed
to be more likely to answer any particular item about that subject or
construct than examinees who exhibit low mastery or ability. Conversely,
items that either all examinees responded to correctly or all examinees
missed do not discriminate. Items that do not discriminate yield no infor-
mation about differences between individuals.

Mathematically, item discrimination defines an item’s difficulty as a
function of the examinee population’s ability in the construct being as-
sessed. In other words, discrimination is related to difficulty for a particu-
lar ability. The relationship may be readily seen by examining the graphi-
cal representation of four items. Figures 8.2 to 8.5 display such graphical
representations of items at four levels of item discrimination: high dis-

Figure 8.2. Characteristics of a highly discriminating test item.

p-value

low ability high ability

highly discriminating item
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Figure 8.3. Characteristics of a moderately discriminating
test item.

p-value

low ability high ability
moderately discriminating item

crimination, moderate discrimination, no discrimination, and negative
discrimination.

The item represented in Figure 8.2 would usually be considered to be a
good item because it is highly discriminating. It distinguishes among
examinees who are of high ability and got the item correct and those who
are lower in ability and did not respond correctly to the item. Notice in 8.2
that as examinee ability increases, there is a corresponding increase in the
difficulty. The data shown earlier in Table 8.4 would be for this highly
discriminating item.

Figure 8.3 presents data for an item which discriminates moderately
well. It shows differences among examinees but not as sharply as the item
in 8.2.

Figure 8.4 displays a graphical representation of an item that shows no
differentiation between high and low achievers. Probably, this is an item
that either all examinees got correct or all incorrect. Typically, such items
add little or no information to a test and are rejected. However, zero
discriminating items should not be rejected summarily. There are some
items that assess skills so important to a particular test’s objective that one
would expect all examinees to respond correctly.
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Figure 8.4. Characteristics of a non-discriminating test item.

p-value

low ability high ability

no discrimination

Figure 8.5. Characteristics of a negatively discriminating
test item.

p-value

low ability high ability

negatively discriminating item



278 Constructing Test Items

Finally, Figure 8.5 is a graphical representation of a negatively dis-
criminating item. In items of this type, more low-ability examinees an-
swered this particular item correctly than did high-ability persons. This
usually means that the item is poorly worded or in some way confusing to
examinees who have greater knowledge of the content. Here, it is likely
that proactive inhibition is operating for the item. Negatively discriminat-
ing items are almost always in need of repair by the writer, or they should
be discarded.

Although, generally speaking, discrimination is a positive item at-
tribute, judgment must be used in deciding when an item discriminates
optimally. In some easy mastery-type items, it is appropriate for items to be
highly discriminating at just one level of ability, as was seen in the earlier
example of an item on an airline pilot’s certification test in which examin-
ees are requested to identify the radio broadcast frequency used by the
control tower at Los Angeles International Airport. At other times, very
good items may discriminate less restrictively.

Still, such judgments about optimal discrimination could be arbitrary
without guidance. Fortunately, several statistical procedures are available
that can quantify the discrimination of an item. These are especially useful
statistics in item analysis because they often will guide the item writer to
specific items needing improvement.

The Point-Biserial Measure of Correlation

One index of discrimination is the point-biserial correlation coeffi-
cient. As a measure of correlation, the point-biserial coefficient estimates
the degree of association between two variables: a single test item and a
total test score. As before, for most purposes of item analysis, the total test
score is considered a reasonable measure of examinees’ ability. It is often
the only measure of ability available to the item writer when he or she is
considering the quality of items. When the test item is inherently dichoto-
mous (i.e., scored in only one of two possible categories, such as correct or
incorrect) and the total test score is inherently continuous (that is, the
scores range from low to high), the point-biserial statistic is most useful for
examining the relative performance of an item between two groups.

The point-biserial estimate of correlation is a product-moment correla-
tion coefficient. To understand this term and its advantages for analyzing
items, one must realize that moments are thought of as standard score
deviations about a mean. The deviates themselves are referred to as the
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first moments of a distribution; the squared deviates are the second mo-
ments; cubed deviates are the third; and so forth. Since standard scores
have a mean of zero, one standard score away from the mean is the first
deviate. By this conceptual approach, and by calculus, point-biserial coef-
ficient of correlation is the association of two sets of standard scores. The
advantage of this arrangement of data is that the relationship between an
item score and a total test score is on a common base so that they may be
meaningfully correlated.

With this statistic, the item writer can gauge the discriminating value
of a test item. For example, consider the data displayed in Table 8.10. Here,
several test items are arranged in descending order of their difficulty. The
discrimination value for each item, as established by the point-biserial
statistic, is also cited. Generally speaking, items with higher point-biserials
are more highly discriminating. Conversely, items with relatively low
point-biserials are less discriminating. As a general practice, items with
negative point-biserials are either dropped from further consideration or
revised.

Item writers will use the information yielded by the point-biserial
correlation in conjunction with p-values to examine the quality of particu-

Table 8.10 Difficulty and Discrimination for a Hypothetical Test

ltem P-Value Point-Biserial
3 94 -.09
| .86 .06
16 75 12
9 73 45
2 .68 15
11 .62 -21
15 .60 31
8 55 46
8 Sl 45

14 .28 -.21
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lar items. When an item has a difficulty index within a range deemed
appropriate for the goals of a test (often, .40 < p £ .80) and is relatively
highly discriminating, the item is judged to be sound. For example, notice
in Table 8.10 that the first item (test item #3) is too easy for our criterion
and also discriminates poorly. Hence, this item is diagnosed as flawed and
needs review. Item #14, the most difficult item in the set, also needs
review. It is apparently confusing to most examinees since the few examin-
ees who got the item correct came from no apparent ability group. Item #9,
however, seems to be operating well; its difficulty is within the acceptable
range, and its relative discriminating power is high.

In using the point-biserial coefficient of correlation for item analysis,
it is often helpful to contrast the coefficient for the correct response
alternative with that of the distractors. Accordingly, computing this statis-
tic for each of the response alternatives—the correct response as well as
the distractors—is commonly done. Discrimination for a single item is
presumed to exist if the coefficient for the correct response is a positive
number while the same statistic for the incorrect response alternatives is
negative. Table 8.11 displays the statistics for a test item that exhibits this
circumstance. By this criterion, it is a good test item since it exhibits a high
level of discrimination.

Shortcomings of the Point-Biserial Estimate

Despite the fact that the information yielded by the point-biserial
correlation is often used in item analysis, the statistic is not problem-free.
With only casual analysis, one can realize that the particular item score
being analyzed has itself contributed to the total test score, or ability
measure. This leads one to wonder whether the information is actually
spurious and may therefore be misinterpreted. Logically, this point is
correct, but in practice it is not a serious problem since the effect of a single
item on the total score for a set of items is minimal, especially when the
number of items is comparatively large, say, 25 or more.

When very precise estimates are required, or when the number of
items is fewer than 25, the point-biserial estimate may be corrected for
spuriousness. The formulas for calculating the correction are not espe-
cially complex, but they are computationally long, and they are seldom
employed for the purposes of item analysis. (They are used in some
multivariate analyses.) Therefore, they are not described here; instead, the
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Table 8.11 An ltem Displayed with P-Values and Point-
Biserial Indices

1st + °
2nd+ &
3rd + Py

4th + ®

5th + 8

L 1
0 10 20 30 40 50 60 70 80 90 100

A B cr D omits

top fifth 21 3 193 47 0
next fifth 15 4 145 59 0
next fifth 30 11 161 83 0
next fifth 46 23 131 87 0
lowest fifth 50 38 84 81 1
p-value 12 .06 .54 27

point-biserial =14 -.20 29 =11

*correct response

interested reader may readily find them in any of several sources (e.g.,
Allen & Yen, 1979; Henrysson, 1963; Nunnally, 1978; Thorndike, 1982).

A further problem with the point-biserial correlation coefficient is that
when the distribution of scores in the total test group is continuous, the
range for the statistic is restricted to less than +1 and greater than -1. In
fact, the point-biserial range is a function of the point at which the ability
groups are split. This anomaly of numbers can be most easily compre-
hended when one considers the point mentioned above that very easy items
and very difficult items provide relatively little differentiation between
high-ability examinees and low-ability examinees. Despite these technical
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limitations (which will be elaborated upon momentarily), the statistic
remains useful for item analysis and is the generally preferred statistic for
examining item discrimination by traditional item analyses.

The Biserial Estimate of Correlation

Another statistic that can be used for analyzing items for discrimina-
tion is the biserial estimate of correlation. It is closely related to the point-
biserial correlation, with an important difference. The distinction between
these two measures exists in the assumptions. Whereas the point-biserial
statistic presumes that one of the two variables being correlated is a true
dichotomy, the biserial estimate of correlation assumes that both variables
are inherently continuous. Further, the assumption is made that the distri-
bution of scores for both variables is normal. For computational purposes,
however, one of the variables has been arbitrarily divided into two groups,
one low and the other high. In item analysis, the two groups are examinees
who responded correctly to a given item and those who did not.

For practical purposes in item analysis, the strength of this statistic lies
in its ability to overcome the limitations of the point-biserial statistic
discussed above. When it can be assumed that the construct being assessed
is normally distributed among the examinee population, the biserial range
is limited from -1 to +1 absolutely. This means that examinees of either
very low ability or very high ability are better represented in the correla-
tional estimate. Thus, if the writer is considering items at the extremes of
the difficulty range, the biserial estimate of correlation is preferred to the
point-biserial statistic.

The Phi Coefficient

The phi coefficient of correlation is another estimate of a correlational
relationship that can be used for analyzing test items. Like other correla-
tion coefficients, it yields an estimate between +1 and -1. However, it
differs from the two previously discussed correlation estimates because it
assumes a genuine dichotomy in both variables to be correlated. The
principal focus of the phi coefficient is to determine the degree of associa-
tion between an item and some criterion, like some program feature,
gender, or some other demographic characteristic.

During item analysis, it is often convenient to correlate two items,
giving the effect of treating each item as a criterion for the other item. For
this analysis, it is necessary to present the data for the two items in terms of
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the joint proportion-response distribution for the two items. Table 8.12
displays this data for two items in which 30 percent of the examinees got
both items correct and 20 percent answered neither item correctly.

For analyzing items, the value of the phi coefficient lies in its utility for
comparing the degree of stability in responses to the same item by examin-
ees at different points in time. For example, if the item writer wishes to
consider whether some variable such as gender is correlationally related to
how a group of examinees perform mathematics items from differing test
administrations, the phi coefficient is the appropriate statistic. This infor-
mation is especially useful to writers wishing to improve items on a test
that is undergoing revision.

Table 8.12 A Four-fold Table Presenting Responses to a
Single tem Administered Two Times.

ltem # 1
pass fail
pass 30 A7 A7
o
3
£
2
fail .33 .20 .53
53 47

Using the Phi Coefficient With Pre- and Post-Instructed Groups
One technique of analyzing items is to compare the performance of
two groups on the same items. One group is selected as the “criterion
group”’—that is, an appropriate group whom one expects to be able to
respond correctly. In the case of mastery-specific learning, the criterion
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group would be the group who has received instruction. For any item, then,
the performance of the uninstructed group is compared against that of the
criterion group. Ideally, both groups would be tested simultaneously, and
the only difference between them would be the specific instruction. The
phi coefficient can be applied to analyzing differences between the groups.

This technique has been in use for some time (e.g., Cronbach & Meehl,
1955; Klein & Kosecoff, 1976; Millman, 1974b); however, it has substan-
tial limitations. First, and perhaps most obvious, is the fact that rarely are
instructional programs so well organized around a single set of clearly
elaborated objectives that the item writer could identify two appropriate
groups. This is a problem of establishing a criterion.

A second disadvantage is the procedural difficulty of testing two
similar groups, one of which has received the instruction while the other
has not. This can lead to an adjustment in which the same group is tested
before and again after instruction. However, this adjustment introduces a
lengthy, and often impractical, delay between testings. Despite these diffi-
culties, when a criterion can be reasonably set and appropriate groups are
available, this is a strong techniques for analyzing items.

Shortcomings of the Phi Coefficient of Correlation

One especially significant limitation of the phi coefficient occurs
because this estimate of correlation, like its relatives the point-biserial and
biserial measures of association, is derived from the traditional Pearson
coefficient of correlation. Since all product-moment correlations are ex-
pressed in the form of a standard score, two variables with identical
standard scores will necessarily correlate perfectly. Hence, the phi coeffi-
cient will always be exactly +1.00 when the p-value for the two groups are
equal.

ITEM PARAMETERS

It has been emphasized throughout this book that the modern view of
test items considers not only the particular subject content addressed by an
item, but also the psychological construct that examinees must employ to
solve the problem. The discussion of the purpose for test items in Chapter
2 provides a thorough treatment of the rationale for this approach, and
most of Chapter 3 was devoted to an explanation of putting this theory into
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practice. This theory of a latent trait approach to testing has a serendipitous
effect for item analysis: the ability to present test items graphically in a
way that makes it easy to view several important characteristics simultane-
ously. This is accomplished by mapping item trace lines, or functions, for
test items. Technically, Figures 8.2 to 8.5 in this chapter can be considered
item trace lines, but in practice item trace lines are more often computed
for items analyzed with latent trait approaches.

Item trace lines are typically called item characteristic curves (ICC),
and they present information about one, two, or three parameters, or
mathematical boundaries, for each item. Generally speaking, these param-
eters are

1. Parameter A, indicating the “steepness” of the item trace line and
representing the probability of responding correctly to an item
increasing as one goes up the scale as a measure of discrimination
among varying ability levels,

2. Parameter B, defining the difficulty of the item by noting the point
at which a latent variable (e.g., psychological construct) falls—this
is also the left-to-right shift of the curve—and, sometimes,

3. Parameter C, showing the beginning, or base, of the curve, suggest-
ing the probability of guessing (also called “chance” or “pseudo-
chance”) a correct response on the item for very-low-ability exam-
inees.

Although item characteristic curves were briefly mentioned in Chapter
2, it will be useful to display several curves here for the purpose of
examining these particular item parameters. Figure 8.6 presents a item
characteristic curve. Note that the graph plots “percent success” along the
ordinate (Y axis) and the examinee attribute (viz., ability) along the
abscissa (X axis). Three other features of note are: 1) the slope of any curve
is monotonic, that is, it always rises and is never exactly horizontal; 2) an
“inflection point” (which can be shown by drawing a horizontal line from
apoint on the curve to the Y axis) is determined by the left-to-right shift of
the curve (Parameter B); and 3) the two asymptotes, lower and upper, may
approach but never actually reach 0.00 and 1.00 respectively. An item trace
line is technically termed a monotonic normal ogive. Ogives are merely a
specialized graphical representation of a frequency distribution.

Because all three features—discrimination, difficulty, and guessing
(or pseudo-chance)—for an item can simultaneously be displayed graphi-
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Figure 8.6. Trace line for a single item.
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cally, ICCs are especially useful for analyzing items. Accordingly, it will
be instructive to examine the curves for several items so that differences
among them can be noted and their utility discussed. Figure 8.7 displays
ICCs for two items which are similar in many respects but differ in
difficulty.

Notice in the figure that items 1 and 2 have similar shapes, indicating
that the two items discriminate at about the same rate; however, since the
curve for item 2 is shifted further to the right than that for item 1, item 2
discriminates at a higher level of ability. One can conclude, therefore, that
these two items have equal discriminating power but that item 2 is a much
more difficultitem. The informed item writer could use this information to
decide whether item 1 oritem 2 would be appropriate for a particular group
of examinees. For example, item 1 might be appropriate for use with
average-achieving third-graders, whereas item 2 may be appropriate only
for especially able third-graders or perhaps for fourth-graders.
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Figure 8.7. ICC of two similar items of different difficulty.
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Next, examine ICCs for two different items, items 3 and 4, in Figure
8.8 Notice that the ICC for item 3 is very flat, indicating that the item
discriminates very little, regardless of the ability level of examinees.
Typically, items that display the characteristics shown in item 3 are poor
and need repair or elimination. Last, notice the very steep slope of the ICC
for item 4. This item discriminates very well, but at only one point along
the ability continuum. Under certain circumstances such sharp discrimina-
tion is appropriate, but more often item writers will consider this slope too
steep for making distinctions among examinees and will repair or discard
the item. For most tests, item writers will seek items whose ICC is of the
smooth, lazy-S form displayed in Figure 8.7.
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Figure 8.8. ICCs for two different items.
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Examining Item Characteristic Curves
with Item Response Theory

It should be clear from the discussion thus far about item characteristic
curves that they are merely a specialized form of a frequency function and
that they can be computed using the methods described; but, this is not the
only way to compute item characteristic curves. A much more elegant, but
technically complex, approach is to use the rationale and methods of latent
trait theory to examine ICCs. Simply put, latent traits are examinee charac-
teristics, or hypothetical constructs, that cause a consistent performance on
a test of any given cognitive skill or achievement or ability.

Latent trait theories have been developed and applied under several
rubrics, but we shall use the one that most clearly emphasizes the psycho-
logically based nature of latent trait theories, item response theory (IRT). It
is from IRT that the item ICC may be most meaningfully used in item
development. However, while theoretically satisfying, ICC techniques are
also the most difficult to understand conceptually and are extremely com-
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plex procedurally. Computer processing of data, often involving large
samples of examinees, is the only practical way IRT methods may be
exploited. Nonetheless, in those instances when IRT is available to the
item writer, it can provide powerful data for item analysis.

The issues involved in item response theory are too encompassing to
detail here, nor are computational algorithms germane; rather, the focus
here is on understanding how to use ICCs that have been computed by IRT
methods for item development. Several excellent descriptions of the theory
and methods of IRT are available. A technical introduction is given by
Birnbaum (1968), and developments in latent trait theory and related
issues are discussed by Hambleton (1979), and by Hambleton and
Swaminathan (1985). A primer of IRT is given by Warm (1978); also, an
excellent introduction to the models of IRT is provided by Crocker and
Algina (1986). As one can easily imagine, a vast and growing body of
literature is devoted to this important topic.

ITEM BIAS

Item bias is a particularly significant topic in reviewing test items for
quality because it is used by those who argue that tests are unfair, incon-
stant, contaminated by extraneous factors, and subject to misuse and
abuse. For this reason, in addition to the focus on improving items gener-
ally, the careful item writer will pay special attention to bias in items. As
with many other concepts in writing items, bias is not something inherent
in test items; rather, it arises from specific sources of error variance.
Hence, addressing bias in items involves searching for a particular kind of
error variance and then seeking to eliminate or reduce the sources of error.

Further, bias can be either internal to a test or external. Internal bias is
concerned with particular characteristics of items, and it shall be our only
focus. External bias is more a matter of determining the appropriate uses
for test scores, such as for selection or placement into programs, and
usually involves an entire test rather a particular item. External bias, by
definition, sets the score of a test in a statistical comparison with a
criterion. While a very important topic to test developers and test users,
external bias is not a matter that the writer of items can directly address
without reference to the broader issues of entire test scores and their
reference to outside measures; therefore, it will not be covered in this
discussion. For a thorough treatment of external bias, the interested reader
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may refer to Jensen’s Bias in Mental Testing (1980) and to a special issue
of the Journal of Educational Measurement (1976) devoted to the topic.

For the writer to examine bias in individual test items in a meaningful
way, he or she must understand fully the concepts covered by the term and
must also realize what is not included. To begin, item writers should
understand that the term bias, when used in item analysis, is conceptually
distinct and operationally different from the concepts of fairness, equality,
prejudice, preference, or any of the other connotations sometimes associ-
ated with its use in popular speech. In item analysis, bias is a technical term
whose meaning will become evident momentarily. The reader interested in
exploring the sociological aspects of bias in tests can consult any number
of books, journals, and periodicals for discussion (e.g., Ability Testing:
Uses, Consequences and Controversies, Parts I and I, National Research
Council, Committee on Ability Testing, 1982; and Bias in Mental Testing,
1980).

As has been mentioned, in item analysis bias has a precise, mathemati-
cal definition. According to Osterlind (1983), “bias is defined as a system-
atic error in the measurement process. It affects all measurement in the
same way, changing measurement—sometimes increasing it and other
times decreasing it.... It is a technical term and denotes nothing more or
less than the consistent distortion of a statistic” (p. 10-11).

This mathematical definition for bias may be readily understood when
one examines a common occurrence of systematic distortion at the U.S.
Bureau of Standards, the official store for U.S. measurements. At the
Bureau, measurements of weight are kept in two metrics: the kilogram and
the K20. It has been empirically determined that these two measures are
not precisely equal. The K20 is estimated to be 19 parts in a billion lighter
than the kilogram. Therefore, all measurements at the Bureau done by K20
are systematically off (or biased) by this very small amount. Since some
measurements require extreme accuracy, the Bureau compensates for this
measurement bias by revising K20 measurements up by 19 parts in a
billion. Regardless of compensating remedies, the example shows a sys-
tematic error in measurement, or bias.

In test theory, an item is said to be unbiased when the probability of
success on the item is the same for equally able examinees regardless of a
particular subgroup’s membership. In other words, if an item 1s designed to
assess reading comprehension for all fifth-graders, any two children from
this population who are of the same ability should have an equal chance of
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responding correctly to the item. Characteristics beyond the fact that they
are both fifth-graders should not matter, whether gender, ethnic heritage,
or whatever. If members of one subpopulation consistently score lower or
higher than members of another subpopulation (assuming, of course, that
individual members between the groups have equal ability), then there is a
consistent distortion, and bias exists.

One naive but widely held notion concerning bias should be quickly
dispelled: Bias is not the mere presence of a score difference between
groups. It is grossly inappropriate to simply compare p-values between
two groups, note that the p-value for one group is higher than for the other,
and conclude that bias is present. Were this true, every item on every test
could be “biased” against or in favor of one subpopulation or another, and
“bias” could be repeatedly inferred by merely redefining the groups. The
logic of this argument would have every item “biased” for tall persons, or
overweight persons, or either of the two genders, or persons of one or
another ethnic heritage, or any other variable that could be named. This
thinking confuses the issue of bias either with the fact that real differences
between groups are extant, or with concerns about curricular validity of the
instrument, equal opportunity to learn the subject materials, violations of
standardizations of testing conditions, and the like.

The techniques of bias detection have evolved considerably in a short
period of time. But the most significant advancement of bias-detection
strategies accompanied the rising interest in IRT in the late 1970s and into
the 1980s. Today, techniques involving item response theory are generally
considered the most robust, or technically meritorious, approach to detect-
ing items that exhibit a systematic distortion (Lord, 1980).

Unfortunately, these procedures involve exceedingly complex statis-
tics, require very sophisticated computer programs which must perform
vast numbers of calculations, and are very difficult to implement because
the mathematical algorithms need enormous sample sizes from each sub-
population to produce stable item-parameter estimates. This final condi-
tion means that for bias detection work, IRT can be used in only a few very
large-scale testing programs because when the variable to be investigated
is ethnic heritage (the usual case), it is rare to have a population with
sufficient numbers of examinees in each of the subpopulations. Neverthe-
less, item-bias detection using these techniques is important, even if only
conceptually available to most item writers. Therefore, the technique will
be described, if only briefly. Osterlind (1983) offers a more complete
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discussion of this technique, as well as surveying a variety of other bias-
detection strategies.

The technique for IRT item-bias detection is to compare the differ-
ences in the ICCs for groups. The area between the equated ICCs is an
indication of the degree of bias present in an item. In other words, for a
particular item, an ICC is computed for each group. The two ICCs are
placed on the same scale by a simple linear transformation, and then
compared. This method can be easily presented graphically, as in Figures
8.9, 8.10, and 8.11.

Figure 8.9. Hypothetical equated item characteristic curves
for two groups different in discrimination.
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Notice in Figures 8.9, 8.10, and 8.11 that in each instance only a single
item is considered. There are two ICCs, one from each subpopulation.
Each figure displays an item that operates differentially between groups
for different reasons. In 8.9, the differing slope for the item reveals
differential performance in discrimination for each group; in 8.10, the left-
to-right shift shows differences in difficulty for each group; and, in 8.11,
differences are displayed in all three parameters for each group.
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Figure 8.10. Hypothetical equated item characteristic curves
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This information is very useful to item writers. Not only is it known
that an item performs differently for various groups, but the nature of the
differential performance is revealed. With such knowledge, writers can
eliminate items or improve them, knowing where they need to focus their
efforts—whether on making the item easier or more difficult, or on trying
to produce an item that is more highly discriminating among ability levels,
or on attempting to reduce the effects of guessing for very-low-ability
examinees.
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Figure 8.11. Hypothetical equated item characteristic curves
for two groups different in discrimination, difficulty, and
pseudochance.
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Simple but Incomplete Bias-Detection Strategies

One very simple, albeit incomplete, technique for detecting bias in
items compares the rankings of item difficulty values between two groups.
If the items for the two groups do not rank similarly, a differential perfor-
mance may be inferred. It should be understood, however, that comparing
rank order of item-difficulty indices between groups is an incomplete
strategy for concluding bias exists in test items. It is, nevertheless, a useful
technique as an early indication of whether particular items behave differ-
ently between groups. And, it is one that item writers can use for prelimi-
nary examination of particular items.

To set up the procedure of relative rankings for items, the p-value
rankings for each of two or more groups are computed. These values are
placed side-by-side to facilitate comparisons (Table 8.13).

Table 8.13 Rank Order of ltem Difficulty for a Hypothetical Test

Rank Order for ltem Rank Order for ltem
ltem Group | (p-value) Group Il (p-value)
1 3rd (p = .62) 2nd (p = .64)
2 1st(p =.93) 1st(p = .81)
3 4th (p = .55) 3rd(p = .51)
4 2nd(p=.71) 5th(p=.19)
5 5th (p = .28) 4th (p = .38)

Suppose the data for a five-item test are distributed as in 8.13. Notice
in the table that item 2 is the easiest for both groups, regardless of the fact
that a substantially higher percentage of examinees in Group I responded
correctly than did examinees in Group II (i.e., PI= .93 versus PII= .81). The
pattern for responses, however, is not continued for item 4. This item is
only second in difficulty ranking for Group I, but it is the most difficult of
all the items from Group II. Thus, the suspicion is raised that Item 4 does
not behave similarly between the two groups. Bias may be present in the
item to a degree that consistently underestimates the performance of
Group II. All other items appear to rank in a pattern similar for both groups,
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so no other item is suspected of aberrance.

A rank-order correlation coefficient, typically Spearman’s rho, be-
tween the two sets of values can be computed for further confirmation of
aberrance. For correlations of this kind, one would look for a correlational
estimate of .8 or higher to judge the similarity in rankings of item-
difficulty values between the two groups. In the example, the coefficient of
correlation is 40. The comparatively low level of correlation supports the
suspicion of bias by this method. (Of course, this data is computed only for
illustrative purposes, and is distorted by the very few items considered.)

Mantel and Haenszel (1959) suggested a procedure with more techni-
cal merit that involves applying the chi-square statistic to matched groups.
Although their work appeared early in the literature of bias-detection
approaches, its value was not fully recognized until recently. This may be
due to the fact that although the Mantel-Haenszel procedure is quite
simple, it provides a powerful approximation of the IRT methods de-
scribed above.

Another advantage of the Mantel-Haenszel procedure (cf. Holland and
Thayer, 1986) is that it involves the computation of only a chi-square
statistic and 1s, therefore, not limited like IRT to use only with very large
groups of examinees. The chi-square approach proposed by Marascuillo
and Slaughter (1981), which is also based on a chi-square statistic and is
very similar to the Mantel-Haenszel, offers this same advantage.

Procedurally, one establishes strata of ability groups based on the total
test score by considering natural breaking points in the total population’s
distribution of scores. Typically, three or four ability strata are established.
The number of persons from each subpopulation to be considered who
passed and failed the item is then determined. These frequencies are then
set in a series of 2 X 2 contingency tables. Table 8.14 displays data for a
hypothetical distribution of scores that have been broken into four ability
strata.

The chi-square statistic is then computed and tested for significance.
If a value significantly above chance is attained, differential item perfor-
mance is inferred. The item should then be discarded or reworked.

Thus, examining items for bias is important to the item writer. It
provides information that can be helpful in identifying poor items, and it
may provide clues as to how a particular item can be improved. The skilled
item writer will use these bias-detection strategies to advantage when
conducting item analysis.
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Table 8.14 Contingency Tables for Two Groups at Four Total
Score Intervals on One Test ltem

GROUP GROUP
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+ = success on item
0 = failure on item

Judgmental Approaches to Bias Detection

In addition to the mathematical definition for bias described in the
preceding section, the writer should be sensitive in his use of language to
gender, cultural, ethnic-heritage, and other differences. Language that may
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offend persons of either gender or persons from any ethnic-heritage or
religious group may not manifest numerical differences and could go
undetected by statistical approaches to detecting bias in items. Further,
changing roles for persons force changes in language. For example, at one
time it was nearly universal to refer to medical doctors with the masculine
pronoun ke and nurses with the feminine she. Such distinctions are no
longer applicable. Or, persons with physical disabilities were once called
handicapped. Today, more enlightened attitudes generally prevail, and
terms such as physically challenged are preferred. Chapter 5 cites sources
to which one can turn for more information on reducing offensive and
stereotyped language.

It is important that item writers gather differing opinions representa-
tive of the two genders, of persons from differing ethnic heritages, and of
other groups to address the issue of sensitivity in language. Such review
process does not require a complex methodology. In most cases, for the
purpose of improving items, it is adequate to have persons representing the
relevant viewpoints review items informally, preferably in honest, open
discussions. This does not mean such a review should be haphazard. The
reviewers will need criteria. The criteria might be a list of guiding ques-
tions, such as the following: “Does the language offend either gender, or
persons of various ethnic heritages, or others?”’; “Does the language ste-
reotype either gender or persons of various ethnic heritages, or others?”;
“Does the language set a tone that reflects out-of-date attitudes for either
gender or persons of various ethnic heritages, or others?.”

This kind of review will likely yield the writer, who is trying to
improve the language of the items more useful information ifit is gathered
through discussion, rather than asking reviewers to complete a form. When
such a discussion is conducted in the spirit of improving language, the item
writer will usually find these reviewers invaluable in reducing this kind of
bias in test items.

CONCLUSION

It was mentioned at the outset of this chapter that constructing a test
item is not complete until the item has been thoroughly scrutinized for its
quality. This chapter provides the writer with the tools necessary for such
scrutiny. As can be seen, these tools include the techniques of conducting a
validation study relevant to the preparation of the items, as well as methods
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for defining items in mathematical terms so that they may be examined by
appropriate statistics.

When these tools are understood, the item writer will be prepared to
gauge his or her work; when the tools are properly used, the writer will
have taken a very important step in identifying good test items and poor
ones. When the good items are recognized and the poor items are removed
or improved, the writer will have taken the final step in the long and
difficult journey of constructing good test items.

The next chapter is the concluding one. It focuses less on specific
constructing test items than on discussing some overarching consider-
ations, especially ethical and legal concerns for item writers.



