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PREFACE

This book originated from a set of mimeographed notes which the
author prepared for a course taught to senior electrical engineering stu-
dents over a period of years. The primary purpose of the book is to
present the more important problems of power system analysis in a teach-
able form which is theoretically sound and adequately developed for a
senior or introductory graduate course. An attempt has been made to
awaken the interest of the student and to acquaint him with modern
practice as it pertains to the analysis under discussion,

Every author is faced with the problem of selection of subject matter
to be included. In this text sufficient material has been presented to
conduct a course lasting throughout an academic year. On the other
hand, the book is designed so that a judicious selection of material may
be made to fit the text to courses of two quarters or one semester. The
author has attempted to treat the various subjects so that many sections
may be omitted without the loss of continuity and without handicapping
the student. For several years the author has experimented with the
omission of various parts of the text and hopes that others will communi-
cate to him the results of any selection of material they find advantageous.

An attempt has been made to make the text more teachable by the
gradual introduction of some material that might otherwise prove trouble-
some to the student. For instance, per-unit computations are introduced
on a small scale in the chapter on generalized circuit constants and again
in the development of a universal circle diagram before they are treated
in detail sufficient for their exclusive use in fault calculations and sta-
bility problems. The text contains a large number of illustrative exam-
ples showing the details of the solution of almost every type of problem.
The examples should be considered a part of the body of the text. Many
explanations are incorporated in the solution of a problem. Students will

The large number of footnotes should encourage the
ment his work by additional reading. The footnotes af D ,/
an acknowledgment of some of the sources to whicla @
for many of the ideas presented. The generosity companles in '?
furnishing information can be inferred from the g men ear
ing in the text. The author is indebted to I (%E s (I- E R E D

Princeton University for persuading him to e this work, to the ¢
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vi PREFACE

late Professor C. G. Brennecke, former Head of the Department of Elec-
trical Engineering at North Carolina State College, for his unfailing words
of encouragement, and to Professor Arthur R. Eckels of North Carolina
State College for the many valuable suggestions he offered during the year
he taught from the mimeographed notes. Many students over a period
of years have taken an active interest in the work, and their suggestions
have been helpful. The author especially wishes to acknowledge the con-
stant encouragement received at every step of his teaching career from Dr.
Webster N. Jones, Vice-President of Carnegie Institute of Technology.

Witriam D. SrevensoN, Jr.
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CHAPTER 1

GENERAL BACKGROUND

1.1 The Function of Electric Power Systems. The degree of develop-
ment of sources of energy to accomplish useful work is one of the measures
of industrial progress. The discovery of sources of energy in nature, the
transportation of energy in its various forms from one place to another,
and the conversion of energy to a more serviceable form are essential
parts of an industrial economy. An electric power system is one of the
tools of converting and transporting energy.

The only means of transporting energy in the form of electricity is over
transmission lines. (Gas is transported by pipelines. Railroads, ships,
and pipelines carry oil over long distances. Coal is shipped long dis-
tances by rail and water. When coal is the primary source of electric
energy, the electric transmission line becomes a competitor of railroads
and ships in transporting energy. The choice of location of a steam
generating station near a coal mine or near a load center, provided there
is a good water supply at both places, may depend upon the difference
in cost of transmitting electric energy and transporting coal from the
mine to the load. Pipelines are increasing rapidly and are becoming a
major competitor of the electric transmission line by providing low-cost
transportation of energy. Hydroelectric power is inexpensive only if
the cost of its transmission is low. The economy of transporting energy
in one form instead of another is influenced by whether the demand for
the energy is continuous or intermittent, by the distance involved, and
by the cost and practicability of storage facilities. The determining
factor is the final cost, including transportation charges, of the energy
in the desired form.! The enormous growth of electric poger syl
since World War II testifies to the economic soundness of s

An electric power system is especially advantageo P ‘YEIRE D
ment of water power. Water power must be convg te where ,/ @
it is available, and an electric power system ma Q'& rgy derived '?

IQﬁf coal, oil, gag, and @

7
J$REGISTERED )
VERSION
ADDS NO

1 For a comparison of the cost of transporting energy ja
electricity, see R. E. Pierce and E. E. George, ‘“Econd
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2 ELEMENTS OF POWER SYSTEM ANALYSIS

from water power available at remote points. The water power is con-
verted to electric power at the source and transported by transmission
lines to the point where it is converted to the desired form, such as light,
heat, mechanical energy, or chemical energy. The transmission line
cannot store energy, and all the energy furnished at the generating station
is converted simultaneously at the load, except for the losses in the
system.

An electric power system consists of three principal components: the
generating stations, the transmission lines, and the distribution systems.
The transmission lines are the connecting links between all the generating
stations and the distribution systems. A distribution system connects
all the individual loads in a given area to the transmission lines. A well-
developed power system integrates a large number of generating stations
so that their combined output is readily available throughout the region
served. The locations of hydro stations are fixed by the presence of
water power, but the choice of sites for steam stations is more flexible.
Steam stations are usually spotted throughout the system so that there
is at least one generating plant near each large load center. Thus,
hydro stations often require the transmission of large amounts of power
over long distances, but steam plants usually require transmission over
shorter distances. The growth of loads may not be under the control
of the power company, but often the availability of cheap power encour-
ages the growth of loads in such favored areas. One job of the power
engineer is to predict the future demand for power so that suitably
located generating stations and well-coordinated, flexible, and reliable
transmission systems will be ready to supply the demand through
enlarged distribution systems as required by the load. As the system
grows, more energy sources must be exploited to satisfy the Increasing
demand, and more transmission lines must be built to link the new
generating stations to each other, to an increasing number of distribution’
points, and to other power systems.?

1.2 The Growth of Electric Power Systems. The development of a-c
systems began in the United States in 1885 when George Westinghouse
bought the American patents covering the a-c transmission system
developed by L. Gaulard and J. D. Gibbs of Paris. William Stanley, an
early associate of Westinghouse, tested transformers in his 1 orat
Great Barrington, Massachusetts. There, in the winter of
Stanley installed the first experimental a-c distributi
supplied 150 lamps in the town. The first a-c t
United States was put into operation in 1890 to

2 For a description of the development of a large
Sporn, “The Integrated Power System,” McGraw-Hil
York, 1950.
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GENERAL BACKGROUND 3

generated by water power a distance of 13 miles from Willamette Falls
to Portland, Oregon.?

The first transmission lines were single-phase, and the energy was
usually consumed for lighting only. Even the first motors were single-
phase, but on May 16, 1888, Nikola Tesla presented a paper describing
two-phase induction and synchronous motors.# The advantages of poly-
phase motors were apparent immediately, and a two-phase a-c distribu-
tion system was demonstrated to the public at the Columbian Exposition
in Chicago in 1893. Thereafter, the transmission of electric energy by
alternating current, especially three-phase alternating current, gradually
replaced d-c systems. In January, 1894, there were five polyphase
generating plants in the United States, of which one was two-phase and
the others three-phase.®

One reason for the early acceptance of a-c systems was the transformer,
which makes possible the transmission of electric energy at a voltage
higher than the voltage of generation or utilization. A higher voltage
of transmission requires less line current for the transmission of a given
amount of power and, therefore, results in lower IR losses in the line.
An a-c generator is a simpler device than a d-c generator, and this is an
additional advantage of a-c systems.

Although most of the electric energy consumed in the United States is
transmitted as alternating current, experiments have been carried on for
a number of years in this country on a system composed of a-c generators
feeding a d-c transmission line through a transformer and an electronic
rectifier. In this system an electronic inverter changes the direct current
to alternating current at the end of the line so that the voltage can be
reduced by a transformer. Direct-current transmission has been more
popular in Europe, and most of the recent literature on d-c transmission
has been published in Germany, England, and Russia. Direct-current
transmission overcomes some of the disadvantages of a-c systems, as will
become apparent as the characteristics of a-c systems are studied. The
disadvantage of elaborate inverting and rectifying equipment makes d-c

3 Much interesting material about the early development of electric equipment
and apparatus can be found in the volumes of Transactions of the American Institute
of Electrical Engineers for the period. For instance, a good description of thegk
mette-Portland line is given in C. F. Scott, ‘“‘Long Distance Transmi
and Power,” Trans. AIEE, vol. 9, pp. 425-442, 1892. For a booj - EE

) X
entury,” D

discoveries and developments which gave impetus to the elect:
MacLaren, “The Rise of the Electrical Industry during
Princeton University Press, Princeton, N.J., 1943.
4 See Nikola Tesla, “A New System of Alternating-c¢
formers,” Trans. AIEE, vol. 5, pp. 309-324, 1888.
5 See Louis Bell, “Practical Properties of Polyphas®
vol. 9, p. 27, 1894,

V,
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4 ELEMENTS OF POWER SYSTEM ANALYSIS

transmission less economical than a-c systems for distances less than
450 or 500 miles, and there is some doubt whether d-¢ transmission will
ever be as reliable as alternating current.

The Federal Power Commission publishes monthly reports on various
aspects of the generation and transmission of electric energy. The first
of a continuous series of annual reports giving data collected by the
Federal Power Commission appeared in 1920. Table 1.1 gives statistics
on the total installed capacity of generators and on the annual production

TasLe 1.1 InstaLnLEp ELectrIcAL Capacrty AND ANNUAL PRODUCTION OF
Evrecrric Exercy 1N THE UNITED STATES*

Installed capacity, | Annual energy production,
Year
kw kwhr
1920 12,713,608 39,404,639 ,000
1930 32,384,363 91,111,548, 000
1940 39,926,881 141,837,010,000
1950 68,919,040 329,141,343, 000

* Source: Federal Power Commission.
of electric energy in the United States at ten-year intervals since 1920.
Although these statistics record the growth of power systems in the first
half of the twentieth century, statistics alone do not show the impact
of the two world wars on the electrical industry. World War I revealed
the need for interconnection of power systems operating on a standard
frequency in order to furnish larger blocks of power than were available
from individual systems. Both wars dramatized the role of electricity
in building military power, and both were followed by a greater demand
for electric energy. Prior to World War II, the greatest net increase
in one year in the installed capacity of generating stations was 3,791,000
kw, in 1925. This figure was not surpassed until 1948, when the net
 increase in one year was 4,237 831 kw. Since then, statistics on yearly
growth indicate a doubling of installed capacity every ten years. Annual
energy production is also expected to double every ten years and reach
1 trillion kwhr in 1965.

In the early days of a-c power transmission in the United States, the
operating voltage increased rapidly. In 1890 the Willamette- Por
line was operated at 3,300 volts. In 1907 a line was operating
Voltage rose to 150 kv in 1913, 220 kv in 1923, 244 kv
kv on the line from Hoover Dam to Los Angeles, whic
1936. In 1952, construction was completed on §
330-kv system of the American Gas and Electric Cog

6 See P. Sporn, E. L. Peterson, I. W. Gross, and H. PJ
Extra-high-voltage Transmission System of the Americ
pany,” Trans. AIEE, vol. 70, pp. 64-72, 1951.

adrtion of a
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GENERAL BACKGROUND 5

of line voltage is principally a matter of balancing the initial investment
in line construction and apparatus with the cost of operation. Up to a
certain point, increasing the voltage results in lower losses for a given
size of conductor or in a smaller conductor for a given power loss. Much
of the saving achieved in conductor cost by designing for higher voltage
is lost because of the increased loss in the surrounding air, which is
ionized by the high voltage gradient at the wire, and because of the
increased cost of insulators, transformers, switches, and circuit breakers.
The cost of the latter items increases so rapidly at the higher voltages
that some maximum voltage exists above which it is not economical to
design transmission lines at present. Radio influence is also a factor
affeeting the selection of voltage. The final determination of a system
voltage of 330 kv for the above-mentioned line resulted from studies
of tests on a 500-kv experimental line near the Tidd station of the Ohio
Power Company. The American Gas and Eleetric Service Corporation,
in cooperation with eight manufacturers of high-voltage equipment,
obtained data on insulators, line conductors, switchgear, transformers,
lightning arresters, instruments, radio influence, and the effects of atmos-
pheric ionization at voltages up to 500 kv. Through such tests and
through experience in operating a 600-mile, 400-kv line in Sweden, the
economic and technical limitations of high-voltage transmission are being
studied.”

Until 1917, electric systems were usually operated as individual units
because they started as isolated systems and spread out only gradually
to cover the whole country. The demand for large blocks of power and
increased reliability suggested the interconnection of neighboring systems.
Interconnection is advantageous economically because fewer machines
are required as a reserve for operation at peak loads (reserve capacity)
and fewer machines running without load are required to take care of
sudden, unexpected jumps in load (spinning reserve). The reduction in
machines is possible because one company can usually call on neighboring
companies for additional power. Interconnection also allows a company
to take advantage of the most economical sources of power, and a com-
pany may find it cheaper to buy power than to generate it in an obsolete
plant. Interconnection has increased to the point where powg
exchanged between the systems of different companies as 4
routine. Figure 1.11is the map of a small transmission s
shows eight points of interconnection with other sy

tinued service of systems depending on water pd r@\arge part %

of their generation is possible in times of unusu &ktreme water @
7 8ee B. G. Rathsman and G. Jancke, ‘“Experience Ga % theRE@’gq- E R E D

Power Transmission and the Novel Features of the Systg ” ans AIEE, vol. 72, ¢
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6 ELEMENTS OF POWER SYSTEM ANALYSIS

shortage only because of the power obtained from other systems through
interconnections.

Interconnection of systems brought many new problems, most of which
have been solved satisfactorily. Interconnection increases the amount of
current which flows when a short circuit occurs on a system and requires
the installation of breakers able to interrupt a larger current. The dis-
turbance caused by a short circuit on one system may spread to inter-
connected systems unless proper relays and circuit breakers are provided
at the point of interconnection. Not only must the interconnected
systems have the same nominal frequency, but also the synchronous
machines of one system must remain in step with the synchronous
machines of interconnected systems.

Planning the operation, improvement, and expansion of a power system
requires load studies, fault calculations, and stability studies. We shall
consider the general nature of these types of problems and then proceed
to acquire some of the fundamental concepts in the theory of transmission
lines before considering these problems in detail.

1.3 load Studies. A load study is the determination of the voltage,
current, power, and power factor or reactive power at various pointsin an
electric network under existing or contemplated conditions of normal
operation. Load studies are essential in planning the future develop-
ment of the system because satisfactory operation of the system depends
on knowing the effects of interconnections with other power systems, of
new loads, new generating stations, and new transmission lines before
they are installed.

Longhand calculations of the effect of changes in a complex system are
so tedious and time-consuming that an a-c calculating board is the best
means of making a load study to determine the effect of contemplated
changes. A calculating board is a small-scale single-phase replica of the
actual system. It consists of a number of sources of a-c voltage which
may be adjusted in ' magnitude and phase and of a number of resistances,
inductances, and capacitances, all of which are adjustable. The voltage
sources and circuit elements can be connected by plugging arrangements
to represent the actual network by the equivalent circuits of its com-
ponent parts scaled down to convenient size. Measurements made on
the calculating board are easily converted, by multiplying facto,
values that would exist on the actual network, or meters
scales may be provided to read system quantities dlI‘(,C
of an a-c calculating board and of some of its cire
in Chap. 8, where the boards are described in mor§

By altering the connections of the a-¢ board, t
the system is determined just as rapidly as the
and the meters read. For instance, capacitg

ef any change in
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GENERAL BACKGROUND 7

parallel with a load or at various points along a line in order to improve
the power factor and thereby decrease the current drawn by a load hav-
ing a low lagging power factor. The installation of a capacitor of proper
size at the proper location will often raise the voltage of that part of the
system. If the voltage is low at some point in a power system, a load
study can be made on an a-c caleulating board to determine the best
size and most favorable location for the capacitor. This is done by
reading the voltages on the replica of the system for a number of different
capacitor sizes and locations. A load study concerned with the improve-
ment of voltage may indicate that building an additional transmission
line somewhere in the system is the best solution to the problem. ILoad
studies serve to determine the best location for a proposed new generat-
ing station or substation and to determine the best location for new lines
or synchronous condensers.

The results of a load study made on an a-c calculating board for the
system of Fig. 1.1 are shown in Fig. 1.2. At the time the study was made,
a new generating plant was under construction at Goldsboro, and only
one 110-kv line was available to carry power west from Goldsboro. The
study was made to compare the operation of a proposed additional 110-kv
line from Goldsboro to the Selma substation with a proposed line from
Goldsboro to the Duke substation. Figure 1.2 is a diagram of the system
with each transmission line represented by a single line. Substations
are identified by name, and generating stations and synchronous con-
densers are indicated by symbols. Data obtained from the calculating
board are recorded on the diagram. Voltages in kilovolts are recorded at
some substations, and the numbers beside the arrows show the flow of real
and reactive power in megawatts and megavars. Positive reactive power
is the power drawn by an inductive load. The figures for reactive power
are enclosed in parentheses. The data of Fig. 1.2 were taken with the
board arranged to represent contemplated future loads with a new 110-kv
line from Goldsboro to Selma. The new line is shown by dashes,

The study was repeated with the new line from Goldsboro to Duke
instead of to Selma, and a portion of the results is shown in the diagram
of Fig. 1.3. The studies show that the new line carries more load when
routed from Goldsboro to Selma than when routed to Duke and that
the difference between the two routings is slight in the rest of g
In addition, the distance from Goldsboro to Selma is ghorf
Duke, and the right of way to Selma was already owned
As a result of the load study, the new line was bu gt
Selma, as shown on the map of Fig. 1.1.

Load studies on a calculating board are valualglg
additions to a system but also for determining
cedure for the existing system. As the load on g

o )
ﬁé—éﬁqﬁrERED )

"""VERSION
ADDS NO




AEPCo.— VEPCo. EQUVALENT 2RCUIT LA i
27
2} !
|
? N g mess
-~ T 4 ]
Vroygzs| M) o i)
HEND'SON | /77
’1»/.:)
jo4.5
FRANKTON] 12
914 155)
— e 12 Ky
133108\, N9 (la.a)
L %' lp 66KV
Yy 5
“(‘Mﬂ meThod | 05
FTETT 5!
o Jioss s 1ol 5w el e J01.5
¥ 20 13./ 31 28
2l el V3 29 RIS (1) ?Fr"viu.n
suoro |1 95 25y t 2 Mo 0L DSBORD
o) asbon +{/.0) 3] ${55) 1015 195 (6oM_ S W recjine
8.5 8 Lenft™ 4.5 Y cape FEARI S w/
(17} )y 1) 2o ) 1% ¢t
35 12.2
75 ) 107 . U2 ('“)&
17 4 0 + 21 A
(L4 1z (454 (144)
BISCOE 7.5 4] sanForo | 123 §¢ >
() let o) 1i (9 ) 127
415 tas ) apeRDEEN] 94
§{0 )BAON  14(125) (23}
]
{19 M Jil
v A ATrewe| 108
LR ) (s)t {102) sovs |
[RELINE YT NS 7 Jorag|¥ ¢
wn " [ el teten
—

VERSION

ADDS NO




PX77
4 277

29
\ [G5T) ss lit ) (74 LAGRANGE

103 1835 @5 ()
15 M eavvicie
(WL
RAEFORD KCT]
10.5% 89 20 4
(8)4 ¢ (83 (21

227 | pockkamit @ ST PAULS
(29), () 49) ¢
I Jos5 125 10} Q
4 9

2y LAUR’ nn as ¢

(o N 4) (#5)4 '-qa/ .8
: 16.6) 72
tzyd roe wd 1)

7 HLUMBTON ¥31 gt
iz o (o)l /0] ()4
42 Imesﬂsw i 257 senvicie ABBOTBRG
(45 tE)y Lo ) 23 b
3 20
FAIRMONT{ /3¢ (2.0) e (171)
29 g 145 WILMTON
(2.4} 41/ 5) o
HARVILLE
jo5 19 4 (/5)
9.2 258 ?
@9 g5 185 (15)4] 724 [4(5 ) MariON
I .5y /9 {rorence (175 "
1033) 107 L {5 M (9 5) tH73) s
1
WATEREE | | ( )
DARLINGTON
4318
WS)
Taswewiy 37 7é
(3.5) (69) @ SYNCHRoNOUS CONDENSER
O GENERATING STAT10N
3t
U CAROLINA POWER & LIGHT COMPANY
sowien | ¢ 26 MNeruwvae | 47 1950 NETWORK ANALYZER STUDY
(.7} (/)¢ (xo)

POWER FLOW DIAGRAM

PINOPOLIS CASE NWO.

Fic. 1.2 Results of a load study made on an a-c calculating board for the system of Fig. 1.1 to show the effect of a proposed line
(shown by dashes) from Goldsboro to Selma. Numbers beside the arrows show the flow of real and rea ¢
megavars (reactive power in parentheses). Numbers at each bus indicate the voltage in kilovo

in megawatts and

REGISTERED © 2
VERSION

ADDS NO



10 ELEMENTS OF POWER SYSTEM ANALYSIS

throughout the day or from day to day, the system dispatcher must
know from which generating stations to supply the load so as to obtain
the best voltage regulation and the most economical operation. Operat-
ing schedules are prepared after making load studies. I.oad studies can
also be made to determine the best operating procedure in the event
of the loss of one or more generating stations or transmission lines.

1.4 Fault Calculations. The American Institute of FElectrical
Engineers defines a fault in a wire or cable as follows: “ A wire or cable
fault is a partial or total failure in the insulation or continuity of a con-
ductor.””® Most faults on transmission lines of 115 kv and higher are

@45,
' )}2 kv /2.8

Vv (9)
3 66 kv 4/
METHOD| 4

(%)

i | @

U 245 w5 es
/08 | %//o) ! (s5) 4'(46) 4 )
SELMA ¥ 2 2 ) 35
V(1) v2) | S| (s
1140 §] GOLDSBORO
Jeo)¥ oMY
Y

y
/2.5
?(/0) 1075 (zs)t 325)
DUKE /2 ¢ 205 v
(135)}]  $(#5)

Fre. 1.3 Section of an a-c caleulating-board study for the system of Fig. 1.1 to show
the effect of a proposed line (shown by dashes) from Goldshoro to Duke. Numbers
beside the arrows show the flow of real and reactive power in megawatts and megavars
(reactive power in parentheses). Numbers at cach bus indicate the voltage in
kilovolts.

caused by lightning which results in the flashover of insulators. The high .
voltage between a conductor and the grounded supporting tower causes
ionization which provides a path to ground for the charge induced by the
lightning stroke. Once the ionized path to ground is established, the
resultant low impedance to ground allows the flow of power current
from the conductor to ground and through the ground to the grounded
neutral of a transformer or generator, thus completing the cigaui
Line-to-line faults not involving ground are less common.
of circuit breakers to isolate the faulted portion of the ¢
of the system interrupts the flow of current in the ionize
deionization to take place. After an interval of al
deionization, breakers can usually be reclosed wif

%
e reestablish- 6\@6‘/
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8 ¢ American Standard Definitions of Electrical Term¥
tute of Electrical Engineers, New York, 1942,




GENERAL BACKGROUND 1

ment of the are. A report by Sporn and Muller® of nine years’ experience
with 1,634 circuit miles of line, most of which operated at 132 kv, shows
a total of 635 cases of flashover, of which 570 were successfully reclosed
by ultrahigh-speed reclosing breakers. Of the 635 cases, eight proved
to be permanent {aults where successful reclosure would have been impos-
sible. The permanent faults were caused by lines being on the ground,
by insulator strings breaking because of ice loads, by permanent damage
to towers, and by lightning-arrester failures. Experience has shown that
between 709 and 809, of transmission-line faults are single line-to-ground
faults, which arise from the flashover of only one line to the tower and
ground. The smallest number of faults, roughly 5%, involve all three
phases and are called three-phase faults. Other types of transmission-
line faults are line-to-line faults, which do not involve ground, and double
line-to-ground faults. All the above faults except the three-phase type
are unsymmetrical and cause an unbalance between the phases.

The current which flows in different parts of a power system immedi-
ately after the occurrence of a fault differs from that flowing a few cycles
later just before circuit breakers are called upon to open the line on both
sides of the fault, and both these currents differ widely from the current
which would flow under steady-state conditions if the fault were not
isolated from the rest of the system by the operation of circuit breakers.
Two of the factors upon which the proper selection of circuit breakers
depends are the current flowing immediately after the fault occurs and
the current which the breaker must interrupt. Fault calculations con-
sist of determining these currents for various types of faults at various
locations in the system. The data obtained from fault calculations also
serve to determine the settings of relays which control the circuit breakers.

For simple systems, analytie calculations of fault currents are prac-
tical, but for the more complex systems the engineer must call upon the
caleulating board. If great accuracy is not required and the system can
be assumed to be composed of purely inductive reactances or of imped-
ances of nearly equal phase angles only, a d-c¢ calculating board with
resistances replacing the inductive reactances can be used instead of the
more costly a-¢ board.

Analysis by symmetrical components is a powerful tool which we shall
study later and which makes the calculation of unsymmetrical f;
almost as easy as the calculation of three-phase faults. Ak .
symmetrical components is necessary whether the faulg g

carried out analytically or on a calculating board. 6
generator
é?éenerated or

1.5 Stability Studies. The current which flow
or synchronous motor depends on the magnitude
"SREGISTERED O)
VERSION
ADDS NO

* P. Sporn and C. A. Muller, “ Nine Years’ Experience
ing of High-voltage Transmission Lines,” Trans. AIEE, v{
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12 ELEMENTS OF POWER SYSTEM ANALYSIS

internal, voltage, on the phase angle of its internal voltage with respect
to the phase angle of the internal voltage of every other machine in the
system, and on the characteristics of the network and loads. For
example, two a-c generators operating in parallel but without any external
circuit connections other than the paralleling eircuit will carry no current
if their internal voltages are equal in magnitude and in phase. If their
internal voltages are equal in magnitude but different in phase, the
voltage of one subtracted from the voltage of the other will not be zero,
and a current will flow, as determined by the difference in voltages and
the impedance of the circuit. One machine will supply power to the
other, which will run as a motor rather than as a generator.

The phase angles of the internal voltages depend upon the relative posi-
tions of the rotors of the machines. 1If synchronism were not maintained
among the generators of a power system, the phase angles of their internal
voltages would be changing constantly with respect to each other, and
satisfactory operation would be impossible.

The phase angles of the internal voltages of synchronous machines
remain constant only as long as the speeds of the various machines remain
constant at the speed which corresponds to the frequency of the reference
phasor.’® When the load on any one generator or on the system as a
whole changes, the current in the generator or throughout the system
changes. If the change in current does not result in a change in magni-
tude of the internal voltages of the machines, the phase angles of the
internal voltages must change. Thus, momentary changes in speed are
necessary to obtain adjustment of the phase angles of the voltages with
respect to each other, since the phase angles are determined by the relative
positions of the rotors. When the machines have adjusted themselves
to the new phase angles, or when some disturbance causing a momentary
change in speed has been removed, the machines must operate again at
synchronous speed. If any machine does not remain in synchronism
with the rest of the system, large circulating currents result, and, in a
properly designed system, the operation of relays and circuit breakers
removes the machine from the system. The problem of stability is the
problem of maintaining the synchronous operation of the generators and
motors of the system. Power system engineers have devoted much
thought and effort to stability studies since about 1925."

Stability studies are classified by whether they involve ste

10 Phagors are often called vectors and are the coplanar direct
bolically represent sine functions. Phasors are the graphi
complex expressions of voltage and current.

11 8ee for instance AIEE Subcommittee on Interconnectig
“First Report of Power System Stability,” Elec. Eng., v
1937.
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GENERAL BACKGROUND 13

transient conditions. There is a definite limit to the amount of power
an a-c generator is capable of delivering and to the load which a synchro-
nous motor can carry. Instability results from attempting to increase
the mechanical input to a generator or the mechanical load on a motor
beyond this definite amount of power called the stability limst. A limit-
ing value of power is reached even if the change is made gradually. Dis-
turbances on a system, caused by suddenly applied loads, by the occur-
rence of faults, by the loss of excitation in the field of a generator, and
by switching, may cause loss of synchronism, even if the change in the
system caused by the disturbance would not exceed the stability limit
if the change were made gradually. The limiting value of power is
called the transient stability limit or the steady-state stability limit accord-
ing to whether the point of instability is reached by a sudden or a gradual
change in conditions of the system.

Fortunately, engineers have found methods of improving stability and
of predicting the limits of stable operation under both steady-state and
transient conditions. Stability studies of a two-machine system are less
complex than studies of multimachine systems, but many of the methods
of improving stability can be seen by the analysis of a two-machine sys-
tem. The a-c calculating board is a great help in predicting the stability
limits of a complex system and in comparing various methods of increas-
ing stability, but the same calculations must be made for each machine
represented on the board as are made for the machines in a simpler system
which is more suited to analytic calculations.

1.6 The Power System Engineer. This chapter has attempted to
sketch some of the history of the basic developments of electric power
systems and to describe some of the analytic studies which are important
in planning the operation, improvement, and expansion of a modern
power system. The power system engineer should know the methods
of making load studies, fault analyses, and stability studies, for such
studies affect the design and operation of the system and the selection of
apparatus for its control. Before we can consider these problems in more
detail, we must study some fundamental concepts relating to power
systems in order to appreciate how these fundamental concepts affect
the larger problems.
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CHAPTER 2

INDUCTANCE OF TRANSMISSION LINES

2.1 Introduction. An electric transmission line has four parameters
which affect its ability to fulfill its function as part of a power system.
These parameters are resistance, inductance, capacitance, and conduct-
ance. In this chapter we shall study inductance, and we shall consider
the other parameters in the two following chapters.

When current flows in an electric circuit we explain some of the proper-
ties of the circuit by the magnetic and electric fields which are present.

Figure 2.1 shows an open two-wire
' line and its associated magnetic and
electric fields. The lines of mag-
netic flux form closed loops linking
the circuit, and the lines of electric
flux originate on the positive charges
on one conductor and terminate on
the negative charges on the other
conductor. Variation of the cur-
rent in the conductors causes a
change in the number of lines of
Fic. 2.1 Magnetic and electric fields magnetic flux linking the circuit.
associated with a two-wire line. Any change in the flux linking a
circuit induces a voltage in the
circuit, and the induced voltage is proportional to the rate of change of
flux. Inductance is the property of the circuit that relates the voltage
induced by changing flux to the rate of change of current.

2.2 Definition of Inductance. Two fundamental equatiog
explain and define induetance. The first equation relatesind
to the rate of change of flux linking a circuit. The ind'

_ »
dt gg/ ),
where ¢ is the induced voltage in volts and ¢ is t I OR;E g@ O
of the circuit in weber-turns. The number of we —@ns is the g uc?- ERED ¢
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INDUCTANCE OF TRANSMISSION LINES 15

of each weber of flux and the number of turns of the circuit linked. For
the two-wire line of Fig. 2.1 each line of flux links the circuit only once,
and 1 volt is induced if the rate of change of flux is 1 weber/sec. 1If we
had been considering a coil instead of the circuit of Fig. 2.1, most of the
lines of flux produced would have linked more than one turn of the coil.
If the flux linking 100 turns of a coil changed at the rate of 1 weber/sec,
the induced voltage in each turn would be 1 volt, but the induced voltage
in the coil would be 100 volts since
the turns are in series. Therefore, the
induced voltage is proportional to the
rate of change of flux linkages.

A coil having five turns is shown in
Fig. 2.2. The closed loops represent
some of the magnetic flux linking the
turns of the coil. Two of these loops
are seen to link only one turn of the
coil. They contribute a total of two
flux linkages. Two other loops link
three turns and therefore contribute
six flux linkages. Four loops link all
five turns to give twenty flux linkages.
Thus, for the loops shown, there are 2 + 6 4 20 = 28 flux linkages. 1f
each loop or line of flux represents 1 weber, the unit of flux linkages is
a weber-turn, and the coil has 28 weber-turns. Decreasing this flux to
zero at a uniform rate in 1 sec would induce 28 volts in the coil.

When the current in a circuit is changing, its associated magnetic field
(which is described by the flux linkages) must be changing. If constant
permeability is assumed for the medium in which the magnetic field is
set up, the number of flux linkages is directly proportional to the current,
and therefore the induced voltage is proportional to the rate of change of
current. Thus our second fundamental equation is

F1e. 2.2 TFlux linking a coil.

di
e=1L 7 volts (2.2)

in henrys, e is the induced voltage in volts, and di/d¢ is the rat
of current in amperes per second. Equation (2.2) ma

_ W
=7 henrys
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16 ELEMENTS OF POWER SYSTEM ANALYSIS

If the flux linkages of the circuit vary linearly with current, which means
the magnetic circuit has a constant permeability,

L= % henrys (2.4)

from which arises the definition of the self-inductance of an electric circuit
as the flux linkages of the circuit per unit of current. The inductance
of one conductor of a circuit is equal to the flux linkages of the conductor
per unit current in the conductor. In a two-wire line the number of flux
linkages of the circuit is the sum of the flux linkages of each wire. In the
rationalized mks system of units, I, in henrys is equal to weber-turns per
ampere. In terms of inductance the flux linkages are

v =14 weber-turns (2.5)
In Eq. (2.5), if 7 is instantaneous current, ¥ represents instantaneous flux
linkages. When the current is alternating, the flux linkages are alternat-

ing, and the rms value of the flux linkages is the product of the inductance
and the rms current. Thus

Yime = LI weber-turns? (2.6)

The rms voltage drop due to the flux linkages is
V = jull volts 2.7
V = jw\[/rlﬂs VOltS (2.8)

Mutual inductance between two circuits is defined as the flux linkages
of one circuit due to the current in the second circuit per ampere of cur-
rent in the second circuit. If the current /s produces yi2 flux linkages
with circuit 1, the mutual inductance is

12 = 4t henrys
I,

The voltage drop in circuit 1 caused by the flux linkages of circuit 2 1s
V1 = jw}v[lzlg = jw'gblz VOltS

Mutual inductance is important in considering the influence of power
lines on telephone lines and in considering the coupling between parallel
power lines.

2.3 Partial Flux Linkages. Only flux lines external to the cond
have been shown in Fig. 2.1. Some of the magnetic field
the conductors although the amount of internal flux ¢
that it can be neglected at high frequencies, as we sh

_ 1
< e N
_égfrﬁ%li@“rERED e
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INDUCTANCE OF TRANSMISSION LINES 17

The changing lines of flux inside the conductors also contribute to the
induced voltage of the circuit and, therefore, to the inductance. The
correct value of inductance due to internal flux may be computed as the
ratio of flux linkages to current by taking into account the fact that each
line of internal flux links only a fraction of the total current. The flux
linkages of the internal flux in a tubular element are the product of flux
in the element and the ratio of the current encircled by the tubular ele-
ment to the total current in the conductor. Thus a line of flux which
enicircles only half the current in a conductor contributes only half a flux
linkage. Partial flux linkages are those linkages produced by flux which
links only part of the current. The total number of flux linkages due to
internal flux is the summation of all the partial linkages. The summation
of all the partial flux linkages in weber-turns divided by the current
in the circuit in amperes is the inductance in henrys due to internal flux.

The principle outlined above for computing inductance is applicable to
inductance resulting from external as well as internal flux. By this
principle inductance is defined as flux linkages per ampere, and the value
of flux linkages is the summation of flux times the fraction of the total
current linked. The fraction is less than one for lines of flux inside the
conductor and greater than one for flux surrounding several turns of a
coil. For Fig. 2.2 the fractions of current linked by the lines of flux
shown are 1, 3, and 5. The method of computing flux linkages by multi-
plying each line of flux by the fraction of current enclosed should become
increasingly clear as the topic of inductance is developed further.

We shall show later that the method of partial flux linkages is valid for
computing the internal inductance of a eylindrical wire by deriving
internal inductance in another manner and comparing the results of the
two methods.

2.4 Inductance of a Conductor Due to Internal Flux. In order to
obtain an accurate value for the inductance of a transmission line, it is
necessary to consider the flux inside each conductor as well as the external
flux. Let us consider the long, cylindrical conductor whose cross section
is shown in Fig. 2.3. We will assume that the return path for the current
in this conductor is so far away that it does not appreciably affect the
magnetic field of the conductor shown. Then the lines of flux are con-
centric with the conductor.

The magnetomotive force (mmf) in ampere-turns around
path is equal to the current in amperes enclosed by the
is also equal to the integral of the tangential compgpey

) @&Eegnetic V, @
field intensity around the path.2 Thus Q/ '?
mmf = gH-ds =1 S

& 12.9&_ 6>O
* See for instance W. H. Timbie and V. Bush, ““ Principl8 §tricR§EiG S,’ ERED ¢
4th ed., pp. 428-432, John Wiley & Sons, Inc., New Yo 4
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18 ELEMENTS OF POWER SYSTEM ANALYSIS

where H is the magnetic field intensity in ampere-turns per meter, s
is the distance along the path in
meters, I is the current in amperes
enclosed,?® and the dot between H and
ds indicates that the value of H is
the component of the field intensity
tangent to ds.

Let the field intensity at a distance
x meters from the center of the con-
ductor be designated H,. Since the
field is symmetrical, H, is constant
at all points equidistant from the
center of the conductor. If the inte-
gration indicated in Eq. (2.9) is per-
formed around a circular path con-
centric with the conductor at x meters
from the center, 1, is constant over the path and tangent to it. Equa-
tion (2.9) becomes

Fia. 2.3 Cross section of a cylindri-
cal conductor.

SH. ds =1, (2.10)
and
2reH, = I, 2.11)
where I, is the current enclosed. Then, assuming uniform current
density,
T’
I, = = I (2.12)

where [ is the total current in the conductor. Then substituting Eq.
(2.12) in Eq. (2.11), we obtain

,2
oreH, = 5 1 (2.13)
and -

H, =" -1 amp-turns/meter (2.14)

2mrr?
The flux density x meters from the center of the conductor is

wrl
2mr?

where u is the permeability of the conductor.4

B:z:.uHx:

webers/meter? (2.15)

3 If the current is alternating, the maximum value of H is fq
value of the current is used in Eq. (2.9). Similarly, if I is rms ‘ i ,/
field intensity, and flux computed from rms H is the rms viams e equation @
of alternating %

is applicable to direct current or instantaneous, maximum,
t.
cuir;r? the rationalized mks system of units the permeall f%e spREGIS TERED /O¢
)
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INDUCTANCE OF TRANSMISSION LINES 19

In the tubular element of thickness dz, the flux d¢ is B, times the cross-
sectional area of the element normal to the flux lines, the area being dz
times the axial length. The flux per meter of length is

d¢ = %7%{—2 dx webers/meter of length (2.16)

The flux linkages dy per meter of length, which are caused by the flux
in the tubular element, are the product of the flux per meter of length
and the fraction of the current linked. Thus

22 Ix?
W = 7L2d¢ = ’;rﬂ

wr

dx weber-turns/meter (2.17)

Integrating from the center of the conductor to its outside edge to find
Yint, the total flux linkages inside the conductor, we obtain

I AT EA
Yot _/;) 27t dx

VYing = %f? weber-turns/meter (2.18)

For a relative permeability of 1, u = 47 X 1077 henry/meter, and

Vine = % X 1077 weber-turns/meter (2.19)

Lin: = 15 X 1077 henry/meter (2.20)

2.5 Flux Linkages between Two Points Exter-
nal to an Isolated Conductor. As a step in
computing inductance due to flux external to a
conductor, let us derive an expression for the flux
linkages of an isolated conductor due only to that
portion of the external flux which lies between two
points distant Dy and D, meters from the center
of the conductor. In Fig. 2.4, P; and P, are two
points of distances D; and D, from the conductor
which carries a current of 7 amp. Since the flux
paths are concentric circles around the conductor,
all the flux between P; and P, lies within the
coneentric cylindrical surfaces which pass throug
Py and P,. At the tubular element which is z
meters from the center of the conductor
field intensity is H,. The mmf around the

2axH, = 1

ernal points Py o
§% REGISTERED /%
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The field intensity is

H, = A amp-turns/meter (2.22)
2mx

and the flux density in the element is

B, = L webers/meter? (2.23)
2mrx

The flux d¢ in the tubular element of thickness dz is
d¢ = dx webers/meter of length (2.24)

The flux linkages dy per meter are numerically equal to the flux d¢,
since flux external to the conductor links all the current in the conductor
once and only once. The total flux linkages between P; and P, are
obtained by integrating dy from x = D; to x = D,. We obtain

Prour I, D
Y12 = / Q‘i} dx = g; In —D—‘Z weber-turns/meter (2.25)
Dy L 1

or, for a relative permeability of 1,

Yip =2 X 107/ In % weber-turns/meter (2.26)

1

The inductance due only to the flux included between P; and P, is

Ly =2X 1077 1In % henrys/meter (2.27)
1
In Eqgs. (2.25) to (2.27), note that “In’’ denotes the natural logarithm
(base €).5 Converting henrys per meter to millihenrys per mile and
using the logarithm to the base 10, we obtain

Lys = 0.7411 log —g—2 millihenrys/mile (2.28)
1

2.6 Inductance of a Single-phase Two-wire Line. Before proceeding
to the more general case of multiconductor lines and three-phase lines, let
us consider a simple two-wire line composed of solid, round g
Figure 2.5 shows a circuit having two conductors of radi r1 g
conductor is the return circuit for the other. First
flux linkages of the circuit caused by the current igms
of flux set up by current in conductor 1 at a dista

8 Throughout this book “In” denotes the natural }
denotes the common logarithm (base 10).
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than D + r; from the center of conductor 1 does not link the circuit
and cannot induce a voltage in the circuit. Stated in another manner,
guch a line of flux links a net current of zero, since the current in conductor
2 is equal in value and opposite in direction to the current in conductor 1.
The fraction of the total current linked by a line of flux external to
conductor 1 at a distance equal to or less than D — r; is one. Between
D — rzand D + r, (that is, over the surface of conductor 2), the fraction
of the total current in the circuit linked by a line of flux set up by current
in conductor 1 varies from one to zero. Therefore, it is logical to simplify

D) )a

Fic. 2.5 Conductors of different radii and the magnetic field due to current in con-
ductor 1 only.

the problem, when D is much greater than r; and r; and the flux density
through the conductor is nearly uniform, by assuming that all the external
flux set up by current in conductor 1 extending to the center of conductor
2 links all the current 7 and that flux beyond the center of conductor 2
links none of the current. In fact, it can be shown that calculations
made on this assumption are correct even when D is small.®

The inductance of the circuit due to current in conductor 1 is deter-
mined by Eq. (2.27) with the distance D between conductors 1 a
substituted for Dy and the radius »; of conductor 1 substitu
For external flux only

T =2%X 107102 henrys/ <</('9\6 (2.29) ,/6\45
1 . | 6}()
S ‘REGISTERED 2
VERSION
ADDS NO

8 See E. W. Kimbark, “Electrical Transmission of Po
65—67, John Wiley & Sons, Inc., New York, 1949,
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For internal flux only
L1, = 4 X 1077 henry/meter (2.30)
The total inductance of the circuit due to the current in conductor 1 only
is
D .
Ly —I— 2In=) X 1077 henrys/meter (2.31)

The expression for inductance may be put in a more concise form by
factoring Eq. (2.31) and by noting that In ¢ = 14, whence

If

Ly = 2 X 107 G; tln f-?) (2.32)

i

Ly =2X107 (ln % 4 In }12> (2.33)
1

Upon combining terms, we obtain

D
— —7 )
Li=2X107In " (2.34)
If we substitute ] for rie=,

Ly =2X107 lnrl—,) henrys/meter (2.35)

or D t
= (.7411 log =7 millihenrys/mile (2.36)

1

The radius 7 is that of a fictitious conductor assumed to have no internal
flux but with the same inductance as the actual conductor of radius r;.
The quantity ¢ is equal to 0.7788. Equation (2.35) gives the same
value for inductance as Eq. (2.31). The ditference is that Eq. (2.35)
omits the term to account for internal flux but compensates for it by
using an adjusted value for the radius of the conductor. We shotld-
note carefully that Eq. (2.31) was derived for a solid, round conductor
and that Eq. (2.35) was found by algebraic manipulation of Eq. (2.31).
Therefore, the multiplying factor of 0.7788 to adjust the radius in order
to account for internal flux applies only to solid, round conductors. We
shall consider other conductors later.

Since the current in conductor 2 flows in the direction oppos1
that in conductor 1 (or is 180° out of phase with it), the
produced by current in conductor 2 considered alone gined
direction through the circuit as those produced by curre
The resulting flux for the two conductors is dete
the mmfs of both conductors. For constant permg
flux linkages (and likewise the inductances) of
sidered separately may be added.

T?EGI’S“TERED N
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By comparison with Eq. (2.35) the inductance due to current in con-
ductor 2 is

Ly =2 X 1077 ln;?— henrys/meter (2.37)
2

and for the complete circuit

D
v,

If v, = ry, = r’, the total inductance reduces to

L=Li+Ls=4X10"7"In henrys/meter (2.38)

L =4 X107 lnrg henrys/meter (2.39)
or

L = 1.482 log;? millihenrys/mile (2.40)

Equation (2.40) is the inductance of the two-wire line taking into account
the flux linkages caused by current in both conductors, one of which is

p

Fra. 2.6  Cross-sectional view of a group of n conductors carrying currents whose sum
is zero. Point P is remote from the conductors.

the return path for current in the other. This value of inductance is
sometimes called the inductance per loop meter or per loop mile to
distinguish it from the inductance of the circuit due to the current in one
conductor only. The latter, as given by Eq. (2.36), is one half the
total inductance of a single-phase line and is called the inductance per
conductor.

2.7 Flux Linkages of One Conductor in a Group. A more general
problem than that of the two-wire line is presented by one condyctor
group of conductors where the sum of the eurrents in all the {
is zero. Such a group of conductors is shown in Fig. 2
1,2,3, ..., n carry the currents Iy, I, I3, . . .
of these conductors from a remote point P are indic
Dip, Dsp, D3p, . . ., Dpr. Let us determine ¥ g
conductor 1 due to I; including internal flux li
the flux beyond the point P. By Eqs. (2.19) and
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Yir1 = ("Iél + 20 1n 13_1P> 107 (2.41)

Yipr = 2 X 10711 1n D,

1

weber-turns/meter (2.42)

The flux linkages ¢1p; with conductor 1 due fo I, but excluding flux
beyond point P, is equal to the flux produced by 7, between the point P
and conductor 1 (that is, within the limiting distances D,r and Dy,
from conductor 2). So

Yire = 2 X 10771, In #’ (2.43)

12

The flux linkages ¥ with conductor 1 due to all the conductors in the
group, but excluding flux beyond point P, is

D1p sz D3P

Yir = 2 X 10—7(11 =+ Lin 52+ Lin 57 + -

+ I, In g"”) (2.44)

which becomes, by expanding the logarithmic terms and regrouping,

¢1P=2X10*7<Illn +I2ln —I—Igln——l— '—I—Inln~1—

In

+ I InDyp+ I:InDop+Isn Degp+ - -+ +1ln an> (2.45)

Since the sum of all the currents in the group is zero,
L+ 1+ I3+ - + I, =
and, solving for I,, we obtain
IL=—(U1+ 1L+ I+ -+ 1) (2.46)

Substituting Eq. (2.46) in the second term containing I, in Eq. (2.45)
and recombining some logarithmic terms, we have

¢1p=2X10‘7<I11n +Irln - +131nDi ¥ -
13

D D D
+ I In 1P+Iz D”’+13 Di’;

ERED L
(2.47) 6\45

% ﬂREﬁlS)TERE D

O P becomes infini-
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Now letting the point P move infinitely far
terms containing logarithms of ratios of distaycg
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tesimal, since the ratios of the distances approach one, we obtain

¢1=2X10“7<[11n -I-I2ln -I—Isln —}—---

+ I.In-

D ) weber-turns/meter  (2.48)
1n .

By letting point P move infinitely far away we have included all the
fux linkages of conductor 1 in our derivation. Therefore, Eq. (2.48)
expresses all the flux linkages of conductor 1 in a group of conductors,
provided the sum of all the currents is zero. If the currents are alternat-
ing, they must be expressed as instantaneous currents to obtain instan-
taneous flux linkages or as complex rms values to obtain the rms value
of flux linkages as a complex number.

2.8 Inductance of Composite-conductor Lines. The commonest con-
ductors for overhead power transmission lines are composed of strands
of wire with alternate layers spiraled in opposite directions. Spiraling
alternate layers in opposite directions prevents unwinding and makes the
outer radius of one layer coincide with the inner radius of the next.
Stranding provides flexibility with large cross-sectional area. The num-
ber of strands depends on the number of layers and on whether all the
strands are the same diameter. The total number of strands in con-
centrically stranded cables, where the total annular space is filled with
strands of uniform diameter, is 7, 19, 37, 61, 91, or more. A general
formula for the total number of strands in such cables is

Number of strands = 322 — 3z + 1

where z is the number of layers, including the single center strand. A
500.000-cireular-mil conductor may be composed of 37 strands having -
individual diameters of 0.1162 in. or of 19 strands having individual
diameters of 0.1622 in. Table A.1 in the Appendix lists the character-
istics of concentrically stranded conductors of hard-drawn copper and of
conductors having 12, 3, and single strands. The strands of copper
conductors are usually uniform in diameter and composed of copper only.
Figure 2.7 shows a typical steel-reinforced aluminum cable (ACSR).
The conductor shown has 19 steel strands forming a central co
which are two layers of aluminum strands. There are 30
strands in the two outer layers. The conductor strand
as 30Al/198t, or simply 30/19. Various tensile
capacities, and conductor sizes are obtained by usiny
tions of steel and aluminum. Table A.2 in the
the characteristics of ACSR, indicates the sizes
and steel strands, the number of strands of eag

combina-
, Whlch gives

thReE@IS TERED © 2

the numbeér. of
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layers for the usual types of strnading. A type of conduetor known as
“expanded”’ ACSR has a filler such as paper separating the inner steel
strands from the outer aluminum strands.

Steel wires coated with a thick layer of copper are used to obtain high
tensile strength combined with good current-carrying capacity. Some-
times cables are composed of copper strands in the outer layers and
copper-coated steel wires in the inner layers. Hollow copper conductors
are sometimes used on high-voltage lines. One type of hollow copper
conductor consists of interlocked sections of copper forming a spiral

Fre. 2.7 Steel-reinforced aluminum conductor, 19 steel strands, 30 :"élumin&um
strands. (Aluminum Company of America.) -

along the axial length of the conductor. Such a conductor is self-
supporting and has some degree of flexibility. Another type of hollow
conductor consists of copper strands with the inner layer twisted in the
direction opposite to that of a twisted copper I beam around which the
strands are spiraled.

Stranded conductors come under the general classification
conductors, which means conductors composed of two ¢ rﬁ? E D
or strands electrically in parallel. We are now _reag \nudythe ,/6,?

$

inductance of a transmission line composed of Bt Aonductors,
S are identical

but we shall limit ourselves to the case where all thg

o
and share the current equally. The method ca ‘ d O
| E’@”t‘ REGISTERED 2

all types of conductors containing strands of nd con-
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ductivities,” but this will not be done here since values of internal induc-
tance of specific conductors are generally available from the various
manufacturers and can be found in handbooks. The method to be devel-
oped indicates the approach to the more complicated problems of non-
homogeneous conductors and unequal division of current between strands.
The method is applicable to the determination of inductance of lines
consisting of circuits electrically in parallel since two conductors in
parallel can be treated as strands of a single composite conductor.

Figure 2.8 shows a single-phase line composed of two conductors. In
order to be more general, each conductor forming one side of the line
is shown as an arbitrary arrange-

ment of an indefinite number of con- 'O ,

ductors. The only restrictions are ‘O bOO ¢
that the parallel filaments are cylin- nQ

drical and share the current equally. <O a’O mO

Conductor X is composed of n iden-

tical, parallel filaments, each of which Cond. X Cond. ¥
carries the current I/n. Conductor gy 98 gingle-phase line consisting of
Y, which is the return circuit for the two composite conductors.

current in conductor X, is composed

of m identical, parallel filaments, each of which carries the current —/ /m.
Distances between the elements will be designated by the letter D with
appropriate subscripts. Applying Eq. (2.48) to filament @ of conductor
X, we obtain for flux linkages of filament a

\_.W-—-J

1 1 1 1 1
— —~7 - . _ « ..
Yo =2 X 10 n(lnr;—i—lnDab—i—lnDM—!— -I—lnDan)
o100 Il b m A o) (249
m D ad’ Dg,b’ Dac' Dam )
from which
Yoe=2X10""]In \/i)waD“/ ~ Dam weber-turns/meter (2.50)
’\/T;])abDac ot Dan

Dividing Eq. (2.50) by the current I/n, we find that the inductance of
filament «a is

Va

a_m
= 2n X 10~

7ln'</n Daa’Dab’Dac' T Dam
vrgDabDac c Dan

7 See for instance L. F. Woodruff, ‘“Electric Power T
Wiley & Sons, Inc., New York, 1938.
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Similarly, the inductance of filament b is

_ ¥
Ly = T/n
=2n X 1077 In \/?b“/DwDbc/ - Dom henrys/meter (2.52)
\/Db[ﬂ"ﬂ)bc «++ Dpy
The average inductance of the filaments of conductor X is
Lav — La + Lb + Lcn+ o + Ln (253)

Conductor X is composed of n filaments electrically in parallel. If all
the filaments had the same inductance, the inductance of the conductor
would be 1/n times the inductance of one filament. Here all the fila-
ments have different inductances, but the inductance of all of them in
parallel is 1/n times the average inductance. Thus the inductance of
conductor X is

Li Lit+Ly+Lc+ -+ +0Ln

n n?

Ly = (2.54)

Substituting the logarithmic expression for inductance of each filament
in Eq. (2.54) and combining terms, we obtain

Ly =2 xX 1077
[1 XY Daa Day Dag - -+ Dam) (Do Doy Doer - - - Do) - - - (Dnar Doy Dt - - - DW]
n
R/ (DaaDaDac =+ + Dan)(DsaDDre - + - Dy - -+ (DuaDusDe - - - Dun)

henrys/meter (2.55)

where 7/ 71, and 7}, have been replaced by Dgq, D, and D..., respectively,
to make the expression appear more symmetrical.

Note that the numerator of the argument of the logarithm in Eq.
(2.55) is the mnth root of mn terms, which are the products of the dis-
tances from all the n filaments of conductor X to all the m filaments of
conductor Y. For each filament in conductor X there are m distances
to filaments in conductor Y, and there are n filaments in conductor X.
The product of m distances for each of n filaments results in mn terms.
The mnth root of the product of the mn distances is called the geometric
mean distance between conductor X and conductor Y. Itis
D,, or GMD and is also called the mutual GMD between t
ductors. Geometric mean distance is a mathematical
will discuss later in more general terms.

The denominator of the argument of the logary
the n? root of n? terms. There are n filamenjig
there are n terms consisting of r’ for that fila
from that filament to every other filament in g

q. (2.55) is
@T each filament

%esREG:hSeTERED 2

tor X. Thus we
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account for n? terms. Sometimes r/, is called the distance from filament
a to itself, especially when it is designated as D,,. With this in mind
the terms under the radical in the denominator may be described as the
product of the distances from every filament in the conductor to itself
and to every other filament. The n? root of these terms is called the
self GMD of conductor X, and the ' of a separate filament is called
the self GMD of the filament, for reasons which we shall see later when
we discuss GMD as a mathematical concept. Sometimes self GMD is
called geometric mean radius or GMR. Self GMD may be abbreviated

D,.
In terms of D, and D,, Eq. (2.55) becomes
Ly =2X10"1n Il))m henrys/meter (2.56)
Ly = 0.7411 log % millihenrys/mile (2.57)

If we compare Eq. (2.57) with Eq. (2.36), the similarity between
them is apparent. The equation for the inductance of one conductor of
a composite-conductor line is obtained by substituting in Eq. (2.36)
the GMD between conductors of the composite-conductor line for the
distance between the solid conductors of the single-conductor line and by
substituting the self GMD of the composite conductor for the self GMD
(") of the single conductor. Equation (2.57) gives the inductance of
one conductor of a single-phase line. The conductor is composed of all
the strands which are electrically in parallel. The inductance is the
total number of flux linkages of the composite conductor per unit of
line current. Equation (2.36) gives the inductance of one conductor of a
single-phase line for the special case where the conductor is a solid, round
wire.

The inductance of conductor Y is determined in a similar manner, and
the inductance of the line is

L=LX+LY

2.9 Geometric Mean Distance. In the preceding section we derived
an expression for the inductance of a composite-conductor line. We
found in the expression for inductance due to the current in one gand
a term which is the geometric mean of the distances betwee
of the one conductor and the wires of the return cond

term in the expression is the geometric mean of distgacall S
of the same conduector only. Geometric mean distan\ e

concept which is helpful in calculating inductancg /()
<tREGIS TERED 2)

By definition the GMD from one point to a g
to each of the

the geometric mean of the distances from the ong obt
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other points. For instance, the GMD from an external point to four
points on a circle is the geometric mean of the four distances shown in
Fig. 2.9. Here the geometric mean of the distances is

GMD = ~/D:1DsD;D,

If the number of points on the circle is increased without limit, the geo-
metric mean of the distances from the external point to the points on
the circle approaches the GMD from

' the point to the circle. It isequal to

D the distance from the point to the

/ center of the circle.® The GMD from

any point on a circle to all other points

\v on a circle is equal to the radius of the
circle.

The concept of the GMD from a
point to an area is important and
can be visualized by dividing the area into a large number of equal
elements and taking the geometric mean of the distances from the point
to the elements of area. If there are n elements, the geometric mean
of the distances is the nth root of the product of the n distances. The
GMD from the point to the area is the limit approached by the GMD
from the point to the elements of the area as the number of elements
increases without limit.

To find the GMD between two areas, each area is divided into a num-
ber of equal elements, say m equal elements for one area and n equal
elements for the other. The GMD between the areas is the limit of the
mnth root of the mn products of the distances between the m elements
of one area and the n elements of the other area as m and n increase
without limit. Figure 2.10 shows the six distances between two of the.
m equal elements into which one area is divided and three of the n equal
elements into which the other area is divided. To find the GMD
between the areas all distances between elements must be considered, and
the number of elements in each area must be infinite. The GMD
between two circular areas can be shown to be equal to the distance
between their centers.

The self GMD of an area is the limit of the geometric
distances between all the pairs of elements in that aregaa

Fia. 2.9 Distances from an external
point to four points on a circle.

8 See E. B. Rosa and F. W. Grover, “ Formulas and Tal %ulation of
Mutual and Self Inductance,” Scientific Paper 169, Bull. Bu S, vol. 8, no. 1, @
pp. 1-237, 1912. Other formulas for GMD have been ta he same source.

)¢ ),

S Iso J. C. M. 11, “A Treati Electricity o i :
28;—30](‘), Clarendoixg:ess, Oxforr(lfi 12;1(.)11 e RE G¥S’TE R E D %
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of elements increases without limit. The self GMD of a circular area
can be shown to be equal to the radius of the circle times e %. Since r’
in our formulas for the inductance of a round wire is the radius of the
wire times ¢ %, we can see the reason for calling r’ the self GMD of the
wire.

Since the cross-sectional areas of the filaments of the composite con-
ductors considered in deriving Eq. (2.55) could be elements of areas
such as those in Fig. 2.10, the inductance of a line composed of conductors
of irregular area can be found by calculating GMD values. The self
GMD of each area and the mutual GMD between the two areas must be
found. The inductance due to current in each conductor is found by

F1a. 2.10 The six distances from two equal elements of one area to three equal ele-
ments of another area.

Eq. (2.56) or (2.57), and the two inductances are added to find the
inductance of the line. Uniform current density throughout is assumed.

Table 2.1 gives some formulas for self and mutual GMD.

The GMD method does not apply strictly to nonhomogeneous con-
ductors such as ACSR or to cases where the current density is not uniform
throughout the conductor. An approximate value for inductance of
ACSR is obtained by neglecting entirely the current carried by the steel
conductors. The current in the steel conductors is relatively small, and
the inductance depends on the amount of current in the conductor, since
the permeability is not constant and the flux linkages are not a linear
function of current. If inductance is determined experimentally for
ACSR or other conductors not having uniform ecurrent density, an
equivalent self GMD may be found.? Let D, be the equig
GMD which when substituted in the inductance formyla
value of the experimentally determined inductance.

L=2X10"In ?)1: henrys,/m Q—
s «REGISTERED
VERSION
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Sons, Tne., New York, 1938.
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Tasre 2.1 GEOMETRIC MEAN DISTANCES

Desecription Tlustration Value

Self GMD of a circular N

area @ D, = re 7 = 0.7788r
GMD from one circular @ @ D =D

area to another » I "
GMD from circular line D=

to enclosed area "
GMD from external P @ D. =D

point to circular area D "
GMD betwecen n equally

spaced points on a @ Dy =1 "7

circle

GMD from one annular @ @ D, =D

area to another e p &
D, = 0.2235(a + b)
Self GMD of a rectang- Ib Range of constant is 0.2231 to
ular area e

0.2237, depending on ratio a/b

In GMD =In 7,
7'14 Te 37’12'—7'22

In —~ +

Tl — Al — )

Self GMD of an annular
area

the equivalent self GMD is
D, = D,e 102 (2.59)

where L is in henrys per meter. The value of D, is not affected by
nonuniform distribution of the current inside the conductor as long s the
external magnetic field is not changed. Table A.2 in the A '
the self GMD (GMR) of various sizes of ACSR.
2.10 Examples of Inductance Computations.
examples of the method of calculating inductance

;§%-nRsEGIrSJERED

#/is composed of two
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Example 2.1

One circuit of a single-phase transmission
solid wires, each 0.1 in. in radius. The retur
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wires, each 0.2 in. in radius. The arrange- ' 30’ |

ment of conductors is shown in Fig. 2.11. _]_(B (‘)
Find the inductance due to the current in @ d
each side of the line and the inductance of

the complete line in millihenrys per mile. 20'

Solulion 40, 0O
Find the GMD between sides X and Y. €

Dm = '\G/DadDaeDbdDbeDcche 20

Doz = Dio = 30t
Due = Doa = Dee = V207 + 307 = /1,300 _t ¢

[4

Do = /307 + 407 = 50 ft S =
6 /o - ide ide
D = \/30“ X 50 X 1,300% Fie. 2.11 Arrangement of

= 30% X 50% X 1,300% = 35.8 ft conductors for Example 2.1.
Then find the self GMD for side X.
])s - \B/DaaDab])acI)banbDbchachDsc

3
12
- OTXOTI o 5 20
_ 3 (HXT(Z)Q% X 20% X 4% = 1.605 ft

and for side ¥

¢ 2
D, — \4/ ((lleg—‘—W—SS) X 20% = 0.509 ft

The inductance is, by Eq. (2.57),

35.8
1.605
Ly = 0.7411 1og§’g—689

L = Ly + Ly = 2.38 millihenrys/mile.

Ly = 0.7411 log = 1.00 millihenry/mile

= 1.38 millihenrys/mile

Example 2.2

A conductor is composed of seven identical copper gtrag & ,/@
a radius » as shown in Fig. 2.12. Find the factor b should be /?
multiplied to find the self GMD of the conductor. d the factor $

by which the square root of the area of the co REG’S TE RE D /()¢

should be multiplied to obtain the self GMD of t uctor.
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Solution
First we find the distances Diz, D13, and Dy, as follows:
Dy = 2r Dy = 4r
Dis = /Dt = Do = V@E — (@) = 2r /3
The self GMD of the seven-strand

conductor is the 49th root of 49
distances. So

D, = A/ () (D122D152D1aD17)8(2r)°

where (/)7 is the product of the
self GMD of one strand and the
self GMD values of every other
strand. The term D12*D15?D14 Doy
is the product of the distances from
one outside strand to every other
strand. It is raised to the sixth
power to account for the six outside
strands. The term (2r)® accounts
for the product of the distances

Fia.2.12 Crosssection of a seven-strand .
conductor for Example 2.2. from the inner strand to every

outside strand. Thus there are

seven distances for each of the seven strands. Simplifying the expression
for D,, we obtain

2r v/3(0.7788)
T
= 2.177r
To find D, in terms of total conductor area in circular mils, let
A = total conductor area in circular mils
d = diameter of each strand in mils

r = radius of each strand in mils
Then

Dy = /1 X A/ (2% X 3 X 2% X 2% X 2r X 2r)°® =

A = 7d* = 28r*
and
2.177
D, = Z— /A = 04114 /A mils
\/28 \/— \/—

If a single-phase line consists of two stranded cables
computed in Example 2.2, it is seldom necessary s &
between strands of the two sides, for the GMD Y 643-
to the distance between centers of the cables. ation of mutual
GMD is important only where the various
electrically in parallel are separated from eac
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nearly approaching the distance between the two sides of the circuit.
Tor instance, in Example 2.1 the conductors in parallel on one side of
the line are separated by 20 ft, and the distance between the two sides
of the line is 30 ft. Here the calculation of mutual GMD is important.
For stranded conductors such as that of Example 2.2, the distance
between sides of the line is usually so great that the mutual GMD can
be taken as equal to the center-to-center distance with negligible error.

211 The Use of Tables. The self GMD of conductors of any number
of strands can be computed as in Example 2.2. The engineer seldom has
to make such computations, however, since tables listing values of self
GMD are generally available for standard conductors. All manu-
facturers furnish data, including values of self GM D, for their conductors,
and tables provide the most practical method of obtaining the desired
values, especially for nonhomogeneous conductors such as ACSR. In
order to use the tables intelligently the engineer must understand thor-
oughly the meaning of the tabulated data.

Inductive reactance rather than inductance is usually desired. The
inductive reactance of one conductor of a single-phase two-conductor
line is

_ Dn
X, = 2nfL, = 2nf X 0.7411 X 10¢ log 3"
D,
D,

= 4.657 X 107%f log ohms/mile (2.60)
where D, is the distance between the two conductors. The self GMD
D, may be found in the tables and substituted in the equation. D, and
D, must be in the same units. Most tables list values of D, for 60 cps,
25 cps, and direct current. The value of equivalent D, varies with
frequency because current density does not remain uniform throughout
the conductor as frequency increases, as we shall see in Chap. 4. As
current distribution becomes nonuniform the inductance due to internal
flux decreases, and different degrees of nonuniformity are accounted for
by different values of D, at different frequencies. The nonuniform
distribution of current due to the frequency of the current is called skin
effect. In the equations and formulas already discussed in this chapter
we neglected skin effect by assuming uniform current density.
discussion of skin effect in Chap. 4 will show the amount of]
to be applied to the value of internal inductance computq
tion of uniform distribution of current.

Some tables give values of inductive reactance in 4
One method is to expand the logarithmic term of

"ERED
g ®§e61f GMD. ,/é\,?,
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If both D, and D,. are in feet, the first term in Eq. (2.61) is the inductive
reactance of one conductor of a two-conductor line having a distance of
1 ft between conductors, as may be seen by comparing Eq. (2.61) with
Eq. (2.57). Therefore, the first term of Eq. (2.61) is called the inductive
reactance at 1-ft spacing. Tt depends upon the self GMD of the conductor
and the frequency. The second term of Eq. (2.61) is called the inductive
reactance spacing factor. This second term is independent of the type of
conductor and depends on frequency and spacing only. The spacing
factor is equal to zero when D,,is 1 ft. If D, isless than 1 ft, the spacing
factor is negative. The procedure for computing inductive reactance
is to look up the inductive reactance at 1-ft spacing for the conductor
under consideration and to add to this value the inductive reactance
spacing factor, both at the desired line frequency.'® In the Appendix,
Tables A.1 and A.2 include values of inductive reactance at 1-ft spacing,
and Table A.3 lists values of the inductive reactance spacing factor.

Example 2.3

Find the inductive reactance per mile of a two-conductor single-phase
line operating at 60 cps. The conductors are each No. 1 /0 seven-strand
hard-drawn copper wire spaced 18 ft between centers.

Solution
The area of the stranded conduetor is 4 = 105,500 circular mils (from
Table A.1). From Example 2.2

D, = 04114 /A  in.
_0.4114 4/105,500
- 12

X 1073 ft = 0.01113 ft

which is the value listed in Table A.1 for D, at 60 cps. Agreement of
calculated and tabulated values indicates that skin effect is negligible
for this case.

For one conductor

X, = 4.657 X 10-* X 60 log 6*011—211‘3 — 0.897 ohm/mile

If only D, is given in the tables, the above method is used.
tive method follows:

{ERED

10 This method of computing inductive reactance was d @\5$A Lewis ,/6@
and appeared in C. F. Wagner and R. D. Evans, “Sy Components,” 6\
MecGraw-Hill Book Company, Inc., New York, 1933 g .
“gtandard Handbook for Electrical Engineers,” pp. 3
Company, Inc., New York, 1941.

A, E. Knowlton

REGISTERED /QL
VERSION
ADDS NO




INDUCTANCE OF TRANSMISSION LINES 37

Inductive reactance at 1-ft spacing = 4.657 X 10~* X 60 log 5 011113

= 0.546 ohm/mile
Inductive reactance spacing factor = 4.657 X 10—* X 60 log 18

= (.351 ohm/mile
Inductive reactance of one conductor = 0.546 + 0.351 .

= 0.897 ohm/mile

The latter method is preferred if tables are available giving inductive
reactance at 1-ft spacing and the inductive reactance spacing factor, for
then it is necessary only to add these two values found in the tables.

Since the conductors composing the two sides of the line are identical,
the inductive reactance of the line is

X =2 X 0.897 = 1.794 ohms/mile

2.12 Inductance of Three-phase b
Lines with Equilateral Spacing.
So far in our discussion we have con-
sidered only single-phase lines. The
equations we have developed are
quite easily adapted, however, to the

D D
caleulation of the inductance of
three-phase lines. Figure2.13shows
the conductors of a three-phase line
spaced at the corners of an equilateral @ ¢
triangle. If we assume that there D

is no neutral wire, or if we assume Fic. 2.13 Cross-sectional view of the
_ equilaterally spaced conductors of a

balanced three-phase c.urrents, three-phase line.

I.+ I, + I, = 0. Equation (2.48)

determines the flux linkages of conductor a. So

D
weber-turns/meter (2.62)

Yo =2 X 10“7<Talnr_1,+lbln%+lcln—]~)

Since I, = — (I, + I.), Eq. (2.62) becomes

Ve =2 X 107 L,ln—l,— L,lnl =2 X 10—7Ialn1—/)
r D T

weber-tur

and

~VERED »
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Equation (2.65) is the same in form as Eq. (2.36) for a single-phase line.
For stranded conductors, D, replaces ' in the equation. Because of
symmetry, the inductances of conductors b and ¢ are the same as the
inductance of conductor ¢. Since each phase consists of only one con-
ductor, Eqgs. (2.64) and (2.65) give the inductance per phase of the three-
phase line.

2.13 Inductance of Three-phase Lines with Unsymmetrical Spqcmg
When the conductors of a three-phase line are not spaced equilaterally,
the problem of finding the inductance becomes more difficult. Then the
flux linkages and inductance of each phase are not the same. A different
inductance in each phase results in an unbalanced circuit and in induced
voltages in adjacent communication lines even when the phase currents
are balanced. These undesirable characteristics can be overcome by
exchanging the positions of the conductors at regular intervals along the

Pos. 1 Cond. a Cond. ¢ Cond. b

12
Qﬁ; Pos. 2 Cond. b Cond. a Cond. ¢
D Pos. 3 Cond. ¢ Cond. b Cond. a

F16. 2.14 Transposition cycle.

line so that each conductor occupies the original position of every other
conductor over an equal distance. Such an exchange of conductor posi-
tions is called transposition. A complete transposition cycle is shown in
Fig. 2.14. The phase conductors are designated a, b, and ¢, and the
positions occupied are numbered 1, 2, and 3. Transposition results in
each conductor having the same average inductance over the whole
cycle.

If an untransposed telephone line parallels an untransposed power
line, the flux produced by the power line induces a voltage of power-line
frequency in the telephone line. Transposition of the power line without
transposition of the telephone line eliminates interference of the power
line with the telephone line except for unbalanced cases where power
currents flow in the earth or in overhead ground wires. For balanced
three-phase currents in a transposed power line, the magnetic field
linking an adjacent telephone line is shifted 120° in time phasg
rotation of the conductor positions in the transposition cyelg
length of one transposition cycle of the power line,
induced in the telephone line is zero, because it is thess
voltages equal in magnitude and displaced 120° fr
not necessary to transpose a power line to prexos
telephone line, for the same result is accompl
the telephone line.
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Modern power lines are usually not transposed at regular intervals,
although an interchange in the positions of the conductors may be made
at switching stations in order to balance more closely the induectance
of the phases.’' Fortunately, the dissymmetry between the phases of
an untransposed line is small and may be neglected in the solution of
many problems. If the dissymmetry is neglected, the inductance of the
untransposed line is calculated as though the line were correctly trans-
posed. The inductive reactance of each phase of the untransposed line
is taken as equal to the average value of the inductive reactance of one
phase of the same line correctly transposed. The derivations to follow
are for transposed lines. The error is small, and the calculations are less
laborious if the inductance of an untransposed line is calculated by the
same equations.

To find the average inductance of one conductor of a transposed line,
the flux linkages of a conductor are found for each position it occupies
in the transposition cycle, and the average flux linkages are determined.
Let us apply Eq. (2.48) to conductor a of Fig. 2.14 to find the flux linkages
of a In position 1, when b is in position 2 and ¢ is in position 3, as follows:

Ya =2 X 1077\ I, ln —{—L,ln + I, In —
l)1> 1)31
weber-turns/meter (2.66)

With @ in position 2, b in position 3, and ¢ in position 1,

Yor = 2 X 1077 (I ln— + I In D—% + I, 1n Dlz)

weber-turns/meter (2.67)

and, with a in position 3, b in position 1, and ¢ in position 2,

¢a3=2><10“7<] In = —i—lbln +] In 1)
D?'i

weber-turns/meter (2.68)

The average value of the flux linkages of a is

Kba — ¢a1 + ¢a2 + ¢a3

+ 7. In

7 1 1
- —(ﬂ“nﬁfblnm

! For instance, see E. T. B. Gross and A. H. Westo
age Overhead Lines and Elimination of Electrostatic 8
AIEE, vol. 70, pp. 1837-1841, 1951,
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With the restriction that I, = — (I, + o),
_2X 1077 1 1 )
Yo = 3 (3Ia ln? I,In DaDasDo,
3
=2 X 10771, In i&i/&—wm weber-turns/meter (2.70)

and the average induetance per phase is

L,=2X10"7In %11 henrys/meter

L, = 0.7411 log Drfq millihenrys/mile (2.71)

where Doq = N/ D12D23Disy (2.72)

Equation (2.71) may be written

L, = 0.7411 log %eq millihenrys/mile (2.73)
where D, is the self GMD of the conductor. D.,, the geometric mean of
the three distances of the unsymmetrical line, is the equivalent equilateral
spacing, as may be seen by the comparison of Eq. (2.71) with Eq. (2.65).
We should note the similarity between all the equations for inductance
of a conductor. If the inductance is in millihenrys per mile, the factor
0.7411 appears in all the equations, and the denominator of the logarith-
mic term is always the self GMD of the conductor. The numerator 18
the distance between wires of a two-wire line, the mutual GMD between
sides of a composite-conductor single-phase line, the distance between

conductors of an equilaterally spaced line, or

/@\ the equivalent equilateral spacing of an
R 25 unsymmetrical line.

G[ g \9 Example 2.4

Fie. 2.15 Arrangement of . . . .
conductors for Exz%mple 2.4, A single-circuit three-phase line operated

at 60 cps is arranged as shown in Fig. 2.15.
Each conductor is No. 2 single-strand hard-drawn copper wire. Find
the inductance and inductive reactance per phase per mile.

Solution
The diameter of No. 2 wire is 0.258 in.

0.258 X 0.7788

Ds = ———2*§<—‘12—‘ = 0.00836 ft
D.g = /A5 X 45 X 8 = 5.45 ft & %
5.45 .

X, = 2760 X 2.083 X 10— = 0.787 o}l /QDase
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or, from Tables A.1 and A.2,

Inductive reactance at 1-ft spacing = 0.581
Inductive reactance spacing factor for
5.45 {t = 0.2058

Inductive reactance per phase = 0.7868 ohm/phase/mile

2.14 Paradllel-circuit Three-phase Lines. Two three-phase circuits
that are identical in construction and electrically in parallel have the
same inductive reactance. The inductive reactance of the single equiv-
alent circuit, however, is half that of each of the individual circuits
considered alone only if they are so widely separated that there is negli-
gible mutual inductance between them. If the two circuits are on the
same towers, the method of GMD may be used to find the inductance per

a h——oc' c hr—ob" b h—>0a’
d g d g d g
b \eb' a \oa’ ¢ \Dc’
% f + f {7 !
d \ 1 \ d \
cl a’ b ¢’ al o
(a) Phaseain (b) Phaseain (c) Phaseain
position 1 position 2 position 3

Tre. 2.16  Arrangement of the conductors of a double-circuit three-phase line in the
three parts of the transposition cycle.

phase by considering all the conductors of any particular phase to be
strands of one composite conductor.

Let us consider the two three-phase circuits with flat, vertical spacing
shown in Fig. 2.16a. One circuit is composed of conductors a, b, and c.
The other is composed of conductors a’, b’, and ¢.  Conductors ¢ and o’
are in parallel and compose phase a. Similarly, conductors b and b’ are
in parallel composing phase b, and ¢ and ¢’ in parallel compose phase c.
In the other parts of the transposition cycle, conductors a and o take
first the positions originally occupied by b and b’ and then the positions
occupied by ¢ and ¢/, as shown in Figs. 2.16b and 2.16¢. The inductance
is lowered if the individual conductors of a phase are separategag
as possible and if the distances between phases are ke
results in a low D,, and a high D,. It is accomplished i
line by having the conductors of two of the phases spgues
Fig. 2.16, rather than horizontally adjacent.

By the method of GMD, the equivalent equilg

%
¢

G,
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where Dg = mutual GMD between phases ¢ and b in position 1
= Vdgdg = /dg
Dy, = mutual GMD between phases b and ¢ in position 1
= D = V/dg

D, = mutual GMD between phases ¢ and ¢ in position 1 = +/2dh

Thus

D,, = 2¥d¥ghh¥ (2.75)

If the self GMD of each individual conductor of phase a 1s 7', the self
GMD in position 1 for the entire phase consisting of conductors ¢ and

a’is

Dus = 7T = V7
In position 2 the self GMD of phase a is

Dy = V7'h'h = \/T'h
and in position 3 the self GMD of phase ¢ is

Ds = 7T = VS
The average value of the flux linkages of the phase for the whole trans-
position cycle determines the average inductance. We saw [in Eqgs. (2.50)
to (2.55) and again in Eqgs. (2.69) and (2.70)] that the average of logarith-
mic terms is equal to the logarithm of the geometric mean of the argu-
ments of the logarithms. Therefore, the equivalent self GMD of one

phase for the transposition cycle is the geometric mean of the three values
of self GMD of the phase in the three parts of the transposition cyele.

Thus
Ds = \/3 DSII)S2D83 (276)
D, = (r')%f%h (2.77)

Equations (2.76) and (2.77) are the same for all three phases if 7’ is the
same for all three phases, since phases b and ¢ occupy the same positions
as phase a for equal distances. The inductance per phase is

1% 15
L = 0.7411 log 11)) = 0.7411 log [2% (g) (%) ]
millihenrys/phase/mile

S [%g(gf)ﬂ i gfldaﬁa;@TERED )
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As the two circuits of Fig. 2.16 are moved farther apart, the ratio
g/f approaches one. If the two circuits are very far apart, the mutual
inductance between them is negligible, and we would expect the induct-
ance per conductor computed from Eq. (2.79) to approach that of a
single circuit. Considering one of the circuits of Fig. 2.16 alone, we

obtain
/2ddd = 2¥%d

D, =17

D.,

and

Substituting the above values in Eq. (2.73), we find

L = 0.7411 log (2% r_(%> millihenrys/mile/conductor  (2.80)

which is the same as Eq. (2.79) if the ratio g/f is one. Therefore, we
may consider the ratio ¢/f as a factor which accounts for the mutual effect
of one circuit with flat spacing on a similar parallel circuit.

The preceding discussion shows the application of the GMD method
to the computation of the inductance of a flat-spaced parallel-circuit
line. Equations (2.75) and (2.77) to (2.80) apply only to flat-spaced
parallel lines. It is not practicable to develop the special equations for
other arrangements because the equations are complicated. The GMD
method is applicable, however, to ,
any circuits electrically in parallel, ‘0 18’ ok
regardless of arrangement. Equa-
tions (2.74) and (2.76) apply to any 10
multicircuit three-phase line if we
remember that Dg, Dy, and D, are
mutual GMD values. G 2r O+

Example 2.5

A three-phase double-circuit line
is composed of 19-strand concentric o
copper conductors of 300,000-circular- @ 18 O
mil cross-sectional area. The lineis Y16 2.17 Arrangement of conductors

. . for Example 2.5,
arranged as shown in Fig. 2.17 and
is completely transposed. Find the 60-cycle inductive reactancg
per mile.

Solution
From Table A.1, for the specified conductor, D
Distance from a to b in original position = v/14
Distance from a to b’ in original position
Distance from a to @’ in original position = A = 26.9 ft.
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D, = (V/26.97 /217 /26.9r")% = 4/0.01987 (26.9 X 21 X 26.9)%
= 0.141 X 4.98 = 0.702 ft
Da = Dy = v/(10.1 X 21.9) = 14.88 ft
D.o = /(18 X 20)% = 18.97 ft
D., = V/14.88 X 14.88 X 18.97 = 16.1 ft
L = 0.7411 log 015012 = 1.01 millihenrys/mile/phase
X

2760 X 1.01 X 10-% = 0.38 ohm/mile/phase

2.15 Summary. Tables are helpful in computing the inductance and
inductive reactance of a transmission line. If the self GMD of the con-
ductor is obtained from a table, we can find the inductance of a single-
circuit line by Eq. (2.57) if the line is single-phase, or by Eq. (2.73) if the
line is three-phase. These two equations are the same except that the
numerator of the argument of the logarithm of Eq. (2.73) for the three-
phase line is the distance of equivalent equilateral spacing, rather than
a single GMD as in Eq. (2.57) for the single-phase line. When more
elaborate tables giving reactance at 1-ft spacing for various conductors
and inductive reactance spacing factors are available, the inductance
can be found by adding two values obtained from the tables.

For multicircuit lines tables may be used as described above except
that additional calculations are necessary to apply the principle of GMD.

PROBLEMS

2.1 A hollow, cylindrical conductor has an outside diameter of 1.100 in. and a wall
thickness of 0.130 in. Find the flux density at a distance of 0.485 in. from the center
of the conductor when the current is 500 amp. Neglect the effect of the return
circuit.

2.2 Derive the formula for the internal inductance in henrys per meter of a hellow
conductor having an inside radius r; and an outside radius .. In what units should
71 and 7 be expressed?

2.3 Determine the formula for the inductance in henrys per meter of a single-phase
line consisting of the hollow conductors described in Prob. 2.2 if the spacing between
conductors is D ft. In what units should r; and r, be expressed? Compare the
formula with the self GMD of an annular area given in Table 2.1.

2.4 Compute the 60-cycle inductive reactance at 1-ft spacing in ohms per mile for
the hollow conductor whose dimensions are given in Prob. 2.1.

2.6 Find the self GMD of a seven-strand conductor if the center stra
and replaced by a strand of zero conductivity. Express the r ’

}@%us rof an

radius r of an individual strand.
dé(s shown in Fig.
g

2.8 Tind the self GMD of a three-strand conductor in
individual strand.
2.7 Find the self GMD of each of the unconventional g
REGISTERED O)
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2.18 in terms of the radius r of an individual strand and
A, where A is the total area of the composite conductor i
that all strands have the same radius and the same ¢
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oo

(a) (b)
(¢) d)
Fra. 2.18 Cross-scctional views of unconventional conduectors for Prob. 2.7.

2.8 Compute the 60-cycle inductive reactance at 1-ft spacing in ohms per mile of a
cable consisting of 12 equal strands around a nonconducting eore. The diameter of
each strand is 0.0936 in. The outside diameter of the cable is 0.470 in.

2.9 The outside diameter of the single layer of aluminum strands of No. 6 AWG
ACSR conductor is 0.198 in. The diameter of each strand is 0.0661 in. Determine
the 60-cycle inductive reactance at 1-ft spacing. Neglect the effect of the center
strand of steel, but compare the result with the values given in Table A.2.

2.10 The 60-cycle inductive reactance at 1-ft spacing of a solid conductor is
0.595 ohm /mile. Find the reactance for a spacing of 6 ft, and determine the cross-
sectional area of the wire in circular mils.

2.11 The 60-cycle inductive reactance per conductor of a single-phase line having
solid conductors spaced 4 ft apart is 0.791 ohm /mile. Specify the 25-cycle inductive
reactance at 1-ft spacing for the conductors. What is the cross-sectional area of the
conductors in eircular mils?

2.12 The distance between conductors of a single-phase line is 10 ft. Each con-
ductor is composed of seven equal strands. The diameter of each strand is 0.1 in.
Find the inductance of the line in henrys per mile.

2.13 A single-phase 60-cycle power line is supported on a horizontal crossarm.
The spacing between conductors is 8 ft. A telephone line is supported on a horizontal
crossarm 6 ft below the power line. The conductors of the telephone line are No. 14
AWG solid copper spaced 2 ft between centers. The conductors of the power line
are No. 2 AWG solid copper. Find the mutual inductance between the circuits and
the voltage per mile induced in the telephone line if the current in the power line is
150 amp.

2.14 If the power and telephone lines described in Prob. 2.13 are in the g
horizontal plane and the distance between the nearest conductors of t
60 ft, find the mutual inductance between the circuits and the voltage pe
in the telephone line for 150 amp in the power line.

2.16 The conductors of a three-phase line are equilaterally
ductor is a solid wire having a diameter of 0.162 in, The
inductance per phase in millihenrys per mile.

2.16 A three-phase line is designed with equilateral g
to build the line with horizontal spacing (Diz = 2D
transposed. What should be the spacing between adjag
obtain the same inductance as in the original design?

G ,/6\
Find the
22

it. It is decided
hdRd

o
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2.17 A single-phase circuit consists of three conductors on one side of the line
and one on the other side. The arrangement is shown in Fig. 2.19. The three con-

______Oax

4' e "
Radii=0.04" each Radius=01

3" I 12*

Fig. 2.19 Arrangement of conductors for Prob. 2.17.

ductors composing one side of the line are transposed. Find the inductance per mile
of this line.

2.18 Six conductors of 19-strand hard-drawn copper with an arca of 300,000 cir-
cular mils are arranged as shown in Fig, 2.17. The vertical spacing, however, is 13 ft,
the longer horizontal distance is 28 ft, and the shorter horizontal distances are 22 ft.
If the line is operated single-phase with conductors a, b, and ¢ in parallel forming one
side of the line and conductors a’, ', and ¢’ forming the other side, find the inductance
per mile of the line. Assume equal current in all conductors.

2.19 A 132-kv three-phase double-circuit power line is arranged with the con-
ductors of cach circuit in a vertical plane. The distance between adjacent con-
ductors of the same eircuit is 12 ft. The horizontal spacing between circuits is 24 ft.
The conductors are 556,500 circular-mil ACSR, 30/7. Compute the inductance per
phase of the double-circuit line. Compare the induetance of one conductor of the
double-circuit line with the inductance of one conductor of a single circuit alone with
the same vertical spacing.

2.20 If the line of Prob. 2.18 is operated three-phase, find the induetance per phase
and per conduector.

2.21 Each phase of a three-phase line comsists of three solid conductors. Fhe
diameter of each conductor is 0.26 in., and the spacing is shown in Fig. 2.20. Phases

“1? P azO 4 a3 O
3
3

&

50O 50

A0

Fic. 2.20 Arrangement of conductors for P

are designated a, b, and ¢. There is complete transposi
to individual conductors in each phase, Find the inducta
per mile,
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CHAPTER 3

CAPACITANCE OF TRANSMISSION LINES

3.1 Introduction. The potential difference between the conductors
of a transmission line causes the conductors to be charged in the same
manner as the plates of a capacitor are charged when there is a potential
difference between the plates of the capacitor. The capacitance between
conductors is the charge per unit of potential difference. Capacitance
is a constant depending on the size and spacing of the conductors. For
power lines less than about 50 miles long, the effect of capacitance is
slight and is usually neglected. For longer lines of higher voltage,
capacitance becomes increasingly important.

An alternating voltage impressed between the conductors of a trans-
mission line causes the charge on the conductors to increase and decrease
with the increase and decrease of the instantaneous value of the voltage.
The movement of charge is a current, and the current caused by the
alternate charging and discharging of a line due to an alternating voltage
is called the charging current of the line. Charging current flows in a
transmission line even when it is open-circuited. It affects the voltage
drop along the line as well as the efficiency and power factor of the line
and the stability of the system of which the line is a part.

3.2 Electric Field of a Long, Straight Conductor. Just as the mag-
netic field is important in considering inductance, so the electric field is
important in studying capacitance. In the preceding chapter we saw
(Fig. 2.1) both the magnetic and electric fields of a two-wire line. Lines
of electric flux originate on the positive charges of one conductor and
terminate on the negative charges of the other conductor.
electric flux emanating from a conductor is numerically
coulombs of charge on the conductor. Electric flux den!
flux per square meter and is measured in coulomb

If a long, straight, cylindrical conductor has a un
out its length and is isolated from other charg
uniformly distributed around its periphery, the
equidistant from such a conductor are points ¢

47
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the same electric flux density. TFigure 3.1 shows such an isolated con-
ductor carrying a uniformly distributed charge. The electric flux density
at x meters from the conductor may be computed by imagining a cylin-
drical surface concentric with the conductor and x meters in radius.
Since all parts of the surface are equidistant from the conductor, which
has a uniformly distributed charge,
the cylindrical surface is a surface of
equipotential, and the electric flux
density on the surface is equal to the
flux leaving the conductor per meter
of length divided by the area of the
surface in an axial length of 1 meter.
The electric flux density is

=7 2
D e coulombs/meter? (3.1)

where ¢ is the charge on the con-
ductor in coulombs per meter of
length and z is the distance in meters
Fia. 3.1 Lines of electric flux originat- from  the condu(.:tor to the .pOH}t
ing on the positive charges uniformly ~where the electric flux density is
distributed over the surface of an iso- computed. The electric field inten-
lated cylindrical conductor. . . .

sity, or voltage gradient, is equal to
the electric flux density divided by the permittivity' of the medium.
Therefore, the electric field intensity is

& = Zg-xl—c volts/meter (3.2)
3.3 The Potential Difference between Two Points Due to a Charge.
The potential difference between two points is the work in newton-
meters (joules) necessary to move a coulomb of charge between the
two points. Electric field intensity is a measure of the force on a charge
in the field. Electric field intensity in volts per meter is equal to the force
in newtons on a coulomb of charge at the point considered. Between
two points the line integral of the force in newtons acting on a coulomb
of positive charge is the work done in moving the charge from the gRint
of lower potential to the point of higher potential and is tjlies
difference between the two points. R /E D
ombs
rWht distances

Consider a long, straight wire carrying a positive ghaj
meter, as shown in Fig. 3.2. Points P; and P; a

%
«§“R Séilfé‘TERED °)
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1In the rationalized mks system of units the pergsd
8.85 X 10712 farad/meter. Relative permittivity %, i
mittivity & of a material to the permittivity of free space.
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D, and D, meters from the center of the wire. The positive coulomb
on the wire will exert a repelling force on a positive charge placed in the
field. Since the force repels a positive
charge in the field and since D, in this N
case is greater than D;, work must be N Path of
done on a positive coulomb to move it integration
from P, to Py, and P, is at a higher
potential than P,. The difference in
potential is the amount of work done.
On the other hand, if the coulomb
moves from P; to P, it expends
energy, and the amount of work, or /
energy, in newton-meters is the volt- / ,’
age drop from P; to P.. The poten- / /
tial difference is independent of the ;
path followed. The simplest way to Frc. 3.2 Path of integration hetween
compute the voltage drop between the tWo points external to a cylindrical
. A conductor having a uniformly distri-
two points is to compute the voltage 1) ted positive charge.
between the equipotential surfaces
passing through P; and P, by integrating the field intensity over a
radial path between the equipotential surfaces. Thus the voltage drop
between P; and P, is

D, D, D
Vi = / &dr = / 9 gp =4 1n 5? volts 3.3)
1

. D, 2wkx 2rk

where ¢ is the charge on the wire in coulombs per meter of length. Note
that the voltage drop between two points, as given by Eq. (3.3), may
be positive or negative depending on whether the charge causing the
potential difference is positive or negative and on whether the voltage
drop is computed from a point near the conductor to a point farther away,
or vice versa. The sign of ¢ may be either positive or negative, and the
logarithmic term is either positive or negative depending on whether D,
is greater or less than D.

3.4 Capacitance of a Two-wire Line. In Sec. 3.1 the capacitance
hetween the two conductors of a two-wire line was defined as the charge
on the conductors per unit of potential difference between
the form of an equation, capacitance is

C = % farads/meter

e@g/and V is the

f %TheRfE@ixSeTERED 2

in Eq. (3.4) the
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where ¢ is the charge on the line in coulombs pe
potential difference between the conductors in
between two conductors may be found by substj
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expression for V in terms of ¢ found by Eq. (3.3). The voltage Va
between the two conductors of the two-wire line shown in Fig. 3.3 may
be found by determining the poten-

G % tial difference between the two con-
a@ bCé ductors of the line, first by computing
[ b l the voltage drop due to the charge ¢.

I | on conductor a and then by computing

Fre. 3.3 Cross section of a parallel-  {he voltage drop due to the charge g,
wire line. on conductor b. By the principle of
superposition the voltage drop from conductor a to conductor b due to
the charges on both conductors is the sum of the voltage drops caused by
each charge alone.

Consider the charge ¢, on conductor «,
and assume that conductor b is uncharged
and merely an equipotential surface in the 2 ,o%
electric field created by the charge on a.
The equipotential surface of conductor b
and the equipotential surfaces due to the
charge on a are shown in Fig. 3.4. The
distortion of the equipotential surfaces
near conductor b is caused by the fact that
conductor b is also an equipotential sur-
face. Equation (3.3) was derived by as-
suming all the equipotential surfaces due
to a uniform charge on g round conductor
to be cylindrical and concentric with the
conductor. Such is actually true for the
case under discussion except in the region
near conductor b. The potential of con-
ductor b is that of the equipotential sur-
fa.ce' intersecting b. Therefore, in deter- Frc. 3.4 Equipotential surfaces
mining V. a path may be followed from  of a portion of the electric field
conductor a through a region of undis- caused by a charged conductor a
torted equipotential surfaces to the equi- 1m0t shown. Conductor b causes

. . . the equipotential surfaces to be-
potential surface intersecting conductor b. come distorted. Arrows indicate
Then, moving along the equipotential :
surface to b gives no further change in
voltage. This path of integration is indi-
cated in Fig. 3.4 together with the direct creates i@
path. Of course, the potential difference  SO™™
is the same regardless of the path over whicj 1Qegrat10n of the

field intensity is taken.? By following the path L@ t}RE@isdTE R E D ¢

28ee W. H. Timbie and V. Bush, “Principles of Ele gineering,”’ 4th ed.,
pp. 519-520, John Wiley & Sons, Inc., New York, 194 g‘/ ERSION
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region, we see that the distances corresponding to D and D, of Eq. (3.3)
are D and 7,, respectively in determining Vy due to g,. Similarly, in
determining Vg due to ¢, the distances corresponding to D, and D, of
Eq. (3.3) are r, and D, respectively. Considering both ¢, and ¢, we

obtain
Ve = 2% In + ‘1” - In volts (3.5)
\.__,.—-g ‘,—J
due 1o ¢a due to g,
and, since ¢, = — ¢, for a two-wire line,

Va 2 A (ln — —In ) volts (3.6)

or, by combining the logarithmic terms,

7 . qa D2
Vo = 5 In (Ta b) volts (3.7

The capacitance between conductors is

, 2rk
C., = q 2w

= —17;;) = m farads/meter (38)

Converting to microfarads per mile, changing the base of the logarithmic
term, and assuming a relative permittivity of &, = 1,

0.0388 .
Cab = @m uf/mlle (39)

If ry = 1y,
0.0388  0.0194

21log D/r ~ log D/r

Cap = uf /mile (3.10)

Equation (3.10) gives the capacitance between the conductors of a
two-wire line. Sometimes it is desirable to know the capacitance
between one of the conductors and a neutral point between them. For
instance, if the line is supplied by a transformer having a grounded
center tap, the potential difference between each conductor ang
ground is half the potential difference between the two cond
the capacitance to ground, or capacitance to neulral, is
conductor per unit of potential difference betweey &%thrEallll:da ED ,/6
ground. Thus, the capacitance to neutral for the Une is twice '?
the line-to-line capacitance (capacitance between . If the @
line-to-line capacitance is considered to be comp¥ 6{!@ TERED ¢

tances in series, the voltage across the line divide @ly between

and the point between them is at the gro botential. 'IVERSION
ADDS NO
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capacitance to neutral is that of one of the two equal series capacitances,
or twice the line-to-line capacitance. So,

0.0388

ancan:CanW

uf/mile, to neutral (38.11)
The concept of capacitance to neutral is illustrated in Fig. 3.5.
Equation (3.11) corresponds to Eq. (2.36) for inductance. One differ-
ence between the equations for capacitance and inductance should be
noted carefully. The radius in the equation for capacitance is the
actual outside radius of the conductor and not the self GMD of the
e , conductor as in the inductance for-
O Vﬁ Q mula. Also, certain approximations
Ca have been made in deriving the
capacitance equation which did not
enter into the derivation of the in-

a y n y b ductance. equation.
Q It v O Equation (3.3), from which Eqs.
Can Cen (3.5) to (3.11) were derived, is based
(&) Representation of line-to-neutral capacitance OI the aSSumption of uniform charge
F1o.3.5 Relationship between thecon- distribution over the surface of the
cepts of line-to-line capacitanceandline- copnductor. When other charges are
to-neutral capacitance. present the distribution of charge
on the surface of the conductor is not uniform, and the equations
derived from Eq. (3.3) are not strictly correct. Nonuniformity of charge
distribution can be taken into account by considering the conductors as
equipotential surfaces, which they are, rather than as uniformly charged
conductors. Then, without much difficulty, the following equation is
found:

{a) Representation of line-to-line capacitance

0.0388
C. = —
log (D/2r + A/D%/4rt — 1)

The formula is for capacitance to neutral for a two-wire line only.
For any but the simplest configurations of conductors of parallel-circuit
or three-phase lines, the derivation of an equation to account for the
actual charge distribution becomes too involved to be practical. The
assumption of uniform charge distribution leads to very slight ergars if

uf /mile, to neutral® (3:12)

0.0388 X 2.303 0.0894
cosh~(D/2r) ~ cosh™1(D/2r)

The derivation may be found in texts on electricity and ma} @
J. C. Slater and N. H. Frank, “Electromagnetism,” pod cGraw-Hill Book )

C , Inc., New York, 1947; W. B. Boast, “Pri t {

o e i v ot Ry REGISTERED O
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the spacing between conductors is large compared to their diameters,
which is the actual case for open-wire power transmission lines. For a
single-phase line the amount of error involved when the charge distribu-
tion is assumed to be uniform may be seen by comparing the capacitances
computed by Eq. (3.11) to those computed by Eq. (3.12) for different
ratios of D/r. Table 3.1 shows the error occurring when Eq. (3.11)
is used instead of Eq. (3.12).

TasLe 3.1 Error CausiEp BY AssuMING UnirorM CHARGE DISTRIBUTION IN
CompuTING CaraciTaANcE OF A Two-wire LiNE
Ratio D/r Per Cent Error in Eq. (3.11)

10 0.44

20 0.084

50 0.010
100 0.002
200 0.0005

A question arises as to the value to be used in the denominator of the
argument of the logarithm in Eq. (3.11) when the conductor is a stranded
cable, since the equation was derived for a solid, round conductor. Since
electric flux is perpendicular to the surface of a perfect conductor, the
electric field at the surface of a stranded conductor is not the same as the
field at the surface of a cylindrical conductor. Therefore, the capacitance
calculated for a stranded conductor by substituting the outside radius
of the conductor for r in Eq. (3.11) will be slightly in error because of the
difference between the field in the neighborhood of such a conductor
and the field near a solid conductor for which Eq. (3.11) was derived.
The error is very small, however, since only the field very close to the
surface of the conductor is affected. The outside radius of the stranded
conductor is used in calculating the capacitance.

After the capacitance to neutral has been found, the capacitive react-
ance existing between one conductor and neutral is found as follows:

Xe = 27‘_% = 4}—(}% X 108 log D ohms/mile, to neutral (3.13)
Some tables list capacitive susceptance at various spacings for the com-
mon conductors or give the outside diameter from which caps
reactance and its reciprocal, capacitive susceptance, can by
Other tables, as suggested by W. A. Lewis, list capifii
1-ft spacing for the common conductors. Such tableglilpe @ |
junction with tables of capacitive reactance spaci ; C?\f D and r

ngng is the first

in Eq. (3.13) are in feet, capacitive reactance at
term, and capacitive reactance spacing factorl
the equation is expanded as follows:
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ADDS NO




54 ELEMENTS OF POWER SYSTEM ANALYSIS

(
_4.(}33 . ~+_4%?l><1061g1)

X

ohms/mile, to neutral (3.14)

The sum of capacitive reactance at 1-ft spacing and capacitive reactance
spacing factor, as given by Eq. (3.14), is capacitive reactance to neutral.
Tables A.1 and A.2 in the Appendix list capacitive reactance at 1-ft
spacing, and Table A.4 lists values of capacitive reactance spacing factor.
The use of capacitive reactance tables is similar to that of inductive
reactance tables discussed in Chap. 2.

Example 3.1

Find the capacitive susceptance per mile of a two-conductor single-
phase line operating at 60 cps. The conductors are each No. 1/0 seven-
strand hard-drawn copper wire spaced 18 ft between centers. This is the
line described in Example 2.3.

Solution
The outside diameter of the conductor 1s 3 X 0.1228 = 0.368 in.
. 0.368
The radius r = 2% 13 = 0.0153 ft
4.093 , 18 , ,
Xc = 50 X 10¢ log 850153 = 0.210 X 10% ohm/mile, to neutral

be = 1/X¢ = 4.76 X 10~ mho/mile, to neutral

Tables of capacitive reactance at 1-ft spacing and capacitive reactance
spacing factor give
Capacitive reactance at 1-ft spacing = 4.093 X 109 log !
60 0.0153

= (0.124 X 10® ohm/mile
Capacitive reactance spacing factor = 833 X 10% log 18

= 0.086 X 10¢ ohm/mile
Capacitive reactance to neutral = 108(0.124 4 0.086)

= 0.210 X 10% ohm/mile

from which

bc———

1
0.210 X 10°

Capacitive reactance and susceptance from line to line

Xe =2 X 0.210 X 10¢ = 0.420 X 10® ohm/
= 4.76 X 10~%/2 = 2.38 X 10~ mho/mile

= 4.76 X 10—% mho/mile, to neutral

3.5 Potential Difference between Two Co
Charged Conductors. If a number of conducty

°RE@I’S’TERED 2

arranged so that
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they are parallel to each other, the voltage between any two of them can
be found by applying Eq. (3.3) repeatedly to determine the voltage
between the two conductors in question due to the charge on each con-
ductor in the group independently. The voltage drop between the two
conductors is the sum of the voltage

drops due to each charged conductor. D @b

Such a group of conductors is shown
in Fig. 3.6. If we assume that there
are no other charged surfaces in the
vicinity, the sum of the charges on
the conductorsis zero. Ifthe ground
is far enough away to have negligible
effect, and if we assume further that
the spacing between con(.iuctors is Fic. 3.6 Group of parallel charged
Jarge compared to the radius of any  onductors.

one so that the charge distribution

over the surface of a conductor will be uniform, repeated application of
Tiq. (3.3) will yield accurate results. So, from conductor a to conductor
b, the voltage drop is

—_ ] ch . - .
Vab—Z T <Qa1n +Qb1n +Qc —D;‘f’

+ guln PD-’"E> (3.15)

Each term in Eq. (3.15) is the potential drop from a to b due to the
charge on one of the conductors in the group. In a similar manner
the voltage drop may be found between other pairs of conductors in the
group. For example,

Te

1
Vac 2_]"<Qu In == +Qb ln_' +QC Dca+ e

+ gn In g::) (3.16)
1 D Db‘m Dcm .
Vam=2](qaln —{—qblnD +(]c1nD—+

ca

@XERED

If the voltages between conductor a and the other cgnd own ,/ @
the group of simultaneous equations expressing Q}Q@e drops in '?
voltages are

terms of charges may be solved for the charges. ,
a%es RE@CI@TERED 2

sinusoidal and expressed as complex quantities,
ns were found

and are expressed as complex quantities. Simila q@tlo
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for the complex values of flux linkages where the currents were expressed
in complex form. The equations above are seldom solved to find charge
but are used in the derivation of capacitance formulas for polyphase
cireuits.

3.6 Capacitance of a Three-phase Line with Equilateral Spacing.
The three identical conductors of radius 7 of a three-phase-line with
equilateral spacing are shown in Fig. 3.7. Figure 3.8 is the phasor
diagram of voltages for thisline. To solve for the capacitance to neutral,
we first write the expression for the voltage drops from conductor a

b
N
D D
a D c )
Fia. 3.7 Cross section of a three-phase Fra. 3.8 Phasor diagram of the bal-
line with equilateral spacing. anced voltages of a three-phase line.

to conductor b and from conductor a to conductor ¢. Thus, from Egs.
(3.15) and (3.16),

1

Va =53

<qa In— 4+ ¢ 1n + g. In g) volts (3.18)

and

1 7
Ve = 57 (qa In— 4+ ¢ ln + ge In D) volts (3.19)

Adding Eqgs. (3.18) and (3.19) gives

Var + Ve = [9qa In Q + (¢ + ¢o) In %} volts  (3.20)

1
ok
If we assume there are no other charges in the vicinity, the
charges on the three conductors is zero, and we can subs
Eq. (3.20) for ¢, + ¢. and obtain

3q“l D

Vab+Vac:2]\

SIREGISTERED ¢

o@ge Van from line a
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From the phasor diagram of Fig. 3.8, we obt3
between the line voltages Va and V, and the
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to the neutral of the three-phase circuit:

Var = V/3 Van(0.866 + 50.5) (3.22)
Vae = =Veo = /3 Van(0.866 — j0.5) (3.23)
Adding Egs. (3.22) and (3.23) gives
Var + Vae = 8Van (3.24)
Substituting 3V, for Vi + Ve in Eq. (3.21), we obtain
Van = 23:]0 ln—? volts (3.25)

Since capacitance to neutral is the ratio of the charge on a conductor
to the voltage between that conductor and neutral,

Ga 2k
Van In D/r

C. = farads/meter, to neutral (3.26)

For a relative permittivity of k, = 1,

00388
" " log D/r

Comparison of Egs. (3.27) and (3.11) shows that the two are identical.
These equations express the capacitance to neutral for single-phase and
equilaterally spaced three-phase lines, respectively. We saw in Chap. 2
that the equations for inductance per conductor were the same for single-
phase and equilaterally spaced three-phase lines.

The term charging current is applied to the current associated with the
capacitance of a line. Yor a single-phase circuit, the charging current
is the product of the line-to-line voltage and the line-to-line susceptance,
or

uf /mile, to neutral (3.27)

Ichg = ijabVab (3.28)

For a three-phase line, the charging current is found by multiplying the
voltage to neutral by the capacitive susceptance to neutral. This gives
the charging current per phase and is in accord with the calculation of
balanced three-phase circuits on the basis of a single phase with neutral
return. The charging current in phase a is

]chg = jwcnvan 9

3.7 Capacitance of a Three-phase Line with Uns @ECTESED ,/@
When the conductors of a three-phase line are nd Qa ly spaced, /?
the problem of calculating the capacitance becorg ove difficult. If Ry

such a line is not transposed, the capacitances G?STERED 6¢

a8 p E
are unequal, and, if the line is transposed, the @Ltarllg Ol any one
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phase to neutral is different for each position occupied by the conductor
in the transposition cycle. In the transposed line, however, the average
capacitance to neutral of any phase for the complete transposition cycle
is the same as the average capacitance to neutral of any other phase, since
each phase occupies the same position as every other phase over an equal
distance. The dissymmetry of the un-
transposed line is slight for the usual
configuration, and capacitance calcu-
lations are carried out as though all
lines were transposed.

Equation (3.15) may be applied to
1 Dy, 3 the line shown in Fig. 3.9 to compute
Fia. 3.9 Cross section of a three- Vg due to the charges on all three con-
phase line with unsymmetrical dyctors. Three equations are found
Spacing. for V, for the three different parts of
the transposition cycle. With phase a in position 1, b in position 2, and
¢ in position 3,

2

N3
v Dy

1

12
Va = 5k <(1a In —= 4+ ¢ ln + g. In D—> volts  (3.30)

With ¢ in position 2, b in position 3, and ¢ in position 1,

Va = 21k (qa In P + @ ln 5= -t In D31> volts  (3.31)

and, with a in position 3, b in position 1, and ¢ in position 2,

Dy»
i) 3) volts (3.‘3’2)

Vab=2%c( D31+qblnﬁ+quln
Equations (3.30) to (3.32) are similar in form to Eqgs. (2.66) to (2.68)
for the flux linkages of one conductor of a transposed line. Each of the
latter equations gives the value of flux linkages in one part of the trans-
position cycle. An average value of flux linkages over the complete
transposition cycle was found by noting that the current in any phase
was the same in any part of the transposition cyele. If thechar
unit length on the conductor of each phase was the same for
of that phase as for any other position in the transf
voltages computed by Egs. (3.30) to (3.32) would g
average voltage could be found for the completd
capacitance to neutral of a phase in one part of &
is in parallel with the capacitances to neutral

&
parts of the transposition cycle. Therefore, if ¥ d@ogard ﬁag @TERED “Z
VERSION
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along the line, the voltage to neutral of a phase in one part of the cycle
is equal to the voltage to neutral of that phase in any part of the cycle.
Hence, the voltage between any two conductors is the same in one part
of the transposition cycle as in other parts between the same conductors.
Since the voltage is the same anywhere in the transposition cycle, it
follows that the charge on any conductor must be different when the
position of the conductor changes with respect to the other conductors.
A treatment of Fqgs. (3.30) to (3.32) analogous to that of Eqs. (2.66) to
(2.68) is not rigorous.

Equations (3.30) to (3.32) have 10 unknowns, the voltage V. and
nine charges, for the charge on each of the three conductors is different
in each of the three positions occupied by a conductor in the three parts
of the transposition cycle. Thus, a rigorous solution for capacitance
in terms of the ratio of charge to potential difference requires six more
equations in order to eliminate all the unknowns except one voltage and
one charge. Three additional equations, similar to Eqs. (3.30) to
(3.32), may be written for the voltage V,, and the latter voltage may be
expressed as Vo (—0.5 — 70.866) if the voltages on the line are assumed
to be balanced. The other three equations required may be obtained
by equating the sum of the charges in each of the three parts of the trans-
position cycle to zero.

The rigorous solution for capacitance is too involved to be practical
except perhaps for flat spacing with equal distances between adjacent
conductors. With the usual spacings and conductors, sufficient accuracy
is obtained by assuming the charge per unit length on a conductor to be
the same in every part of the transposition cycle. When the above
assumption is made with regard to charge, the voltage between a pair
of conductors is different for each part of the transposition cycle. Then
an average value of voltage between the conductors can be found, and .
the capacitance calculated from the average voltage. We obtain the
average voltage by adding Eqs. (3.30), (3.31), and (3.32) and dividing
the result by three. The average voltage between conductors a and b,
based on the assumption of the same charge on a conductor regardless
of its position in the transposition cycle, is

1 D3 Dy Dy re
Va = Gk {Qa In (T) + g In (M)

(3.33) @@@
REGISTERED O
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! D, 7
=57 (qa In - + ¢ In Deq> volts

where
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Similarly, the average voltage drop from conductor a to conductor ¢ is

1
2rk

Ve = (qa In —2 Deq + ¢. In 7 ) volts (3.35)
eq

Applying Eq. (3.24) to find the voltage to neutral, we have
3Van = Vab + Vac = lk <2Qa In — eq + ds ln + qe In )
eq

volts  (3.36)
Since ¢a + ¢ + ¢. = 0 in a balanced three-phase circuit,

.3
3Van = o 0o volts (3.37)
and
c, =2 - _ 2mk farads/meter, to neutral (3.38)
" Ve In Dyy/r ’ ‘
For a relative permittivity of &, = 1,
0.0388 .

C. = Tog D..Jr uf /mile, to neutral (3.39)

Equation (3.39) for capacitance to neutral of a transposed three-phase
line corresponds to Eq. (2.71) for the inductance per phase of a similar
line.

Example 3.2

Find the capacitance and capacitive reactance per mile of the line
described in Example 2.4. If the line is operated at 22,000 volts, find
the charging current per mile.

Solution
0.258
r=g5c1e = 0:01075 ft
Deq = 545 ft
0.0388 _
Cr = {og (5.45,/0.01075) 0.01438 uf /mile, to neutral
6

Xo = L — 0.185 X 10° ohm/mile, to neutra

27 X 60 X 0.01438
or from tables

Capacitive reactance at 1-ft
spacing = 0.1345 X 10°¢
Capacitive reactance spacing
factor for 5.45 ft = 0.0503 X
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The magnitude of the charging current is

Ig = 2m X 60 X 0.01438 X 10~° X 22,000/+/3
= 68.8 X 102 amp/mile

3.8 Effect of Earth on the Capacitance of Three-phase Transmission
Lines. Earth affects the capacitance of a transmission line because its
presence alters the electric field of the line. If we assume the earth
to be a perfect conductor in the form of a horizontal plane of infinite
extent, we realize that the electric field of charged conductors above the
earth is not the same as it would be if the equipotential surface of the
earth were not present. The electric field of the charged conductors is
forced to conform to the presence of the earth’s equipotential surface.

Consider a circuit consisting of a single overhead conductor with a
return path through the earth. In charging the conductor, charges
come from the earth to reside on the conductor, and a potential difference
exists between the conductor and earth. The earth has a charge equal
in magnitude to that on the conductor but of opposite sign. Electric
flux from the charges on the conductor to the charges on the surface
of the earth is perpendicular to the earth’s surface, since the surface is
assumed to be a perfect conductor. Let us imagine a fictitious conductor
of the same size and shape as the overhead conductor lying directly
below the original conductor at a distance equal to twice the distance
of the conductor above the plane of the ground. The fictitious conductor
is below the surface of the earth by a distance equal to the distance of the
overhead conductor above the earth. If the earth is removed and a
charge equal and opposite to that on the overhead conductor is assumed
on the flctitious conductor, the plane midway between the original
conductor and the fictitious conductor is an equipotential surface and
occupies the same position as the equipotential surface of the earth. The
electric flux between the overhead conductor and this equipotential
surface is the same as that which existed between the conductor and the
earth. Thus, for purposes of calculation of capacitance, the earth may
be replaced by a fictitious charged conductor below the surface of the
earth by a distance equal to that of the overhead conductor above the
earth. Such a conductor has a charge equal in magnitude and opposite
in sign to that of the original conductor and is called the image

The method of calculating capacitance by replacing the es
image of an overhead conductor can be extended to
conductor. If we locate an image conductor forg
ductor, the flux between the original conductors
perpendicular to the plane which replaces thege
is an equipotential surface. The flux above the %
when the earth is present instead of the image cg

eREC&?ISSTERED 2
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To apply the method of images to the calculation of capacitance for
a three-phase line, refer to Fig. 3.10. We shall assume that the line is
transposed and that conductors a, b, and ¢ carry the charges q., ¢», and
g. and occupy positions 1, 2, and 3, respectively, in the first part of the
transposition cycle. The plane of the earth is shown, and below it are
the conductors with the image charges —qa, —¢s, and —¢.. Equations

9,52

9

H o
3

s ey

-4, ¥2

Fig. 3.10 Three-phase line and its image.
for the three parts of the transposition cycle can be written foy
voltage drop from conductor a to conductor b as determis ’
three charged conductors and their images. With con(ig
tion 1, b in position 2, and ¢ in position 3,

_ ! Dip _, Hu o
Va = 5T [qa (ln . n H1) + @ (ln Do 1
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With conductor a in position 2, b in position 3, and ¢ in position 1,

otz w)] oo
and, with a in position 3, b in position 1, and ¢ in position 2,
g1 (5 0 ) o (o~ )

D12 Hl?)]
Ain = — e A2
T (“ D~ i) | G2

If the approximately correct assumption of constant charge per unit
length of conductor throughout the transposition cycle is made, an aver-
age value of Vg for the three parts is

oo T (DHD%DM>_hl(HuHmHm)]
@ = 67!'/ lqa ré H1H2H3

ré H.H.H; >]]
W\ s—p5-) — g 777 43
ta [ " <D12D23D31> " <H12H23H31 (3.43)

N
Va = '_1"‘ l:qa (ln Qﬂ — In M_ﬂ)
r ~/H I ,H,

r ~HH H.H.H,
' ng \/Hw 23H 51

Similarly,

Vac = (_1‘ [qa (hl p‘ﬂl — In ————#\z’/aHfle_%H,Sl
2wk r ~/HH,H; )

r ~/ H H,H; <
+ q. (ln — —1In -——*~—>] (3.45)
Deq \VH12H23H31

and

. 1 D, \/H12H22H31
Vs 4 Voo = 3Van = [2 a(l Deq _ gy VA1l nlin
' 2k [ 22\ JH A, )

. /H H,H, >]
. l o 1 PR A 3.46
+(qb+q>(“1)eq N i, s

Since ¢a + ¢ + ¢. = 0
3 D,, v
3Van = 5 [qa <1n o In

0.0388

" log Dugfr — log (N/HsHysH s/ ~/H:H 1 REGIS TERED

to neutral (3.48) ¢
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Comparison of Eqgs. (3.39) and (3.48) shows that the effect of the
earth is to increase the capacitance of a line. To account for the earth
the denominator of Eq. (3.39) must have subtracted from it the term
log (N/HoH 3sH 3, /~/HH,H3). If the conductors are high above ground
compared to the distances between them, the diagonal distances in the
numerator of the correction term are nearly equal to the vertical dis-
tances in the denominator, and the term is very small. This is the
usual case, and the effect of ground is generally neglected for three-phase
lines except for calculations by symmetrical components when the sum
of the three line currents is not zero. Calculations of capacitance for
this condition will be considered in Chap. 12.

3.9 Parallel-circuit Three-phase Lines. Let us consider two special
arrangements of parallel-circuit lines, the double-circuit line with hex-
agonal spacing and the double-circuit line with flat, vertical spacing.
The equation for capacitance of each of these lines is relatively simple.
Many double-circuit lines have flat, vertical spacing, and the spacing
of most other double-circuit lines is
intermediate between flat spacing and
hexagonal spacing.

Consider first the double-circuit line
with hexagonal spacing shown in Fig.
3.11. Phase a is composed of con-
ductors a¢ and o', phase b of condue-
tors b and &', and phase ¢ of conductors
cand ¢’. The two conductors of each
phase are electrically in parallel and
have the same charge. Because of
the symmetrical arrangement the
phases are balanced, and the conduc-
tors of each individual phase are also
balanced, if the effect of ground is neglected. Therefore, transposition of
the conductors is not necessary to balance the phases. The equations for
voltage drop may be written in the usual manner, and the derivation of
the expression for capacitance proceeds as follows:

Ve =271E[ <1n~+1n\/3>+qb<ln%+ln—%>

F1c. 3.11 Double-circuit three-phase
line with hexagonal spacing.

Va = 2%9 (¢« — @) In (3/2*# 2{.(/ (3.50)
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D
Vab + Vac = 3Van = —1‘— (Qqa — ¢ — QC) In \/g volts (352)
2rl 2r

and, since ¢a + ¢ + ¢. = 0,

3¢ \/g D
3V = 5 iIn (7> volts (3.53)
Then
c, =2 = 2k farads/meter/conductor, to neutral (3.54)
Var  In (4/3 D/2r)
C. = —09-?_’88—— uf /mile/conductor, to neutral (3.55)

log (/3 D/2r)

Equations (3.54) and (3.55) give the capacitance from one conductor to
neutral, not from one phase to neutral. The expression for capacitance
was found by taking the ratio of the charge on only one of the two con-
ductors of a phase to the voltage to neutral. To find the capacitance
to neutral per phase, we note that each phase consists of two identically
charged conductors in parallel. Therefore, the capacitance to neutral
per phase is twice the capacitance to neutral of one conductor, or

C,=2X 00388 uf /mile/phase, to neutral (3.56)

log (\/3 D/2r)

We recall that the inductance of parallel-circuit three-phase lines was
calculated by using the method of GMD. Let us apply a modified
method of GMD to the calculation of the capacitance of a hexagonally-
spaced double-circuit line. In applying the method to capacitance cal-
culations, actual radii of the individual conductors of a phase will be used
{o obtain the modified self GMD of a phase. We speak of the modified
self GMD and the modified method of GMD in connection with capaci-
tance calculations because we are not following the mathematical concept
of GMD discussed in Chap. 2 when we use the actual radius of a conductor
composing one of the circuits instead of the self GMD of that conductor.
We must use the radius of a conductor rather than its self GMD bg
all the charge resides on the surface. The idea of self G

RE
\ﬁ) method

1nductance calculations because of the internal flux | D ,/
Fig. 3.11 the @

ductor. We shall still combine the parallel conduct
the method of geometric mean distances, and we
in all other respects. For the hexagonally spaceg

3@@13“7’ERED )
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modified self GMD for all phases is the same
differs from the self GMD by the substitution o
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D, = 2rD B
GMD atob = Dy = \7§D
GMD b toc = Db0= V3D
GMD ctoa = =+/3D
Deq \/DabDbc ca = \/3 D
and, replacing r in Eq. (3.39) by D,,
_ 0038 0.0388 — 2% 0.0388
log Doo/D,  log (/3 D/A/2rD) log (\/3 D/2r)
uf /mile/phase, to neutral
which is identical to Eq. (3.56) and shows that our modified GMD
method is valid in this case. We note that the GMD method always
gives per phase values, rather than per conductor values, because it com-

It

’

a h—=o¢’ c h—ob’ b h—>oa

g d g
f \eb' a + f \oa’
\ d \
a’ bl c’ a
(a) Phase ain {(b) Phase ain (c) Phase ain

position 1 position 2 position 3

F1e. 3.12 Arrangement of the conductors of a double-circuit three-phase line in the
three parts of a transposition cycle.

O
o—Q—o—a.

bines the conductors electrically in parallel in any one phase in computing
distances.

Now consider a double-ecircuit line with flat, vertical spacing, as shown
in Fig. 3.12. Buch a line is not balanced without transpositions. There-
fore, the derivation will be made for a transposed line, and again charge
on a conductor per unit length will be assumed to remain the same
throughout the transposition cycle. Since the conductor of each phase
of one circuit is in electrical parallel with the conductor of the same phase
in the other circuit, a conductor in one circuit has the same charge as
the conductor in the other circuit with which it is in parallel. In order
to compute the voltage drop from a to b, the charge g, on conductor gea
an identical charge ¢, on conductor a’ must be consuiere
on the conductors of the other phases are treated in a
With phase a in position 1,

Vo= g [a(nf4m ) o (m] +w) K
. Y5 REGISTERED Q)
ERSION
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With « in position 2,

Ve = ‘)1k[qa< L )+ qb(ln§+ ln£>

2d h
+ ¢ <ln i + In 5)] (3.58)
and, with a in position 3,

1 2d 7 f
Va =57 [q< In ) Qb(ln ag T I E)
1 g
+a(m?+1 _>] 3.59
q(nd ny (3.59)

The average value of V,, in the three positions is

B N

Similarly,

Ve = a0 (02 + 10 )—q( 2 ns)| @on
ac 6k | 1¢ 2 ¢ f? ’
and
B B 3qa 2d3g2
Vab + Vac == 3Van - ka 1n < rgfz ) (3'62)
_ .y, [ V2d(g %]

Ven = 5 /hl [ - 7 volts (3.63)
C, = 0.0388 uf /mile, one conductor to neutral (3.64)

mEON

The capacitance to neutral per phase (two conductors in parallel) is

0.0388

o[22 (5)

Now let us apply our modified GMD method to the derivation of the
expression for capacitance to determine whether the method is valid.
By comparison with Eqs. (2.75) and (2.77),

C.,=2X uf/mile/phase, to neutral (3.65)

Doy = 24d¥egHih¥s
and

D, = r¥frpk
where 7 replaces ' since we are dealing wit Xhnge j
inductance. Then D RE@L’STERED %
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0.0388 0.0388

“* = log Dog/D, — N [2% A% (3.66)
23 o 7
Cn=2 X — S uf/mile/phase, to neutral  (3.67)
e[ () |

Since Eqs. (3.65) and (3.67) are identical, the modified GMD method
holds to the same close approximation as Eq. (3.65). Both equations
are slightly in error because of the assumption of the same charge on a
conductor in any position of the transposition cycle, because of the
neglect of the effect of earth, and because we have assumed in all our
derivations a uniform distribution of charge over the surface of the
conduetors. All these differences are negligible for the usual overhead
line.

Since the modified GMD method has been shown to be valid for
hexagonal spacing and for flat, vertical spacing, it is reasonable to assume
that it may be used for arrangements intermediate between the two.

Example 3.3

Find the capacitance and the 60-cycle eapacitive susceptance to
neutral per mile per phase of the double-circuit line described in Example
2.5.

Solution

From Example 2.5, D,, = 16.1 ft.

The calculation of the modified D, is the same as in Example 2.5
except that r is used instead of #. The outside diameter of 19-strand,
300,000-circular-mil conductor is 0.629 in.

0.629
S ow i - 0.026 ft

(v/26.9 X 0.026 4/21.0 X 0.026 1/26.9 X 0.026 )%
= 4/0.026(26.9 X 21.0 X 26.9)% = 0.803 ft
0.0388

C, = Tog (16.1/0.803) = 0.0299 uf /mile/phase, to neutral

b = 2xfC = 27 X 60 X 0.0299 = 11.27 micromhos/mile/pha

S
I

3.10 Summary. The capacitance of a single-circuit
by Eq. (3.11) if the line is single-phase, or by Eg
three-phase. These two equations are the same €
ator of the argument of the logarithm of Eq. (3
equivalent equilateral spacing of the line r3
between the two conductors of a single-phase 1j

M the numer-
g Qe-distance of the N\

o
REGISTERED %

Jn both equations,
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» is the outside radius of the conductor. For parallel-circuit lines, a
modified method of GMD is used wherein the outside radius of a con-
ductor enters the computations in place of the self GMD of the conductor
found in inductance calculations. Several approximations are made in
deriving capacitance formulas, but the importance of all of them, includ-
ing the effect of earth, is usually very slight.

PROBLEMS

3.1 A three-phase transmission line has flat, horizontal spacing with 6 ft between
adjacent conductors. At a certain instant the charge on one of the outside con-
ductors is 0.1 X 1073 coulomb /mile, and the charge on the center conductor and on
the other outside conductor is —0.05 X 10-3 coulomb/mile. The radius of each
conductor is 0.1 in. Neglect the effect of ground, and find the voltage drop between
the two identically charged conductors at the instant specified.

3.2 The 60-cycle capacitive reactance to neutral of a solid conductor, which is one
conductor of a three-phase line with an equivalent equilateral spacing of 4 ft, is
186 X 10% ohms/mile. What value of reactance would be specified in a table listing
the capacitive reactance of the conductor at 1-ft spacing for 25 cps? What is the
cross-sectional area of the conductor in circular mils?

3.3 Derive an equation for the capacitance to neutral per mile of a single-phase
line, taking into account the effect of ground. Use the same nomenclature as in the
equation derived for the capacitance of a three-phase line where the effect of ground
is represented by image charges.

3.4 Calculate the capacitance to neutral per mile of a single-phase line composed
of two No. 2 single-strand conductors spaced 10 ft apart and 25 ft above ground.
Compare the values obtained by Egs. (3.11) and (3.12) and by the equation derived in
Prob. 3.3.

3.6 Derive a formula for the capacitance between the single inner conductor and
the concentric outer sheath of a power cable. Assume that the radius of the inner
conductor is ¢ and that the inner radius of the sheath is b.

3.6 A single-conductor power cable has a conductor of No. 2 solid copper. Paper
insulation separating the conductor from the concentric lead sheath has a thickness of
34, in. and a relative permittivity of 3.7. 'The thickness of the lead sheath is 364 in.
Tind the capacitive reactance per mile between the inner conductor and the lead
sheath.

3.7 A three-phase transmission line has two conductors 8 ft apart in a horizontal
plane. The third conductor is 3 ft above the plane of the other two and midway
between them. The conductors are solid, round wires with a capacitive reactance
at 1-ft spacing of 0.1345 megohm /mile at 60 cps. Find the capacitive reactance to
neutral per mile of line at 60 cps, and find the radius of the wire.

3.8 A three-phase 60-cycle transmission line has flat, horizontal spaci
between adjacent conductors. The conductors are No. 2/0 hard-gag 187
copper. The voltage of the line is 110 kv. Find the capacitive i ED ,/
and the charging current per mile. \ @

3.9 The six conductors of a double-circuit three-phase li nd 300,000- ,?(S\

circular-mil hard-drawn copper arranged as shown in Fig. 2.24 @fxat the vertical ),
spacing is 13 ft, the longer horizontal distance is 28 ff hRE A 731

distances are 22 ft. Find the capacitive reactance to neut N he H tTERED O¢
per mile per phase and per conductor at 132 kv and 60 cg v S




CHAPTER 4

RESISTANCE AND SKIN EFFECT

4.1 Resistance. The resistance of transmission-line conductors is the
most important cause of power loss in a transmission line. The term
resistance, unless specifically qualified, means effective resistance. The
effective resistance of a conductor is

power loss in the conductor

R = 7 ohms (4.1)

where the power is in watts and 7 is the rms current in the conductor
in amperes. The effective resistance is equal to the d-c resistance of
the conductor only if the distribution of current throughout the con-
ductor is uniform. At frequencies of 60 cps and below, the difference
between effective resistance and d-c resistance is less than 19 for the
copper conductors of less than 350,000 circular mils in cross section
listed in Table A.1. We shall discuss nonuniformity of current distribu-
tion and the ratio of effective resistance to d-c resistance after reviewing
some fundamental concepts of d-c¢ resistance.
Direct-current resistance is given by the formula

Ry = %l ohms (4.2)
where p = resistivity of the conductor
! = length
A = cross-sectional area
Any consistent set of units can be used. In power work, Lis u
given in feet, A in circular mils, and p in ohms per circular-n
The resistivity of standard annealed copper at 20°C i i 3 R
cular-mil foot, and its conductivity is 1009;. Hard-drg \ﬁ)e %;th ED ,/6
a tensile strength about 509, greater than that of : é@pper has a '?
conductivity approximately 39, lower. If the i ity of hard-
W@fSE;TERED )

drawn copper is not known exactly, it is assu
,@erage cOmmerclia

resistivity of 10.66 ohms/circular-mil foot at 20°C
7 VERSION
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hard-drawn aluminum has a conductivity of 619 and a resistivity of
17.00 ohms/circular-mil foot at 20°C.

The d-c resistance of stranded conductors is greater than the value
computed by Eq. (4.1) because spiraling of the strands makes them longer
than the conductor itself. For each mile of conductor the current in
all strands except the one in the center
flows in more than a mile of wire. The ¢
increased resistance due to spiraling is
estimated as 19 for three-strand con-
ductors and 29, for concentrically
stranded conductors.

The variation of resistance of metallic
conductors with temperature is prac-
tically linear over the normal range of
operation. If temperature is plotted
on the vertical axis and resistance on
the horizontal axis, as in Fig. 4.1, ex-
tension of the straight-line portion of ]
the graph provides a convenient method ~ Fie. 4.1 Resistance of a metallic
of correcting resistance for changes in ES?gucmr as & function of tempera-
temperature. The point of intersection '
of the extended line with the temperature axis at zero resistance is a con-
stant of the material. From the geometry of Fig. 4.1

Ry T +18

where B, and R, are the resistances of the conductor at temperatures
t, and t,, respectively, in degrees centigrade and T is the constant deter-
mined from the graph. Values of the constant 7" are as follows:

T = 234.5 for anncaled copper of 1009, conductivity
T = 241 for hard-drawn copper of 97.39% conductivity
T = 228 for hard-drawn aluminum of 619, conductivity

4.2 The Influence of Skin Effect on Resistance. Uniform distribution
of current throughout the cross section of a conductor exists only for
direct current. As the frequency of alternating current increases,
nonuniformity of distribution becomes more pronounced.
in frequency causes more current to be concentrated f
of the conductor and less in the interior. This pj N\ talle
skin effect. We can understand the reason for the é of the cur- '?
rent toward the surface of a conductor by recglli deiscussion of $

' /.
internal flux linkages in Chap. 2. Filaments @dﬁﬁ@’@TE RE D %
of a fila

surface are not linked by internal flux, and the fly nbges ment
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near the surface of a conductor are less than those of a filament in the
interior. If the current is unvarying direct current, the magnitude of the
current depends only on the applied voltage and the resistance of the con-
ductor and is not affected by inductance. Therefore, if the material
of the conductor is uniform, the current will flow equally in all parts
of the cross section. If the current is alternating, however, the filaments
in the center of the conductor will have a greater voltage drop due to
varying flux than will the filaments nearer the surface because those on
the interior are linked by more flux. Therefore, the inductive reactance
of an interior filament is greater than that of a filament near the surface.
The resistance of all the filaments is the same if their areas are equal.
The impedance of interior filaments, however, is greater than that of
outer filaments. Since all the filaments are electrically in parallel their
voltage drops must be equal, and this can be so only if less current flows
in the interior filaments of higher impedance. Later in this chapter we
shall develop the expression for the magnitude and phase angle of the
current density as a function of distance from the center of a wire and
find how skin effect alters both resistance and inductance calculated on
the assumption of uniform current density.

We can see from a numerical example the reason why nonuniform dis-
tribution of current causes an increase in effective resistance. Suppose
the three wires in parallel shown in
Fig. 4.2a carry equal alternating cur-
rents of 5 amp. If the resistance of
each wire is 10 ohms, the power loss
for the three wires with a total current
of 15 amp is 3 X 52 X 10 = 750 watts.
If the impedance of the middle wire of
the parallel circuit is increased by
increasing its inductance (perhaps by
wrapping it with a high-permeability
tape, or merely by adding some induc-
tance in series), a higher voltage must
be applied to the parallel circuit to
(b) obtain a total current of 15 amp for

F1e. 4.2 Parallel branches of equal the three branches. The incre

resistance carrying unequal branch

currents to illustrate skin effect. voltage causes more curref
the outside branches

the middle branch, whose inductance is increased, will }
current is still 15 amp. Suppose that under the nd
flow in each outer branch and 4 amp flow in the midd
in Fig. 4.2b. Since the resistances of the brand
total power loss for a current of 15 amp is

15 amps

15 amps .
R —

S\{;65 ;Iilp ,/6/?

, asindicated
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2 X 5.5 X 10 + 42 X 10 = 765 watts

For the original condition of equal current in the three branches, the
effective resistance of the circuit is
R = 7—5(2) = 3.33 ohms
15
which is the equivalent resistance of three 10-ohm resistors in parallel.
With unequal currents in each resistor, however, the effective resistance
of the circuit is
765
R = 152 = 3.40 ohms
The increased inductance in the middle branch causes the current in that
branch to be out of phase with the currents in the other two branches.

Z‘% . »
=

Section A-A
F1¢. 4.3 Cross section and longitudinal section of a cylindrical conductor.

To obtain a resultant current of 15 amp requires that the current in the
middle branch be somewhat greater than 4.0 amp when the other currents
are each 5.5 amp. Therefore, the effective resistance will be even larger
than the value computed above.

4.3 Current Density in a Cylindrical Conductor with Skin Effect. We
shall approach the problem of determining the effect of nonuniform cur-
rent density in a conductor by obtaining an expression for current density
as a function of distance from the center of the conductor. Consider the
conductor whose cross section and longitudinal section are shown in
Fig. 4.3. From Eq. (2.11) the magnetic ficld intensity in the condggtor
at a distance z from the center is

I,
2rx

r =

where T, is the current enclosed by the tubular el€ { adius z. If
I, 1s the rms value of the current, H, is the rms vg ‘ QE field intensity.

We shall find it necessary to deal with instantand V@es,RiE@fsrTE R E D ¢

it is desirable to express Eq. (4.4) in instantang JoDrm. The instan-
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taneous value of the field intensity is

® H iwt ® ]r mnxejwt

) vt = et

e [H zmaxe’™"] ) e (4.5)
where the symbol ®e means “‘real part of.”’! It is customary to omit the
symbol ®e, so that

]x,maxfjwt

]{x,mméjwt = 271'37

(4.6)

and, upon dividing both sides of the equation by 4/2 to convert from
maximum to rms values, we have

]Iejwt
27z

H, et = 4.7
which is the expression of Eq. (4.4) in instantaneous form.

To find the current I, in terms of current density, let J, be the current
density at a distance z from the center of the conductor. Then the
current in the walls of the tubular element of radius x and wall thickness
dx is 2wz, dz, and the current enclosed by the tube (that is, in the
cylinder of radius z) is

- fo * 9], di (4.8)

! Introduction of the factor e/ follows an accepted convention of notation. The
instantaneous value of a current which varies sinusoidally may be expressed by

7 = |l pax] COS ot
Where |Iax| is the magnitude, or absolute value, of the maximum current. Another
way of expressing the same current is

7= Qe HlmaxIe‘m”]
By Euler’s formula,
€9t = cos wt + J sin wi

and
Re [e/t] = cos wi
Therefore,
Re [[Tmaxe™] = |Tnax| cOs wif
I

7 = |Imax| cos (wl + «)
we can say

7 = Re [|Tnax|e” @] = Re [[Lmax|ei®ei@]
and, letting
Imax = Ilmaxl &% = flmax‘lg
we have
7 = Re [Imaxe?*]
where Imax is complex.
Expressing Eq. (4.4) by this notation yields Eq. (4.
For a further discussion of the subject, see E. A.
Networks,” vol. I, pp. 70-75, John Wiley & Sons, Ine., 2

'3, REGIS: TERED © 2
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Substituting in Eq. (4.7), we obtain
O H et = /0 O et d (4.9)

Taking the partial derivative with respect to x yields

o [70 % (H jeiot) + erfwt] = 2ra et (4.10)

or, since ¢t is independent of x, we have

oH., + 2xH vt = 2rxJ et (4.11)

2rxelet
ox

Dividing by 2rze’@t, we obtain

oH,
ax

+ %Hx = J, (4.12)

Equation (4.12) contains both H, and J, as variables dependent upon
x. If we can find another relation between H, and J,, we can eliminate
H, and obtain a differential equation having J. as the only variable
dependent on z. Such a relation can be found by applying Kirchhoff’s
voltage law to the voltage drops around the closed path a’0'Da shown in
Fig. 4.3b. The voltage drops consist of ohmic drops on the paths ab and
a'b’ and of a voltage drop caused by the changing flux linking the closed
loop ¢’b’ba. The instantaneous ohmic drop from a to b is J, w.€“tp Al
where J 2, max€®! I8 the instantaneous current density on the path ab and p

is the resistivity of the conductor.? Similarly, from a’ to b’ the ohmic
drop is

[Jx,maxef“" -+ % (J 2, max€™?) dle p Al (4.13)

. 0 . . . . .
sinee o (J zmaxe’?) dzx is the difference in current density between the two

paths.  Around the loop a't’ba the total ohmic drop is

drop beeause in a cross-sectional arca A

I =JA
and
Al
o =1
and, thercfore, chmic drop in the area A for a length A
- p AN _
IRy = JA ( 2 -
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P Al [J:C,mnxfiwt + aix (Jz,ma.xejwt) da:} Y Al!];v,maxfjwt
= 0 AL 2 (T dz (4149

The voltage drop clockwise around the loop a’d’ba due to the changing
flux in the loop is —d¢/dt. The negative sign is necessary because
increasing flux due to current in the direction shown induces a voltage
rise in a clockwise direction. The voltage drop is the negative of the
voltage rise. FEquating the voltage drops around the loop to zero, in
accordance with Kirchhoft’s law, gives

i} do
hd wt %% _
p Al 5 (J 2. max€™) d 3 0 (4.15)
The flux ¢ linking the path a’0’ba is in the tubular element of thick-
ness dz and is concentric with the tube. It is a function of both time ¢
and distance z from the center of the conductor. Equating the instan-
taneous flux to the product of instantaneous flux density and area gives

¢ = Bz‘,maxfjwt Al dx = ,UIIx,maijWt AZ dx (4.16)
Therefore, upon substitution of Eq. (4.16) in Eq. (4.15), we obtain

P Al % ( z, maxe ) dx - t (/JH:r,maxejwl Al) dm = 0 (4‘]7)

Then converting to rms values, assuming constant permeability, expand-
ing the partial derivative with respect to f, and noting that H, ... 18 not a
function of ¢ and that ¢t is not a function of z, we have

6']:c,mn\1
ox

p Aleit — Joo Alue'H ; pae = 0 (4.18)

In interpreting Eq. (4.18) we must remember that H, and J, are complex
and that in taking the partial derivative with respect to ¢ we have omitted
the symbol Re.?

3 The student can show, by replacing ¢/“* by cos wt + 7 sin ot, that

gi(Re Uneot] = Ge [a—at <1meiwt)]

from which it follows that

b—i Re [1nef®t] = Re [jwln, @]

and, omitting Re,
d : . .
- Jwt —_ jwi
Y (Im € ) ]wlm €

which is the expected result for the derivative of the winaldly mc u ing real

and imaginary components of 7,e@. We must remem®N s TERED

taneous value of 47/t is the horizontal projection (real pa ¢
" VERSION
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Dividing Eq. (4.18) by ¢ and by +/2 to obtain rms values, we have

—ipd).
= 7;’;’ = (4.19)

Substituting H, from Eq. (4.19) in Eq. (4.12), we obtain

wp 0x wux 0x S (4.20)

or, multiplying by jwu/p and noting that J, (a complex number and func-
tion of ) 1s not a function of ¢,

e 1d). o
dx T dv P

=0 (4.21)

The change from partial derivatives to total derivatives is possible in
Eq. (4.21) because the only independent variable is . Eq. (4.21) is the
second-order differential equation relating the rms value of the current
density to the distance from the center of the conductor.

Equation (4.21) is a special form of the long-recognized Bessel equa-
tion.? It may be written in more concise form as follows:

1dy o
dyc2 AN o + k% (4.22)
To solve Eq. (4.22) assume a solution in the form of an infinite series, or
Yy =0+ ax + axt® + asx® + - - - + a2+ - (4.23)
Then
th 2as + 6azr + 12a42® + 20052 + 30asz* 4+ -« - - (4.24)
ldy _ + 2as 4+ 3asv + 4ax® + base® 4 Gaezt + - - - (4.25)
xdxr x
and

ky = Eao + Koz 4 KPasx® 4 kase® 4 ket 4+ - - - (4.26)

*The solutions to Eq. (4.21) are called Bessel functions of zero order. The Bessel
cquation having solutions of the nth order is

dzz/ 1dy + (k2 _ _) _

dx2 z dz

The solutions are of zero order when n is zero. There are two indepe
called Bessel functions of the first and second kind. We are conf

solution of the first kind since the solution of the second kind indi S égﬁrentED ,/@

density at the center of the conductor, an impossible condit 1 discussion

of Bessel functions can be found in N. W. McLachlan, ““B tions for Engi-

neers,” Oxford University Press, London, 1934, For cgas Ve tables of Bessel

functions, see Jahnke and Emde, “Tables of Functio PREGISTERED ¢
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York, 1943.
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In order to satisfy Iiq. (4.22), the sum of the coeflicients of each power
of z, when the above equations (4.21) to (4.26) are added, must equal
zero. Thus

If

431

2as + 2a, + k%a,
6a; + 3as; + k%a,
12@4 + 4(14 + kZ(lQ
20a5 + bas + kay
30a¢ + 6as + kay = 0

mn o
ccococo

All the odd coefficients are zero since they depend on a,. The even
coefficients depend on a,. In terms of a, they are

klaq
“@= -G
as = k4ao
2% % 42
gy = — R
6 = 22 42 X 62

Substituting these coefficients in Eq. (4.23) gives the following series
solution:

N I CO S L %
y_a°[1 2 TEXE X EXE

+ - ] (4.27)

If & is real, the series of Eq. (4.27) is known as the Bessel function of
the first kind, zero order, and is designated by the symbol Jo(kz), where
Jy is a mathematical symbol not to be confused with our symbol for
current density. For Eq. (4.21)

P = — f—“’pﬁ (4.28)

and the solution for current density at radius z is

; 2 2 4 8 6
_ jonar (e} @ (e z
v]a;—'ao|:1+ P 22 <P>22X42 J<p>22><42><62

( iEﬂJ ;-ED
eﬁns argld ,/6@
Ry

This particular form of the Bessel function has bot
nary terms. Separating the real terms and the
substituting

a\
, Q,@ )
REGISTERED %
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we obtain
_ _ (mx)* (mx)8 .
J’“a"[l X TR K6 XS
. (mx)® (mx)® (ma)r®
+.7a0\: 22 22X42X62+22X42X62X82X]02
— . ] (4.31)
J. = as(ber mx + j bei mx) (4.32)
where
_ o (ma)* (max)?® .
ber mx = 1 PR L + X 1 X 6 X 8 (4.33)
and
2 6 10
bei ma = %) (m)? (ma) (4.34)

27 TN EXE  PXEXEXSEX I

The terms “ber” and “bei” are abbreviations for ‘‘Bessel real” and
““‘Bessel imaginary.”’?

The coefficient a, can be determined if the current density J, at the
surface of the conductor is known, since

J, = ao(ber mr 4 7 bei mr) (4.35)
Solving for a, and substituting in Eq. (4.32), we obtain

ber mx + j bel ma
"ber mr -+ 7 bei mr

Jo=J (4.36)

Equation (4.36) expresses the current density anywhere in the conductor
in terms of the current density at the surface.

4.4 The Internal Impedance of a Cylindrical Conductor. We are
interested in the expression for the current density in a cylindrical con-
ductor as a step toward determining the internal impedance of the
conductor when the current is not uniformly distributed throughout the
cross section. The internal impedance of a conductor is that part of the
impedance of the circuit due to the resistance of the conductor and the
flux linkages produced by flux inside the conductor only.

The voltage drop in a filament at the surface of a conductor is caused
by current flowing in the resistance of the filament and by the ch
in flux linkages external to the wire. It is unaffected by int
Therefore, if external flux linkages are excluded from cd

)

voltage drop in a filament on the surface of a congd 0 ,
v, 18 arguments. 6\
contains such a 7
I%

rREGISTERED %
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5 Sets of tables are available giving the values of ber and be
The work by N. W. McLachlan, cited in footnote 4 of tlms
set of tables. For another set of tables, see H. B. Dwigl
pp. 214-221, McGraw-Hill Book Company, Inc., New Yo ]@
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drop pJ, volts per unit length only. TFilaments not on the surface of
the conductor have the same flux linkages due to external flux as fila-
ments on the surface, but filaments below the surface have additional
flux linkages caused by internal flux. Since all the filaments are in
parallel electrically, the voltage drop in any filament is the same as in a
filament on the surface. The decreased current density and resulting
decreased ohmie drop in an internal filament are balanced by an increased
drop due to internal flux linkages. The voltage drop V; per unit length
in any filament, excluding the drop caused by flux linkages external to

the conductor, is
V= pJ, volts/meter (4.37)

and the internal impedance per unit length is

Vi_ el

Z; = 7 =7 ohms/meter (4.38)

where [ is the current in the conductor.
As determined from Eq. (2.11), the current 7 is related to the field
intensity at the surface of the wire by

I = 2arH, (4.39)
From Eqgs. (4.19) and (4.30)
_ _J (4
H, = pog (dx )x_r (4.40)
and, substituting J, from Eq. (4.36) in Eq. (4.40), we obtain

H = -1 Jr

d -
m? ber mr + j bei mr [d_x (ber mz + j bei mx)} (4.41)

r=r

To simplify the notation, let

ber’ mzx = (% (ber mzx) = ;n; (ber mz) (4.42)
and
bei’ mz = 9 (bei ma) = =L (bei ma) (4.43)
d(mzx) m dzx

Then, from Eqgs. (4.39) and (4.41), with the notation as specified in Eqs.
(4.42) and (4.43), the current is

7= 2mrJ, (bel’ mr — j ber’ mr
m ber mr + j bei mr

QFqs (4.42)

bei maz with @

(R’E@fS’TERED 2
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The terms ber’ mr and bei’ mr are evaluated as in¥
and (4.43) by dividing by m the derivatives of bey
respect to z and letting x = r.  Upon solving
stituting in Eq. (4.38), we obtain for the interna
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~_ pm ( ber mr + j bei mr
* " 2zxr \be’ mr — j ber’ mr

) ohms,/ meter (4.45)

Thus the internal impedance of a wire can be found at any frequency
if its radius, resistivity, and permeability are known. To be consistent
with the rationalized mks system of units, resistivity must be expressed
in ohm-meters (sometimes called ohms per meter cube), and perme-
ability as 47 X 10~7 times relative permeability (see footnote 4 of Chap.
2).
4.5 Skin-effect Resistance Ratio. The internal impedance of a con-
ductor is composed of resistance and inductive reactance. The real part
of the complex impedance is the effective resistance. We can find the
effective resistance of a wire by rationalizing the expression for internal
impedance given by Eq. (4.45) and separating the real and imaginary
parts. Thus the effective resistance is

__ pm ber mr bei’ mr — bel mr ber’ mr
R = . (hei” mr)” T (ber’ mr)? ohms/meter (4.46)
It can be shown that as the frequency approaches zero, the effective
resistance given by Eq. (4.46) approaches the d-c resistance given by
Eq. (4.2). At low frequencies the current distribution becomes more

uniform. The low-frequency or d-e¢ resistance is

Ry P £ ohms/meter (4.47)

TA T

for p in ohm-meters and r in meters. The ratio of effective resistance
to d-c resistance is

5]

R _mr ber mr bei’” mr — bei mr ber’ mr (4.48)

R 2 (bei” mr)? + (ber’ mr)? )
Equation (4.48) gives the ratio of effective resistance to d-c¢ resistance
as a function of mr.

The factor mr is the product of the radius in meters and the value of m
calculated from Eq. (4.30) with p in ohm-meters. It may be more
convenient to compute mr from the d-c resistance of the wire and the
relative permeability u.. From Eq. (4.30)

ol —7

e = e 2 -y [T KX A0,
4 14

—7

mr:\FfXAth]O r

p/wr?

The d-c resistance of a wire per unit length is

REGISTERED Q)
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ADDS NO

Ry =2 ohms/meter
wr
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Ry = ;"ﬁ X 1,609  ohms/mile (4.52)
Substituting Ry/1,609 for p/#r? in Eq. (4.51) gives

mr = 0.0636 | (4.53)

Ro

where u, = relative permeability of the wire

f = frequency, eps
R = d-c resistance of the wire, ohms/mile

17 Tabulated values of the ratio of

16
| /

15

]

/

12 7

11

|1

0 10

10
20

mr
Fia. 4.4 Ratio of a-c resistance to d-c
resistance for a eylindrical conductor
having a uniform magnetic field around
the periphery. The ratio is plotted as
a function of mr, where

mr = 0.0636 \/u f/Ro

and Ry 1s the d-c resistance in ohms per
mile.

3.0 4.0

and composed of 1, 3, or 7 strands.
single strand is listed in Table A.1 as 0.864 ohm

¢ See E. B. Rosa and F. W, Grover, “Formulas and
Mutual and Self Inductance,” Scientific Paper 169, Bull,

effective resistance to d-c resistance
caleulated from Eq. (4.48) have
been published by the U.S. Bureau
of Standards.® The resistance
ratios plotted in Fig. (4.4) are from
this source, which lists the ratios
for values to mr = 100. At fre-
quencies of 60 cps or less, stranding
has negligible effect on the ratio of
effective to d-c resistance of con-
centrically stranded conductors,
and effective resistance may be
found by multiplying the d-c resist-
ance of the stranded conductor by
the ratio read from Fig. (4.4) for a
wire.

4.6 Resistance from Tables of
Conductor Characteristics. Some
of the factors considered in the dis-
cussion of resistance and skin effect
can be verified by referring to the
tables of conductor characteristics
in the Appendix. The increase of
d-c resistance caused by stranding
is illustrated by a hard~drawn
per conductor with
tional area of 66,8

The d-c resigta
L

Calculation of

-3 strands

arRE GISTERED © 2
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the d-c resistance is 0.873 ohm/mile, and for 7 strands the value is 0.881
ohm/mile. Note that the resistances for the 3- and 7-strand conductors
are 19, and 29, respectively, above the resistance of the solid conductor.
This is in agreement with the principle stated in Sec. 4.1.

The values of 0.864 and 0.945 ohm/mile at 25 and 50°C, respectively,
given in Table A.1 for the 66,370-circular-mil copper conductor, are.
verified by Egs. (4.2) and (4.3). The d-c resistance at 20°C of a solid

conductor is
10.66 X 5,280

— — A /1
R, = 66.370 = (.848 ohm/mile
and correcting to 25°C
B 21+ 25 .
Ry = 0.848 == 51 120 0.864 ohm /mile
or at 50°C
24150 -
Ry = 0.848 2 190 0.945 ohm/mile

Fxamination of the tables shows that skin effect at frequencies up to
60 cps is negligible for the smaller conductors. The 60-cycle resistance
of the 66,370-circular-mil conductor is equal to the d-c resistance. Skin
effect becomes appreciable, however, at power frequency for the large con-
ductors. For instance, the d-c resistance of a 500,000-¢ircular-mil hard-
drawn copper conductor with either 19 or 37 strands is 0.1280 ohm /mile
at 50°C, but the 60-cycle effective resistance is 0.1303 ohm/mile. ¥or
this conductor, stranding does not appreciably alter the ratio of effective
to d-e resistance computed from Fig. (4.4). From Eq. (4.53)

mr = 0.0636 0198~ 1.38

and from Fig. (4.4) the resistance ratio is 1.02. Then the 60-cycle
resistance is

R = 1.02 X 0.1280 = 0.1305 ohm/mile

4.7 Skin-effect Inductance Ratio. The imaginary component of the
internal impedance <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>