CHI-SQUAREAND FISHER'S EXACT TEST ON SPSS

Chi-Square Test (X^2)

- Hypothesis;
 - Comparing two or more proportion
 - $H_o: P_1 = P_2$
- Assumption
 - Random samples
 - Observations are independent
 - The number of cells with
 Expected Count (EC) less than
 must be less than 20% of the total number of cells.
 - The smallest EC must be at least
 2.

The chi-square test for independence, also called Pearson's chi-square test or the chi-square test of association, is used to discover if there is a relationship between two categorical variables.

Based on study design & method

> count for each cell (SPSS will do it)

Example Chi-Square Test (X^2) – (1)

- Hypothesis;
 - Association between gender and Knowledge on Nutrition (KoN)
 - Comparing the proportion of Low KoN between gender
 - H_o: P(KoN)_{male} = P(KoN)_{femafe}
- Assumption
 - Random samples [√]
 - Observations are independent [√]
 - The number of cells with <u>Expected Count (EC)</u> less than 5, must be less than 20% of the total number of cells
 - The smallest EC must be at least 2

Chi-square using SPSS - procedure:

Chi-square using SPSS - Output:

Descriptive statistics for each group

Gender * Knowledge Category Crosstabulation

			Knowledge Category		
			High	Low	Total
Gender	Female	Count	20	14	34
		% within Gender	58.8%	41.2%	100.0%
	Male	Count	20	19	39
		% within Gender	51.3%	48.7%	100.0%
Total		Count	40	33	73
		% within Gender	54.8%	45.2%	100.0%

Chi-square statistic = 0.417 df = 1; P-value = 0.518

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.417ª	1	.518		
Continuity Correction ^b	.168	1	.682		
Likelihood Ratio	.418	1	.518		
Fisher's Exact Test				.638	.341
Linear-by-Linear Association	.411	1	.521	Must be ≥ 2	
N of Valid Cases	73			III.dat be E E	

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 15.37

Computed only for a 2x2 table

Must be < 20%

2 EC assumptions is met

Chi-square using SPSS - Table and Interpretation:

Table 1: Factors (categorical variable) associated with Knowledge on Nutrition

Variable	n	Low KoN Freq (%)	High KoN Freq (%)	X ² statistics ^a (df)	P-value		
Gender							
Male	39	19 (48.7)	20 (51.3)	0.417 (1)	0.518		
Female	34	14 (41.2)	20 (58.8)				
Ethnicity Malay Others Education Level Low High	The prevalence (proportion) of Low Knowledge on Nutrition between male and female is not significantly different (P = 0.518). Therefore, there is no significant association between gender and Knowledge on Nutrition.						

a Chi-square test for independence

What if assumptions were not met?

- Combine adjacent columns or/and rows to increase the EC if possible.
- If still did not meet expected cell assumption,
 Fisher's exact (FE) test can be applied (only for 2 x 2 table in SPSS).

Fisher Exact Test

- Fisher's Exact Test is a test for independence in a 2 X 2 table.
- It is most useful when the total sample size and the expected values are small.
 - Useful when E(cell counts) < 5.
- The output consists of more than one p-values:
 - Choose Exact Sig. (2-sided)

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.072*	1	.788		
Continuity Correction ^b	.001	1	.976		
Likelihood Ratio	072	1	788	_	
Fisher's Exact Test				.816	.489
Linear-by-Linear Association	.071	1	.790		
N of Valid Cases	73				

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 13.56.

b. Computed only for a 2x2 table