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PREFACE

This book originated from a set of mimeographed notes which the
author prepared for a course taught to senior electrical engineering stu-
dents over a period of years. The primary purpose of the book is to
present the more important problems of power system analysis in a teach-
able form which is theoretically sound and adequately developed for a
senior or introductory graduate course. An attempt has been made to
awaken the interest of the student and to acquaint him with modern
practice as it pertains to the analysis under discussion,

Every author is faced with the problem of selection of subject matter
to be included. In this text sufficient material has been presented to
conduct a course lasting throughout an academic year. On the other
hand, the book is designed so that a judicious selection of material may
be made to fit the text to courses of two quarters or one semester. The
author has attempted to treat the various subjects so that many sections
may be omitted without the loss of continuity and without handicapping
the student. For several years the author has experimented with the
omission of various parts of the text and hopes that others will communi-
cate to him the results of any selection of material they find advantageous.

An attempt has been made to make the text more teachable by the
gradual introduction of some material that might otherwise prove trouble-
some to the student. For instance, per-unit computations are introduced
on a small scale in the chapter on generalized circuit constants and again
in the development of a universal circle diagram before they are treated
in detail sufficient for their exclusive use in fault calculations and sta-
bility problems. The text contains a large number of illustrative exam-
ples showing the details of the solution of almost every type of problem.
The examples should be considered a part of the body of the text. Many
explanations are incorporated in the solution of a problem. Students will

The large number of footnotes should encourage the
ment his work by additional reading. The footnotes af D ,/
an acknowledgment of some of the sources to whicla @
for many of the ideas presented. The generosity companles in '?
furnishing information can be inferred from the g men ear
ing in the text. The author is indebted to I (%E s (I- E R E D

Princeton University for persuading him to e this work, to the ¢
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vi PREFACE

late Professor C. G. Brennecke, former Head of the Department of Elec-
trical Engineering at North Carolina State College, for his unfailing words
of encouragement, and to Professor Arthur R. Eckels of North Carolina
State College for the many valuable suggestions he offered during the year
he taught from the mimeographed notes. Many students over a period
of years have taken an active interest in the work, and their suggestions
have been helpful. The author especially wishes to acknowledge the con-
stant encouragement received at every step of his teaching career from Dr.
Webster N. Jones, Vice-President of Carnegie Institute of Technology.

Witriam D. SrevensoN, Jr.
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CHAPTER 1

GENERAL BACKGROUND

1.1 The Function of Electric Power Systems. The degree of develop-
ment of sources of energy to accomplish useful work is one of the measures
of industrial progress. The discovery of sources of energy in nature, the
transportation of energy in its various forms from one place to another,
and the conversion of energy to a more serviceable form are essential
parts of an industrial economy. An electric power system is one of the
tools of converting and transporting energy.

The only means of transporting energy in the form of electricity is over
transmission lines. (Gas is transported by pipelines. Railroads, ships,
and pipelines carry oil over long distances. Coal is shipped long dis-
tances by rail and water. When coal is the primary source of electric
energy, the electric transmission line becomes a competitor of railroads
and ships in transporting energy. The choice of location of a steam
generating station near a coal mine or near a load center, provided there
is a good water supply at both places, may depend upon the difference
in cost of transmitting electric energy and transporting coal from the
mine to the load. Pipelines are increasing rapidly and are becoming a
major competitor of the electric transmission line by providing low-cost
transportation of energy. Hydroelectric power is inexpensive only if
the cost of its transmission is low. The economy of transporting energy
in one form instead of another is influenced by whether the demand for
the energy is continuous or intermittent, by the distance involved, and
by the cost and practicability of storage facilities. The determining
factor is the final cost, including transportation charges, of the energy
in the desired form.! The enormous growth of electric poger syl
since World War II testifies to the economic soundness of s

An electric power system is especially advantageo P ‘YEIRE D
ment of water power. Water power must be convg te where ,/ @
it is available, and an electric power system ma Q'& rgy derived '?

IQﬁf coal, oil, gag, and @
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2 ELEMENTS OF POWER SYSTEM ANALYSIS

from water power available at remote points. The water power is con-
verted to electric power at the source and transported by transmission
lines to the point where it is converted to the desired form, such as light,
heat, mechanical energy, or chemical energy. The transmission line
cannot store energy, and all the energy furnished at the generating station
is converted simultaneously at the load, except for the losses in the
system.

An electric power system consists of three principal components: the
generating stations, the transmission lines, and the distribution systems.
The transmission lines are the connecting links between all the generating
stations and the distribution systems. A distribution system connects
all the individual loads in a given area to the transmission lines. A well-
developed power system integrates a large number of generating stations
so that their combined output is readily available throughout the region
served. The locations of hydro stations are fixed by the presence of
water power, but the choice of sites for steam stations is more flexible.
Steam stations are usually spotted throughout the system so that there
is at least one generating plant near each large load center. Thus,
hydro stations often require the transmission of large amounts of power
over long distances, but steam plants usually require transmission over
shorter distances. The growth of loads may not be under the control
of the power company, but often the availability of cheap power encour-
ages the growth of loads in such favored areas. One job of the power
engineer is to predict the future demand for power so that suitably
located generating stations and well-coordinated, flexible, and reliable
transmission systems will be ready to supply the demand through
enlarged distribution systems as required by the load. As the system
grows, more energy sources must be exploited to satisfy the Increasing
demand, and more transmission lines must be built to link the new
generating stations to each other, to an increasing number of distribution’
points, and to other power systems.?

1.2 The Growth of Electric Power Systems. The development of a-c
systems began in the United States in 1885 when George Westinghouse
bought the American patents covering the a-c transmission system
developed by L. Gaulard and J. D. Gibbs of Paris. William Stanley, an
early associate of Westinghouse, tested transformers in his 1 orat
Great Barrington, Massachusetts. There, in the winter of
Stanley installed the first experimental a-c distributi
supplied 150 lamps in the town. The first a-c t
United States was put into operation in 1890 to

2 For a description of the development of a large
Sporn, “The Integrated Power System,” McGraw-Hil
York, 1950.
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GENERAL BACKGROUND 3

generated by water power a distance of 13 miles from Willamette Falls
to Portland, Oregon.?

The first transmission lines were single-phase, and the energy was
usually consumed for lighting only. Even the first motors were single-
phase, but on May 16, 1888, Nikola Tesla presented a paper describing
two-phase induction and synchronous motors.# The advantages of poly-
phase motors were apparent immediately, and a two-phase a-c distribu-
tion system was demonstrated to the public at the Columbian Exposition
in Chicago in 1893. Thereafter, the transmission of electric energy by
alternating current, especially three-phase alternating current, gradually
replaced d-c systems. In January, 1894, there were five polyphase
generating plants in the United States, of which one was two-phase and
the others three-phase.®

One reason for the early acceptance of a-c systems was the transformer,
which makes possible the transmission of electric energy at a voltage
higher than the voltage of generation or utilization. A higher voltage
of transmission requires less line current for the transmission of a given
amount of power and, therefore, results in lower IR losses in the line.
An a-c generator is a simpler device than a d-c generator, and this is an
additional advantage of a-c systems.

Although most of the electric energy consumed in the United States is
transmitted as alternating current, experiments have been carried on for
a number of years in this country on a system composed of a-c generators
feeding a d-c transmission line through a transformer and an electronic
rectifier. In this system an electronic inverter changes the direct current
to alternating current at the end of the line so that the voltage can be
reduced by a transformer. Direct-current transmission has been more
popular in Europe, and most of the recent literature on d-c transmission
has been published in Germany, England, and Russia. Direct-current
transmission overcomes some of the disadvantages of a-c systems, as will
become apparent as the characteristics of a-c systems are studied. The
disadvantage of elaborate inverting and rectifying equipment makes d-c

3 Much interesting material about the early development of electric equipment
and apparatus can be found in the volumes of Transactions of the American Institute
of Electrical Engineers for the period. For instance, a good description of thegk
mette-Portland line is given in C. F. Scott, ‘“‘Long Distance Transmi
and Power,” Trans. AIEE, vol. 9, pp. 425-442, 1892. For a booj - EE

) X
entury,” D

discoveries and developments which gave impetus to the elect:
MacLaren, “The Rise of the Electrical Industry during
Princeton University Press, Princeton, N.J., 1943.
4 See Nikola Tesla, “A New System of Alternating-c¢
formers,” Trans. AIEE, vol. 5, pp. 309-324, 1888.
5 See Louis Bell, “Practical Properties of Polyphas®
vol. 9, p. 27, 1894,

V,
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4 ELEMENTS OF POWER SYSTEM ANALYSIS

transmission less economical than a-c systems for distances less than
450 or 500 miles, and there is some doubt whether d-¢ transmission will
ever be as reliable as alternating current.

The Federal Power Commission publishes monthly reports on various
aspects of the generation and transmission of electric energy. The first
of a continuous series of annual reports giving data collected by the
Federal Power Commission appeared in 1920. Table 1.1 gives statistics
on the total installed capacity of generators and on the annual production

TasLe 1.1 InstaLnLEp ELectrIcAL Capacrty AND ANNUAL PRODUCTION OF
Evrecrric Exercy 1N THE UNITED STATES*

Installed capacity, | Annual energy production,
Year
kw kwhr
1920 12,713,608 39,404,639 ,000
1930 32,384,363 91,111,548, 000
1940 39,926,881 141,837,010,000
1950 68,919,040 329,141,343, 000

* Source: Federal Power Commission.
of electric energy in the United States at ten-year intervals since 1920.
Although these statistics record the growth of power systems in the first
half of the twentieth century, statistics alone do not show the impact
of the two world wars on the electrical industry. World War I revealed
the need for interconnection of power systems operating on a standard
frequency in order to furnish larger blocks of power than were available
from individual systems. Both wars dramatized the role of electricity
in building military power, and both were followed by a greater demand
for electric energy. Prior to World War II, the greatest net increase
in one year in the installed capacity of generating stations was 3,791,000
kw, in 1925. This figure was not surpassed until 1948, when the net
 increase in one year was 4,237 831 kw. Since then, statistics on yearly
growth indicate a doubling of installed capacity every ten years. Annual
energy production is also expected to double every ten years and reach
1 trillion kwhr in 1965.

In the early days of a-c power transmission in the United States, the
operating voltage increased rapidly. In 1890 the Willamette- Por
line was operated at 3,300 volts. In 1907 a line was operating
Voltage rose to 150 kv in 1913, 220 kv in 1923, 244 kv
kv on the line from Hoover Dam to Los Angeles, whic
1936. In 1952, construction was completed on §
330-kv system of the American Gas and Electric Cog

6 See P. Sporn, E. L. Peterson, I. W. Gross, and H. PJ
Extra-high-voltage Transmission System of the Americ
pany,” Trans. AIEE, vol. 70, pp. 64-72, 1951.

adrtion of a
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GENERAL BACKGROUND 5

of line voltage is principally a matter of balancing the initial investment
in line construction and apparatus with the cost of operation. Up to a
certain point, increasing the voltage results in lower losses for a given
size of conductor or in a smaller conductor for a given power loss. Much
of the saving achieved in conductor cost by designing for higher voltage
is lost because of the increased loss in the surrounding air, which is
ionized by the high voltage gradient at the wire, and because of the
increased cost of insulators, transformers, switches, and circuit breakers.
The cost of the latter items increases so rapidly at the higher voltages
that some maximum voltage exists above which it is not economical to
design transmission lines at present. Radio influence is also a factor
affeeting the selection of voltage. The final determination of a system
voltage of 330 kv for the above-mentioned line resulted from studies
of tests on a 500-kv experimental line near the Tidd station of the Ohio
Power Company. The American Gas and Eleetric Service Corporation,
in cooperation with eight manufacturers of high-voltage equipment,
obtained data on insulators, line conductors, switchgear, transformers,
lightning arresters, instruments, radio influence, and the effects of atmos-
pheric ionization at voltages up to 500 kv. Through such tests and
through experience in operating a 600-mile, 400-kv line in Sweden, the
economic and technical limitations of high-voltage transmission are being
studied.”

Until 1917, electric systems were usually operated as individual units
because they started as isolated systems and spread out only gradually
to cover the whole country. The demand for large blocks of power and
increased reliability suggested the interconnection of neighboring systems.
Interconnection is advantageous economically because fewer machines
are required as a reserve for operation at peak loads (reserve capacity)
and fewer machines running without load are required to take care of
sudden, unexpected jumps in load (spinning reserve). The reduction in
machines is possible because one company can usually call on neighboring
companies for additional power. Interconnection also allows a company
to take advantage of the most economical sources of power, and a com-
pany may find it cheaper to buy power than to generate it in an obsolete
plant. Interconnection has increased to the point where powg
exchanged between the systems of different companies as 4
routine. Figure 1.11is the map of a small transmission s
shows eight points of interconnection with other sy

tinued service of systems depending on water pd r@\arge part %

of their generation is possible in times of unusu &ktreme water @
7 8ee B. G. Rathsman and G. Jancke, ‘“Experience Ga % theRE@’gq- E R E D

Power Transmission and the Novel Features of the Systg ” ans AIEE, vol. 72, ¢
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6 ELEMENTS OF POWER SYSTEM ANALYSIS

shortage only because of the power obtained from other systems through
interconnections.

Interconnection of systems brought many new problems, most of which
have been solved satisfactorily. Interconnection increases the amount of
current which flows when a short circuit occurs on a system and requires
the installation of breakers able to interrupt a larger current. The dis-
turbance caused by a short circuit on one system may spread to inter-
connected systems unless proper relays and circuit breakers are provided
at the point of interconnection. Not only must the interconnected
systems have the same nominal frequency, but also the synchronous
machines of one system must remain in step with the synchronous
machines of interconnected systems.

Planning the operation, improvement, and expansion of a power system
requires load studies, fault calculations, and stability studies. We shall
consider the general nature of these types of problems and then proceed
to acquire some of the fundamental concepts in the theory of transmission
lines before considering these problems in detail.

1.3 load Studies. A load study is the determination of the voltage,
current, power, and power factor or reactive power at various pointsin an
electric network under existing or contemplated conditions of normal
operation. Load studies are essential in planning the future develop-
ment of the system because satisfactory operation of the system depends
on knowing the effects of interconnections with other power systems, of
new loads, new generating stations, and new transmission lines before
they are installed.

Longhand calculations of the effect of changes in a complex system are
so tedious and time-consuming that an a-c calculating board is the best
means of making a load study to determine the effect of contemplated
changes. A calculating board is a small-scale single-phase replica of the
actual system. It consists of a number of sources of a-c voltage which
may be adjusted in ' magnitude and phase and of a number of resistances,
inductances, and capacitances, all of which are adjustable. The voltage
sources and circuit elements can be connected by plugging arrangements
to represent the actual network by the equivalent circuits of its com-
ponent parts scaled down to convenient size. Measurements made on
the calculating board are easily converted, by multiplying facto,
values that would exist on the actual network, or meters
scales may be provided to read system quantities dlI‘(,C
of an a-c calculating board and of some of its cire
in Chap. 8, where the boards are described in mor§

By altering the connections of the a-¢ board, t
the system is determined just as rapidly as the
and the meters read. For instance, capacitg

ef any change in
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GENERAL BACKGROUND 7

parallel with a load or at various points along a line in order to improve
the power factor and thereby decrease the current drawn by a load hav-
ing a low lagging power factor. The installation of a capacitor of proper
size at the proper location will often raise the voltage of that part of the
system. If the voltage is low at some point in a power system, a load
study can be made on an a-c caleulating board to determine the best
size and most favorable location for the capacitor. This is done by
reading the voltages on the replica of the system for a number of different
capacitor sizes and locations. A load study concerned with the improve-
ment of voltage may indicate that building an additional transmission
line somewhere in the system is the best solution to the problem. ILoad
studies serve to determine the best location for a proposed new generat-
ing station or substation and to determine the best location for new lines
or synchronous condensers.

The results of a load study made on an a-c calculating board for the
system of Fig. 1.1 are shown in Fig. 1.2. At the time the study was made,
a new generating plant was under construction at Goldsboro, and only
one 110-kv line was available to carry power west from Goldsboro. The
study was made to compare the operation of a proposed additional 110-kv
line from Goldsboro to the Selma substation with a proposed line from
Goldsboro to the Duke substation. Figure 1.2 is a diagram of the system
with each transmission line represented by a single line. Substations
are identified by name, and generating stations and synchronous con-
densers are indicated by symbols. Data obtained from the calculating
board are recorded on the diagram. Voltages in kilovolts are recorded at
some substations, and the numbers beside the arrows show the flow of real
and reactive power in megawatts and megavars. Positive reactive power
is the power drawn by an inductive load. The figures for reactive power
are enclosed in parentheses. The data of Fig. 1.2 were taken with the
board arranged to represent contemplated future loads with a new 110-kv
line from Goldsboro to Selma. The new line is shown by dashes,

The study was repeated with the new line from Goldsboro to Duke
instead of to Selma, and a portion of the results is shown in the diagram
of Fig. 1.3. The studies show that the new line carries more load when
routed from Goldsboro to Selma than when routed to Duke and that
the difference between the two routings is slight in the rest of g
In addition, the distance from Goldsboro to Selma is ghorf
Duke, and the right of way to Selma was already owned
As a result of the load study, the new line was bu gt
Selma, as shown on the map of Fig. 1.1.

Load studies on a calculating board are valualglg
additions to a system but also for determining
cedure for the existing system. As the load on g
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10 ELEMENTS OF POWER SYSTEM ANALYSIS

throughout the day or from day to day, the system dispatcher must
know from which generating stations to supply the load so as to obtain
the best voltage regulation and the most economical operation. Operat-
ing schedules are prepared after making load studies. I.oad studies can
also be made to determine the best operating procedure in the event
of the loss of one or more generating stations or transmission lines.

1.4 Fault Calculations. The American Institute of FElectrical
Engineers defines a fault in a wire or cable as follows: “ A wire or cable
fault is a partial or total failure in the insulation or continuity of a con-
ductor.””® Most faults on transmission lines of 115 kv and higher are

@45,
' )}2 kv /2.8

Vv (9)
3 66 kv 4/
METHOD| 4

(%)

i | @

U 245 w5 es
/08 | %//o) ! (s5) 4'(46) 4 )
SELMA ¥ 2 2 ) 35
V(1) v2) | S| (s
1140 §] GOLDSBORO
Jeo)¥ oMY
Y

y
/2.5
?(/0) 1075 (zs)t 325)
DUKE /2 ¢ 205 v
(135)}]  $(#5)

Fre. 1.3 Section of an a-c caleulating-board study for the system of Fig. 1.1 to show
the effect of a proposed line (shown by dashes) from Goldshoro to Duke. Numbers
beside the arrows show the flow of real and reactive power in megawatts and megavars
(reactive power in parentheses). Numbers at cach bus indicate the voltage in
kilovolts.

caused by lightning which results in the flashover of insulators. The high .
voltage between a conductor and the grounded supporting tower causes
ionization which provides a path to ground for the charge induced by the
lightning stroke. Once the ionized path to ground is established, the
resultant low impedance to ground allows the flow of power current
from the conductor to ground and through the ground to the grounded
neutral of a transformer or generator, thus completing the cigaui
Line-to-line faults not involving ground are less common.
of circuit breakers to isolate the faulted portion of the ¢
of the system interrupts the flow of current in the ionize
deionization to take place. After an interval of al
deionization, breakers can usually be reclosed wif

%
e reestablish- 6\@6‘/
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8 ¢ American Standard Definitions of Electrical Term¥
tute of Electrical Engineers, New York, 1942,




GENERAL BACKGROUND 1

ment of the are. A report by Sporn and Muller® of nine years’ experience
with 1,634 circuit miles of line, most of which operated at 132 kv, shows
a total of 635 cases of flashover, of which 570 were successfully reclosed
by ultrahigh-speed reclosing breakers. Of the 635 cases, eight proved
to be permanent {aults where successful reclosure would have been impos-
sible. The permanent faults were caused by lines being on the ground,
by insulator strings breaking because of ice loads, by permanent damage
to towers, and by lightning-arrester failures. Experience has shown that
between 709 and 809, of transmission-line faults are single line-to-ground
faults, which arise from the flashover of only one line to the tower and
ground. The smallest number of faults, roughly 5%, involve all three
phases and are called three-phase faults. Other types of transmission-
line faults are line-to-line faults, which do not involve ground, and double
line-to-ground faults. All the above faults except the three-phase type
are unsymmetrical and cause an unbalance between the phases.

The current which flows in different parts of a power system immedi-
ately after the occurrence of a fault differs from that flowing a few cycles
later just before circuit breakers are called upon to open the line on both
sides of the fault, and both these currents differ widely from the current
which would flow under steady-state conditions if the fault were not
isolated from the rest of the system by the operation of circuit breakers.
Two of the factors upon which the proper selection of circuit breakers
depends are the current flowing immediately after the fault occurs and
the current which the breaker must interrupt. Fault calculations con-
sist of determining these currents for various types of faults at various
locations in the system. The data obtained from fault calculations also
serve to determine the settings of relays which control the circuit breakers.

For simple systems, analytie calculations of fault currents are prac-
tical, but for the more complex systems the engineer must call upon the
caleulating board. If great accuracy is not required and the system can
be assumed to be composed of purely inductive reactances or of imped-
ances of nearly equal phase angles only, a d-c¢ calculating board with
resistances replacing the inductive reactances can be used instead of the
more costly a-¢ board.

Analysis by symmetrical components is a powerful tool which we shall
study later and which makes the calculation of unsymmetrical f;
almost as easy as the calculation of three-phase faults. Ak .
symmetrical components is necessary whether the faulg g

carried out analytically or on a calculating board. 6
generator
é?éenerated or

1.5 Stability Studies. The current which flow
or synchronous motor depends on the magnitude
"SREGISTERED O)
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* P. Sporn and C. A. Muller, “ Nine Years’ Experience
ing of High-voltage Transmission Lines,” Trans. AIEE, v{
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12 ELEMENTS OF POWER SYSTEM ANALYSIS

internal, voltage, on the phase angle of its internal voltage with respect
to the phase angle of the internal voltage of every other machine in the
system, and on the characteristics of the network and loads. For
example, two a-c generators operating in parallel but without any external
circuit connections other than the paralleling eircuit will carry no current
if their internal voltages are equal in magnitude and in phase. If their
internal voltages are equal in magnitude but different in phase, the
voltage of one subtracted from the voltage of the other will not be zero,
and a current will flow, as determined by the difference in voltages and
the impedance of the circuit. One machine will supply power to the
other, which will run as a motor rather than as a generator.

The phase angles of the internal voltages depend upon the relative posi-
tions of the rotors of the machines. 1If synchronism were not maintained
among the generators of a power system, the phase angles of their internal
voltages would be changing constantly with respect to each other, and
satisfactory operation would be impossible.

The phase angles of the internal voltages of synchronous machines
remain constant only as long as the speeds of the various machines remain
constant at the speed which corresponds to the frequency of the reference
phasor.’® When the load on any one generator or on the system as a
whole changes, the current in the generator or throughout the system
changes. If the change in current does not result in a change in magni-
tude of the internal voltages of the machines, the phase angles of the
internal voltages must change. Thus, momentary changes in speed are
necessary to obtain adjustment of the phase angles of the voltages with
respect to each other, since the phase angles are determined by the relative
positions of the rotors. When the machines have adjusted themselves
to the new phase angles, or when some disturbance causing a momentary
change in speed has been removed, the machines must operate again at
synchronous speed. If any machine does not remain in synchronism
with the rest of the system, large circulating currents result, and, in a
properly designed system, the operation of relays and circuit breakers
removes the machine from the system. The problem of stability is the
problem of maintaining the synchronous operation of the generators and
motors of the system. Power system engineers have devoted much
thought and effort to stability studies since about 1925."

Stability studies are classified by whether they involve ste

10 Phagors are often called vectors and are the coplanar direct
bolically represent sine functions. Phasors are the graphi
complex expressions of voltage and current.

11 8ee for instance AIEE Subcommittee on Interconnectig
“First Report of Power System Stability,” Elec. Eng., v
1937.
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GENERAL BACKGROUND 13

transient conditions. There is a definite limit to the amount of power
an a-c generator is capable of delivering and to the load which a synchro-
nous motor can carry. Instability results from attempting to increase
the mechanical input to a generator or the mechanical load on a motor
beyond this definite amount of power called the stability limst. A limit-
ing value of power is reached even if the change is made gradually. Dis-
turbances on a system, caused by suddenly applied loads, by the occur-
rence of faults, by the loss of excitation in the field of a generator, and
by switching, may cause loss of synchronism, even if the change in the
system caused by the disturbance would not exceed the stability limit
if the change were made gradually. The limiting value of power is
called the transient stability limit or the steady-state stability limit accord-
ing to whether the point of instability is reached by a sudden or a gradual
change in conditions of the system.

Fortunately, engineers have found methods of improving stability and
of predicting the limits of stable operation under both steady-state and
transient conditions. Stability studies of a two-machine system are less
complex than studies of multimachine systems, but many of the methods
of improving stability can be seen by the analysis of a two-machine sys-
tem. The a-c calculating board is a great help in predicting the stability
limits of a complex system and in comparing various methods of increas-
ing stability, but the same calculations must be made for each machine
represented on the board as are made for the machines in a simpler system
which is more suited to analytic calculations.

1.6 The Power System Engineer. This chapter has attempted to
sketch some of the history of the basic developments of electric power
systems and to describe some of the analytic studies which are important
in planning the operation, improvement, and expansion of a modern
power system. The power system engineer should know the methods
of making load studies, fault analyses, and stability studies, for such
studies affect the design and operation of the system and the selection of
apparatus for its control. Before we can consider these problems in more
detail, we must study some fundamental concepts relating to power
systems in order to appreciate how these fundamental concepts affect
the larger problems.
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CHAPTER 2

INDUCTANCE OF TRANSMISSION LINES

2.1 Introduction. An electric transmission line has four parameters
which affect its ability to fulfill its function as part of a power system.
These parameters are resistance, inductance, capacitance, and conduct-
ance. In this chapter we shall study inductance, and we shall consider
the other parameters in the two following chapters.

When current flows in an electric circuit we explain some of the proper-
ties of the circuit by the magnetic and electric fields which are present.

Figure 2.1 shows an open two-wire
' line and its associated magnetic and
electric fields. The lines of mag-
netic flux form closed loops linking
the circuit, and the lines of electric
flux originate on the positive charges
on one conductor and terminate on
the negative charges on the other
conductor. Variation of the cur-
rent in the conductors causes a
change in the number of lines of
Fic. 2.1 Magnetic and electric fields magnetic flux linking the circuit.
associated with a two-wire line. Any change in the flux linking a
circuit induces a voltage in the
circuit, and the induced voltage is proportional to the rate of change of
flux. Inductance is the property of the circuit that relates the voltage
induced by changing flux to the rate of change of current.

2.2 Definition of Inductance. Two fundamental equatiog
explain and define induetance. The first equation relatesind
to the rate of change of flux linking a circuit. The ind'

_ »
dt gg/ ),
where ¢ is the induced voltage in volts and ¢ is t I OR;E g@ O
of the circuit in weber-turns. The number of we —@ns is the g uc?- ERED ¢
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INDUCTANCE OF TRANSMISSION LINES 15

of each weber of flux and the number of turns of the circuit linked. For
the two-wire line of Fig. 2.1 each line of flux links the circuit only once,
and 1 volt is induced if the rate of change of flux is 1 weber/sec. 1If we
had been considering a coil instead of the circuit of Fig. 2.1, most of the
lines of flux produced would have linked more than one turn of the coil.
If the flux linking 100 turns of a coil changed at the rate of 1 weber/sec,
the induced voltage in each turn would be 1 volt, but the induced voltage
in the coil would be 100 volts since
the turns are in series. Therefore, the
induced voltage is proportional to the
rate of change of flux linkages.

A coil having five turns is shown in
Fig. 2.2. The closed loops represent
some of the magnetic flux linking the
turns of the coil. Two of these loops
are seen to link only one turn of the
coil. They contribute a total of two
flux linkages. Two other loops link
three turns and therefore contribute
six flux linkages. Four loops link all
five turns to give twenty flux linkages.
Thus, for the loops shown, there are 2 + 6 4 20 = 28 flux linkages. 1f
each loop or line of flux represents 1 weber, the unit of flux linkages is
a weber-turn, and the coil has 28 weber-turns. Decreasing this flux to
zero at a uniform rate in 1 sec would induce 28 volts in the coil.

When the current in a circuit is changing, its associated magnetic field
(which is described by the flux linkages) must be changing. If constant
permeability is assumed for the medium in which the magnetic field is
set up, the number of flux linkages is directly proportional to the current,
and therefore the induced voltage is proportional to the rate of change of
current. Thus our second fundamental equation is

F1e. 2.2 TFlux linking a coil.

di
e=1L 7 volts (2.2)

in henrys, e is the induced voltage in volts, and di/d¢ is the rat
of current in amperes per second. Equation (2.2) ma

_ W
=7 henrys
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16 ELEMENTS OF POWER SYSTEM ANALYSIS

If the flux linkages of the circuit vary linearly with current, which means
the magnetic circuit has a constant permeability,

L= % henrys (2.4)

from which arises the definition of the self-inductance of an electric circuit
as the flux linkages of the circuit per unit of current. The inductance
of one conductor of a circuit is equal to the flux linkages of the conductor
per unit current in the conductor. In a two-wire line the number of flux
linkages of the circuit is the sum of the flux linkages of each wire. In the
rationalized mks system of units, I, in henrys is equal to weber-turns per
ampere. In terms of inductance the flux linkages are

v =14 weber-turns (2.5)
In Eq. (2.5), if 7 is instantaneous current, ¥ represents instantaneous flux
linkages. When the current is alternating, the flux linkages are alternat-

ing, and the rms value of the flux linkages is the product of the inductance
and the rms current. Thus

Yime = LI weber-turns? (2.6)

The rms voltage drop due to the flux linkages is
V = jull volts 2.7
V = jw\[/rlﬂs VOltS (2.8)

Mutual inductance between two circuits is defined as the flux linkages
of one circuit due to the current in the second circuit per ampere of cur-
rent in the second circuit. If the current /s produces yi2 flux linkages
with circuit 1, the mutual inductance is

12 = 4t henrys
I,

The voltage drop in circuit 1 caused by the flux linkages of circuit 2 1s
V1 = jw}v[lzlg = jw'gblz VOltS

Mutual inductance is important in considering the influence of power
lines on telephone lines and in considering the coupling between parallel
power lines.

2.3 Partial Flux Linkages. Only flux lines external to the cond
have been shown in Fig. 2.1. Some of the magnetic field
the conductors although the amount of internal flux ¢
that it can be neglected at high frequencies, as we sh

_ 1
< e N
_égfrﬁ%li@“rERED e
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INDUCTANCE OF TRANSMISSION LINES 17

The changing lines of flux inside the conductors also contribute to the
induced voltage of the circuit and, therefore, to the inductance. The
correct value of inductance due to internal flux may be computed as the
ratio of flux linkages to current by taking into account the fact that each
line of internal flux links only a fraction of the total current. The flux
linkages of the internal flux in a tubular element are the product of flux
in the element and the ratio of the current encircled by the tubular ele-
ment to the total current in the conductor. Thus a line of flux which
enicircles only half the current in a conductor contributes only half a flux
linkage. Partial flux linkages are those linkages produced by flux which
links only part of the current. The total number of flux linkages due to
internal flux is the summation of all the partial linkages. The summation
of all the partial flux linkages in weber-turns divided by the current
in the circuit in amperes is the inductance in henrys due to internal flux.

The principle outlined above for computing inductance is applicable to
inductance resulting from external as well as internal flux. By this
principle inductance is defined as flux linkages per ampere, and the value
of flux linkages is the summation of flux times the fraction of the total
current linked. The fraction is less than one for lines of flux inside the
conductor and greater than one for flux surrounding several turns of a
coil. For Fig. 2.2 the fractions of current linked by the lines of flux
shown are 1, 3, and 5. The method of computing flux linkages by multi-
plying each line of flux by the fraction of current enclosed should become
increasingly clear as the topic of inductance is developed further.

We shall show later that the method of partial flux linkages is valid for
computing the internal inductance of a eylindrical wire by deriving
internal inductance in another manner and comparing the results of the
two methods.

2.4 Inductance of a Conductor Due to Internal Flux. In order to
obtain an accurate value for the inductance of a transmission line, it is
necessary to consider the flux inside each conductor as well as the external
flux. Let us consider the long, cylindrical conductor whose cross section
is shown in Fig. 2.3. We will assume that the return path for the current
in this conductor is so far away that it does not appreciably affect the
magnetic field of the conductor shown. Then the lines of flux are con-
centric with the conductor.

The magnetomotive force (mmf) in ampere-turns around
path is equal to the current in amperes enclosed by the
is also equal to the integral of the tangential compgpey

) @&Eegnetic V, @
field intensity around the path.2 Thus Q/ '?
mmf = gH-ds =1 S

& 12.9&_ 6>O
* See for instance W. H. Timbie and V. Bush, ““ Principl8 §tricR§EiG S,’ ERED ¢
4th ed., pp. 428-432, John Wiley & Sons, Inc., New Yo 4
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18 ELEMENTS OF POWER SYSTEM ANALYSIS

where H is the magnetic field intensity in ampere-turns per meter, s
is the distance along the path in
meters, I is the current in amperes
enclosed,?® and the dot between H and
ds indicates that the value of H is
the component of the field intensity
tangent to ds.

Let the field intensity at a distance
x meters from the center of the con-
ductor be designated H,. Since the
field is symmetrical, H, is constant
at all points equidistant from the
center of the conductor. If the inte-
gration indicated in Eq. (2.9) is per-
formed around a circular path con-
centric with the conductor at x meters
from the center, 1, is constant over the path and tangent to it. Equa-
tion (2.9) becomes

Fia. 2.3 Cross section of a cylindri-
cal conductor.

SH. ds =1, (2.10)
and
2reH, = I, 2.11)
where I, is the current enclosed. Then, assuming uniform current
density,
T’
I, = = I (2.12)

where [ is the total current in the conductor. Then substituting Eq.
(2.12) in Eq. (2.11), we obtain

,2
oreH, = 5 1 (2.13)
and -

H, =" -1 amp-turns/meter (2.14)

2mrr?
The flux density x meters from the center of the conductor is

wrl
2mr?

where u is the permeability of the conductor.4

B:z:.uHx:

webers/meter? (2.15)

3 If the current is alternating, the maximum value of H is fq
value of the current is used in Eq. (2.9). Similarly, if I is rms ‘ i ,/
field intensity, and flux computed from rms H is the rms viams e equation @
of alternating %

is applicable to direct current or instantaneous, maximum,
t.
cuir;r? the rationalized mks system of units the permeall f%e spREGIS TERED /O¢
)
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INDUCTANCE OF TRANSMISSION LINES 19

In the tubular element of thickness dz, the flux d¢ is B, times the cross-
sectional area of the element normal to the flux lines, the area being dz
times the axial length. The flux per meter of length is

d¢ = %7%{—2 dx webers/meter of length (2.16)

The flux linkages dy per meter of length, which are caused by the flux
in the tubular element, are the product of the flux per meter of length
and the fraction of the current linked. Thus

22 Ix?
W = 7L2d¢ = ’;rﬂ

wr

dx weber-turns/meter (2.17)

Integrating from the center of the conductor to its outside edge to find
Yint, the total flux linkages inside the conductor, we obtain

I AT EA
Yot _/;) 27t dx

VYing = %f? weber-turns/meter (2.18)

For a relative permeability of 1, u = 47 X 1077 henry/meter, and

Vine = % X 1077 weber-turns/meter (2.19)

Lin: = 15 X 1077 henry/meter (2.20)

2.5 Flux Linkages between Two Points Exter-
nal to an Isolated Conductor. As a step in
computing inductance due to flux external to a
conductor, let us derive an expression for the flux
linkages of an isolated conductor due only to that
portion of the external flux which lies between two
points distant Dy and D, meters from the center
of the conductor. In Fig. 2.4, P; and P, are two
points of distances D; and D, from the conductor
which carries a current of 7 amp. Since the flux
paths are concentric circles around the conductor,
all the flux between P; and P, lies within the
coneentric cylindrical surfaces which pass throug
Py and P,. At the tubular element which is z
meters from the center of the conductor
field intensity is H,. The mmf around the

2axH, = 1

ernal points Py o
§% REGISTERED /%
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The field intensity is

H, = A amp-turns/meter (2.22)
2mx

and the flux density in the element is

B, = L webers/meter? (2.23)
2mrx

The flux d¢ in the tubular element of thickness dz is
d¢ = dx webers/meter of length (2.24)

The flux linkages dy per meter are numerically equal to the flux d¢,
since flux external to the conductor links all the current in the conductor
once and only once. The total flux linkages between P; and P, are
obtained by integrating dy from x = D; to x = D,. We obtain

Prour I, D
Y12 = / Q‘i} dx = g; In —D—‘Z weber-turns/meter (2.25)
Dy L 1

or, for a relative permeability of 1,

Yip =2 X 107/ In % weber-turns/meter (2.26)

1

The inductance due only to the flux included between P; and P, is

Ly =2X 1077 1In % henrys/meter (2.27)
1
In Eqgs. (2.25) to (2.27), note that “In’’ denotes the natural logarithm
(base €).5 Converting henrys per meter to millihenrys per mile and
using the logarithm to the base 10, we obtain

Lys = 0.7411 log —g—2 millihenrys/mile (2.28)
1

2.6 Inductance of a Single-phase Two-wire Line. Before proceeding
to the more general case of multiconductor lines and three-phase lines, let
us consider a simple two-wire line composed of solid, round g
Figure 2.5 shows a circuit having two conductors of radi r1 g
conductor is the return circuit for the other. First
flux linkages of the circuit caused by the current igms
of flux set up by current in conductor 1 at a dista

8 Throughout this book “In” denotes the natural }
denotes the common logarithm (base 10).
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than D + r; from the center of conductor 1 does not link the circuit
and cannot induce a voltage in the circuit. Stated in another manner,
guch a line of flux links a net current of zero, since the current in conductor
2 is equal in value and opposite in direction to the current in conductor 1.
The fraction of the total current linked by a line of flux external to
conductor 1 at a distance equal to or less than D — r; is one. Between
D — rzand D + r, (that is, over the surface of conductor 2), the fraction
of the total current in the circuit linked by a line of flux set up by current
in conductor 1 varies from one to zero. Therefore, it is logical to simplify

D) )a

Fic. 2.5 Conductors of different radii and the magnetic field due to current in con-
ductor 1 only.

the problem, when D is much greater than r; and r; and the flux density
through the conductor is nearly uniform, by assuming that all the external
flux set up by current in conductor 1 extending to the center of conductor
2 links all the current 7 and that flux beyond the center of conductor 2
links none of the current. In fact, it can be shown that calculations
made on this assumption are correct even when D is small.®

The inductance of the circuit due to current in conductor 1 is deter-
mined by Eq. (2.27) with the distance D between conductors 1 a
substituted for Dy and the radius »; of conductor 1 substitu
For external flux only

T =2%X 107102 henrys/ <</('9\6 (2.29) ,/6\45
1 . | 6}()
S ‘REGISTERED 2
VERSION
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8 See E. W. Kimbark, “Electrical Transmission of Po
65—67, John Wiley & Sons, Inc., New York, 1949,
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For internal flux only
L1, = 4 X 1077 henry/meter (2.30)
The total inductance of the circuit due to the current in conductor 1 only
is
D .
Ly —I— 2In=) X 1077 henrys/meter (2.31)

The expression for inductance may be put in a more concise form by
factoring Eq. (2.31) and by noting that In ¢ = 14, whence

If

Ly = 2 X 107 G; tln f-?) (2.32)

i

Ly =2X107 (ln % 4 In }12> (2.33)
1

Upon combining terms, we obtain

D
— —7 )
Li=2X107In " (2.34)
If we substitute ] for rie=,

Ly =2X107 lnrl—,) henrys/meter (2.35)

or D t
= (.7411 log =7 millihenrys/mile (2.36)

1

The radius 7 is that of a fictitious conductor assumed to have no internal
flux but with the same inductance as the actual conductor of radius r;.
The quantity ¢ is equal to 0.7788. Equation (2.35) gives the same
value for inductance as Eq. (2.31). The ditference is that Eq. (2.35)
omits the term to account for internal flux but compensates for it by
using an adjusted value for the radius of the conductor. We shotld-
note carefully that Eq. (2.31) was derived for a solid, round conductor
and that Eq. (2.35) was found by algebraic manipulation of Eq. (2.31).
Therefore, the multiplying factor of 0.7788 to adjust the radius in order
to account for internal flux applies only to solid, round conductors. We
shall consider other conductors later.

Since the current in conductor 2 flows in the direction oppos1
that in conductor 1 (or is 180° out of phase with it), the
produced by current in conductor 2 considered alone gined
direction through the circuit as those produced by curre
The resulting flux for the two conductors is dete
the mmfs of both conductors. For constant permg
flux linkages (and likewise the inductances) of
sidered separately may be added.

T?EGI’S“TERED N
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By comparison with Eq. (2.35) the inductance due to current in con-
ductor 2 is

Ly =2 X 1077 ln;?— henrys/meter (2.37)
2

and for the complete circuit

D
v,

If v, = ry, = r’, the total inductance reduces to

L=Li+Ls=4X10"7"In henrys/meter (2.38)

L =4 X107 lnrg henrys/meter (2.39)
or

L = 1.482 log;? millihenrys/mile (2.40)

Equation (2.40) is the inductance of the two-wire line taking into account
the flux linkages caused by current in both conductors, one of which is

p

Fra. 2.6  Cross-sectional view of a group of n conductors carrying currents whose sum
is zero. Point P is remote from the conductors.

the return path for current in the other. This value of inductance is
sometimes called the inductance per loop meter or per loop mile to
distinguish it from the inductance of the circuit due to the current in one
conductor only. The latter, as given by Eq. (2.36), is one half the
total inductance of a single-phase line and is called the inductance per
conductor.

2.7 Flux Linkages of One Conductor in a Group. A more general
problem than that of the two-wire line is presented by one condyctor
group of conductors where the sum of the eurrents in all the {
is zero. Such a group of conductors is shown in Fig. 2
1,2,3, ..., n carry the currents Iy, I, I3, . . .
of these conductors from a remote point P are indic
Dip, Dsp, D3p, . . ., Dpr. Let us determine ¥ g
conductor 1 due to I; including internal flux li
the flux beyond the point P. By Eqs. (2.19) and
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Yir1 = ("Iél + 20 1n 13_1P> 107 (2.41)

Yipr = 2 X 10711 1n D,

1

weber-turns/meter (2.42)

The flux linkages ¢1p; with conductor 1 due fo I, but excluding flux
beyond point P, is equal to the flux produced by 7, between the point P
and conductor 1 (that is, within the limiting distances D,r and Dy,
from conductor 2). So

Yire = 2 X 10771, In #’ (2.43)

12

The flux linkages ¥ with conductor 1 due to all the conductors in the
group, but excluding flux beyond point P, is

D1p sz D3P

Yir = 2 X 10—7(11 =+ Lin 52+ Lin 57 + -

+ I, In g"”) (2.44)

which becomes, by expanding the logarithmic terms and regrouping,

¢1P=2X10*7<Illn +I2ln —I—Igln——l— '—I—Inln~1—

In

+ I InDyp+ I:InDop+Isn Degp+ - -+ +1ln an> (2.45)

Since the sum of all the currents in the group is zero,
L+ 1+ I3+ - + I, =
and, solving for I,, we obtain
IL=—(U1+ 1L+ I+ -+ 1) (2.46)

Substituting Eq. (2.46) in the second term containing I, in Eq. (2.45)
and recombining some logarithmic terms, we have

¢1p=2X10‘7<I11n +Irln - +131nDi ¥ -
13

D D D
+ I In 1P+Iz D”’+13 Di’;

ERED L
(2.47) 6\45

% ﬂREﬁlS)TERE D

O P becomes infini-
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Now letting the point P move infinitely far
terms containing logarithms of ratios of distaycg
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tesimal, since the ratios of the distances approach one, we obtain

¢1=2X10“7<[11n -I-I2ln -I—Isln —}—---

+ I.In-

D ) weber-turns/meter  (2.48)
1n .

By letting point P move infinitely far away we have included all the
fux linkages of conductor 1 in our derivation. Therefore, Eq. (2.48)
expresses all the flux linkages of conductor 1 in a group of conductors,
provided the sum of all the currents is zero. If the currents are alternat-
ing, they must be expressed as instantaneous currents to obtain instan-
taneous flux linkages or as complex rms values to obtain the rms value
of flux linkages as a complex number.

2.8 Inductance of Composite-conductor Lines. The commonest con-
ductors for overhead power transmission lines are composed of strands
of wire with alternate layers spiraled in opposite directions. Spiraling
alternate layers in opposite directions prevents unwinding and makes the
outer radius of one layer coincide with the inner radius of the next.
Stranding provides flexibility with large cross-sectional area. The num-
ber of strands depends on the number of layers and on whether all the
strands are the same diameter. The total number of strands in con-
centrically stranded cables, where the total annular space is filled with
strands of uniform diameter, is 7, 19, 37, 61, 91, or more. A general
formula for the total number of strands in such cables is

Number of strands = 322 — 3z + 1

where z is the number of layers, including the single center strand. A
500.000-cireular-mil conductor may be composed of 37 strands having -
individual diameters of 0.1162 in. or of 19 strands having individual
diameters of 0.1622 in. Table A.1 in the Appendix lists the character-
istics of concentrically stranded conductors of hard-drawn copper and of
conductors having 12, 3, and single strands. The strands of copper
conductors are usually uniform in diameter and composed of copper only.
Figure 2.7 shows a typical steel-reinforced aluminum cable (ACSR).
The conductor shown has 19 steel strands forming a central co
which are two layers of aluminum strands. There are 30
strands in the two outer layers. The conductor strand
as 30Al/198t, or simply 30/19. Various tensile
capacities, and conductor sizes are obtained by usiny
tions of steel and aluminum. Table A.2 in the
the characteristics of ACSR, indicates the sizes
and steel strands, the number of strands of eag

combina-
, Whlch gives

thReE@IS TERED © 2

the numbeér. of
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layers for the usual types of strnading. A type of conduetor known as
“expanded”’ ACSR has a filler such as paper separating the inner steel
strands from the outer aluminum strands.

Steel wires coated with a thick layer of copper are used to obtain high
tensile strength combined with good current-carrying capacity. Some-
times cables are composed of copper strands in the outer layers and
copper-coated steel wires in the inner layers. Hollow copper conductors
are sometimes used on high-voltage lines. One type of hollow copper
conductor consists of interlocked sections of copper forming a spiral

Fre. 2.7 Steel-reinforced aluminum conductor, 19 steel strands, 30 :"élumin&um
strands. (Aluminum Company of America.) -

along the axial length of the conductor. Such a conductor is self-
supporting and has some degree of flexibility. Another type of hollow
conductor consists of copper strands with the inner layer twisted in the
direction opposite to that of a twisted copper I beam around which the
strands are spiraled.

Stranded conductors come under the general classification
conductors, which means conductors composed of two ¢ rﬁ? E D
or strands electrically in parallel. We are now _reag \nudythe ,/6,?

$

inductance of a transmission line composed of Bt Aonductors,
S are identical

but we shall limit ourselves to the case where all thg

o
and share the current equally. The method ca ‘ d O
| E’@”t‘ REGISTERED 2

all types of conductors containing strands of nd con-
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ductivities,” but this will not be done here since values of internal induc-
tance of specific conductors are generally available from the various
manufacturers and can be found in handbooks. The method to be devel-
oped indicates the approach to the more complicated problems of non-
homogeneous conductors and unequal division of current between strands.
The method is applicable to the determination of inductance of lines
consisting of circuits electrically in parallel since two conductors in
parallel can be treated as strands of a single composite conductor.

Figure 2.8 shows a single-phase line composed of two conductors. In
order to be more general, each conductor forming one side of the line
is shown as an arbitrary arrange-

ment of an indefinite number of con- 'O ,

ductors. The only restrictions are ‘O bOO ¢
that the parallel filaments are cylin- nQ

drical and share the current equally. <O a’O mO

Conductor X is composed of n iden-

tical, parallel filaments, each of which Cond. X Cond. ¥
carries the current I/n. Conductor gy 98 gingle-phase line consisting of
Y, which is the return circuit for the two composite conductors.

current in conductor X, is composed

of m identical, parallel filaments, each of which carries the current —/ /m.
Distances between the elements will be designated by the letter D with
appropriate subscripts. Applying Eq. (2.48) to filament @ of conductor
X, we obtain for flux linkages of filament a

\_.W-—-J

1 1 1 1 1
— —~7 - . _ « ..
Yo =2 X 10 n(lnr;—i—lnDab—i—lnDM—!— -I—lnDan)
o100 Il b m A o) (249
m D ad’ Dg,b’ Dac' Dam )
from which
Yoe=2X10""]In \/i)waD“/ ~ Dam weber-turns/meter (2.50)
’\/T;])abDac ot Dan

Dividing Eq. (2.50) by the current I/n, we find that the inductance of
filament «a is

Va

a_m
= 2n X 10~

7ln'</n Daa’Dab’Dac' T Dam
vrgDabDac c Dan

7 See for instance L. F. Woodruff, ‘“Electric Power T
Wiley & Sons, Inc., New York, 1938.
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Similarly, the inductance of filament b is

_ ¥
Ly = T/n
=2n X 1077 In \/?b“/DwDbc/ - Dom henrys/meter (2.52)
\/Db[ﬂ"ﬂ)bc «++ Dpy
The average inductance of the filaments of conductor X is
Lav — La + Lb + Lcn+ o + Ln (253)

Conductor X is composed of n filaments electrically in parallel. If all
the filaments had the same inductance, the inductance of the conductor
would be 1/n times the inductance of one filament. Here all the fila-
ments have different inductances, but the inductance of all of them in
parallel is 1/n times the average inductance. Thus the inductance of
conductor X is

Li Lit+Ly+Lc+ -+ +0Ln

n n?

Ly = (2.54)

Substituting the logarithmic expression for inductance of each filament
in Eq. (2.54) and combining terms, we obtain

Ly =2 xX 1077
[1 XY Daa Day Dag - -+ Dam) (Do Doy Doer - - - Do) - - - (Dnar Doy Dt - - - DW]
n
R/ (DaaDaDac =+ + Dan)(DsaDDre - + - Dy - -+ (DuaDusDe - - - Dun)

henrys/meter (2.55)

where 7/ 71, and 7}, have been replaced by Dgq, D, and D..., respectively,
to make the expression appear more symmetrical.

Note that the numerator of the argument of the logarithm in Eq.
(2.55) is the mnth root of mn terms, which are the products of the dis-
tances from all the n filaments of conductor X to all the m filaments of
conductor Y. For each filament in conductor X there are m distances
to filaments in conductor Y, and there are n filaments in conductor X.
The product of m distances for each of n filaments results in mn terms.
The mnth root of the product of the mn distances is called the geometric
mean distance between conductor X and conductor Y. Itis
D,, or GMD and is also called the mutual GMD between t
ductors. Geometric mean distance is a mathematical
will discuss later in more general terms.

The denominator of the argument of the logary
the n? root of n? terms. There are n filamenjig
there are n terms consisting of r’ for that fila
from that filament to every other filament in g

q. (2.55) is
@T each filament

%esREG:hSeTERED 2

tor X. Thus we

VERSION
ADDS NO




INDUCTANCE OF TRANSMISSION LINES 29

account for n? terms. Sometimes r/, is called the distance from filament
a to itself, especially when it is designated as D,,. With this in mind
the terms under the radical in the denominator may be described as the
product of the distances from every filament in the conductor to itself
and to every other filament. The n? root of these terms is called the
self GMD of conductor X, and the ' of a separate filament is called
the self GMD of the filament, for reasons which we shall see later when
we discuss GMD as a mathematical concept. Sometimes self GMD is
called geometric mean radius or GMR. Self GMD may be abbreviated

D,.
In terms of D, and D,, Eq. (2.55) becomes
Ly =2X10"1n Il))m henrys/meter (2.56)
Ly = 0.7411 log % millihenrys/mile (2.57)

If we compare Eq. (2.57) with Eq. (2.36), the similarity between
them is apparent. The equation for the inductance of one conductor of
a composite-conductor line is obtained by substituting in Eq. (2.36)
the GMD between conductors of the composite-conductor line for the
distance between the solid conductors of the single-conductor line and by
substituting the self GMD of the composite conductor for the self GMD
(") of the single conductor. Equation (2.57) gives the inductance of
one conductor of a single-phase line. The conductor is composed of all
the strands which are electrically in parallel. The inductance is the
total number of flux linkages of the composite conductor per unit of
line current. Equation (2.36) gives the inductance of one conductor of a
single-phase line for the special case where the conductor is a solid, round
wire.

The inductance of conductor Y is determined in a similar manner, and
the inductance of the line is

L=LX+LY

2.9 Geometric Mean Distance. In the preceding section we derived
an expression for the inductance of a composite-conductor line. We
found in the expression for inductance due to the current in one gand
a term which is the geometric mean of the distances betwee
of the one conductor and the wires of the return cond

term in the expression is the geometric mean of distgacall S
of the same conduector only. Geometric mean distan\ e

concept which is helpful in calculating inductancg /()
<tREGIS TERED 2)

By definition the GMD from one point to a g
to each of the

the geometric mean of the distances from the ong obt
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other points. For instance, the GMD from an external point to four
points on a circle is the geometric mean of the four distances shown in
Fig. 2.9. Here the geometric mean of the distances is

GMD = ~/D:1DsD;D,

If the number of points on the circle is increased without limit, the geo-
metric mean of the distances from the external point to the points on
the circle approaches the GMD from

' the point to the circle. It isequal to

D the distance from the point to the

/ center of the circle.® The GMD from

any point on a circle to all other points

\v on a circle is equal to the radius of the
circle.

The concept of the GMD from a
point to an area is important and
can be visualized by dividing the area into a large number of equal
elements and taking the geometric mean of the distances from the point
to the elements of area. If there are n elements, the geometric mean
of the distances is the nth root of the product of the n distances. The
GMD from the point to the area is the limit approached by the GMD
from the point to the elements of the area as the number of elements
increases without limit.

To find the GMD between two areas, each area is divided into a num-
ber of equal elements, say m equal elements for one area and n equal
elements for the other. The GMD between the areas is the limit of the
mnth root of the mn products of the distances between the m elements
of one area and the n elements of the other area as m and n increase
without limit. Figure 2.10 shows the six distances between two of the.
m equal elements into which one area is divided and three of the n equal
elements into which the other area is divided. To find the GMD
between the areas all distances between elements must be considered, and
the number of elements in each area must be infinite. The GMD
between two circular areas can be shown to be equal to the distance
between their centers.

The self GMD of an area is the limit of the geometric
distances between all the pairs of elements in that aregaa

Fia. 2.9 Distances from an external
point to four points on a circle.

8 See E. B. Rosa and F. W. Grover, “ Formulas and Tal %ulation of
Mutual and Self Inductance,” Scientific Paper 169, Bull. Bu S, vol. 8, no. 1, @
pp. 1-237, 1912. Other formulas for GMD have been ta he same source.

)¢ ),

S Iso J. C. M. 11, “A Treati Electricity o i :
28;—30](‘), Clarendoixg:ess, Oxforr(lfi 12;1(.)11 e RE G¥S’TE R E D %
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of elements increases without limit. The self GMD of a circular area
can be shown to be equal to the radius of the circle times e %. Since r’
in our formulas for the inductance of a round wire is the radius of the
wire times ¢ %, we can see the reason for calling r’ the self GMD of the
wire.

Since the cross-sectional areas of the filaments of the composite con-
ductors considered in deriving Eq. (2.55) could be elements of areas
such as those in Fig. 2.10, the inductance of a line composed of conductors
of irregular area can be found by calculating GMD values. The self
GMD of each area and the mutual GMD between the two areas must be
found. The inductance due to current in each conductor is found by

F1a. 2.10 The six distances from two equal elements of one area to three equal ele-
ments of another area.

Eq. (2.56) or (2.57), and the two inductances are added to find the
inductance of the line. Uniform current density throughout is assumed.

Table 2.1 gives some formulas for self and mutual GMD.

The GMD method does not apply strictly to nonhomogeneous con-
ductors such as ACSR or to cases where the current density is not uniform
throughout the conductor. An approximate value for inductance of
ACSR is obtained by neglecting entirely the current carried by the steel
conductors. The current in the steel conductors is relatively small, and
the inductance depends on the amount of current in the conductor, since
the permeability is not constant and the flux linkages are not a linear
function of current. If inductance is determined experimentally for
ACSR or other conductors not having uniform ecurrent density, an
equivalent self GMD may be found.? Let D, be the equig
GMD which when substituted in the inductance formyla
value of the experimentally determined inductance.

L=2X10"In ?)1: henrys,/m Q—
s «REGISTERED
VERSION
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Sons, Tne., New York, 1938.
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Tasre 2.1 GEOMETRIC MEAN DISTANCES

Desecription Tlustration Value

Self GMD of a circular N

area @ D, = re 7 = 0.7788r
GMD from one circular @ @ D =D

area to another » I "
GMD from circular line D=

to enclosed area "
GMD from external P @ D. =D

point to circular area D "
GMD betwecen n equally

spaced points on a @ Dy =1 "7

circle

GMD from one annular @ @ D, =D

area to another e p &
D, = 0.2235(a + b)
Self GMD of a rectang- Ib Range of constant is 0.2231 to
ular area e

0.2237, depending on ratio a/b

In GMD =In 7,
7'14 Te 37’12'—7'22

In —~ +

Tl — Al — )

Self GMD of an annular
area

the equivalent self GMD is
D, = D,e 102 (2.59)

where L is in henrys per meter. The value of D, is not affected by
nonuniform distribution of the current inside the conductor as long s the
external magnetic field is not changed. Table A.2 in the A '
the self GMD (GMR) of various sizes of ACSR.
2.10 Examples of Inductance Computations.
examples of the method of calculating inductance

;§%-nRsEGIrSJERED

#/is composed of two

RSION
ADDS NO

Example 2.1

One circuit of a single-phase transmission
solid wires, each 0.1 in. in radius. The retur
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wires, each 0.2 in. in radius. The arrange- ' 30’ |

ment of conductors is shown in Fig. 2.11. _]_(B (‘)
Find the inductance due to the current in @ d
each side of the line and the inductance of

the complete line in millihenrys per mile. 20'

Solulion 40, 0O
Find the GMD between sides X and Y. €

Dm = '\G/DadDaeDbdDbeDcche 20

Doz = Dio = 30t
Due = Doa = Dee = V207 + 307 = /1,300 _t ¢

[4

Do = /307 + 407 = 50 ft S =
6 /o - ide ide
D = \/30“ X 50 X 1,300% Fie. 2.11 Arrangement of

= 30% X 50% X 1,300% = 35.8 ft conductors for Example 2.1.
Then find the self GMD for side X.
])s - \B/DaaDab])acI)banbDbchachDsc

3
12
- OTXOTI o 5 20
_ 3 (HXT(Z)Q% X 20% X 4% = 1.605 ft

and for side ¥

¢ 2
D, — \4/ ((lleg—‘—W—SS) X 20% = 0.509 ft

The inductance is, by Eq. (2.57),

35.8
1.605
Ly = 0.7411 1og§’g—689

L = Ly + Ly = 2.38 millihenrys/mile.

Ly = 0.7411 log = 1.00 millihenry/mile

= 1.38 millihenrys/mile

Example 2.2

A conductor is composed of seven identical copper gtrag & ,/@
a radius » as shown in Fig. 2.12. Find the factor b should be /?
multiplied to find the self GMD of the conductor. d the factor $

by which the square root of the area of the co REG’S TE RE D /()¢

should be multiplied to obtain the self GMD of t uctor.
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Solution
First we find the distances Diz, D13, and Dy, as follows:
Dy = 2r Dy = 4r
Dis = /Dt = Do = V@E — (@) = 2r /3
The self GMD of the seven-strand

conductor is the 49th root of 49
distances. So

D, = A/ () (D122D152D1aD17)8(2r)°

where (/)7 is the product of the
self GMD of one strand and the
self GMD values of every other
strand. The term D12*D15?D14 Doy
is the product of the distances from
one outside strand to every other
strand. It is raised to the sixth
power to account for the six outside
strands. The term (2r)® accounts
for the product of the distances

Fia.2.12 Crosssection of a seven-strand .
conductor for Example 2.2. from the inner strand to every

outside strand. Thus there are

seven distances for each of the seven strands. Simplifying the expression
for D,, we obtain

2r v/3(0.7788)
T
= 2.177r
To find D, in terms of total conductor area in circular mils, let
A = total conductor area in circular mils
d = diameter of each strand in mils

r = radius of each strand in mils
Then

Dy = /1 X A/ (2% X 3 X 2% X 2% X 2r X 2r)°® =

A = 7d* = 28r*
and
2.177
D, = Z— /A = 04114 /A mils
\/28 \/— \/—

If a single-phase line consists of two stranded cables
computed in Example 2.2, it is seldom necessary s &
between strands of the two sides, for the GMD Y 643-
to the distance between centers of the cables. ation of mutual
GMD is important only where the various
electrically in parallel are separated from eac
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nearly approaching the distance between the two sides of the circuit.
Tor instance, in Example 2.1 the conductors in parallel on one side of
the line are separated by 20 ft, and the distance between the two sides
of the line is 30 ft. Here the calculation of mutual GMD is important.
For stranded conductors such as that of Example 2.2, the distance
between sides of the line is usually so great that the mutual GMD can
be taken as equal to the center-to-center distance with negligible error.

211 The Use of Tables. The self GMD of conductors of any number
of strands can be computed as in Example 2.2. The engineer seldom has
to make such computations, however, since tables listing values of self
GMD are generally available for standard conductors. All manu-
facturers furnish data, including values of self GM D, for their conductors,
and tables provide the most practical method of obtaining the desired
values, especially for nonhomogeneous conductors such as ACSR. In
order to use the tables intelligently the engineer must understand thor-
oughly the meaning of the tabulated data.

Inductive reactance rather than inductance is usually desired. The
inductive reactance of one conductor of a single-phase two-conductor
line is

_ Dn
X, = 2nfL, = 2nf X 0.7411 X 10¢ log 3"
D,
D,

= 4.657 X 107%f log ohms/mile (2.60)
where D, is the distance between the two conductors. The self GMD
D, may be found in the tables and substituted in the equation. D, and
D, must be in the same units. Most tables list values of D, for 60 cps,
25 cps, and direct current. The value of equivalent D, varies with
frequency because current density does not remain uniform throughout
the conductor as frequency increases, as we shall see in Chap. 4. As
current distribution becomes nonuniform the inductance due to internal
flux decreases, and different degrees of nonuniformity are accounted for
by different values of D, at different frequencies. The nonuniform
distribution of current due to the frequency of the current is called skin
effect. In the equations and formulas already discussed in this chapter
we neglected skin effect by assuming uniform current density.
discussion of skin effect in Chap. 4 will show the amount of]
to be applied to the value of internal inductance computq
tion of uniform distribution of current.

Some tables give values of inductive reactance in 4
One method is to expand the logarithmic term of

"ERED
g ®§e61f GMD. ,/é\,?,
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If both D, and D,. are in feet, the first term in Eq. (2.61) is the inductive
reactance of one conductor of a two-conductor line having a distance of
1 ft between conductors, as may be seen by comparing Eq. (2.61) with
Eq. (2.57). Therefore, the first term of Eq. (2.61) is called the inductive
reactance at 1-ft spacing. Tt depends upon the self GMD of the conductor
and the frequency. The second term of Eq. (2.61) is called the inductive
reactance spacing factor. This second term is independent of the type of
conductor and depends on frequency and spacing only. The spacing
factor is equal to zero when D,,is 1 ft. If D, isless than 1 ft, the spacing
factor is negative. The procedure for computing inductive reactance
is to look up the inductive reactance at 1-ft spacing for the conductor
under consideration and to add to this value the inductive reactance
spacing factor, both at the desired line frequency.'® In the Appendix,
Tables A.1 and A.2 include values of inductive reactance at 1-ft spacing,
and Table A.3 lists values of the inductive reactance spacing factor.

Example 2.3

Find the inductive reactance per mile of a two-conductor single-phase
line operating at 60 cps. The conductors are each No. 1 /0 seven-strand
hard-drawn copper wire spaced 18 ft between centers.

Solution
The area of the stranded conduetor is 4 = 105,500 circular mils (from
Table A.1). From Example 2.2

D, = 04114 /A  in.
_0.4114 4/105,500
- 12

X 1073 ft = 0.01113 ft

which is the value listed in Table A.1 for D, at 60 cps. Agreement of
calculated and tabulated values indicates that skin effect is negligible
for this case.

For one conductor

X, = 4.657 X 10-* X 60 log 6*011—211‘3 — 0.897 ohm/mile

If only D, is given in the tables, the above method is used.
tive method follows:

{ERED

10 This method of computing inductive reactance was d @\5$A Lewis ,/6@
and appeared in C. F. Wagner and R. D. Evans, “Sy Components,” 6\
MecGraw-Hill Book Company, Inc., New York, 1933 g .
“gtandard Handbook for Electrical Engineers,” pp. 3
Company, Inc., New York, 1941.

A, E. Knowlton
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Inductive reactance at 1-ft spacing = 4.657 X 10~* X 60 log 5 011113

= 0.546 ohm/mile
Inductive reactance spacing factor = 4.657 X 10—* X 60 log 18

= (.351 ohm/mile
Inductive reactance of one conductor = 0.546 + 0.351 .

= 0.897 ohm/mile

The latter method is preferred if tables are available giving inductive
reactance at 1-ft spacing and the inductive reactance spacing factor, for
then it is necessary only to add these two values found in the tables.

Since the conductors composing the two sides of the line are identical,
the inductive reactance of the line is

X =2 X 0.897 = 1.794 ohms/mile

2.12 Inductance of Three-phase b
Lines with Equilateral Spacing.
So far in our discussion we have con-
sidered only single-phase lines. The
equations we have developed are
quite easily adapted, however, to the

D D
caleulation of the inductance of
three-phase lines. Figure2.13shows
the conductors of a three-phase line
spaced at the corners of an equilateral @ ¢
triangle. If we assume that there D

is no neutral wire, or if we assume Fic. 2.13 Cross-sectional view of the
_ equilaterally spaced conductors of a

balanced three-phase c.urrents, three-phase line.

I.+ I, + I, = 0. Equation (2.48)

determines the flux linkages of conductor a. So

D
weber-turns/meter (2.62)

Yo =2 X 10“7<Talnr_1,+lbln%+lcln—]~)

Since I, = — (I, + I.), Eq. (2.62) becomes

Ve =2 X 107 L,ln—l,— L,lnl =2 X 10—7Ialn1—/)
r D T

weber-tur

and

~VERED »
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<</® (2.64) '?’@
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Equation (2.65) is the same in form as Eq. (2.36) for a single-phase line.
For stranded conductors, D, replaces ' in the equation. Because of
symmetry, the inductances of conductors b and ¢ are the same as the
inductance of conductor ¢. Since each phase consists of only one con-
ductor, Eqgs. (2.64) and (2.65) give the inductance per phase of the three-
phase line.

2.13 Inductance of Three-phase Lines with Unsymmetrical Spqcmg
When the conductors of a three-phase line are not spaced equilaterally,
the problem of finding the inductance becomes more difficult. Then the
flux linkages and inductance of each phase are not the same. A different
inductance in each phase results in an unbalanced circuit and in induced
voltages in adjacent communication lines even when the phase currents
are balanced. These undesirable characteristics can be overcome by
exchanging the positions of the conductors at regular intervals along the

Pos. 1 Cond. a Cond. ¢ Cond. b

12
Qﬁ; Pos. 2 Cond. b Cond. a Cond. ¢
D Pos. 3 Cond. ¢ Cond. b Cond. a

F16. 2.14 Transposition cycle.

line so that each conductor occupies the original position of every other
conductor over an equal distance. Such an exchange of conductor posi-
tions is called transposition. A complete transposition cycle is shown in
Fig. 2.14. The phase conductors are designated a, b, and ¢, and the
positions occupied are numbered 1, 2, and 3. Transposition results in
each conductor having the same average inductance over the whole
cycle.

If an untransposed telephone line parallels an untransposed power
line, the flux produced by the power line induces a voltage of power-line
frequency in the telephone line. Transposition of the power line without
transposition of the telephone line eliminates interference of the power
line with the telephone line except for unbalanced cases where power
currents flow in the earth or in overhead ground wires. For balanced
three-phase currents in a transposed power line, the magnetic field
linking an adjacent telephone line is shifted 120° in time phasg
rotation of the conductor positions in the transposition cyelg
length of one transposition cycle of the power line,
induced in the telephone line is zero, because it is thess
voltages equal in magnitude and displaced 120° fr
not necessary to transpose a power line to prexos
telephone line, for the same result is accompl
the telephone line.
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Modern power lines are usually not transposed at regular intervals,
although an interchange in the positions of the conductors may be made
at switching stations in order to balance more closely the induectance
of the phases.’' Fortunately, the dissymmetry between the phases of
an untransposed line is small and may be neglected in the solution of
many problems. If the dissymmetry is neglected, the inductance of the
untransposed line is calculated as though the line were correctly trans-
posed. The inductive reactance of each phase of the untransposed line
is taken as equal to the average value of the inductive reactance of one
phase of the same line correctly transposed. The derivations to follow
are for transposed lines. The error is small, and the calculations are less
laborious if the inductance of an untransposed line is calculated by the
same equations.

To find the average inductance of one conductor of a transposed line,
the flux linkages of a conductor are found for each position it occupies
in the transposition cycle, and the average flux linkages are determined.
Let us apply Eq. (2.48) to conductor a of Fig. 2.14 to find the flux linkages
of a In position 1, when b is in position 2 and ¢ is in position 3, as follows:

Ya =2 X 1077\ I, ln —{—L,ln + I, In —
l)1> 1)31
weber-turns/meter (2.66)

With @ in position 2, b in position 3, and ¢ in position 1,

Yor = 2 X 1077 (I ln— + I In D—% + I, 1n Dlz)

weber-turns/meter (2.67)

and, with a in position 3, b in position 1, and ¢ in position 2,

¢a3=2><10“7<] In = —i—lbln +] In 1)
D?'i

weber-turns/meter (2.68)

The average value of the flux linkages of a is

Kba — ¢a1 + ¢a2 + ¢a3

+ 7. In

7 1 1
- —(ﬂ“nﬁfblnm

! For instance, see E. T. B. Gross and A. H. Westo
age Overhead Lines and Elimination of Electrostatic 8
AIEE, vol. 70, pp. 1837-1841, 1951,
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With the restriction that I, = — (I, + o),
_2X 1077 1 1 )
Yo = 3 (3Ia ln? I,In DaDasDo,
3
=2 X 10771, In i&i/&—wm weber-turns/meter (2.70)

and the average induetance per phase is

L,=2X10"7In %11 henrys/meter

L, = 0.7411 log Drfq millihenrys/mile (2.71)

where Doq = N/ D12D23Disy (2.72)

Equation (2.71) may be written

L, = 0.7411 log %eq millihenrys/mile (2.73)
where D, is the self GMD of the conductor. D.,, the geometric mean of
the three distances of the unsymmetrical line, is the equivalent equilateral
spacing, as may be seen by the comparison of Eq. (2.71) with Eq. (2.65).
We should note the similarity between all the equations for inductance
of a conductor. If the inductance is in millihenrys per mile, the factor
0.7411 appears in all the equations, and the denominator of the logarith-
mic term is always the self GMD of the conductor. The numerator 18
the distance between wires of a two-wire line, the mutual GMD between
sides of a composite-conductor single-phase line, the distance between

conductors of an equilaterally spaced line, or

/@\ the equivalent equilateral spacing of an
R 25 unsymmetrical line.

G[ g \9 Example 2.4

Fie. 2.15 Arrangement of . . . .
conductors for Exz%mple 2.4, A single-circuit three-phase line operated

at 60 cps is arranged as shown in Fig. 2.15.
Each conductor is No. 2 single-strand hard-drawn copper wire. Find
the inductance and inductive reactance per phase per mile.

Solution
The diameter of No. 2 wire is 0.258 in.

0.258 X 0.7788

Ds = ———2*§<—‘12—‘ = 0.00836 ft
D.g = /A5 X 45 X 8 = 5.45 ft & %
5.45 .

X, = 2760 X 2.083 X 10— = 0.787 o}l /QDase
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or, from Tables A.1 and A.2,

Inductive reactance at 1-ft spacing = 0.581
Inductive reactance spacing factor for
5.45 {t = 0.2058

Inductive reactance per phase = 0.7868 ohm/phase/mile

2.14 Paradllel-circuit Three-phase Lines. Two three-phase circuits
that are identical in construction and electrically in parallel have the
same inductive reactance. The inductive reactance of the single equiv-
alent circuit, however, is half that of each of the individual circuits
considered alone only if they are so widely separated that there is negli-
gible mutual inductance between them. If the two circuits are on the
same towers, the method of GMD may be used to find the inductance per

a h——oc' c hr—ob" b h—>0a’
d g d g d g
b \eb' a \oa’ ¢ \Dc’
% f + f {7 !
d \ 1 \ d \
cl a’ b ¢’ al o
(a) Phaseain (b) Phaseain (c) Phaseain
position 1 position 2 position 3

Tre. 2.16  Arrangement of the conductors of a double-circuit three-phase line in the
three parts of the transposition cycle.

phase by considering all the conductors of any particular phase to be
strands of one composite conductor.

Let us consider the two three-phase circuits with flat, vertical spacing
shown in Fig. 2.16a. One circuit is composed of conductors a, b, and c.
The other is composed of conductors a’, b’, and ¢.  Conductors ¢ and o’
are in parallel and compose phase a. Similarly, conductors b and b’ are
in parallel composing phase b, and ¢ and ¢’ in parallel compose phase c.
In the other parts of the transposition cycle, conductors a and o take
first the positions originally occupied by b and b’ and then the positions
occupied by ¢ and ¢/, as shown in Figs. 2.16b and 2.16¢. The inductance
is lowered if the individual conductors of a phase are separategag
as possible and if the distances between phases are ke
results in a low D,, and a high D,. It is accomplished i
line by having the conductors of two of the phases spgues
Fig. 2.16, rather than horizontally adjacent.

By the method of GMD, the equivalent equilg

%
¢

G,
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where Dg = mutual GMD between phases ¢ and b in position 1
= Vdgdg = /dg
Dy, = mutual GMD between phases b and ¢ in position 1
= D = V/dg

D, = mutual GMD between phases ¢ and ¢ in position 1 = +/2dh

Thus

D,, = 2¥d¥ghh¥ (2.75)

If the self GMD of each individual conductor of phase a 1s 7', the self
GMD in position 1 for the entire phase consisting of conductors ¢ and

a’is

Dus = 7T = V7
In position 2 the self GMD of phase a is

Dy = V7'h'h = \/T'h
and in position 3 the self GMD of phase ¢ is

Ds = 7T = VS
The average value of the flux linkages of the phase for the whole trans-
position cycle determines the average inductance. We saw [in Eqgs. (2.50)
to (2.55) and again in Eqgs. (2.69) and (2.70)] that the average of logarith-
mic terms is equal to the logarithm of the geometric mean of the argu-
ments of the logarithms. Therefore, the equivalent self GMD of one

phase for the transposition cycle is the geometric mean of the three values
of self GMD of the phase in the three parts of the transposition cyele.

Thus
Ds = \/3 DSII)S2D83 (276)
D, = (r')%f%h (2.77)

Equations (2.76) and (2.77) are the same for all three phases if 7’ is the
same for all three phases, since phases b and ¢ occupy the same positions
as phase a for equal distances. The inductance per phase is

1% 15
L = 0.7411 log 11)) = 0.7411 log [2% (g) (%) ]
millihenrys/phase/mile

S [%g(gf)ﬂ i gfldaﬁa;@TERED )
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As the two circuits of Fig. 2.16 are moved farther apart, the ratio
g/f approaches one. If the two circuits are very far apart, the mutual
inductance between them is negligible, and we would expect the induct-
ance per conductor computed from Eq. (2.79) to approach that of a
single circuit. Considering one of the circuits of Fig. 2.16 alone, we

obtain
/2ddd = 2¥%d

D, =17

D.,

and

Substituting the above values in Eq. (2.73), we find

L = 0.7411 log (2% r_(%> millihenrys/mile/conductor  (2.80)

which is the same as Eq. (2.79) if the ratio g/f is one. Therefore, we
may consider the ratio ¢/f as a factor which accounts for the mutual effect
of one circuit with flat spacing on a similar parallel circuit.

The preceding discussion shows the application of the GMD method
to the computation of the inductance of a flat-spaced parallel-circuit
line. Equations (2.75) and (2.77) to (2.80) apply only to flat-spaced
parallel lines. It is not practicable to develop the special equations for
other arrangements because the equations are complicated. The GMD
method is applicable, however, to ,
any circuits electrically in parallel, ‘0 18’ ok
regardless of arrangement. Equa-
tions (2.74) and (2.76) apply to any 10
multicircuit three-phase line if we
remember that Dg, Dy, and D, are
mutual GMD values. G 2r O+

Example 2.5

A three-phase double-circuit line
is composed of 19-strand concentric o
copper conductors of 300,000-circular- @ 18 O
mil cross-sectional area. The lineis Y16 2.17 Arrangement of conductors

. . for Example 2.5,
arranged as shown in Fig. 2.17 and
is completely transposed. Find the 60-cycle inductive reactancg
per mile.

Solution
From Table A.1, for the specified conductor, D
Distance from a to b in original position = v/14
Distance from a to b’ in original position
Distance from a to @’ in original position = A = 26.9 ft.
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D, = (V/26.97 /217 /26.9r")% = 4/0.01987 (26.9 X 21 X 26.9)%
= 0.141 X 4.98 = 0.702 ft
Da = Dy = v/(10.1 X 21.9) = 14.88 ft
D.o = /(18 X 20)% = 18.97 ft
D., = V/14.88 X 14.88 X 18.97 = 16.1 ft
L = 0.7411 log 015012 = 1.01 millihenrys/mile/phase
X

2760 X 1.01 X 10-% = 0.38 ohm/mile/phase

2.15 Summary. Tables are helpful in computing the inductance and
inductive reactance of a transmission line. If the self GMD of the con-
ductor is obtained from a table, we can find the inductance of a single-
circuit line by Eq. (2.57) if the line is single-phase, or by Eq. (2.73) if the
line is three-phase. These two equations are the same except that the
numerator of the argument of the logarithm of Eq. (2.73) for the three-
phase line is the distance of equivalent equilateral spacing, rather than
a single GMD as in Eq. (2.57) for the single-phase line. When more
elaborate tables giving reactance at 1-ft spacing for various conductors
and inductive reactance spacing factors are available, the inductance
can be found by adding two values obtained from the tables.

For multicircuit lines tables may be used as described above except
that additional calculations are necessary to apply the principle of GMD.

PROBLEMS

2.1 A hollow, cylindrical conductor has an outside diameter of 1.100 in. and a wall
thickness of 0.130 in. Find the flux density at a distance of 0.485 in. from the center
of the conductor when the current is 500 amp. Neglect the effect of the return
circuit.

2.2 Derive the formula for the internal inductance in henrys per meter of a hellow
conductor having an inside radius r; and an outside radius .. In what units should
71 and 7 be expressed?

2.3 Determine the formula for the inductance in henrys per meter of a single-phase
line consisting of the hollow conductors described in Prob. 2.2 if the spacing between
conductors is D ft. In what units should r; and r, be expressed? Compare the
formula with the self GMD of an annular area given in Table 2.1.

2.4 Compute the 60-cycle inductive reactance at 1-ft spacing in ohms per mile for
the hollow conductor whose dimensions are given in Prob. 2.1.

2.6 Find the self GMD of a seven-strand conductor if the center stra
and replaced by a strand of zero conductivity. Express the r ’

}@%us rof an

radius r of an individual strand.
dé(s shown in Fig.
g

2.8 Tind the self GMD of a three-strand conductor in
individual strand.
2.7 Find the self GMD of each of the unconventional g
REGISTERED O)
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2.18 in terms of the radius r of an individual strand and
A, where A is the total area of the composite conductor i
that all strands have the same radius and the same ¢




INDUCTANCE OF TRANSMISSION LINES 45

oo

(a) (b)
(¢) d)
Fra. 2.18 Cross-scctional views of unconventional conduectors for Prob. 2.7.

2.8 Compute the 60-cycle inductive reactance at 1-ft spacing in ohms per mile of a
cable consisting of 12 equal strands around a nonconducting eore. The diameter of
each strand is 0.0936 in. The outside diameter of the cable is 0.470 in.

2.9 The outside diameter of the single layer of aluminum strands of No. 6 AWG
ACSR conductor is 0.198 in. The diameter of each strand is 0.0661 in. Determine
the 60-cycle inductive reactance at 1-ft spacing. Neglect the effect of the center
strand of steel, but compare the result with the values given in Table A.2.

2.10 The 60-cycle inductive reactance at 1-ft spacing of a solid conductor is
0.595 ohm /mile. Find the reactance for a spacing of 6 ft, and determine the cross-
sectional area of the wire in circular mils.

2.11 The 60-cycle inductive reactance per conductor of a single-phase line having
solid conductors spaced 4 ft apart is 0.791 ohm /mile. Specify the 25-cycle inductive
reactance at 1-ft spacing for the conductors. What is the cross-sectional area of the
conductors in eircular mils?

2.12 The distance between conductors of a single-phase line is 10 ft. Each con-
ductor is composed of seven equal strands. The diameter of each strand is 0.1 in.
Find the inductance of the line in henrys per mile.

2.13 A single-phase 60-cycle power line is supported on a horizontal crossarm.
The spacing between conductors is 8 ft. A telephone line is supported on a horizontal
crossarm 6 ft below the power line. The conductors of the telephone line are No. 14
AWG solid copper spaced 2 ft between centers. The conductors of the power line
are No. 2 AWG solid copper. Find the mutual inductance between the circuits and
the voltage per mile induced in the telephone line if the current in the power line is
150 amp.

2.14 If the power and telephone lines described in Prob. 2.13 are in the g
horizontal plane and the distance between the nearest conductors of t
60 ft, find the mutual inductance between the circuits and the voltage pe
in the telephone line for 150 amp in the power line.

2.16 The conductors of a three-phase line are equilaterally
ductor is a solid wire having a diameter of 0.162 in, The
inductance per phase in millihenrys per mile.

2.16 A three-phase line is designed with equilateral g
to build the line with horizontal spacing (Diz = 2D
transposed. What should be the spacing between adjag
obtain the same inductance as in the original design?

G ,/6\
Find the
22

it. It is decided
hdRd

o
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2.17 A single-phase circuit consists of three conductors on one side of the line
and one on the other side. The arrangement is shown in Fig. 2.19. The three con-

______Oax

4' e "
Radii=0.04" each Radius=01

3" I 12*

Fig. 2.19 Arrangement of conductors for Prob. 2.17.

ductors composing one side of the line are transposed. Find the inductance per mile
of this line.

2.18 Six conductors of 19-strand hard-drawn copper with an arca of 300,000 cir-
cular mils are arranged as shown in Fig, 2.17. The vertical spacing, however, is 13 ft,
the longer horizontal distance is 28 ft, and the shorter horizontal distances are 22 ft.
If the line is operated single-phase with conductors a, b, and ¢ in parallel forming one
side of the line and conductors a’, ', and ¢’ forming the other side, find the inductance
per mile of the line. Assume equal current in all conductors.

2.19 A 132-kv three-phase double-circuit power line is arranged with the con-
ductors of cach circuit in a vertical plane. The distance between adjacent con-
ductors of the same eircuit is 12 ft. The horizontal spacing between circuits is 24 ft.
The conductors are 556,500 circular-mil ACSR, 30/7. Compute the inductance per
phase of the double-circuit line. Compare the induetance of one conductor of the
double-circuit line with the inductance of one conductor of a single circuit alone with
the same vertical spacing.

2.20 If the line of Prob. 2.18 is operated three-phase, find the induetance per phase
and per conduector.

2.21 Each phase of a three-phase line comsists of three solid conductors. Fhe
diameter of each conductor is 0.26 in., and the spacing is shown in Fig. 2.20. Phases

“1? P azO 4 a3 O
3
3

&

50O 50

A0

Fic. 2.20 Arrangement of conductors for P

are designated a, b, and ¢. There is complete transposi
to individual conductors in each phase, Find the inducta
per mile,
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CHAPTER 3

CAPACITANCE OF TRANSMISSION LINES

3.1 Introduction. The potential difference between the conductors
of a transmission line causes the conductors to be charged in the same
manner as the plates of a capacitor are charged when there is a potential
difference between the plates of the capacitor. The capacitance between
conductors is the charge per unit of potential difference. Capacitance
is a constant depending on the size and spacing of the conductors. For
power lines less than about 50 miles long, the effect of capacitance is
slight and is usually neglected. For longer lines of higher voltage,
capacitance becomes increasingly important.

An alternating voltage impressed between the conductors of a trans-
mission line causes the charge on the conductors to increase and decrease
with the increase and decrease of the instantaneous value of the voltage.
The movement of charge is a current, and the current caused by the
alternate charging and discharging of a line due to an alternating voltage
is called the charging current of the line. Charging current flows in a
transmission line even when it is open-circuited. It affects the voltage
drop along the line as well as the efficiency and power factor of the line
and the stability of the system of which the line is a part.

3.2 Electric Field of a Long, Straight Conductor. Just as the mag-
netic field is important in considering inductance, so the electric field is
important in studying capacitance. In the preceding chapter we saw
(Fig. 2.1) both the magnetic and electric fields of a two-wire line. Lines
of electric flux originate on the positive charges of one conductor and
terminate on the negative charges of the other conductor.
electric flux emanating from a conductor is numerically
coulombs of charge on the conductor. Electric flux den!
flux per square meter and is measured in coulomb

If a long, straight, cylindrical conductor has a un
out its length and is isolated from other charg
uniformly distributed around its periphery, the
equidistant from such a conductor are points ¢

47
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the same electric flux density. TFigure 3.1 shows such an isolated con-
ductor carrying a uniformly distributed charge. The electric flux density
at x meters from the conductor may be computed by imagining a cylin-
drical surface concentric with the conductor and x meters in radius.
Since all parts of the surface are equidistant from the conductor, which
has a uniformly distributed charge,
the cylindrical surface is a surface of
equipotential, and the electric flux
density on the surface is equal to the
flux leaving the conductor per meter
of length divided by the area of the
surface in an axial length of 1 meter.
The electric flux density is

=7 2
D e coulombs/meter? (3.1)

where ¢ is the charge on the con-
ductor in coulombs per meter of
length and z is the distance in meters
Fia. 3.1 Lines of electric flux originat- from  the condu(.:tor to the .pOH}t
ing on the positive charges uniformly ~where the electric flux density is
distributed over the surface of an iso- computed. The electric field inten-
lated cylindrical conductor. . . .

sity, or voltage gradient, is equal to
the electric flux density divided by the permittivity' of the medium.
Therefore, the electric field intensity is

& = Zg-xl—c volts/meter (3.2)
3.3 The Potential Difference between Two Points Due to a Charge.
The potential difference between two points is the work in newton-
meters (joules) necessary to move a coulomb of charge between the
two points. Electric field intensity is a measure of the force on a charge
in the field. Electric field intensity in volts per meter is equal to the force
in newtons on a coulomb of charge at the point considered. Between
two points the line integral of the force in newtons acting on a coulomb
of positive charge is the work done in moving the charge from the gRint
of lower potential to the point of higher potential and is tjlies
difference between the two points. R /E D
ombs
rWht distances

Consider a long, straight wire carrying a positive ghaj
meter, as shown in Fig. 3.2. Points P; and P; a

%
«§“R Séilfé‘TERED °)
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1In the rationalized mks system of units the pergsd
8.85 X 10712 farad/meter. Relative permittivity %, i
mittivity & of a material to the permittivity of free space.
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D, and D, meters from the center of the wire. The positive coulomb
on the wire will exert a repelling force on a positive charge placed in the
field. Since the force repels a positive
charge in the field and since D, in this N
case is greater than D;, work must be N Path of
done on a positive coulomb to move it integration
from P, to Py, and P, is at a higher
potential than P,. The difference in
potential is the amount of work done.
On the other hand, if the coulomb
moves from P; to P, it expends
energy, and the amount of work, or /
energy, in newton-meters is the volt- / ,’
age drop from P; to P.. The poten- / /
tial difference is independent of the ;
path followed. The simplest way to Frc. 3.2 Path of integration hetween
compute the voltage drop between the tWo points external to a cylindrical
. A conductor having a uniformly distri-
two points is to compute the voltage 1) ted positive charge.
between the equipotential surfaces
passing through P; and P, by integrating the field intensity over a
radial path between the equipotential surfaces. Thus the voltage drop
between P; and P, is

D, D, D
Vi = / &dr = / 9 gp =4 1n 5? volts 3.3)
1

. D, 2wkx 2rk

where ¢ is the charge on the wire in coulombs per meter of length. Note
that the voltage drop between two points, as given by Eq. (3.3), may
be positive or negative depending on whether the charge causing the
potential difference is positive or negative and on whether the voltage
drop is computed from a point near the conductor to a point farther away,
or vice versa. The sign of ¢ may be either positive or negative, and the
logarithmic term is either positive or negative depending on whether D,
is greater or less than D.

3.4 Capacitance of a Two-wire Line. In Sec. 3.1 the capacitance
hetween the two conductors of a two-wire line was defined as the charge
on the conductors per unit of potential difference between
the form of an equation, capacitance is

C = % farads/meter

e@g/and V is the

f %TheRfE@ixSeTERED 2

in Eq. (3.4) the
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where ¢ is the charge on the line in coulombs pe
potential difference between the conductors in
between two conductors may be found by substj
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expression for V in terms of ¢ found by Eq. (3.3). The voltage Va
between the two conductors of the two-wire line shown in Fig. 3.3 may
be found by determining the poten-

G % tial difference between the two con-
a@ bCé ductors of the line, first by computing
[ b l the voltage drop due to the charge ¢.

I | on conductor a and then by computing

Fre. 3.3 Cross section of a parallel-  {he voltage drop due to the charge g,
wire line. on conductor b. By the principle of
superposition the voltage drop from conductor a to conductor b due to
the charges on both conductors is the sum of the voltage drops caused by
each charge alone.

Consider the charge ¢, on conductor «,
and assume that conductor b is uncharged
and merely an equipotential surface in the 2 ,o%
electric field created by the charge on a.
The equipotential surface of conductor b
and the equipotential surfaces due to the
charge on a are shown in Fig. 3.4. The
distortion of the equipotential surfaces
near conductor b is caused by the fact that
conductor b is also an equipotential sur-
face. Equation (3.3) was derived by as-
suming all the equipotential surfaces due
to a uniform charge on g round conductor
to be cylindrical and concentric with the
conductor. Such is actually true for the
case under discussion except in the region
near conductor b. The potential of con-
ductor b is that of the equipotential sur-
fa.ce' intersecting b. Therefore, in deter- Frc. 3.4 Equipotential surfaces
mining V. a path may be followed from  of a portion of the electric field
conductor a through a region of undis- caused by a charged conductor a
torted equipotential surfaces to the equi- 1m0t shown. Conductor b causes

. . . the equipotential surfaces to be-
potential surface intersecting conductor b. come distorted. Arrows indicate
Then, moving along the equipotential :
surface to b gives no further change in
voltage. This path of integration is indi-
cated in Fig. 3.4 together with the direct creates i@
path. Of course, the potential difference  SO™™
is the same regardless of the path over whicj 1Qegrat10n of the

field intensity is taken.? By following the path L@ t}RE@isdTE R E D ¢

28ee W. H. Timbie and V. Bush, “Principles of Ele gineering,”’ 4th ed.,
pp. 519-520, John Wiley & Sons, Inc., New York, 194 g‘/ ERSION
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region, we see that the distances corresponding to D and D, of Eq. (3.3)
are D and 7,, respectively in determining Vy due to g,. Similarly, in
determining Vg due to ¢, the distances corresponding to D, and D, of
Eq. (3.3) are r, and D, respectively. Considering both ¢, and ¢, we

obtain
Ve = 2% In + ‘1” - In volts (3.5)
\.__,.—-g ‘,—J
due 1o ¢a due to g,
and, since ¢, = — ¢, for a two-wire line,

Va 2 A (ln — —In ) volts (3.6)

or, by combining the logarithmic terms,

7 . qa D2
Vo = 5 In (Ta b) volts (3.7

The capacitance between conductors is

, 2rk
C., = q 2w

= —17;;) = m farads/meter (38)

Converting to microfarads per mile, changing the base of the logarithmic
term, and assuming a relative permittivity of &, = 1,

0.0388 .
Cab = @m uf/mlle (39)

If ry = 1y,
0.0388  0.0194

21log D/r ~ log D/r

Cap = uf /mile (3.10)

Equation (3.10) gives the capacitance between the conductors of a
two-wire line. Sometimes it is desirable to know the capacitance
between one of the conductors and a neutral point between them. For
instance, if the line is supplied by a transformer having a grounded
center tap, the potential difference between each conductor ang
ground is half the potential difference between the two cond
the capacitance to ground, or capacitance to neulral, is
conductor per unit of potential difference betweey &%thrEallll:da ED ,/6
ground. Thus, the capacitance to neutral for the Une is twice '?
the line-to-line capacitance (capacitance between . If the @
line-to-line capacitance is considered to be comp¥ 6{!@ TERED ¢

tances in series, the voltage across the line divide @ly between

and the point between them is at the gro botential. 'IVERSION
ADDS NO
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capacitance to neutral is that of one of the two equal series capacitances,
or twice the line-to-line capacitance. So,

0.0388

ancan:CanW

uf/mile, to neutral (38.11)
The concept of capacitance to neutral is illustrated in Fig. 3.5.
Equation (3.11) corresponds to Eq. (2.36) for inductance. One differ-
ence between the equations for capacitance and inductance should be
noted carefully. The radius in the equation for capacitance is the
actual outside radius of the conductor and not the self GMD of the
e , conductor as in the inductance for-
O Vﬁ Q mula. Also, certain approximations
Ca have been made in deriving the
capacitance equation which did not
enter into the derivation of the in-

a y n y b ductance. equation.
Q It v O Equation (3.3), from which Eqs.
Can Cen (3.5) to (3.11) were derived, is based
(&) Representation of line-to-neutral capacitance OI the aSSumption of uniform charge
F1o.3.5 Relationship between thecon- distribution over the surface of the
cepts of line-to-line capacitanceandline- copnductor. When other charges are
to-neutral capacitance. present the distribution of charge
on the surface of the conductor is not uniform, and the equations
derived from Eq. (3.3) are not strictly correct. Nonuniformity of charge
distribution can be taken into account by considering the conductors as
equipotential surfaces, which they are, rather than as uniformly charged
conductors. Then, without much difficulty, the following equation is
found:

{a) Representation of line-to-line capacitance

0.0388
C. = —
log (D/2r + A/D%/4rt — 1)

The formula is for capacitance to neutral for a two-wire line only.
For any but the simplest configurations of conductors of parallel-circuit
or three-phase lines, the derivation of an equation to account for the
actual charge distribution becomes too involved to be practical. The
assumption of uniform charge distribution leads to very slight ergars if

uf /mile, to neutral® (3:12)

0.0388 X 2.303 0.0894
cosh~(D/2r) ~ cosh™1(D/2r)

The derivation may be found in texts on electricity and ma} @
J. C. Slater and N. H. Frank, “Electromagnetism,” pod cGraw-Hill Book )

C , Inc., New York, 1947; W. B. Boast, “Pri t {

o e i v ot Ry REGISTERED O
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the spacing between conductors is large compared to their diameters,
which is the actual case for open-wire power transmission lines. For a
single-phase line the amount of error involved when the charge distribu-
tion is assumed to be uniform may be seen by comparing the capacitances
computed by Eq. (3.11) to those computed by Eq. (3.12) for different
ratios of D/r. Table 3.1 shows the error occurring when Eq. (3.11)
is used instead of Eq. (3.12).

TasLe 3.1 Error CausiEp BY AssuMING UnirorM CHARGE DISTRIBUTION IN
CompuTING CaraciTaANcE OF A Two-wire LiNE
Ratio D/r Per Cent Error in Eq. (3.11)

10 0.44

20 0.084

50 0.010
100 0.002
200 0.0005

A question arises as to the value to be used in the denominator of the
argument of the logarithm in Eq. (3.11) when the conductor is a stranded
cable, since the equation was derived for a solid, round conductor. Since
electric flux is perpendicular to the surface of a perfect conductor, the
electric field at the surface of a stranded conductor is not the same as the
field at the surface of a cylindrical conductor. Therefore, the capacitance
calculated for a stranded conductor by substituting the outside radius
of the conductor for r in Eq. (3.11) will be slightly in error because of the
difference between the field in the neighborhood of such a conductor
and the field near a solid conductor for which Eq. (3.11) was derived.
The error is very small, however, since only the field very close to the
surface of the conductor is affected. The outside radius of the stranded
conductor is used in calculating the capacitance.

After the capacitance to neutral has been found, the capacitive react-
ance existing between one conductor and neutral is found as follows:

Xe = 27‘_% = 4}—(}% X 108 log D ohms/mile, to neutral (3.13)
Some tables list capacitive susceptance at various spacings for the com-
mon conductors or give the outside diameter from which caps
reactance and its reciprocal, capacitive susceptance, can by
Other tables, as suggested by W. A. Lewis, list capifii
1-ft spacing for the common conductors. Such tableglilpe @ |
junction with tables of capacitive reactance spaci ; C?\f D and r

ngng is the first

in Eq. (3.13) are in feet, capacitive reactance at
term, and capacitive reactance spacing factorl
the equation is expanded as follows:
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ADDS NO




54 ELEMENTS OF POWER SYSTEM ANALYSIS

(
_4.(}33 . ~+_4%?l><1061g1)

X

ohms/mile, to neutral (3.14)

The sum of capacitive reactance at 1-ft spacing and capacitive reactance
spacing factor, as given by Eq. (3.14), is capacitive reactance to neutral.
Tables A.1 and A.2 in the Appendix list capacitive reactance at 1-ft
spacing, and Table A.4 lists values of capacitive reactance spacing factor.
The use of capacitive reactance tables is similar to that of inductive
reactance tables discussed in Chap. 2.

Example 3.1

Find the capacitive susceptance per mile of a two-conductor single-
phase line operating at 60 cps. The conductors are each No. 1/0 seven-
strand hard-drawn copper wire spaced 18 ft between centers. This is the
line described in Example 2.3.

Solution
The outside diameter of the conductor 1s 3 X 0.1228 = 0.368 in.
. 0.368
The radius r = 2% 13 = 0.0153 ft
4.093 , 18 , ,
Xc = 50 X 10¢ log 850153 = 0.210 X 10% ohm/mile, to neutral

be = 1/X¢ = 4.76 X 10~ mho/mile, to neutral

Tables of capacitive reactance at 1-ft spacing and capacitive reactance
spacing factor give
Capacitive reactance at 1-ft spacing = 4.093 X 109 log !
60 0.0153

= (0.124 X 10® ohm/mile
Capacitive reactance spacing factor = 833 X 10% log 18

= 0.086 X 10¢ ohm/mile
Capacitive reactance to neutral = 108(0.124 4 0.086)

= 0.210 X 10% ohm/mile

from which

bc———

1
0.210 X 10°

Capacitive reactance and susceptance from line to line

Xe =2 X 0.210 X 10¢ = 0.420 X 10® ohm/
= 4.76 X 10~%/2 = 2.38 X 10~ mho/mile

= 4.76 X 10—% mho/mile, to neutral

3.5 Potential Difference between Two Co
Charged Conductors. If a number of conducty

°RE@I’S’TERED 2

arranged so that
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they are parallel to each other, the voltage between any two of them can
be found by applying Eq. (3.3) repeatedly to determine the voltage
between the two conductors in question due to the charge on each con-
ductor in the group independently. The voltage drop between the two
conductors is the sum of the voltage

drops due to each charged conductor. D @b

Such a group of conductors is shown
in Fig. 3.6. If we assume that there
are no other charged surfaces in the
vicinity, the sum of the charges on
the conductorsis zero. Ifthe ground
is far enough away to have negligible
effect, and if we assume further that
the spacing between con(.iuctors is Fic. 3.6 Group of parallel charged
Jarge compared to the radius of any  onductors.

one so that the charge distribution

over the surface of a conductor will be uniform, repeated application of
Tiq. (3.3) will yield accurate results. So, from conductor a to conductor
b, the voltage drop is

—_ ] ch . - .
Vab—Z T <Qa1n +Qb1n +Qc —D;‘f’

+ guln PD-’"E> (3.15)

Each term in Eq. (3.15) is the potential drop from a to b due to the
charge on one of the conductors in the group. In a similar manner
the voltage drop may be found between other pairs of conductors in the
group. For example,

Te

1
Vac 2_]"<Qu In == +Qb ln_' +QC Dca+ e

+ gn In g::) (3.16)
1 D Db‘m Dcm .
Vam=2](qaln —{—qblnD +(]c1nD—+

ca

@XERED

If the voltages between conductor a and the other cgnd own ,/ @
the group of simultaneous equations expressing Q}Q@e drops in '?
voltages are

terms of charges may be solved for the charges. ,
a%es RE@CI@TERED 2

sinusoidal and expressed as complex quantities,
ns were found

and are expressed as complex quantities. Simila q@tlo
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for the complex values of flux linkages where the currents were expressed
in complex form. The equations above are seldom solved to find charge
but are used in the derivation of capacitance formulas for polyphase
cireuits.

3.6 Capacitance of a Three-phase Line with Equilateral Spacing.
The three identical conductors of radius 7 of a three-phase-line with
equilateral spacing are shown in Fig. 3.7. Figure 3.8 is the phasor
diagram of voltages for thisline. To solve for the capacitance to neutral,
we first write the expression for the voltage drops from conductor a

b
N
D D
a D c )
Fia. 3.7 Cross section of a three-phase Fra. 3.8 Phasor diagram of the bal-
line with equilateral spacing. anced voltages of a three-phase line.

to conductor b and from conductor a to conductor ¢. Thus, from Egs.
(3.15) and (3.16),

1

Va =53

<qa In— 4+ ¢ 1n + g. In g) volts (3.18)

and

1 7
Ve = 57 (qa In— 4+ ¢ ln + ge In D) volts (3.19)

Adding Eqgs. (3.18) and (3.19) gives

Var + Ve = [9qa In Q + (¢ + ¢o) In %} volts  (3.20)

1
ok
If we assume there are no other charges in the vicinity, the
charges on the three conductors is zero, and we can subs
Eq. (3.20) for ¢, + ¢. and obtain

3q“l D

Vab+Vac:2]\

SIREGISTERED ¢

o@ge Van from line a
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From the phasor diagram of Fig. 3.8, we obt3
between the line voltages Va and V, and the
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to the neutral of the three-phase circuit:

Var = V/3 Van(0.866 + 50.5) (3.22)
Vae = =Veo = /3 Van(0.866 — j0.5) (3.23)
Adding Egs. (3.22) and (3.23) gives
Var + Vae = 8Van (3.24)
Substituting 3V, for Vi + Ve in Eq. (3.21), we obtain
Van = 23:]0 ln—? volts (3.25)

Since capacitance to neutral is the ratio of the charge on a conductor
to the voltage between that conductor and neutral,

Ga 2k
Van In D/r

C. = farads/meter, to neutral (3.26)

For a relative permittivity of k, = 1,

00388
" " log D/r

Comparison of Egs. (3.27) and (3.11) shows that the two are identical.
These equations express the capacitance to neutral for single-phase and
equilaterally spaced three-phase lines, respectively. We saw in Chap. 2
that the equations for inductance per conductor were the same for single-
phase and equilaterally spaced three-phase lines.

The term charging current is applied to the current associated with the
capacitance of a line. Yor a single-phase circuit, the charging current
is the product of the line-to-line voltage and the line-to-line susceptance,
or

uf /mile, to neutral (3.27)

Ichg = ijabVab (3.28)

For a three-phase line, the charging current is found by multiplying the
voltage to neutral by the capacitive susceptance to neutral. This gives
the charging current per phase and is in accord with the calculation of
balanced three-phase circuits on the basis of a single phase with neutral
return. The charging current in phase a is

]chg = jwcnvan 9

3.7 Capacitance of a Three-phase Line with Uns @ECTESED ,/@
When the conductors of a three-phase line are nd Qa ly spaced, /?
the problem of calculating the capacitance becorg ove difficult. If Ry

such a line is not transposed, the capacitances G?STERED 6¢

a8 p E
are unequal, and, if the line is transposed, the @Ltarllg Ol any one
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phase to neutral is different for each position occupied by the conductor
in the transposition cycle. In the transposed line, however, the average
capacitance to neutral of any phase for the complete transposition cycle
is the same as the average capacitance to neutral of any other phase, since
each phase occupies the same position as every other phase over an equal
distance. The dissymmetry of the un-
transposed line is slight for the usual
configuration, and capacitance calcu-
lations are carried out as though all
lines were transposed.

Equation (3.15) may be applied to
1 Dy, 3 the line shown in Fig. 3.9 to compute
Fia. 3.9 Cross section of a three- Vg due to the charges on all three con-
phase line with unsymmetrical dyctors. Three equations are found
Spacing. for V, for the three different parts of
the transposition cycle. With phase a in position 1, b in position 2, and
¢ in position 3,

2

N3
v Dy

1

12
Va = 5k <(1a In —= 4+ ¢ ln + g. In D—> volts  (3.30)

With ¢ in position 2, b in position 3, and ¢ in position 1,

Va = 21k (qa In P + @ ln 5= -t In D31> volts  (3.31)

and, with a in position 3, b in position 1, and ¢ in position 2,

Dy»
i) 3) volts (3.‘3’2)

Vab=2%c( D31+qblnﬁ+quln
Equations (3.30) to (3.32) are similar in form to Eqgs. (2.66) to (2.68)
for the flux linkages of one conductor of a transposed line. Each of the
latter equations gives the value of flux linkages in one part of the trans-
position cycle. An average value of flux linkages over the complete
transposition cycle was found by noting that the current in any phase
was the same in any part of the transposition cyele. If thechar
unit length on the conductor of each phase was the same for
of that phase as for any other position in the transf
voltages computed by Egs. (3.30) to (3.32) would g
average voltage could be found for the completd
capacitance to neutral of a phase in one part of &
is in parallel with the capacitances to neutral

&
parts of the transposition cycle. Therefore, if ¥ d@ogard ﬁag @TERED “Z
VERSION
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along the line, the voltage to neutral of a phase in one part of the cycle
is equal to the voltage to neutral of that phase in any part of the cycle.
Hence, the voltage between any two conductors is the same in one part
of the transposition cycle as in other parts between the same conductors.
Since the voltage is the same anywhere in the transposition cycle, it
follows that the charge on any conductor must be different when the
position of the conductor changes with respect to the other conductors.
A treatment of Fqgs. (3.30) to (3.32) analogous to that of Eqs. (2.66) to
(2.68) is not rigorous.

Equations (3.30) to (3.32) have 10 unknowns, the voltage V. and
nine charges, for the charge on each of the three conductors is different
in each of the three positions occupied by a conductor in the three parts
of the transposition cycle. Thus, a rigorous solution for capacitance
in terms of the ratio of charge to potential difference requires six more
equations in order to eliminate all the unknowns except one voltage and
one charge. Three additional equations, similar to Eqs. (3.30) to
(3.32), may be written for the voltage V,, and the latter voltage may be
expressed as Vo (—0.5 — 70.866) if the voltages on the line are assumed
to be balanced. The other three equations required may be obtained
by equating the sum of the charges in each of the three parts of the trans-
position cycle to zero.

The rigorous solution for capacitance is too involved to be practical
except perhaps for flat spacing with equal distances between adjacent
conductors. With the usual spacings and conductors, sufficient accuracy
is obtained by assuming the charge per unit length on a conductor to be
the same in every part of the transposition cycle. When the above
assumption is made with regard to charge, the voltage between a pair
of conductors is different for each part of the transposition cycle. Then
an average value of voltage between the conductors can be found, and .
the capacitance calculated from the average voltage. We obtain the
average voltage by adding Eqs. (3.30), (3.31), and (3.32) and dividing
the result by three. The average voltage between conductors a and b,
based on the assumption of the same charge on a conductor regardless
of its position in the transposition cycle, is

1 D3 Dy Dy re
Va = Gk {Qa In (T) + g In (M)

(3.33) @@@
REGISTERED O
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! D, 7
=57 (qa In - + ¢ In Deq> volts

where
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Similarly, the average voltage drop from conductor a to conductor ¢ is

1
2rk

Ve = (qa In —2 Deq + ¢. In 7 ) volts (3.35)
eq

Applying Eq. (3.24) to find the voltage to neutral, we have
3Van = Vab + Vac = lk <2Qa In — eq + ds ln + qe In )
eq

volts  (3.36)
Since ¢a + ¢ + ¢. = 0 in a balanced three-phase circuit,

.3
3Van = o 0o volts (3.37)
and
c, =2 - _ 2mk farads/meter, to neutral (3.38)
" Ve In Dyy/r ’ ‘
For a relative permittivity of &, = 1,
0.0388 .

C. = Tog D..Jr uf /mile, to neutral (3.39)

Equation (3.39) for capacitance to neutral of a transposed three-phase
line corresponds to Eq. (2.71) for the inductance per phase of a similar
line.

Example 3.2

Find the capacitance and capacitive reactance per mile of the line
described in Example 2.4. If the line is operated at 22,000 volts, find
the charging current per mile.

Solution
0.258
r=g5c1e = 0:01075 ft
Deq = 545 ft
0.0388 _
Cr = {og (5.45,/0.01075) 0.01438 uf /mile, to neutral
6

Xo = L — 0.185 X 10° ohm/mile, to neutra

27 X 60 X 0.01438
or from tables

Capacitive reactance at 1-ft
spacing = 0.1345 X 10°¢
Capacitive reactance spacing
factor for 5.45 ft = 0.0503 X
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The magnitude of the charging current is

Ig = 2m X 60 X 0.01438 X 10~° X 22,000/+/3
= 68.8 X 102 amp/mile

3.8 Effect of Earth on the Capacitance of Three-phase Transmission
Lines. Earth affects the capacitance of a transmission line because its
presence alters the electric field of the line. If we assume the earth
to be a perfect conductor in the form of a horizontal plane of infinite
extent, we realize that the electric field of charged conductors above the
earth is not the same as it would be if the equipotential surface of the
earth were not present. The electric field of the charged conductors is
forced to conform to the presence of the earth’s equipotential surface.

Consider a circuit consisting of a single overhead conductor with a
return path through the earth. In charging the conductor, charges
come from the earth to reside on the conductor, and a potential difference
exists between the conductor and earth. The earth has a charge equal
in magnitude to that on the conductor but of opposite sign. Electric
flux from the charges on the conductor to the charges on the surface
of the earth is perpendicular to the earth’s surface, since the surface is
assumed to be a perfect conductor. Let us imagine a fictitious conductor
of the same size and shape as the overhead conductor lying directly
below the original conductor at a distance equal to twice the distance
of the conductor above the plane of the ground. The fictitious conductor
is below the surface of the earth by a distance equal to the distance of the
overhead conductor above the earth. If the earth is removed and a
charge equal and opposite to that on the overhead conductor is assumed
on the flctitious conductor, the plane midway between the original
conductor and the fictitious conductor is an equipotential surface and
occupies the same position as the equipotential surface of the earth. The
electric flux between the overhead conductor and this equipotential
surface is the same as that which existed between the conductor and the
earth. Thus, for purposes of calculation of capacitance, the earth may
be replaced by a fictitious charged conductor below the surface of the
earth by a distance equal to that of the overhead conductor above the
earth. Such a conductor has a charge equal in magnitude and opposite
in sign to that of the original conductor and is called the image

The method of calculating capacitance by replacing the es
image of an overhead conductor can be extended to
conductor. If we locate an image conductor forg
ductor, the flux between the original conductors
perpendicular to the plane which replaces thege
is an equipotential surface. The flux above the %
when the earth is present instead of the image cg

eREC&?ISSTERED 2
VERSION
ADDS NO




62 ELEMENTS OF POWER SYSTEM ANALYSIS

To apply the method of images to the calculation of capacitance for
a three-phase line, refer to Fig. 3.10. We shall assume that the line is
transposed and that conductors a, b, and ¢ carry the charges q., ¢», and
g. and occupy positions 1, 2, and 3, respectively, in the first part of the
transposition cycle. The plane of the earth is shown, and below it are
the conductors with the image charges —qa, —¢s, and —¢.. Equations

9,52

9

H o
3

s ey

-4, ¥2

Fig. 3.10 Three-phase line and its image.
for the three parts of the transposition cycle can be written foy
voltage drop from conductor a to conductor b as determis ’
three charged conductors and their images. With con(ig
tion 1, b in position 2, and ¢ in position 3,

_ ! Dip _, Hu o
Va = 5T [qa (ln . n H1) + @ (ln Do 1




CAPACITANCE OF TRANSMISSION LINES 63

With conductor a in position 2, b in position 3, and ¢ in position 1,

otz w)] oo
and, with a in position 3, b in position 1, and ¢ in position 2,
g1 (5 0 ) o (o~ )

D12 Hl?)]
Ain = — e A2
T (“ D~ i) | G2

If the approximately correct assumption of constant charge per unit
length of conductor throughout the transposition cycle is made, an aver-
age value of Vg for the three parts is

oo T (DHD%DM>_hl(HuHmHm)]
@ = 67!'/ lqa ré H1H2H3

ré H.H.H; >]]
W\ s—p5-) — g 777 43
ta [ " <D12D23D31> " <H12H23H31 (3.43)

N
Va = '_1"‘ l:qa (ln Qﬂ — In M_ﬂ)
r ~/H I ,H,

r ~HH H.H.H,
' ng \/Hw 23H 51

Similarly,

Vac = (_1‘ [qa (hl p‘ﬂl — In ————#\z’/aHfle_%H,Sl
2wk r ~/HH,H; )

r ~/ H H,H; <
+ q. (ln — —1In -——*~—>] (3.45)
Deq \VH12H23H31

and

. 1 D, \/H12H22H31
Vs 4 Voo = 3Van = [2 a(l Deq _ gy VA1l nlin
' 2k [ 22\ JH A, )

. /H H,H, >]
. l o 1 PR A 3.46
+(qb+q>(“1)eq N i, s

Since ¢a + ¢ + ¢. = 0
3 D,, v
3Van = 5 [qa <1n o In

0.0388

" log Dugfr — log (N/HsHysH s/ ~/H:H 1 REGIS TERED

to neutral (3.48) ¢
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Comparison of Eqgs. (3.39) and (3.48) shows that the effect of the
earth is to increase the capacitance of a line. To account for the earth
the denominator of Eq. (3.39) must have subtracted from it the term
log (N/HoH 3sH 3, /~/HH,H3). If the conductors are high above ground
compared to the distances between them, the diagonal distances in the
numerator of the correction term are nearly equal to the vertical dis-
tances in the denominator, and the term is very small. This is the
usual case, and the effect of ground is generally neglected for three-phase
lines except for calculations by symmetrical components when the sum
of the three line currents is not zero. Calculations of capacitance for
this condition will be considered in Chap. 12.

3.9 Parallel-circuit Three-phase Lines. Let us consider two special
arrangements of parallel-circuit lines, the double-circuit line with hex-
agonal spacing and the double-circuit line with flat, vertical spacing.
The equation for capacitance of each of these lines is relatively simple.
Many double-circuit lines have flat, vertical spacing, and the spacing
of most other double-circuit lines is
intermediate between flat spacing and
hexagonal spacing.

Consider first the double-circuit line
with hexagonal spacing shown in Fig.
3.11. Phase a is composed of con-
ductors a¢ and o', phase b of condue-
tors b and &', and phase ¢ of conductors
cand ¢’. The two conductors of each
phase are electrically in parallel and
have the same charge. Because of
the symmetrical arrangement the
phases are balanced, and the conduc-
tors of each individual phase are also
balanced, if the effect of ground is neglected. Therefore, transposition of
the conductors is not necessary to balance the phases. The equations for
voltage drop may be written in the usual manner, and the derivation of
the expression for capacitance proceeds as follows:

Ve =271E[ <1n~+1n\/3>+qb<ln%+ln—%>

F1c. 3.11 Double-circuit three-phase
line with hexagonal spacing.

Va = 2%9 (¢« — @) In (3/2*# 2{.(/ (3.50)
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D
Vab + Vac = 3Van = —1‘— (Qqa — ¢ — QC) In \/g volts (352)
2rl 2r

and, since ¢a + ¢ + ¢. = 0,

3¢ \/g D
3V = 5 iIn (7> volts (3.53)
Then
c, =2 = 2k farads/meter/conductor, to neutral (3.54)
Var  In (4/3 D/2r)
C. = —09-?_’88—— uf /mile/conductor, to neutral (3.55)

log (/3 D/2r)

Equations (3.54) and (3.55) give the capacitance from one conductor to
neutral, not from one phase to neutral. The expression for capacitance
was found by taking the ratio of the charge on only one of the two con-
ductors of a phase to the voltage to neutral. To find the capacitance
to neutral per phase, we note that each phase consists of two identically
charged conductors in parallel. Therefore, the capacitance to neutral
per phase is twice the capacitance to neutral of one conductor, or

C,=2X 00388 uf /mile/phase, to neutral (3.56)

log (\/3 D/2r)

We recall that the inductance of parallel-circuit three-phase lines was
calculated by using the method of GMD. Let us apply a modified
method of GMD to the calculation of the capacitance of a hexagonally-
spaced double-circuit line. In applying the method to capacitance cal-
culations, actual radii of the individual conductors of a phase will be used
{o obtain the modified self GMD of a phase. We speak of the modified
self GMD and the modified method of GMD in connection with capaci-
tance calculations because we are not following the mathematical concept
of GMD discussed in Chap. 2 when we use the actual radius of a conductor
composing one of the circuits instead of the self GMD of that conductor.
We must use the radius of a conductor rather than its self GMD bg
all the charge resides on the surface. The idea of self G

RE
\ﬁ) method

1nductance calculations because of the internal flux | D ,/
Fig. 3.11 the @

ductor. We shall still combine the parallel conduct
the method of geometric mean distances, and we
in all other respects. For the hexagonally spaceg

3@@13“7’ERED )
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modified self GMD for all phases is the same
differs from the self GMD by the substitution o
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D, = 2rD B
GMD atob = Dy = \7§D
GMD b toc = Db0= V3D
GMD ctoa = =+/3D
Deq \/DabDbc ca = \/3 D
and, replacing r in Eq. (3.39) by D,,
_ 0038 0.0388 — 2% 0.0388
log Doo/D,  log (/3 D/A/2rD) log (\/3 D/2r)
uf /mile/phase, to neutral
which is identical to Eq. (3.56) and shows that our modified GMD
method is valid in this case. We note that the GMD method always
gives per phase values, rather than per conductor values, because it com-

It

’

a h—=o¢’ c h—ob’ b h—>oa

g d g
f \eb' a + f \oa’
\ d \
a’ bl c’ a
(a) Phase ain {(b) Phase ain (c) Phase ain

position 1 position 2 position 3

F1e. 3.12 Arrangement of the conductors of a double-circuit three-phase line in the
three parts of a transposition cycle.

O
o—Q—o—a.

bines the conductors electrically in parallel in any one phase in computing
distances.

Now consider a double-ecircuit line with flat, vertical spacing, as shown
in Fig. 3.12. Buch a line is not balanced without transpositions. There-
fore, the derivation will be made for a transposed line, and again charge
on a conductor per unit length will be assumed to remain the same
throughout the transposition cycle. Since the conductor of each phase
of one circuit is in electrical parallel with the conductor of the same phase
in the other circuit, a conductor in one circuit has the same charge as
the conductor in the other circuit with which it is in parallel. In order
to compute the voltage drop from a to b, the charge g, on conductor gea
an identical charge ¢, on conductor a’ must be consuiere
on the conductors of the other phases are treated in a
With phase a in position 1,

Vo= g [a(nf4m ) o (m] +w) K
. Y5 REGISTERED Q)
ERSION
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With « in position 2,

Ve = ‘)1k[qa< L )+ qb(ln§+ ln£>

2d h
+ ¢ <ln i + In 5)] (3.58)
and, with a in position 3,

1 2d 7 f
Va =57 [q< In ) Qb(ln ag T I E)
1 g
+a(m?+1 _>] 3.59
q(nd ny (3.59)

The average value of V,, in the three positions is

B N

Similarly,

Ve = a0 (02 + 10 )—q( 2 ns)| @on
ac 6k | 1¢ 2 ¢ f? ’
and
B B 3qa 2d3g2
Vab + Vac == 3Van - ka 1n < rgfz ) (3'62)
_ .y, [ V2d(g %]

Ven = 5 /hl [ - 7 volts (3.63)
C, = 0.0388 uf /mile, one conductor to neutral (3.64)

mEON

The capacitance to neutral per phase (two conductors in parallel) is

0.0388

o[22 (5)

Now let us apply our modified GMD method to the derivation of the
expression for capacitance to determine whether the method is valid.
By comparison with Eqs. (2.75) and (2.77),

C.,=2X uf/mile/phase, to neutral (3.65)

Doy = 24d¥egHih¥s
and

D, = r¥frpk
where 7 replaces ' since we are dealing wit Xhnge j
inductance. Then D RE@L’STERED %
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0.0388 0.0388

“* = log Dog/D, — N [2% A% (3.66)
23 o 7
Cn=2 X — S uf/mile/phase, to neutral  (3.67)
e[ () |

Since Eqs. (3.65) and (3.67) are identical, the modified GMD method
holds to the same close approximation as Eq. (3.65). Both equations
are slightly in error because of the assumption of the same charge on a
conductor in any position of the transposition cycle, because of the
neglect of the effect of earth, and because we have assumed in all our
derivations a uniform distribution of charge over the surface of the
conduetors. All these differences are negligible for the usual overhead
line.

Since the modified GMD method has been shown to be valid for
hexagonal spacing and for flat, vertical spacing, it is reasonable to assume
that it may be used for arrangements intermediate between the two.

Example 3.3

Find the capacitance and the 60-cycle eapacitive susceptance to
neutral per mile per phase of the double-circuit line described in Example
2.5.

Solution

From Example 2.5, D,, = 16.1 ft.

The calculation of the modified D, is the same as in Example 2.5
except that r is used instead of #. The outside diameter of 19-strand,
300,000-circular-mil conductor is 0.629 in.

0.629
S ow i - 0.026 ft

(v/26.9 X 0.026 4/21.0 X 0.026 1/26.9 X 0.026 )%
= 4/0.026(26.9 X 21.0 X 26.9)% = 0.803 ft
0.0388

C, = Tog (16.1/0.803) = 0.0299 uf /mile/phase, to neutral

b = 2xfC = 27 X 60 X 0.0299 = 11.27 micromhos/mile/pha

S
I

3.10 Summary. The capacitance of a single-circuit
by Eq. (3.11) if the line is single-phase, or by Eg
three-phase. These two equations are the same €
ator of the argument of the logarithm of Eq. (3
equivalent equilateral spacing of the line r3
between the two conductors of a single-phase 1j

M the numer-
g Qe-distance of the N\

o
REGISTERED %

Jn both equations,
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» is the outside radius of the conductor. For parallel-circuit lines, a
modified method of GMD is used wherein the outside radius of a con-
ductor enters the computations in place of the self GMD of the conductor
found in inductance calculations. Several approximations are made in
deriving capacitance formulas, but the importance of all of them, includ-
ing the effect of earth, is usually very slight.

PROBLEMS

3.1 A three-phase transmission line has flat, horizontal spacing with 6 ft between
adjacent conductors. At a certain instant the charge on one of the outside con-
ductors is 0.1 X 1073 coulomb /mile, and the charge on the center conductor and on
the other outside conductor is —0.05 X 10-3 coulomb/mile. The radius of each
conductor is 0.1 in. Neglect the effect of ground, and find the voltage drop between
the two identically charged conductors at the instant specified.

3.2 The 60-cycle capacitive reactance to neutral of a solid conductor, which is one
conductor of a three-phase line with an equivalent equilateral spacing of 4 ft, is
186 X 10% ohms/mile. What value of reactance would be specified in a table listing
the capacitive reactance of the conductor at 1-ft spacing for 25 cps? What is the
cross-sectional area of the conductor in circular mils?

3.3 Derive an equation for the capacitance to neutral per mile of a single-phase
line, taking into account the effect of ground. Use the same nomenclature as in the
equation derived for the capacitance of a three-phase line where the effect of ground
is represented by image charges.

3.4 Calculate the capacitance to neutral per mile of a single-phase line composed
of two No. 2 single-strand conductors spaced 10 ft apart and 25 ft above ground.
Compare the values obtained by Egs. (3.11) and (3.12) and by the equation derived in
Prob. 3.3.

3.6 Derive a formula for the capacitance between the single inner conductor and
the concentric outer sheath of a power cable. Assume that the radius of the inner
conductor is ¢ and that the inner radius of the sheath is b.

3.6 A single-conductor power cable has a conductor of No. 2 solid copper. Paper
insulation separating the conductor from the concentric lead sheath has a thickness of
34, in. and a relative permittivity of 3.7. 'The thickness of the lead sheath is 364 in.
Tind the capacitive reactance per mile between the inner conductor and the lead
sheath.

3.7 A three-phase transmission line has two conductors 8 ft apart in a horizontal
plane. The third conductor is 3 ft above the plane of the other two and midway
between them. The conductors are solid, round wires with a capacitive reactance
at 1-ft spacing of 0.1345 megohm /mile at 60 cps. Find the capacitive reactance to
neutral per mile of line at 60 cps, and find the radius of the wire.

3.8 A three-phase 60-cycle transmission line has flat, horizontal spaci
between adjacent conductors. The conductors are No. 2/0 hard-gag 187
copper. The voltage of the line is 110 kv. Find the capacitive i ED ,/
and the charging current per mile. \ @

3.9 The six conductors of a double-circuit three-phase li nd 300,000- ,?(S\

circular-mil hard-drawn copper arranged as shown in Fig. 2.24 @fxat the vertical ),
spacing is 13 ft, the longer horizontal distance is 28 ff hRE A 731

distances are 22 ft. Find the capacitive reactance to neut N he H tTERED O¢
per mile per phase and per conductor at 132 kv and 60 cg v S




CHAPTER 4

RESISTANCE AND SKIN EFFECT

4.1 Resistance. The resistance of transmission-line conductors is the
most important cause of power loss in a transmission line. The term
resistance, unless specifically qualified, means effective resistance. The
effective resistance of a conductor is

power loss in the conductor

R = 7 ohms (4.1)

where the power is in watts and 7 is the rms current in the conductor
in amperes. The effective resistance is equal to the d-c resistance of
the conductor only if the distribution of current throughout the con-
ductor is uniform. At frequencies of 60 cps and below, the difference
between effective resistance and d-c resistance is less than 19 for the
copper conductors of less than 350,000 circular mils in cross section
listed in Table A.1. We shall discuss nonuniformity of current distribu-
tion and the ratio of effective resistance to d-c resistance after reviewing
some fundamental concepts of d-c¢ resistance.
Direct-current resistance is given by the formula

Ry = %l ohms (4.2)
where p = resistivity of the conductor
! = length
A = cross-sectional area
Any consistent set of units can be used. In power work, Lis u
given in feet, A in circular mils, and p in ohms per circular-n
The resistivity of standard annealed copper at 20°C i i 3 R
cular-mil foot, and its conductivity is 1009;. Hard-drg \ﬁ)e %;th ED ,/6
a tensile strength about 509, greater than that of : é@pper has a '?
conductivity approximately 39, lower. If the i ity of hard-
W@fSE;TERED )

drawn copper is not known exactly, it is assu
,@erage cOmmerclia

resistivity of 10.66 ohms/circular-mil foot at 20°C
7 VERSION
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hard-drawn aluminum has a conductivity of 619 and a resistivity of
17.00 ohms/circular-mil foot at 20°C.

The d-c resistance of stranded conductors is greater than the value
computed by Eq. (4.1) because spiraling of the strands makes them longer
than the conductor itself. For each mile of conductor the current in
all strands except the one in the center
flows in more than a mile of wire. The ¢
increased resistance due to spiraling is
estimated as 19 for three-strand con-
ductors and 29, for concentrically
stranded conductors.

The variation of resistance of metallic
conductors with temperature is prac-
tically linear over the normal range of
operation. If temperature is plotted
on the vertical axis and resistance on
the horizontal axis, as in Fig. 4.1, ex-
tension of the straight-line portion of ]
the graph provides a convenient method ~ Fie. 4.1 Resistance of a metallic
of correcting resistance for changes in ES?gucmr as & function of tempera-
temperature. The point of intersection '
of the extended line with the temperature axis at zero resistance is a con-
stant of the material. From the geometry of Fig. 4.1

Ry T +18

where B, and R, are the resistances of the conductor at temperatures
t, and t,, respectively, in degrees centigrade and T is the constant deter-
mined from the graph. Values of the constant 7" are as follows:

T = 234.5 for anncaled copper of 1009, conductivity
T = 241 for hard-drawn copper of 97.39% conductivity
T = 228 for hard-drawn aluminum of 619, conductivity

4.2 The Influence of Skin Effect on Resistance. Uniform distribution
of current throughout the cross section of a conductor exists only for
direct current. As the frequency of alternating current increases,
nonuniformity of distribution becomes more pronounced.
in frequency causes more current to be concentrated f
of the conductor and less in the interior. This pj N\ talle
skin effect. We can understand the reason for the é of the cur- '?
rent toward the surface of a conductor by recglli deiscussion of $

' /.
internal flux linkages in Chap. 2. Filaments @dﬁﬁ@’@TE RE D %
of a fila

surface are not linked by internal flux, and the fly nbges ment
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near the surface of a conductor are less than those of a filament in the
interior. If the current is unvarying direct current, the magnitude of the
current depends only on the applied voltage and the resistance of the con-
ductor and is not affected by inductance. Therefore, if the material
of the conductor is uniform, the current will flow equally in all parts
of the cross section. If the current is alternating, however, the filaments
in the center of the conductor will have a greater voltage drop due to
varying flux than will the filaments nearer the surface because those on
the interior are linked by more flux. Therefore, the inductive reactance
of an interior filament is greater than that of a filament near the surface.
The resistance of all the filaments is the same if their areas are equal.
The impedance of interior filaments, however, is greater than that of
outer filaments. Since all the filaments are electrically in parallel their
voltage drops must be equal, and this can be so only if less current flows
in the interior filaments of higher impedance. Later in this chapter we
shall develop the expression for the magnitude and phase angle of the
current density as a function of distance from the center of a wire and
find how skin effect alters both resistance and inductance calculated on
the assumption of uniform current density.

We can see from a numerical example the reason why nonuniform dis-
tribution of current causes an increase in effective resistance. Suppose
the three wires in parallel shown in
Fig. 4.2a carry equal alternating cur-
rents of 5 amp. If the resistance of
each wire is 10 ohms, the power loss
for the three wires with a total current
of 15 amp is 3 X 52 X 10 = 750 watts.
If the impedance of the middle wire of
the parallel circuit is increased by
increasing its inductance (perhaps by
wrapping it with a high-permeability
tape, or merely by adding some induc-
tance in series), a higher voltage must
be applied to the parallel circuit to
(b) obtain a total current of 15 amp for

F1e. 4.2 Parallel branches of equal the three branches. The incre

resistance carrying unequal branch

currents to illustrate skin effect. voltage causes more curref
the outside branches

the middle branch, whose inductance is increased, will }
current is still 15 amp. Suppose that under the nd
flow in each outer branch and 4 amp flow in the midd
in Fig. 4.2b. Since the resistances of the brand
total power loss for a current of 15 amp is

15 amps

15 amps .
R —

S\{;65 ;Iilp ,/6/?

, asindicated
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2 X 5.5 X 10 + 42 X 10 = 765 watts

For the original condition of equal current in the three branches, the
effective resistance of the circuit is
R = 7—5(2) = 3.33 ohms
15
which is the equivalent resistance of three 10-ohm resistors in parallel.
With unequal currents in each resistor, however, the effective resistance
of the circuit is
765
R = 152 = 3.40 ohms
The increased inductance in the middle branch causes the current in that
branch to be out of phase with the currents in the other two branches.

Z‘% . »
=

Section A-A
F1¢. 4.3 Cross section and longitudinal section of a cylindrical conductor.

To obtain a resultant current of 15 amp requires that the current in the
middle branch be somewhat greater than 4.0 amp when the other currents
are each 5.5 amp. Therefore, the effective resistance will be even larger
than the value computed above.

4.3 Current Density in a Cylindrical Conductor with Skin Effect. We
shall approach the problem of determining the effect of nonuniform cur-
rent density in a conductor by obtaining an expression for current density
as a function of distance from the center of the conductor. Consider the
conductor whose cross section and longitudinal section are shown in
Fig. 4.3. From Eq. (2.11) the magnetic ficld intensity in the condggtor
at a distance z from the center is

I,
2rx

r =

where T, is the current enclosed by the tubular el€ { adius z. If
I, 1s the rms value of the current, H, is the rms vg ‘ QE field intensity.

We shall find it necessary to deal with instantand V@es,RiE@fsrTE R E D ¢

it is desirable to express Eq. (4.4) in instantang JoDrm. The instan-
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taneous value of the field intensity is

® H iwt ® ]r mnxejwt

) vt = et

e [H zmaxe’™"] ) e (4.5)
where the symbol ®e means “‘real part of.”’! It is customary to omit the
symbol ®e, so that

]x,maxfjwt

]{x,mméjwt = 271'37

(4.6)

and, upon dividing both sides of the equation by 4/2 to convert from
maximum to rms values, we have

]Iejwt
27z

H, et = 4.7
which is the expression of Eq. (4.4) in instantaneous form.

To find the current I, in terms of current density, let J, be the current
density at a distance z from the center of the conductor. Then the
current in the walls of the tubular element of radius x and wall thickness
dx is 2wz, dz, and the current enclosed by the tube (that is, in the
cylinder of radius z) is

- fo * 9], di (4.8)

! Introduction of the factor e/ follows an accepted convention of notation. The
instantaneous value of a current which varies sinusoidally may be expressed by

7 = |l pax] COS ot
Where |Iax| is the magnitude, or absolute value, of the maximum current. Another
way of expressing the same current is

7= Qe HlmaxIe‘m”]
By Euler’s formula,
€9t = cos wt + J sin wi

and
Re [e/t] = cos wi
Therefore,
Re [[Tmaxe™] = |Tnax| cOs wif
I

7 = |Imax| cos (wl + «)
we can say

7 = Re [|Tnax|e” @] = Re [[Lmax|ei®ei@]
and, letting
Imax = Ilmaxl &% = flmax‘lg
we have
7 = Re [Imaxe?*]
where Imax is complex.
Expressing Eq. (4.4) by this notation yields Eq. (4.
For a further discussion of the subject, see E. A.
Networks,” vol. I, pp. 70-75, John Wiley & Sons, Ine., 2
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Substituting in Eq. (4.7), we obtain
O H et = /0 O et d (4.9)

Taking the partial derivative with respect to x yields

o [70 % (H jeiot) + erfwt] = 2ra et (4.10)

or, since ¢t is independent of x, we have

oH., + 2xH vt = 2rxJ et (4.11)

2rxelet
ox

Dividing by 2rze’@t, we obtain

oH,
ax

+ %Hx = J, (4.12)

Equation (4.12) contains both H, and J, as variables dependent upon
x. If we can find another relation between H, and J,, we can eliminate
H, and obtain a differential equation having J. as the only variable
dependent on z. Such a relation can be found by applying Kirchhoff’s
voltage law to the voltage drops around the closed path a’0'Da shown in
Fig. 4.3b. The voltage drops consist of ohmic drops on the paths ab and
a'b’ and of a voltage drop caused by the changing flux linking the closed
loop ¢’b’ba. The instantaneous ohmic drop from a to b is J, w.€“tp Al
where J 2, max€®! I8 the instantaneous current density on the path ab and p

is the resistivity of the conductor.? Similarly, from a’ to b’ the ohmic
drop is

[Jx,maxef“" -+ % (J 2, max€™?) dle p Al (4.13)

. 0 . . . . .
sinee o (J zmaxe’?) dzx is the difference in current density between the two

paths.  Around the loop a't’ba the total ohmic drop is

drop beeause in a cross-sectional arca A

I =JA
and
Al
o =1
and, thercfore, chmic drop in the area A for a length A
- p AN _
IRy = JA ( 2 -
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P Al [J:C,mnxfiwt + aix (Jz,ma.xejwt) da:} Y Al!];v,maxfjwt
= 0 AL 2 (T dz (4149

The voltage drop clockwise around the loop a’d’ba due to the changing
flux in the loop is —d¢/dt. The negative sign is necessary because
increasing flux due to current in the direction shown induces a voltage
rise in a clockwise direction. The voltage drop is the negative of the
voltage rise. FEquating the voltage drops around the loop to zero, in
accordance with Kirchhoft’s law, gives

i} do
hd wt %% _
p Al 5 (J 2. max€™) d 3 0 (4.15)
The flux ¢ linking the path a’0’ba is in the tubular element of thick-
ness dz and is concentric with the tube. It is a function of both time ¢
and distance z from the center of the conductor. Equating the instan-
taneous flux to the product of instantaneous flux density and area gives

¢ = Bz‘,maxfjwt Al dx = ,UIIx,maijWt AZ dx (4.16)
Therefore, upon substitution of Eq. (4.16) in Eq. (4.15), we obtain

P Al % ( z, maxe ) dx - t (/JH:r,maxejwl Al) dm = 0 (4‘]7)

Then converting to rms values, assuming constant permeability, expand-
ing the partial derivative with respect to f, and noting that H, ... 18 not a
function of ¢ and that ¢t is not a function of z, we have

6']:c,mn\1
ox

p Aleit — Joo Alue'H ; pae = 0 (4.18)

In interpreting Eq. (4.18) we must remember that H, and J, are complex
and that in taking the partial derivative with respect to ¢ we have omitted
the symbol Re.?

3 The student can show, by replacing ¢/“* by cos wt + 7 sin ot, that

gi(Re Uneot] = Ge [a—at <1meiwt)]

from which it follows that

b—i Re [1nef®t] = Re [jwln, @]

and, omitting Re,
d : . .
- Jwt —_ jwi
Y (Im € ) ]wlm €

which is the expected result for the derivative of the winaldly mc u ing real

and imaginary components of 7,e@. We must remem®N s TERED

taneous value of 47/t is the horizontal projection (real pa ¢
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Dividing Eq. (4.18) by ¢ and by +/2 to obtain rms values, we have

—ipd).
= 7;’;’ = (4.19)

Substituting H, from Eq. (4.19) in Eq. (4.12), we obtain

wp 0x wux 0x S (4.20)

or, multiplying by jwu/p and noting that J, (a complex number and func-
tion of ) 1s not a function of ¢,

e 1d). o
dx T dv P

=0 (4.21)

The change from partial derivatives to total derivatives is possible in
Eq. (4.21) because the only independent variable is . Eq. (4.21) is the
second-order differential equation relating the rms value of the current
density to the distance from the center of the conductor.

Equation (4.21) is a special form of the long-recognized Bessel equa-
tion.? It may be written in more concise form as follows:

1dy o
dyc2 AN o + k% (4.22)
To solve Eq. (4.22) assume a solution in the form of an infinite series, or
Yy =0+ ax + axt® + asx® + - - - + a2+ - (4.23)
Then
th 2as + 6azr + 12a42® + 20052 + 30asz* 4+ -« - - (4.24)
ldy _ + 2as 4+ 3asv + 4ax® + base® 4 Gaezt + - - - (4.25)
xdxr x
and

ky = Eao + Koz 4 KPasx® 4 kase® 4 ket 4+ - - - (4.26)

*The solutions to Eq. (4.21) are called Bessel functions of zero order. The Bessel
cquation having solutions of the nth order is

dzz/ 1dy + (k2 _ _) _

dx2 z dz

The solutions are of zero order when n is zero. There are two indepe
called Bessel functions of the first and second kind. We are conf

solution of the first kind since the solution of the second kind indi S égﬁrentED ,/@

density at the center of the conductor, an impossible condit 1 discussion

of Bessel functions can be found in N. W. McLachlan, ““B tions for Engi-

neers,” Oxford University Press, London, 1934, For cgas Ve tables of Bessel

functions, see Jahnke and Emde, “Tables of Functio PREGISTERED ¢
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In order to satisfy Iiq. (4.22), the sum of the coeflicients of each power
of z, when the above equations (4.21) to (4.26) are added, must equal
zero. Thus

If

431

2as + 2a, + k%a,
6a; + 3as; + k%a,
12@4 + 4(14 + kZ(lQ
20a5 + bas + kay
30a¢ + 6as + kay = 0

mn o
ccococo

All the odd coefficients are zero since they depend on a,. The even
coefficients depend on a,. In terms of a, they are

klaq
“@= -G
as = k4ao
2% % 42
gy = — R
6 = 22 42 X 62

Substituting these coefficients in Eq. (4.23) gives the following series
solution:

N I CO S L %
y_a°[1 2 TEXE X EXE

+ - ] (4.27)

If & is real, the series of Eq. (4.27) is known as the Bessel function of
the first kind, zero order, and is designated by the symbol Jo(kz), where
Jy is a mathematical symbol not to be confused with our symbol for
current density. For Eq. (4.21)

P = — f—“’pﬁ (4.28)

and the solution for current density at radius z is

; 2 2 4 8 6
_ jonar (e} @ (e z
v]a;—'ao|:1+ P 22 <P>22X42 J<p>22><42><62

( iEﬂJ ;-ED
eﬁns argld ,/6@
Ry

This particular form of the Bessel function has bot
nary terms. Separating the real terms and the
substituting

a\
, Q,@ )
REGISTERED %
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we obtain
_ _ (mx)* (mx)8 .
J’“a"[l X TR K6 XS
. (mx)® (mx)® (ma)r®
+.7a0\: 22 22X42X62+22X42X62X82X]02
— . ] (4.31)
J. = as(ber mx + j bei mx) (4.32)
where
_ o (ma)* (max)?® .
ber mx = 1 PR L + X 1 X 6 X 8 (4.33)
and
2 6 10
bei ma = %) (m)? (ma) (4.34)

27 TN EXE  PXEXEXSEX I

The terms “ber” and “bei” are abbreviations for ‘‘Bessel real” and
““‘Bessel imaginary.”’?

The coefficient a, can be determined if the current density J, at the
surface of the conductor is known, since

J, = ao(ber mr 4 7 bei mr) (4.35)
Solving for a, and substituting in Eq. (4.32), we obtain

ber mx + j bel ma
"ber mr -+ 7 bei mr

Jo=J (4.36)

Equation (4.36) expresses the current density anywhere in the conductor
in terms of the current density at the surface.

4.4 The Internal Impedance of a Cylindrical Conductor. We are
interested in the expression for the current density in a cylindrical con-
ductor as a step toward determining the internal impedance of the
conductor when the current is not uniformly distributed throughout the
cross section. The internal impedance of a conductor is that part of the
impedance of the circuit due to the resistance of the conductor and the
flux linkages produced by flux inside the conductor only.

The voltage drop in a filament at the surface of a conductor is caused
by current flowing in the resistance of the filament and by the ch
in flux linkages external to the wire. It is unaffected by int
Therefore, if external flux linkages are excluded from cd

)

voltage drop in a filament on the surface of a congd 0 ,
v, 18 arguments. 6\
contains such a 7
I%

rREGISTERED %
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5 Sets of tables are available giving the values of ber and be
The work by N. W. McLachlan, cited in footnote 4 of tlms
set of tables. For another set of tables, see H. B. Dwigl
pp. 214-221, McGraw-Hill Book Company, Inc., New Yo ]@
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drop pJ, volts per unit length only. TFilaments not on the surface of
the conductor have the same flux linkages due to external flux as fila-
ments on the surface, but filaments below the surface have additional
flux linkages caused by internal flux. Since all the filaments are in
parallel electrically, the voltage drop in any filament is the same as in a
filament on the surface. The decreased current density and resulting
decreased ohmie drop in an internal filament are balanced by an increased
drop due to internal flux linkages. The voltage drop V; per unit length
in any filament, excluding the drop caused by flux linkages external to

the conductor, is
V= pJ, volts/meter (4.37)

and the internal impedance per unit length is

Vi_ el

Z; = 7 =7 ohms/meter (4.38)

where [ is the current in the conductor.
As determined from Eq. (2.11), the current 7 is related to the field
intensity at the surface of the wire by

I = 2arH, (4.39)
From Eqgs. (4.19) and (4.30)
_ _J (4
H, = pog (dx )x_r (4.40)
and, substituting J, from Eq. (4.36) in Eq. (4.40), we obtain

H = -1 Jr

d -
m? ber mr + j bei mr [d_x (ber mz + j bei mx)} (4.41)

r=r

To simplify the notation, let

ber’ mzx = (% (ber mzx) = ;n; (ber mz) (4.42)
and
bei’ mz = 9 (bei ma) = =L (bei ma) (4.43)
d(mzx) m dzx

Then, from Eqgs. (4.39) and (4.41), with the notation as specified in Eqs.
(4.42) and (4.43), the current is

7= 2mrJ, (bel’ mr — j ber’ mr
m ber mr + j bei mr

QFqs (4.42)

bei maz with @

(R’E@fS’TERED 2
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The terms ber’ mr and bei’ mr are evaluated as in¥
and (4.43) by dividing by m the derivatives of bey
respect to z and letting x = r.  Upon solving
stituting in Eq. (4.38), we obtain for the interna
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~_ pm ( ber mr + j bei mr
* " 2zxr \be’ mr — j ber’ mr

) ohms,/ meter (4.45)

Thus the internal impedance of a wire can be found at any frequency
if its radius, resistivity, and permeability are known. To be consistent
with the rationalized mks system of units, resistivity must be expressed
in ohm-meters (sometimes called ohms per meter cube), and perme-
ability as 47 X 10~7 times relative permeability (see footnote 4 of Chap.
2).
4.5 Skin-effect Resistance Ratio. The internal impedance of a con-
ductor is composed of resistance and inductive reactance. The real part
of the complex impedance is the effective resistance. We can find the
effective resistance of a wire by rationalizing the expression for internal
impedance given by Eq. (4.45) and separating the real and imaginary
parts. Thus the effective resistance is

__ pm ber mr bei’ mr — bel mr ber’ mr
R = . (hei” mr)” T (ber’ mr)? ohms/meter (4.46)
It can be shown that as the frequency approaches zero, the effective
resistance given by Eq. (4.46) approaches the d-c resistance given by
Eq. (4.2). At low frequencies the current distribution becomes more

uniform. The low-frequency or d-e¢ resistance is

Ry P £ ohms/meter (4.47)

TA T

for p in ohm-meters and r in meters. The ratio of effective resistance
to d-c resistance is

5]

R _mr ber mr bei’” mr — bei mr ber’ mr (4.48)

R 2 (bei” mr)? + (ber’ mr)? )
Equation (4.48) gives the ratio of effective resistance to d-c¢ resistance
as a function of mr.

The factor mr is the product of the radius in meters and the value of m
calculated from Eq. (4.30) with p in ohm-meters. It may be more
convenient to compute mr from the d-c resistance of the wire and the
relative permeability u.. From Eq. (4.30)

ol —7

e = e 2 -y [T KX A0,
4 14

—7

mr:\FfXAth]O r

p/wr?

The d-c resistance of a wire per unit length is

REGISTERED Q)
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Ry = ;"ﬁ X 1,609  ohms/mile (4.52)
Substituting Ry/1,609 for p/#r? in Eq. (4.51) gives

mr = 0.0636 | (4.53)

Ro

where u, = relative permeability of the wire

f = frequency, eps
R = d-c resistance of the wire, ohms/mile

17 Tabulated values of the ratio of

16
| /

15

]

/

12 7

11

|1

0 10

10
20

mr
Fia. 4.4 Ratio of a-c resistance to d-c
resistance for a eylindrical conductor
having a uniform magnetic field around
the periphery. The ratio is plotted as
a function of mr, where

mr = 0.0636 \/u f/Ro

and Ry 1s the d-c resistance in ohms per
mile.

3.0 4.0

and composed of 1, 3, or 7 strands.
single strand is listed in Table A.1 as 0.864 ohm

¢ See E. B. Rosa and F. W, Grover, “Formulas and
Mutual and Self Inductance,” Scientific Paper 169, Bull,

effective resistance to d-c resistance
caleulated from Eq. (4.48) have
been published by the U.S. Bureau
of Standards.® The resistance
ratios plotted in Fig. (4.4) are from
this source, which lists the ratios
for values to mr = 100. At fre-
quencies of 60 cps or less, stranding
has negligible effect on the ratio of
effective to d-c resistance of con-
centrically stranded conductors,
and effective resistance may be
found by multiplying the d-c resist-
ance of the stranded conductor by
the ratio read from Fig. (4.4) for a
wire.

4.6 Resistance from Tables of
Conductor Characteristics. Some
of the factors considered in the dis-
cussion of resistance and skin effect
can be verified by referring to the
tables of conductor characteristics
in the Appendix. The increase of
d-c resistance caused by stranding
is illustrated by a hard~drawn
per conductor with
tional area of 66,8

The d-c resigta
L

Calculation of

-3 strands

arRE GISTERED © 2
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the d-c resistance is 0.873 ohm/mile, and for 7 strands the value is 0.881
ohm/mile. Note that the resistances for the 3- and 7-strand conductors
are 19, and 29, respectively, above the resistance of the solid conductor.
This is in agreement with the principle stated in Sec. 4.1.

The values of 0.864 and 0.945 ohm/mile at 25 and 50°C, respectively,
given in Table A.1 for the 66,370-circular-mil copper conductor, are.
verified by Egs. (4.2) and (4.3). The d-c resistance at 20°C of a solid

conductor is
10.66 X 5,280

— — A /1
R, = 66.370 = (.848 ohm/mile
and correcting to 25°C
B 21+ 25 .
Ry = 0.848 == 51 120 0.864 ohm /mile
or at 50°C
24150 -
Ry = 0.848 2 190 0.945 ohm/mile

Fxamination of the tables shows that skin effect at frequencies up to
60 cps is negligible for the smaller conductors. The 60-cycle resistance
of the 66,370-circular-mil conductor is equal to the d-c resistance. Skin
effect becomes appreciable, however, at power frequency for the large con-
ductors. For instance, the d-c resistance of a 500,000-¢ircular-mil hard-
drawn copper conductor with either 19 or 37 strands is 0.1280 ohm /mile
at 50°C, but the 60-cycle effective resistance is 0.1303 ohm/mile. ¥or
this conductor, stranding does not appreciably alter the ratio of effective
to d-e resistance computed from Fig. (4.4). From Eq. (4.53)

mr = 0.0636 0198~ 1.38

and from Fig. (4.4) the resistance ratio is 1.02. Then the 60-cycle
resistance is

R = 1.02 X 0.1280 = 0.1305 ohm/mile

4.7 Skin-effect Inductance Ratio. The imaginary component of the
internal impedance of a conductor is the inductive reactance due to
internal flux linkages. Rationalizing the expression for internal 1mped—
ance given by Eq. (4.45) and discarding the real part gives the follogs
expression for internal inductive reactance:

L — pm bei mr bel’ mr + ber mr ber’ mr
© 2rr (bei” mr)? 4+ (ber’ mr)?

Equation (2.18) gives the internal flux linkages of a 7ing uniform
current density. Dividing Eq. (2.18) by the ¢ .o which

v ' ives L

is the internal inductance at frequencies so low 5%6 aREIGISfTERED

uniform current is valid. Thus ¢
VERSION

ADDS NO




84 ELEMENTS OF POWER SYSTEM ANALYSIS

Ly = §—Ijr henrys/meter (4.55)
and from Eq. (4.54) the ratio of internal inductance of a wire at any
frequency to internal inductance at zero frequency is

L; 4 [bei mr bel’” mr -+ ber mr ber’ mr]
(bei” mr)?* + (ber’ mr)?

The ratio approaches unity as the frequency approaches zero and sub-
stantiates the use of the principle
of partial flux linkages in deriving
N Eq. (2.18). As frequency increases
the ratio becomes smaller, for skin
0.95 \ effect causes the current to crowd
toward the surface of the wire and

0.9 thereby reduces the number of inter-
\ nal flux linkages. Tabulated values

\ of the skin-effect inductance ratio
are available in the paper by Rosa

and Grover cited in footnote 6 of this
\ chapter. The values are plotted in
080 \ Fig. 4.5. Internal inductance calcu-
lated for uniform current density

Lo~ mr

(4.56)

1.00
™

0.85

075 should be corrected by the ratio read
\ from Fig. 4.5.

\ If the self GMD (GMR) of a con-
0.70 y ductor is used to compute inductance
by Eq. (2.57) or similar equations,
the value used for D, may be ad-
justed to account for skin effect.. .. If
this is done the frequency for which
the value of D, is listed must be

0 o 20 30 40 gpecified. In Tables A.1 and A.2,
Fie. 4.5 Ratio of actualinternalinduc- for instance, the values listed for self
tance to the low-frequency internal GMD are for 60 cycles and when

inductance of a cylindrical conductor . . .
having a uniform magnetie field around used in Eq. (2.57) give inductance

the periphery. The ratio is plotted as values which include ggki

a function of mr, where The values for indugtive

mr = 0.0636 \/ wf/Ro 1-ft spacing listed e
and R, is the d-c resistance in ohms corrected to 4 -.*'
per mile. account at th

they are spad
4.8 Other Losses. The high electric field i
voltage power lines accounts for an additiong
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(5 loss in the trans-
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mission of power. The high voltage gradient at the surface of a wire
sometimes accelerates electrons in the air sufficiently to ionize air mole-
cules by collision. If the voltage gradient at the wire exceeds a certain
critical value, the process of ionization becomes cumulative and results
in appreciable loss of energy. The ionization is characterized by a
faint glow surrounding the wire and is called corona. The eritical
voltage depends on wire size and spacing and on atmospheric conditions.
Corona is most likely to occur when the diameter of the conductor is
small compared to the distance between wires. High voltage, small
wires, and close spacing contribute to a high voltage gradient which may
induce corona. Damp weather increases the loss from corona, and a
rough or dirty surface on a conductor increases the probability of the
occurrence of corona.

Empirical methods for the calculation of corona loss are available
in the literature.” When a line is designed, the effects of corona are
considered, and the design is modified, if necessary, to reduce corona
loss to a minimum, usually below 2 kw/mile for a three-phase line under
normal conditions. Radio influence due to corona must also be con-
sidered and may be more important than line losses. As discussed in
Seec. 1.2, tests on the 500-kv Tidd experimental line included an extensive
investigation of corona as a source of loss and as a radio influence factor.®

Another loss occurring on transmission lines is caused by the leakage
of current at the insulators which support the lines at the towers. It
differs from leakage through the insulation of cables because it is lumped
at the insulators and not uniformly distributed along the line. Even
50 it would be computed as though uniformly distributed by representing
it as a conductance, but in overhead lines the leakage is negligible. Since
leakage at insulators of overhead lines is negligible and corona loss is

7 The empirical equations for corona loss considered most accurate are those given
by Peterson and by Carroll and Rockwell. See W. 8. Peterson, discussion of the
paper by J. 8. Carroll and B. Cozzens, “‘Corona Loss Measurements for the Design
of Transmission Lines to Operate at Voltages between 220 Kv. and 330 Kv.,” T'rans.
AIEE, vol. 52, pp. 62-63, March 1933; J. 8. Carroll and M. M. Rockwell, “HKmpirical
Method of Calculating Corona Loss from High-voltage Transmission Lines,” Trans.
AIEE, vol. 56, pp. 558-565, May, 1937.

8 See I. W. Gross, C. F. Wagner, O. Naef, and R. L. Tremaine, “Corona Inveys
tion on Extra-high-voltage Lines—500-kv Test Project of the Ameri G
Eleetric Company,” Trans. AIEE, vol. 70, pp. 75-91, 1951; see Ggl.
Pakala, S. C. Bartlett, and C. D. Fahrnkopf, “Radio Influence

% f conductors
ges, see H. L.

Laboratory—>500-kv Test Project of the American Gas 3
Trans. AIEE, vol. 70, pp. 251-264, 1951. For the minimu
having tolerable radio interference at the higher transmisg
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Rorden and R. S. Gens, “Investigation of Radio Noise,
of High-voltage Transmission Lines,” Trans. AIEE, vo
1952.
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usually small in a line which is properly designed, the conductance
between conductors of an overhead line is assumed to be zero.

In a transmission line there is a nonuniformity of current distribution
in addition to that caused by skin effect. In a two-wire line, slightly
fewer lines of flux link the elements nearest each other on opposite sides
of the line than link the elements farther apart. Therefore -elements in
the near sides have lower inductance than elements on the far sides.
The result is a higher current density in the elements of adjacent con-
ductors nearest each other than in the elements farther apart. The
effective resistance is increased by the nonuniformity of current distri-
bution. The phenomenon is known as proximity effect. The increase
in resistance depends on the frequency, distance between conductors,
conductor size, and permeability. Proximity effect is present for three-
phase as well as single-phase circuits. Even at very high frequencies
if the ratio of spacing between wires to the radius of the wires of a two-
wire line is greater than 15 to 1, the increase of resistance due to proximity
effect 1s only 19;. For the usual spacing of overhead lines at 60 cycles,
the proximity effect is much less than the probable error in determining
the resistance and is neglected.

PROBLEMS

4.1 Compute ber 1.8 and bei 1.8.

4.2 Compute ber’ 1.8 and bei” 1.8.

4.8 Caleulate R/R, and L,/L;, for mr = 1.8.

4.4 Find the d-c resistance per mile for a wire having mr = 1.8 at 60 cps.

4.5 Compute the 60-cycle resistance at 50°C and the 60-cycle inductive reactance
at 1-ft spacing for round hard-drawn copper wire having a cross-sectional area of
800,000 circular mils. Compare the result with the values given in Table A.1 for the
37-strand copper conductor of the same area. Explain the reasons for any dis-
crepancy. Use Figs. 4.4 and 4.5. ‘

4.6 Specify the two stecl-reinforced aluminum cables which have approximately
the same 60-cycle resistance at 25°C as a 19-strand, 300,000-circular-mil hard-drawn
copper conductor. Would the copper conductor or one of the ACSR conductors be
expected to have the lowest corona loss for the same spacing between conductors?
Give reasons.

4.7 Calculate the d-c resistance per mile at 25 and 50°C for a solid 400,000-
cirecular-mil hard-drawn copper conductor. Compare the result with the d-c gasi
ance listed in Table A.1 for a 19-strand conductor, and explain any discy

4.8 Calculate the 60-cycle resistance per mile at 25°C for a solid 40§ —_—
mil hard-drawn copper conductor. Account for the difference b ’ rﬁ\E{RE
the value listed in Table A.1 for a 19-strand conductor. Dges t ‘ 3@%1 alue of

resistance for the 19-strand conductor agree with the val tALDyY increasing %
Q&' the resistance @

the d-c¢ resistance of the solid conductor by 29 and mult % ),
ratio used in determining the 60-cycle resistance of the é ft(ﬁEGIS TERED O
S Z
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CHAPTER 5

CURRENT AND VOLTAGE RELATIONS
ON A TRANSMISSION LINE

5.1 Introduction. An important problem to be considered in the
design of a transmission line and in its operation is the maintenance of the
voltage within specified limits at various points in the system. Toad
studies were described in Chap. 1 as essential in planning the operation
of a system under existing or contemplated conditions and in determining
the voltage at points throughout the system.

In this chapter we shall develop formulas by which we can calculate
the voltage, current, and power factor at any point on a transmission
line provided we know these values at one point. Loads are usually
specified by their voltage, power, and power factor, from which current
can be calculated for use in the equations.

Tven when load studies are made on a caleulating board or from
data obtained during operation, the formulas which we are about to
derive are important because they indicate the effect of the various
parameters of a transmission line on the voltage drop along the line
for various loads. The equations will also be useful in calculating the
efficiency of transmission and later in calculating the limits of power flow
over the line under both steady-state and transient conditions.

5.2 Representation of Lines. Normally, transmission lines are
operated with balanced three-phase loads. Although the lines are not
spaced equilaterally and may not be transposed, the resulting dissym-
metry is slight, and the phases are considered to be balanced. Figure 5.1
shows a Y-connected generator supplying a balanced-Y load thro &
transmission line. The equivalent circuit of the transmiss
been simplified by including only the series resistan
reactance, which are shown as concentrated, or lumped ,/
not uniformly distributed along the line. It maké @L 1ce, as far @,?

' whether the

as measurements at the end.s of the‘lin'e are co
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The generator is represented by an impedance connected in series with the
generated emf of each phase.

Reviewing the theory of polyphase circuits indicates that no current
can flow in the connection between the neutral o of the generator and
the neutral n of the load in a balanced system since the sum of the cur-
rents flowing toward n in the three phases is zero. Thus points o and
n are at the same potential, no current flows in the neutral conriection,
and omission of the neutral connection causes no change in the cireuit,

R L

Fic. 5.1 Generator supplying a balanced-Y load through a transmission line.

provided the circuit is balanced. To solve the circuit, a neutral con-
nection is assumed to be present and to carry the sum of the three phase
currents, which is zero, however, for balanced conditions. The circuit
is solved by applying Kirchhoff’s voltage law around a closed path
involving one phase and the neutral. Such a closed path is shown in
Fig. 5.2. Calculations made for this path are extended to the whole
three-phase circuit by remembering that the currents for the other two
phases are equal in magnitude to the current of the phase calculated and

R L
ANN—TT>

=

=
N

&

Gen.

Fig. 5.2 Single-phase equivalent of the circuit of Fig. 5.1.
are displaced 120° and 240° in phase. It is immaterial whether the load,
specified by its voltage, power, and power factor, is A- or Y-
since the A can always be replaced by its equivalent Y for th

calculation.
A transmission line has four parameters—resistance

which make up the series impedance of the line, apditance and

conductance, which determine the shunt admittangifropline to line or (S}

from line to neutral. Resistance, inductance, ) a O

considered in detail in preceding chapters. Indug &as&rgﬁﬁg-ERED ¢
VERSION
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one phase of a balanced three-phase line, and capacitance was computed
from line to neutral, so that each would be applicable to the solution
of a three-phase line as a single line with a neutral return of zero imped-
ance as shown in Fig. 5.2. Shunt conductance, as was mentioned in
Chap. 4, is almost always neglected in power transmission lines when
caleulating voltage and current.

The classification of power transmission lines according to length
depends upon what approximations are justified in treating the param-
eters of the line. Resistance, inductance, and capacitance are uniformly
distributed along the line, and exact calculations of long lines must
recognize this fact. For lines of medium length, however, half of the
shunt capacitance may be considered to be lumped at each.end of the line
without causing appreciable error in caleulating the voltage and current

224 Z=R+jwL LI
% WAV— T */\

Gen. Vs Vr l Load

Fic. 5.3 Equivalent circuit of a short transmission line.

at the terminals. For short lines, the total capacitive susceptance is
o small that it may be omitted. In so far as the handling of capacitance
is concerned, open-wire 60-cycle lines less than about 50 miles long are
chort lines. Medium length lines are roughly between 50 and 100 miles
long. Lines more than 100 miles long require calculation in terms of dis-
tributed constants if a high degree of accuracy is required, although for
some purposes the nominal = can be used for lines up to 200 miles Jong.
In order to distinguish between the total series impedance of a line
and the series impedance per unit length, the following nomenclature is

adopted:
Z

series impedance per unit length, per phase

= shunt admittance per unit length, per phase to neutral

length of the line

= 2zl = total series impedance per phase

= yl = total shunt admittance per phase to neutral
5.3 The Short Transmission Line. The equivalent §

transmission line is shown in Fig. 5.3, where Is ang

and receiving-end currents and Vs and Vg are the sé

end line-to-neutral voltages. When the instant

in the direction of the arrows marked on the &

rent is assumed to be positive. A half cycle la

NN

rent is flowing

@ RE@I@TERED 2

en the current is
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90 ELEMENTS OF POWER SYSTEM ANALYSIS
flowing in the opposite direction, it is negative. Polarity marks perform
a similar function by showing the assumed positive direction of voltage
drop at the ends of the line. The instantaneous value of the voltage
to neutral 1s assumed to be positive when the terminal marked -+ is at
a higher potential than the terminal marked —. When the terminal
marked 4+ is at a lower potential than the other terminal, the instantane-
ous voltage to neutral is negative.

The circeuit is solved as a simple series a-c¢ circuit. Since there are
no shunt arms, the current is the same at the sending and receiving
ends of the line, and

Is = 1Ixr 5.1)
The voltage at the sending end is
Ve= Ve + IaZ (52)

where Z is zl, the total series impedance of the line.
V. I V5 I.X
s /TIRXL M L
1.R
V;? \IRR VR

(a) Load p.f.=70% lag (b) Load p.f.=100% (¢) Load p.f.=70% lead
Fic. 5.4 Phasor diagrams of a short transmission line. All diagrams are drawn for
the same magnitudes of Vp and Ig.

The effect of the variation of the power factor of the load on the
voltage regulation of a line is most easily understood for the short line
and, thevefore, will be considered at this time. Voltage regulation of a
transmission line is the rise in voltage at the receiving end, expressed
in per cent of full load voltage when full load at a specified power factor
is removed while the sending-end voltage 1s held constant. In the form
of an equation

Iy

Per cent regulation = LK\-’%%F—]I X 100 (5.3)
L

where |Vyz| = magnitude of the receiving-end voltage at no load
|Vrrl = magnitude of the receiving-end voltage at full load!
After the load on a short transmission line, represented by the cj
of Fig. 5.3, is removed, the voltage at the receiving end is ¢
voltage at the sending end. In Fig. 5.3, with the lod ‘@
o)
1agrams of
Q/r—end voltage @

recelving-end voltage 1s designated by Vg, and
sending-end voltage is Vi, and |Vs| = |Vyzl.
Fig. 5.4 are drawn for the same magnitudes of
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values, of the cnclosed quantities.
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and current and show that a larger value of sending-end voltage is
required to maintain a given receiving-end voltage when the receiving-end
current is lagging the voltage than when the same current and voltage are
in phase. A still smaller sending-end voltage is required to maintain
the given receiving-end voltage when the receiving-end current leads the
voltage. The voltage drop is the same in the series impedance of the line

Is z/2 z/2 A Iy
MV T AN —
+ +

Vs Y Ve

Fie. 5.5 Nominal-T circuit of a medium-length transmission line,

in all cases, but because of the different power factors it is added to the
receiving-end voltage at a different angle in each case. The regulation
is greatest for lagging power factors and least, or even negative, for
leading power factors. The induective reactance of a transmission line
is larger than the resistance, and the principle of regulation illustrated in
Tig. 5.4 is true for any load supplied by a predominantly inductive
circuit. The relation between power factor and regulation for long lines
is similar to that for short lines but is not visualized so easily.
Is 2 I,

—

7 —ANW\- 7HT00 "

o=
\|
i
r\:l‘<
o~
\l
)
oS

Fra. 5.6 Nominal-m circuit of a medium-length transmission line.

5.4 The Medium-length Line. The shunt admittance, generally pure
capacitance, is included in the calculations for a line of medium len
If all the shunt admittance is lumped at the middle of the circg
senting the line, the circuit is called a nominal T. Syg
shown in Fig. 5.5, where Z is zl, the total series impedan ,/
the line, and Y is yl, the total shunt admittance pigme @
The nominal-r c¢ircuit, shown in Fig. 5.6, is more ofte ,?
medium-length lines than is the nominal T. Int

total shunt admittance is divided into two equal p ' ,d ﬁgévig TERED ¢
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92 ELEMENTS OF POWER SYSTEM ANALYSIS

ing and receiving ends of the line. The equation for Vs in the nominal =
may be derived by noting that the current in the capacitance at the
receiving end is VY /2 and the current in the series arm is I + VzY/2.
Then

Vs = (V}zgzf + ]R)Z + Ve (5.4)

Vs = (-Z—2X + 1) Ve + ZIx (5.5)

To derive /s we note that the current in the shunt capacitance at the
sending end is VsY /2, which when added to the current in the series arm
gives

= VS + I/R + Ir (5-6)

and substituting Vs as given by Eq. (5.5) in Eq. (5.6) gives

Is = V¥ (1 n f{) n <%/ + 1> In (5.7)

Corresponding equations may be derived for the nominal 7. Comparison
of Eqs. (5.5) and (5.7) with Egs. (5.1) and (5.2) shows the effect of
including the shunt admittance ¥ in the computations. If the line is
short, the total admittance Y is small, and as Y decreases the equations
for the medium-length line approach those of the short line.

Neither the nominal T nor the nominal 7 exactly represents the actual
line, and in cases of doubt about the length of line for which they are
sufficiently accurate it is best to use the equivalent cireuit discussed in
Sec. 5.8, which represents the line exactly. The nominal T and nominal
7 are not equivalent to each other, as may be seen by application of the
Y-A transformation equations to either one. The nominal-T and
nominal-r circuits are more nearly equal to each other and to the equiva-
lent circuit of the line if the line is split into two or more sections, each
represented by its nominal T or 7, but the resulting work is more cumber-
some where numerical calculations are made than is the use of the
equivalent circuit in the first place.

5.5 The Long Transmission Line—Solution of the Differential Equa-
tions. The exact solution of any transmission line and the gae rediiked
for a high degree of accuracy in calculating 60-cycle_lineg

length of the line.
Figure 5.7 shows one phase and the neutral cga
line. Lumped parameters are not shown b

f a three-phase
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consider the solution of the line with the impedance and admittance
uniformly distributed. The same diagram also represents a single-phasc
line if the series impedance of the line is the loop series impedance of the
single-phase line instead of the series impedance per phase of the three-
phase line and if the shunt admittance is the line-to-line shunt admittance
of the single-phase line instead of the shunt admittance to neutral of the
three-phase line.

Let us consider a very small element in the line and calculate the
difference in voltage and the difference in current between the ends of
the element. We will let # be the distance measured from the receiving
end of the line to the small element of line, and we will let the length
of the element be dx. Then z dz is the series impedance of the elemental
length of the line, and y dz is its shunt admittance. The voltage to

% I+dl Le

I
——e —

I
l
& :
|
|
|
]
|
1
{
|
i
|

+

Gen. Vs V+d

‘li
re—dx—>t< X
| !

T16. 5.7 Schematic diagram of a transmission line showing one phase and the neutral
return. Nomenelature for the line and the elemental length is indicated.

—_— e e e e — L

neutral at the end of the element toward the load is V, and V is the com-
plex expression of the rms voltage, whose magnitude and phase vary
with distance along the line. The voltage at the end of the element
toward the generatoris ¥V + dV. The rise in voltage over the elemental
length of line in the direction of increasing x is dV, which is the voltage
at the end toward the generator minus the voltage at the end toward the
load. The rise in voltage in the direction of increasing x is also the
product of the current in the element flowing opposite to the direction
of increasing z and the impedance of the element, or Iz dx. Thus

dVv = Izdx
or
av
EL'- = Iz

%;( 18 ,/
zncedalon]g 6@

%ﬁ the line.
ng EGIST RED
nd is higher than ¢
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Similarly, the current flowing out of the element g
The magnitude and phase of the current I vary
the line because of the distributed shunt aduggs
The current flowing into the element from t
The current entering the element from the geneg
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the current flowing away from the element in the direction of the load
by the amount d/. This difference in current is the current Vy dx flowing
in the shunt admittance of the clement. Thus

dl = Vydz
or
al

Let us differentiate Eqs. (5.8) and (5.9) with respect to x, and obtain

d*v dl
and
dl av
prr=a (5.11)

If we substitute the values of dI/dz and dV/dx from Egs. (5.9) and (5.8)
in Egs. (5.10) and (5.11), respectively, we obtain

dxv

T = yzV (5.12)
and

d2l

i yzl (5.13)

Now we have an equation (5.12) in which the only variables are V and z,
and another equation (5.13) in which the only variables are I and z.
The solutions of Egs. (5.12) and (5.13) for V and /, respectively, must be
expressions which when differentiated twice with respect to x yield the
original expression times the constant yz. For instance, the solution
for V when differentiated twice with respect to = must yicld yzV. This
suggests an exponential form of solution. Assume the solution of Eq.
(5.12) to be

V = A1eVues f Ay Ve (5.14)

Taking the second derivative of V with respect to » in Eq. (5.14) yiclds

d2‘7
dx?

= yZ(Ale\/y—zz + AQE_\/;zz>

which is yz times the assumed solution for V. There] %?%E}BSED ,/

the solution of Eq. (5.12). When we substitute in  phe value for %

V given by Eq. (5.14), we obtain D,
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The constants A; and A, may be evaluated by using the conditions at
the receiving end of the line, namely, when z = 0, V = Viyand I =
Substitution of these values in Eqs. (5.14) and (5.16) yields
Ve = Al + Az
and

Ir = —— (4, — 4,
\/Z/y( :

Substituting Z, = v/z/y and solving for A, gives

A1 — VR + IICZC
2
and
Ve — IxZ,
4, = ”—2“_

Then, substituting the values found for A, and 4, in LEqgs. (5.14) and
(5.16) and letting v = v/yz, we obtain

Ve + IrZ. Ve — IrZ, =

Vo= SR e TR e (5.17)
I = K#Rf/[;+ Ie r _ ~——V”M§“ L (5.18)

where Z, = \/z/y and is called the characteristic impedance of the line,
and v = v/yz and is called the propagation constant.

Equations (5.17) and (5.18) give the rms values of V and I and their
phase angles at any specified point along the line in terms of the distance
z from the receiving end to the specified point, provided Vg, I, and the
parameters of the line are known.

5.6 The Long Transmission Line—Interpretation of the Equations.
Both v and Z, are complex quantities. The real part of the propagation
constant v is called the aitenuation constant a and is measured in nepers per
unit length. The quadrature part of v is called the phase constant 8
and is measured in radians per unit length. Thus

vy=a+j8
and Eqgs. (5.17) and (£.18) become
v = VR—}—ZIR/E ar]51+VR_
and
I = KE/Z_;'*"_IE eareibe —
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The properties of ¢** and ¢+ help to explain the variation of the voltage
and current at any instant with distance along the line. The term e
changes in magnitude as x changes, but ¢#= which is identical to cos gz
=+ J sin B, always has a magnitude of one and causes a shift in phase of 8
radians per unit length of the line.

The first term in Eq. (5.20), [(Ve + IrZ.)/2]exe?, increases in mag-
nitude and advances in phase as distance from the receiving end increases.
Conversely, as progress along the line from the sending end toward the
receiving end is considered, the term diminishes in magnitude and is
retarded in phase. This is the characteristic of a traveling wave and is
similar to the behavior of a wave in water, which varies in magnitude
with time at any point, while its phase is retarded and its maximum
value diminishes with distance from the origin. The variation in instan-
taneous value is not expressed in the term but is understood since Vi and
Iz are phasors. TIneclusion of the time factor will be discussed later in
obtaining an expression for the instantaneous current and voltage any-
where along the line. The first term in Eq. (5.20) is called the incident
voltage.

The second term in Eq. (5.20), [(Vr — IrZ.)/2]e**¢ 8 diminishes in
magnitude and is retarded in phase from the receiving end toward the
sending end. Tt is called the reflected voltage. At any point along the
line, the voltage is the sum of the component incident and reflected
voltages at that point.

Since the equation for current is similar to the equation for voltage, the
current may be considered to be composed of incident and reflected
currents. ’

It is important to realize that FEqs. (5.20) and (5.21) yield complex
values of current and voltage and that the coefficients of the exponential
terms are phasors which represent voltages and currents whose instan-
taneous values vary sinusoidally with time. At any point along the line,
the maximum value of the incident voltage is /2 |(Va 4 IrZ.)/2|e.
The maximum value of the incident voltage at the receiving end in expo-
nential form is /2 [(Vz 4 I:Z.)/2|¢ where ¢ is the phase angle of
this voltage with respect to the reference voltage or current. Intro-
duction of the operator ¢#* accounts for the phase shift with distance
along the line. If we desire to specify the phase shift with res
to time, we introduce the operator ¢, which has a magnit
and causes a phase shift at an angular velocity of « rad
since it is equal to cos wf + jsin wt. The exponegti
the maximum value of the incident voltage at any ti}
zis V2 |(Ve + 1rZ.)/2|ewei®eBreivt . The equation
voltage is the real part of the exponential expred

28ee Chap. 4, footnote 1.

1stantaneous
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p = QRe I:\/§ Ve MI—TZ—{E*Z—C e“’ejﬂ”ej“”ef‘i’jl
[ V3| Ve + 1zZ,

= \/5 Kﬁ—%lj—z—" €’ cos (wt + Bz + ¢) (5.22)

€ ]'(ﬂ.‘H wi+¢) J

Tigure 5.8 shows the variation of the instantaneous value of incident
voltage with distance along the line for two different instants of time.

——
—
—
~
—_—

Fic. 5.8 Graph of instantaneous value of incident voltage versus distance along a
transmission line for two instants of time. Curve 2 is for a time later than that for
curve 1.

The broken lines represent the variation in the maximum value of the
incident voltage with distance. The solid curves are instantaneous
values of incident voltage plotted against distance for the two instants of
time. Equation (5.22) shows that the maximum voltage occurs when
wt + Bx 4+ ¢ = 0. If ¢ increases,  must decrease to maintain the rela-
tion wt + Bx + ¢ = 0. Therefore, at a later time the positiv;
of the incident voltage must occur at a point nearer the
curve 2 in Fig. 5.8 represents the values of the incid
the line at a later instant of time than that for wige
Study of Fig. 5.8 shows the analogy between a volf
and distance and a wave in water, which w
Equation (5.22) is the equation of a wave, a
incident and reflected waves of voltage and currg

Mg with time
@ned plevmusly
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The reflected voltage is similar to the incident voltage except that it
diminishes in magnitude and is retarded in phase from the receiving end
toward the sending end. Addition of the incident and reflected voltages
at any point gives the resultant voltage at the point. To an ohserver
stationed at any point along the line, the voltage appears only as a
sinusoidal variation having an rms value determined by the resultant
of the two waves.

If a line is terminated in its characteristic impedance Z,, the receiving-
end voltage Vr is equal to I:zZ., and there is no reflected wave of either
voltage or current, as may be seen by substituting /zZ, for Vz in Eqs.
(5.20) and (5.21). A line terminated in its characteristic impedance
is called a flat line or an infinite line. The latter term arises from the
fact that a line of infinite length can not have a reflected wave. Usually
power lines are not terminated in their characteristic impedance, but
communication lines are frequently so terminated in order to eliminate
the reflected wave. A typical value of Z, is 400 ohms for a single-circuit
line and 200 ohms for two circuits in parallel. The phase angle of Z.
is usually between 0° and —15°.

In power system work, characteristic impedance is sometimes called
surge impedance. The term surge impedance, however, is usually
reserved for the special case of a lossless line. If a line is lossless, its
resistance and conductance are zero, and the characteristic impedance
reduces to /L/C, a pure resistance. When dealing with high frequencies
or with surges due to lightning, losses are often neglected, and the surge
impedance becomes important. Surge-impedance loading (SIL) of a line
is the power delivered by a line to a purely resistive load equal to its
surge impedance. Power system engineers sometimes find it convenient
to express the power transmitted by a line in terms of per unit of SIL—
that is, as the ratio of the power transmitted to the surge-impedance
loading. TFor instance, the permissible loading of a transmission line
may be expressed as a fraction of its SIL.?

A wavelength \ is the distance along the line between two points where
the difference in phase is 360°, or 2r radians, between the voltages or
currents measured at the two points. If 8 is the phase shift in radians
per mile, the wavelength in miles is

_ 2
8

A distance of a half wavelength is indicated in ¥§
between adjacent points where the voltage is zero a

A
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3 See Central Station Engineers of the Westinghou
Transmission and Distribution Reference Book,” 4th ed
burgh, Pa., 1950.
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frequency of 60 cps, a wavelength is approximately 3,000 miles. The
velocity of propagation of a wave in miles per second is the product of the
wavelength in miles and the frequency in cycles per second, or

Velocity = f (5.24)

If there is no load on a line, [x is equal to zero, and, as determined
by Egs. (5.20) and (5.21), the incident and reflected voltages are equal
in magnitude and in phase at the receiving end. In this case the incident
and reflected currents are equal in magnitude but 180° out of phase
at the receiving end. Thus, the incident and reflected currents cancel
each other at the receiving end of an open line but not at any other point
unless the line is entirely lossless so that the attenuation « is zero.

Example 5.1

A single-circuit 60-cycle transmission line is 225 miles long. The load
is 125,000 kw at 200 kv with 1009 power factor. Evaluate the incident
and reflected voltages at the receiving end of the line and at the sending
end. Determine the line voltage at the sending end from the incident
and reflected voltages. Compute the wavelength and velocity of propa-
gation. The parameters of the line are

R = 0.172 ohm /mile

L = 2.18 millihenrys/mile
¢ = 0.0136uf/mile

G =0

Solution

z = 0.172 + j2r X 60 X 2.18 X 103
— 0.172 + j0.822 = 0.841/78.2° ohm/mile

y =0+ j2r X 60 X 0.0136 X 10-°
=0 4+ 55.13 X 107¢ = 5.13 X 107¢/90° mho/mile

78.2° 4 90°
2

= vzl = 225/0.841 X 5.13 X 10~°

= 0.467/84.1° = 0.0481 + 70.465

z 0.841 78. 2° — 90° -
Z_\/g—/_ 513 X 100 / — 405/—5.9" ohms

Ve = 200’0_00 = 115,200/0° volts to neutral
/3
125,000,000
I T = 361/0° am
* 7 V3 X 200,000 [0 amp
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VERSION
ADDS NO

Designate the incident voltage as V* and the
Then, at the receiving end, where z = 0,
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Vet 1a7, _ 113,200/0° + 361/0° X 405/ ~5.9°

Vet = 5 = 5
— 57,600 & 72,500 — 7,500 = 130,100 — 57,500
= 130,100/ —3.3° volts
o _ Ve L, _ 115,200/0° = 361/0° X 405/ —5.0°
=

2 2
= 57,600 — 72,500 — ;7,500 = —14,900 + 57,500
= 16,700/153.3° volts

At the sending end, where 2 = I,

Vet = Y_"E__E]LZ” edei®l = 130,100/ —3.3° ¢0-0481¢i0-465

= 130,100/ —3.3° X 1.049/26.6° = 136,500/23.3° volts

R el [ 53.3° (e /—26.6°
Vs = elem® = 16,700/153.3"\ 14710 /= 2667

2
= 15,900/126.7° volts

The line-to-neutral voltage at the sending end is

Vs = 136,500/23.3° + 15,900/126.7°

= 125,300 + 754,000 — 9,500 + ;12,750
115,800 + j66,750 = 133,800,/30° volts

The line voltage at the sending end is
Vs = v/3 X 133.8 = 232 kv

The wavelength and velocity of propagation are computed as follows:

0.465 L
B= o5 = 0.002065 radian/mile
2 2 .
A= B 0.002065 — 3,040 miles

Velocity = fA = 60 X 3,040 = 182,400 miles/sec

5.7 The Long Transmission Line—Hyperbolic Form of the Equations.
The incident and reflected waves of voltage are seldom found when g
lating the voltage of a power line. The reason for discussing
and current of a line in terms of the incident and reflecjs
that such an analysis is helpful in obtaining a fuller g
some of the phenomena of transmission lines. A : (e

& power line is
A4

of the equgtions fqr eomputing‘ current and voltg

e i o i QS RE G‘i§“i'ERED )
VERSION
ADDS NO




CURRENT AND VOLTAGE RELATIONS ON A TRANSMISSION LINE 101

el — 6—0

sinh 6 = —5 (5.25)
8 —0
cosh 6 = £ —Ze (5.26)

By rearranging Eqs. (5.17) and (5.18) and substituting hyperbolic func-
tions for the exponential terms, a new set of equations is found. The new
equations, giving voltage and current anywhere along the line, are

V = Vg cosh yx 4+ IzZ, sinh yx (5.27)
and
(5.28)
Letting # = [ to obtain the voltage and current at the sending end, we
have
Vs = Vg cosh yl + IzZ, sinh vl (5.29)
and
Is = I coshyl —|— s1nh vl (5.30)

Equations (5.29) and (5.30) may be solved for Vg and Ig in terms of
Vs and s to give

Ve = Vs cosh yl — IsZ, sinh vl (5.31)
and
Vs .
Iz = Iscosh vyl — 7 S (5.32)

Equations (5.29) to (5.32) are the fundamental equations of a trans-
mission line. For balanced three-phase lines the current is the line
current, and the voltage is the line-to-neutral voltage—that is, the line
voltage divided by v/3. In order to solve the equations, the hyperbolic
functions must be evaluated. Since vl is usually complex, the hyperbolic
functions are also complex and cannot be found directly from ordinary
tables. A very convenient set of charts for evaluating the hyperbolic
functions of complex arguments usually encountered in power transmis-
sion lines has been published by Woodruff.* In Chap. 6 of this book
are charts from which cosh vl may be read in rectangular form. These
charts also give values which when multiplied by |Z.| yield the complex
expression for Z, sinh y! and values which when divided by |Z,| yield (1/Z.)
sinh yI. The charts are explained in detail in Chap. 6.

4L, F. Woodruff, “ Complex Hyperbolic Function Charts,” El
550-554, May, 1935. The Woodruff charts cover the complex
found in the solution of 60-cycle lines up to about 300 miley
charts, see A. E. Kennelly, ““Chart Atlas of Complex Hype
tions,” Harvard University Press, Cambridge, Mass., 1924
of complex arguments, see A. E. Kennelly, “Tables
Circular Functions,” Harvard University Press, Cambridg

%i

Tl P 4’@

5E@1S‘TERED )
VERSION

ADDS NO




102 ELEMENTS OF POWER SYSTEM ANALYSIS

If special charts are not available, hyperbolic functions of complex
arguments may be evaluated in several other ways. The following equa-
tions give the expansions of hyperbolic sines and cosines of complex argu-
ments in terms of circular and hyperbolic funetions of real arguments:

cosh (al + jBl) = cosh al cos Bl + j sinh ol sin 8l (5.33)
sinh (al + j8l) = sinh ol cos Bl + j cosh al sin gl (5.34)

Equations (5.33) and (5.34) make possible the computation of hyperbolic
funetions of complex arguments from the tables of circular and hyperbolic
functions of real arguments available in various handbooks. The correct
mathematical unit for 8l is the radian, and the radian is the unit found
for 8l by computing the quadrature component of yl. Equations (5.33)
and (5.34) may be verified by substituting in them the exponential forms
of the hyperbolic functions and the similar exponential forms of the
circular funections.

Another convenient method of evaluating a hyperbolic function is to
expand it in a power series. Expansion by Maclaurin’s series yields

6* 6+ 6%
and
. 6° 6% 67

The series converge rapidly for the values of vl usually found for power
lines, and sufficient accuracy may be found by evaluating only the first
few terms.

A third method of evaluating complex hyperbolic functions is sug-
gested by Eqs. (5.25) and (5.26).  Substituting a + 78 for 6, we obtain

a I8 —a,—iB8
cosh (a + j8) = ggL_Zf; — L4(e/B 4+ e/ =B)  (5.37)
and
. . el — eI 1/ _
sinh (o +78) = ST = 1g(e/8 — e/=B) (5:38)
Example 5.2

Find the voltage, current, and power at the sending end of the line
deseribed in Fxample 5.1.

Solution
From the solution of Example 5.1
Z, = 405/ —5.9° ohms
¥l = 0.0481 + 70.465
Vr = 115,200/0° volts to
Ir = 361/0° amp
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Trom Egs. (5.33) and (5.34)

cosh vyl = cosh 0.0481 cos 0.465 + j sinh 0.0481 sin 0.465
(Note: 0.465 radian = 26.6°)
cosh vl = 1.0012 X 0.894 + 70.0481 X 0.448 = 0.895 + j0.0215
0.895/1.38°
sinh 4l = sinh 0.0481 cos 0.465 + j cosh 0.0481 sin 0.465
= 0.048 X 0.894 4 71.0012 X 0.448 = 0.0429 4+ j0.449
= 0.449/84.5°

f

Then from Eq. (5.29)
Vs = 115,200 X 0.895/1.38° + 361 X 405/ —5.9° X 0.449/84.5°
103,000,/1.38° + 65,600,/78.6°
103,000 + 52,480 + 13,000 + 764,400
116,000 + 766,880 = 133,800,/30.0° volts

and from Iiq. (5.30)

I

115,200 o
105, 5.7 X 0-19/81.5°

= 323/1.38° + 128/90.4° = 323 + j7.8 — 0.9 + ;128
= 322 + 7136 = 350/22.9° amp

Is = 361 X 0.895/1.38° +

At the sending end

Line voltage = /3 X 133.8 = 232 kv
Line current = 350 amp
Power factor = cos (30.0° — 22.9°) = 0.9923
Power = /3 X 232 X 350 X 0.9923 = 140,000 kw

[

5.8 The Equivalent Circuit of a Long Line. The nominal-T and
nominal-r circuits, as is pointed out in Sec. 5.4, do not represent a trans-
mission line exactly because they do not account for the parameters of
the line being uniformly distributed. The discrepancy between the
nominal T and = and the actual line becomes larger as the length of line
increases. It is possible, however, to find the equivalent circuit of a long
transmission line and to represent the line accurately, in so far as meas-
urements at the ends of the line are concerned, by a networkes
parameters. Let us assume that a = circuit similar to
is the equivalent circuit of a long line, but let us call the
equivalent-r circuit Z’ and the shunt arms Y'/2 to ¢
the arms of the nominal-r circuit. Equation (5.5)
voltage of a symmetrical-r circuit in terms of i
and the voltage and current at the receiving end.
Y’/2for Z and Y /2 in Eq. (5.5), we obtain the scx

ERED
m from V@ ,?

sending-end
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104 ELEMENTS OF POWER SYSTEM ANALYSIS

equivalent circuit in terms of its series and shunt arms and the voltage
and current at the receiving end. So

Zl !
Vs = ( 2Y + 1> VR + Z’Ize (539)
For our circuit to be equivalent to the long transmission line, the coeffi-
cients of Vi and Iz in Eq. (5.39) must be identical, respectively, to the
coefficients of Vz and Iz in Eq. (5.29). Equating the coefficients of Ix
in the two equations yields

7' = Z, sinh ~1 (5.40)
z . inh I

7 = \/E sinh vl = 2l s
Yy Vayl

7 = 750 (5.41)

vl

where Z is equal to zl, the total series impedance of the line. The term
(sinh 1)/l is the factor by which the series impedance of the nominal =
must be multiplied to convert the nominal = to the equivalent . For
small values of 41, sinh vl and 41 are almost identical, and this fact shows
that the nominal = represents the medium-length transmission line quite
accurately, in so far as the series arm is concerned.

To investigate the shunt arms of the equivalent-r circuit, we equate
the coefficients of Vg in Eqs. (5.29) and (5.39) and obtain

z'y’

5 4+ 1 = cosh v (5.42)

Substituting Z, sinh yI for Z’ gives

Y_ZL%M + 1 = cosh vl (5.43)

and
Y’ 1 cosh ~I — 1
9 = Z. sinh~l (5.44)
Another form of the expression for the shunt admittance of the equiv-
alent circuit may be found by substituting in Eq. (5.44) the foll fn o
identity:

hll =cosh'yl—1

tanh 3 sinh 71

The identity may be verified by substituting the
Eqs. (5.25) and (5.26) for the hyperbolic funct
tanh § = sinh 6/cosh . Now
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Yy 1 vl
Y’ Y tanh (v1/2) .
7 2 ‘)’Z/Z (5.47)

where Y is equal to yl, the total shunt admittance of the line. Iqua-
tion (5.47) shows the correction factor used to convert the admittance of
the shunt arms of the nominal = to that of the equivalent #. Since
tanh (v1/2) and 4I/2 are very nearly equal for small values of v/, the
nominal = represents the medium-length transmission line quite accu-
rately, for we have seen previously that the correction factor for the
series arm is negligible for medium-length lines. The equivalent-r circuit
is shown in Fig. 5.9. An equivalent-T circuit may also be found for a
transmission line.

sinh 71
7l

Z'=Z,snh 7l=2

tanh Y1/2
11/2

Fie. 5.9 Equivalent-m circuit of a transmission line.

With some charts of complex hyperbolic functions, Eqgs. (5.41) and
(5.47) are the most desirable. When charts are not available, it may be
easier to use Eqs. (5.40) and (5.44).5

Example 5.3
Find the equivalent-r circuit for the line described in Example 5.1
and compare it to the nominal =.

Solution
Since sinh 4! and cosh vl are already known from Example 5.2, Eqs.
(5.40) and (5.44) will be used.

Z' = 405/ —5.9° X 0.449/84.5° = 182/78.6° ohms in the series arm
Y’ 0.895 4 70.0215 — 1 _ —0.105 +j0.0215 _ 0.107/188.4"
2 182/78.6° B 182/78.6° - ‘

If

0.000588/89.8° mho in each shunt arm

work Analyzer
N.Y., 1950, lists

quuu ale$q-ERED ¢
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5 The General Electric Company publication entitled
Manual,” GET-1285a, General Electric Company, Schas
correction factors to convert the series impedance of a
the equivalent 7 and gives capacitance values for the shu
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The nominal-r circuit has a series impedance of
7 = 225 X 0.841,/78.2° = 189, 78.2° ohms
and equal shunt arms of

Yy 512 X 107%/90° ,
5 = 5 X 225 = 0.000575/90° mho
Comparison of the values found for the nominal-r and equivalent-=
circuits in Example 5.3 shows that the difference is slight for a typical
line of 225 miles, from which we conclude that the nominal = may repre-
sent long lines sufficiently well if a high degree of accuracy is not required.
5.9 Summary. Any transmission line may be represented accurately,
as far as conditions at its terminals are concerned, by its equivalent-r
circuit.  The results of calculations made on the equivalent circuit will
be identical with those found by the equations for a long transmission
line. Medium-length lines are represented very accurately by the nom-
inal 7, and very short lines may be solved by considering them as series
impedances. Solutions made from an equivalent circuit are preferred
to solutions from transmission-line equations when it is desired to include
terminal equipment with the line in moking calculations.  As will be
described later, nominal-r or equivalent-r circuits represent transmission
lines on a-c calculating boards.

PROBLEMS

6.1 A 10-mile 60-cycle single-circuit three-phase line is composed of No. 4/0
19-strand hard-drawn copper conductors equilaterally spaced with 5 ft between
centers. It delivers 2,500 kw at 11,000 volts to a balanced load. What must be the
sending-end voltage when the power factor is 809, lagging, when the power factor is
unity, and when the power factor is 90% leading? Assume a wire temperature of
50°C. .
5.2 Derive the equations for Vg and I's for the nominal-T cireuit of a transmission
line in terms of Vi, Ir, and the total scries impedance and shunt admittance of the
line.

5.3 A 60-cycle three-phase transmission line has its three conduectors arranged in
flat, horizontal spacing with 15 ft between adjacent conductors. The conductors
are No. 4/0 19-strand hard-drawn copper. The line is 75 miles long and carries a
lIoad of 30,000 kw at 115 kv, with 0.8 power factor lagging. Find the voltage, current,
power, and power factor at the sending end. What is the efficicney of transm glon?
Assume a wire temperature of 50°C.

6.4 Derive equations similar to Eqs. (5.40) and (5.44) for th
transmission line.

5.6 A single-circuit 60-cycle three-phase transmissioy
paramecters:

R = 0.30 ohm /mile

L = 2.10 millihenrys/mile
C = 0.014 uf/mile

It
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The voltage at the receiving end is 132 kv, If the line is open at the receiving end,
find the rms value and phasc angle of the following: '

(o) The incident voltage to neutral at the receiving end. (Select this voltage as
reference in computing the phase angles of the other voltages.)

(b) The reflected voltage to neutral at the receiving end.

(¢) The incident voltage to nentral at 75 miles from the receiving end.

(d) The reflected voltage to nentral at 75 miles from the receiving end.

(¢) The resultant voltage to neutral and the line-to-line voltage at 75 miles from
the reeeiving end.

5.6 TFind the incident and reflected current for the open line of Prob. 5.5 at the
receiving end and 75 miles from the reeciving end.

5.7 TIf the line of Prob. 5.5 is 75 miles long and delivers 40,000 kw at 132 kv and
80 % power factor lagging, determine the sending-end voltage, eurrent, power, and
power factor. Compute the cfficiency of transmission, characteristic impedance,
wavelength, and velocity of propagation.

5.8 Justify Iigs. (5.33) and (5.34) by substituting in them the cxponential expres-
sions for the cireular and hyperbolic functions.

5.9 Hvaluate cosh @ and sinh § for 8 = 0.5 /75° by the series expansions and by
the formulas involving circular and hyperbolic functions of real arguments.

5.10 Justify Eq. (5.45) by substituting for its hyperbolic functions the equivalent
exponential expressions.

5.11 A 60-cycle three-phase transmission line is 175 miles long. It has a total
series impedance of 35 + ;140 ohms and a shunt admittance of 930 X 107* mho. It
delivers 40,000 kw at 220 kv, with 90 % power factor lagging. Find the voltage at the
sending end by (a) the short-line approximation, (b) the nominal-r approximation,
(¢) the long-line equation.

5.12 Determine the equivalent-r cireuit for the line of Prob. 5.11.

5.13 Determine the voltage regulation for the linc described in Prob. 5.11.
Assume that the sending-end voltage remains constant.

5.14 A three-phase 60-cycle transmission line is 240 miles long.  The voltage at
the sending end is 220 kv. The parameters of the line are: /2 = 0.2 ohm/mile,
X = 0.8 ohm/mile, and ¥ = 5.3 X 107® mho/mile. Find the sending-end current
when therc is no load on the line.

5.15 1If the load on the line deseribed in Prob. 5.14 is 75,000 kw at 220 kv, with
unity power factor, ealculate the current, voltage, and power at the sending end.
Assume that the sending-end voltage is held constant, and caleulate the voltage
regulation of the linc for the load specified above.
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CHAPTER 6

GENERALIZED CIRCUIT CONSTANTS

6.1 General Circuit Equations. A three-phase transmission line, as
we saw in Chap. 5, can be represented by a circuit consisting of two ter-
minals where power enters the circuit and two terminals where power
leaves the circuit. The circuit is said to be passive, linear, and bilateral.
It is passive because it contains no sources of electric energy, linear
because the impedances of its elements are independent of the amount of
current passing through them, and bilateral because the impedances are
independent of the direction of the current. The most general network
consisting of a pair of input terminals and a pair of output terminals
has an impedance connected between each combination of two of its four
terminals and is called a four-terminal network. It can be shown that
any linear, passive, and bilateral four-terminal network can be repre-
sented by either a T or & circuit which is equivalent to it in so far as
measurements at the input or output terminals are concerned.! Sucha T
or = circuit actually is a three-terminal network since one terminal is
common to both the sending and receiving ends. We must remember,
however, that the T or = circuit is equivalent to the general four-terminal
network only for measuring characteristics at the sending and receiving
ends and not between one terminal at the sending end and one terminal
at the receiving end.

To find the relations between sending- and receiving-end quantities
of a four-terminal network, let us determine the voltage and current at
the sending end of the unsymmetrical-T circuit of Fig. 6.1 in terms of
the voltage and current at the receiving end, since an unsymmetrical T

passive, linear, and bilateral. The current at the sendi
Is =In+Y(Ve + I:Z) = YV + (1

1 For example, see W. C. Johnson, ““Transmission Lines
257, MceGraw-Hill Book Company, Inc., New York, 1¢
Reed, “Communication Circuits,” 3d ed., pp. 43-46, Jol}
York, 1949.

%
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GENERALIZED CIRCUIT CONSTANTS 109

The voltage at the sending end is

Vs = Ve + IpZs + [sZy = Ve + IzZs + Z:Y Ve + (22, + [:Y 712,
= (1 + YZl)VR + (Zl ‘+‘ Z2 + YZ1Z2>[R (62)

The above equations are simplified in form by letting

B=Z,+ 7+ Y72, D=1+YZ (6.3)
Then Eq. (6.2) becomes
Vs = AVye + Bls (6.4)
and Eq. (6.1) becomes
Is = CVe+ Dig (6.5)

Since our unsymmetrical-T circuit is valid for measuring the end condi-
tions of any passive, linear, and bilateral four-terminal network, Egs. (6.4)

IS Z} Zz IR

Fic. 6.1 Unsymmetrical-T circuit equivalent to a four-terminal network.

and (6.5) are valid for any such network. The constants A, B, ¢, and D

are called the generalized circuit constants or the 4 BC'D constants of the

network, and they can be evaluated for any such four-terminal network.
Solving Eqs. (6.4) aud (6.5) for Vr and I, we obtain

_ DV — Bl

Ve = AD — BC (6.6)
and
ALy —CVy
Iz = D — BC (6.7)

We shall sce later that A D — B(C' = 1, and if we accept this relationship
between the ABCD constants subject to proof later, Egs. (6.60and
become

I’YR DVq— BIS

and
Ig = —CVy+ Alg

Usually the 4 BCD constants are complex.
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110 ELEMENTS OF POWER SYSTEM ANALYSIS

By letting [ equal zero in Eq. (6.4), we see that the constant A is
the ratio of sending-end voltage to receiving-end voltage when the receiv-
ing end is open-circuited. The constant A4 is dimensionless since it is a
ratio of two voltages. Unless the voltages are in phase, 4 is complex
and its angle is the phase angle between the voltages.

If we let Vi equal zero in Eq. (6.4), we find that B is the ratio of
voltage at the sending end to current at the receiving end with the receiv-
ing end short-circuited. Since it is a ratio of voltage to current, the
constant B has the dimensions of impedance and is specified in ohms.

Similarly, by letting Iz equal zero in Eq. (6.5), we see that the constant
C is the ratio of current at the sending end to voltage at the receiving
end with the receiving end open-circuited. Since it is a ratio of current
to voltage, the constant € has the dimensions of admittance and is
specified in mhos.

I Ip
————T—-—o o—-T——
Vs ABCD Ve

o0 O]

F1c. 6.2 Symbolic diagram representing a four-terminal network.

If we let Vi equal zero in 15q. (6.5), we find that D is the ratio of
sending-end current to receiving-end current with the receiving end
short-cireuited. The constant D is dimensionless since it is a ratio of two
currents.

The ABCD constants are widely used in power system work. Some
power companies prepare sheets tabulating the ABCD constants of all
their transmission lines. A general four-terminal network is often indi-
cated by a diagram similar to Fig. 6.2, where a rectangle encloses the two
pairs of terminals and letters symbolizing the generalized circuit con-
stants are placed inside the rectangle. The voltages and currents appear-
ing in equations with the ABCD constants are identified on the diagram.

6.2 Relations between the Generalized Circuit Constants. To
prove the relation 4D — BC = 1, let us connect a generator having an
internal voltage E and negligible 1mpedan< e to the sending end of oen-
eral four-terminal network, and let us short-circuit the re
The diagram of the circuit is shown in Fig. 6.3, where
current is designated 7,. Applying Eq. (6.4), we obta

D
(6.10) ,/6\43
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GENERALIZED CIRCUIT CONSTANTS m

Now let us short-circuit the sending end of our network and connect
the generator at the receiving end, as shown in Fig. 6.4. The directions
that are assumed to be positive for the flow of sending- and receiving-end
currents in the equations involving ABCD constants are indicated.

12
+° oi' I
+
Q) v ABCD V,=0
_O 0_

F16.6.3 Four-terminal network with a short circuit at the receiving end and Vg = E.

Comparison of Figs. 6.3 and 6.4 shows us that we can apply the reciproc-
ity theorem, which states that the current in one branch of a linear,
bilateral network due to an electromotive force in a second branch is
equal to the current that the electromotive force when transferred to the
first branch causes in the second branch, provided that a short circuit

I Ip
— +O 0+ —
+
V=0 ABCD Ve E
—° o

F1e. 6.4 Four-terminal network with a short circuit at the sending end and Vg = E.

replaces the electromotive force removed from the second branch.? This
means that the current flowing out of the network of Fig. 6.4 at the upper
terminal of the sending end, in the direction opposite to that shown for
Is, is equal to [, of Fig. 6.3. Therefore, I5 of Fig. 6.4 is equal to — 1,
of Fig. 6.3. For Fig. 6.4, by Eqgs. (6.4) and (6.5),

0

AE + Bz (6.12)

and
Is = —1,=CE + DI

2 The reciprocity theorem is proved in most texts on elemenj
See for instance R. H. Frazier, ‘“‘Elementary Llectric-circu
MeGraw-Hill Book Company, Inc., 1945; K. Y. Tang, ““ Alter
2d ed., pp. 214-215, International Textbook Company g
LePage, ‘“ Analysis of Alternating-current Circuits,” pp. 3
Company, Ine., 1952.
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12 ELEMENTS OF POWER SYSTEM ANALYSIS
Eliminating /& from Egs. (6.12) and (6.13), we obtain

—I, = CE + D< I‘;E> (6.14)

and substituting the value of 7, from Iiq. (6.11) into Eq. (6.14), we obtain

E ADE '
~5= =CE — 5 (6.15)
which, upon dividing by —E/B, gives the relation which we set out to

prove, namely,
AD — BC =1 (6.16)

z When the ABCD constants are evalu-
VW ated independently, Iq. (6.16) serves as
a partial check on the calculations.
gys §YR 6.3 Generalized Constants of Sim-

ple Networks. We have already found
the ABC D constants of an unsymmetri-
cal-T network, and the results are given
in Kgs. (6.3). The unsymmetrical-r
circuit shown in Fig. 6.5 may be analyzed in a similar manner to give the
following values for the ABC'D constants:

=14 YiZ C=Ys+ Yr+ ZYsYr
B=17 D=1+YsZ

F1g. 6.5 Unsymmetrical-r circuit.

(6.17)

A series circuit with shunt admittance equal to zero, which represents
short transmission lines and in some cases transformers, has 4 BC'D con-
stants which may be determined by inspection of Eqs. (5.1) and (5.2).
They are

A4 =1 C=20

B =7 D=1 (6.18)

Sometimes the ABCD constants of a network are known, and the
equivalent circuit must be found to represent the circuit on a calculating
board. The equivalent-z circuit is found by solving Eqs. (6.17) for the
values of the series and shunt arms, which are

Z=2B
A -
D -1

Vo= g

letting Ys = Yr = Y/2 in Eqgs. (6.17), or by exg @mn of Eqs. (
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and (5.7). By either approach
2
a=1+20 c-vZ0
(6.20)
B=12 D=1+ 7

Fquations (6.20) may be used to A
compute the ABCD constants of long
transmission lines from the impedance
and admittance values of the equiva- X% §
lent = of the long line. Since hyper- 2 S
bolic functions are needed to compute
the values for the equivalent =, it is Fic. 6.6 Symmetrical-r circuit.
more direct to calculate the ABCD
constants by the following equations, which can be verified by inspection
of Egs. (5.29) and (5.30):

nf

B _ sinh v!
A = cosh vl C = 7 6.21)
B = Z, sinh v D = cosh #I

In all four-terminal networks which are symmetrical—that is, net-
works which are the same when viewed from either end—the constants
A and D are always equal. Whenever ABCD constants are calculated,
the results should be checked by the relation AD — BC = 1. The
verification of this relationship between the ABCD constants found for
the networks discussed above is left to the reader.

6.4 Charts of Transmission-line Constants. The ABCD constants of
long transmission lines involve hyperbolic functions of yl, where ¥l is
complex. Evaluation of the hyperbolic functions is tedious and time
consuming unless charts such as those mentioned in Chap. 5 are avail-
able. Povejsil and Johnson? have published a set of charts from which
the real and quadrature components of the complex ABCD constants
can be read, directly for the A constant and in terms of |Z,| for the B and
C constants. Only the length of the line and the ratio of series resistance
to inductive reactance need be known to read the charts.

The method of obtaining the curves for the charts is based o
fact that the product of L and € is practically constant fq
lines of stranded copper or ACSR. The same principigms
curves presented by Edith Clarke* for determining co

é- nSIIlISSlOIl Line
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3D. J. Povejsil and A. A. Johnson, “ A Per-unit Interpretat]
Constants,” Trans. AIEE, vol. 70, pp. 194-200, 1951.
* K. Clarke, “Simplified Transmission Line Caleulatic
pp. 321-329, May, 1926
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functions. If the product LC is identical for all lines, vl at a given fre-
quency is a function only of #/X and the length of the line I, where R is
the resistance of the line in ohms per mile and X is the inductive reactance
of the line in ohms per mile, since

= Vel

and in terms of L and C

= AV (R F jol)joC | = \/L.C | —1 +j§L-z

= VeLC -1 +,7 I (6.22)

which is a function only of R/X and [, if LC is constant for all lines.

That LC is practically identical for all overhead lines, regardiess of the
type of conductor and configuration, may be seen by evaluating \/w?LC
in terms of the dimensions of the line, as follows:

0.0388 X 10-¢
log D../r

(6.23)

VI = 0.

and, since r’ = 0.7788r for solid conductors,

D, 1 1 ]
: . . 6.24
V@ LC = \[ 282 X 10~ <10g + log 7788) log Do/ ©20

For f = 60 cps,

0.444

ST = 103
@ LC = 10 o DJr

1.09 + (6.25)

N
which is very nearly independent of D,, and r. The expression is, there-
fore, very nearly constant for all lines, since variations of the second term
under the radical have little effect for the usual range of values of D,
and r.  Although Eq. (6.25) applies only to a solid conductor, the second
term under the radical is the only one affected by the type of conductor,
and it is affected only slightly. As stated above, variations of the second
term have small effect on the result. Povejsil and Johnson poin
that an examination of a considerable number of lines s
the factor v/wLC was always between 2.05 X 10—3
for 60-cycle overhead lines of stranded copper and AC
are based on a value of 2.06 X 107 for this quanti

The ABCD constants in the charts arc expressed
nitude of the characteristic impedance of the 1i

\Z|. It Z, = )]Zc(@, th(—; /iBCD conétants of a tYhs smoREQZS)TERED 7
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A = cosh v/

B = \il{hsilllh vl/¢ ohms (6.26)
¢ =200 mhos
7] L=
D = 4‘1
The constants A and D are dimensionlesb and independent of Z,. When
become
A in per unit = 4 = cosh vl
B in per unit — Qfgﬁﬁ% — sinh 41/¢ (6.27)

C in per unit = |Z,] X C in ohms = sinh v[/—¢
D in per unit = D = cosh vl

TUpon substituting the expression of Eq. (6.22) for v/ in Eqs. (6.27) and
letting v/w?LC = 2.06 X 10-3, we obtain for the constants in per unit

of |Z,|
A = cosh (2.06 X 1073 \/ —-1+7 f—é) per unit
B = [smh <‘> 06 X 10— \/—] +‘;X>} s per unit  (6.28)
C = l:sinh <2.06 X 1073 \ -1+ j%)] /= per unit
D=4

The angle ¢ associated with the characteristic impedance is also a
function of B/X, since

Z. = \/2 — \/5%5# (6.29)

7. = |7, / fan” (ol./R) — 907 (6.30)
and

(= — ltan W B

2 X

With ¢ expressed in terms of R/X, the ABCD consjg
given in Egs. (6.28) are functions only of the ratio R/
of the line I. The curves plotted in Figs. 6.7 to
parameter and show the variation of the ABCD
length. Since the constants are complex, the y
ponents are plotted separately, and the consta
expressed in per unit of |Z.| are

4 A
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A = 441 + j/lg
B = B, + jB, (6.32)
C =04 jC,
Sometimes the constants may be useful in their per-unit form. At
other times it may be expedient to convert them to the form required in

1.000 =]

0.960 ™

0.920 \

0.880

Aj in per unit
o
[
P
=)

0.800 N

0.760

0.720 K
\ ]
0.680 \

0 50 100 150 200 250 300 350 400
. Line length in miles
Fic. 6.7 The transmission-line 4; constant as a function of line length in miles.
(From D. J. Povejsil and A. A. Johnson, ‘A Per-unit Interpretation of Transmission
Line Constants,” Trans. AIEE, vol. 70, pp. 194-200, 1951, by permission.)

equations involving volts and amperes. No conversiogal
the constant A. The B and C constants are converte
which is the inverse of that used to obtain Eqgs. (G

B in ohms = |Z,| X B in peg

C in mhos = ¢ in per unit
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0.10 '
R/X=04~1)/

0.08 7 )
- // /fe/x=o.3
£ 0.06 ) A
g‘- //// {/
3 0.04 /1/ e - /R/ =02

v // R/X=O.1[>/
0.02 A L
. —

0 50 100 150 200 250 300 350 400
Line length in miles
Fic. 6.8 The transmission-line 4. constant as a function of line length in miles.
{(From D. J. Povejsil and A. A. Johnson, “A Per-unit Interpretation of Transmission
Line Constants,” Trans. AIEE, vol. 70, pp. 194-200, 1951, by permission.)

0.200
T LA B
R/X=04-51~ R/X-03
0.160 v //
N A
£ 0.120 A L rxoas | L
g5 { d T
g A v =
= 0.080 A ]
&) A L] R/Xio;l\ -
//
0.040 s o
/ —T |
Zad
0
0 50 100 150 200 250 300

Line length in miles
Fi6. 6.9 The transmission-line B; constant in per unit of |Z.] s
length in miles. (From D. J. Povejsil and A. A. Johnson,” A
tion of Transmission Line Constants,” Trans. AIEE, vol.
permission.)
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0.800

| ]
R/X=04
R/X=1~
0.700 R/X=2
R/X=3
R/X=4

0.600 |
N 0.500
5
= R/X=0
= R/X=2
= 04 :
g 0o R/X=3
£ "R/X=4

o~

Q' 0.300

0.200

0.100

0
0 50 100 150 200 250 300 350 400

Line length in miles
F1a. 6.10 The transmission-line B, constant in per unit of |Z.| as a function of line
length in miles. (From D. J. Povejsil and A. A. Johnson, “A Per-unit Interpreta-
tion of Transmission Line Constants,” Trans. AIEE, vol. 70, pp. 194-200, 1951, by
permission.)

-0.035
—_ Ay
S 0.030 1o
< —0.025
=
2 - 0.020
2
£ —-0015
S~ 0010 =
L ,/
- 0.005 ]
s i M ey
0
0 50 100 150 200 250

Line length in miles
F1c. 6.11 The transmission-line C; constant in per unit of
length in miles. (From D. J. Povejsil and A. A. Johns
tion of Transmission Line Constants,” Trans. AIEE, vol¥
permission.)
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0.80
IR/)}=0\\
R/X=1
0.70 R/X=2
R/X =43
0.60 — /2%
T 050 /|
% R/X=0
gmo JK?
)= R/X=4
< 030 ‘/
/
0.20 '//
0.10 /
0
0 50 100 150 200 250 300 350 400

Line length in miles
Tig. 6.12 The transmission-line C'; constant in per unit of |Z.| as a function of line
length in miles. (From D. J. Povejsil and A. A. Johnson, “A Per-unit Interpreta-
tion of Transmission Line Constants,”’ Trans. ATEE, vol. 70, pp. 194-200, 1951, by
permission.,)

If the product of L and C is the same for all lines, the magnitude of the
characteristic impedance of any line can be read from a chart, for if we
assume that

Vi C = 2.06 X 1072 (6.34)
we can solve for wC to obtain
_ 4.24 X 1075
wl = —7——

Upon substituting this value of wC in Eq. (6.29), we obt

_ R + jwl 6
ZC = JW X 108wl

103wl R
Z“z%VﬂE+1
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ADDS NO

o
0
7



120 ELEMENTS OF POWER SYSTEM ANALYSIS
Equation (6.37) shows that Z. can be expressed in terms of the inductive
reactance per mile and the ratio
of the resistance to the inductive

500 T T
60 cycles reactance. Figure 6.13 provides
460 curves from which |Z, can be

o R/X=03~_ read. .

£ R/X =0~2\ The method of obtaining the

N 420 R/X=01 ABCD constants from the charts

g is as follows:

k5 74 1. Calculate, or obtain from

@D — . .

2 380 R/X=00} tables, R and X in ohms per mile.

© 2. Calculate the ratio B/X.

3 340 3. Enter Figs. 6.7 to 6.12 with
the line length and the ratio R/X,
and read the real and quadrature

300 components of each constant in per
{ unit.
706 0.7 0.8 0.9 4. If B and C in ochms and mhos
Inductive rea.ctance ohms/mile are desired,

Fre. 6.13  The magnitude of the charac- (a) Read the magnitude of Z,

teristic impedance of overhead trans- ¢ Fie. 6.13 1

mission lines as a function of line induc- rom Iig. b.lo, or calcu-

tive reactance per mile. (From D. J. late Z..

Povejsil and A. A. Johnson, “A Per-unit (b) Obtain the required values

Interpretation of Transmission Line ¢ B d O f B

Constants,”” Trans. AIEE, vol. 70, pp. 0 an rom  fugs.

194-200, 1951, by permission.) (6.33).

Example 6.1

Obtain the 4 BCD constants of the line of Example 5.1, and check the
sending-end quantities found in Example 5.2.

Solution
From Example 5.1

R = 0.172 ohm /mile
X = 0.824 ohm/mile

Then

R 0172
X 0824~ 0.209

From the charts of Figs. 6.7 to 6.12, for a 225- élg/
ﬁo?RE GISTERED
VERSION

ADDS NO

Ay = 0.895 By = 0.089
. = 0.022 B, = 0.440
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and upon combining the real and quadrature components we have

A= A +j4, = 0.895 + j0.022 = 0.895/1.4°

B = B; + jB; = 0.089 + j0.440 = 0.450/78.6° per unit
C = C; +jCy, = —0.0035 + j0.451 = 0.451/90.47° per unit
D=4

The constants B and C when expressed in per unit are equal in magnitude
but not in angle. The difference between the magnitudes of B and C in
per unit here is the result of variables which enter in reading the charts
and in manipulating the slide rule.

The magnitude of the characteristic impedance can be read from Fig.
6.13 or taken from the solution of Example 5.1. From the example

Then from Eqs. (6.33)

B = 405 X 0.450/78.6° = 182.5/78.6° ohms

¢ = 95351 /90.47° = 0.000111/90.47° mho

Since

Ve = 115,200/0° volts and Ir = 361/0° amp

Vs = 0.895/1.4° X 115,200 4 182.5/78.6° X 361/0°
= 103,000/1.4° + 65,800,/78.6°
= 103,000 + 72,520 + 13,000 4 ;764,500
= 116,000 + 767,020 = 134,000/30° volts
and
Is = 0.000111/90.47° X 115,200 + 0.895/1.4° X 361

128/90.47° 4+ 323/1.4° = —1.03 + 7128 + 323 4+ j7.9
322 + 7136 = 350/22.9° amp

At the sending end

Line current = 350 amp

Line voltage = /3 X 134 = 232 kv
Power factor = cos (30° — 22.9°) = 0.9923

Power = /3 X 232 X 350 X 0.9923 =

& ersmenes
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Example 6.2

Find the equivalent-r circuit for the line d
from the ABCD constants obtained from the chg
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Solution
From Eqs. (6.19) and the constants found in Example 6.1

Z = B = 182.5/78.6° ohms

Y _A-—1_0895+,;0022 -1 _ —0.105 +j0.022

2 B 182.5/78.6° 182.5/78.6°
0.1072,/168.2°

= T182.5/78.6°

= 0.000588,/89.6° mho

6.5 Constants of Combined Networks. When a power system con-
sists of series and parallel combinations of circuits whose ABCD con-
stants are known, it is convenient to find the constants of the circuit
which is equivalent to the several component networks combined. This
is a form of network simplification. In some cases it may consist of the
inclusion of the characteristics of the transformers at the terminals of a

A, Ba Ca D, VX Ab Bb Cy Dy

e ot o LS
T i [T
v, A

PN o= & —0 O

Fia. 6.14 Two four-terminal networks in series.

line in the A BCD constants of the line itself in order to analyze the over-all
operation of the line with its terminating transformers. At other times it
may be desirable to know the constants of a circuit equivalent to two
long lines of different characteristics but operating electrically in parallel.

Consider two circuits in series as shown in Fig. 6.14. The two net-
works can be combined into a single equivalent network by writing
equations for each one separately and eliminating the voltage and eur-
rent at the junction of the two networks. For circuit a of Fig. 6.14,
the voltage and current at the junction are

VX = DaVS - BaIS (638)
Ix = =C.Vs + Adls (6.39)

and for circuit b the same voltage and current are

VX = AbVR -+ BbIR
IX = CbVR + DbIR

\.(6.39) and é\'ﬁ?’@
REGISTERED ©
(6.43) 7
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Eliminating Vx from Egs. (6.38) and (6.40) and I
(6.41), we have

DaV.s — Bols = AbVR

—C.Vs + Auls

i
Q
>
+
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Multiplying Eq. (6.42) by A, and Eq. (6.43) by B, and adding the result-
ing equations, we obtain

(AeDo — BoCa)Vs = (Audy + BuCy) Vi + (AuBy + BuDp) Iz (6.44)

Multiplying Eq. (6.42) by C, and Eq. (6.43) by D, and adding the result-
ing equations, we obtain

(AaDa - Buca)IS = (Abou + ObDa)VR + (BbCa + Dan)IR (645)

For the network equivalent to networks a and b in series, from Eqs. (6.44)
and (6.45), since AoDo — BuCs = 1,

A, = A, 4, + B.(h
B, = AuBy + B.Ds
Co = 4Co + (4D,
D, = ByCoa + D,Dy

(6.46)

If network b is at the sending end and a is at the receiving end, subscripts
a and b must be interchanged in Eqs. (6.46).

= , o A ,

Aa Ba Cu DB S R
I, — Y, Y; —
Is — - R T % Sa % Ra |
= T -
Vs z Ve
%1 =l Vl" S
— Ab Bb Cb DI, | e %YSb %ka

Fre. 6.15 Two four-terminal networks Fic. 6.16 Two equivalent-r circuits in
in parallel. parallel.

If two networks are connected in parallel as shown in Fig. 6.15 a
convenient way to derive the A BC'D constants of the resultant network is
to consider their equivalent-n circuits, shown in Fig. 6.16. The param-
eters of the resulting single equivalent-r circuit are obtained by adding
the admittances which are in parallel and by finding the equivalent
impedance of the two impedances in parallel in Fig. 6.16. The param-
eters of the resulting equivalent-r circuit in terms of the parameters of
the circuits equivalent to networks a and b are

YR = YRa + YRb
Ys = YSu -+ Ysb
 ZuZy

Z N Za + Zb

Upon substituting in Eqgs. (6.47) the appr
ABCD constants from Eqgs. (6.19) for the admit
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of the = circuits equivalent to networks a and b, we obtain

A, — -1
V=%, 2 B
. D=1 Dy—1 .
R (6.48)
B.Bs
Z = B -} B1

When the values obtained in Eqs. (6.48) are substituted in Eqs. (6.17),
the constants A, B,, and D, of the resulting equivalent network are
found to be

| _ AuByt AB.
e Ba —+— Bb
— BaBb /
A (6.49)
]) _ BbDa + Ba])b
o Ba + Bb

The fourth constant C, may be found by substituting the above expres-
sions for the other three constants in the relation A,D, — B,C, = 1.
Thus

(Aa - Ab)(Db - Dd) (650)

00=Ca+nb+ B+Bb

6.6 Measurement of Generalized Circuit Constants. When a trans-
mission line is being designed, the generalized circuit constants must be
determined by methods previously discussed, all of which depend on
computing the parameters of the circuit. The accuracy of such compu-
tations depends on how closely the assumed data approach actual condi-
tions. If the line is already built, the ABCD constants can be measured
by making a few simple tests on the line. In Sec. 6.1 the constants were
shown to be ratios of either voltage or current at the sending end of a
general four- terminal network to voltage or current at the receiving end
of the network with the receiving end open or short-circuited. If the
network is a transformer, generator, or some circuit having lumped
parameters, measurements of voltage and current at both ends of the
line can be made, and the phase angles between sending- and receiging-
end quantities can be determined. Thus the ABCD const
determined as indicated in Sec. 6.1. Tt is practicable filia ED
the magnitudes of the required voltages and curre ,/@
at both ends of a transmission line, but there is no /?
the difference in phase angle between quantities gheL¥o ends of the

line. Phase difference is important because t 17 Eﬁ
stants are complex. By measuring two impedilfc®yat :g IWERE D “Z
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transmission line, however, the ABCD constants can be computed.
The impedances to be measured are

Zso = sending-end impedance with the receiving end open-circuited
Zss = sending-end impedance with the receiving end short-circuited
Zro = receiving-end impedance with the sending end open-circuited
Zrs = receiving-end impedance with the sending end short-circuited

Il

The impedances measured from the sending end can be determined in
terms of the ABCD constants from Eqgs. (6.4) and (6.5). With I, = 0,
the equations give

Vs A
Zso = .- °C (6.51)
and with Vz = 0
- Vs B
Zss = .- D (6.52)

To find the impedances measured from the receiving end, Eqgs. (6.8)
and (6.9) must be modified by changing the signs of all the current terms.
The change in sign is necessary because, with the voltage applied at the
receiving end rather than at the sending end, the direction of current
flow assumed to be positive when measuring impedance is opposite to the
direction shown in Figs. 6.2 and 6.4 to which Eqs. (6.8) and (6.9) apply.
The equations become

Ve = DVs+ Blg (6.53)
In = CVs+ Alg (6.54)
From Eqgs. (6.53) and (6.54) with Is = 0
, Ve D o
Zro = 7—}3 = (T (650)
and when Vg = 0
s _ Ve B
Zrs = T. 4 (6.56)

The expression for Zro and Zxs can be determined by another method.
If the positions of ¥s and Yx are interchanged in the unsymmetrical-r
circuit shown in Fig. 6.5, the impedances measured at the sending end of
the modified circuit are equal to the receiving-end impeda
original unsymmetrical 7. Equations (6.19) show that Y
terms of the ABCD constants are the same except that
where D appears in the other. Therefore the substi
and of 4 for D in Eqgs. (6.51) and (6.52) gives the
ances of Eqs. (6.55) and (6.56).

The values of the ABCD constants in terms9
ances are found as follows:
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AD — BC 1

ZRO - ZRS = '——1—4—(]—— = —“‘Cy (657)
Zro—Zus 1 C 1
T Zw ACAT I (6.58)
ZSO
A = — 5
\/ Zno — Zns (6.59)

After A is computed by Eqgs. (6.59), the other constants may be found by
Fgs. (6.51), (6.55), and (6.56). It is good practice to take enough addi-
tional data to check the magnitude of each constant by the ratio of a
sending-end quantity to a receiving-end quantity, as described in Seec. 6.1.

6.7 Advantages of Generalized Constants. While it may seem
unnecessary to introduce generalized circuit constants into a discussion
of power systems, the advantages gained by their use and their wide
acceptance by the power industry make the understanding of them essen-
tial to the engineer. Often they result in more coneise expressions for the
equations relating voltages and currents, especially where hyperbolic
functions are involved.

The greatest advantage to be gained is the increased generality of
the expressions that are derived in terms of the A BC D constants. In the
next chapter we shall discuss circle diagrams of transmission systems for
which ABCD constants may be found. The derivations will be made in
terms of the ABCD constants of the equivalent circuit. The ABCD
constants may apply to only one piece of apparatus such as a transformer,
to a line alone, or to a line plus its terminating transformers and other
apparatus. The constants may also apply to any number of series
and parallel combinations of lines with their terminal equipment, pro-
vided the system resulting from these combinations has only one location
for power entering the system and one location for power leaving the
system in addition to points where power entering and leaving can be
simulated by fixed impedances without emfs and can be included in the
ABCD constants.

PROBLEMS

6.1 Find the ABCD constants of a network consisting of a 500-0hm reg
shunted across its sending end, a 1,000-ohm resistor shunted across its rg
and 100 ohms of resistance in series between the sending and receivigg en,

6.2 Find the ABCD constants of the T circuit which has 10
reactance in the series arm nearest the sending end, 20 ohms of ing
the series arm nearest the receiving end, and 1,000 ohms of c4
shunt arm. What would be the effect of 1nterchang1ng the t\

6.3 A transmission line has a series impedance of
shunt admittance of 5.3 X 107¢ mho/mile. Without refé

(a) Evaluate the ABCD constants if the line is 15 mileg

@“&% RED |,
1%}:?110(3 in the 6/?
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(b) Determine the ratio [V s]/| V| if the line is 75 miles long and open at the receiv-
ing end.

(¢) Determine the ratio |Vs|/|Vg]if the line is 200 miles long and open at the receiv-
ing end.

6.4 The A and B constants of a three-phase transmission line are 0.96/1.0° and
100/80° ohms, respectively. If the line-to-line voltages at the sending andreceiving
ends are both 110 kv and the phase angle between them is 30°, find /z and the power
and power factor of the load.

8.5 Calculate the ABCD constants of the nominal-r and equivalent-r circuits of
the transmission line of Prob. 5.11. Do not refer to Figs. 6.7 to 6.12.

6.6 Dectermine the series impedance and shunt admittances of the equivalent-r
circuit of the line of Prob. 5.11 from the ABCD constants found in Prob. 6.5.

6.7 Find the ABCD constants of the line of Prob. 5.11 by the charts of Figs. 6.7 to
6.12.

6.8 A 60-cycle three-phase transmission line has an inductive reactance of 0.8
ohm /mile, and the ratio of the resistance to the inductive reactance is 0.20. The line
is 150 miles long. Find the ABCD constants from the charts.

6.9 The sending-end voltage of the line described in Prob. 6.8 is 230 kv. Find
the open-circuit voltage at the receiving end.

6.10 Find the voltage regulation of the line of Prob. 6.8 for a load of 100,000 kw
at a power factor of 0.8 lag in parallel with synchronous condensers of 100,000 kva.
Assume that the load voltage is 210 kv for this condition, and that the sending-end
voltage is held constant at the value required to maintain 210 kv at the receiving end
for the load described.

6.11 Find the ABCD constants of the four-terminal network resulting when a
resistance of 10 ohms is connected in series at the sending end of the four-terminal
network whose constants are as follows:

A = 0.96/0°
B = 40.0/90° ohms

¢ = 0.002945/90° mho
D = 0.92/0°

il

6.12 Find the series impedance and shunt admittances of the equivalent-r circuit
whose ABCD constants are given in Prob. 6.11.

6.13 Measurements on a four-terminal network yield the following values:
Zso = Zro = 20 ohms, pure resistance; Zss = Zgs = 5 ohms, pure resistance.
Find the ABCD constants of the network and the parameters of its equivalent .

6.14 Find the ABCD constants of the transmission line for which
Zro = Zso = 1,415/ —89.25° ohms and Zgs = Zgs = 119/68.95° ohms. Find the
parameters of the equivalent # of the circuit.
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CHAPTER 7

CIRCLE DIAGRAMS

7.1 Introduction. A graphical analysis of the variation of the volt-
age, current, or power of a circuit, when some parameter of the circuit is
changing, not only saves a great deal of time when the number of points
to be calculated is great but also serves to explain some of the results
obtained. The locus of the end points of a phasor of voltage or current
some place in a circuit is very often a circle when some parameter of the
circuit is varied. Thus ecircles can often be plotted on a set of rectangular
coordinates to show the variation of some quantity in a circuit in response
to the variation of some other quantity. Such circle diagrams are very
helpful in the design and operation of power systems.

As an introduction to the study of circle diagrams of a power circuit,
let us consider the equivalent circuit of a short {ransmission line. Shunt
admittance is neglected, and the short line is represented by a series
impedance Z = R + jX between the sending and receiving ends of the
eircuit. Figure 7.1 is the phasor
diagram of the circuit and shows the
sending-end voltage Vy as the sum
of the receiving-end voltage ¥z and
the voltage drops in the resistance
and inductive reactance of the line,
IR and jIX, respectively, Now
suppose that the magnitudes of the
Fre. 7.1 Phasor diagram of a short cyrrent and of the voltage at the re-

transmission line.  |1g| and |/] are con- . ; .
stant as the power factor of the load ceiving end are held (Onsta.,nt while
varies. the power factor of thelogd

shows that Vs must vary and that the end points of it
on the semicircle prg since the magnitude of the Jglfe
phasors Vs and Vg is constant. The dotted imp¥
hypotenuses op and og shown on the phasor diagrg
drops in the line for load power factors of zero
respectively. Since the current will not lag or leg

128

getnt the voltdge
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v more than 90°,
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the points p and ¢ are the limiting positions for the end points of the
phasor Vs. A diagram such as Fig. 7.1 is easy to coustruct. If the
construction is done with care and to a fairly large scale, many values
can be measured quickly on the diagram for the calculation of voltage
regulation or to plot a curve of sending-end voltage versus load power
factor of a given load voltage and load kva. )

7.2 Receiving-end Power Circle Diagram. A versatile form of dia-
gram for a four-terminal network has for its coordinates real power
(volt-amperes X cos §) on the horizontal axis and reactive power (volt-
amperes X sin #) on the vertical axis. Each load at the receiving end is
represented on the chart by a point determined by the real and reactive
power of the load. If the points determined by the real power and reac-
tive power at the receiving end of a four-terminal network are plotted on
such a set of coordinates for several loads, the points will lie on a circle,
provided the voltages at both ends of the network are not allowed to vary
in magnitude. If circles are plotted for several values of sending-end
voltage and one value of receiving-end voltage, a circle of different
radius results for each |V, but all such circles are concentric. The
circles plotted for several values of receiving-end voltage and one value
of sending-end voltage, however, are not concentric. The circles drawn
on charts having receiving-end real and reactive power as their horizontal
and vertical coordinates are called receiving-end power circle diagrams.

The circle diagram described above is developed from the phasor dia-
oram of a four-terminal network drawn in accord with Eq. (6.4). In
order to draw the phasor diagram, let

A= |Al/a
B = |B|/8 7.1
D = |D|/a

The constant € is not required in the development of circle diagrams, and
D is required only for diagrams drawn in terms of sending-end power.
Figure 7.2 is the phasor diagram of a four-terminal network with the
receiving-end voltage Vr as reference. The phasor AVz leads V& by the
angle «. If the current [x is lagging Vr by an angle 0, the phasor
BI: leads Vz by the angle (3 — 0z). The sending-end voltage Vs is the
sum of AV and Blz, from Eq. (6.4).

All the phasors except [z on the diagram of Fig. 7.2 a

e ~{ERED
/ @gz/}; D Lo

1@- roduct of the QS‘/
5?3’@5”@?9‘7' ERED %
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multiply all the quantities of Fig. 7.2 by current.
in power at the receiving end of the network, let
multiplier. Vz/B has the dimensions of curren
voltage BIr and the current Vz/B is Vzlz,

receiving end of the network.




130 ELEMENTS OF POWER SYSTEM ANALYSIS

Now let us examine the new diagram resulting from our multiplication
of all the phasors of Fig. 7.2 by Vr/B. Since Vzis the reference phasor in
Fig. 7.2, its phase angle is 0°, and the phasor Vx/B is displaced from the
reference phasor by the angle —g, since

/__ — |VR[
\Bl/8 Bl — B

B

Therefore, multiplication of the phasors of voltage on the diagram of
Fig. 7.2 by Vz/B shifts all the phasors, and the whole diagram, through
the angle —3. The result is the power diagram of Fig. 7.3. For con-
venience, the origin of the coordinate system is placed at point O in the

Reactive
power
n
8-8
é
AVE
B
VsV
B
4 [0) Real power
Lo \ 6
AR
B k

Fia. 7.2 Phasor diagram of a four-ter- Fig. 7.3 Receiving-end power diagram
minal network delivering a load current resulting from multiplying the phasors
Iz. Vg is the reference phasor. of Fig. 7.2 by Vx/B. Reactive power
drawn by an inductive load is plotted
below the horizontal axis.
new diagram. Now Vil lies at an angle — 6z, or at an angle 6z below
the horizontal, for Vz/z is the product of BIr at an angle 3 — 6z and
Vi/B at an angle —B3. Since ViI; intersects the horizontal axis at the
origin at the angle by which the current lags the voltage, the horizontal
component of Vil is real power, and the vertical component is reactive
power. The coordinate axes may be marked in watts and vars.

In constructing Fig. 7.3, current was taken as lagging the
theload. Thus, the load is inductive, and on the diagram the
by an inductive load, or flowing into an inductive lod e.%

Engineers are not entirely in agreement on the si g power, ,/ @
but most power system engineers use a positive sig Q/ te lagging '?
vars, the vars of an inductive load.? With this ¢ , a capacitor

t ATEE Committee, ‘“The Sign of Reactive Power—
49-53, January, 1948.
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receives negative vars from the line. Power system engineers find it
convenient to consider a capacitor as supplying positive vars rather than
receiving negative vars. This concept of the action of a capacitor is
consistent with the adoption of the positive sign for the vars received
by an inductive load. The synchronous condenser is treated as a gen-
erator which furnishes the vars required by an inductive load. When a
synchronous condenser, or capacitor, is placed at a load center, we can
think of the vars required by a lagging load as coming, at least partially,
from the condenser or capacitor. Since the lagging vars are not furnished
by the transmission line, the line operates at a higher power factor and
with lower voltage regulation.

Vars

)
N ‘\&Q%
Or Watts

[VeH Vil
I8l

Fig. 7.4 Receiving-end power diagram resulting from rotating the diagram of
Fig. 7.3 about the horizontal axis to interchange the points above and below the hori-
zontal axis. Reactive power drawn by an inductive load is plotted above the hori-
zontal axis.

In order to conform to the convention adopted by most power system
engineers, this book will use a positive sign to indicate the lagging vars
taken by an inductive load. The only alteration required in the power
diagram of Fig. 7.3 is the interchanging of points above and below the
horizontal axis by rotating the whole diagram about the horizontal axis.
Figure 7.4 is the result. Distances on Fig. 7.4 are marked only as
magnitudes since they do not have the same angular relation witfiihe
horizontal reference axis as the corresponding distances of

course, the phasor diagrams of current and voltage a
the convention adopted for the sign of reactive poger. \ ,/6
of Tig. 7.4 AP
rst, we notice @

Now let us determine some points on the powd
' SIREGISTERED O)

for various loads, with fixed values of |Vs| and
rom point n

that the point n is not dependent on the currenf

long as | Vx| is constant. We note further that t
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to point k is constant for fixed values of {Vs| and |Ve|. Therefore, as
the distance from O to k changes with changing load, the point k, since
it must remain at a constant distance from the fixed point n, is con-
strained to move in a circle whose center is at n. Thus all the points
representing loads on a network with fixed values of |Vs| and [Vg| lie on
the circle determined by the values of the fixed voltages. If a different
value of |Vs| is held constant with the same value for |Vz|, the location
of point n is unchanged, but a new cirele of radius nk is found.

The point n may be located by measuring |A| - |Vg|?/|B| from the origin
at an angle of 8 — « with the horizontal in the third quadrant. Greater
accuracy is obtained if the point » is located by computing its horizontal
and vertical coordinates. FExamination of Fig. 7.4 shows, for the receiv-
ing-end diagram,

_ Vsl - Ve

Radius of a receiving-end circle = B volt-amp
Coordinates of the center of a receiving-end cirele:
Horizontal = — %\ < |Vz|? cos (B — a) watts (7.2)
Vertical = — %—]L < |Ve[2sin (B — @) vars

Since Fgs. (7.2) and the power diagrams were developed from the
constants of a four-terminal network, the voltages are in volts to neutral
per phase and the coordinates are watts and vars per phase if the circuit
represented by the network is a three-phase circuit. If line-to-line
voltages are substituted for the line-to-neutral voltages, each length on
the diagram is increased by a factor of 3, since the product of two voltages
determines each length and since the line-to-line voltage of a balanced
three-phase circuit is 4/3 times the line-to-neutral voltage. Thus the
watts and vars on the diagram are total three-phase quantities when line-
to-line voltages are used in Kqgs. (7.2). In power system work, voltages
are specified as kilovolts from line to line, and power quantities are
measured in total three-phase kilowatts, kilovars, and kilovolt-amperes,
or in megawatts, megavars, and megavolt-amperes. When the voltage
terms are kilovolts from line to line, Fgs. (7.2) become

Horizontal = — ]Il%l_]' - [Va|2 X 103 cos (8 — o
Vertical = — ,Bl,‘ | Vel? X 10 sin (B
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where the coordinates of the diagram are total kilowatts and kvars for the
three phases.  Omission of the factor 10° yields megawatts, megavars, and
megavolt-amperes.

The angle between the sending- and receiving-end voltages is called
the torque angle and is designated by the symbol 8.  As the load changes,
the torque angle changes. On the power diagram the torque angle §.is
measured between the line [Vz|?/|B| and the line drawn from point n to
the load point k. The line |V&|?/|B| is called the reference line since
torque angles are measured from it. The reference line and torque angles
are important in correlating a receiving-end power diagram with a
sending-end power diagram as will
be discussed later. Torque angles
are also important in studying ;
power-system stability. 0 jprue

If the receiving-end voltage is
held constant and receiving-end
circles are drawn for different values
of sending-end voltage, the result- b J
ing circles are concentric because c/ K2
the location of the center of the
receiving-end power circles is inde-
pendent of the sending-end voltage.
A family of receiving-end circles is ~ fef
shown in Fig. 7.5 for a constant
receiving-end voltage. The radial

Kvars

n,
20 og/@s

e
Do ool w

Kw

B

lines cutting the cireles are spaced
at 10° intervals from the reference
line so that the torque angle can be
read for any load. The load line

Wl | Wl

Vel Wl

Vp constant

Fig. 7.5 Receiving-end power circles for
various values of |Vs| and a constant |Vg|.

marked on Fig. 7.5 is convenient if
the load changes in magnitude while its power factor remains constant.
The angle between the load line through the origin and the horizontal
axis is the angle whose cosine is the power factor of the load. The load
line of Fig. 7.5is drawn for lagging loads since all the points on the line
are in the first quadrant and have positive reactive volt-amperes.
If the sending-end voltage is fixed, the receiving-end pga
for different receiving-end voltages are not concentri
show that the centers of the circles are at different poi
of | V|, but the centers all lie on the same line th
radii of the circles change also as |Vg| changes.
cireles for constant | V| are shown in Fig. 7.6.
7.3 Sending-end Power Circle Diagram.
circle diagram has for its coordinates the real 1g

Dy éj%‘

& ’
< REGISTERED ©
egnd reactive power ¢
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at the sending end of a four-terminal network. The diagram is developed
in the same manner as the receiving-end diagram. First, the phasor
diagram of voltages is drawn as shown in Fig. 7.7 in accord with Eq.
(6.8) with Vs as the reference phasor. The phasor DV leads Vs by the

Reactive
power

0 k Real power

Vel

V; Constant

Centers [Veal

for )
Circles

lVR31 or Vg
f |l4?2il/ Wial \
]V}% 4‘ l%ﬂl

Fre. 7.6  Receiving-end power circles for various values of |Vz| and a constant [Vl

X

/_rﬂvi’—%‘/ﬂ—%
S \A 1’5

% 180°-(4-65)
% ~BI

Is

Fre. 7.7 Phasor diagram of a four-terminal network receiving a current Ig ga the
sending end. Vg is the reference phasor.

angle A, If the current [sis lagging Vs by an angle
leads Vg by the angle 8 — 8s. The receiving-end goltg
DVg minus Blg, from Eq. (6.8).

In order to obtain a power diagram, we multig
Fig. 7.7 by —Vs/B, which is equal to (|Vsl|/
are the rotation of Fig. 7.7 through the angle 180

s RED
k\%e ual to ,/
%

Qg{he phasors of @
EGISTERED © 2

iy nd the conversion
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of all the voltages to volt-amperes. Figure 7.8 is the resulting power
diagram with the origin of the coordinates moved to point O. The
product of —BIs and — Vs/B is Vsls, the volt-amperes at the sending
end. Since Vsls intersects the horizontal axis at the origin at an angle
— @5, the horizontal component of VsIs is real power and the vertical
component is reactive power. The coordinate axes may be marked in
watts and vars. To conform with the convention adopted for the sign
of reactive volt-amperes, the diagram must be rotated about the hori-
zontal axis to give Fig. 7.9.

. Reactive
Regciue B
n
‘Vilz
0l® IBIﬁ-A Real power A
b5 |DH v
% 5 T [®
k [vaH V2l
18l
= [Vshi Vel
DHY? |Bl ~— k
[BI 5 -0 V&Hs]
0 5 \Os Real power
L
n [B]

Fia. 7.8 Sending-end power dia- Fia. 7.9 Sending-end power diagram

gram resulting from multiplying
the phasors of Fig. 7.7 by —Vs/B.
Reactive power drawn by an indue-
tive load is plotted below the hori-
zontal axis.

resulting from rotating the diagram
of Fig. 7.8 about the horizontal axis
to interchange the points above and
below the horizontal axis. Reactive
power drawn by an induective load is
plotted above the horizontal axis.

If |V and | Vx| are held constant as the power delivered to the network
is varied, the location of point n remains fixed, and the distance from
The location of point k, however,

point n to point k remains constant.
varies with changes in the load delivered to the network, agd & if
strained to move in a circle since it must remain at a const
If a different value of |V
the same constant value of | V|, the location of poig
the radius of the circle on which point & movesis p
family of concentric circles results from severs
The circles are not concentric
different values of |V|, but the centers of the g

from the fixed point n.

constant |Vl

is

A

1@2="of |Vz| with a

REGISTERED /QL

,@all lie on the same
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straight line making an angle 8 — A with the horizontal. FExamination
of the sending-end power diagram shows

Radius of a sending-end circle = % volt-amps
Coordinates of the center of a sending-end eircle:
Horizontal = Hl;'l |Vis|? cos (8 — A) watts (74)
Vertical = Hg“ | V42 sin (8 — A) vars

where | V| and | V5| are volts to neutral, and the coordinates of the diagram
are watts and vars per phase. When the voltages are in line-to-line

kilovolts,
Radius of a sending-end circle = MB@ X 103 kva
Coordinates of the center of a sendiné—énd circle:
Horizontal = ”g! Vs? X 10° cos (8 — &) kw (7.5)

Vertical = -+ % “1Vs|? X 10% sin (8 — A) kvars

where the coordinates of the diagram are fotal kilowatts and kvars for all
three phases.

As in the receiving-end diagram, the torque angle is 8. The reference
line from which the torque angles are measured on the sending-end dia-
gram is | Vs|?/|B|.

7.4 The Use of Circle Diagrams. Once the circle diagrams have been
drawn for a transmission line or any four-terminal network, a great
deal of information can be obtained very quickly. Some useful informa-
tion is the voltage that must be maintained at the sending end fer a
specified load and -voltage at the receiving end. Assume that Fig. 7.5
is the receiving-end power diagram for the value of | Vx| which must be
maintained at the load or at the primary terminals of a transformer
supplying the load. If the load varies in amount while its power factor
remains the same, a load line is drawn through the origin at an angle
with the horizontal axis equal to the phase angle of the load. The
horizontal coordinate of the point where the load line interse :
of constant sending-end voltage is the power at the load
end voltage of the circle intersected. In this manner
plotting sending-end voltage versus power at the |gusld
voltage and power factor is obtained rapidly.

Another problem readily solved with the circlg
mination of the amount of reactive power that m¥
chronous condensers at a load in order to increg

is the deter-

2iREGIS TERED © 2

s/power factor, to
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reduce the amount of voltage regulation, or to maintain constant voltage
at the receiving end for a given sending-end voltage. For instance, the
circle diagram of Fig. 7.5 may represent the conditions on a transmission
line whose receiving-end voltage is to remain constant at the value for
which the diagram is drawn, and it may be desirable to operate the line
at 1009, power factor. If the coordinates of point @ on the load line are
the kilowatts and kvars of the load, the inductive kvars of the load repre-
sented by the vertical line ab must be supplied by a synchronous condenser
or static capacitors. The line supplies only the real power represented
by Ob, and the voltage at the sending end must be slightly greater than
|Vsal.  Another way to consider the load conditions is to think of the
combined load and eapacitor with the capacitor drawing negative, or lead-
ing, kvars equal to ab, in which case the combined load consists only
of the real power Ob. The same synchronous condenser which supplies
positive kvars, or draws negative kvars, may act as an inductance and
draw positive kvars, or supply negative kvars, by having its excitation
reduced. A problem similar to the one dIS(ussed is that of finding the
amount of load that could be added at a given power factor to an existing
load without making it necessary to increase the sending-end voltage
more than a specified amount to keep the receiving-end voltage above a
specified minimum value.

Both the sending-end and receiving-end circle diagrams may be needed
for the solution of a problem. For instance, we need both diagrams
to find the sending-end power for a given receiving-end load. If the
load and load voltage are known and the receiving-end power diagram is
available for this load voltage, the voltage at the sending end and the
torque angle may be read. Then, on a sending-end diagram drawn for
the sending-end voltage found from the receiving-end diagram, the
sending-end power may be read at the same torque angle and receiving-
end voltage. This is an example of the torque angle measured from the
reference line of a diagram being required to find corresponding points
on the two diagrams.

There is a definite amount of power that may be transmitted through
a network at given values of voltage, as may be seen by referring to
Fig. 7.4. The load may be increased until the point & is at the 1nter—
section of the circle with the horizontal line through the poi
position of k represents the maximum load that can be recg
sending-end and receiving-end voltages for which the ¢
fact, this power, which is called the steady-statg
load is a synchronous machine, can be received onl
gradually. For a torque angle § the power recgd

_ Vsl - [Vl

D

A LES
&S‘

1erom Fig. 7 4,

RﬁGIZ? 6'[ ERED © 2
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With the voltages held constant, variation in received power is accom-

panied by a change in the torque angle §, the only variable in Eq. (7.6).

Maximum power is received when § = 8. Thus, the maximum power

received by the load is

Vsl - [Vl _ AL V&
|B] |B]

Prmux = cos (8 — @) (7.7)
An equation for the power delivered to the network at the sending end
may be written from inspection of the sending-end power circle diagram
of Fig. 7.9, from which

S . 2
Ps = — M cos (B + 8) + @— V| cos (B —A) (7.8)
|B| |5
Maximum power is delivered to the network when g 4 & = 180° and
Vsl DLV
Ps,max - |B| + 1B| Cco8 (6 A) (79)

The maximum power given by Eq. (7.9) cannot be realized practically
if the load is a synchronous machine. The angle 8 is less than 90° if
there is any resistance in the network, and, for 8 less than 90°, § must be
greater than g8 to realize the maximum power given by Eq. (7.9). Sucha
condition would give a value of § greater than that for the steady-state
stability limit at the receiving end, which occurs when § = 8.

Since B is the series impedance of the equivalent = of the network
and is largely inductive reactance for a transmission line, a reduction
of the series inductive reactance increases the maximum power which can
be received over a transmission line, An important method of reducing
the inductive reactance of a transmission line is the addition of series
capacitors.?  An increase in the voltage at the sending or receiving end
also increases the maximum power receivable and hence the steady-state
stability limit. Further discussion of the important problem of power
system stability is reserved for Chap. 15.

Example 7.1

Draw the receiving-end power circle diagram for the line of Example
5.1 for a receiving-end voltage of 200 kv and sending-end voltagga of
190 kv, 200 kv, 210 kv, 220 kv, 230 kv, and 240 kv.

¥
EmED |

1. Check the values of sending-end voltage, current,
factor found in the solutions of Examples 5.1 and 5.2 fo L i@ ;
df@—end circle %

kw at 200 kv and 1009, power factor by drawind
on the same set of coordinates. ),
al REGISTERED %
vol. 70, pp. 526-535,
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2 A. A. Johnson, J. E. Barkle, and D. J. Povejsil,
Capacitors in High-voltage Transmission Lines,”” Trans

1951,
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2. Find the sending-end voltage for loads of 25,000 kw, 50,000 kw,
and 75,000 kw at 909, power factor lagging and at 1009, power factor if
the receiving-end voltage is 200 kv.

3. For various loads at 909, power factor lagging, find the reactive
power supplied by the line and by synchronous condensers in parallel with
the loads if the sending-end voltage is maintained at 220 kv and the
receiving-end voltage is 200 kv. Determine the power factor at the
receiving end of the line.

Solution
The generalized circuit constants, obtained from the solution of

Example 6.1, are
A =D =0895/1.4°

B = 182.5/78.6° ohms

The coordinates of the center of the receiving-end circles are

Horizontal = — (1)—8829; X (200)% X 102 cos (78.6° — 1.4°) = —43,500 kw
. _0.895 .
7art _ 3 -0 0 o
Vertical = ~ 189 X (200)2 X 10% sin (78.6° — 1.4°)

= —191,000 kvar

200
182.5
the specified sending-end voltages, we obtain the following radii of the
receiving-end circles:

The radii of the receiving-end circles = = X 10® X |Vs|in kva. For

[Vsl, kv Radius, kva |Vs|, kv Radius, kva
190 208,000 220 241,000
200 219,000 230 252,000
210 230,000 240 263,000

The circles are drawn in Fig. 7.10. The receiving-end reference line is
drawn through the center of the circles and makes an angle of 8 = 78.6°
with the horizontal axis. Torque-angle lines are drawn for every 5° from
the reference line.

1. Since the power factor of the load is 1009, the specified load is
located on the horizontal axis at 125,000 kw. The sending-end voltage
for this load is found by interpolation between the 230-kv
circles. The torque-angle line for 30° passes through the
The readings are

IVSI = 232 kv
6 = 30°

The horizontal and vertical coordinates of pgly
circles are real and reactive power at the rec®
set of coordinates is used for the sending-end
must be interpreted as real and reactive pow

th'e receiving-end

<. REG!&TERED 2

T the coordinates

the selldirlgVERs I ON
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order to find the power and power factor at the sending end, a sending-end
circle is required for |Vs| = 232 kv. The coordinates of the center of
this circle are

Horizontal — (1%){?; 5 (232)? X 10° cos (78.6° — 1.4°) = 58 500 kw
- . 0.895 9 : o < .
Vertical = X (232)% X 10% sin (78.6° — 1.4°) = 257,000 kvar

182.5

and its radius is
200 X 232

3 - =4
189.5 X 103 = 254,000 kva

The sending-end circle is shown on the chart together with its reference
line and a torque-angle line of 30° for the sending end. The torque-angle
line provides the link between the receiving-end circles and the sending-
end circle. The load at the sending end is determined by the intersec-
tion of the 30°-torque-angle line and the sending-end circle. At this
point the readings are

Sending-end real power = 140,000 kw

Sending-end reactive power = 17,000 kvar
tan HS - .}m
140,000
0s = 6.93°
Power factor = cos 6.93° = 0.9927
|1s] = 140,000 = 351 amp

/3 X 232 X 0.9927

All values check the solutions of Examples 5.1 and 5.2 very closely.

2. To determine the sending-end voltages for various loads at 1009,
power factor, the load points are plotted along the horizontal axis in
Fig. 7.10, and the voltage at the sending end for each load is found by
interpolating between the circles. A load line is drawn for 909, power
factor lagging, and the loads at 909, power factor lagging are plotted
along this load line. Again the voltage at the sending end for each
load is found by interpolating between the circles. The voltages found
from Fig. 7.10 are tabulated below.

\

. i Sending-end voltage, kv
Receiving-end power,’ =

kew Load p.f. = 0.9 | Load p.f.
25,000 ; 196 ‘
50,000 | 213 ;
75,000 : 233 |

I
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3. Points for the various loads are plotted along the load line, and the
kvars required by each load are read. The kvars supplied by the line
with 220 kv at the sending end and 200 kv at the receiving end are deter-
mined by reading the kvars at the intersection of the circle of |Vs| = 220
kv with the vertical line through the point representing the load. The
difference between the kvars required by the load and the kvars supplied
by the line must be supplied by the synchronous condensers. The power
factor at the receiving end of the line is determined from the real power
and reactive power supplied by the line.

For a load of 75,000 kw at 909, power factor lagging, the load line
shows that 36,000 kvar are required. The intersection of the 220-kv
circle with the ordinate through 75,000 kw shows that the line supplies
20,000 kvar. The remaining 16,000 kvar required by the load must be
supplied by the synchronous condensers. Values for a number of loads
are tabulated below.

Reactive power, kvar
Receiving-end Receiving-end
power, kw Required by | Supplied by Supplied by power factor
the load the line synch. condensers
0 0 47,000 —47,000 0 lag

25,000 12,000 41,000 —29,000 0.521 lag

50,000 24 000 32,000 — 8,000 0.846 lag

75,000 36,000 20,000 16,000 0.966 lag
100,000 48,000 3,000 45,000 0.999 lag
125,000 60,000 — 18,000 78,000 0.990 lead
150,000 72,000 —47,000 119,000 0.950 lead

7.5 A Universal Power Circle Diagram. The power circle diagrams
described have several limitations, the most serious of which is that,
although a series of conecentric receiving-end circles can be drawn for a
number of sending-end voltages, the resulting chart is valid for only the
one receiving-end voltage for which it is constructed. If several receiv-
ing-end voltages are to be investigated, either a new receiving-end chart
must be constructed for each new receiving-end voltage, or a new receiv-
ing-end chart must be constructed for each sending-end voltage.
latter course is followed, the resulting circles are not concen
receiving-end chart, and the torque-angle lines are drav
centers for each circle. If sending-end and receiving 1€
drawn on one chart with receiving-end real and rea D \@ as (oord1—

Qg/and reactive

nates for the receiving-end circles and sending-e

power as coordinates for the sending-end cird
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one set of circles will not be concentric. These limitations of the power
circle diagram can be overcome by a modification of the coordinate
system.

The modified coordinate system is described by R. D. Goodrich, Jr.?
To take full advantage of the method, we must express each distance on
the modified circle diagram as a ratio of the distance on the original
diagram in volt-amperes to a selected reference or base value of volt-
amperes equal to {V|2/|B|, where |B| is the generalized circuit constant
and |V| is called the reference or base voltage and is chosen arbitrarily.
Usually |V]| is the nominal line-to-neutral or line-to-line voltage of the
system depending on whether the coordinates of the power diagram
being modified are per-phase or three-phase quantities. Dimensionless
units result from the division of the quantities on the original diagram by
B|. Like the dimensionless generalized circuit constants read from
the charts in Chap. 6, the dimensionless ratios for our modified circle
diagram are called per-unit quantities. Upon performing the specified
division on Eqs. (7.2), we obtain

Vsl Vel
iV
Coordinates of the center of a receiving-end circle:

Radius of a receiving-end circle = per unit

Horizontal = — |4] (|!V|l) cos (B — a) per unit (7.10)
<1 lVRI . ]
Vertical = — |A] T sin (8 — «) per unit

The quantities |Vz|/|V| and |Vs|/|V| are ratios of actual voltage to
the chosen base voltage and are called the per-unit receiving- and sending-
end voltages, respectively. If we consider that [Vz| and |Vs| specify
voltages in per unit rather than in volts or kilovolts, Egs. (7.10) become

Radius of a receiving-end circle = | V| - | V| per unit
Coordinates of the center of a receiving-end circle:
Horizontal = —|A| - |Vg|? cos (8 — «) per unit
Vertical = —|A| - |[Vg]2sin (8 — @) per unit

(7.11)

Then for a sending-end circle with |Vs| and |[Vg| in per unit

Radius of a sending-end circle = | V| - | Vg per unit,
Coordinates of the center of a sending-end circle:
Horizontal = |D| - |Vs|? cos (8 — A)
Vertical = |D| - |Vs]2 sin (8 — A)

3See R. D. Goodrich, Jr., “A Universal Power Circle I
vol. 70, pp. 2042-2049, 1951. The article contains mug

circle diangrams with illustrative problems. Circular locY
with certain restrictions such as constant loss are discus
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144 ELEMENTS OF POWER SYSTEM ANALYSIS

The method described by Goodrich replaces families of circles drawn on
one set of coordinates by one family of circles with the location of the
origin of the rectangular coordinate system for power quantities deter-
mined by the receiving-end voltage for receiving-end quantities and by
the sending-end voltage for sending-end quantities.

If we construct a receiving-end circle diagram according to Eqgs. (7.11)
for various per-unit values of |Vs| and a specified value of |Vz|, we
obtain the concentric circles shown in Fig. 7.11 with their centers at n
and the origin of the coordinate system at Or. If we choose a larger
value of | Vx| and draw circles for the same values of |Vl - [V« as those
shown in Fig. 7.11, we obtain a new
family of concentric circles having
the same radii as those shown in Fig.
7.11 and the same origin Oz, The
new ecircles must be drawn from a
different center such as n’, as deter-
mined by Eq. (7.11) for the new
value of |Vz|. The center n’ lies on
Op per-unit  the same line through O as the point
Op real power p  Thus far our diagram is identical
fa to the original diagram discussed ex-

cept for the use of per-unit quanti-

.\qg} ties. If we draw the new set of cir-

N cles with centers at n’ and move the

new diagram along the line nOr so

that n and »’ coincide without the

r=|Vea|-|Via] diagram being rotated, both families

of circles coincide. The origin from

which power measurements are made

for the new value of | Vx| is shifted to

(¥, on the extension of the line nOg.

The distance from the center n to the origin is the square root of the

sum of the squares of the horizontal and vertical coordinates given in
Eqs. (7.11), which is

Per-unit reactive
power

X

r’l"ézl'!vﬁz
| =Vl | Vas

Fic. 7.11 Receiving-end power circle
diagram in per-unit quantities.

Distance n to Or = |A| - |Vg|? per unit

The method can now be extended to any number of Values
end voltage. Measurements of power are made fro g G
for each value of |Vg|. Polar coordinate paper ma \(60 gcleIsED ,/@
may be drawn on any available set of rectangt gﬁ ates. Only /?

the first quadrant need be used. From the com r of the circles

n, the reference line is drawn at an angle g wi glzﬂf@ TE R E D ¢

the ordinary circle diagram. The line nOz o the origins Ile 1s
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CIRCLE DIAGRAMS 145

drawn at an angle 8 — o with the horizontal, as in the ordinary diagram.
Circles are drawn for convenient per-unit values of |Vs|-|Vx|, and
origins may be plotted along the line of origins for desired values of |Vg|.
Torque angles measured from the reference line may be shown. Real
power is read to the right of O, and positive reactive power is read
upward from Op. Per-unit values measured on the diagram and
multiplied by |V|2/|B| give the three-phase power and reactive volt-
amperes if |V] is the line-to-line base voltage from which the per-unit
voltages are determined. The circles may be printed or multilithed in
advance and used for any problem.

Example 7.2

. Use a universal circle diagram to check the values of sending-end
voltage found in Example 5.1 for a load of 125,000 kw at 200 kv and 1009,
power factor at the receiving-end of the line. Choose a base of 220 kv.

2. If the line supplies a load of 50,000 kw at 90 % power factor lagging
and 215 kv, find the sending-end voltage.

3. Determine the voltage regulation for the line for the load of (2).

Solution
The generalized circuit constants obtained from the solution of Exam-
ple 6.1 are
A =D =10895/14°
B = 182.5/78.6° ohms

from which 8 — a = 77.2°. Figure 7.12 shows circles drawn for radii of
Vsl - |V equal 0 0.8, 0.9, 1.0, 1.1, and 1.2. The reference line and line
of origins are drawn from n at 78.6° and 77.2° with the horizontal,
respectively.

1. In per unit on a base of 220 kv

Vel = 200455 = 0.91 per unit
Distance n to Oz, = 0.895(0.91)% = 0.740 per unit

The value of |V|?/|B| is

Il

(220 X 109)2

\eay ~ _ R _ op ,
1895 266 X 10% volt-amp 266,000 kva

The power of the load is

125.000
266,000

= (0.470 per unit

(4 A
pﬂEﬁ)%TE RED 2

P is foun
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Rince the power factor is 1.0, we locate the |
right of O, at the point P; shown on Fig. 7.12.
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at a radius of 0.96 per unit from n. Therefore

0.96

V| = 091 = 1.055 per unit

and converting to kilovolts, we obtain

|Vs| = 1.055 X 220 = 232 kv

Receiving-end
reference Ime/

1.2

Sending-end ! ‘
1.1 reference line s Load line 0.9 p.f.
10 - >£

. 7 ~]

0, 5]

0.9 ° \\( / pS_ < N
\ >
657

U]
. o

ool {1\ L
01 \//

0 01 02 03 04 05 06 07 08 09 10 11 12
Per-unit scale
Fra. 7.12 Universal power circle diagram for Examples 7.2 and 7.3. Base volt
age = 220 kv. Base volt-amperes = {2202/182.5) X 10® = 266,000 kva.

2. Converting 215 kv to per unit, we obtain

[Ve| = 2158454 = 0.977 per unit
Distance n to Oz, = 0.895(0.977)2 = 0.855 per unit

-
Power = 50,000 _ 0.188 per unit

= 266,000

& v
§ REGISTERED %
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The load line for 909, power factor is drawn from point
point P, is at the intersection of the load line and the
per unit to the right of Oz;. At P, the radius |Vs
and

per unit,

1.0
0.977

[Vs| = = 1.022 per
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or
[Vs| = 1.022 X 220 = 225 kv
3. To find the regulation, | V| at no load must be found. At no load
lVSl/IVRI = lA\ and
‘Vq{ 1. 050

[Vl = Al = 0895 = 1.180 per unit
The regulation is
1.180 — 0.977
Togm 8%

The same first-quadrant circular arcs may be used for the sending-end
circle diagram, and thus we have a universal circle diagram. It is neces-
sary to plot positive reactive power downward. Although plotting
positive vars downward may be confusing at first, it is advantageous
because it enables us to use the same set of circles for both receiving and
sending ends. We will continue to use the positive sign for the vars
of loads drawing lagging current, but in plotting and reading values for
the sending end on the universal diagram we will take positive vars
downward.

The reason for plotting positive reactive power downward on the
sending-end power circle diagram may be seen by comparing Figs. 7.8 and
7.9. By taking the center of our circles at the point n of Fig. 7.8 instead
of at n in Fig. 7.9, the useful portion of the circle lies in the first quadrant
with respect to n. The difference between the two figures is the sign of
the reactive power. The origin Os from which the power measurements
are made lies in the second quadrant. The circles are drawn with radii
equal to the same per-unit values of | Vs| - | V| as the radii of the receiving-
end circles and, therefore, coincide with them when we use the same
center. The reference line for the sending end is drawn at an angle of
180° — 8 with the horizontal axis. The line of origins makes an angle of
180° — (8 — A) with the horizontal axis. The origin Os is located on the
line of origins so that

Distance n to Os = |D| - [V|? per unit (7.14)

The sending-end real power is read to the right from Os, and positive
reactive power is read downward from Os.

Example 7.3

Use the universal power circle diagram to check the sending
found in Example 5.2 for a load of 125,000 kw at 200 kv
factor at the receiving end of the line.

TER

ED
@‘ %%
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Solution

The receiving-end power for the specified load
as part of the solution of Example 7.2. The
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8 = 30°. The sending-end reference line and line of origins is drawn in
Fig. 7.12. The lines extend into the second quadrant since they make
angles of 180° — 78.6° = 101.4° and 180° — (78.6° — 1.4°) = 102.8°,
respectively, with the horizontal. Since |Vs| = 1.055,

Distance n to Os = 0.895(1.055)% = 0.995 per unit

The sending-end load point Ps must be at a radius of 0.96 per unit on the
torque line making a 30° angle with the sending-end reference line. Point
Ps is shown in Fig. 7.12 and found to be located 0.525 per unit to the
right of Oy and 0.064 per unit below Os. Therefore,

Sending-end real power = 0.525 X 266,000 = 140,000 kw
Sending-end reactive power = 0.064 X 266,000 = 17,000 kvars

e g = 17,000
§ = 140,000
85 = 6.93°

Power factor = cos 6.93° = 0.9927

7.6 Loss Diagrams. If the receiving-end power diagram for a four-
terminal network has been constructed, the power lost between the
sending end and the receiving end may be calculated, without construct-
ing the sending-end circle, by additional construction on the receiving-end
diagram. An expression for the power lost is obtained by subtracting
Eq. (7.6) from Eq. (7.8). Thus

PL=PS'—PR=_LVS|—}3||~V}1’ S(B‘l_a)—l-COS(B—B)]
+%i(zos (B — A) + IA'[B[‘I xf? cos (8 —a) (7.15)
PL=|—A;III—};‘Z£ECOS (B—a)+ui!'8“v—s‘2005(3’“A)
BEITB—;Zﬂ cos Bcos 6 (7.16)

If |Vs| and |Vg| are constant, the only variable in Eq. (7.16) is the
torque angle 6. The first and second terms are the magnitudes of the
horizontal coordinates of the centers of the receiving-end ang seng
end circles, respectively. Equation (7.16) is not difficult f{
provides an easy way to obtain sending-end power _o(d RE
received is determined from the receiving-end diagrand se1fied

condition. Q/

A simple loss diagram, which is the graphica 1 f Fq. (7.16),
may be constructed as a supplement to the recei® e%poREﬁlﬁs TERE D
either on the ordinary circle diagram or on the \@al diagram. T ¢
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measure loss on the universal circle diagram, we divide both sides of Eq.
(7.16) by 2 cos 8 and by the base volt-amperes, |V|?/|B|, to obtain
Pu AL |Vl cos (8 — a) + D] - [V cos (8 — &)

2 cos 2 cos B

~ |Vs|«{Vg| cos 8 (7.17)

where |Vs| and |Vz| are in per unit. A distance equal to the fractional
term on the right-hand side of Eq. (7.17) is measured along the reference
line from n to the point marked k. At k a line called the loss line is
erected perpendicular to the reference line. The construetion is shown
in Fig. 7.13. From any point on the circle of radius |Vs| - |Vz| cor-

T

Fic. 7.13 Construction of a loss line on a universal circle diagram.

responding to the voltages for which the loss line is constructed, the
distance perpendicular to the loss line is P./(2 cos 8), as may be seen
from Eq. (7.17) and the geometry of Fig. 7.13 since the distance ng is
|Vs] - |Vz| cos 8.

To determine the power loss for any load, the load point P is located,
and the loss line is constructed corresponding to the receiving- and send-
ing-end voltages. The perpendicular distance from P to the loss line is
measured 1n per unit and multiplied by 2 cos 8 to obtain the loss in per
unit. When the loss line is constructed, sending-end power may,
determined without constructing the sending-end reference Ii
of origins.

PROBLEMS

7.1 Find the power supplied at 100 % power factor a
ging by the transmission line for which Fig. 7.10 is the p
sending- and receiving-end voltages are 220 kv and 200 k

FEGK TERED )
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7.2 If the load on the transmission line for which Fig. 7.10 is the power circle
diagram is 100,000 kw at 90 % power factor lagging and 200 kv, find the sending-end
voltage when synchronous condensers are supplying 25,000 kvar at the load.

7.3 Assume that generators at the sending and receiving ends of the line
for which Fig. 7.12 is the universal power circle diagram supply local loads. Voltages
at both ends are 220 kv. The local load at the sending end is 10,000 kw at 80 % power
factor lagging. The line delivers 50,000 kw at the receiving end, where the load is
100,000 kw at 90 % power factor lagging. Find the kilowatts and kvars supplied by
cach generator. Neglect the impedances of transformers connecting the generators
to the line.

7.4 Construct the receiving-end power diagram for the line of Prob. 5.11 for
Ve = 220kv. Draw circles for every 10-kv increment of sending-end voltage between
200 kv and 250 kv. Determine the sending-end voltage for loads of 20,000 kw,
40,000 kw, 60,000 kw and 80,000 kw at 90 % power factor lagging.

7.5 Read from the circle diagram of Prob. 7.4 the ratio of |Vs| to |V&| at no load,
and compute the voltage regulation of the line for each of the loads specified in Prob.
7.4.

7.6 On the circle diagram of Prob. 7.4 draw the sending-end circle and determine
the sending-end power and power factor for a load of 40,000 kw at 90 9, power factor
lagging when Vi = 220kv. If a synchronous motor load of 60,000 kw at 80 % power
factor leading is added to the 40,000-kw lagging load, what is the value of Vg for
Vi = 220 kv?

7.7 Plot sending- and receiving-end power circles for the line of Prob. 5.11 for
sending- and receiving-end voltages of 220 kv and 210 kv, respectively. From the
diagram obtain data for and draw curves of sending-end real and reactive power and
receiving-end reactive power versus real power at the recciving end.

7.8 Construct the universal power circle diagram for Prob. 5.11, and check the
sending-end voltage found in Prob. 7.4 for the load of 40,000 kw at 220 kv and 90 %
power factor lagging. Choose a base voltage of 220 kv and a scale of 5 in. = 1.0
per unit. If the receiving-end voltage drops to 210 kv and the load becomes 60,000 kw
at 90 % power factor lagging, find the new values of sending-end voltage and sending-
end power.

7.9 Determine the loss in the line of Prob. 5.11 for the 40,000-kw load at 220 kv
and 90 9, power factor lagging by constructing a loss line on the universal power circle
diagram of Prob. 7.8. =

7.10 Construct a universal power circle diagram for the line deseribed in Prob.
5.14, and from the diagram determine the voltage, power, and power factor at the
sending end for a receiving-end load of 75,000 kw at 220 kv and unity power factor.
Check the results with the answers to Prob. 5.15.
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CHAPTER 8

REPRESENTATION OF POWER SYSTEMS

8.1 The One-line Diagram. Since a balanced three-phase system is
always solved as a single-phase circuit composed of one of the three
lines and a neutral return, it is seldom necessary to show more than
one phase and the neutral return when drawing a diagram of the circuit.
Often the diagram is simplified further by omitting the completed circuit
through the neutral and by indicating the component parts by standard
symbols rather than by their equivalent circuits. Such a simplified
diagram of an electric system is called a one-line diagram. It indicates
by a single line and standard symbols the transmission lines and associ-
ated apparatus of an electric system.

The purpose of the one-line diagram is to supply in concise form the
significant information about the system. The importance of different
features of a system varies with the problem under consideration, and
the amount of information included on the diagram depends on the
purpose for which the diagram is intended. For instance, the location
of eircuit breakers and relays is unimportant in making a load study.
Breakers and relays are not shown if the primary function of the diagram
is to provide information for such a study. On the other hand, deter-
mination of the stability of a system under transient conditions resulting
from a fault depends on the speed with which relays and circuit breakers
operate to isolate the faulted part of the system. Therefore, information
about the circuit breakers may be of extreme importance. Sometimes
one-line diagrams include information about the current and potential
transformers which connect the relays to the system or which are installed
for metering. The information found on a one-line diagram must be
expecled to vary according to the problem at hand and according jgthe
practice of the particular company preparing the diagram.

The American Standards Association has assigned 3
symbols and device numbers to all the components {o
system.! The basic symbol for a machine or r§

ST W D
% E‘Lric ,/
y éﬁhr\ature is a 6@
Graphical Sym-

S REGIST ERED 2
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! For a complete list of standard symbols, see ‘“ Ameriga
bols for Electrical Power and Control,” ASA Z32.3-194
bols for Electric Apparatus,” ASA 232.12-1947, Amer
New York,
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circle, but so many adaptations of the basic symbol are listed that every
piece of rotating electric machinery in common use may be indicated.
For anyone who is not working constantly with one-line diagrams, it is
clearer to indicate a particular machine by the basic symbol followed by
information on its type and rating. A few of the most common symbols
are shown in Fig. 8.1. Some of these symbols will be used in one-line
diagrams in this book.

It is important to know the location of points where a system is
connected to ground in order to calculate the amount of current flowing
when an unsymmetrical fault involving ground occurs. The standard
symbol to designate a three-phase Y with the neutral solidly grounded

Machine or rotating Power circuit breaker, e Il
armature (basic) O oil or other liquid
Air circuit breaker —_—
Two-winding power
transformer Three-phase, three-wire

delta connection

Three-winding power
transformer Three-phase wye, neu- \l/

tral ungrounded

Fuse —_T T
" Three-phase wye, neu-

Current transformer —O— tral grounded \r/:lf_
Potential transformer 3 or or "3 E"

Ammeter and voltmeter @ @

F1c. 8.1 Apparatus symbols approved by the American Standards Association.

is shown in Fig. 8.1. If a resistor or reactor is inserted hetween the
neutral of the Y and ground to limit the flow of current to ground during
a fault, the appropriate symbol for resistance or inductance may be
added to the standard symbol for the grounded Y. Generator neutrals
are usually grounded through resistors or inductance coils. Most trans-
former neutrals in transmission systems above 70 kv are solidly grounded.
Below 70 kv, transformer neutrals may be solidly grounded or grounded
through resistance, inductive reactance, or a coil which is tuned to p
vide a parallel resonant circuit in the path of the current flawing
single line-to-ground fault. The resulting high impedagce {
rent permits operation of the system during this type 0 ’ H(hE(’RE D ,/
is called a ground-fault neutralizer, or Petersen '%ecommg @

increasingly popular for grounding transformer ne 23w 70 kv.? '?

'>,gRE‘Gf$rERED )
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2 See K. T. B. Gross, “Trends in Transmission Syste
Midwest Power Conference (now called Proc. Am. Power §




REPRESENTATION OF POWER SYSTEMS 153

Figure 8.2 is the one-line diagram of a very simple power system.
Two generators, one grounded through a reactor and one through a
resistor, are connected to a bus and through a step-up transformer to a
transmission line. Another generator, grounded through a reactor, is
connected to a bus and through a transformer to the opposite end of the
transmission line. A load is connected to each bus. On the diagram is
included information about the loads, the ratings of the generators and
transformers, and reactances of the different components of the circuit.
Resistance is often neglected in making fault calculations and is omitted
in the information accompanying Fig. 8.2. 1If a load study is to be made,
resistance should be included.

The reactances specified for the generators of Fig. 8.2 are known as
subtransient reactances. The study of a-¢ machinery shows that the

Feloflo oftef=®n
{( T Load B

Load A

#1 Generator—20,000 kva, 6.6 kv, X’ = 0.655 ohms

#2 Generator—10,000 kva, 6.6 kv, X/ = 1.31 ohms

#3 Generator—30,000 kva, 3.81 kv, X"/ = 0.1452 ohms

7Ty and Ts—each transformer in each 3-phase bank—10,000 kva, 3.81-38.1 kv,
X = 14.52 ohms referred to the high-tension side

Reactance of the transmission line = 17.4 ohms

Jioad A = 15,000 kw, 6.6 kv, p.f. = 0.9 lag

Load B = 30,000 kw, 3.81 kv, p.f. = 0.9 lag

Fic. 8.2 One-line diagram of an electric system.

current flowing immediately after the occurrence of a fault depends on a
different value of reactance in a generator or motor than the value which
determines the current under steady-state conditions. For present pur-
poses, it is only necessary to know that the reactance in the equivalent
circuit of a rotating machine is in series with an internal generated emf
of the machine. TUntil machine reactances and internal emfs are gjs-
cussed in Chap. 9, the particular reactance and mternal e
equivalent circuit will be specified, and the names by
called need cause no confusion.

395, Illinois Institute of Technology, 1951; AIEE Commlt
Grounding Synchronous Generator bvstems " Trans.
517-530, 1953.
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8.2 The Impedance and Reactance Diagrams. In order to calculate
the performance of a system under load conditions, or upon the occur-
rence of a short circuit, the one-line diagram must be converted into an
impedance diagram showing the equivalent circuit of each component
of the system referred to the same side of one of the transformers. Figure
8.3 is the detailed impedance diagram of the system of Fig.-8.2. The
equivalent circuit of the transmission line is represented with suflicient
accuracy by the nominal 7 having the total resistance and inductive
reactance of the line in its series arm and the total capacitance to neutral
divided between its shunt arms. Resistance, leakage reactance, and a
path for magnetizing current are shown for each transformer. A gener-
ated voltage in series with appropriate values of resistance and reactance
represents each generator. If a load study is to be made, the lagging
loads A and B are represented by resistance and inductive reactance in

sl 1A% VW0 VWA
% % == = % :% +
E, By
N ~ e N e
Generators  Load Transformer T Transmission line Transformer T, Load Gen. 3
land2 A B

Fic. 8.3 Impedance diagram corresponding to the one-line diagram of Fig. 8.2.

series. The impedance diagram does not include the current-limiting
impedances shown in the one-line diagram between the neutrals of the
generators and ground because no current flows in the ground under
balanced conditions and the neutrals of the generators are at, the potential
of the neutral of the system. Since the magnetizing current of a trans-
former is usually insignificant compared to the full-load current, the
shunt admittance is usually omitted in the equivalent circuit of the trans-
former. The impedance diagram is followed in setting up a system on an
a-c calculating board for making a load study.

As previously mentioned, resistance is sometimes omitted when making
fault calculations. Of course, omission of resistance introduces some
error, but the results may be satisfactory since the inductive reactance
of a system is much larger than its resistance. Resistance a
reactance do not add directly, and impedance is not far d
the inductive reactance if the resistance is small.
involve rotating machinery have little effect on
during a fault and are often omitted. Synchron®
ever, are always included in making fault ca
erated emfs contribute to the short-circuit currd
take induction motors into account by a genera

nce thelr gen-

i alf mﬁ;ﬁés}%{};salz-ERED ¢
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inductive reactance if the diagram is to be used to determine the current
immediately after the occurrence of a fault. Induction motors are
ignored in computing the current a few cycles after the fault occurs
because the current contributed by an induction motor dies out very
quickly after the induction motor is short-circuited.

If we decide to simplify our calculation of fault current by omitting
all static loads, all resistances, the magnetizing current of each trans-
former, and the capacitance of the transmission line, the impedance
diagram reduces to the reactance diagram of Fig. 8.4. The simplified
reactance diagram is useful for making fault calculations analytically, but
more precise fault calculations should be made on an a-c calculating
board which takes into account the resistance of the circuit and the shunt
capacitance of the transmission lines.

jl452n jl74 jla52a
s

j6550 jl3loa (70.10) (/0.12) (j0.10) 43560
(j045)§, (j0.90) €, (j0.30) [,
El E2 E3
Neutral bus

Frc. 8.4 Reactance diagram adapted from Fig. 8.3 by omitting all loads, resistances,
and shunt admittances. Reactances are marked in ohms referred to the high-tension
sides of the transformers. Values in parentheses are per-unit reactances on a 30,000-
kva, 66-kv base.

The impedance and reactance diagrams discussed here are sometimes
called the positive-sequence diagrams since they show impedances to
balanced currents in a symmetrical three-phase system. The signifi-
cance of this designation will become apparent when Chap. 10 is studied.

When a transformer is represented by its equivalent circuit, there is
no transformation of voltage corresponding to the transformation of
voltage between the high- and low-tension sides of the actual transformer.
The current at both ends of the equivalent cireuit is identical if magnetiz-
ing current is neglected. In an actual transformer, the current in the
high- and low-tension windings would be identical only for equal turns
in the primary and secondary windings with magnetizing current neg-
lected. In a ecircuit where transformers are represented by their equiv-
alent circuits, the proper impedances are those of the acty o] cigii
referred to the side of the transformer for which the equivaleii
constructed.

The impedances marked on the diagram of Fig. 8. Q@&e%(fdz ED ,/@
to the high-tension circuit. Since the transmission considera- /?

is necessary @

tion is in the high-tension part of the circuit, ng ),
VREGISTERED %

in the value of the reactance placed in the equive
i diagram speci

the transmission line. The information on the o
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the leakage reactance of the transformers in high-tension terms, and no
correction is necessary in the values of transformer leakage reactance
used in the equivalent circuit.

Transformer theory shows that the impedance on the secondary side
of a transformer may be transferred to the primary side by. multiplying
the impedance by the square of the ratio of the turns in the primary
winding to the turns in the secondary winding. The generators shown
in ¥ig. 8.2 are on the low-tension sides of the transformers, and their
reactances must be referred to the high-tension circuit for which the
diagram of Fig. 8.4 is drawn. Generators 1 and 2 are connected to the
high-tension circuit through Y-Y transformers having a turns ratio of
10 to 1. Therefore, in high-tension terms the reactances of generators
1 and 2 are 10? X 0.655 = 65.5 ohms and 10? X 1.31 = 131.0 ohms.

The procedure in the case of generator 3, which is connected to the
transmission line by a A-Y transformer, is not so obvious. We can arrive
at the correct procedure by considering the A-Y transformer to be replaced
by a Y-Y transformer giving the same transformation of line-to-line
voltage. Since the A-Y transformer has a turns ratio of 10 to 1 between
each high- and low-tension winding, the ratio of line voltages is 17.32 to
1. Therefore, the turns ratio between high- and low-tension windings
of the Y-Y transformer having the same ratio of transformation of line
voltages as the specified A~Y transformer must be 17.32 to 1. Looking
at the equivalent circuit of generator 3 from the high-tension circuit
through the Y-Y transformer, we see that the generator reactances must
be referred to the high-tension circuit by multiplying them by the square
of the ratio of transformation of the voltages to neutral. The ratio of
line-to-line voltages is the same as the ratio of the voltages to neutral on
the two sides of the transformer. Therefore, the multiplying factor is
the square of the ratio of line-to-line voltages and not the square of the
turns ratio of the individual windings of the A-Y transformer. The
reactance of generator 3 in high-tension terms is 17.32% X 0.1452 = 43.56
ohms.

The internal voltages of the generators are represented in the high-
tension circuit by multiplying them by the ratio of the line-to-line voltage
of the high-tension circuit to the line-to-line voltage of the low-tension
circuit regardless of the transformer connection.

8.3 Per-unit Quantities. Voltage, current, kva, and imp(
circuit are often expressed as a per cent or per unit of
reference value of each of these quantities. For in
voltage of 120 kv is chosen, voltages of 108 kv, 120 K
0.90, 1.00, and 1.05 per unit, or 90%, 100%, and
The per-unit value of any quantity is defined as
to its base value expressed as a decimal. The

v become
respectively. 6}

'‘REGISTERED %

o
per cent 1s
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times the value in per unit. Both the per cent and per-unit methods of
calculation are simpler than the use of actual amperes, ohms, and volts.
The per-unit method has an advantage over the per cent method because
the product of two quantities expressed in per unit is expressed in per
unit itself, but the product of two quantities expressed in per cent must
be divided by 100 to obtain the result in per cent.

Voltage, current, kva, and impedance are so related that selection of
base values for any two of them determines the base values of the remain-
ing two. If we specify the base values of current and voltage, base
impedance and base kva can be determined. The base impedance is
that impedance which will have a voltage drop across it equal to the
base voltage when the current flowing in the impedance is equal to the
base value of the current. The base kva in single-phase systems is the
product of base voltage in kv and base current in amperes. Usually base
kva and base voltage in kv are the quantities selected to specify the base.
For single-phase systems, or three-phase systems where the term current
refers to line current, the term voltage refers to voltage to neutral, and
the term kva refers to kva per phase, the following formulas relate the
various quantities:

. base kva
Base current in amperes = base voltage in kv 8.1
. i I
Base impedance = base voltagg 10 volts (8.2)
base current in amperes
_ (base voltage in kv)? X 1,000 (8.3)
B base kva :
Base power in kw = base kva (8.4)
Per-unit impedance of . .
2 circuit element — actual impedance in ohms (8.5)

base impedance in ohms

Since three-phase circuits are solved as a single line with a neutral
return, the bases for quantities in the impedance diagram are kva per
phase and kv from line to neutral. Data are usually given as total three-
phase kva and line-to-line kv. Because of this custom of specifying
line-to-line voltage and total kva, confusion may arise regarding the
relation between the per-unit value of line voltage and the_per-
value of phase voltage. Although a line voltage may be s
base, the voltage in the single-phase circuit required fo
still the voltage to neutral. The base voltage to ge
voltage from line to line divided by +/3. Since {
between line-to-line and line-to-neutral voltages of a
system, the per-unit value of a line-to-neutral
neutral voltage base is equal to the per-unit v

the ratio
three-phase

f<REGIS TERED O)

the Iine-to-line
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voltage at the same point on the line-to-line voltage base if the system is
balanced. Similarly, the three-phase kva is three times the kva per
phase, and the three-phase kva base is three times the base kva per
phase. Therefore, the per-unit value of the three-phase kva on the
three-phase kva base is identical to the per-unit value of the kva per
phase on the kva-per-phase base. For instance, if the base kva is
30,000 kva and the base line-to-line voltage is 120 kv, the base values
per phase are 30,000/3 = 10,000 kva and 120/ V3 =69.2 kv. Then,
for an actual line voltage of 108 kv, the phase voltage is 108/ V3 = 62. 3
kv, and the per-unit voltage is 108/ 120 = 62.3/69.2 = 0.90. A total
three-phase power of 18,000 kw is 18,000/3 = 6,000 kw per phase, and
per-unit power is 18,000/30,000 = 6,000/10,000 = 0.6. Unless other-
wise specified, a given value of base voltage in a three-phase system is a
line-to-line voltage, and a given value of base kva is total three-phase kva.

Base impedance and base current can be computed directly from three-
phase values of base kv and base kva. If we interpret base kva and base
voltage in kv to mean base kva for the total of the threc phases and base
voltage from line to line, we find

base kva

Base current in amperes = —= 8.6
P /3 X base voltage in kv (8.6)
and from Eq. (8.3)
. _ (base voltage in kv/4/3)% X 1,000
Base impedance = base kva, 3 (8.7)
] )2
Base impedance — (base voltage in kv)? X 1,000 (8.8)

base kva

Since Eqgs. (8.3) and (8.8) are identical, the same equation for base
impedance is valid for either single-phase or three-phase circuits, pro-
vided that, in the three-phase case, line-to-line kv is used in the equation
with three-phase kva or line-to-neutral kv is used with kva per phase.
Equation (8.1) determines the base current for single-phase systems or
for three-phase systems where the bases are specified in kva per phase
and kv to neutral. Equation (8.6) determines the base current for three-
phase systems where the bases are specified in total kva for the three
phases and in kv from line to line.

Sometimes the per-unit impedance of a component of
expressed on a base other than the one selected as base for
the system in which the component is located. Since
any part of a system must be expressed on the
when making computations, it is necessary to have
per-unit impedances from one base to another.
sion for base impedance given by Kqgs. (8.3) o
in Eq. (8.5) gives

FLiC+ing the expres- @

%bRE@I@TERED 2
VERSION
ADDS NO




REPRESENTATION OF POWER SYSTEMS 159

Per-unit impedance of

a circuit element — (actual impedance in ohms) X (base kva)

(
(base voltage in kv)? X 1,000 (8.9)

Equation (8.9) shows that per-unit impedance is directly proportional to
base kva and inversely proportional to the square of the base voltage.
Therefore, to change from per-unit impedance on a given base to per-
unit impedance on a new base, the following formula applies:

Per-unit Z,e, = per-unit Zg.. <M>2 <M‘M> (8.10)
e T\ base Kvaew base kvagiven
If we decide to convert the ohmic values of reactance shown on the
diagram of Fig. 8.4 to per unit, we might select 30,000 kva and 66 kv
as base. Then we would determine the base impedance from Eq. (8.8),
as follows:
667 X 1,000

30,000 = 145.2 ohms

Base impedance =
Dividing each value of ohmic reactance on the diagram by the base
impedance of 145.2 ohms gives the per-unit value of that reactance.
The per-unit value of each reactance is shown enclosed in parentheses
under each ohmic value on the diagram of Fig. 8.4.

8.4 Selection of Base for Per-unit Quantities. The selection of base
values of kva and kv is made in order to reduce the work required by
the calculations as much as possible. TFirst, a base is selected for some
part of the circuit. Then, the base in other parts of the circuit, separated
from the original part by transformers, should be determined according
to principles which will be developed in this section. The base selected
should be one that yields per-unit values of rated voltage and current
approximately equal to unity in order to simplify the work of computing.
Time will be saved if the base is so selected that few per-unit quantities
already known need be converted to a new base.

When the resistance and reactance of a device are given by the manu-
facturer in per cent or per unit, the base is understood to be the rated
kva and kv of the apparatus. Tables are available giving approximate
values of per-unit impedances of transformers, generators, synchronous
motors, and induction motors.? Values obtained from tables are log
on average values for apparatus of similar size and type.
are usually rated in terms of horsepower and voltage,

3 Tables A.5 and A.6 in the Appendix list some representativg
values, see Central Station Engineers of the Westinghouse
Transmission and Distribution Reference Book,” 4th ed., I3
“A~-C Network Analyzer Manual,”’ General Electric Cy
tady, N.Y., 1952; A. E. Knowlton, “Standard Handboy
MecGraw-Hill Book Company, Inc., New York, 1941

é}é “Electrical

firgh, Pa., 1950;
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found only if the efficiency and power factor are known. If information
on efficiency and power factor is lacking, the following relations, derived
from average values for the particular type of motor, should be used:

Induction motors: kva = horsepower

Synchronous motors:
Unity power factor rating: kva = 0.85 X horsepower
0.8 power factor rating:  kva = 1.10 X horsepower

The ohmic values of resistance and leakage reactance of a transformer
depend on whether they are measured on the high- or low-tension side
of the transformer. If they are expressed in per unit, the base kva is
understood to be the kva rating of the transformer. The base voltage
is understood to be the voltage rating of the low-tension winding if the
ohmic values of resistance and leakage reactance are referred to the low-
tension side of the transformer and to be the voltage rating of the high-
tension winding if they are referred to the high-tension side of the
transformer. The per-unit impedance will be the same in either case, as
may be shown by the following development. Let

Zur = impedance referred to the high-tension side of the transtormer
Z.r = impedance referred to the low-tension side of the transformer
kv, = rated low-tension voltage of the transformer

kvy = rated high-tension voltage of the transformer

kva = rated kva of the transformer

Then
Zur = (1—‘KB>2 X 7 8.11)
LT kVH HT .
and from Eq. (8.9)
_ (kvy/kva)? X Zar X kva

Zpr in per unit = (kv,)? X 1,000 (8.12)
_ ZHT X kva
= kva)? X 1,000 (8.13)
= Zyr in per unit (8.14)

A great advantage in making per-unit computations is realized by the
proper selection of different bases for circuits connected to each other
through a transformer. To achieve the advantage in a siggle-gilse
system, the voltage bases for the circuits connected throug
former must have the same ratio as the turns ratio o
windings. With such a selection of voltage baseg eme kva ,/ @
base, the per-unit value of an impedance will be 7 when it is '?
expressed on the base selected for its own sidge ,}Q‘transformer as @

T

when it is referred to the other side of the trd E@ﬁsdTE RE D /()

on the base of that side. ¢
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Example 8.1

Three parts of a single-phase electric system are designated A, B, and
(' and are connected to each other through transformers, as shown in
Fig. 8.5. The transformers are rated as follows:

A-B 10,000 kva, 13.8-138 kv, leakage reactance 109,
B-C 10,000 kva, 69-138 kv, leakage reactance 8%,

1If the base in circuit B is chosen as 10,000 kva, 138 kv, find the per-unit
impedance of the 300-ohm resistive load in circuit € referred to circuits
C, B, and A. Draw the impedance diagram neglecting magnetizing
current, transformer resistances, and line impedances. Determine the

1-10 2-1

m B l“ C 3000

A-B B-C
F1c. 8.5 Circuit for Example 8.1.

voltage regulation if the voltage at the load is 66 kv with the assumption
that the voltage input to circuit 4 remains constant.

Solution
Base voltage for circuit A is 0.1 X 138 = 13.8 kv
Base voltage for circuit C is 0.5 X 138 = 69 kv
692 X 1,000
10000 " 476 ohms
Per-unit impedance of the load in circuit € is 399474 = 0.63 per unit

Base impedance of circuit C is

Because the selection of base in various parts of the system was
determined by the turns ratio of the transformers, the per-unit impedance
of the load referred to any part of the system will be the same. This is
verified as follows:

1382 X 1,000
10,000
Impedance of the load referred to circuit B is 300 X 2% =

Base impedance of circuit B is = 1,900 ohms

Per-unit impedance of the load referred to B is

13.8% X 1,000
10,000 -
Impedance of the load referred to A is 300
Per-unit impedance of the load referred to A

Base impedance of circuit A is

&3” mgTERED )
VERSION
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Figure 8.6 is the required impedance diagram with impedances marked
in per unit.
The calculation of regulation proceeds as follows:

Voltage at the load is 8859 = 0.957 4 70 per unit
0.957 + jO
0.63 + j0
Voltage input = (1.52 4+ 70)(70.10 + j0.08) + 0.957

= 0.957 4 70.274 = 0.995 per unit
Voltage input = Voltage at the load with load removed

Load current is = 1.52 + j0 per unit

Therefore

. 0.995 — 0.957
Regulation = 95T X 100 = 3.979%,

Because of the advantage previously pointed out, the principle followed
in the above example in selecting the base for various parts of the system
is always followed in making computa-
tions by per unit or percent. The base
should be the same in all parts of the
system, and the selection of the base kv
in one part of the system determines the
Fia. 8.6 Impedance diagram for hage kv to be assigned, according to the
Example 8.1. Impedances are .
marked in per unit. turns ratios of the transformers, to the

other parts of the system. Following
this principle of assigning base kv allows us to combine on one impedance
diagram the per-unit impedances determined in different parts of the
system.

If the above principle is applied to a three-phase circuit, the base
voltages on the two sides of the transformer must have the same ratio
as the rated line-to-line voltages on both sides of the transformer. Thus,
the base voltages would have the same ratio as the rated line-to-neutral
voltages on the two sides of the transformer and the same ratio as the
turns ratio of the windings of a Y-Y transformer. For example, a 66-kv,
30,000-kva base in the line of Fig. 8.2 would require a base of 6.6 kv,
for the circuit containing generators 1 and 2, and a base of 3.8% kv,
30,000 kva for the circuit containing generator 3. The per-ur
of generator 3 is, by Eq. (8.9),

jO.1 j0.08

0.63+;0

0.1452 X 30,000

@.81)7 X 1,000 ~ 030 peru

The reactance transferred to the high-tensio
and in per unit on the 66-kv base the reactanc
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43.56 X 30,000

(66)* X 1,000
In a similar manner the reader may verify the statement that the per-
unit reactances of generators 1 and 2 are 0.45 and 0.90, respectively,
whether computed on the 6.6-kv base of their own circuit or referred
to the high-tension side of the transformer and computed on the 66-kv
base. Thus, just as in a single-phase system, the principle of selecting
the base in different parts of the three-phase system allows us to com-
bine on one impedance diagram the per-unit impedances computed in
different parts of the system regardless of whether the transformers are
connected Y-Y or A-Y. Of course, the principle is equally applicable
if the transformers are connected A-A since the transformation of voltages
is the same as that made by Y-Y transformers having the same line-to-
line voltage ratings.

If the resistance and leakage reactance of a transformer in a three-
phase circuit are specified in per unit, the per-unit value to be used in
the impedance diagram is the same regardless of the three-phase connec-
tion (Y-Y, A-A, or A-Y). For instance, a three-phase transformer rated
10,000 kva, 138Y-13.8A kv may have a leakage reactance of 10%. For
base in the high-tension circuit of 138 kv and 10,000 kva, the per-unit
reactance is 0.1. Reactance measured on the high-tension side is
o1 (1382 X 1,000

10,000

= 0.30 per unit

> = 190.4 ohms. The turns ratio of the windings is
138

13.8/4/3
is 190.4(1/5.77)2 = 5.72 ohms. The equivalent reactance to neutral—
that is, the reactance of the equivalent Y—is 5.72/3. The base on this
side of the transformer is 13.8 kv, and the per-unit reactance is then
5.72 10,000
"3~ X 13.82 X 1,000
If the low-tension side of the transformer is connected in Y, the new
rating is 10,000 kva, 138-23.9 kv. The base for the low-tension side is

= 5.77. Reactance measured across one low-tension winding

= 0.1, the same as the specified value.

. . 10,000
, 929 ¢ - 5 et M [
then 23.9 kv, and the per-unit reactance is 5.72 <23‘92 > 1,000> 0.1,

still the same as specified.

Example 8.2

A 30,000-kva 13.8-kv three-phase generator has a s
ance of 159,. The generator supplies two motor
line having transformers at both ends, as shown on
of Fig. 8.7. 'The motors have rated inputs of g2
both 12.5 kv with 209, subtransient reactance.
formers are both rated 35,000 kva, 13.2A-115Y

cgﬁ dmission
o@ ne diagram
Qnd 10,000 kva,

TERED O 2

ﬁbleakage reactance
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of 109,. Series reactance of the transmission line is 80 ohms. Draw
the reactance diagram with all reactances marked in per unit. Select
the generator rating as base in the generator circuit.

1

p
k ? /4 m% n Ym%‘
e OH e
4‘@ s

Fic. 8.7 One-line diagram for Iixample 8.2.

Solution
A base of 30,000 kva, 13.8 kv in the generator circuit requires a 30,000-
kva base in all other circuits and the following voltage bases:

115

39 = 120 kv
. . 13.2
In the motor circuit: 120 X 15 = 13.8 kv

The reactances of the transformers must be converted from a base of
35,000 kva, 13.2 kv to a base of 30,000 kva, 13.8 kv, as follows:

30,000 {13.2\" .
35,000 (m) = 0.0784 per unit

The base impedance in the transmission line is

120® X 1,000
30,000

and the reactance of the line is

Transformer reactance = 0.1 X

= 480 ohms

89180 = 0.167 per unit
30,000 [ 12.5\ . .
20,000 <m> = 0.246 per unit

30,000 (12.5Y .
10,000 <m> = 0.492 per unit

Figure 8.8 is the required reactance diagram.

Reactance of motor 1 = 0.2 X s 2——

Reactance of motor 2 = 0.2 X =1 —

j0.0784 ! J0.167 m j0.0784

ke AT n

S;Géhz.gpeggzgt%i:::. diagram for Example 8.2. React® a%n RE@:’@T E R E D ¢
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8.5 Per-unit Impedances of Three-winding Transformers. Both the
primary and secondary windings of a two-winding transformer have the
same kva rating, but all three windings of a three-winding transformer
may have different kva ratings. The impedance of each winding of a
three-winding transformer may be given in per cent or per unit based
on the rating of its own winding, or tests may be made to determine the
impedances. In any case, however, all the per-unit impedances in the
impedance diagram must be expressed on the same kva base.

Three impedances may be measured by the standard short-circuit test,
as follows:

Zps = leakage impedance measured in the primary with the second-
ary short-circuited and the tertiary open

Z, = leakage impedance measured in the primary with the tertiary
short-circuited and the secondary open

Zy, = leakage impedance measured in the secondary with the
tertiary short-circuited and the primary open

If the three impedances measured in ohms are referred to the voltage
of one of the windings, transformer theory shows the impedances of each
separate winding referred to that same winding to be related to the
measured impedances so referred as follows:

Tpe = Zy + 7,
Zpg = Zp + Z; (815)
Zst = Zs + Zt

where Z,, Z,, and Z, are the impedances of the primary, secondary, and
tertiary windings referred to the primary circuit if Z,,, Z,, and Z,; are
the measured impedances referred to the primary circuit. Solving Egs.
(8.15) simultaneously yields

Zp = ]/Q(Zps + Zpt - Zst)
Zs ,l/é(zps + Zst - Zpt) (8'16)
Zy = 15(Zpe + Zse — Zps)

il

The impedances of the three windings are connected in star to represent
the single-phase equivalent circuit of the three-winding transformer vg
magnetizing current neglected, as shown in Fig. 8.9. The com

is fictitious and unrelated to the neutral of the system. 8 S ﬁR E D ,/
CRGeh g
; gﬁ%tlary 6/?

and ¢ are connected to the parts of the impedance diagraj

the parts of the system connected to the primary, sed

windings of the transformer. Since the ohmic valuegilf Hl¥impedances

must be referred to the same voltage, it follows comYer, ﬁg&s

unit impedance requires the same kva base for Chy'ee B TE RED ¢
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requires voltage bases in the three circuits that are in the same ratio
as the rated line-to-line voltages of the three circuits of the transformer.

P

(a) Equivalent circuit (b} Symbol for one-line
diagram

F1c. 8.9 The equivalent circuit of a three-winding transformer and the corresponding
symbol to be used in a one-line diagram. Points p, s, and ¢ link the circuit of the trans-
former to the appropriate equivalent circuits representing parts of the system con-
nected to the primary, secondary, and tertiary windings.

Example 8.3
The three-phase ratings of a three-winding transformer are:

Primary: Y-connected, 66 kv, 10,000 kva
Secondary: Y-connected, 13.2 kv, 7,500 kva
Tertiary: A-connected, 2.3 kv, 5,000 kva

Neglecting resistance, the leakage impedances are:

Zps = 7% on 10,000-kva, 66-kv base
Zy = 9% on 10,000-kva, 66-kv base
Zy = 69% on 7,500-kva, 13.2-kv base

I

Find the per-unit impedances of the star-connected equivalent circuit
for a base of 10,000 kva, 66 kv in the primary circuit.

Solution

With a base of 10,000 kva, 66 kv in the primary circuit, the proper
bases for the per-unit impedances of the equivalent circuit are 10,000 kva,
66 kv for primary-circuit quantities, 10,000 kva, 13.2 kv for secondary-
circuit quantities, and 10,000 kva, 2.3 kv for tertiary-circuit guantiils

Zps and Z,; were measured in the primary circuit and aj
already expressed on the proper base for the equiv!
change of voltage base is required for Z,;,. The rggu
kva for Z, is made as follows:

10,000
Zy = 69 X 7500 = 5%
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In per unit on the specified base
Z, = 14(50.07 + 70.09 — j0.08) = 70.04 per unit

Z, = 14(0.07 + j0.08 — j0.09) = j0.03 per unit
Z: = 14(50.09 4 j0.08 — 70.07) = 70.05 per unit

Il

Example 8.4

A constant-voltage source (infinite bus) supplies a purely resistive
5,000-kw, 2.3-kv load and a 7,500-kva, 13.2-kv synchronous motor hav-
ing a subtransient reactance of X"’ = 209,. The source is connected
to the primary of the three-winding transformer described in Example 8.3.
The motor and resistive load are connected to the secondary and tertiary
of the transformer. Draw the im-
pedance diagram of the system and Jj0.03
mark the per-unit impedances for
a base of 66 kv, 10,000 kva in the
primary.

Solution

The constant-voltage source can be
represented by a generator having
no internal impedance. Fra.

. . 8.10 TImpedance diagram for
The resistance of the loadis 1.0 per  Example 8.4.

unit on a base of 5,000 kva, 2.3 kv
in the tertiary. Expressed on a 10,000-kva, 2.3-kv base the load resist-

ance is
10,000 .
R=10X 5000 2.0 per unit
Changing the reactance of the motor to a base of 10,000 kva, 13.2 kv
yields
10,000 . .
o ___ ’ — n
X" =020 X 7500 70.267 per unit

Figure 8.10 is the required impedance diagram.

8.6 The Advantages of Per-unit Computations. Making compu-
tations for electric systems in terms of per-unit values simplifies the v
greatly. A real appreciation of the value of the per-unit met/ilins
through experience. Some of the advantages of the met
ized briefly below.

1. Manufacturers usually specify the impedance o
in per cent or per unit on the base of the name-platg 4

2. The per-unit impedances of machines of t b pR

1

different rating usually lie within a narrow rang z@oug {E% TERED
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values differ materially for machines of different ratings. For this
reason, when the impedance is not known definitely, it is generally pos-
sible to select from tabulated average values a per-unit impedance which
will be reasonably correct. Kxperience in working with per-unit values
brings familiarity with the proper values of per-unit impedance for differ-
ent types of apparatus.

3. When impedance in ohms is specified in an equivalent circ ult each
impedance must be referred to the same circuit by multiplying it by
the square of the ratio of the rated voltages of the two sides of the trans-
former connecting the reference circuit and the circuit containing the
impedance. The per-unit impedance, once it is expressed on the proper
base, is the same referred to either side of any transformer.

a a

Zbc
Fic. 8.11. Y-A equivalent circuits.

4. The way in which transformers are connected in three-phase circuits
does not affect the per-unit impedances of the equivalent circuit, although
the transformer connection does determine the relation between the
voltage bases on the two sides of the transformer.

8.7 Network Reduction. The solution of problems involving even
the simplest power system network often requires some network reduc-
tion to eliminate one or more nodes (junction points). If only three
branches of the circuit terminate at a node, the node is eliminated by a
Y-A transformation.

A Y and its equivalent A are shown in Fig. 8.11. The relations
between the impedances are

_ ZaZb + Zch + ZcZa _ 1
Zab - Zc - ZaZb ZY
% Z%Zc + 270 _ gy E
an — ZaZb + Z}ZC + ZcZa — ZcZa
b

where the term 2 —— is the sum of the recipro @hﬁﬁe@lﬁlTE R E D %
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nected impedances. The equations are convenient for finding the
A-connected impedances equivalent to known Y-connected impedances.

If we desire to convert known A-connected impedances to an equivalent
Y, convenient equations are

— Zacha . ZabZ(-a
le = T T 7a " 37 (8.20)
— Zaber: . Zabep
5= G+ T+ T~ 27 (8:21)
Zc = Zb”Z”a — Zchaa (822)

Zab + Zbc + an ZZA

where ZZ, is the sum of the three A-connected impedances.
If more than three impedances terminate on a node, the node may
be eliminated by applying the general star-mesh conversion equations.

Fic. 8.12 Star-mesh equivalent circuits.

Figure 8.12 shows five star-connected impedances terminating on the
node o, and the equivalent mesh-connected circuit. The equivalent mesh
has an impedance connected between every possible pair of the original
terminals. The impedance connected between any pair of terminals
such as p and ¢ in the mesh is given by the equation

1
Zpe = ZpZs 2 7 (8.23)

where the term E % is the sum of the reciprocals of all the impedances

connected to the node o in the original star circuit.?

When a number of generators are connected through a networ
taining several nodes and the emf of each generator is known
of each can be found by eliminating all the nodes in t
the nodes to which the emfs are connected. In the res S @
emf is connected directly to every other emf throu§ . /?
The current flowing through each of the impedang e difference in @

o
* See Richard H. Frazier, “ Elementary Electric Circu % ” IR(E G¢SNTE R E D O
Hill Book Company, Inc., New York, 1945. ¢
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potential between the two terminals of the impedance divided by the
impedance.

Example 8.5

Four busses labeled a, b, ¢, and d are interconnected as shown by the
one-line diagram of Fig. 8.13. Generators connected to busses ¢ and b
supply a synchronous motor load at bus d. For purposes of analysis
all the machines at any one bus are treated as a single machine and rep-
resented by a single emf and series reactance. The reactance diagram,

Bo3 ;E oo

&,

Fic. 8.13 One-line diagram for Example 8.5.

[

0.3

jO3

F1c¢. 8.14 Reactance diagram for Example 8.5.

with reactances specified in per unit, is shown in Fig. 8.14. Simplify
the reactance diagram by eliminating the nodes at each bus and con-
verting the resulting circuit to a mesh to whose terminals a
are connected the emfs of the machines.

Solution

The successive steps in the reduction of the
Fig. 8.15. The node at b is eliminated by trangt Q-o the equivalent

delta the Y-connected reactances from a, c, ¥ d%ErrRE@IS q- ERE D

Figure 8.15a is thus obtained from Fig. 8.14. & putatlons are
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g = 303 Xj0.3 4403 Xj0.1 403 Xj0.1 _ —0.15

= j1.5 per unit

70.1 70.1
—0.15 . .
Lo = 703 > = 70.5 per unit
, —0.15 . :
Lia = 03 - 70.5 per unit

JL1 jols  jO15  j09s L2 JLI0

Fia. 8.15 Successive steps in the network reduction of the reactance diagram for
Example 8.5.

Combining the impedances in series between e and a, between ¢ and f,
and between d and ¢ gives

Zew = j1.0 4+ j0.1 = j1.1

Z.; = j0.9 + j0.05 = j0.95
Z1y = j0.9 + j0.1 = j1.0

and combining the parallel impedances in Fig. 8.15a bet
between ¢ and d gives

L, j05Xj03 .
Zos = Zea = 3555 1003 = 901875

from which Fig. 8.15b is obtained.
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Transformation of the A connecting points a, ¢, and d in Fig. 8.15b
into its equivalent Y gives Fig. 8.15¢c. The computations are

Cj0.1875 X j1.5
= 515+ 70.1875 + j0.1875
_j0.18T5 X j0.1875 .

= 515 + 0.1875 + jo.i875 /00188

Zo = Z, = j0.15

Za

Figure 8.15d results from combining the series impedances of Fig. 8.15c¢.
The required mesh, in this case a A, is obtained by a final Y-A transforma-
tion, and the result is shown in Fig. 8.15¢. The computations are

_j1.25 X j1.10 4 51.10 X j1.02 +j1.02 X j1.25 _ —3.77

Zos 102 = oz ~ 370
7y = ?1%7 — j3.02
Zyy = %%701 = j3.42

Example 8.6

If the internal emfs in per unit at stations 1, 2, and 3 of Example 8.5
are Ij; = 1.5/0°, E, = 1.5/15°, and E; = 1.5/—36.9°, find the per-unit
power outputs from stations 1 and 2, and find the per-unit power input
to station 3.

Solution
The currents in the A of Fig. 8.15¢ are

B — E, 1.5/0°—15/15°

I, = 7, = 7370 = —0.105 — 70.014 per unit
_E,—E; 1.5/15° — 1.5/—36.9° B . )

I; = 7z, 7302 = 40.426 — j0.083 per unit
_E;—E, 1.5/—36.9° — 1.5/0° B . )

I, = Z. —]3'42 = —0.263 4+ 70.088 per unit

The currents at the terminals of the delta are
From generator station 1:

I, = L;— I, = 0.158 — j0.102 = 0.188/—32.8° per unit

From generator station 2:

Into motor station 3:
I, = Iz — I, = 0.689 — j0.171 = 0.71§

The required power values are
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Qutput from station 1:
1.5 X 0.188 cos 32.8° = 0.237 per unit
Output from station 2:
1.5 X 0.536 cos (15° + 7.4°) = 0.743 per unit
Input to load:
1.5 X 0.710 cos (36.9° — 13.9°) = 0.985 per unit

The total three-phase power at each station is the product of the above
per-unit values and the base three-phase kva.

The amount of work involved in reducing a complex network found
in a typical power system to a minimum number of impedances is barely

lIan,
+

(b)

Tic. 8.16 Linear network with » terminals at which emfs may be applied.

indicated by the simple examples above. Where more nodes are present
and where the general star-mesh equations are required because of the
number of branches terminating on one node, the work is increased con-
siderably. If the impedances are not pure reactances, the complication
of using complex numbers adds enormously to the work. Even so, network
reduction is much preferred to the solution of simultaneous equations,
which would otherwise be required in any analytical solution. The time
required for an analytical solution led to the development of calculating
hoards.

8.8 Driving-point and Transfer Admittances. The
driving-point and transfer admittances is a convenient ¢

O i VS
he machines O

- REGISTERED ©)
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work. ¥igure 8.16a shows several emfs connecte
cated by the rectangular box. The internal imped
whose emfs are shown are incorporated in the
point admittance at any terminal is the ratio of €
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terminal to the voltage applied at the terminal with all other emfs
short-cireuited. The transfer admittance between two points is the
ratio of the current leaving the
network at one terminal to the
voltage applied at the other ter-
£ minal with all other emfs short-

circuited.

Yab% Y.n Figure 8.16b shows the method

4 of determining the driving-point
admittance at point ¢ and the
AN~ transfer admittance between
points ¢ and n. If connections are
a TIM b ¢ » made as shown, the driving-point
4<P I,Ml admittance at a is 1./ E,, and the

Eq transfer admittance between a and

n is I./E. If the nodes are
Fic. 8.17 Circuit resulting from the re- eliminated from the network so
placement of the n-terminal network of R .
Fig. 8.16 by its equivalent mesh. that the terminals are intercon-
nected by a mesh, the resulting
circuit equivalent to that of Fig. 8.16b is shown in Fig. 8.17. We see that
the current entering the network at a is

Iau = Ea(Yab + Yue + e + Yan) (824)

from which we conclude that the driving-point admittance at any point
is the sum of the admittances terminating at that point when the circuit
has been reduced to the simplest mesh. The current leaving the circuit
at n is

I, = E,Y,, (8.25)

from which we conclude that the transfer admittance between two poihts
is the admittance between the two points after the circuit has been
reduced to the simplest mesh.

If the driving-point admittances are determined at all terminals, and
transfer admittances are determined between all points, the currents
entering the network at the terminals can be found by applying the
familiar superposition principle. The superposition principle statef
the eurrent resulting from several voltage sources in a lin g

is equal to the sum of the separate currents resulting 5
é}\%cgaﬁED ,/ @@

alone with all other voltages short-circuited. Add
entering a point caused by each emf alone gives 0
'REGISTERED ©
v ¥ Z
VERSION
ADDS NO

Ia = EaYaa - EbYab - EcYac -
I, = ByYy — EYag — EYp — * ¢
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and similar equations where

Yaar Yooy Yooy - -« , Yuu = driving-point admittances at points a, b, ¢,
, n, respectively
Var, Yooy - -+, Yan, Yon = transfer admittances between points a and b,
between points b and ¢, . .., between
points a and n, and between points b and #,
respectively
Example 8.7

Determine the current entering each terminal of the network of
Example 8.5 for the emfs specified in Example 8.6 by the method of
driving-point and transfer admittances. Compare the results with the
values found for the same currents in Example 8.6.

Solution

The network reduction carried out in Example 8.5 enables us to calcu-
late the required driving-point and transfer admittances, as follows:
1 1 1 1

Yee = Zef —|— Tm == 1?7(—) +‘]3_.*4§ = '—J0270 - j0292

= —50.562 per unit
Y=ok 4 = L1 0270 — jo331
"= g T 7, T 3a0 TR0 T Jo-

= —70.601 per unit

Yoo = Zlf—g + Zlge = ]3%2 +ﬁ%2 = —70.331 — 50.292
= —70.623 per unit
Y., — Zlef - jg% — —j0.270 per unit
Yy = Zlfg = jg—l(ﬁ = —;0.331 per unit
Yoo = Zlge = jg—}z = —70.292 per unit

The currents entering at terminals ¢, f, and g are

I, = E\Y,. — E.Y,; — E;Y, = (1.5 4 70)(—70.562)
— (1.45 + j0.388)(—j0.270) — (1.2 — 50.9)(—;0.292) =
+ j0.392 — 0.105 + j0.350 + 0.263 = 0.158 — j0.
I; = E,Y; — E.Y.; — Es¥;, = (1.45 + j0.388)(—j0.
— (1.5 + 70)(—40.270) — (1.2 — 50.9)(—70.331)
+ 70.405 + 70.397 + 0.298 = OV
I, = E3V,, — E1V,y — EuVyy = (1.2 — §0.9)(=4Q
— (1.5 + j0)(—70.292) — (1.45 + j0.388)
— 0.560 + j0.438 -+ j0.480 — 0.129 =

SVERED

V,
—@@)9 per21?;:1311t @,?

2 REGIS TERED 2

b.@ -+ 70.171 per unit
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The values found for the currents check exactly the values found in
FExample 8.6 when we recall that I, was assumed to be flowing out of
the network in the solution of Example 8.6 and into the network in the
solution of Example 8.7.

8.9 D-C Calculating Boards. Calculating boards provide a method
for representing transmission systems by the interconnection of the
equivalent circuits of their component parts. All voltages, currents,
and impedances are converted to values which are proportional to the
actual values. On a board operated from a d-c supply, many variable
resistance units are available to be connected to each other by flexible
cords and jacks such as are found on a manually operated telephone
switchboard.® Only the inductive reactances of the impedance diagram
being studied can be represented, and each reactance is represented by a
resistor on the calculating board. Generators and motors are replaced
by one d-¢ voltage source connected to the network through resistors
which represent the internal reactance of each machine. In an a-c sys-
tem the amount of current flowing depends on the magnitude and phase
angle of the internal voltages of the motors and generators. On a d-c
board there is no adjustment of the individual motor and generator
voltages and nothing to correspond to phase differences of the voltages.
Therefore, the d-¢ board can not simulate normal load conditions.

Power companies use d-c boards extensively to study the flow of fault
current caused by short circuits at various points in their systems. Some
companies build d-¢ boards with fixed resistors permanently connected
to represent their own systems and interconnections with neighboring
systems. Other companies have boards composed of adjustable resistors
0 connected that each resistor unit terminates in two cords which connect
with the cords of other units at a plugging board. The d-c board built
in 1948 by Westinghouse to supplement one already operating at the
Philadelphia Electric Company has resistor units adjustable from 02%
to 1109, in steps of 0.2% and from 110% to 410% in steps of 1%. A
resistance of 40 ohms is 1009, impedance. The voltage supply is a
selenium rectifier furnishing 40 volts for 1009 voltage. The voltage
can be increased to 60 volts. Voltage and current at any resistor unit
are read on instruments at the control panel by pressing a button cor-
responding to the proper unit.

Portable boards have been built in carrying cases which
of a large suitcase. They are operated by batteries
case together with an ammeter and voltmeter. A
is provided for interconnection of the resistors a
meters. Although they are inexpensive, compg

easﬂy trans—

< REGISTERED O)
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5 For a description of a d-c calculating board, see V
cireuit Calculating Table,” Gen. Elec. Rev., vol. 23, no. 8, §
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ported, the portable boards are not as accurate or as convenient to oper-
ate as the permanent installations with calibrated resistors.

To study short-circuit eurrents on a d-¢ calculating board, a reactance
diagram is prepared from a one-line diagram, such as that of the local
generating system of an industrial plant shown in Fig. 8.18. Of course,
information must be available from which to obtain the reactances of
the lines, the transformers, and the generators and motors. If the local
system is connected to an external power system, as shown in Fig. 8.18,
the external power system must be represented on the d-¢ board by a
connection to the d-c supply through a resistance determined by the

E) $
i s 5, i
553

286

Fic. 8.18 Omne-line diagram of a typical industrial power system.

amount of current the power system would supply to a short circuit at the
point of connection.

That the external power system is correctly represented by voltage
and series impedance follows from the Helmholtz-Thévenin theorem.®
The theorem states that a linear network terminating on two points
a and b and containing any number of emfs may be replaced by a single
emf and a series impedance between ¢ and b. The emf is equal to the
open-circuit voltage measured between a and b. The series impedance
is the impedance of the network measured between a and b witjmthe
emfs short-circuited. If the emfs are constant, the imped
open-circuit voltage between a and b divided by the cugiaads
short circuit applied between a¢ and . TPower compsg
giving the expected short-circuit current at po
systems. On a d-¢ board the impedances of the g

. eir ,/6
t th zﬁ)@

Are considered

‘ >
5. REGISTERED ©
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®See W. R. LePage, ‘“Analysis of Alternating-currd
MeGraw-Hill Book Company, Ine., New York, 1952.
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to be inductive reactances or impedances having equal phase angles
and, of course, must be represented by resistances.

If the external power system is large compared to that of the industrial
plant, disturbances within the plant do not affect the voltage at the
point of connection. In such a case the external power system is said
to be an infinite bus and is represented by a eonstant voltage having no
internal impedance. On the assumption that the external power system
is an infinite bus, the reactance diagram of the industrial power system
of Fig. 8.18 is shown in Fig. 8.19 with reactances of the components of the
system assumed to have the values given there in per unit on whatever
base is selected.

j0.4
jol Jjo1
—B
T
c 035

Reference bus

Fic. 8.19 Reactance diagram of the industrial power system of Fig. 8.18. React-
ances are marked in per unit.

Figure 8.20 shows how the system is set up on a d-¢ caleulating board.
If 10 volts is selected to represent one per-unit voltage on the board and
1,000 ohms is one per-unit impedance, 10 ma is the base current. All
the internal emfs of the machines of the plant system and the emf repre-
senting the external power system are assumed to have the same per-unit
value, and this per-unit voltage on the base used for the calculating board
is connected between the positive and the negative busses of the
The interconnected resistances in the cireuit of the calculating
one per-unit resistance equal to 1,000 ohms, are markd
to correspond to the per-unit reactances of the rgg
three-phase short circuit oceurs in a system if thré gddrices are con-
nected in Y to the three lines and if the impeda ¢ then reduced 6}

to zero. Therefore, a three-phase short circ® : ﬁ(EG:IslTE RE D

single-phase equivalent circuit by a short cire .@m a point in the ¢
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circuit to the common return. On a d-c board this is accomplished by
connecting the negative bus to the junction between resistors correspond-
ing to the point at which the short circuit oceurs. In Fig. 8.20 a three-
phase short circuit on bus C' is simulated by closing switch S, which
corresponds to connecting point C' to the common return in Fig. 8.19.
Until such a connection is made to the negative bus of the d-c board, o
current flows in the circuit. Insertion of an ammeter in any branch
of the circuit indicates the current in that branch due to the fault. The
current may be recorded in per unit as read from the ammeter and con-
verted later to amperes by multiplying by the base current, or the

Positive A
bus 550

3000

2000
1000

§300n

D-¢c —_ 3500

power
supply —— 3000
A~

Negative
bus

Fia. 8.20 Circuit of a d-¢ caleulating board to represent the system of Figs. 8.18
and 8.19.

amperes flowing in the branches of the d-¢ board may be read and con-
verted by a multiplying factor to the amperes which would flow in the
actual system.

Although the current computed from the readings obtained from a d-¢
caleulating board is due to the fault only and does not include the com-
ponent of current due to loads on the system, the error due to the omission
of load currents is not great. The total current in any part of the system
during a fault is, of course, the sum of the components due to the loads
and due to the fault. The load component is small, however, comgared
to the fault current, and the load current and fault curygm
have a large difference in phase. It can easily be seen
of a small phasor and a large phasor having a large P o

Dy
very nearly equal to the magnitude of the large p O , %
in magnitude Y

total current in a branch during a fault is very nea ),
to the component due to the fault current alo
An a-c calculating board is much more accu f ergzﬁallas IE R E D %
e can bevﬁ,ﬁo
SION
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d-c board because magnitude and phase adj




180 ELEMENTS OF POWER SYSTEM ANALYSIS

every individual emf in the system and because all the circuit parameters
can be set up on the board.

8.10 A-C Calculating Boards.” The first modern type of a-c calcu-
lating board was built jointly by the General Electric Company and
the Massachusetts Institute of Technology in 1929. This board oper-
ates at 60 cycles. Since its instaliation, many boards have been built.?
Most of the a-¢ boards operate at either 440 or 480 cycles, although
some have been built for other frequencies, two of them for operation
at 10,000 cycles. Higher frequencies allow the use of components of
smaller size.

All modern a-c caleulating boards operate in a similar manner and are
composed of similar types of units.® The biggest variations between
boards result from different designs of individual units and different
metering arrangements. The board installed at Schenectady by the
General Electric Company in 1949 is shown in Fig. 8.21 and will be
deseribed. The network units composing the various circuit elements
of this board have adjusting dials calibrated in per unit. Each unit
terminates in a pair of cords with plugs. Two units are connected in
series by plugging a cord from each into horizontally adjacent receptacles
on a large panel board.

The generator units have independent phase-angle and magnitude
adjustments. They can be connected at any point in the system. A
voltmeter, wattmeter, and varmeter are built into each generator unit.
The series impedances of lines and associated transformers are repre-
sented by standard line units composed of resistance and inductive
reactance. Capacitors are provided to represent shunt capacitance,
and a nominal-r circuit is made by connecting one capacitor at each
end of a standard line unit. Units to represent loads have their own

7 Alternating-current calculating boards are called a-¢ network analyzers by the
General Electric Company and a-c network calculators by the Westinghouse Electric
Corporation.

8 For a list of 40 a-c calculating boards, 30 of them in the United States, see S. B.
Crary, I. W. Gross, and C. F. Wagner, “Progress and Future Trends in Klectric
Transmission,” T'rans. AIEE, vol. 71, Part III, p. 968, 1952.

9 Qee for instance H. P. Kuehni and R. G. Lorraine, “A New A-C Network Ana-
lyzer,” Trans. AIEE, vol. 57, pp. 67-73, 1938; and W. A, Morgan, F. 8. Rothe, and

891-895, 1949. For a list of the frequencies and component parts of a
boards see E. T. B. Gross, ‘‘Symposium on Network Analyg
Remarks,” Proc. Am. Power Conference, vol. 14, pp. 381-383,
Technology, Chicago, 1952. See also P. O. Bobo, ‘“Handlingg
on an A-C Network Calculator,” Elec. Eng., vol. 69, pp. r, 1950;
E. W. Kimbark, J. H. Starr, and J. E. Van Ness, “A -Tnexpensive A-C

7
Network Anal )’ Trans. AIEE, vol. 71, Part I, pp. 18 ¢ A
“z ‘IzT(::l;v Prril;axc}i’;g Is Err(rzxﬁoyed for ‘E;?)-Cycle ZT-C I\ITE,)tWor 3 Rﬁ@thE R E D %
vol. 71, Part I, pp. 18-22, 1952. VERSION
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individual voltmeters and are connected to the system through auto-
transformers in order to keep a constant voltage on the unit regardless
of the system voltage. This arrangement of the load units is helpful
in adjusting the loads to precalculated values. Additional units repre-
sent synchronous condensers, autotrausformers, and mutual reactance.
Push-button switches at the master-instrument and control panel
connect any unit in the circuit to the master-instrument busses. Master
instruments have light-beam pointers with a short time response. Read-
ings are made on 8-in. scales at eye level in front of the operator. An

Fic. 8.21 View of the front and one side of the General Electric Network Analyzer
No. 2, installed at Schenectady, N.Y. (General Electric Company.)

ammeter, voltmeter, and wattmeter-varmeter read magnitude and phase
angle as well as real and quadrature components of current, voltage, and
power. The ammeter reads directly in per unit on any of six current
scales, and the wattmeter-varmeter reads either in per unit or in mega-
watts and megavars on a 20, 50, or 100-megavolt-amp base. The real
and reactive power readings are of the proper sign looking away from the
bus being metered.

An impedance diagram with impedances specified in

voltages of the generators. Nominal voltage of t}

4 18 50 volts, 1y
and nominal current is 50 ma. Table 8.1 gives

r of eleme

. nts 7
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TapLlE 8.1 BErements or GeENeErRaL Erkctric A-C NerwoRK ANALYZER No. 2
Installed at Schenectady in 1949

Rating
Num-
Eleme nge* g * . .
ber Hlements Range Steps Per-unit | Per-unit
volts |amperes
12 Generators V0-2.5 Continuous| 2.5 10.0
¢ 0+180° Continuous
12 Synchronous impedances | ff 0-0.11 0.001 1.25 5.0
(series R + jX) X 0-1.11 0.001
1461 | Line impedances R 0-0.51 0.001 1.25 5.0
(series B 4+ 7X) X 0-0.81 0.001
561 | Load units R 0-16.1 Continuous | 1.25 5.0
(series or parallel) X 0-16.05 0.05
100 Capacitors 0-1.1 0.01 1.25
(susceptance)
4 | Large capacitors 0-50.0 1.0 1.25
(susceptance)
16 Autotransformers V 0-+30.5% 0.5% 1.25 5.0
15 Mutual transformers 1:1 ratio ‘ 1.25 5.0

* In per unit unless otherwise noted.
1 Of which 50 can be made into « lines by connecting a capacitor at each end.
1 Including continuously variable autotransformers for load adjustment.

The a-c calculating boards built by the Westinghouse Electric Corpora-
tion operate at 440 cycles, and impedances are marked in ohms. Modern
Westinghouse boards contain load units connected as = eircuits to repre-
sent the nominal-r circuits of transmission lines. Only one setting need
be made to adjust the capacitors at both ends of the = line. The board
built for Commonwealth Edison Company in 1951 has, in addition to
other line units and capacitors, 24 = lines, two of which argashofil
Fig. 8.22.

Many modern boards are equipped with a recordin
plastic recording surface consisting of a large N
spots. The one-line diagram is placed on the
small lamp bulb corresponding to each metereg
spot at the point on the diagram represented b}
ings are taken for a particular unit on the bog

Neistucent
surface. A
laced under a
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through the paper at the point on the diagram at which data for that
unit is to be recorded. So many spots are available for lamps that the
lamp connected to any unit may be put in almost any position under the
diagram.1°

A calculating board built by the Detroit Edison Company for its own
use has a fixed, permanently connected section representing the bulk

F1c. 8.22 View of two »-line units of a Westinghouse Network Calculator. Resist-
ance and reactance values marked in ohms are equal to per-cent impedance, since
100 ohms is the base impedance. Toggle switches marked in per cent susceptance
insert the indicated values in each shunt arm simultaneously. (Westinghouse Electric
Corporation.)

power system of the company. Completely variable units are also avail-
able on this board.!!

The calculating board is a great time saver compared with algebraic
methods of solution of power networks. Tt is particularly advantageous
in the study of the effects of changes in a system. Once a board i
up it takes but a few moments to determine the eircuit loadi
voltages which occur upon the temporary loss of part of tjs
conditions of contemplated future expansion, with the ad

0 Aids in the operation of calculating boards are describ
“Auxiliary Equipment Facilitates Network Calculator Oper,
Power, vol. 24, pp. 50-54, October, 1946.

"'See E. A. Baldini and A. P. Fugill, “A Power Sys
Computer,” Trans. AIEE, vol. 71, Part 111, pp. 291-297

’ V,
@QIJeVgsconte, @,?
Q_ lec. Light and (S}
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tive capacitors, and for many other changes in the system. The a-c¢
caleulating board finds its most frequent use in making load studies. A
load study made on an a-¢ calculating board is described in Chap. 1,
where the data obtained on the board is shown in Figs. 1.2 and 1.3.

Short-circuit studies, which are possible on a d-c caleulating board,
can be performed more accurately on the a-c board. Short-circuit duty
of circuit breakers, bus voltages under fault conditions, and the maximum
and minimum currents for relay settings are some of the answers supplied
by a board study.

As power systems grow larger and larger and as the number of inter-
connections increase, the subject of system stability becomes more
important. The a-c¢ board is useful in determining the steady-state and
transient stability limits of a power system, the critical operating time
for relays, and methods of improving stability.

PROBLEMS

8.1 Two generators are connected in parallel to the same bus and have sub-
transient reactances of X’ = 109%. Generator 1 is rated 2,500 kva, 2.4 kv, and
generator 2 is rated 5,000 kva, 2.4 kv. Find the per-unit reactance of each generator
on a 15,000-kva, 2.4kv base. What is the per-unit reactance of a single generator
equivalent to the two generators in parallel on a 15,000-kva, 2.4-kv base?

8.2 Three motors rated 6.9 kv are connected to the same bus. The motors are:

17%
159,

I

No. 1: 5,000-hp, 0.8-p.f. synchronous motor, X’/
No. 2: 3,000-hp, 1.0-p.f. synchronous motor, X/
No. 3: 3,500-hp, induction motor, X" = 20%

I

Txpress the subtransient reactances of these motors in per unit on a base of 10,000 kva,
6.6 kv.

8.3 A transformer bank is composed of three single-phase transformers supplying
a three-phase load consisting of three identical 10-ohm resistors. Fach single-phage
transformer is rated 10,000 kva, 38.1-3.81 kv with a leakage reactance of 109%.
Resistance may be neglected. The load is connected to the low-voltage side of the
bank. The first symbol in the designation of the transformer connection in column
1 of the table included as part of the problem indicates the connection of the high-
tension side of the transformer bank. Fill in the blanks in the table for a base of
30,000 kva. The impedance which would be marked on an impedance diagram is
either the ohmic or the per-unit value of the impedance of one phase of the Y-con-
nected equivalent circuit.

Column 7 refers to the impedance in ohms of the transformer plus thy

from the high-tension side of the transformer.
Wed from the
s Ofse for the high-

Column 8 refers to the per-unit impedance of the load compute!
- REGISTERED

load circuit.
age transmission line

Column 9 refers to the impedance of the transformer a
high-tension side of the transformer expressed in per unit g
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tension circuit.
8.4 A 15,000-kva, 8.5-kv three-phase generator has
209,. Tt is connected through a A-Y transformer to a hi
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1 2 3 ‘ 4 5 6 7 8 9
Trans- Line-to-line Base Z, e 7 viewed
former | Load | Dase kv ohms Ht' tl‘l-s;de Z of load, | from H. T.
connec- | conn. |~ — (:)}?mj’ per unit | eircuit, per

tion L. T. \ H.T.| L.T.|HT. i unit
,,,,,,,,,,,,,, S 7,_,‘1,, — -

Y-Y Y (6.6

Y-Y A 6.6

Y-A Y 3.81

Y-A A |3.81

AY Y | 6.6

A-Y ‘ A 6.6 |

having a total series reactance of 70 ohms.

down transformer.
formers connected for three-phase operation.

At the load end of the line is a Y-Y step-

Both transformer banks are composed of single-phase trans-
Each of the three transformers com-

posing each bank is rated 6,667 kva, 10-100 kv with a reactance of 10%. The load,
represented as impedance, is drawing 10,000 kva at 12.5 kv and 80% power factor
lagging. Draw the positive-sequence impedance diagram showing all impedances in
per unit. Choose a base of 10,000 kva, 12.5 kv in the load circuit. Determine the

voltage at the terminals of the generator.
4 & L F
ICiD gg DB jl000 /800 £ zé D$O3\r
=T Ay v v

T
-F)v_ 2
<—])

2

ol

Fia. 8.23 One-line diagram for Prob. 8.5.

8.6 The one-line diagram of an unloaded power system is shown
Reactances of the two sections of transmission line are shown o
generators and transformers are rated as follows:

Generator 1: 20,000 kva, 6.9 kv, X’ = 0.15 per unit
Generator 2: 10,000 kva, 6.9 kv, X’’ = 0.15 per unit
Generator 3: 30,000 kva, 13.8 kv, X = 0.15 per ygs
Transformer Ty: 25,000 kva, 6.94-115Y kv, X
Transformer Ts: 12,500 kva, 6.94-115Y kv, X

ED,/
S
2
Ry

REGISTERED /QL
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Transformer Tsi: single-phase units each rated 10,000 kva, 7.5-75 kv, X = 10%
Draw the impedance diagram with all reactances marked in per unit and with letters
to indicate points corresponding to the one-line diagram. Choose a base of 30,000
kva, 6.9 kv in the circuit of generator 1.

8.6 Determine the driving-point and transfer admittances in per unit for the
impedance diagram of Prob. 8.5 at the terminals where each of the emfs of the three
machines are connected to the impedance network. .

8.7 Determine by the method of driving-point and transfer admittances the power
input or output of each machine in the network of Prob. 8.5 if the emfs on the base
specified for that problem are E, = 1.2/15°, K, = 1.2/20°, and £y = 1.2/—20°

=7 ¥ TYa

i_D ;400 D‘%

Jj200 j20n
A oYy ; ; yro F
Ne =5 - - +
v v

i
ks

(9}

Yeu
Fic. 8.24 One-line diagram for Prob. 8.8.

8.8 Draw the impedance diagram for the power system shown in Fig. 8.24. Mark
impedances in per unit. Neglect resistance, and use a base of 50,000 kva, 138 kv in
the 40-ohm line. The ratings of the generators, motors, and transformers are:

Generator 1: 20,000 kva, 13.2 kv, X’ = 15%,

Generator 2: 20,000 kva, 13.2 kv, X" = 159

Synchronous motor 3: 30,000 kva, 6.9 kv, X" = 20%

Three-phase Y-Y transformers: 20,000 kva, 13.8Y-138Y kv, X = 109,
Three-phase Y-A transformers: 15,000 kva, 6.94-138Y kv, X = 10%

All transformers are connected to step up the voltages of the generators to the trans-
mission-line voltages.

8.9 If the voltage of bus € in Prob. 8.8 is 6.6 kv when the motor draws 24,000 kw
at 0.8 power factor leading, calculate the voltages of busses A and B. Assume that
the two generators divide the load equally. Give the answer in volts and in per unit
on the base selected for Prob. 8.8. Tind the voltages at A and B when the circuit
breaker connecting generator 1 to bus A is open while the motor draws 12,000 kw at
66 kv with 0.8 power factor leading. All other circuit breakers remain closed.

8.10 Calculate the voltage regulation at bus C of Fig. 8.24 for the twqgandiy
Prob. 8.9. Assume that the voltage is held constant at busses
24,000-kw load is removed while the two generators are connected
is constant at bus B when the 12,000-kw load is removed whilg
connected. The voltages at the busses are those calculated

8.11 The windings of a three-winding transformer are ra

Primary: Y-connected, 6.6 kv, 15,000 kva
Secondary: Y-connected, 33 kv, 10,000 kva
Tertiary: A-connected, 2.2kv, 7,500 kva

DS MO WS &
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With resistance neglected the following leakage impedances are caleulated from short-
circuit tests:

Measured from the primary side: Z,, = j2.47 ohms
Z e = j2.90 ohms
Measured from the secondary side: Z, = 58.70 ohms

Find the impedances of the star-connected cquivalent circuit on a base of 15,000 kva,
6.6 kv in the primary circuit.

8.12 A d-c calculating board is connected to study a three-phase short circuit on
one of the busses of a system having a base of 5,000 kva, 2,300 volts. On the cal-
culating board 1009 voltage is 18 volts and 100 ¢, impedance is 3,000 chms. If a
milliammeter inserted in series with one of the resistance units of the calculating
hoard reads 10 ma, find the expected fault currcnt in the corresponding branch of
the system.

8.13 Draw the diagram and mark on it the values of all the resistances for con-
necting a d-c¢ ealeulating board to study the system of Prob. 8.8. The board has a
100 % voltage of 50 volts and a 100 % impedance of 10,000 ohms. What voltage is
applied between the positive and negative busses if faults are to be studied when the
transmission line is operating at a voltage of 132 kv?
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CHAPTER 9

SYMMETRICAL THREE-PHASE FAULTS
ON SYNCHRONOUS MACHINES

9.1 Introduction. When a fault occurs in a power network, the
current flowing is determined by the internal emfs of the machines in the
network, by their impedances, and by the impedances in the network
between the machines and the fault. The current flowing in a synchro-
nous machine immediately after the occurrence of a fault, that flowing
a few cycles later, and the sustained or steady-state value of the fault
current differ considerably because of the effect of the armature current
on the flux which generates the voltage in the machine. The current
changes relatively slowly from its initial value to its steady-state value.
This chapter discusses the calculation of fault current at different
periods, and it explains the changes in reactance and internal voltage
of a synchronous machine as the current changes from its initial value
upon the occurrence of a fault to its steady-state value.!

9.2 Transients in RL Series Circuits. As desceribed in Sec. 1.4 the
selection of a circuit breaker for a power system depends not only upon
the current which the breaker is to carry under normal operating condi-
tions but also upon the maximum current it may have to carry momen-
tarily and the current it may have to interrupt at the voltage of the line in
which it is placed. Therefore, it is always necessary to determine the
initial value of current when a fault occurs on a system so as to select
a breaker having a sufficient momentary rating.

In order to approach the problem of calculating the initial current
when an alternator is short-circuited, consider what happens when 2
voltage is applied to a circuit containing constant values o
and inductance. Let the applied voltage be |V, sin
is zero at the time of applying the voltage. Then ¢
magnitude of the voltage when the circuit is closed.

MR ED
%'gﬁ\antaneous ,/6@
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1 The chapter is so arranged that students can omit Se,
continuity. Such omission is recommended for student3
the two-reaction method of analysis of synchronous mach
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voltage is zerc and increasing in a positive direction when it is applied
by closing a switch, « is zero. If the voltage is at its positive maximum
instantaneous value, « is /2. The differential equation is

|Vl sin (ot + &) = Ri + L% (9.1)
The solution? of this equation is )
1= {'I;""I [sin (0t + o — 6) — e *L sin (o — )] (9.2)

where |Z] is v/R? + (0L)? and 6 is tan~! (wL/R).

The first term of Eq. (9.2) varies sinusoidally with time. The second
term is nonperiodic and decays exponentially with a time constant of
L/R. We recognize the sinusoidal term as the steady-state value of the
current in an RL circuit for the given applied voltage. 1f the value of the

T
AN

Fra. 9.1 Current as a function of time Fia. 9.2 Current as a function of time

in an RL cireuit for « — 8 = 0, where inan RL circuit fora — 6 = —90°, where
8 = tan™! (wL/R). The voltage is {V,,] 6 = tan~! (wL/R). The voltage is |V |
sin (wt + «) applied at ¢t = 0. sin (wt 4+ «) applied at ¢ = 0.

steady-state term is not zero when ¢ = 0, the nonperiodic, or d-¢ tran-
sient term appears in the solution in order to satisfy the physical condi-
tion of zero current at the instant of closing the switch. Note that the
d-c term does not exist if the circuit is closed at a point on the voltage
wave such that « — 6 = 0Oora — ¢ = x. Figure 9.1 shows the variation
of current with time according to Eq. (9.2) when « — 6 = 0. If the
switch is closed at a point on the voltage wave such that « — § = +7/2,
the d-¢ component has its maximum initial value, which is equal to the
maximum value of the sinusoidal component. Figure 9.2 shows current
versus time when « — 6 = —x/2. The d-c component may have any
value from 0 to |V.|/|Z|, depending on the instantanecus value of the
voltage when the circuit is closed and upon the power factor of the cir,

At the instant of applying the voltage, the d-¢ and steady-]

ponents always have the same magnitude but are opposit ,/
\ &
y ggnetlc field '?
@i?’e \

to express the zero value of current then existing.
sistance and

An a-c generator (alternator) consists of a rof¥
which generates a voltage in an armature winding L
' "REGISTERED Q)
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?See E. B. Kurtz and G. F. Corcoran, “Introduction
149-151, John Wiley & Sons, Inc., New York, 1935.




190 ELEMENTS OF POWER SYSTEM ANALYSIS

reactance. The current flowing when an alternator is short-circuited is
similar to that flowing when an alternating voltage is suddenly applied
to a resistance and an inductance in series. There are important differ-
ences, however, since the flux which crosses the air gap of an alternator
and generates the voltage in the armature winding changes in value
because of the effect which the current in the armature produces on the
rotating field.

A good way to analyze the effect of a three-phase short circuit at the
terminals of a previously unloaded alternator is to take an oscillogram

N
a -

|
IATA
iz

Fic. 9.3 Current as a function of time for a 208-volt 30-kw alternator short-cireuited
while running at no load. The unidirectional transient component of current has
been eliminated in redrawing the oscillogram.

of the current in one of the phases upon the occurrence of such a fault.
Since the voltages generated in the phases of a three-phase machine are
displaced 120 electrical degrees from each other, the Short circuit is

ent in each phase If the d-c Pomponent ot current is d ¥, @R;E

current of each phase, the resulting plot of each phase g \%r us time D ,/ @

is that shown in Fig. 9.3. Comparison of Figs. &3 shows the '?
difference between applying a voltage to the_g a@hRL circuit and @
applying a short circuit to a synchronous ni% II)REJ@Ise??ERED
figures there is no d-c component. In a syncl machine the flux ¢
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across the air gap of the machine is much larger at the instant the short
circuit occurs than it is a few cycles later. The reduction of flux is
caused by the mmf of the current in the armature. The phenomenon is
called armature reaction. The resulting flux across the air gap is due
to the combined mmf of the d-c winding and the armature current. Time
is required for the reduction in flux to take place. As the air-gap flux
diminishes, the armature current decreases because the voltage generated
by the air-gap flux determines the current. This accounts for the gradual
decrease in current shown in Fig. 9.3.

9.3 Short-circuit Currents and the Reactances of Synchronous
Machines.? Certain terms which are valuable in the calculation of
short-circuit current in a power system can be defined from Fig. 9.3.
The reactances which we will define are called direct-axis reactances, a
designation which is familiar to those who have studied the two-reaction
theory* of a-c machinery and which should cause no confusion to others
since it is merely applied to a value of reactance to be used for computing
voltage drops caused by that component of the armature current which
is in quadrature (90° out of phase) with the voltage generated at no load.
Since the resistance in a faulted circuit is small compared to the inductive
reactance, current during a fault is always lagging by a large angle, and
the so-called direct-axis reactances are used. In the discussion to follow,
it should be remembered that the current shown in the oscillogram of
Fig. 9.3 is that which flows in an alternator which is operating at no load
before the fault occurs.

In Fig. 9.3 the distance oa is the maximum value of the sustained short-
cireuit current. This value of current times 0.707 is the rms value 7
of the sustained, or steady-state, short-circuit current. The no-load
voltage of the alternator E, divided by the steady-state current I is
called the synchronous reactance of the alternator, or the direct-axis
synchronous reactance X4 since the power factor is low during the short
circuit. The comparatively small resistance of the armature is neglected.

If the envelope of the current wave is extended back to zero time,
neglecting the first few cycles where the decrement appears to be very
rapid, the intercept is the distance ob. The rms value of the current
represented by this intercept, or 0.707 times ob in amperes, is known as

8 For a more complete discussion see C. F. Wagner and R. D. Evans,
Components,” Chap. V, Constants of Synchronous Machines, pp. 74-1(

Hill Book Company, Inc., New York, 1933; C. F. Wagner, ‘“ Machi é %1' al ED ,/@@

in Central Station Engineers of the Westinghouse Dlectric Corp
Transmission and Distribution Reference Book,” 4th ed., C} 5-194, East
a, “Synchro-

Pittsburgh, Pa., 1950. An advanced treatment is given by (J
nous Machines,” John Wiley & Sons, Ine., New York, 14
O?SSee ?(fr ;Ezf,anc;) AI.1 E. lé{zgera(;gsan; cC I{?;lee(;r, “ R}E G Is TE R E D ¢
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the transient current I'. A new machine reactance may now be defined.
It is called the transient reactance, or in this particular case the derect-axes
transient reactance X}, and is equal to E,/I’ for an alternator operating
at no load before the fault. The point of intersection which the current
envelope makes with the zero axis, if the rapid decrement of the first
few cycles is neglected, can be determined more accurately by plotting
on semilogarithmic paper the excess of the current envelope over the sus-
tained value represented by oa, as
shown in Fig. 9.4. The straight-line
portion of this eurve is extended to
| Envelope of current of the zero-time axis, and the intercept
\(/ Fig. 9.3 minus is added to the maximum instanta-
steady-state value .
\ neous value of the sustained current
\ to obtain the maximum instantane-
\ ous value of transient current corre-
sponding to ob in Fig. 9.3.
AN The rms value of the current deter-
mined by the intercept of the current
\ envelope with zero time is called the
subtransient current I'’. In Fig. 9.3
the subtransient current is 0.707
\\ times the ordinate oc. Subtransient
current is often called the nitial
symmetrical rms current, which is
more descriptive because it conveys
the idea of neglecting the d-c¢ com-
T ponent and taking the rms value of
Fic. 9.4 Excess of the current enve- the a-c component of current im-
lope of Fig. 9.3 over the sustained maxi-  mediately after the occurrence of the
E;‘Cn;c(ﬁ(fsrfmt’ plotted on semilogarith-— ¢\ ¢ Direct-aais subtransient react-
ance X7 for an alternator operating
at no load before the occurrence of a three-phase fault at its terminals
is B,/1".
The currents and reactances discussed above are defined by the follow-
ing equations, which apply to an alternator operating at no load before
the occeurrence of a three-phase fault at 1ts terminals:

Current (logarithmic scale)
/

I = o Eg
’\/i ]Xd
I = _O.Z_)“. = Eg
V2 X /c)
no % _ K
R 4 REGISTERED ©)
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where I = steady-state current, rms value
I’ = transient current, rms value excluding d-¢ component
I’ = subtransient current, rms value excluding d-¢ component
X4 = direct-axis synchronous reactance
X/, = direct-axis transient reactance
X! = direct-axis subtransient reactance
E, = voltage from one terminal to neutral at no load
oa, ob, and oc are the intercepts shown in Fig. 9.3.

Equations (9.3) to (9.5) indicate the method of determining fault
current in a generator when its reactances are known. If the generator
is unloaded when the fault occurs, the machine is represented by the
no-load voltage to neutral in series with the proper reactance. The
resistance is taken into account if greater accuracy is desired. If there
is impedance external to the generator between its terminals and the short
cireuit, the external impedance must be included in the circuit.

Example 9.1

Two generators are connected in parallel to the low-voltage side
of a three-phase A-Y transformer as shown in Fig. 9.5. Generator 1

is rated 50,000 kva, 13.8 kv. Generator 2 is
rated 25,000 kva, 13.8 kv. Each generator has g, O____
( )_____ 4y

a subtransient reactance of 259,. The trans-
former is rated 75,000 kva, 13.8A-69Y kv,
with a reactance of 109,. Before the fault g,
oceurs, the voltage on the high-tension side of
the transformer is 66 kv. The transformer is
unloaded, and there is no circulating current
between the generators. Find the subtransient current in each generator
when a three-phase short circuit occurs on the high-tension side of the
transformer.

Fre. 9.5 One-line diagram
for Ikxample 9.1.

Solution
Select as base in the high-tension circuit 69 kv, 75,000 kva. Then the
hase voltage on the low-tension side is 13.8 kv.

75,000

Generator 1: X = 0.25 X 50,000 = (.375 per unit
E, = g—g = (.957 per unit

Generator 2: X = 0.25 X ;g:ggg = 0.750 p
E, = g—g = (.957 per unit

Transformer: X = 0.10 per unit
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Figure 9.6 shows the reactance diagram before the fault. A three-phase
fault at P is simulated by closing switch S. The internal voltages of the
two machines may be considered to be in parallel since they must be

g 50375

6%, g

Neutral bus

Fia. 9.6 Reactance diagram for Example 9.1,

identical in magnitude and phase if no circulating current flows between
them. The equivalent parallel subtransient reactance is

.0.375 X 075 . .

0 = j0.25

J 0375 £0.75 = 70.25 per unit

Therefore,
0.957 .
o = —79.735
1 7095 + 7010 72.735 per unit

Since this current divides between the generators inversely as the imped-
ances of the generators,

In generator 1: I = —352.735 X 101/20_ = —71.823 per unit
In generator 2: [ = —;2.735 X (1)?;? = —70.912 per unit

To find the current in amperes, the per-unit values are multiplied by the
base current of the circuit, as follows:

In generator 1: I = —31.823 X _ZE’_(EO_“ = 5,720 amp

V3 X 13.8
75,000

V3 X 13.8

Finding machine reactances from an oscillogram of the current flgai
when the machine is short-circuited at no load is only )
available methods. Another method?® of finding diree
reactance is discussed in Sec. 9.5.

Although machine reactances are not true co
and depend on the degree of saturation of the

—70.912 X —e

II

2,860 amp

In generator 2: 1"

\O
@@he machine

Q_ circuit, their
l\gmn REGLSuTERED 2

1, December, 1931.
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Machine Constants by Test,” Trans. AIEE, vol. 50, pp.
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values usually lie within certain limits and can be predicted for various
types of machines. Table A.5 in the Appendix gives typical values of
machine reactances which are needed in making fault calculations and in
stability studies. In general, subtransient reactances of generators and
motors are used to determine the initial eurrent flowing on the occurrence
of a short circuit. For determining the interrupting capacity of circuit
breakers, except those that open instantaneously, subtransient reactance
is used for generators and transient reactance is used for synchronous
motors. In stability studies where the problem is to determine whether
a fault will cause a machine to lose synchronism with the rest of the sys-
tem, if the fault is removed after a certain time interval, transient
reactances apply.

9.4 Further Discussion of Synchronous Reactance. Although syn-
chronous reactance has been mentioned briefly, a better understanding
of its meaning and of the meaning of
transient and subtransient reactance
may be had through reviewing the
phasor diagram of an alternator under
steady-state conditions. The two-
reaction theory of synchronous ma-
chine operation considers the mag-
netomotive force and flux acting
directly in line with the poles of a
salient-pole machine separately from
the magnetomotive force and flux in
quadrature with the poles. Informa- gy, 97 Phasor diagram of a salient-
tion on machine reactances is generally  pole alternator delivering a current I.
given in terms of direct- and quadra- o is the no-load voltage.
ture-axis components.

The two-reaction theory may be explained by referring to Fig. 9. 7
which is the phasor diagram of an alternator under load. The current I
is made up of two components 1,4, which is 90° out of phase with the
no-load voltage E, and I, in phase with E, The component I; is
called the direct-axis component of current because it produces the
magnetomotive force Fa, which acts on the same axis as the magneto—
motive force Fy, produced by the d-c field winding of the poles i is
the only magnetomotive force present at no load, and its flus
the no-load voltage E,. Similarly, I, is called the quady ﬁRED
of current because it produces the magnetomotive forg a{%i n ,/
the flux ¢,, which is in quadrature with the main ‘ @\etomotive 6@

y , which, in a
s?xlient—pole machine, acts over a low reluctan A OMSTER ED ¢

forces F; and Fy add to give the resultant direct-
since the former acts directly on the pole while F
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The flux produced by each magnetomotive force depends on the reluc-
tance in its path.® Figure 9.8a shows current in the field winding only,
and the flux is that determined by F, alone. Figure 9.8b shows the
current component I, in the armature winding and the flux which would
be produced by its magnetomotive force if there were no other mmis
present. Figure 9.8¢ shows only 7, in the armature winding and flux
$4 set up by F,. The voltage phasors corresponding to each component
of flux produced by the component magnetomotive forces are shown in
Fig. 9.7, where the no-load voltage E, is the result of ¢, alone, the voltage
phasor labelled 7,X.q represents the voltage resulting from the decrease
#q in direct-axis flux caused by Fy, and I,X,, is caused by ¢, Each of
these voltages lags by 90° the flux which induces it and therefore also
lags the corresponding magnetomotive force and current. The voltage
drop resulting from the action of F; is considered as the product of a

¢f ¢d ¢q
Err
Sﬁz"‘?> - b P ?
194 O
®) oi l ( lo l¢] Isf |
— — k__
@ Pg
(a) Field current and field (b) Direct-axis armature  (c) Quadrature-axis armature
flux current and flux current and flux

Fre. 9.8 Flux paths in a salient-pole alternator.

current and inductive reactance, namely, [,X ., because it is proportional
to I; and lags it by 90°. Similar reasoning holds for 7,X., Thus Xa
and X, are the constants of proportionality between the components of
current and the voltage drops they cause by armature reaction. These
values are true constants only if saturation is negligible. For a salient-
pole machine X,; is much larger than X,, because of the lower reluctance
on the direct axis.

The resultant of all the magnetomotive forces—thatis, Fg + F, + Fr—
produces the air-gap flux ¢, which in turn induces the voltage E, in the
armature. This voltage is called the air-gap voltage. In Fig. 9.7, pha-
sors representing component fluxes ¢y, ¢a, and ¢, are shown adding up
to produce ¢, As stated above, ¢y, is flux produced by F; alone, and
$q is the decrease in direct-axis flux caused by F; and not &
the flux which F; would produce if acting alone. In_ter
voltages, E, is the sum of the no-load voltage ¥, and the
by the magnetomotive forces of armature reactiongs
plus the voltage drops IgXa and I,X.,. The term

s A discussion of the flux paths in a salient-pole macls l by I. . Schild- 7
neck, “Synchronous Machine Reactances, a Fundament d%ysié E S’T E R E D O
Gen. Elec. Rev., vol. 35, pp. 560-565, November, 1937, D ¢
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from the air-gap voltage at any time only by the armature resistance and
leakage reactance drops /R + jIX;. This is an important concept.
After a three-phase short circuit has occurred at the terminals of an
alternator, the terminal voltage is zero, and the steady-state current is

E,

[ ="+
R 4+ 71X,

(9.6)
where E, is the steady-state value of air-gap voltage.

When the voltage drops of armature reaction are combined with the
drop caused by leakage reactance, the total direct-axis voltage drop
divided by I, is called the direci-axis synchronous reactance Xg4, and the
total quadrature-axis voltage drop divided by I, is the quadrature-axis
synchronous reactance X, These relations are given by the following
equations for direct- and quadrature-axis synchronous reactance:

Xd = Xad + Xz and Xq = Xaq + Xl (97)

Tt should be noted here that the diagram of Fig. 9.7 is for a salient-
pole machine and that for low power factors the angle between E, and
approaches 90°.  Direct-axis synchronous reactance X, is often the only
machine impedance that need be considered for steady-state fault calcu-
lations since the armature resistance is usually small and the current
usually lags E, by a very large angle. This may result in a small error
for faults remote from the alternator terminals if the resistance in the
external circuit is appreciable, but the neglect of resistance and quadra-
ture-axis reactance simplifies the calculation greatly.

For a three-phase short circuit at the generator terminals, the steady-
state short-circuit current is given by

E, E,
'=5x = ix, ©8)
If there is external impedance Z.,. between the terminals and the fault,
the current will be
E, E,

I = — = -
Zext +]Xl Zext + ]Xd

(9.9

In general E, is not known, but %, is known or can be deterrngned.

9.5 The Significance of Transient and Subtransient R
Section 9.4 shows that the steady-state current in a gend
ture resistance neglected is determined by the aij
the leakage reactance of the armature circuit
impedance present. When the current in thg
rapidly, after the occurrence of a short circuit,
from its subtransient value to its transient and stgill west . The
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current, is still determined by the air-gap voltage and the leakage react-
ance of the armature plus any external impedance. The magnitude
of the air-gap voltage is changing during this period. For a three-phase
short circuit at the generator terminals,

, E, E,
I'=2%,=% (9.10)
E' E
o a — q
I" =% = 5 (9.11)

where E, and E!/ are, respectively, the air-gap voltages when transient
and subtransient currents are flowing. The difference between the sub-
transient current and the steady-state current is caused entirely by the
change in the air-gap voltage. At no load, E, is equal to the air-gap
voltage. With a steady-state load, as shown in Fig. 9.7, E, is much
smaller than E, because of armature reaction. If the machine is suddenly
short-circuited, the current which starts to flow in the armature circuit
produces a magnetomotive force which tends to decrease the flux linking
the field circuit and the rotor iron of a turbine generator or the damper
winding of a salient-pole machine.

According to Lenz’s law, any change in the flux linking a circuit will
induce an emf in the circuit tending to cause the flow of current in a
direction to oppose the change in flux. An instantaneous change in
the total flux linkages of a circuit would produce an infinitely large
induced voltage still opposing the change. Therefore, the total flux
linkages of a circuit tend to remain constant instantaneously. This
phenomenon is called the principle of constant flux linkages.” The
demagnetizing effect of the armature current (armature reaction) would
reduce the flux linkages of the circuits in the path of the flux except
for the fact that current is immediately induced in the circuits linked.
The principle of constant flux linkages explains the reason for induced
current in the rotor iron, the damper windings, and the field windings
in order to maintain a constant value of flux linkages of these circuits
for an instant after a sudden change occurs in the armature current.
Some of the flux which links the current induced in the damper winding
or rotor iron is leakage flux, or flux which does not link the armat e
circuit. Similarly, the increased current in the field winding
in increased field leakage flux. The flux across the air gap
slightly since the constant total value of flux linkages
winding, the rotor iron, and the field winding congg
flux and leakage flux. Thus, EY is slightly less

YOAN“Air-gap

Qg/ and, since
REGIS TERED 2
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"See W. C. Johnson, “Mathematical and Physical
Analysis,” pp. 26-30, McGraw-Hill Book Company, Inc.,
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Eq. (9.11) yields the relation
X; E,
X, K7
X/ is slightly larger than X;. Usually £, is known or can be calculated,
and the subtransient current is found by the equation

(9.12)

5
Ly

Xy

As the current induced in the damper winding, or other eddy-current
path, dies out, the air-gap flux decreases. The result is a reduced air-
gap voltage and, in turn, a decrease in armature current. The rate
of decrease of armature current is determined by the time constant L/RE
of the path of the induced current. This time constant is comparatively
short. After a few cycles the eddy-current paths cease to be the major
determining factor in the decay of air-gap flux and armature current,
but the rate of decay is then determined by the considerably larger time
constant of the field winding. This is the reason for the change in the
rate of decay of the armature current after the first few cycles. Since
[ is less than I"', X} is greater than X7, but both are much less than the
synchronous reactance.

Any change of current in the armature circuit will change the magneto-
motive force of armature reaction. The resulting change in flux linking
the damper winding and field circuit is governed by the time constants
of these circuits since it is the current flowing in the windings which
opposes the change of flux. For any transient condition in the armature
¢ircuit, either subtransient or transient reactance should be used. The
choice of reactance depends on whether the current to be found is the
initial value for a sudden change in circuit conditions or the value after
the transient in the damper winding has died out and the change in flux
has penetrated to the field circuit.

If a single-phase voltage is applied to two terminals of the armature
circuit, a pulsating, nonrotating field is set up by the armature current.
If the field circuit is short-circuited and the rotor is turned slowly so
that the pulsating field is sometimes lined up directly with the axis of
the rotor and sometimes is at 90 electrical degrees with it, the current
through the armature will have different values depending on g
of the rotor. The pulsating field of the armature induce
the field circuit and damper windings. These induced
the flux which produces them. The mmfs of the g
of the current induced in the field winding are the
act during the flow of subtransient current in thess
voltage induced by the flux set up by these m
armature current times subtransient reactance

I (9.13)

e(@_ h0§e w}rﬁch Xy
S BEGISTERED /QL
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phase voltage is divided by 2 to obtain the voltage per phase and then
by the current measured for various positions of the rotor as it changes
position, the reactive components of the impedances obtained are direct-
axis subtransient reactance when the armature magnetomotive force is
lined up with the rotor, or quadrature-axis subtransient reactance when
the rotor is shifted by 90 electrical degrees. The reactances so measured
for a salient-pole machine with and without damper windings are plotted
in Fig. 9.9. This demonstrates the effect of the damper winding. The
damper winding which extends around the complete circumference of the

11 . . | [ | l
I<—{Quadrature axis X . -
Q i <—D||rect axis X4 L

1.0 i d
Blocked rotor method

09
No dampers

08
0.7

0.6 \ /

05 N /

04 -

03

0.2

Copper dampers

0.1

0

0 30 60 90 120 150 180
Angular position of rotor in degrees

Fre. 9.9 Subtransient reactance as a function of rotor position for a salient-pole
machine with and without a damper winding. (From C. F. Wagner and R. D. Evans,
“Symmetrical Components,’ McGraw-Hill Book Company, Inc., New York, 1933, by
permission.)
rotor is so effective in opposing the change of flux linking the armature
circuit that the presence or absence of the rotor poles is hardly noticeable,
and the effect is similar to that in a round-rotor machine. When there
are no damper windings, X’/ is much greater than X7 in a salien
machine because there is no closely coupled eircuit on the
axis to oppose the changing flux, and the flux change g
direct axis the field circuit opposes the change of ﬂux
short-circuited secondary of a transformer, and t
9.6 Internal Voltages of Loaded Machines
ditions. All the preceding discussion pertain
carries no current at the time a three-phase faull
of the machine. Now consider an alternato

D ,/é\@
ans:en’r Con-
EE”GKFTERED )

§ - loaded hsidis o n
ADDS NO




SYMMETRICAL THREE-PHASE FAULTS ON SYNCHRONOUS MACHINES 201

fault occurs. Figure 9.10a is the equivalent circuit of an alternator
which has a balanced three-phase load. External impedance is shown
between the alternator terminals and the point P where the fault occurs.
A three-phase fault is simulated by closing the switch S. Before the
switch is closed the current flowing is I, the voltage at the fault is Vf,
and the terminal voltage of the alternator is V..

The circuit may be solved by the Helmholtz-Thévenin theorem, which
is applicable to linear, bilateral ecircuits.® When constant values are
used for the reactances of synchronous machines, linearity is assumed.
When the theorem is applied to the cireuit of Fig. 9.10qa, the equivalent
¢ircuit is a single generator and a single impedance terminating at the
point of application of the fault. The new generator has an internal

Zext P Zth P
LHOTT LHOO0

1

Xy L
+ V. \ t
V V4
" ¢ 8 f L V;— <> S\
~8
(a) Original circuit {b) Thévenin equivalent

circuit at fault

F1c. 9.10 Equivalent circuits of an alternator supplying a balanced three-phase load.
Application of a three-phase fault is simulated by closing switch S.

voltage equal to V,, the voltage at the fault point before the fault occurs.
The impedance is that measured at the point of application of the
fault looking back into the circuit with all the generated voltages short-
circuited. Subtransient reactances should be used if the initial cur-
rent is desired. Figure 9.100 is the Helmholtz-Thévenin equivalent
of the original circuit at the fault. The impedance Z,; is equal to
(Zou + 7 XNZ1/(Z1 + Zow + 7XI]). Upon the occurrence of a three-
phase short circuit at P, simulated by closing S, the subtransient, current
in the fault is

Vf i Vf(ZL + Zow +,7'le,
7:h ZL(Zcxt + ].X;/)

In making steady-state calculations for synchronous machines,
machine is regarded as having an internal voltage equal to its

voltage at no load E, and an internal reactance called § ’ T@RED
reactance. In a similar manner the machine may be rgoa g \Q%h gan ,/ @
internal voltage called the voltage behind subtransien " which '?
drives the subtransient current through the subtragg ctance when @

there is a sudden change in load or a short circuit! @anﬁE@fs TERED ¢
VERSION
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(9.14)

# The Helmholtz-Thévenin theorem is stated in Sec.
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may be regarded as being driven through the transient reactance by the
voltage behind transient reactance E’. KEquations (9.3) to (9.5) indicate
that E,, E", and E’ are all equal when there is no load on the machine
before a short circuit occurs, since the equations show E, determining the
current for each condition. Such is not the case if the machine is loaded
when the fault occurs. The values of E' and E”” when a machine is loaded
before a disturbance occurs are found by noting that Eq. (9.14) gives the
value of I’ and that, by definition for the circuit of Fig. 9.10aq,
1’

1" = Zm—f_]——,, (9.15)
Eliminating /"’ from Eqs. (9.14) and (9.15), and noting that I, = V,/Z,,
we obtain

E' = I1.(Z1 + Zew + X)) (9.16)
and, since [.(Z; + Zow) = V4,
B =V, 4+ jI.XY 9.17)
Similarly,
E =V, 4+ jI:X; (9.18)

Equations (9.17) and (9.18) are useful in computing £’ and E’ when the
terminal voltage of an alternator and the load current are known before
the fault occurs.

Synchronous motors have reactances of the same type as alternators.
When a motor is short-circuited it no longer receives electric energy
from the power line, but its field remains energized, and the inertia of
its rotor and connected load keeps it rotating for an indefinite period.
The internal voltage of a synchronous motor causes it to contribute cur-
rent to the system, for it is then acting like an alternator. By comparison
with the corresponding formulas for an alternator, the voltage behind
subtransient reactance and the voltage behind transient reactance for a
synchronous motor are found to be given by the following equations:

E" =V, — jI.XYy (9.19)
E =V, —ji.X] (9.20)

Systems which contain alternators and motors under load may be
solved either by the Helmholtz-Thévenin theorem or by the use of
ages behind transient or subtransient reactance, as is illustr
following examples.

Example 9.2

An alternator and a synchronous motor are rated
and both have subtransient reactances of 209
them has a reactance of 109, on the base of the
motor is drawing 20,000 kw at 0.8 power factg
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voltage of 12.8 kv when a symmetrical three-phase fault occurs at the
motor terminals. Find the subtransient current in the alternator, motor,
and fault by using the internal voltages of the machines.

j0.10 P j0.10 p
I o
70.20 Iy I G020
. Al L
G M E E,
Neutral bus Neutral bus
(a) Before the fault (6) During the fault

Fia. 9.11 Equivalent cireuits for Example 9.2.

Solution
Choose as base 30,000 kva, 13.2 kv.
Tigure 9.11a¢ shows the equivalent circuit of the system described.
Use the voltage at the fault V; as the reference phasor.

12.8 . .
Vy = 39 = 0.97/0° per unit
Base current = ~~—M = 1,310 amp
V3 X 13.2

20,000

T = = = 1,128/36.9° am
" 08 X V3 X128 /36.9° amp
1128
T 1,310 0.86/36.9° per unit

It

0.86(0.8 + 70.6) = 0.69 4+ 70.52 per unit
For the generator,

Ve = 0.970 + j0.1(0.69 + 50.52)
= 0.970 + 50.069 — 0.052 = 0.918 + j0.069 per unit

B = 0.918 + j0.069 + j0.2(0.69 + 0.52)
= 0.918 4 j0.069 + 70.138 — 0.104 = 0.814 + j0.207 per unit
o= 08 A I020T 660 o 71 per unit

70.3
1,310(0.69 — 72.71) = 904 — 53,550 amp
For the motor,

V, =V, = 0.97/0° per unit

Il

B! = 0.97 + j0 — j0.2(0.69 -+ j0.52) = 0.97 — j0. evERED »
~ 1.074 — j0.138 per unit 6\4)
= WOT = 0188 s s nr e il A RY

702
1,310(—0.69 — j5.37) = —904 — ;7,8

I

REGISTERED /QL
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In the fault,

Il =10 4+ I =069 — j2.71 — 0.69 — j5.37 = —;8.08 per unit
= —j8.08 X 1,310 = —;10,590 amp

Figure 9.11b shows the paths of I/, I);, and I7.

Example 9.3
Solve Example 9.2 by the use of the Helmholtz-Thévenin theorem.
Solution
_Jj03 X;0.2 .
Zy = 08 F 02 " 70.12 per unit

V; = 0.97/0° per unit
In the fault,

_ 097 +50 _

1 § —
Iy 012 78.08 per unit
The above current, found by applying the Helmholtz-Thévenin

theorem, is that which flows out of the circuit at the fault because of the

(a) Before the fault (b) During the fault

F1a. 9.12 Circuits illustrating the application of the superposition theorem to deter-
mine the proportion of the fault current in each branch of the system.

reduction of the voltage to zero at that point. If this current caused
by the fault is divided between the parallel circuits of the generators
inversely as their impedances, the resulting values are the currents from
each machine due only to the change in voltage at the fault point. To
the fault currents thus attributed to the two machines must be added
the current flowing in each before the fault occurred to find the total
current in the machines after the fault. The superposition theorem
supplies the reason for adding the current flowing before the fault §
current computed by the Helmholtz-Thévenin theorem. g
shows a generator having a voltage V, connected at t
to the voltage at the fault before the fault occurs,
no effect on the current flowing before the fault 2 the cu"cult
corresponds to that of Fig. 9.11¢. Adding in sg V; another
generator having an emf of equal magnitude b

Vs gives the ci.rcuit of Fig. 9.12b, which .correspo hagg m lTE R E D ¢
VERSION

ADDS NO
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The principle of superposition, applied by first shorting E7, E;., and Vy,
gives the currents found by distributing the fault current between the
two generators inversely as the impedances of their circuits. Then short-
ing the remaining generator —V; with E), E. and V; in the circuit
gives the current flowing before the fault. Adding the two values of
current in each branch gives the current in the branch after the fault.
A further discussion of the method is given in Sec. 13.5. Applying the
above principle to the present example gives

Fault current from the generator = —58.08 X j%—g = —j3.23 per unit
Fault current from the motor = —38.08 X gg—g = —j4.85 per unit

To these currents must be added the prefault current . to obtain the
total subtransient currents in the machines.

I = 0.69 4+ j0.52 — 73.23 = 0.69 — j2.71 per unit
I = —0.69 — j0.52 — j4.85 = —0.69 — 55.37 per unit

Note that I is in the same direction as I but opposite to I,,.
As in Example 9.2,

I = 904 — 73,650 amp
I} = —904 — 57,040 amp
17 —710,590 amp

9.7 The Selection of Circuit Breakers. The subtransient current is
the initial symmetrical rms current and does not include the d-c component
of the transient fault current. Kxact calculation of the rms value of
the fault current in a power system is exceedingly complicated. Approxi-
mate methods are more practical and usually sufficiently accurate. The
method recommended by the AIEE Switchgear Committee® takes the
d-c¢ component into account by applying a multiplying factor to a sym-
metrical rms current calculated, according to certain rules, for the type
and location of fault which provides the heaviest duty on the breaker. In
determining current which a breaker must carry immediately after a
fault occurs and which is called the momentary duty of a breaker the
initial symmetrical rms current is computed by network redug
an a-¢ or d-¢ calculating board with subtransient reactances i

the generators, synchronous motors, and induction } RE
flowing before the fault occurs is neglected. The 4 factor ,/@
recommended is 1.6, except that at 5 kv and b ultiplying '?

factor is 1.5, unless the eircuit is fed predomina

) Qectly connected

@oREsGLS TERED 2
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% ATIEE Switchgear Committee, “Simplified Caleulatio
AIEE, vol. 67, Part I1, pp. 1433-1435, 1948.
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machines or through reactors. A factor of 1.25 is recommended for air
circuit breakers rated 600 volts or less. Such breakers are rated on an
average for all three phases.

In computing the current to which to apply a multiplying factor
to determine current which a breaker must be able to interrupt at the
time its contacts part and which is called the interrupting rating, it is
recommended that subtransient reactance be used for generators and
transient reactance for synchronous motors and that induction motors
be neglected. The suggested multiplying factors to obtain the interrupt-
ing rating depend on the speed of the breaker. For the general case, the
multiplying factors are:

8-cycle or slower breakers..... ... 1.0
5-cycle breaker.................. 1.1
3-cycle breaker. . ... .. ... .. .. 1.2
2-cyele breaker. ... ... .. ... .. .. 1.4

If the circuit breakers are on a generator bus and the three-phase kva
exceeds 500,000 before the application of any multiplying factor, the
factors given above should be increased by adding 0.1 to each. Air
circuit breakers below 600 volts are con-
sidered to open instantaneously, and their
momentary and interrupting currents are
the same.

Motors

Example 9.4

L ’(P A 25,000—.kva, 13.8-kv generator with
F1c.9.13 One-line diagram for Xi =15% is Con_nECtEd through 'a tra.ns-
Example 9.4. former to a bus which supplies four identical

motors as shown in Fig. 9.13. Each motor
has X =209 and X} = 309 on a base of 5,000 kva, 6.9 kv. The
three-phase rating of the transformer is 25,000 kva, 13.8-6.9 kv with a
leakage reactance of 109,. The bus voltage at the motors is 6.9 kv
when a three-phase fault occurs at the point P. For the fault specified,
determine:

5308

1. The subtransient current in the fault.

2. The subtransient current in breaker A.
3. The momentary current in breaker A.
4. The current to be interrupted by breaker A 4

Solution
1. For a base of 25,000 kva, 13.8 kv in the S RJE@({EsTERED
for the motors is 25,000 kva, 6.9 kv. The reacii r each motor are ¢
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v 25,000 . .
X =7020 X 5,000 71.0 per unit
;. 25,000 . .
X, = 35030 X 5,000 71.5 per unit

Figure 9.14 is the reactance diagram with subtransient values of reactance
marked.
For a fault at P,
V; = 1.0 per unit
Zg = 70.125 per unit
1.0

v o .
17 = 70.125 78.0 per unit

The base current in the 6.9-kv circuit is _BH00 2,090 amp.
V3 X 6.9

= 8% 2,000 = 16,720 amp

2. Through breaker A comes the contribution from the generator and
three of the four motors.

=4
The generator contributes a current of —78.0 X 8?8 = —74.0 per unit.
Fach motor contributes 259, of the Lo
remaining fault current or —j1.0 per- -"]M)‘O“-Q—ﬂ
unit amp. . . j1.0
Through breaker A, j015 .10 ot )

j1.0

:

I" = —j4.0 4+ 3(—71.0) = —j7.0 per

unit = 7 X 2,090 = 14,630 amp 710

:

3. The momentary current in breaker
Ais 1.6 X 14,630 = 23,450 amp

4. To compute the current to be in-
terrupted, replace the subtransient
reactance of j1.0 by the transient reactance of j1.5 in the motor circuits
of Fig. 9.14. Then,

Fia. 9.14 Reactance diagram for
IExample 9.4.

.0.375 X 0.25

R LR R LS R T i
Zin 70375 1 0.25 70.15 per unit

The generator contributes a current of
1 0375
J0.15 7 0.625
Each motor contributes a current of

1., 1 ., 025 ,
4 ><j()T5 X 0695 = —70.67 pellinld

= —34.0 per uni
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The current to be interrupted is
1.1(4.0 4+ 3 X 0.67) X 2,090 = 13,800 amp
The interrupting kva is
/3 X 13,800 X 6.9 = 165,000 kva

9.8 Summary. The machines in a power system may be represented
by an internal voltage and series impedance. The values of the internal
voltages and the impedances depend on the conditions being studied.
Each emf contributes to the fault current, which may be found by com-
puting the contribution caused by each individual emf. An alternative
method is to find the current in the fault by the Helmholtz-Thévenin
theorem and to divide this current between the parts of the system which
supply it. To obtain results by the Thévenin method equivalent to
considering each individual emf, the prefault current in the various parts
of the system must be added to the component of current in each part
due to the fault. Because of the complexity of fault calculations, simpli-
fied methods, disregarding the load current and omitting resistance, are
justified in many cases.

PROBLEMS

9.1 A 60-cycle alternating voltage having a rms value of 100 volts is applied to a
series RL circuit by closing a switch., The resistance is 10 ohms and the inductance
is 0.1 henry.

(a) Find the value of the d-¢ component of current upon closing the switch if the
instantaneous value of the voltage is 50 volts at that time.

(b)) What is the instantaneous value of the voltage which will produce the maximum
d-c¢ component of current upon closing the switch?

(c) What is the instantaneous value of the voltage which will result in the absence
of any d-c component of current upon closing the switch? h

(d) If the switch is closed when the instantaneous voltage is zero, find the instan-
taneous current 0.5, 1.5, and 5.5 cycles later.

9.2 A generator connected through a 5-cycle circuit breaker to a transformer is
rated 7,500 kva, 6.9 kv with reactances of X = 9%, X; = 15%, and X4 = 100 %.
It is operating at no load and rated voltage when a three-phase short circuit occurs
between the breaker and the transformer. Find (a) the sustained short-circuit cur-
rent in the breaker, (b) the initial symmetrical rms current in the breaker, (g
maximum possible d-¢ component of the short-circuit current in the br,

by the breaker, and the interrupting kva.

9.3 The three-phase transformer connected to the gene
9.2 is rated 7,500 kva, 6.9A-115Y kv, X =109%. If a
occurs on the high-tension side of the transformer at rated j}
(a) the initial symmetrical rms current in the transfg
tension side, (b) the initial symmetrical rms current in th§

9.4 A 60-cycle generator is rated 625 kv, 480 volts wj

(L RED ,/é\
t t
Dshort cireui 4’

mﬁE&Jﬁ“TERED )

J = 0.08 per unit.
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supplies a purely resistive load of 500 kw at 480 volts. The load is connected directly
across the terminals of the generator. If all three phases of the load are short-
circuited simultaneously, find the initial symmetrical rms current in the generator in
per unit on a base of 625 kva, 480 volts.

9.6 A generator is connected through a transformer to a synchronous motor.
Reduced to the same base the per-unit subtransient reactances of the generator and
motor are 0.15 and 0.35, respectively, and the leakage reactance of the transformer ig
0.10 per unit. A three-phase fault occurs at the terminals of the motor when the
terminal voltage of the generator is 0.9 per unit and the output current of the generator
is 1.0 per unit at 0.8 power factor leading. Find the subtransient current in per unit
in the fault, in the generator, and in the motor. Use the terminal voltage of the
generator as the reference phasor, and obtain the solution (a) by computing the volt-
ages behind subtransient reactance in the generator and motor and (b) by using the
Helmholtz-Thévenin theorem.

9.6 A 625-kva, 2.4kv generator with X, = 0.08 per unit is connected to a bus
through a cireuit breaker as shown in Fig. 9.15. Connected through circuit breakers
to the same bus are three synchronous motors rated 250 hp, 2.4 kv, 1.0 power factor,
909 efficiency with X = 0.20 per unit. The motors are operating at full load, unity
power factor, and rated voltage with the load equally divided
between the machines.

(@) Draw the impedance diagram with the impedances
marked in per unit on a base of 625 kva, 2.4 kv.

(b) Find the initial symmetrical rms current in per unit in
the fault and in breakers A and B for a three-phase fault at
point P. Simplify the calculations by neglecting the prefault Fie. 9.15 One-line

current. . diagram for Exam-
(c) Repeat (b) for a three-phase fault at point Q. ple 9.6.

(d) Repeat (b) for a three-phase fault at point R.

(e) Find the highest value of momentary current expected for any three-phase fault
for breakers 4 and B.

9.7 The system shown in Fig. 9.16 is delivering 60,000 kva at 12.5 kv, 0.8 power
factor lag to a large metropolitan system which may be represented by an infinite bus.
The generator is rated 60,000 kva, 12.7 kv, X = 0.20 per unit. Each three-phase

T, ¢!
A PB C D |lInfinite
OHEo ms bus
Gen. q¥ o

F1e. 9.16 One-line diagram for Example 9.7.

transformer is rated 75,000 kva, 13.8A-69Y kv, X = 89,. The reactance of the
transmission line is 10 ohms. A three-phase fault oceurs at point P. Determige
momentary current in breakers A and B for the specified fault.
symmetrical rms current in the fault. Use the generator rating as basd
of the generator.
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CHAPTER 10

SYMMETRICAL COMPONENTS

10.1 Analysis by Symmetrical Components. In 1918 one of the most
powerful tools for dealing with unbalanced polyphase circuits was dis-
cussed by Dr. C. L. Fortescue at a meeting of the American Institute
of Electrical Engineers, where he presented a paper entitled “ Method of
Symmetrical Coordinates Applied to the Solution of Polyphase Net-
works.”’! Since that time the method of symmetrical components has
become of great importance and has been the subject of many articles
and experimental investigations. Unsymmetrical faults on transmission
systems, which may consist of short circuits, impedance between lines,
impedance from one or two lines to ground, or open conductors, are
studied by the method of symmetrical components. The method is
applicable to analytical solutions or to calculating boards.

Fortescue’s work proves that an unbalanced system of n related
phasors can be resolved into n systems of balanced phasors called the
symmetrical components of the original phasors. The n phasors of each
set of components are equal in length, and the angles between adjacent
phasors of the set are equal. Although the method is applicable to
any unbalanced polyphase system, we will confine our discussion to
three-phase systems.

According to Fortescue’s theorem, three unbalanced phasors of a three-
phase system can be resolved into three balanced systems of phasors.
The balanced sets of components are:

1. Positive-sequence components consisting of three phasors equal in
magnitude, displaced from each other by 120° in phase, and having the
same phase sequence as the original phasors.

2. Negative-sequence components consisting of three p
in magnitude, displaced from each other by 120° in p! , E}RE D
the phase sequence opposite to that of the original ghs \6 ,/6

3. Zero-sequence components consisting of three . Qual in mag- ,?(S‘

4

nitude and with zero phase displacement from eg > ),
1 C, L. Fortescue, ‘“ Method of Symmetrical Coordina¥ ed tRlE@IsOTE R E D O
Polyphase Networks,” Trans. AIEE, vol. 37, pp. 1027-11 . ¢
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SYMMETRICAL COMPONENTS 21

Tt is customary, when solving a problem by symmetrical components,
to designate the three phases of the system as a, b, and ¢ in such a manner
that the phase sequence of the voltages and currents in the system is abe.
Thus the phase sequence of the positive-sequence components of the
unbalanced phasors is abc, and the phase sequence of the negative-
sequence components is ach. If the original phasors are voltages, they.

Vey Var Vo2
Vi
N\
Ve \K“’/b;{w
Va1

Positive-sequence Negative-sequence Zero-sequence
components components components

Fra. 10.1 Three sets of balanced phasors which are the symmetrical components of
three unbalanced phasors.

may be designated Vi, V3, and V,. The three sets of symmetrical com-
ponents are designated by the additional subscript 1 for the positive-
sequence components, 2 for the negative-sequence components, and 0 for
the zero-sequence components. The positive-sequence components of
Vo, Vi, and V, are Vo1, Vi, and V... Similarly, the negative-sequence
components are Vs, Vie, and V., and the zero-sequence components are
Vao, Vo, and V. Phasors representing
currents will be designated by [ with
subseripts as for voltages.

Since each of the original unbalanced
phasors is the sum of its components,
the original phasors expressed in terms
of their components are:

Va = Val + VaZ + VaO (101)
Vo=V~ Vi 4+ Voo (10.2)
Vc = V(:l + Vc2 + VcO (103)

The synthesis of a set of three unbalanced
phasors in accord with Eqs. (10.1) to

(10.3) is shown graphically in Figs. 10.1 Fra. 102 G 1@R1E D
and 10.2. The three sets of balanced the compgne "‘g\é&?ig' 10.1 ,/

phasors which are the symmetrical com- y ced phasors. @@@
ponents of three unbalanced phasors are sja i ig. 10.1. The 7
graphical addition of the components and ?tléEGI&TERED O
phasors are shown in Fig. 10.2. ¢
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212 ELEMENTS OF POWER SYSTEM ANALYSIS

The many advantages of analysis of power systems by the method of
symmetrical components will become apparent gradually as we apply the
method to the study of unsymmetrical faults on otherwise symmetrical
systems and to the study of unbalanced systems and unbalanced loads.
It is sufficient to say here that the method consists of finding the sym-
metrical components of current at the fault or the point of unbalance.
Then the values of current and voltage at various points in the system
can be found. The method is simple and leads to accurate predictions
of system behavior under conditions of unbalance.

10.2 Operators. Because of the phase displacement of the sym-
metrical components of the voltages and currents in a three-phase system
by 120°, it is convenient to have a shorthand method of indicating the
rotation of a phasor through 120°.  The result of the multiplication of two
complex numbers is the product of their magnitudes and the sum of their
angles. If the complex number expressing a phasor is multiplied by a
complex number of unit magnitude and angle 8, the resulting complex
number represents a phasor equal to the original phasor displaced by the
angle 6.

The complex number of unit magnitude and associated angle ¢ is an
operator which rotates the phasor on which it operates through the
angle 6.

We are already familiar with the operator j, which causes rotation
through 90°, and the operator —1, which causes rotation through 180°.
Two successive applications of the operator j cause rotation through
90° + 90°, which leads us to the conclusion that j X 7 causes rotation
through 180°, and thus we recognize that j? is equal to —1. Other
powers of the operator j are found by similar analysis. Some of the
many combinations of the operator j are given in Table 10.1.

TapLe 10.1 FuNcTions oF THE OPERATOR j
Jj=1/90°=1/—270° =0 4 j1

J2=1/180° = 1/—180° = —1 4+ j0 = —1

FA=1/270° = 1/-90° = 0 — j1 = —;

J4=1/360° = 1/0° =1 +j0 = 1

75 =17450° = 1/90° = 0 +j1 = f
J4it=V72/185° = V/2/-225° = —1 4 j1
J =7t =2/45° = /2/-315° = 1 +j1

it+i#F=0=0+;0
J =78 =2/90° = 2/—270° = 0 + j2

a rotation of 120° in the counterclockwise directio
is a complex number of unit magnitude with an }
defined by the following expressions:

a = 1/120° = leirn = —0.5 +
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SYMMETRICAL COMPONENTS 213

If the operator a is applied to a phasor twice in succession, the phasor
is rotated through 240°. Three successive a o
applications of a rotate the phasor through

360°. Thus,

a® = 1/240° = —0.5 — j0.866 -1,~a® = > 1.a°

and

%

@’ = 1/360° = 1/0° =

a? —-a
Figure 10.3 shows phasors representing Fic.10.3 Phasor diagram of the

; various powers of the operator a.
various powers of a. Various combina-

tions of the operator a are given in Table 10.2.

Tasre 10.2 FuncrioNs or THE OFPERATOR @

a=1/120° = —0.5 + ;j0.866

a? = 1/240° = —0.5 — j0.866

a® = 1/360° = 1 + j0

at = 1/120° = —0.5 + j0.866 = g
1+a=1/60°=0.5-+;0.866 = —a?
1 —a=4/3/—30° =15 — j0.866
1+a2=1/-60°= 0.5 — j0.866 = —a

1 —a? = ~/3/30° = 1.5 + j0.866

a+a®=1/180° = —1 — j0O

a —a*=+/3/90° = 0 4 j1.732

l1+a4+a2=0=0+j0
An important difference must be noted between the use of the operators

7 and a. The operator j is unit magnitude at +90°, and —; means
that the complex number j is changed by an angle of 180° to give unit
magnitude at 270°. Thus,

= 1/90° and —J7 = 1/270° = 1/-90°

Hence, it is sometimes said that —+; indicates rotation through +90° and
—Jj indicates rotation through —90°. The statement is correct, but a
similar statement does not apply to the operator a, since

a = 1/120°
but

—a = 1/120° X 1/180° = 1/300° = 1/—

To clarify the situation assume that the complex
equal to 1/6, an operator causing rotation throu g
where 6 = tan~!¢/p. Then p — jg equals 1/ — 6
rotation through a negative angle 6, where 6 g
may form the general statement that two ¢
magnitude are operators that cause rotation

-\sﬁﬁz%'fb Y

@rator causing 6@
EGIS: ?I'ERED )
equal an eb in
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214 ELEMENTS OF POWER SYSTEM ANALYSIS

opposite directions if the complex numbers are the conjugates of each
other.

10.3 The Symmetrical Components of Unsymmetrical Phasors. We
have seen (Fig. 10.2) the synthesis of three unsymmetrical phasors from
three sets of symmetrical phasors. The synthesis was made in accord-
ance with Eqgs. (10.1) to (10.3). Now let us examine these same equa-
tions to determine how to resolve three unsymmetrical phasors into their
symmetrical components.

First, we note that the number of unknown quantities can be reduced
by expressing each component of V, and V3 as the product of some fune-
tion of the operator a and a component of V,. Reference to Fig. 10.1
verifies the following relations:

Ve = a*Vay Ver = aVa
Vg = aVay Voo = a®Vaa (10.4)
Vb() = VaO VcO = Va(]

Upon substitution of Eqs. (10.4) in Egs. (10.1) to (10.3), we obtain

Va=Va+ Var+ Vo (105)
Vy = anal + aVag -+ Vao (106)
Ve=aVa + a®Vie + Vao (107)

Adding Eqgs. (10.5), (10.6), and (10.7) gives
Vot Vet Ve=(0Q+a+a)Va+ A +a+ a)Ve+ 3Ve (10.8)
and, since 1 4+ a + a? = 0,
Voo =2V + Vo + V) (10.9)

Equation (10.9) enables us to find the zero-sequence components of three
unsymmetrical phasors. We see that no zero-sequence components exist
if the sum of the phasors is zero. Since the sum of the line-to-line voltage
phasors in a three-phase system is always zero, zero-sequence components
are never present in the line voltages, regardless of the amount of unbal-
ance. The sum of the three line-to-neutral voltage phasors is not
necessarily zero, and voltages to neutral may contain zergwseq

components.
7\'R?i{;)‘lying ED

The positive sequence components of three unsym
may be found by manipulation of Eqgs. (10.6) and {0
Eq. (10.6) by a and Eq. (10.7) by a? gives, after sul J for a® and
a for a?,

7
S
REGISTERED %

(10.11)
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aVy = Va + ¢V + a7
a2Vc = Val + aVag + a?V,
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Adding Egs. (10.10) and (10.11) to Eq. (10.5) gives
Veo+aVe+ a2V, =3Va+ (0 +a+a)Ve+ (1 +a+a)Vae (10.12)
and, since 1 + a + a* = 0,
Var = 28(Ve + aVy + a?V)) (10.13)
Negative-sequence components may be found in a similar mannér.

First, we multiply Eq. (10.6) by a? and Eq. (10.7) by a. Adding the
resulting equations to Eq. (10.5) gives

VetaVe+aVe=0+a+a)Va+3Vae+ (1 +a+a)Va (10.14)
and, since 1 4+ a -+ a® = 0,
Var = 14(Va + a*Vy + aVe) (10.15)

Equations (10.9), (10.13), and (10.15) enable us to find the complete
sets of symmetrical components of a given set of three phasors since
we can find the components of V; and V, from the components of V, by
the relations given in Eqs. (10.4). The equations could have been written
for any set of related phasors, and we might have written them for cur-
rents instead of for voltages. They may be solved either analytically
or graphically. Because some of the preceding equations are so funda-
mental, they are summarized below for currents.

o= L+ Lus + T (10.16)
Iy = a2l + alss + oo (10.17)
I, = al. + a*las + Tao (10.18)
Loy = Y5(Lo + aly + a’1.) (10.19)
loo = (Lo + Ly + al.) (10.20)
Too = Y5(Io + In + 1) (10.21)

In a three-phase system the sum of the line currents is equal to the
current I, in the return path through the neutral. Thus,

L.+ L+ 1.=1, (10.22)
Comparing Eqgs. (10.21) and (10.22) gives
1, =3l

In the absence of a path through the neutral of a three-ph
I.is zero, and the line currents contain no zero-sequencd
A-connected load provides no path to neutral, and
ing to a A-connected load can contain no negative-

10.4 Determination of Phase Voltages fro Ry

Voltages. When unsymmetrical three-phase 1 ]%GS REI@!S“TE R E D /()¢

the terminals of a balanced Y-connected load, thgihe@Dod of symmetrica
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216 ELEMENTS OF POWER SYSTEM ANALYSIS

components provides one means of determining the voltage to neutral
of each phase if no zero-sequence currents flow in the impedances. The
voltages to neutral caused by the positive-sequence currents will be of
positive sequence only, because each component of each voltage to neu-
tral will be displaced equally in phase from the component of current
causing it. Similarly, negative-sequence currents will cause only nega-
tive-sequence voltage drops in a balanced system. If no zero-sequence
currents are present, there can be no zero-sequence voltage drops in the
balanced Y-connected impedances.

We proceed to resolve the line voltages into their symmetrical com-
ponents and to determine the voltages to neutral for each sequence
from the known relations between line and phase voltages when balanced

Vbt
Vca2
V. %c?
cal Vbcl
VEmZ
Vabz
Positive-sequence components Negative-sequence components

Fic. 10.4 Positive- and negative-sequence components of line-to-line and line-to-
neutral voltages of a three-phase system.

voltages are applied to balanced loads. The positive- and negative-
sequence components of line-to-line and line-to-neutral voltages are
shown in Fig. 10.4, from which we see that

Vani = —= Van/—30° (10.24)

and

1
Viane = 73 Vaa/30° (10.25)

We find V.. as the sum of its components. So,

Van = Vanl + Van2

The other voltages to neutral are found by obtaining their
from V. and V.. by Egs. (10.4). If the voltages
per unit referred to the base voltage to neutral g
are in per unit referred to the base voltage from 1
factor must be omitted in Eqgs. (10.24) and (10.
referred to the same base or are in actual volts, 8
as given.
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Example 10.1

Three identical resistors are Y-connected and rated 2,300 volts, 500 kva
as a three-phase unit. The neutral point is not available. The resistor
unit is connected to an unsymmeirical three-phase system whose line
voltages are measured and found to be

[Vl = 1,840 volts Vel = 2,760 volts | Vel = 2,300 volts
Find the current in each line by the method of symmetrical components.
Solution

Select as base for the circuit 2,300 volts, 500 kva so that each resistor

in the three-phase load has a resistance of 1.0 per unit. The base current
is

————5200’000 = 125.5 amp
V3 X 2,300
and

1,840 .

V| = 5300 ~ 0.8 per unit
2,760 . a V. ¢

Vool = 20 = 1.2 - ca

e 2,300 per untt Frec. 10.5 Phasor dia-
2.300 i gram of the line volt-

[Veal = 2_’3@ = 1.0 per unit ages of Example 10.1.

Since the sum of the line voltages in a three-phase circuit is zero, the
triangle formed by the phasors of the line voltages can be solved to
find the angle of each phasor. The triangle of line-voltage phasors is
shown in Fig. 10.5, where V, is taken as reference and the phase sequence
is abc. Any phase angle could have been assumed for any one of the
voltages. The angles of the phasors can be found by the law of cosines,
as follows:

1.44 = 1.0 4 0.64 — 1.6 cos aq
0.20

COS g = 1—6 = 0.125

. = 82.8°
064 =144 4+ 1.0 — 2.4 cos a,
1.80

COS w, = 2'—_1(—) = 0.75

a, = 41.4°
Then
Va = 0.8/82.8° per unit
Vie = 1.2/ —41.4° per unit

Ve = 1.0/180° per unit

VERSION
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The symmetrical components of the line voltages are

Var = 14(0.8/82.8° + 1.2/120° — 41.4° + 1.0/240° 4 180°)
/(01 +70.794 + 0.237 + jL.177 + 0.5 + j0.866)
0.279 + j0.946 = 0.985/73.6° per unit

Var = 14(0.8/82.8° + 1.2/240° — 41.4° + 1.0/120° + 180°)

14(1.0 + 70.794 — 1.138 — j0.383 + 0.5 — j0.866)
—0.179 — j0.152 = 0.235,/220.3° per unit,

ll

II

fl

Check:

Vab = Vabl + VabZ
0.1 - j0.794 = 0.279 + j0.946 — 0.179 — jO.152
0.1 4 70.794 = 0.1 + j0.794

The absence of a neutral connection means that zero-sequence cur-
rents are not present. Therefore, the phase voltages at the load contain
positive- and negative-sequence components only. The phase voltages
are found from Eqgs. (10.24) and (10.25) with the factor 1 //3 omitted,
since the line voltages are expressed in terms of the base voltage from
line to line and the phase voltage is desired in per unit of the base voltage
to neutral. Thus

Vews = 0.985/73.6° — 30°

= 0.985/43.6° = 0.713 + j0.680
Vans = 0.235/220.3° + 30°
= 0.235/250.3° = —0.079 — j0.221

Van = Vant & Vane = 0.634 + j0.459 = 0.783/35.9° per unit
Vinr = 0.985/43.6° 4 240° = 0.232 — j0.958
Vinz = 0.235/250.3° 4+ 120° = 0.231 4 j0.042

Vlm = Vbnl + Vbng = 0.463 — ]0 916 = 1. 027/ 63 2° per unlt
Venr = 0.985/43.6° + 120° = —0.945 + j0.278
Venz = 0.235/250.3° + 240° = —0.152 4 j0.179

Ven = Vent + Veng = — 1097 + j0.457 = 1.19/157.3° per unit

The currents in each line are equal to the per-unit voltages to neutral
divided by the per-unit resistance in each phase. Thus

I 0783 850 o 125.5 = 98.4/35.0°

SRR VO S [ERE
1.027/—63.2° .

Iy, = —ﬁ: X 125.5 = 129.0/ —63.2° am|
1.19/157.3°

Ln = —ge— X 1265 = 148.8/157.3° am

Example 10.1 could have been solved by tran
load to its equivalent A, but the example seg

tOllustrate the sym-
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metrical-component method. Equations (10.24) and (10.25) show that
the phase voltages of positive sequence are displaced from the reference
positive-sequence line voltage in the direction opposite to the displace-
ment of the phase voltages of negative sequence from the reference
negative-sequence line voltage. This important principle will be
encountered later in our discussion of phase shift in Y-A transformer
banks.

10.5 Relations between line and Phase Currents in A-connected
Circuits. A relation similar to that between line and phase voltages
exists between A phase currents and their related line currents. A A
load of identical impedances connected to unsymmetrical line voltages
rosults in unbalanced line currents. The line currents, as noted in Sec.
10.4. contain no zero-sequence components since the sum of the line

Ibcl

IcZ

Fic. 10.6  Wiring diagram of a A-connected load and phasor diagrams of the positive-
and negative-sequence components of line and phase currents.

currents must be zero due to the absence of a return path. Figure 10.6
shows a A-connected load and the phasor diagrams of positive- and
negative-sequence line and phase currents. Inspection of the diagrams
shows the following relations between the components of I, and I.:

by «1/30° (10.27)

1

abl = :/E I
1 o

Lo = —\/g 1(12/;737077 (10.28)

Example 10.2

The line currents entering a balanced A load are [, = 5 amp, I, = 4
amp, and I, = 3 amp. Find the current in phase ab of the load bgathe
method of symmetrical components.

Solution
If the current in phase ¢ is taken as reference, th,
I, = -3 —j4amp

I 0 + j4 amp

I, 3 + jO amp

fl
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The symmetrical components of the line currents are
Top = 15(—3 — 74 + 4/90° + 120° + 3/240°)
= 14(—3 — 74 — 3465 — j2 — 1.5 — j2.6)
= —2.655 — j2.867 = 3.9/227.25° amp
Tas = Y4(—3 — j4 + 4/90° + 240° + 3/120°)
= 14(—3 — j4 + 3.465 — j2 — 1.5 + j2.6)
= —0.345 — 71.133 = 1.19/253.1° amp

From Eqgs. (10.27) and (10.28)

3.9 o )
T = %/257;25 = —0.496 — 52.20 amp
1.19

Iab2 = %
If the load contains no emf to induce zero-sequence current, /g is com-
posed of positive- and negative-sequence current only, and
Tp = Topy + Taps = —0.997 — 72.670 = 2.85/249.5° amp

/223.1° = —0.501 — j0.470 amp

10.6 Phase Shift in Y-A Transformer Banks. Section 10.4 has
shown the phase shift between the symmetrical components of line and
phase voltages for balanced Y-connected loads. Section 10.5 has
shown the phase shift between the symmetrical components of line and
phase currents for balanced A-connected loads. A phase shift occurs
in the current and voltage between one side of a Y-A transformer and
the other side. The single-phase equivalent circuit of such a transformer
does not take into account the phase shift except in so far as the phase
shift of voltage is due to the impedance of the transformer. If the resist-
ance, leakage reactance, and magnetizing
current of the transformer are neglected,
the solution of the equivalent circuit shaws

H, .
! q X1 the same per-unit voltages and the same
) D per-unit currents on both sides of the trans-
D D former. The usual procedure is to calculate
Hy P X, the currents and voltages without regard
——=C . .
to phase shift caused by the Y-A connection

of transformers. If phase shift is of import-
ance, it can be taken into accougat in .
ner about to be discussed
how to account for ph
transformer by detejmaa
in the symmetrical components of voltage and cu
of the transformer with impedance neglected.

Before proceeding with the discussion of thr3
us examine the standard method of marking

Fre. 10.7 Standard markings
of single-phase transformer
windings.

@posite sides QS‘/
> uREBGISTERED %

former terminals.
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(onsider the primary and secondary windings shown on a common core
in Fig. 10.7. The high-tension winding is marked H, and H., and the
low-tension winding is marked X, and X,. Current flowing from H; to
H, tends to produce flux in the common core in the same direction as cur-
rent flowing from X; to X, Transformer theory shows that current
must flow out at terminal X, when it flows into terminal H;, with magne-
tizing current neglected. Without such a standard convention for mark-
ing windings, a schematic diagram like Fig. 10.8

would not indicate whether the currents 7, and 1 Lo, L,

I, were in phase with each other or 180° out of Xy
phase. With the standard markings shown on H(

Fig. 10.8 we know that 7, and I, are in phase.

Terminals H, and X, are positive at the same Hz _ ,j
time with respect to H;and X,. If the direction X,

of the arrow marked I, were reversed while the Frc. 10.8 Schematic dia-
direction of the arrow marked 7, remained the £ of single-phase trans-
ormer windings showing
same, I, and I, would be 180° out of phase. standard markings and the
Therefore, the primary and secondary currents directions assumed posi-
are either in phase or 180° out of phase depend- 23303(1;35 D rent and
ing on the direction assumed to be positive for
the flow of current. Similarly, primary and secondary voltages may be
in phase or 180° out of phase depending on which terminal is assumed to
be positive for specifying voltage drop.

The high-tension terminals of three-phase transformers are marked
H,, H,, and H;, and the low-tension terminals are marked X;, X, and
X;. In Y-Y or A-A transformers the markings are such that voltages
to neutral from terminals H,, H,, and H; are in phase with the voltages
to neutral from terminals X, X,, and X, respectively.

Figure 10.9a is the wiring diagram of a Y-A transformer. The high-
tension terminals H,, H,, and H; are connected to phases a, b, and c.
The arrangement and notation of the diagram conform to a convention
which we will follow in all our computations. Windings which are drawn
in parallel directions are those linked magnetically by being wound on
the same core. The winding an is the phase on the Y-connected side
which is linked magnetically with the phase winding BC on the A-con-
nected side. When capital letters are assigned to phases og one
of the transformer, lower-case letters will be assigned to
on the other side. Once phase designations are arbit
any two terminals on one side of the transformg
assigned to the other terminals are definitely de¥
our adopted convention the phase sequence is tg g
ABC on the other, and phase a on the Y side m
with phase BC on the A side. Likewise, phase §

To follow
one side and

ked maghnetically
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with phase CA, and phase ¢ with phase AB. Of course, capital letters
could be used for either the Y or the A windings. If H, is the terminal
to which line @ is connected, it is customary to connect phase b to H; and
¢ to Hs.

(a) Wiring diagram

b1 c2 A2
Bl Vaer €1

al Vo1 V,
¢ 1{431 VCAl a2 be2
Vial Vab2 A
! Al A B2 Vaeo €2
Positive-sequence Negative-sequence

(b) Voltage components

Fie. 10.9 Wiring diagram and voltage phasors for a three-phase transformer con-
nected Y-A.

The phasor diagrams for the sequence components of voltage are
shown in Fig. 10.9b. We see that Vo leads Vi by 30°, which enables
us to determine that the terminal to which phase B is connected should
be labeled X;. The labeling of X, conforms to the American standard
for three-phase transformers, which requires that the voltage drop from

L OH, X,0——A

L OH, X,0+—B ¢

b AOHQ Xzo C b OHZ XQO——‘B

¢ __OH, X;0——A ¢ L OH, X;04+——C

(a) V,; leads Vp by 30° (b) V,q leads V4, by 30°

Tre. 10.10 Labeling of lines connected to a three-phase Y-A tra

H, to neutral lead the voltage drop from X to neutra
formers, regardless of whether the Y or the A wigdig
tension side. Similarly, the voltage at H: leads t
the voltage at H; leads that at X5 by 30°.
Figure 10.10a shows the connections of the P
so that the positive-sequence voltage to neutrg

A BRED »
Xhe high-
: %&S‘

by 30°, and

3 \REGISTERED /QL

’Deads the positive-
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sequence voltage to neutral By, by 30°. The American standard for
naming the phases connected to a Y-A transformer with the high-tension
side Y-connected is shown in Fig. 10.10b6 and results in V,; leading V4,
by 30°.  We will follow the scheme of Fig. 10.10a, which conforms to the
wiring and phasor diagrams of Fig. 10.9, since such nomenclature is the
most convenient for computations.

Inspection of the phasor diagrams of Fig. 10.9 shows that V leads
V.1 by 90° and that V4, lags Vs by 90°. The diagrams show Vg and
Va2 in phase, which is not necessarily true, but phase shift between Vg,
and V., does not alter the 90° relation between V,; and V,; or between
Va2 and V.

Transformer theory shows that I, and Izc are 180° out of phase if V,
and Ve are in phase. Therefore, the phase relation between the Y and
A currents are as shown in Fig. 10.11. We note that [, leads I,; by 90°

Lip2
ICAI
Ipcy
Ipcs
Icaz

Lip

Positive-sequence Negative- sequence
components components

Fig. 10.11 Current phasors of a three-phase transformer connected Y-A.
and 7. lags ., by 90°. Summarizing the relations between the sym-
metrical components of the line-to-neutral voltages and between the
symmetrical components of the line currents on the two sides of the
transformer gives
Va= +jVa1 Ia = +an1

. . 10.29
Vaz = —]Vaz Iy = —JIaz ( )

where each voltage and current is expressed in per unit. Transformer
impedance is neglected.

The phases connected to the windings could have been so named that
Vauer and Vg would be 180° out of phase by interchanging phases a and ¢

current:

VAI = _jVal IAI = —an
Vi = +jVa2 Tao = +jl

When we find it necessary to account for the
formers, we will name the phases so that Egs.

gﬁWSTERED )
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Y-Y and A-A transformers are connected so that the phase shift for both
currents and voltages is either 0° or 180°.

Example 10.3

If the resistors of Example 10.1 are connected to the Y side of a A-Y
transformer whose output voltages are those specified in Example 10.1,
find the line voltages and currents on the A side in per unit. Use the
same base on the Y side as in Example 10.1, and neglect the impedance
of the transformer.

Solution
From Example 10.1,

Vani = Var = 0.985/43.6° per unit
Vanz = Vazr = 0.235/250.3° per unit

Therefore,
_ Va 5 i 4e @O .
Ial = T(T/O_Cj = 0980&36 per unit
Ios = Var 235/250.3° per unit
¢ 1.0/0° ’ ———

The direction assumed to be positive for the currents is from the supply
toward the A primary of the transformer and away from the Y side
toward the load. The phasor diagrams are similar to those of Fig. 10.9a
and Fig. 10.11 except that the directions of all current phasors are
reversed.

By Egs. (10.29)

Vi = jVa = 0.985/133.6° = —0.680 + j0.713
Vs = —jVas = 0.235/160.3° = —0.221 + 70.079
V= Vai 4+ Vas = —0.901 + j0.792 = 1.20/138.6° per unit
Ve = @V = 0.985/373.6° = 0.958 + j0.232
Vs = aVay = 0.235/280.3° = 0.042 — j0.232

Vs = Vs + Vg = 1.00 4 50 = 1.0/0° per unit
Ve = aVa = 0.985/253.6° = —0.278 — j0.944 ,
Ver = a2V 42 = 0.235/400.3° = 0.179 + j0.152

Vo= Vi + Vea = —0.099 — j0.792 = 0.8/262¢8

= 206 157,30 — 1.19/157.3° per unit (line vY

14 T\/g 14 1.0 + 0.099 + j0.792 = 1 9 /()
pe = Vp— Ve = L . Ju. = 1 i )
5 "REGISTERED 2
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%??5 /35.8° = 0.783/35.8° per unit (line voltage base)
Vesa=Ve— Va= —0.099 — 70.792 + 0.901 — 70.792 = 0.802 — 71.584
1.78/296.8° per unit (phase-to-neutral voltage base)

1\—;§ /243.2° = 1.027/243.2° per unit (line voltage base)

i

fl

Since the load impedance in each phase is resistance of 1.0/0° per unit,
I.. and V., are found to have identical per-unit values in this problem.
Likewise, ., and Vg, are identical in per unit. Therefore, /, must be
identical to V, expressed in per unit. Thus

I, = 1.20/138.6° per unit
Iz = 1. O/O per unit
I. = 0.80/262.8 per unit

When problems involving unsymmetrical faults are solved on a calcu-
lating board, positive- and negative-sequence components are read
separately, and phase shift is taken into account, if necessary, by apply-
ing Eqgs. (10.29) or (10.30). Further examples of phase shift through
Y-A transformers will be found in Chap. 13. In that chapter the method
of accounting for transformer impedance in relation to phase shift of
voltages will be discussed.

PROBLEMS
10.1 FEvaluate the following expressions in polar form:

(a) a® — 1 (c) 2a* + 3 + 2a
By 1 —a — a? d) ja

10.2 Determine analytically the voltages to neutral Vs, Vs, and Vo, in a circuit
where Vi = 50/0°, Vans = 10/90°% and Vano = 10/180° volts.

10.3 Solve Prob. 10.2 graphically.

10.4 Dectermine the symmetrical components of the three currents I. = 10/0°

= 10/250° and I, = 10/110° amp.

10.5 One conductor of a three-phase line is open. The current flowing to the
A-conneeted load in line @ is 10 amp. With the current in line a as reference and
assuming line ¢ to be open, find () the symmetrical components of the line cuzrents,

10.6 The currents flowing in the line feeding a balanced lod
I, = 100/0° I, = 141.4/225° and I. = 100/90° amp. Find th
three 10-ohm

of the load by symmetrical components.
aq. = 95.5/125.2°

10.7 The voltages at the terminals of a balanced load §
;§,WIEEGI§)I ERED 2

resistors connected in Y are Vg = 100/0°, Vi = 90/24
d 10,000 kva, 13.2A-

volts. Find the current in line ¢ by symmetrical com
10.8 Assume that the currents specified in Prob. 10
VERSION
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66Y kv. Determine the currents flowing in the lines on the A side by converting the
symmetrical components of the currents to per unit on the base of the transformer
rating and by shifting the components according to Egs. (10.29) or (10.30). Check
the results by computing the currents in each phase of the A windings in amperes
directly from the currents on the Y side by multiplying by the turns ratio of the wind-
ings. Complete the check by computing the line currents from the phase currents
on the A side.
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CHAPTER 11

UNSYMMETRICAL SHORT CIRCUITS
ON AN UNLOADED GENERATOR

11.1  Introduction. Most of the faults that occur on power systems
are unsymmetrical faults, which may consist of unsymmetrical short
circuits, unsymmetrical faults through impedances, or open conductors.
Unsymmetrical faults occur as single line-to-ground faults, line-to-line
faults, or double line-to-ground faults. The path of the fault current
from line to line or line to ground may or may not contain impedance.
One or two open conductors result in unsymmetrical faults either through
the breaking of one or two conductors or through the action of fuses and
other devices which may not open the three phases simultaneously.

Since any unsymmetrical fault causes unbalanced currents to flow in
the system, the method of symmetrical components is very useful in an
analysis to determine the currents and voltages in all parts of the system
after the occurrence of the fault. In this chapter we shall discuss line-
to-line faults and faults between one or two lines and ground at the
terminals of an unloaded generator at no load. We shall postpone until
Chap. 13 the discussion of faults on loaded generators and on systems-
containing more than one emf, whether loaded or not. Unsymmetrical
faults resulting from open conductors will also be discussed in Chap. 13.

11.2 Fundamental Relations. The study of a fault at the terminals
of a generator which is disconnected from a power system provides an
elementary approach to the somewhat more involved study of a fault in
a complex network fed by a number of power sources. We can derive
some fundamental equations which apply to such an isolated geng
regardless of the type of fault at its terminals.

An unloaded generator, grounded through a reac
Fig. 11.1. When a fault (not indicated in the foug
terminals of the generator, currents I, I, and
If the fault involves ground, the current flowing
the generator is designated I.. One or two
be zero, but the currents can be resolved into
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228 ELEMENTS OF POWER SYSTEM ANALYSIS

ponents regardless of how unbalanced they may be. As we saw in
Chap. 10, currents of a given phase sequence in a balanced system produce
voltage drops of the same sequence only. In any part of a circuit, the
voltage drop caused by current of a certain sequence depends on the
impedance of that part of the circuit to current of that sequence. * The
impedance of any section of a balanced network to current of one sequence
may be different from the impedance to current of another sequence.
In Chap. 12 we shall discuss the rea-
L _  sons for different impedances to the
flow of currents of different phase
sequence. TFor our present discussion
we need know only that impedances
may differ according to the phase
sequence of the currents flowing.

The impedance of a circuit when
positive-sequence currents alone are
flowing is called the impedance to posi-
tive-sequence current. Similarly, when
only negative-sequence currents are
Fie. 11.1 Circuit diagram of an un- present, the impedance is called the
loaded generator grounded through a  jmpedance to negative-sequence current.
reactance. The emfs of each phase  yypo) oniy sero-sequence currents are
are E., E;, and E.. Y 4

present, the impedance is called the
impedance to zero-sequence curreni. These names of the impedances of a
circuit to currents of the different sequences are usually shortened to
the less descriptive terms, posilive-sequence tmpedance, negative-sequence
impedance, and zero-sequence tmpedance.

The analysis of an unsymmetrical fault on a symmetrical system
consists of finding the symmetrical components of the unbalanced cur-
rents which are flowing. Since the component currents of one phase
sequence cause voltage drops of like sequence only and are independent
of currents of other sequences, in a balanced system, currents of any
one sequence may be considered to flow in an independent network com-
posed of the impedances to the current of that sequence only. The
single-phase equivalent circuit composed of the impedances to current
of any one sequence only is called the sequence network for that
ticular sequence. The sequence network includes any geng
of like sequence. Sequence networks carrying the currg
I.o are interconnected to represent various unbalanced
Therefore, to calculate the effect of a fault by the

ED | 2
components, it is essential to determine the sequen i ,?(S\

combine them to form the sequence networks. 7
In this chapter our task is simple because ond §toRE @LS)J- E R E D %
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an impedance in the neutral comprise the entire circuit.

The generated

voltages are of positive sequence only, since the generator is designed to

supply balanced three-phase voltages.

Therefore the positive-sequence

network is composed of an emf in series with the positive-sequence

impedance of the generator.

(a) Positive-sequence current paths

Ia2
— s
a

Zy

Zs 7
62
z, b —=>

—

ICZ
(c) Negative-sequence current paths
IaO
R o

10—
Tyo=1a0 -
Io=1,

—_

IcO
(e) Zero-sequence current paths

The negative- and zero-sequence networks

Reference bus

(b) Positive-sequence network

Reference bus

(d) Negative-sequence network

Reference bus

)

(f) Zero-sequence network

Fia. 11.2  Paths for current of each sequence in a generator, and the corresponding

sequence networks.

contain no emfs but include the impedances of the generator
and zero-sequence currents, respectively.
They are flowing th
of their own sequence only, as indicated by the a
on the impedances shown in the figure. The seq
in Fig. 11.2 are the single-phase equivalent circuj
phase circuits through which the symmetrical ™
The gene

current are shown in Fig. 11.2.

anced currents are considered to flow.

The sequence co

orks shown

l@balanced three-

o
sREGISTERED %

f in the positive-
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sequence network is the no-load terminal voltage to neutral, which is
also equal to the voltages behind transient and subtransient reactances
and to the voltage behind synchronous reactance since the generator is
not loaded. The reactance in the positive-sequence network is the sub-
transient, transient, or synchronous reactance, depending on whether
subtransient, transient, or steady-state conditions are being studied.

The reference bus for the positive- and negative-sequence networks
is the neutral of the generator. So far as positive- and negative-sequence
components are concerned the neutral of the generator is at ground
potential since only zero-sequence current flows in the impedance between
neutral and ground. The reference bus for the zero-sequence network
is the ground at the generator.

The current flowing in the impedance Z. between neutral and ground
is 31,. By referring to Fig. 11.2¢, we see that the voltage drop of zero
sequence from point a {o ground is —3IwZ. — [aZ,0, where Z o is the
zero-sequence impedance per phase of the generator. The zero-sequence
network, which is a single-phase circuit assumed to carry only the zero-
sequence current of one phase, must, therefore, have an impedance of
37, + Z,, as shown in Fig. 11.2f. The total zero-sequence impedance
through which 7, flows is

Zo = 3Zn + Zyo (11.1)

Usually the components of current and voltage for phase a are found
from equations determined by the sequence networks. The equations
for the components of voltage drop from point a of phase a to the refer-
ence bus (or ground) are, as may be deduced from Fig. 11.2,

Val == Ea - [a1Z1 (112)
Vag - —[a2Z2 (113)
VaO = - IaOZO (114)

where E, is the positive-sequence no-load voltage to neutral, Z; and Z,
are the positive- and negative-sequence impedances of the generator,
and Z, is defined by Eq. (11.1). The above equations, which apply to
any generator carrying unbalanced currents, are the starting points
for the derivation of equations for the components of current for ¢
ent types of faults. They apply to the case of a loaded
E, is given the value computed for the voltage beh
transient, or synchronous reactance for the load exigti
11.3 Single Line-to-ground Fault on an Unload 34,
circuit diagram for a single line-to-ground fault o dMoaded Y-con- 6}

nected generator with its neutral grounded thrd a%%tR(E]GIIﬁT E R E D %
e

in Fig. 11.3, where phase ¢ is the one on whic Jault occurs.
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relations to be developed for this type of fault will apply only when the
fault is on phase a, but this should cause no difficulty since the phases are
labeled arbitrarily and any phase may be designated as phase a. The
conditions at the fault are expressed by the following equations:

I, =0 I,=0 Vea=20

When 7, = 0 and [, = 0 are substituted in Kqgs. (10.19) to (10.21),
we obtain

]alz%(la+alb+a2[c) = d

a
_

“ <

Too = Yo+ a2l + al,) =
and
Lo=WUI.+ L+ 1)=%

Therefore,
[al = ]a2 == [(],0 (115)

By Eq. (10.5), since V, = 0,

ool o~ ol i~

Va=Va+ Vaa+ Vae =0 Fie. 11.3 Cireuit diagram for a single
line-to-ground fault on phase ¢ at the
and terminals of an unloaded generator whose

neutral is grounded through a reactance.

Var = —Va — Vao
Then, by Eq. (11.2),
Var = —Vas — Voo = Eo — 1012y
and from Eqgs. (11.3) and (11.4)
Io2Zy + [ooZo = E; — Ia1Z4
but, since I3 = I.s = Lo,
IaZs+ IaZo = By — 10124

and, solving for I,;, we obtain
B
Zyv+ Zy+ Zg

[al =

Equations (11.5) and (11.6) are the special equatiga
line-to-ground fault. They are used with Eqs. (11. 2) to
with the symmetrical-component relations to deter,
and currents at the fault. If the three sequence n
are connected in series as shown in Fig. 11.4,
and voltages resulting therefrom satisfy the eq
three sequence impedances are then in series wj

%O O d
3 Voltages

of Fig. 11.2

lage EVEﬂSION
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the sequence networks so connected, the voltage across each sequence
network is the symmetrical component of V, of that sequence. The
connection of the sequence networks as
shown in Fig. 11.4 is a convenient means
of remembering the equations for the
solution of the single line-to-ground fault,
for all the necessary equations can be
determined from the sequence network

2 2 connection.
Lo=In TIM If the neutral of the generator is not
— grounded, the zero-sequence network is
open-circuited, and Z, is infinite. Since
z 3Z, l Eq: 11.§ shows that I,; is zero when Z,
° 7. & Lo=Ia a0 is infinite, I,» and I, must be zero.

Thus no current flows in line a since I,
is the sum of its components, all of
Fie. 114 Connection of the se- Whichare zero. The same result can be
quence networks of an unloaded seen without the use of symmetrical
generator for a single line-to- ,smponents since inspection of the cir-
ground fault on phase a at the . .
terminals of the generator. cuit shows that no path exists for the
flow of current in the fault unless there

is a ground at the generator neutral.

Example 11.1

A 20,000-kva, 13.8-kv generator has a direct-axis subtransient react-
ance of 0.25 per unit. The negative- and zero-sequence reactances are,
respectively, 0.35 and 0.10 per unit. The neutral of the generator is
solidly grounded. Determine the subtransient current in the generator
and the line-to-line voltages for subtransient conditions when a single
line-to-ground fault occurs at the generator terminals with the generator
operating unloaded at rated voltage. Neglect resistance.

Solution
On a base of 20,000 kva, 13.8 kv, E, = 1.0 per unit, since the internal
voltage is equal to the terminal voltage at no load.
Then, in per unit,
7= E., 1.0 + 40
a7, T Zy 7025 + 70.35 + j0.10
I, = 31,; = —j4.29 per unit

QJTERE D
) @4)

20,000
Base current = m =
, o _ REGIS TERED
Subtransient current in line e is I, = —7j4.29 5 amp ¢
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The symmetrical components of the voltage from point a to ground
are:
Vai = Eo — Ia1Z, = 1.0 — (—71.43)(j0.25)
= 1.0 — 0.357 = 0.643 per unit
—(—71.43)(70.35) = —0.50 per unit
—(—71.43)(50.10) = —0.143 per unit

Va2 = __Ia2Z2
VaO = _—ZGOZO

i

H

Line-to-ground voltages are:

Ve = Var + Vo + Vao = 0.643 — 0.50 — 0.143 = 0

Ve = a®Var + aVao + Vao
= 0.643(—0.5 — 70.866) — 0.50(—0.5 4 j0.866) — 0.143
= —0.322 — 70.556 + 0.25 — j0.433 — 0.143
= —0.215 — j70.989 per unit

Vc = aVal + a2Va2 + Vc()

0.643(—0.5 -+ 70.866) — 0.50(—0.5 — j0.866) — 0.143
—0.322 4 j0.556 + 0.25 4 j0.433 — 0.143
= —0.215 + 70.989 per unit

Line-to-line voltages are:

Vs = Va — Vi = 0.215 + j0.989 = 1.01/77.7° per unit
Vie = Vi — V. = 0 — j1.978 = 1.978/270° per unit

V=V, — Vo = —0.215 + 50.989 = 1.01/102.3° per unit

Since the generated voltage-to-neutral E, was taken as 1.0 per unit, the
above line-to-line voltages are expressed in per unit of the base voltage-
to-neutral. When expressed in volts the postfault line voltages are:

Ve = 101 X % /77.7° = 8.05/77.7° kv

3

Vi = 1.978 X E—S /270° = 15.73/270° kv

\/' ,,,,,,

13.8
Vi = 1.01 X —= /102.3° = 8.05/102.3° kv
5 1028 /102.8°

voltages are given below with V., = E, as reference.
are

Vi = 13.8/30° kv Vi = 13.8/270° kv

The phasor diagrams of prefault and postfaul Sés- RE@I\SHTE R E D

Fig. 11.5.
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11.4 line-to-line Fault on an Unloaded Generator. The circuit
diagram for a line-to-line fault on an unloaded, Y-connected generator is

b b
Vag Vs
v:m a
a n Vbc n Vbc
Va ¥
¢ [
¢
(a) Pre-fault (b) Post-fault
Fra. 11.5 Phasor diagrams of the line voltages of Example 11.1 before and after

the fault.

shown in Fig. 11.6 with the fault on phases b and ¢. The conditions
at the fault are expressed by the following equations:

V=1V, I, =0 Iy = —~1,

Substituting the relations given by Eqs. (10.6) and (10.7) for V; and
V. in the equation V, = V, gives

a2Va1 + a'VaZ + VaO = aVal + a2Va2 + VaO
(a? — )V = (@ — a) Vo
Va] = Va2 (11.7)

Substituting 7, = 0 and I, = — 7, in Egs. (10.19) to (10.21) gives

T = %0 + al, — a?ly) = i\%
Ly = 150 + a2y — aly) = — 12

V3
loo =130+ 1y — 1) =0

Therefore,
Tar = — Ias (11.8)

Then, from Eqgs. (11.2) and (11.7),
Var = Va = Eo — 1017,
which becomes, by Eqs. (11.3) and (11.8),
— Loy = IgZy = E, — Iy

Solving for [,; gives

Ial
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Equations (11.7) to (11.9) are the special equations for a line-to-line
fault. They are used with Eqs. (11.2) to (11.4) and the symmetrical-
component relations to determine all the voltages and currents at the
fault. The special equations indicate the way in which the sequence
networks are connected to represent the fault. Since Z; does not enter
into the equations, the zero-sequence network is not used. The positive-
and negative-sequence networks must be in parallel since Vi, = Voo
The parallel connection of the positive- and negative-sequence networks
without the zero-sequence network makes [, = — /., as specified by
Eq. (11.8). The connection of the sequence networks for a line-to-line
fault is shown in Fig. 11.7. The currents and voltages in the sequence

1

R
Ia].:_Iaz
11.7 Connection of the sequence

Fia.

Fie. 11.6 Circuit diagram for a line-to-

line fault between phases b and ¢ at the
terminals of an unloaded generator whose
neutral is grounded through a reactor.

networks of an unloaded generator for a
line-to-linc fault between phases b and ¢
at the terminals of the generator.

networks, when so connected, satisfy all the equations derived for the
line-to-line fault.

Since there is no ground at the fault, there is only one ground in the
eircuit at the generator neutral, and no current can flow in the ground.
In the derivation of the relations for the line-to-line fault we found that
T.o = 0. This is consistent with the fact that no ground current can
flow, since the ground current 7, is equal to 3/.. The presence or
absence of a grounded neutral at the generator does not affect the fault
current. If the generator neutral is not grounded, Z, is infinije and
is indeterminate, but line-to-line voltages may still be found
contain no zero-sequence components.

Example 11.2

Find the subtransient currents and the line-tog
fault under subtransient conditions when a lin®
the terminals of the generator described in Exam

go ages at the
S "REGISTERED O)
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the generator is unloaded and operating at rated terminal voltage when
the fault occurs. Neglect resistance.

Solution
_ _Lo+g40 . .
I = 7025 F j0.35 = —371.667 per unit
T2 = — 1, = 71.667 per unit
Too =0

Io = Ty + oo + Tao = —j1.667 + j1.667 = 0
Iy = a*lo1 4 ales + Iao
= —71.667(—0.5 — j0.866) + 71.667(—0.5 4 70.866)
Jj0.834 — 1.446 — j0.834 — 1.446 = —2.892 4 jO per unit
I, = —1, = 2.892 + 50 per unit

As in Example 11.1, base current is 836 amp. So

I,=0
Iy = —2.892 X 836 = 2,420/180° amp
I, = 2.892 X 836 = 2,420/0° amp

The symmetrical components of the voltage from a to ground are:

Var = Vaz =1 — (—j1.667)(j0.25) = 1 — 0.416 = 0.584 per unit
Vs = 0 (neutral of the generator grounded)

Line-to-ground voltages are

Vo= Va + Var + Voo = 0.584 + 0.584 = 1.168/0° per unit
Ve = a*Va + aVa + Voo

V.=V, = 0.584(—0.5 — j0.866) 4 0.584(—0.5 4 70.866)
—0.584 per unit

Line-to-line voltages are

Va = Vo — Vp = 1.168 + 0.584 = 1.752/0° per unit

Vie = Vi — Vo = —0.584 - 0.584 = 0 per unit

Vo=V — Vo= —0.584 — 1.168 = 1.752/180° per unit
Expressed in volts the line-to-line voltages are
Vo = 1752 x 8 _ 13.05/0° kv
V-
Vbc =0 kV
Vi = —1752 X 228 — 13.95/15¢
VA

11.5 Double Line-to-ground Fault on an Un
circuit diagram for a double line-to-ground fault

. %@@7’ ERED
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nected generator having a grounded neutral is shown in Fig. 11.8. The
faulted phases are b and c. The conditions at the fault are expressed by
the following equations:

Vi=V,.=0
I,.=0
Substituting V, = 0 and V. = 0in Eqgs. (10.9), (10.13), and (10.15) gives
Voo = 34(Va + 0+ 0) = &°
Ve = B(Va 4 0 4 0) = 22
Vas = 34(Va+0 +0) = ¢
Ib+Ic=In,
e
=

Fie. 11.8 Circuit for a double line-to-ground fault on phases b and ¢ at the terminals
of an unloaded gencrator whose neutral is grounded through a reactance.

Therefore,
Vo = Vaz = Voo (11.10)

Solving Eqs. (11.3) and (11.4) for I,; and [, and substituting V., for
Va2 and V4o, we obtain

] - — Va2 - _ Val
a2 Z2 Z2

— VaO _ Vul
lo==%="7

Replacing V.1 by E, — 1.7, gives

_ B 1aZ,
IaZ - Z2
and
IaO - Eu - IaIZI

Zy
Since I, = 0,
Ial + IaZ + IaO =0

VERSION

ADDS NO




238 ELEMENTS OF POWER SYSTEM ANALYSIS

and
Ea — IaIZI Ea - Z'alZI -
Z'al - Z2 - ZO it 0
Ia1Z2Z0 - EaZO + IaIZIZO - EaZZ + Ia1Z1Z2 =0
Ea(Z2 + ZO) Ea

Ial =

= 11.1
TZs + Zide + Zale — Za ¥ ZaZel (Ga ¥ 7 11D

Equations (11.10) and (11.11) are the special equations for a double
line-to-ground fault. They are used with Eqs. (11.2) to (11.4) and the
symmetrical component relations to determine all the voltages and
currents at the fault. Equation (11.10) indicates that the sequence
networks should be connected in parallel, as shown in Fig. 11.9, since
the positive-, negative-, and zero-sequence voltages are equal at the
fault. Examination of Fig. 11.9 shows that all the conditions derived
above for the double line-to-ground fault are satisfied by this connection.

Ial

Fre. 11.9 Connection of the sequence networks of an unloaded generator for a
double line-to-ground fault on phases b and ¢ at the terminals of the generator.

The diagram of network connections shows that the positive-sequence
current I, is determined by the voltage E, impressed on Z; in series
with the parallel combination of Z, and Z,. The same relation is given
by Eq. (11.11). .

In the absence of a ground connection at the generator no current
can flow into the ground at the fault. In this case Z, would be infinite
and Z. would be zero. In so far as current is concerned the result
would be the same as in a line-to-line fault. Equation (11.11) for a
double line-to-ground fault approaches Eq. (11.9) for a line-to-line
fault as Z, approaches infinity, as may be seen by dividing the numerator
and denominator of the second term in the denominator of Zq.

by Zo and letting Z, be infinitely large.
S\ ERED

@quges at the 6@6‘
iQEto—ground fault P
REGISTERED %
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Example 11.3

Find the subtransient currents and the line-t§
fault under subtransient conditions when a dg
occurs at the terminals of the generator des®
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Assume that the generator is unloaded and operating at rated voltage
when the fault occurs. Neglect resistance.

Solution
I E, _ 1.0 4+ 50
T Zy ¥ 2226/ (Zs F Zy) 70.25 + J0.35 X 70.10

70.35 + j0.10

_ 1.0 _ 10
~ j0.25 4+ 70.0778 703277

Var = Ve = Voo = B, — 1iZy = 1 — (—353.05)(j0.25)
= 1.0 — 0.763 = 0.237 per unit

—73.05 per unit

Vao 0237 . :

T = — 7, = T 035 = J0.68 per unit
Ve 0237 .
Ioo = — Zo = T 010 = J2.37 per unit

Io=Ilor 4 Tao + Ly = —73.05 + j0.68 + 7237 = 0
Iy = 0%l + alas + Iao
(—0.5 — j0.866)(—73.05) 4+ (—0.5 + j0.866)(50.68) + j2.37
J1.525 — 2.64 — j0.34 — 0.589 + j2.37
—3.229 4 j3.555 = 4.81/132.5° per unit
alay + a?las + Lag
(—0.5 + 70.866)(—73.05) + (—0.5 — j0.866)(50.68) + 72.37
= 71.525 + 2.64 — j0.34 + 0.589 4 52.37 = 3.229 + j3.555
= 4.81/47.5° per unit
I, = 31 = 3 X j2.37 = j7.11 per unit
I.= I + I. = —3.229 4 j3.555 + 3.229 + 73.555 = j7.11 per unit
Va = Val + Vaz + Vag = 3Va1 =3 X 0237 = 0711 per uni‘L

([

o
I

Vb = Vc =0
Va = Vo — Vi = 0.711 per unit
Vbc =0

Vo=V, — V,= —0.711 per unit
Expressed in amperes and volts
1.=0
836 X 4.81/132.5° = 4,025/132.5° amp
836 X 4.81/47.5° = 4,025/47.5° amp
In = 836 X 7.11/90° = 5,950/90° amp

~
o o
o

13.8
Vo = 0.711 X == = 5.66/0° kv
” Va8
Vbc = 0
13.8
Ve = —0.711 X === = 5.66/180° }
Vel
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PROBLEMS

11.1 A 60-cycle turbogenerator is rated 10,000 kva, 13.8 kv. It is Y-connected,
solidly grounded, and is operating at rated voltage at no load. It is disconnected
from the rest of the system. Its reactances are X'’ = X, = 0.15 and X, = 0.05
per unit. Find the ratio of the subtransient line current for a single line-to-ground
fault to the subtransient line current for a symmetrical three-phase fault. ’

11.2 Find the ratio of the subtransient line current for a line-to-line fault to the
subtransient current for a symmetrical three-phase fault on the generator of Prob.
11.1.

11.3 Determine the ohms of inductive reactance to be inserted in the neutral con-
nection of the generator of Prob. 11.1 to limit the subtransient line current for a single
line-to-ground fault to that for a three-phase fault.

11.4 With the inductive reactance found in Prob. 11.3 inserted in the neutral of
the generator of Prob. 11.1, find the ratios of the subtransient line currents for the
following faults to the subtransient line current for a three-phase fault: (a) single
line-to-ground fault, (b) line-to-line fault, (c¢) double line-to-ground fault.

11.5 How many ohms of resistance in the neutral connection of the generator of
Prob. 11.1 would limit the subtransient line current for a single line-to-ground fault
to that for a three-phase fault?

11.6 A generator rated 10,000 kva, 6.9 kv has X" = X, = 15% and Xo = 5%.
Its neutral is grounded through a reactor of 0.381 ohms. The generator is operating
at 6.9 kv without load and is disconnected from the system when a single line-to-
ground fault occurs at its terminals. Find the subtransient current in the faulted
phase.

11.7 A 10,000-kva, 13.8-kv turbogenerator having X" = X, = 15%and Xo = 5%
is about to be connected to a power system. The generator has a current-limiting
reactor of 0.7 ohms in the neutral. Before the generator is connected to the system its
voltage is adjusted to 13.2 kv when a double line-to-ground fault develops at terminals
bandc. Find the initial symmetrical rms current in the ground and in line b.

11.8 A 15,000-kva, 6.9-kv generator, Y-connected, has positive-, negative-, and
zero-sequence reactances of 25%, 25%, and 8%, respectively. In order to reduce the
short-cireuit current in case of a fault to ground, an inductive reactor with 6% react-
ance based on the rating of the generator is placed in the line from neutral to ground.
A line-to-line fault occurs at the terminals of the generator when it is operating at
rated voltage and disconnected from the system. Find the initial symmetrical rms
line and necutral currents and the line-to-line and line-to-neutral voltages (a) if the
fault does not involve ground; (b) if the fault is solidly grounded at the instant of its
oceurrence.
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CHAPTER 12

SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS

12.1 Introduction. In Chap. 11 we defined a particular sequence
impedance as the impedance to the flow of current of that sequence.
We accepted the fact that negative-sequence impedance and zero-
sequence impedance of a generator were not generally equal to any of the
positive-sequence impedances applicable to subtransient, transient, or
steady-state conditions. This chapter will discuss negative- and zero-
sequence impedances of rotating machines and compare them with
positive-sequence impedance. We shall also discuss the sequence imped-
ances of transformers and transmission lines.

For an unloaded generator we found that the symmetrical components
of current flowing during short circuits could be determined by certain
interconnections of sequence networks. The sequence networks were
simple because we were dealing only with an isolated generator. In a
system consisting of several generators and motors and of transformers
and transmission lines between various points, each sequence network
is composed of sequence impedances connected to provide the proper
paths for currents of one phase of the particular sequence for which each
network is synthesized. The equivalent circuits of Chaps. 8 and 9 consist
of positive-sequence emfs and positive-sequence impedances only and
may be called positive-sequence networks. Similar networks providing
paths for negative- and zero-sequence currents contain negative- and
zero-sequence impedances, respectively. Since currents of one sequence
produce only voltage drops of like sequence in a symmetrical syste
current in any sequence network of a balanced system carries g
of the same sequence as the impedances in the netwo
there is no coupling between the sequence networks.
cusses the synthesis of such networks.

12.2 Sequence Impedances. The positive-sed
sequence impedances of linear, symmetrical, st g
because the impedance of such circuits is ind8

provided the applied voltages are balanced.
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circuits to zero-sequence currents may differ from the impedance to
positive- and negative-sequence currents. The impedances of rotating
machines to currents of the three sequences will generally be different
for each sequence.

In deriving the equations for inductance and capacitance of transposed
transmission lines, we assumed balanced three-phase currents and did
not specify phase order. Therefore, the resulting equations are valid
for both positive- and negative-sequence impedances. The inductance
and capacitance of transmission lines for zero-sequence currents will be
discussed later.

For symmetrical three-phase static loads consisting of lumped con-
stants or loads which can be analyzed as having lumped constants, the
impedances to current of positive, negative, and zero sequences are
the same because each phase is isolated from, and independent of,
the other phases. If the load is A-connected or Y-connected with an
ungrounded neutral, no path exists for the flow of zero-sequence current.
The absence of a path for zero-sequence current means that an infinite
impedance is in series with the zero-sequence impedance of the load in
the zero-sequence network. If there is an impedance Z, in the connection
between neutral and ground, an impedance of 3Z,, is placed in series with
the zero-sequence impedance of the load, since 374 flows in Z, if there
is a completed path for neutral current while only /. flows in the zero-
sequence network. In general, Z, may have any value between zero
and infinity depending on whether the neutral is solidly grounded, is
grounded through impedance, or is isolated from ground.

The study of impedance to negative- and zero-sequence current
becomes very complex when a complete analysis is attempted for many
different kinds of circuits and apparatus. Only the more elementary
cases and those which will be encountered most frequently invour. dis-
cussions will be considered. Positive-sequence impedances need no
extended treatment because they have been discussed previously in con-
nection with transmission lines or are of a type with which we are already
familiar.

12.3 Transformer Impedances. The equivalent circuit of a trans-
former as developed in a-c machinery theory and as shown in part of
Fig. 8.3 consists of series impedance composed of effectivg
and leakage reactance and shunt admittance to provide a
magnetizing current. The series impedance is that im s
by the short-circuit test, and the shunt admittanged \ﬁittanee
measured by the open-circuit test. The shunt ad
and negative-sequence current and sometimes
is so low that it may be neglected. In some c2
neglected when it is very small compared to thg

ge reactance, as is ¢
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the case in power transformers of over 500 kva. Typical values of
transformer series impedances are given in the Appendix in Table A.6.

A three-phase transformer baunk may be made up of three individual
single-phase units, or it may be a three-phase core or shell transformer.
Originally, single-phase units were more popular than three-phase units,
and they still have the advantages of -
providing partial service on open A in l | I
the event of damage to one unit, of
easier portability, and of readily avail-
able spare capacity in the form of an
additional single-phase unit to replace [ ]
a damaged unit. Most of the modern L
installations are three-phase units, be- Fre. 12.1 Y-connected primary
cause of their lower initial cost, smaller ~windings of a three-phase bank con-
space requirements, and higher effici- ?ggﬁs'of three single-phase trans-
ency. Improved methods of system
protection and increased reliability of transformers have reduced the im-
portance of immediately available spare capacity. The types of trans-
formers for three-phase service are shown in Figs. 12.1 to 12.3, where only
the primary windings are indicated.

The paths of leakage flux are partially through air, regardless of
phase sequence or type of three-phase bank. There is no difference

D

g b

[ l H § b
R | |

Fic. 12.2 Y-connected pri- Fia. 12.3 Y-con-
mary windings of a three- nected primary wind-
phase shell-type transformer. ings of a three-phase

core-type transformer

between positive- and negative-sequence series 1mpedan
the short-circuit test regardless of the type of bank
zero-sequence short-circuit impedance differs some

tive-sequence impedance in a shell- or core-typquids é er, especiall
in the core type where it may be appreciably an ReEp gTER E D ¢
sequence impedance. The difference is small engl owever, so that
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the best approximation for the series impedances is to assume equality
for impedances of all sequences regardless of type of bank.!

In all three types of transformers for three-phase service, the same
path is followed by excitation flux resulting from negative-sequence
applied voltage as is followed by the excitation flux resulting from
positive-sequence applied voltage. Therefore, for the same applied
voltage, the shunt admittance measured on open circuit will be the same
for both positive- and negative-sequence exciting currents and will be
so low that it will be neglected.

Zero-sequence exciting current produces flux in the same path in three
single-phase units as do the exciting currents of positive and negative
sequence. The admittance to zero-sequence exciting current may be
neglected. In three-phase shell-type transformers the paths of excita-
tion flux are completely in iron, as in the three-phase bank of single-
phase units, but comparison of Figs. 12.1 and 12.2 shows that saturation
will occur at a lower voltage in the three-phase shell-type transformer
than in the single-phase units when the exciting currents are in phase.
The shunt admittance to zero-sequence current in three-phase shell-type
transformers varies widely with saturation but will be low enough to
neglect even in very accurate work unless the zero-sequence voltage
approaches the value of the positive-sequence voltage.

Examination of Fig. 12.3 shows that zero-sequence excitation flux
paths in the three-phase core-type transformer are partly through air,
because the zero-sequence mmfs are in phase and the magnetic circuit
cannot be completed through the iron. On the other hand, the paths of
positive- and negative-sequence fluxes are completely in the iron because
of the phase displacement of their mmfs. Therefore, the admittance to
zero-sequence exciting current is considerably higher for the three-phase
core-type transformer than for the shell type. For simplicity in our
analytical calculations we shall omit shunt admittance of all sequences
for all types of three-phase transformers.

12.4 Negative-sequence Impedance of Synchronous Machines.
When the three phase currents of a synchronous machine have the same
phase sequence as the generated voltages of the machine, the mmf pro-
duced by the armature current rotates in the same direction as the mmf
produced by the d-c field winding. The resulting flux acrosgthe 3
is determined by the sum of these two mmfs. Positive-seq

TERED

ance is the impedance met by the armature current
phase sequence as the generated voltages. The gea g eNoponent of ,/6
the positive-sequence impedance includes leakage and an addi- '?
tional component to account for the change ig ed by the mmf
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SEQUENCE IMPEDANCES AND SEQUENCE NETWORKS 245

of the armature current. The amount of this additional component
depends upon whether the reactance is that during the subtransient,
transient, or steady-state period.

Negative-sequence impedance of a synchronous machine is the imped-
ance met by armature current of phase sequence opposite to that of the
generated phase voltages. The mmf produced by the negative-sequence
armature current rotates in the direction opposite to that of the rotor
and its d-c field winding. Unlike the flux produced by positive-sequence
current, which is stationary with respect to the rotor, the flux produced
by the negative-sequence current is sweeping rapidly over the face of the
rotor. The currents induced in the field and damper windings by the
rotating armature flux keep the flux from penetrating the rotor. The
flux path is the same as in the case of subtransient reactance. We saw
in Chap. 9 that flux resulting from the changing positive-sequence
armature current is changing rapidly and is kept from penetrating the
rotor, but the subtransient reactance depends on whether the armature
mmf acts on the direct axis, the quadrature axis, or somewhere between
the two axes. In sweeping over the entire circumference of the rotor
face, the mmf of negative-sequence current is constantly varying its
position with respect to the direct and quadrature axes of the rotor.
Therefore, negative-sequence reactance would be expected to be the
average of the direct and quadrature subtransient reactances. Indeed,
one definition of negative-sequence reactance of a synchronous machine is
X{lil _|_ qu/

X, = 5

(12.1)
We discussed in Chap. 9 the fact that the subtransient reactance of
machines having damper windings is practically constant regardless of
the position of the axis of armature mmi{ with respect to the direct and
quadrature axes of the rotor. Therefore, in turbine generators and
salient-pole generators with copper dampers continuous between the
poles, X} and X/ are nearly equal in value, and X, is equal to XY/, a
may be verified by referring to Table A.5 in the Appendix.
Negative-sequence resistance is the resistance by which the square
of the negative-sequence current is multiplied to find the power associated
with the negative-sequence current. Unless positive- sequencg
are changing in magnitude, they do not induce curren
damper windings, nor do they cause hysteresis or edd
in the rotor. Negative-sequence currents, however
rotating in the direction opposite to that of the rd
of double frequency in the field and damper wj
current and hysteresis losses in the rotor iron.
keep the penetration of the flux from being ver

ce currents

cause edd
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epAnd thereby kee ¢
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the losses small, the negative-sequence resistance is higher than the
positive-sequence a-c resistance of the armature. Resistance is much
smaller than reactance for negative-sequence currents, but the difference
between resistance and reactance is less for negative-sequence currents
than for positive-sequence currents.

The negative-sequence reactance of a synchronous machine may be
computed from Eq. (12.1) after measuring X/ and X/, as described in
Sec. 9.5. Negative-sequence impedance may be measured by driving
the rotor at synchronous speed with the field short-circuited while apply-
ing negative-sequence voltage to the armature. Another convenient
method is to measure the steady-state current in a line-to-line short
circuit at the armature terminals while the machine is driven at syn-
chronous speed with enough field excitation to give rated voltage at no
load. At the same time, the voltage is measured between the shorted
terminals and the open terminal, and a reading of a single-phase watt-
meter with its current coil in one of the shorted lines and its potential
coil between the shorted terminals and the open terminal is made. The
reader may prove by symmetrical components that the negative-sequence
impedance is equal to the ratio of the voltmeter reading to the ammeter
reading, divided by 1.73. The negative-sequence reactance is equal to
the impedance multiplied by the ratio of the wattmeter reading to the
product of the voltmeter and ammeter readings.’

12.5 Zero-sequence Impedance of Synchronous Machines. When
only zero-sequence current flows in the armature winding of a three-phase
machine, the current and mmf of one phase are a maximum at the same
time as the current and mmf of each of the other phases. The windings
are so distributed around the circumference of the armature that the
point of maximum mmf produced by one phase is displaced by 120
electrical degrees in space from the point of maximum mmf of each.of the
other phases. If the mmf produced by the current of each phase had a
perfectly sinusoidal distribution in space, a plot of mmf around the
armature for each phase would result in the three sinusoidal curves
shown in Fig. 12.4 for a two-pole machine. The figure is drawn for one
instant of time only. TFor other instants the pattern would be the same

more complete discussion of machine impedances and methods d
reader should consult such books as C. Concordia, ‘‘Synchigng
Wiley & Sons, Inc., New York, 1951; C. F. Wagner and R.
Components,” Chap. V, pp. 74-109, McGraw-Hill Book Cg
1933; or Central Station Engineers of Westinghouse Elg
Transmission and Distribution Reference Book,” 4th ed.
Pittsburgh, Pa., 1950.
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except that the mmf of each phase would be altered in magnitude by the
same amount. At any point on the armature of the machine the sum
of the three mmfs shown in Fig. 12.4 is zero at all times. There would
be no flux produced across the air gap, and the only reactance of any
phase winding would be that due to leakage and end turns.

In an actual machine, the winding is not distributed to produce per-
fectly sinusoidal mmf. The flux resulting from the sum of the mmfs
is very small but makes the zero-sequence reactance somewhat higher
than in the ideal case where there is no air-gap flux due to zero-sequence
armature current. Since there is some air-gap flux in the actual case,
zero-sequence reactance is dependent on the resistance of the damper
winding. The amount of flux depends on the breadth and chording

{ mmf, mmf, mmf, |
| !

F1a. 12.4 The mmf produced at a given instant by the zero-sequence current in each
phase of a three-phase armature winding as a function of position around the armature.
Perfect sinusoidal distribution of each mmf is assumed.

factors of the winding. Because of the low flux, X, is always much lower
than X, or XY/. Core losses of the pulsating resultant flux cause the
zero-sequence resistance to be slightly higher than positive-sequence
resistance.

Since zero-sequence current means identical current in each phase
winding, a convenient method of measuring zero-sequence impedance
is to connect the three phase windings in series and to apply a single-phase
voltage of the correct frequency. The d-c field winding should be short-
circuited, and the rotor may be blocked or rotated at synchronous speed
for the test. The measured impedance divided by 3 is the zero-seq
impedance per phase.

Another method of measuring zero-sequence impeda

speed with the field energized to give rated volf %
ammeter is placed between the shorted terminals g

: Ny
. . 7
machine. Voltage between the open terminal Sh. )8 !IS
voltage divided by the ammeter reading is the ze @uenﬁm ;’-E RED %
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as may be shown by symmetrical components. Components of the
impedance may be found by inserting the current coils of a wattmeter in
series with the ammeter and by placing the potential coils in parallel
with the voltmeter. The zero-sequence resistance is the zero-sequence
impedance multiplied by the ratio of the wattmeter reading to the product
of the voltmeter and ammeter readings. .

12.6 Sequence Impedances of Induction Motors. Insofar assystem
short circuits are concerned, the most important difference between induc-
tion motors and synchronous motors is that synchronous motors receive
their excitation from a d-c source which is considered to be constant and
unaffected by the fault, whereas the excitation of induction motors comes
from the a-c¢ system. Therefore, when a short circuit occurs at the
terminals of an induction motor, the current the motor supplies to the
short circuit dies out in 1 or 2 eycles. Induction motors are often entirely
neglected in studying faults on a large system, but their contribution
to short-circuit current during the subtransient period should be included
if they constitute a large part of the system. An average value for the
subtransient reactance of large induction motors is 259,. The transient
reactance of induction motors is infinite since current flows from the
motor to the fault only during the subtransient period.

When making load studies, we can replace the induction motor by
a series or parallel combination of resistance and inductive reactance as
required by its rated voltage, horsepower, efficiency, and power factor.
For steady-state operation we can use the equivalent circuit of the induc-
tion motor in our impedance diagram. It is convenient to look at the
equivalent circuit now, for we can see from the diagram the relation
between positive- and negative-sequence impedance. The equivalent
circuit, whose development may be found in any textbook on a-¢ machin-
ery,® is shown in Fig. 12.5. We will use the following nomenclature:

R, = effective resistance of the stator per phase

X, = stator leakage reactance per phase at supply frequency

R, = effective resistance of the rotor per phase, referred to the stator
X, = rotor leakage reactance per phase at supply frequency, referred

to the stator
X, = shunt magnetizing reactance
s = slip

R; = positive-sequence resistance of the equivaleg
R, = negative-sequence resistance of the equivald
X, = positive-sequence reactance of the equj
X, = negative-sequence reactance of the equi

% See, for instance, A. E, Fitzgerald and C. Kingsle
p. 397, McGraw-Hill Book Company, Inc., New York,
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Slip is the ratio of the difference between the speed of the revolving
magnetic field and the speed of the rotor to the speed of the revolving
magnetic field. Positive-sequence current in the armature produces a
field rotating in the same direction as the rotor. Slip is about 5% at
full load. Negative-sequence current in the armature produces a field
which rotates in the direction opposite to that of the rotor. If the motor

R, X, X, R,

i-s

Fie. 12,5 Equivalent circuit of an induction motor.

were rotating at synchronous speed, the slip would be 2009, for negative-~
sequence armature current. The slip for negative-sequence current
at full load is about 2009 — 59% = 1959%,. If we call s; the slip for
positive-sequence current and s, the slip for negative-sequence current,

Sg =2 — 8 (12.2)

The input impedance of the equivalent circuit is the positive- or
negative-sequence impedance of the induction motor, according to
whether s; or s, is used to compute the resistance of the circuit. The
ecircuit is solved more easily if it is simplified by placing the shunting
reactance directly across the input. Such a

simplification is often made in the equivalent R,
circuit of an induction motor. If we let X
R X
R =R, + ?" (12.3)

Fig. 12.6 Simplified
equivalent circuit of an

X, =X, + X, (12.4)  induetion motor.

and

where s is s; for positive sequence and s, for negative sequence, the
simplified circuit is that shown in Fig. 12.6. Reduction of the simpj
circuit gives us the following equations for positive- an
sequence resistance and reactance:

P X.2R,
vl,2 Rt2 + (Xm + X;)Q Q- 6}
_ Xu(R2 + XX, +
XI.Z - Rt2 + (Xm + Xt) D REGI&TERED O¢
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where Ri. = positive- or negative-sequence resistance, depending on
whether s; or s, is used for slip to determine R, by Eq. (12.3)

for use in Eq. (12.5)
Xy,2 = positive- or negative-sequence reactance, depending on
whether s, or s, is used for slip to determine R, by Eq. (12.3)

for use in Eq. (12.6)

The shunt reactance X,, is very much larger than X, and R, for either
sequence. Therefore, X; and X, are nearly equal. Since positive-
sequence R, is larger than negative-sequence R; and since X, is very
large, R, is less than R;.

We saw in Sec. 12.5 that zero-sequence currents flowing in a three-
phase armature winding produce very little flux, and as a result the
zero-sequence impedance of synchronous machines is very low. Since
the armatures of induction motors and synchronous machines are the
same, the resultant flux for zero-sequence current in the armature of an
induction motor is very small, and the zero-sequence impedance is cor-
respondingly small.

12.7 Zero-sequence Impedance of Transmission Lines without
Ground Wires. As stated in Sec. 12.2, we assumed balanced three-
phase currents when we derived the equations for the inductance of a
transposed three-phase transmission line. The resulting equations are
valid only for balanced three-phase currents, including the positive- and
negative-sequence components of unbalanced currents, but not including
zero-sequence components. When only zero-sequence current flows in a
transmission line, the current in each phase is identical. The current
returns through the ground, through overhead ground wires, or through
both. The total current in the return path is the sum of the zero-
sequence current in the three phases, or three times the zero-sequence
current in one phase. Because zero-sequence current, is identical in' mag-
nitude and phase in each phase conductor rather than equal only in magni-
tude and displaced in phase by 120° {from other phase currents, the mag-
netic field due to zero-sequence current is very different from the magnetic
field caused by either positive- or negative-sequence current. The differ-
ence in magnetic field results in the zero-sequence reactance of a trans-
mission line being 2 to 3.5 times as large as the positive-sequence
ance. The ratio is toward the higher portion of the specxﬁ
double-circuit lines and lines without ground wires. gile 4
the zero-sequence impedance of transmission lines wit
first, and later we shall include the effect of groung

The work of Carson* provides a convenient md

1 r analysis.

r con31dermg
§ » REGIS, TERED 2

48Bee J. R. Carson, ‘“Wave Propagation in Overhead
Bell System Tech. J., vol. 5, pp. 539-554, October, 1926.

h based on a different
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the effect of the return path through the ground. The method assumes
the return current to be confined to a fictitious conductor which has a
self GMD of 1 ft and which is directly below the conductors at a distance
dependent on the resistivity of the earth. Actually the current in the
earth spreads out over a wide area in order to follow the path of least
impedance. The path followed by the current is governed by both
resistance and reactance. In following the path of least impedance, the
current is restrained from departing from the vicinity of the line by the
increased reactance which would result therefrom, for the inductance
of a circuit increases with the distance between its two sides.

Carson’s method is convenient because it is adaptable to mathematical
analysis and gives results which check closely with experimental data.
In simplified form, Carson gives the resistance of the earth in ohms per
mile as 1.588f X 1073, where f is frequency in cycles per second. React-
ance is expressed in terms of the distance D, from the overhead conductors
to the fictitious conductor having a self GMD equal to 1 ft. The value
of D, may be computed by the following equation:

D, = 2,160 \/]2 (12.7)

where p is the resistivity of the earth in chms per meter cube and D, is
expressed in feet. Often D, is used to signify the quantity represented
above by D.2. In the derivations which we are about to make, however,
it seems more logical to define D,2 by Eq. (12.7) so that D, is the separa-
tion between the overhead conductors and the fictitious return conductor.
Table 12.1 gives values of D, and D,? obtained from Eq. (12.7) for
f = 60 cps and for various values of p, depending upon the condition
of the earth return.

Tasre 12.1 ResisTiviTiEs aAND D, For f = 60 cps

Return circuit p, ohms/meter? | D2 ftz | D, ft
Sea water 1 279 16.7
Swampy ground 100 2,790 52.8
Dry earth 1,000 8,820 93.9

assumption, equations developed by Riidenberg give resuld
from those obtained by Carson’s equations. See R. Ri

ey i v s’ - ML REGISTERED ©)
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return conductor is designated as e. The inductance of the circuit ae
due only to the current in conductor a is, by Eq.

Qe (2.36),

L, = 0.7411 log% millihenrys/mile (12.8)

a

D, )
and the inductance due to the current in con-
ductor ¢ is

B S e D, - .
L, = 0.7411 log T millihenrys/mile  (12.9)

Self GMD=1"

fhlli.tgfja ggsrhgs’g;gl?; The inductance of the circuit ae, or the self-

return conductor e. inductance of conductor a and its earth return, is

2

Lea = Lo + L, = 0.7411 log I;)

a

millihenrys/mile  (12.10)

The self-impedance of line @ with its earth return is
Zuw = Ra - 1.588f X 10~
2
+ j4.657f X 10~ log D7 ohms/mile (12.11)

where R, is the resistance of the overhead line a.

A single-circuit three-phase line consists of three conductors, each
of which carries the same zero-sequence current. In so far as zero-
sequence quantities are concerned, the three conductors may be consid-
ered as elements of a composite equivalent conductor, as discussed in
Sec. 2.8. Therefore, we can find the inductive reactance of the circuit
consisting of three overhead conductors, which are electrically in parallel,
and the earth return by the method of GMD. We determine the self
GMD of the three-element composite conductor and the GMD between
the fictitious conductor and the elements of the composite overhead
conductor. Since the distance from each conductor to the earth return
is approximately the same, the GMD may be considered equal to D..
The total zero-sequence impedance of the three overhead lines and the
earth return is

Zaa = % + 1.588f X 10~

2

1 j4.657f X 10-% log ge

aa

1\6’&% ED ,/6\
ead conduc- ,?

ORPOR E@IS"TERED 2

Qbero—sequence cur-
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where R, is the resistance of one of the three identj
tors and Dy, is the self GMD of the equivald
For one of the three phases electrically in parallg
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rent, the zero-sequence impedance is
Zy = 32 = R, + 4.764f X 108

D.2
+ j13.97f X 1073 log =5

Duu

ohms/mile (12.13)

The zero-sequence impedance of a multiple-circuit line consisting of
identical conductors may be calculated in a similar manner since the
zero-sequence current is always split equally between all the conductors
which are treated as elements of one composite conductor.

Example 12.1

Find the positive- and zero-sequence impedance per mile at 60 cycles
for a single-circuit three-phase line consisting of No. 2/0 hard-drawn
copper conductors with flat, horizontal spacing of 12 ft between centers.
Assume p = 100.

Solution
For No. 2/0 seven-strand hard-drawn copper, ' = 0.01252 ft
At 25°C, R, = 0.440 ohm /mile
D..= V12 X 12 X 24 = 15.1 ft
L = 0.7411 log 01(;)1;_ = 2.285 millihenrys/mile
Z; = 0.440 4 52760 X 2.285 X 10—% = 0.440 + j0.861 ohm/mile

The self GMD of the equivalent composite conductor for zero sequence
18

Duo = v/(0.01252)3(12)4(24)® = 1.42 f
Zo = 0.440 + 4.764 X 60 X 10~% 4 713.97 X 60 X 103 log
0.727 + 52.76 ohms/mile

2,790
1.42

i

i

The ratio of zero-sequence inductive reactance to positive-sequence induc-
tive reactance is 3.21.

Example 12.1 shows the relation between the self GMD of the com-
posite conductor used in the zero-sequence reactance formulas, the self
GMD of one phase conductor, and the equivalent equilateral spacing D
of the three phases. The relation, as seen from the computation g
in the example, is

- D
Duu = \S/SQIf Gl\/IDoue phase Deq Q-

12.8 Zero-sequence Impedance of Transmi &?feSREeierERED ¢

Wires.  One or more conductors called ground, i@ are often placed
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above the circuit conductors of a transmission line. The ground wires
are grounded at every tower. The connection to ground is through the
O b tower footing resistance. The large number of
R such parallel connections to ground per mile
Oa allows us to assume that the ground wires and
earth are electrically in parallel at the ends of the
section of circuit being considered.
In order to study the effect of ground wires
on zero-sequence impedance, it is necessary to
determine the mutual impedance between two

D,

—— e single-phase circuits having a common ground
, return. Let us consider the two conductors q
Self GMD =1 and b shown in Fig. 12.8. These conductors

Fic.12.8 Two overhead .
conductors a andvbrwith carry currents I, and I, which return through

earth return represented the earth represented by the fictitious conductore.

by e. According to Eq. (2.26) the flux linkages between
two points distant Dy, and Dy, from conductor b due to I, in that con-
ductor are

Yoo = 2 X 10771, In gbe weber-turns/meter (12.16)
ab

which must be equal to the flux linkages of circuit ae due to the current
I in conductor d. Similarly the flux linkages of circuit ae due to the
current [ in the earth as represented by conductor ¢ are

Do,

Yee = 2 X 10771, In weber-turns,/meter (12.17)
The addition of Eqgs. (12.16) and (12.17) gives the total flux linkages of
circuit ae due to [ in circuit be, namely,

Yoo = 2 X 10771 In ~D—%~D—be weber-turns/meter (12.18)

ab

Since Dg, and Dy, are almost equal to D., Eq. (12.18) may be simplified to
give
D2
-Dab

Yoe = 2 X 10771, In weber-turns,/meter (12.19)

The mutual inductance between circuits ae and be is

2
Mqy = 0.7411 log ge millihenr
ab

&
Qé‘}ﬂ'f?E@’ffs“rERED
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The current [, in circuit be causes a voltage {

LR, + 72nfM o1y
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where R, is the resistance of conductor ¢, the conductor common to both
circuits. This voltage divided by I is the mutual impedance between
circuits ae and be, which is

Z = Re + j2nfMa = 1.588f X 103

D 2
+ 4.657f X 10-% log =°

Dab

Of course, the above value of mutual impedance would be found also by
determining the voltage induced in circuit be by the current I, in circuit

ohms/mile (12.21)

ae.

Now let us consider a 1-mile section of two single-phase circuits with
a common earth return, as shown in Fig. 12.9. Examination of Fig. 12.9
shows that

Ve — Vaw = voltage drop per mile of circuit ae, including conductor a
and the earth return.
Vie — Vo = voltage drop per mile of circuit be, including conductor b
and the earth return.
Then
Ve — Voo = loZiaa + IZap (1222)
Vie — Voo = LoZay + LvZim (12.23)

where Z.. = self-impedance of circuit ae
Zy = self-impedance of circuit be
Zs = mutual impedance between circuits ae and be

A slight modification of the circuit of Fig. 12.9 and of Egs. (12.22)
and (12.23) converts them to the case of a single-phase line with a ground

L L
a } i 1 a
1, ! | Ts |
b i 1 : t g
] i '
| Y | ‘/a'e'
|| e |
] ..
‘/be: : erl Vgel | ree
! I,+1, | I L1, [
| Lth | - :
e 1 T ; 1 e
be 1 mile 1 pe— 1 mile >
Fra. 12.9 Bection of two single-phase Fra.12.10 Overhead cond
circuits with common earth return. return circuit throug

¢ in parallel with th 6 e
) @ direction
Q%( is reversed,

REGISTERED O)
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wire and earth return. If the circuit be is relabeled
assumed to be positive for the flow of current in thj
the conductor now labeled ¢ can be considered
for conductor a, as shown in Fig. 12,10, The cur
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the parallel circuit which is composed of the ground wire and the earth.
By comparison with Eqgs. (12.22) and (12.23), since only the sign of [, is
changed when it becomes T,

Vae - I711’(5’ = IaZaa - IHZ'W (1224)
Ve — Vo = 1oZay — 1,70, (12.25)

Since we assumed that the ground wire g was electrically in parallel with
the earth at the ends of the section, the voltage drop between the ground
wire and earth is zero at the ends of the section; that is, V,, = 0 and
Vye = 0. Substituting V,e — Vo = 0in Egs. (12.24) and (12.25) and
solving for I, by determinants, we obtain
_(Vae - Va'e'>Zor/
—ZaaZgg + Zag2
Since V4 — Ve is the voltage drop in 1 mile of the circuit consisting
of conductor ¢ and the ground wire g in parallel with the earth return,
the impedance per mile of the circuit is

I, = (12.26)

7 = K_;L (12.27)
2
7, = Zalin = Lot (12.28)
gg
2
2= fa— (12.29)
“gq

where the self-impedance Z,, of the circuit consisting of the line and the
earth and the self-impedance Z,, of
1 A/Z the circuit consisting of the ground
i/ wire and earth are computed by Eq.
(12.11). The mutual impedance Z,,

is computed by Eq. (12.21).
In so far as the zero-sequence cur-
/ A {01 rent of a three-phase line is concerned,
the three line conductors, each carry-
ing the current I, as shown in Fig.
12.11, may be considered as elements
Ey of the composite conductor designated
a in Fig. 12.10. The groyad wi
each of which carries the ¢
e as shown in Fig. 12.1

Fra. 12.11  Single-circuit three-phase sidered as eleme " i
, ﬂ@)d the zero-

line with two overhead ground wires  oonductor des1gn
i REGIS TERED 2

and earth return.
.10. The zero-
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sequence voltage drop per mile of line, includl
return, is V.. — Ve of the single-phase circuit of
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sequence current /. of the three-phase line is one third of the current of
the line of Fig. 12.10. Therefore, the zero-sequence impedance of the
three-phase line is

Va() Vae - Va’e’

Zo = 72 = Lot e (12.30)
Zo = 37" (12.31)
or
Zag? .
Zo=3\Z4 — ohms/mile (12.32)
ZUU

where Zg, = %‘3 + 1.588f X 10—°

2
+ 74.657f X 102 log —ge ohms/mile (12.33)

Zy = % + 1.588f X 10~*

D,?

4 j4.657f X 1072 log D
g9

ohms/mile (12.34)

Za, = 1.588f X 10~

D2

+ 74.657f X 1072 log ) ohms/mile (12.35)

[
ag

and

conductors
, = resistance in ohms per mile of one of n identical ground wires
= number of ground wires
D.. = self GMD of the composite line conductor
D,, = self GMD of the composite ground wire
Do, = GMD between line conductors and ground wires

R. = resistance in ohms per mile of one of the three identical line
R

s =

)

For double-circuit lines the factor 3 is replaced by the factor 6 in Eqgs.
(12.30) to (12.33).

Example 12.2

Find the 60-cycle zero-sequence impedance per mile of the line of
Example 12.1 when two ground wires are
placed 10 ft above the horizontal plane of
the line and 6 ft in from the outside con-
ductors, as shown in Fig. 12.12. Each
ground wire is three-strand No. 7 Copper-
weld having a self GMD of 0.00363 ft and

G —0
a resistance of 3.07 ohms per mile at 25°C. §REEI$_TERED

Assume p = 100. ample 12.2.
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Solution
From Example 12.1,

R, = 0.440 ohm/mile
D, = 1421t

The self GMD of the composite ground wire is

= 4/0.00363 X 12 = 0.2085 ft

and the GMD between line conductors and ground wires is

Do, = VvV (11.66)%(20.6)2 = 14.1 ft
From Eqgs. (12.33) to (12.35),

Z,m=0—44-9+1588><60><103-1‘—]4657)(6())(10‘31 -24%9
= 0.242 + j0.921 ohm/mile '

Zga=§97—+1588><60><103+J4657><60><1031 2?2959
= 1.630 4 j1.155 = 2.00/35.40° ohms/mile

Zap = 1.588 X 60 X 108 4- j4.657 X 60 X 102 logg{glg

= 0.0953 + j0.642 = 0.65/81.56° ohm/mile

From Eq. (12.32),

e - (0.65/81.56°)*
zo=3[0.2 2 + 0. 1“‘2_*66@_(?]

3(0.242 + j0.921 — 0.211/127.72°) = 3(0.370 + ;0.753)
= 1.110 + j2.259 ohms/mile

The ratio of zero-sequence to positive-sequence reactance is 0 8?1) = 2.62.

If resistance is neglected in computing the zero-sequence reactance in
Example 12.2, the value found is j1.692 ohms, which is much smaller than
72.259 ohms, the value with resistance considered. Resistance is often
neglected in setting up the sequence networks, but resistance must be

1ncluded in the computations for the zZero-sequence reactanee of th

earth a few feet. Their purpose is to impro
reducing the tower footing resistance.
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of radial wires extending out from the base of each tower, or continuous
wires connected to each tower, or a combination of the two arrangements.
Continuous counterpoises provide a metallic return path for zero-sequence
current and may be treated as additional ground wires. Because of their
position, counterpoises do not carry the same value of current as the
overhead ground wires and, therefore, cannot be included with the over-
head ground wires as one composite conductor. The overhead ground
wires should be treated as one conductor, and counterpoises consisting
of more than one wire should be treated as another composite conductor.
Analysis of more than one ground wire, where all the wires cannot be
combined to form one composite conductor, is beyond the scope of this
book.?

12.9 Zero-sequence Capacitance of Transmission Lines without
Ground Wires. When precise results are desired for medium or long
lines, the nominal- or the equivalent-r
circuit must be used to represent the
line. The circuit for zero-sequence
currents is determined by the zero-
sequence series impedance and shunt
admittance per mile. The shunt
admittance depends on the capaci-
tance to neutral for zero-sequence
currents and voltages.

Image charges were introduced in
Sec. 3.8 to study the effect of earth
on the capacitance of three-phase
lines. The image-charge method
may be applied to the study of zero-
sequence capacitance to neutral.
Figure 12.13 shows the image charges
for a three-phase line. The charges
produced on the lines by zero-se-
quence voltages are designated ¢,
@ro, and .o to distinguish them from
the charges produced by positive-
sequence voltages. Equation (3.3)
enables us to find the voltage be-
tween line a and its image a’ with
respect to all the line charges and
their images. Since the voltage between a conduch
the voltage from the conductor to its image,

Fic. 12.13 Three-
age charges.
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¢ See E. Clarke, “Circuit Analysis of A-C Power Sy
John Wiley & Sons, Inc., New York, 1943.
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1 1
VaO = ’2‘ Vaa’ = ‘4‘:17_%

H, H H n Ds

1
=57 (qao In == + quo ln + 2.0 In 1> (12.36)
Similarly

1 0
Vi = 5T (qag In == + Tro ln + ¢eo In 23) (12.37)

1 H,
Veo = ok (an In == + Qvo ln D * qco In —*> (12.38)

Since the zero-sequence Voltages of the lines to ground are identical
according to the definition of zero sequence, the charges gao, ¢, and g.o
must be unequal. For the usual spacing of transmission lines, however,
the charges are very nearly equal. Little error and a much simpler
expression is obtained by assuming the charges to be equal and the zero-
sequence voltage to be the average of the resulting expressions for the
three voltages. If we let

qo = a0 = Guo = {co

and
V - VaO + Vb() + VnO
T 3
we obtain
_ Q0 H1H2H3(H12H23H31)2]
Vo = 6rk [ Tarlﬂ‘c(DanDal)Z (12.39)
9 2
Vo = 300y VI (Ml ullo) (12.40)

ok N/ Tarere(D12Dos D)2

The numerator of the logarithmic term in Eq. (12.40) is the GMD
between the overhead conductors and their images. The denominator is
the self GMD of the overhead lines considered as a composite conductor,
except that the actual radius of each individual wire in the composite
conductor replaces the self GMD of the wire in computing the self GMD
of the composite conductor. If we let

Dy = the self GMD of the composite line conductor
radius replacing )

and
H., = GMD between line conductors and the

Eq. (12.40) becomes
Vo _ 3q01 H

ok M D volts

< RE GJS)TERED 2
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and zero-sequence capacitance per phase to neutral is

Qo _ 2mk
VO N 3 h’l (Haa/Daa)

Co = 201204 uf /mile (12.43)

Co = farads/meter (12.42)

@ (Haa/l)_aa)

12.10 Zero-sequence Capacitance of Transmission Llines with
Ground Wires. To find the effect of ground wires on zero-sequence
capacitance to neutral, we shall consider first a single conductor with
ground-wire and earth return, as shown in Fig. 12.14, where the con-
ductor is marked a and the ground wire is g, with corresponding charges
¢. and g,. Image conductors account for the earth in capacitance com-
putations. The voltage from line a to ground is

1 H H
=1 ;o= i )
Ve =%V 5T (qa In o + g, In Dag) (12.44)
and the voltage from wire g to ground is
1 H H
- 14 o= ) -9
VQ /QVoo ok (Qa In Dag + g In 7'g> (1245)
Since wire ¢ is grounded at every tower, % og
V, = 0. BSolving Egs. (12.44) and (12.45) 08
for g, gives %
2k, In 2
g
a = ; (12.46) He
In H, In a4, _ (ln H"”) He H
s ry D,,

Equation (12.46) can be applied to multi-
circuit lines with more than one ground wire 7////// /77 N/ 77777
by extending to it the principle of GMD,
which was seen to apply to a circuit without
ground wires. If we consider one composite
conductor including all the line conductors
and another including all the ground wires,
Eq. (12.46) gives the total zero-sequence
charge. The charge per phase is that given
in Eq. (12.46) divided by 3. The voltage
V. is the zero-sequence voltage to neutral
per phase V,,. The distances in Eq. (12.46)
must then be interpreted as follows:

H., = GMD between the line conductors ¥ | I%G’&TERED 6¢
round wires
g VERSION
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Dy,
H, becomes H

H, becomes H

re becomes D, =

r, becomes Dy, =

Then,

Py

\H L

ELEMENTS OF POWER SYSTEM ANALYSIS

= GMD between the line conductors and the ground wires

= GMD between the line conductors and their
images

GMD between the ground wires and their
images

the self GMD of the line conductors considered
as a composite conductor (except actual radius
of each individual conductor is used in the
computation)

the self GMD of the ground wires considered
as a composite conductor (except actual radius
of each individual conductor is used in the
computation)

Hﬂﬂ

Dﬂﬂ
H.. H H,\
In
D.a I)W D,

and the zero-sequence capacitance to neutral
is

Co =

Va() In

(12.47)
In

QGO
Veo

80.3'7

70

0

Fig. 12.15 Arrangement of
conductors and.image charges

for Example 12.3.

strand conductor as a

equal to that of the three-strand conductor res

may be neglected.

0.01294 log g”
a9

(1o Hao)’
og D.,
Example 12.3

uf /mile
Tind the zero-sequence capacitance of the
line of Example 12.2 if the line conductors are
35 ft above the ground.

aa

Daa

log HDG

log i)
g9

(12.48)

Solution
The line with itsimage conductors is shown
in Fig. 12.15.
The values of Dy, and Dy, Wh1

0 0
éeplace r’ in
Qg/atmg a three-

| g%l

shght error

for capamtance since
radius of each conduc
capacitance calculag
eylindrical conductor
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For No. 2/0 seven-strand hard-drawn copper, r = *20—;—% = 0.0172 {t,
and for No. 7 three-strand Copperweld, r = 20—;);1%2 = 0.0130 ft.

Dew = V/(0.0172)3(12)3(24)2 = 1.58 ft
4/ (0.0130)%(12)% = 0.395 ft
14.1 ft (from Example 12.2)
~/(70Y3(71)%(74) = 71.4 ft

= /(90)%(90.8)2 = 90.3 ft

w = V/(80.3)%(82)? = 81.0 ft

0.01294 log 092935

Co = ;
714, 903 —<1 81.0)

gg

ay

<

()
<

mmguou
It

log 1755 198 5305 E1a1

= 0.00918 uf/mile

1211 Positive- and Negative-sequence Networks. As was pointed
out in Chap. 11, an independent network of impedances of one sequence
only can be synthesized for the flow of current of that sequence. Such
sequence networks were discussed in Chap. 11 for one unloaded generator
with an impedance in the neutral. Simple interconnections of the
sequence networks were made to determine the amount of current of each
sequence during different kinds of faults.

The object of obtaining the values of the sequence impedances of a
power system is to enable us to construct the sequence networks for the
complete system. The network of a particular sequence for a power
system shows all the paths for the flow of current of that sequence in the
system.

We discussed the construction of some rather complex positive-
sequence networks in Chap. 8. The transition from a positive-sequence
network to a negative-sequence network is simple. Three-phase syn-
chronous generators and motors have internal voltages of positive-
sequence only, since they are designed to generate balanced voltages.
Since the positive- and negative-sequence impedances are the samed
static symmetrical system, conversion of a positive- seque
to a negative-sequence network is accomplished by chang
only the impedances which represent rotating machiner
the emfs. Tlectromotive forces are omitted on §
anced generated voltages and the absence of negal @@aence voltages

induced from outside sources. §ph R 56 I]S rTE R E D ¢

Since all the neutral points of a symmetrica
rents are flowin

at the same potential when balanced three- ;
bial for eithe-MISR S ION
ADDS NO
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or negative-sequence currents. Therefore the neutral of a symmetrical
three-phase system is the logical reference potential for specifying posi-
tive- and negative-sequence voltage drops and is the reference bus of
the positive- and negative-sequence networks. Impedance connected
between the neutral of a machine and ground is not a part of either the
positive- or negative-sequence network because neither positive- nor
negative-sequence current can flow in an impedance so connected.
Negative-sequence networks, like the positive-sequence networks of
Chap. 8, may contain the exact equivalent circuits of parts of the system
or may be simplified by omitting series resistance and shunt admittance.

Example 12.4

Draw the negative-sequence network for the system described in
Example 8.2. Assume that the negative-sequence reactance of each
machine is equal to its subtransient reactance. Omit resistance.

Solution
Since all the negative-sequence reactances of the system are equal to
the positive-sequence reactances, the negative-sequence network is iden-
Reference bus

J0.15

k m n

70.0784 j0.167 70.0784
Fia. 12.16 Negative-sequence network for Example 12.4.

tical to the positive-sequence network of Fig. 8.8 except for the omission
of emfs from the negative-sequence network. The required network is
drawn in Fig. 12.16.

12.12 Zero-sequence Networks. A three-phase system operates
single phase in so far as the zero-sequence currents are concerned, for the
zero-sequence currents are the same in magnitude and phase at any point
in all the phases of the system. Therefore zero-sequence currents will
flow only if a return path exists through which a completed circuit is
provided. The reference for zero-sequence voltages is the potentigl of
the ground at the point in the system at which any partlcul A
specified. Smce zero-sequence currents may be ﬂown g

the reference bus of the zero-sequence network
ground of uniform potential. The impedance of th
wires is included in the zero-sequence impedancg
and the return circuit of the zero-sequence net
zero impedance, which is the reference bus of
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the impedance of the ground is included in the zero-sequence impedance
that voltages measured to the reference bus of the zero-sequence network
give the correct voltage to ground.

If a circuit is Y-connected, with no connection from the neutral to
ground or to another neutral point in the circuit, the sum of the currents
flowing into the neutral in the three phases is zero. Since currents whose

Reference bus
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I
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Reference bus
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(b)

Reference bus

3z,
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: Iao
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(c)

Fia. 12.17 Zero-sequence networks for Y-connected loads.

sum is zero have no zero-sequence components, the impedance to zero-
sequence current is infinite beyond the neutral point, which fact is igl-
cated by an open circuit in the zero-sequence network be

neutral of the Y-connected circuit and the reference hiimg
Fig. 12.17a.

If the neutral of a Y-connected circuit is gro®
impedance, a zero-impedance connection is inserted tg
point and the reference bus of the zero-sequen
Fig. 12.17b.

Gﬁ\u%gh zero ,/6@
the neutral S

D‘@Q%{RE@”IS TERED /QL
VERSION
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If the impedance Z, is inserted between the neutral and ground of a
Y-connected circuit, an impedance of 3Z, must be placed between the
neutral and reference bus of the zero-sequence network, as shown in
Fig. 12.17c. As explained in Sec. 11.2, the zero-sequence voltage drop
caused in the zero-sequence network by I, flowing through 3Z, is the
same as in the actual system where 3/, flows through Z,. Impedance
consisting of a resistor or reactor is usually connected between the neutral
of a generator and ground to limit the zero-sequence current during
a fault. The impedance of such a current-limiting resistor or reactor is
represented in the zero-sequence network in the manner described.

A A-connected circuit, since it can provide no return path, offers infinite
impedance to zero-sequence line currents. The zero-sequence network
is open at the A-connected circuit. Zero-sequence currents may circulate
inside the A circuit since the A is a closed series circuit for circulating
single-phase currents. Such currents would have to be produced in the

Reference bus

z

z

F1¢. 12.18 A-connected load and its zero-sequence network.

A, however, by induction from an outside source or by zero-sequence
generated voltages. A A circuit and its zero-sequence network are shown
in Fig. 12.18. Even when zero-sequence voltages are generated in the
phases of the A, no zero-sequence voltage exists between the A terminals,
for the rise in voltage in each phase of the generator is matched by the
voltage drop in the zero-sequence impedance of each phase. B
The zero-sequence equivalent circuits of three-phase transformers
deserve special attention. The various possible combinations of the
primary and secondary windings in Y and A alter the zero-sequence
network. Transformer theory enables us to construct the equivalent
circuit for the zero-sequence network. We remember that no current
flows in the primary of a transformer unless current flows in the seg
ary, if we neglect the relatively small magnetizing current. g
also, that the primary current is determined by the seco
the turns ratio of the windings, again with magnetizing g
These principles guide us in the analysis of in
possible connections of two-winding transformeg
These connections are shown in Fig. 12.19.
tion diagrams show the possible paths for the flg
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rent. Absence of an arrow indicates that the transformer connection
is such that zero-sequence current cannot flow. The zero-sequence
approximately equivalent circuit, with resistance and a path for magne-
tizing current omitted, is shown in Fig. 12.19 for each connection. The
letters P and @ identify corresponding points on the connection diagram

SYMBOLS CONNECTION DIAGRAMS ZERO SEQUENCE EQUIVALENT CIRCUITS

P
| ) p D Q

il T

o
- Reference bus

p_%%g P Zo Q

o 1IN
Naghet

e

Reference bus

p 2o Q

Reference bus

P Q P Zy Q

Reference bus

P Zo Q
—— —
1
| |
i |
| |
‘ !

Reference bus

Fig. 12.19 Zero-sequence equivalent circuits of three-phase transformer banks,
together with diagrams of connections and the symbols for one-line diagrams.

and equivalent circuit. The reasoning to justify the equivsg
for each connection follows.

Case 1. Y-Y Bank, One Neutral Grounded. b@"of the ,/@
neutrals of a Y-Y bank is ungrounded, zero-sequen éﬁcannot flow %

in either winding. The absence of a path throygh delng prevents

current in the other. An open circuit exists 1% quxE G]‘StT E RE D ¢

between the two parts of the system connected b transformer.

VERSION
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Case 2. Y-Y Bank, Both Neutrals Grounded. Where both neutrals
of a Y-Y bank are grounded, a path through the transformer exists for
zero-sequence currents in both windings. Provided the zero-sequence
current can follow a complete circuit outside the transformer on both
sides, it can flow in both windings of the transformer. In the zero-
sequence network, points on the two sides of the transformer.are con-
nected by the zero-sequence impedance of the transformer in the same
manner as was followed in the positive- and negative-sequence networks.

Case 3. Y-A Bank, Grounded Y. If the neutral of a Y-A bank is
grounded, zero-sequence currents have a path to ground through the Y
because corresponding induced currents can circulate in the A. The
zero-sequence current circulating in the A to balance the zero-sequence

IR

Reference bus

3Z,
Q‘—ftmrs T
P M N
T
s T

rY

Fra. 12.20 One-line diagram of a small power system and the corresponding zero-
sequence network.

current in the Y cannot flow in the lines connected to the A. The equiy-
alent circuit must provide for a path from the line on the Y side through
the equivalent resistance and leakage reactance of the transformer to the
reference bus. An open circuit must exist between the line and the
reference bus on the A side. If the connection from neutral to ground
contains an impedance Z., the zero-sequence equivalent circuit must have
an impedance of 3Z, in series with the equivalent resistance and leakage
reactance of the transformer to connect the line on the Y sidegto grjlid.

where the impedance Z, between neutral and ground
impedance 3Z, in the equivalent circuit of Casg
impedance becomes infinite. Zero-sequence currel
transformer windings.

Case 5. A-A Bank. Since a A circuit provides
sequence current, no zero-sequence current cag into a A-A bank,

although it can circulate within the A windin VE RS IO N
ADDS NO
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Zero-sequence equivalent circuits determined for various parts of the
system separately are readily combined to form the complete zero-
sequence network. Figures 12.20 and 12.21 show one-line diagrams of

i

%
A.:}Z: ?}A
d s

B D
36
ag <
Db
T VI
N
_(

T U
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N —000~ 2 0000 W\Q.Q.Q/— a

Fig. 12.21 One-line diagram of a small power system and the corresponding zero-
sequence network.

two small power systems and their corresponding zero-sequence networks
simplified by omitting resistances and shunt admittances.

Example 12.5

Draw the zero-sequence network for the system described in Example
8.2. Assume zero-sequence reactances for the generator and motors of
0.05 per unit. Current-limiting reactors of 2.0 chms each are in the
neutral of the generator and the larger motor. The zero-sequence
reactance of the transmission line is 250 ohms.

Solution

pos1t1ve—sequence reactance. So, for the transformers, X,
unit.
Zero-sequence reactances of the generator and moto

Generator: X, = 0.05 per unit

30,000 (1_2_§ ’
20,000 3.8
30,000 (12 5
10,000

Motor 1: X, = 0.05

"REGIS TERED )
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Motor 2: X, = 0.05
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For the current-limiting reactors,
13.8% X 1,000

Z 1 h 1 V= i ireul = - =
Base Z in the low-tension circuits 30,000 6.35 ohms

Reactance = 0.315 per unit

2.0
55 =
In the impedance network: 3Z, = 3 X 0.315 = 0.945 per unit
For the transmission line, )
X = 230459 = 0.52 per unit
The zero-sequence network is shown in Fig. 12.22.

Reference bus

J0.945

. 70061 70123

k J0.0784  j0.520  j0.0784 "

Fig. 12.22 Zero-sequence network for Example 12.5.

12.13 Conclusions. A knowledge of the positive-sequence network is
necessary for load studies on power systems, for fault calculations, and
for stability studies. If the fault calculations or stability studies involve
unsymmetrical faults on otherwise symmetrical systems, the negative-
and zero-sequence networks are also needed. Synthesis of the zero-
sequence network requires particular care, because the zero-sequence
network may differ considerably from the positive- and negative-sequence
networks.

All the impedances of a transmission line can be calculated from the
physical dimensions of the line. Impedances of transformers, syn-
chronous machines, and induction motors are determined by test or from
tables of average per-unit values.

PROBLEMS

12.1 The negative-sequence impedance of an alternator is measured with two
terminals short-circuited. Meters are connected as described in See. 12.4. The
ammeter, voltmeter, and wattmeter read, respectively, 2,150 amp, 415 volts_and
895 kw. The alternator is rated 5,000 kva, 2.4 kv. Find the negag \
resistance and reactance in per unit. Prove by symmetrieal compo
method yields the desired quantities.

12.2 The zero-sequence impedance of an alternator is measureg @ f ,/
connected to ground through a common ammeter. Meters c@ s described @
in Sec. 12.5. The ammeter, voltmeter, and wattmeter read, efyely, 2,400 amp, @@
132 volts, and 38 kw. The alternator is rated 5,000 loss .4QW Find the zero-

7
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12.3 For a certain induction motor, the values of the equivalent circuit shown in
Fig. 12.5 are as follows:

R, = 0.055 per unit X, + X; = 0.16 per unit
R. = 0.050 per unit X, = 3.00 per unit

¥ind the per-unit resistance and reactance to positive- and negative-sequence curlent
when the motor is operating at a slip of 59%.

12.4 A single-circuit 60-cycle three-phase transmission line is constructed with
flat, horizontal spacing. Adjacent conductors are spaced 15.5 ft apart. The con-
ductors are No. 4/0 hard-drawn copper with seven strands. Determine the zero-
sequence series impedance per mile per phase for the line without ground wires.
Assume damp earth beneath the line and a wire temperature of 25°C.

12.5 If the line described in Prob. 12.4 has two overhead ground wires, compute
the zero-sequence series impedance per mile per phase. Each overhead ground
conductor is placed 7.75 ft in a horizontal direction from the center conductor of the
three-phase line and 10 ft above the plane of the line conductors. Each ground wire
has an outside diameter of 0.360 in., a self GMD of 2.64 X 10~* ft at 60 cps, and a
resistance of 6.00 ohms/mile. Assume damp earth beneath the line and a wire
temperature of 25°C.

12.6 If the conductors of the line described in Prob. 12.4 are 37 ft above the
ground, find the zero-sequence capacitance to neutral per mile without ground wires.

12.7 If the conductors of the line described in Prob. 12.4 are 37 ft above ground
and the ground wires described in Prob. 12.5 are installed, find the zZero-sequence
capacitance to neutral per mile.

12.8 TFind the ratios of the zero-sequence reactances found in Probs. 12.4 and 12.5
to the positive-sequence inductive reactance of the line.

12.9 Find the ratios of the zero-sequence capacitances found in Probs. 12.6 and
12.7 to the positive-sequence capacitance to neutral of the line.

12.10 Draw the negative- and zero-sequence impedance networks for the power
system of Prob. 8.5. Mark the values of all reactances in per unit on a base of
30,000 kva, 6.9 kv in the circuit of generator 1. Letter the networks to correspond
to the one-line diagram. The neutrals of generators 1 and 2 are connected to ground
through current-limiting reactors having a reactance of 5%, each on the base of the
machine to which it is connected. Each generator has negative- and zero-sequence
reactances of 15% and 5%, respectively, on its own rating as base. The zero-sequence
reactance of the transmission line is 250 ohms from B to C and 210 ohms from C to E.

12.11 Draw the negative- and zero-sequence impedance networks for the power
system of Prob. 8.8. Choose a base of 50,000 kva, 138 kv in the 40-ohm transmission
line, and mark all reactances in per unit. The negative-sequence reactance of each
synchronous machine is equal to its subtransient reactance. The zero-sequence
reactance of each machine is 8% bhased on its own rating. The neutrals of the
machines are connected to ground through current-limiting reactors having a rgact-
ance of 5%, each on the base of the machine to which it is connected.
the zero-sequence reactances of the transmission lines are 3009
sequence reactances.

REGISTERED %
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CHAPTER 13

UNSYMMETRICAL FAULTS ON POWER SYSTEMé

13.1 Fundamental Relations. In Chap. 11 we derived equations and
made interconnections of sequence networks for various types of faults
on isolated generators at no load. Now that we understand the synthe-
sis of sequence networks for complete power systems, we can derive
the equations and sequence-network connections for faults which occur
on balanced systems of any degree of complexity and on systems contain-
ing any number of synchronous machines, induction motors, and sym-
metrical loads.

In the derivation of equations for the symmetrical components of
currents and voltages in a general network during a fault, we will desig-

a nate as I, I, and /. the currents

I H flowing out of the original balanced

system at the fault from phases a, b,

b 1, H and ¢, respectively. We can visual-
ize the currents I, I, and I. by

€ Icll referring to Fig. 13.1, which shows

the three lines of the three-phase
Fia. 13.1 Three conductors of a three- ¢ t th t of th ¢ K
phase system. The stubs carrying cur- System a € part o € networ:
rents I,, I, and I, may be intercon- where thefault occurs. The flow of
nected to represent different types of current from each line into the fault
faults. e e e

is indicated by arrows shown on the
diagram beside hypothetical stubs connected to each line at the fault loca~
tion. Appropriate connections of the stubs represent various types of
faults. For instance, connecting stubs b and ¢ produces a line-to-line fault
through zero impedance. The current in stub a is then zero, and T is flal
to — L.

and V.. Before the fault occurs, the line-to-neutyg
at the fault will be called V,, which is a positive-s¥
the system is assumed to be balanced. We pog
V; previously in Chap. 9 in calculations to det®

power system when a symmetrical three-phase
272
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A single-line diagram of a power system containing three synchronous
machines is shown in Fig. 13.2. Such a system is sufficiently general
that equations derived therefrom are applicable to any balanced system
regardless of the complexity. Figure 13.2 also shows the sequence net-
works of the system. The point where a fault is assumed to occur is

= ¢ P 3
¢ O
Y e b

(a) One-line diagram of balanced three-phase system

S -

V 1
+ Z +
Inl& P Ial P
(b) Positive~sequence network (e) Helmhoitz-Thévenin
equivalent of the positive-
sequence network
Zz V;Z
b +
———4P
IaZl Ia2
(c) Negative-sequence network (f) Helmholtz-Thévenin

equivalent of the negative-~
sequence network

s L
Ia0¢ Lo F

(d) Zero-sequence network (g) Helmholtz-Thévenin
equivalent of the zero-
sequence network
Fic. 13.2 One-line diagram of a three-phase system, the three sequence networks of
the system, and the Helmholtz-Thévenin equivalent of each network for a fault at P.

network is the same, and the voltages to ground external

are the same, regardless of whether the machines arg
1&&1‘ transient 6}

voltages behind subtransient reactance and their su¥

or by their voltages behind transient reactap

reactances, or by their voltages behind synchrd® taREGI@T ERED %
VERSION
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synchronous reactances.
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Since linearity is assumed in drawing the sequence networks, each
of the networks can be replaced by its Helmholtz-Thévenin equivalent
between the two terminals composed of its reference bus and the point
of application of the fault.! The Helmholtz-Thévenin equivalent circuit
of each sequence network is shown adjacent to the diagram of the cor-
responding network in Fig. 13.2. The internal voltage of the single
generator of the equivalent circuit for the positive-sequence network
is V;, the prefault voltage to neutral at the point of application of the
fault. The impedance Z; of the equivalent circuit is the impedance
measured between point P and the reference bus of the positive-sequence
network with all the internal emfs short-circuited. The value of Z,
is dependent on whether subtransient, transient, or synchronous react-
ance is used in the sequence network, which is, in turn, dependent on
whether subtransient, transient, or steady-state currents are being
computed.

Since no negative- or zero-sequence currents are flowing before the
fault occurs, the prefault voltage between point P and the reference bus
is zero in the negative- and zero-sequence networks. Therefore, no emfs
appear in the equivalent circuits of the negative- and zero-sequence
networks. The impedances Z, and Z, are measured between point P
and the reference bus in their respective networks and depend on the
location of the fault.

Sinece I, is the current flowing from the system into the fault, its
components Iq;, lqs, and I, flow out of their respective sequence net-
works and the equivalent circuits of the networks at P, as shown in
Fig. 13.2. FExamination of the equivalent circuits of the sequence net-
works shows that the voltages Va1, Vas, and Vg at point P are expressed
by the following equations:

Val Bl Vf — 1a1Z1 k (13»1)
Vi = —IasZo (13.2)
VaO = _]aOZO (133)

The only differences between Egs. (13.1) to (13.3) and Eqgs. (11.2) to (11.4)
are the substitution of V, for £, and the interpretation of Z;, Z,, and Z,.
For a fault at the terminals of an isolated generator at no load, E, and V,
are equal, and Eqgs. (13.1) to (13.3) reduce to Eqgs. (11.2) to

13.2 Single Line-to-ground Fault on a Power System.
line-to-ground fault, the hypothetical stubs on the th
nected as shown in Fig. 13.3. The following relatigns

I, = I.=0 Vo=

G ERED L
@&S‘

The three equations above are the same as thd oh aIREG’seTE R E D /()¢
~ VERSION
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to-ground fault on a single generator. These equations with the general
equations (13.1) to (13.3) and the relations of symmetrical components
must have the same solutions as are

found for similar equations in Sec. ¢ I“_l_i_
11.3, except that V, replaces E,. =
Thus, for a line-to-ground fault, b
I,
To = Iy = Iy (13.4) 4
and ¢
Vv Icl
L = 1 (13,5
LA 7T 7, (13D

Fi1a. 13.3 Connection diagram of the
Equations (13.4) and (13.5) indi- hypothetical stubs for a single line-to-
ground fault.
cate that the three sequence net-
works should be connected in series through the fault point in order to
simulate a single line-to-ground fault.
13.3 Line-to-line Fault on a Power System. For a line-to-line fault,
the hypothetical stubs on the three lines at the fault are connected as
shown in Fig. 13.4. The following relations exist at the fault:

Ve = V. I.=0 Iy = —1,

The above equations are identical in form to those which apply to a
line-to-line fault on an isolated generator. Their solution in the manner

a a

Ial I, J’

Ibl Ibl,

: 1 : 1
Icl I

i Eﬂ n

Fic. 13.4 Connection diagram of the Fig. 13.5 Connection diagram of the
hypothetical stubs for a line-to-line fault.  hypothstical stubs for a double line-to-
ground fault.

of Sec. 11.4, with Eqgs. (13.1) to (13.3) replacing Eqs. (11.2) to (11.4),

yields
Val = Va2
14
I = 7 !
Yz + 7,

Equations (13.6) and (13.7) indicate that the pggas
sequence networks should be connected in paralle
order to simulate a line-to-line fault.

13.4 Double Line-to-ground Fault on a Powd
line-to-ground fault, the stubs are connected as

egative- ,/
‘Q%?piirtlt in @@@
& v
. REGISTERED %
n Fig. 13.5. The
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following relations exist at the fault:

V=V, =0
I, =0
By comparison with the derivation made in Sec. 11.5,
Val = Va2 = VaO . (138)
Vi

Ial = (139)

7y ¥ 77y (i + 7o)

Equations (13.8) and (13.9) indicate that the three sequence networks
should be connected in parallel at the fault point in order to simulate g
double line-to-ground fault.

13.5 Interpretation of the Interconnected Sequence Networks. In
the preceding sections we have seen that the sequence networks of g

T‘ I 1 ’T
—l —_—t —
Pos-seq. net, I Vo1 Pos-seq. net. Neg-seq. net. Viz
1P e l 1P 1P
L + [ ] +
(@) Three-phase fault Ioy==Is2
- — (¢) Line-to-line fault
—
v, Pos-seq. net.
al P
‘ﬁ_-“ lIal - - -
Vo Negrseq.n_et-. Pos.—seqT;t. Neg-seq. net. Zero-seq. net.
P I |78 P Vo2 P Vo P
-+
i + lla] + lIaz + llao
Zero-seq, net.
Vio ero-seq E)e
A lfao (d) Double line-to-ground fault

(&) Single line-to-ground fault
Fra. 13.6  Connections of the sequence networks to simulate various types of faults.
The sequence networks are indicated by rectangles. The point at which the fault
oceurs is P,
power system can be so interconnected that solving the resulting net-
work yields the symmetrical components of current and vol
fault. The connections of the sequence networks to
types of faults, including a symmetrical three-phase
in Fig. 13.6. The sequence networks are indica
rectangles enclosing a heavy line to represent the
network and a point marked P to represent tlas
where the fault occurs. The positive-sequence
which represent the internal voltages of the ma

r bus of the
ﬁ“&kﬁ §§TERED °)
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1f the sequence networks are set up on a calculating board and inter-
connected as shown in Fig. 13.6, the current measured in per unit in
a particular branch of one of the sequence networks is a symmetrical
component of the per-unit current of phase a of the corresponding part
of the power system. A current measured in a certain branch of the
positive-sequence network is the positive-sequence component of the
current of phase . Currents measured in the same branch of the nega-
tive- and zero-sequence networks when added to the positive-sequence
component give the total current for phase ¢ in that branch. The sym-
metrical components of the currents in phases b and ¢ in any branch
of a system can be determined from the symmetrical components of the
current in phase a of the same branch. To express the per-unit currents

Reference bus Reference bus
| % Q)
V; -+
e b % %
P o0 5
(@) Positive-sequence network (b) Helmholtz-Thévenin

equivalent of the positive-
sequence network

Fie. 13.7 Positive-sequence network and its Helmholtz-Thévenin equivalent.

read on a calculating board as per-unit currents in the actual power
system with the proper phase relation to other currents in the system, it
may be necessary to account for the phase shift in Y-A transformers.

If the emfs in a positive-sequence network such as that shown in
Fig. 13.7a are replaced by short circuits, the impedance between the
fault point P and the reference bus is the positive-sequence impedance
7, in the equations developed for faults on a power system and is the
series impedance of the Helmholtz-Thévenin equivalent of the circuit
between P and the reference bus. If the voltage V, is connected in
series with this modified positive-sequence network, the resulting circuit,
shown in Fig. 13.7b, is the Helmholtz-Thévenin equivalent of the original
positive-sequence network. The circuits shown in Fig. 13.7 are equiv-
alent only in their effect on any external connections made between P
and the reference bus of the original networks. We can easily see that
no current flows in the branches of the equivalent circuit in {gae abj
of an external connection, but current will flow in the
original positive-sequence network if any dlfference ex
or magnitude of the two emfs in the network. In s
flowing in the branches in the absence of an exter
prefault load current.

When other sequence networks are interconn$ § thR&GI& TE R E D
sequence network of Fig. 13.7a¢ or its equivalen howe/ in Fig. 13. 7&_ the ¢
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current flowing out of the network or its equivalent is /4, and the voltage
between P and the reference bus is V,,. With such an external connec-
tion, the current in any branch of the positive-sequence network is the
positive-sequence current in phase a of that branch during the fault. The
current in any branch of the Helmholtz-Thévenin equivalent of Fig. 13.7b,
however, is that portion of the component ., of the fault current deter-
mined by the apportioning of 7. as determined by the impedances of the
branches.

Figure 13.8a shows an emf equal to the prefault voltage V, connected
between P and the reference bus of the positive-sequence network.

Reference bus Reference bus

(a) Positive-sequence network (b) Positive-sequence network
before a fault during a fault
Reference bus Reference bus

(c) Positive-sequence network {d) Helmholtz-Thévenin equivalent
during a fault of the positive-sequence network
during a fault

Fic. 13.8 Diagrams to explain the adding of the prefault current in any branch of &
circuit to the component of fault current flowing in that branch.
Obviously the addition of this emf has no effect on the positive-sequence
network before the fault occurs, and the current in the network is the
prefault current only. Figure 13.8b shows an emf equal to V,; connected
between P and the reference bus of the positive-sequence network.
Since V., is the voltage across the positive-sequence network after a
fault occurs, the circuit of Fig. 13.8b must represent the condition of the
positive-sequence network during a fault. The current in ga
of the positive-sequence network under this conditiongs t
the branch during a fault. "
Another method of obtaining the voltage V, ¢ \ﬁand the
reference bus is shown in Fig. 13.8¢ where two € equal to V;y
and one equal to Vi, — Vy, are connected ingasF %ort mrcultln
Var — V; in the circuit of Fig. 13.8¢ produces é ERED
Fig. 13.7a, and the prefault current flows in a ab:hes of the mrcult ¢

Short-circuiting all emfs except Vi — V; r8 6 in the appréER@ION
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Va — Vs between P and the common bus of the modified positive-
sequence network (the positive-sequence network with all emfs shorted).
The resulting condition is exactly that produced when the equivalent
circuit shown in Fig. 13.7b is interconnected with other networks to
simulate a fault, for then V,; appears between P and the reference bus and
Va — V; appears across the modified positive-sequence network.
Figure 13.8d illustrates the condition of the Helmholtz-Thévenin equiv-
alent of the positive-sequence network during a fault.

By the principle of superposition, the current in a branch of the
positive-sequence network during a fault as simulated by Fig. 13.8¢
is the sum of the current in the branch with V,; — V, shorted and the
current in the branch with all emfs except Vi, — V; shorted. We
conclude that the current in a branch of the positive-sequence network
connected to simulate a fault is equal to the prefault current in the
branch plus that portion of the positive-sequence component of fault
current /,; which is apportioned to that branch as one of several series
and parallel impedances through which parts of /., flow.

When a calculating board is available, it is convenient to set up the
positive-sequence network with the generator units on the board repre-
senting the emfs in the positive-sequence network. The current meas-
ured in per unit in any branch of the positive-sequence network without
external connections is the per-unit value of the prefault current in
phase a of the corresponding branch of the system. After interconnec-
tion of the positive-sequence network with the negative- and zero-
sequence networks, the currents measured in the branches of the positive-
sequence network include the prefault current and the additional amount
due to the fault. When a calculating board is not available, the best
approach is to convert the positive-sequence network to its Helmholtz-
Thévenin equivalent by shorting the emfs in the network and placing
V; in series with the network modified by shorting the emfs. Upon
interconnecting the various sequence networks to simulate a fault, the
currents caleculated for the branches of the modified positive-sequence
network include only the additional currents due to the fault to which
must be added the prefault currents in the particular branches being
analyzed.

Example 13.1

A 7,500-kva, 4.16-kv generator is supplying a group Qsl RED
chronous motors through a transformer bank composedil ingle- ,/6
phase units, each of which is rated 2,400-600 vo va. The '?
leakage reactance of each transformer is 109. 0-volt wind- $

ings are connected in A to the motors, and thd E‘%[lgTERED /()¢

(% t
connected in Y to the generator. The transfo ableutg 18
grounded. The reactances of the generator a F = 109%, X 2VE(RS IO N
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and X¢ = 59. The motors are rated 600 volts, and they operate at
89.59, efficiency when carrying full load at unity power factor and rated
voltage. The sum of their output ratings is 6,000 hp. The reactances
of each motor based on its own rating are X' = 209, X, = 209%,
Xo = 4%, and each is grounded through a reactance of 29,. Each of
the identical motors is supplying an equal share of a total load of 5,000
hp and is operating at rated voltage, 85% power factor lag, and 889,
efficiency when a single line-to-ground fault oceurs on the low-tension
side of the transformer bank. Treat the group of motors as a single
equivalent motor. Specifly completely the sequence networks to simu-
late the fault on a calculating board. Compute the voltages behind
subtransient reactance for the generator and motor. Determine the
subtransient line currents in all parts of the system and the line-to-line
voltages at the motor and generator terminals.

Solution

The one-line diagram of the system is shown in Fig. 13.9.

Choose the generator rating as base: 7,500 kva, 4.16 kv at the generator.
The transformer three-phase rating

Y is identical to the base selected, as

~ shown below:

/3 X 2,400 = 4,160 volts, or 4.16 kv
3 X 2,500 = 7,500 kva
The base for the motor circuit is
= 7,500 kva, 600 volts. Theindividual
. _ _ Motors motors are identical and operating
f;;}temlifg E}g’;‘:;f:i&?agmm of the nder identical conditions. There-
fore, they are equivalent to one large
motor rated 6,000 hp, 600 volts. Theinput rating of the single equivalent
motor 1s

1
I
iE

Slelele.
£ 4

6,000 X 0.746
0.895

and the reactances of the equivalent motor in per cent are the same
on the base of the combined rating as the reactances of the individual
motors on the base of the rating of an individual motor. The reac
of the equivalent motor on the selected base are

= 5,000 kva

7,500 .
" _ ) -
X7 =02 X 5,000 0.3 per unit
7,500
X: =02 X 5000 0.3 per u
7,500
Xo =004 X 5.000 0.06
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The reactance in the zero-sequence network to account for the current-
limiting reactance is

3X, = 3 X 0.02 x 2200

5,000

= (.09 per unit

Figure 13.10 shows the connection of the sequence networks on a calcp—

lating board.

Positive-sequence

E; network En
+ +
J0.10 j0.10 P j0.30
0009 - —
0.566-71.889 —0.566-70.672
~j2.56
Negative-sequence
010 network 70.30
J0.10 P
m ‘ —j2.56
—j1.538 —j1.023
l— j2.56
Zero-sequence i
network 7009
j0.10 P 70.06
——
—j2.56

Fic. 13.10 Connection of the sequence networks of Example 13.1. Subtransient
currents are marked in per unit for a single line-to-ground fault at P.

Since the motors are operating at rated voltage equal to the base
voltage of the motor circuit, the prefault voltage of phase a at the fault is

V; = 1.0 per unit

Base current for the motor circuit is

M = 7,220 amp
/3 X 600

and the actual motor current is
746 X 5,000 — 4810 a

0.88 X v/3 X 600 X 0.85

The per-unit current drawn by the motor through
oceurs is

4,810
7,220

Ry
S REGISTERED )

3 ru
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= 0.667/—31.8° = 0.566 —

P
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The voltages behind subtransient reactance are computed as follows:
For the motor,

E! = 1.0 — j0.3(0.566 — 70.351)
0.895 — j0.17

= 0.912/-—10.8° per unit

and for the generator,

1.0 + (50.1 + §0.1)(0.566 — j0.351)
1.07 4+ j0.1132
1.075/6.03° per unit

1
Eﬂ

It

For an analytical solution the positive-sequence network is replaced

Reference bus

Fre. 13.11 Helmholtz-Thévenin equivalent of the positive-sequence network of
Example 13.1.

by its Helmholtz-Thévenin equivalent circuit which is shown in Fig.
13.11. The computations follow.
7y = ](.gg_'ll :[ffilfg:% — j0.12 per unit

7y = (70.1 + 50.1)(j0.3)

J(0.1 +0.1 +0.3)
Zy = j0.15 per unit
7 v, 1.0 1.0
T 7 ¥ Zy + Zo  jO12 +40.12 + j0.15  j0.39
Iaz = -Ial = —j256
Too = [on = —752.56

Current in the fault = 37, = 3(—72.56) = —757.68 per unit

Ivy = a1, = (—0.5 — j0.866)(—j2.56) = —2.22 + 1.
Tve = al,y = (—0.5 + j0.866)(—72.56) = 2.2 4 j1.28
Ibo = Iao = ——j256

In= Ty 4+ Ite + 1o =0
I = aly, = (—0.5 4 j0.866)(—72.56) = 2.2%
Iop = @I, = (—0.5 — j0.866)(—52.56) =
Too = T0 = —32.56

L=11+4 I+ 1.0=0

= j0.12 per unit

—j2.56

REGIS TERED 2
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The component of I,; flowing toward P from the transformer is

70.3

256 X 551708 =

—j2.56 X 34 = —;1.538

and the component of I, flowing toward P from the motor is
70.2

250X e 03

—j2.56 X 25 = —;1.023

Similarly the component of I, from the transformer is —71.538, and
the component of [,, from the motor is —71.023. All of 14 flows toward
P from the motor. Components of Iy, Iy, Tpo, o1, Leo, and I, flowing
toward the fault point from the transformer and from the motor are
found from the corresponding components of .1, 1., and I,. Current
in a line is determined by adding the prefault current to the symmetrical
components of the current due to the fault. All the prefault current is
of positive sequence if the circuit is balanced. The computations are as

follows:
From the transformer:
Due to the fault: I,; = 0 — 71.538
Prefault: I, = 0.566 — j0.351
Total: I = 0.566 — j1.889
I =0 — j1.538
]ao = O

The above per-unit currents in the sequence networks are shown in Fig,.
13.10. The line currents from the transformer to the fault are

lo = Ta1 4+ Ii2 + Ioo = 0.566 — 73.427 per unit
Iy = a’la1 + alss + Lao
= (—0.5 — j0.866)(0.566 — 71.889) 4+ (—0.5 + 70.866)(—71.538) + 0
—0.588 + 71.223 per unit
I. = alay + a*las + Lo
= (=0.5 4 70.866)(0.566 — 71.889) + (—0.5 — 70.866)(—71.538) + 0
= 0.022 + 52.204 per unit

From the motor:

Due to the fault: /., = 0 — 71.023
Prefault: I,, = —0.566 4 j0.351
Total: I, = —0.566 — 50.672
I.o= 0 — 71.023

Tao= 0 — 72.56

The above per-unit currents in the sequence
Fig. 13.10. The line currents from the motor to

”ﬁ
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Io = Ilax + Taz + Ioo = —0.566 — j4.255 per unit

Iy a* Loy + ales + Lao

(—0.5 — j0.866)(—0.566 — j0.672) + (—0.5 -+ j0.866)(—;1.023)
— 2,56

If

{

0.588 — 51.223 per unit

IC = aI,,l '+' alea2 + ]aO

(—=0.5 4 70.866)(—0.566 — j0.672) + (—0.5 — j0.866)(—71.023)
— j2.56

f

= —0.022 — 72.204 per unit

Some checks on the numerical work may be applied at this point. They
are:

1. Since the A-connected windings of the transformer have no ground,
the sum of all the line currents from the transformer to the fault at P
must be zero. Thus,

0.566 — 73.427 — 0.588 + 71.223 + 0.022 4- 52.204 = 0
0=20

2. The sum of the currents flowing in line @ from the transformer and
from the motor toward the fault must equal the current in the fault.
Thus,

0.566 — 73.427 — 0.566 — j4.255 = —;7.68
— J7.682 =~ —;7.68

3. No current flows into the fault from lines b and ¢, and the current
flowing toward P from the transformer must be the negative of the current
flowing toward P from the motor in these lines. Thus,

0.588 — j1.223 = —(—0.588 -+ 51.223)
and

0.022 + 52.204 = —(—0.022 — ;2.204)
The line currents in per unit are shown in Fig. 13.12.

-0.666+/2.682 —0.588+;1.223
— — >

Equivalent
motor

Generator

—ri—
0.022+;2.204
‘] ——— ——
0.351+,/0.566 0.566~;3.427

—————— e
0.315—;3.248

F16. 13.12 Per-unit values of subtransient line currents in all p
Lixample 13.1.

RED L
&
the line cur- ,?

R§ﬁ§frERED N
VERSION

ADDS NO
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rents on the Y side must be found by Egs. (14
lower-case letters have been used for lines on the A
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in the present example, upper-case letters will be used for lines on the
Y side to agree with Fig. 13.12. Then, on the generator side of the trans-
former, in per unit of base line current,

I = jla = 7(0.566 — 71.889) = 1.889 + j0.566
Lis = —jlas = —j(—71.538) = —1.538
I.0 = 0 (since there are no zero-sequence currents on the generator
side of the transformer)
Iy = T4+ I40 = 1.889 4+ 70.566 — 1.538
= 0.351-} 70.566 per unit
Ipi = a*l41 = (—0.5 — j0.866)(1.889 + j0.566) = —0.454 — j1.918
Ips = alss = (—0.5 4 j0.866)(—1.538) = 0.769 — ;j1.33
Iy = Ipy + Iz = 0.315 — 73.248 per unit
Iey = aly = (—0.5 + j0.866)(1.889 + j0.566) = —1.435 + j1.352
Ior = a®l49 = (—0.5 — j0.866)(—1.538) = 0.769 + ;71.33
Ie = Ice1 + Ios = —0.666 + j2.682 per unit
Voltages at the motor terminals are:
Vi = Vi — IaZ; = 1.0 — (—j2.56)(j0.12) = 0.692
Var = —lasZy = — (—72.56)(j0.12) = —0.308
Vio = —1a0Zo = —(—72.56)(70.15) = —0.384
Vo= Va + Var + Vao = 0692 — 0.308 — 0.384 =
Vie = a*Va = (—0.5 — j0.866)(0.692) = —0.346 — j0.599
Vie = aVar = (—0.5 + j0.866)(—0.308) = 0.154 — j0.267
Ve = Vao = —0.384
Vi= Ve + Vi + Vie = —0.576 — j0.866 per unit
Vo = aVa = (—0.5 + j0.866)(0.692) = —0.346 + j0.599
Ve = a*Vae = (—0.5 — j0.866)(—0.308) = 0.154 + j0.267
Vi = —0.384
Ve=Va+ Voo + Voo = —0.576 + j0.866 per unit
Vao = Vo — Vi = 0 — (—0.576 — j0.866) = 0.576 -+ 70.866 per unit
Vie = Vs — V. = —0.576 — j0.866 — (—0.576 + ;j0.866)
—71.732 per unit
Vie = Ve — Vo = —0.576 + j0.866 per unit
The above voltages are in per unit of the base voltage lo neutral of the
motor eircuit.

Voltages at the generator terminals, without regard to phgge
the transformer, are found by adding the voltage drop hLetwe
erator terminals and the fault to the voltage at the fault
network. At the generator terminals, with phase g &ga

Va 0.692 + ]0.‘1(0.5()6' — 71.889) = 0.881

Vo 2 0 Cinee the sonerston el i+ o YRS &EﬁlﬁJ’ERED )
VERSION
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and no zero-sequence current is flg
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An alternate method of finding the voltage at the generator terminals
from the sequence networks is to calculate the voltage drop from the
generator terminals to the reference bus by the equations

Va = B — laZ,
Va2 = _']a2Z2
VaO = _IaOZO

where Z,, Z5, and Z, are the sequence impedances of the generator and I,
Ias, and I are the symmetrical components of the current in the gener-
ator. As a check on the values previously found,

Va = 1.07 4+ j0.1132 — j0.1(0.566 — ;1.889) = 0.881 + 50.0566
Ve = —(—j1.538)(j0.1) = —0.154
Vao = 0(j0.05) = 0

Il

The voltages at the generator terminals, when phase shift is taken
into account, are found as follows:

Vi = jVa = j(0.881 + j0.0566) = —0.0566 4+ j0.881
Vir = —jVar = —j(—0.154) = 0 4 j0.154
Vi=Vaiu+ Vi = —0.0566 4 j1.035 per unit
Ver = a?V 4 = (—0.5 — j0.866)(—0.0566 -+ j0.881)
= 0.791 — j0.392
Vie = aVae = (—0.5 + 70.866)(70.154) = —0.133 — 50.077
Vi = Vi 4+ Ve = 0.658 — j0.469 per unit
Ver = aVia = (—0.5 + j0.866)(—0.0566 + 50.881)
= —0.735 — j0.490
Voo = a?Vyo = (—0.5 — 50.866)(70.154) = 0.133 — j0.077
Ve = Ve 4+ Vea = —0.602 — j0.567 per unit
Vap = Vi — Vi = —0.0566 + 71.035 — 0.658 + 70.469
= —0.715 4 j1.504 per unit
Vee = Vg — Vo = 0.658 — j0.469 + 0.602 + 70.567
= 1.260 + j0.098 per unit
Vesa = Ve — Vi = —0.602 — j0.567 + 0.0566 — j1.035
= —0.545 — j1.602 per unit

The above line-to-line voltages are in per unit of the base line-to-ne
voltage.

When the values of the current and voltage bases in
of the system are determined, we can convert the per-u
voltages to amperes and volts.

Base current on the motor side of the transforgag
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ADDS NO




UNSYMMETRICAL FAULTS ON POWER SYSTEMS 287
Base current on the generator side of the transformer
7,500,000

= DX 1,040 am
V3 X 4,160 P
Base voltage to neutral in the motor circuit = 600 _ 346 volts
4,160
Base voltage to neutral in the generator circuit = \/_—— = 2,400 volts

The subtransient currents and voltages in the various parts of the
system are:
Fault current = 7,220(—;7.68) = —;55,550 = 55,550/ —90° amp
Currents from the transformer to the fault: -
In line a: 7,220(0.566 — 73,427) = 4,090 — ;24,750
= 25,000/ —80.6° amp
In line b: 7,220(—0.588 + j1.223) = —4,250 -+ ;8,850
= 9,850/115.6° amp
In line ¢: 7,220(0.022 4 72.204) = 159 + 715,900
= 16,000/264.3° amp

Currents from the motor to the fault:

In line a: 7,220(—0.566 — j4.255) = —4,090 — 730,800
= 31,100/262.5° amp
In line b: 7,220(0.588 — j1.223) = 4,250 — ;8,850
= 9,850/ —64.4° amp
In line ¢: 7,220(—0.022 — j2.204) = —159 — ;15,900
16,000/264.3° amp
Currents from the generator to the transformer:
In line A: 1,040(0.351 + j0.566) = 365 + j590 = 695/58.3° amp
In line B: 1,040(0.315 — 73.248) = 328 — ;3,380 -
~ 3,400/ —84.4° amp
In line C: 1,040(—0.666 + 72.682) = —693 + 52,790
2,870/103.9° amp

i

Voltages at the motor terminals:

Va = 346(0.576 + j0.866) = 200 + 7300 = 360/56.3° volts

Ve = 346(—341.732) = 0 — 7600 = 600/ — 90° volts

Veo = 346(—0.576 + j0.866) = —200 4 7300 = 360,/123.
Voltages at the generator terminals:

Vais = 2,400(—0.715 + 71.504) = —1,720 + j3 4

= 4,000/115.4° volts

Vise = 2,400(1.260 + 50.098) = 3,030 + ;23

Ves = 2,400(—0.545 — j1.602) = —1,310 —
4,060/251.2° volts

i
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In the preceding example the synchronous motors are operating at a
power factor of 859, lag. Ordinarily, synchronous motors are designed
to operate at unity power factor or at a leading power factor of 809,
The motors specified in the example were assumed to be operating at a
lagging power factor in order to be more illustrative of the over-all
load on a power system, which is usually lagging.

When the operating voltage is not specified, it is convenient to assume
that the prefault voltage V; is equal to the rated voltage of the part of the
system in which the fault occurs. Then, if the base voltage is equal to the
rated voltage, V; is 1.0 per unit. If the voltage is specified at a certain
point in the system, the voltage V; at the fault must be calculated.

The work involved in solving Example 13.1 would have been somewhat
simplified if the system had not been carrying current before the fault.
When resistance is neglected, the fault current is purely reactive and
in any case is usually considerably larger than the prefault current. If
the prefault current is nearly in phase with the voltage, the addition
of the fault current to the prefault current does not result in a current
magnitude greatly in excess of the component due to the fault current
alone. The addition of the prefault current becomes important as the
prefault current lags the voltage by larger amounts.

The method of finding the subtransient current for a fault on a power
system containing more than one group of synchronous machines is not
applicable to finding the steady-state current for a sustained fault. Sub-
stitution of synchronous reactances and voltages behind synchronous
reactance in the positive-sequence network would give the steady-state
current only if the phase relations between the internal voltages of
the synchronous machines remained the same after the fault as they were
before the fault. Voltages behind subtransient reactance have the same
phase before and after a fault because the rotors have not had time to
shift their relative positions during the very short interval between the
instant before the occurrence of the fault and the subtransient period.
Angular positions of the rotors of synchronous machines depend on the
loads and on the impedances between machines. Since a fault changes
the impedance between machines, the phase angles between various
voltages behind synchronous reactance before a fault differ greatly from
the phase angles between the same voltages in the steady-state p
of a sustained fault. In fact the machines of the system may '
in synchronism unless the fault is removed quickly.

than the determination of subtransient and tré
faults are usually isolated in a few cycles.

t%‘“‘YI"?E GISTERED O 2
VERSION
ADDS NO




UNSYMMETRICAL FAULTS ON POWER SYSTEMS 289

13.6 Faults through Impedance. All the faults discussed in the pre-
ceding sections consisted of direct short circuits between lines and from
one or two lines to ground. Although such direct short circuits result in
the highest value of fault current and are, therefore, the most conserva-
tive values to use when determining the effects of anticipated faults,
the fault impedance is seldom zero. Most faults are the result of insa-
lator flashovers, where the impedance between the line and ground
depends on the resistance of the are, of the tower itself, and of the tower
footing if ground wires are not used. Tower footing resistances form the

Ialﬁ ’ Ializf
’ I”l%fi ’ Al I
2 T

(a) Three-phase fault (b) Single line-to-ground fault

a

L} )|

wl i
c ¢
I Z
“iL 5% Ly
{¢) Line-to-line fault (d) Double line-to-ground fault

Fra. 13.13  Connection diagrams of the hypothetical stubs for various faults through
impedance.

mujor part of the resistance between line and ground and depend on the
soil conditions. The resistance of dry earth is 10 to 100 times the resist-
ance of swampy ground. The effect of impedance in the fault is found by
deriving equations similar to those for faults through zero impedance.
Connections of the hypothetical stubs for faults through an impedance
are shown in Fig. 13.13.

A system which includes the fault remains symmetrical after the
occurrence of a three-phase faull having the same impedance be ;
line and a common point. Only positive-sequence currepts
the fault impedance Z; equal in all phases, as shown in
voltage at the fault is

Vo= 1.Z;

1 aBED ,/
%
$

and, since only positive-sequence currents flow,

REGISTERED /QL
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and
Z, + VA

The sequence-network connection is shown in Fig. 13.14a.

L (13.10)

i — T — T
Pos.-seq. net. Pos.-seq. net. Neg.~seq. net.
1P 1 Va1 1P 1P Va2
_l:l-__ L__MZ"MA,___J __L_
z, +
—
(a) Three-phase fault In=Ia
_ I (c) Line-to-line fault
—l
Pos.-seq. net.
Via P
3Ly - — —
l | T |
Neg.—seq.;-t— Pos.-seq. net. Neg.-se lnet Zero- : t,
\ P L, Ya T p | Ve & q'P' Voo seq. net
i E—
3+ I I
- L L I ey I"°l$32f
Voo Zero-seq?&e—-‘..-
L
(d) Double line-to-ground fault
IaOl 3Zf

(&) Single line-to-ground fault
F1c. 13.14 Connections of the sequence networks to simulate various types of faults
through impedance at point P.

A single line-to-ground faultf through impedance is shown in Fig. 13.13b.
The conditions at the fault are

I,=0 I,=0 Vo= 1.7;
From Eqgs. (10.19) to (10.21), since I, and I, equal zero, we obtain

o= Ly = Ty = 12

3
]a = 3]a1
and from Eq. (10.5),
Va = Val + Va2 + VaO = 3[a1Zf
Replacing V.; by Vy; — 1.7, and replacing V., and V,
— I .07, Tespectively, yields
Vf - ]alzl - ]a2Z2 - ]aOZO =

Solving for /.1, after substituting [, for I,s ang in P
" EGI$TERED )
AT+ 7+ 7y + (13.
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The sequence-network connection for a single line-to-ground fault through
impedance is shown in Fig. 13.14b.

A line-to-line fault through impedance is shown in Fig. 13.13c. The
total impedance between the faulted lines is Z;. The conditions at the

fault are
Ia=0 Ib= —Ic Vb'—V¢=1be

From Eqs. (10.6) and (10.7),
Vb —_ Vc = (a2 — G)Val - (a2 —_ a)‘Vaz = ]be

VBV + V3 Ve = LZ; (13.12)
Substituting I, = 0 and [, = — [, in Eqs. (10.19) and (10.20), we obtain
Lw = Y5(a — a9y = j 2
V'3
and
I
L = Y50 — )Ty = =]

from which
T = —Tas

L= =3 Ia

Substituting the expressions of Eqs. (13.1) and (13.2) for V., and Vi,
in Eq. (13.12), and substituting [, for —7I, and —j V3 Iy for I,
we obtain

=BV, = TaZy) +5V3 TaZs = —f /3 luZ;

and

and

Vy
Zy+ Zo + Zy
The sequence-network connection for a line-to-line fault through imped-
ance is shown in Fig. 13.14c.

During a double line-to-ground fault through impedance there may be
impedance between each line and a common point such as a tower, and
there may be additional impedance between the tower and true grg
The most common double line-to-ground fault is a flashovy '
inqulators of two phases to the tower, where the imped pce 4

T = (13.13)

U

%WE 0 ED ,/
fault, for most practical purposes, can be calculate e@ pedance %
between lines and with the fault impedance Z; betwé @mrt circuited

lines and ground, as shown in Fig. 13.13d. The &
e, ﬁ?@iﬁ“]’ERED )
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Since the current flowing in the ground is 37,,

[b + [c = 3[a0
Vb = 3[a0Z/

Substituting V, for V, in Egs. (10.9), (10.13), and (10.15) gives

Voo = 15[Va + (@ + a®) Vil = 25(Va — Vi) (13.14)
Var = 18[Va + (a + a) V3] = 15(V, — V) (13.15)
Vao = 15(V, + 2V) (13.16)
Therefore, by Eqgs. (13.14) and (13.15),
I’al = I7a2

and, upon subtracting Eq. (13.14) from Eq. (13.16), we obtain

I’aU — Val = Vb = 3]a0Zf
I7a0 = Val + 3[aOZf

Substitution of the expressions of Egs. (13.1) and (13.3) for V., and V,

gives
=~TaZo = Va + 31laZ;
[ — }7__ a171
a0 = Zy + 37;
Noting that V,; = V,,, we obtain from Eqgs. (13.1) and (13.2)
= Vao _ V= TaZs
a2 = Z2 - Z2

Since I, = 0, we have
1a1+ [a2+Ia0 :0
I V= 1aZy  V;— IlaZ, —0
o1 7 Zo + 37,
Ia1Z2(Z0 + 3Zf) - Vf(ZO + 3Zf) + Ialzl(ZO + 3Zf) - VfZ2
+ Ia1Z1Z2 =0

VAZy + (Zo + 3Z;)]
ZiZs + (Zo + 3Z))] + Zo(Zo + 3Zy)
Vi
Z,+ Z (70—}-3[/)/(72—-{—50—!—37'{)

For a double line-to-ground fault which consists of a s
between lines b and ¢ and which has the impedance Z, bei(is
point and ground, Eq. (13.17) indicates that the seg
should be connected as shown in Fig. 13.14d.

Ial

T = (13.17)

ERED |/
A

/ome 1dentical

All the relations derived for faults through impedgiilfe
to equations for faults through zero impedance , er E@ms
involving faults through impedance are solved amg STmTlar TERED ¢
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that followed in the illustrative examples for faults that do not contain
any impedance.

13.7 Open Conductors. One or two open conductors constitute a
fault which is somewhat different from those which have been discussed
previously. Such faults are very easily represented on the calculating
board. Since the result of such a fault is an unbalanced condition, the
use of symmetrical components is indicated. If simple relations can be
found for the symmetrical components of the voltage across the open
circuit, the connection of the sequence networks will be ebvious.

One open conductor results when only one fuse is blown in one of the
lines of a three-phase system or when one conductor is broken. The
same condition exists with single-pole, high-speed, reclosing breakers
during the time when one phase is open. If the voltage on one side of
the open circuit occurring in phase a

is V. and on the other side it is V., LW

the voltage between the open points L

is Vaw. The symmetrical com- V, Vy

ponents of V. will be found, and T"

they will indicate how the sequence

networks should be connected. Since Vo Ve
——

only conductor @ is open, the voltages L

at the fault location in phases band ¢ F16.13.15  Section of a three-phase line
are equal on either side of the fault W' line @ open.

point— that is, V, = Vy and V., = V,. The lines at the fault are shown
in Fig. 13.15. The conditions at the fault are

=0 Vyi=Vy=Viy=0 V.-Ve=V.=0

Then,
Vaa’l = ]/é(Vaa' + aVbb’ + agvcc’) = Ygﬁ,
Vaws = Yi(Vaw + a?Viy + aV,) = ‘3@
Vawo = Y¥4(Vaw + Viy + Vo) = V3
50,
Vier = Vaws = Vawo (13.18)

and, since I, = 0, we obtain

Ial + Ia2 + IaO - 0
Equations (13.18) and (13.19) show that the positj
zero-sequence networks should be connected in par3
either side of the open circuit. Figure 13.16 shoy
sequence networks for the system of Fig. 13.2 wi
An analytic solution of the problem is obtained by,

¢ p01;1ts on
, ection of the
§§{RE@lts TERED ©)

1ng the principle
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of superposition with each generated voltage shorted in turn. Note that
the impedance met by each sequence current is the impedance of the
sequence network measured across the open points.

w:a'l
Iy I
lIaO
— —_— ety
Ia2 ‘éa'z — Iz %a'O IaO
1

Fia. 13.16 Connection of the sequence networks for the system of Fig. 13.2 with con-
ductor a open at point P.

Example 13.2

Find the subtransient currents flowing in lines b and ¢ at point P of
Example 13.1 when line a is opened at that point.

Solution
The connection of the sequence networks to find subtransient current
with one open conductor is shown in Fig. 13.17. The internal voltages

-ﬂl— ~N ” ‘0'09
Ey ) Emj o0 7030 /
+ .
j0108 010 j0.30 0,10 0083 010 J0.06
— —
Lo Lo

—_—
L | L2

Fic. 13.17 Connection of the sequence networks for Example 13.2.

are voltages behind subtransient reactances. No zero-sequence current
can flow, because the zero-sequence network is open-circuited for the
connection shown. The sequence impedances measured between the
open points of each network are
Z, =7j(0.1 4+ 0.1 4+ 0.3) = j0.5
Zs = j(0.1 + 0.1 4+ 0.3) = j0.5
Zo = *

From the solution of Example 13.1 the voltage

reactance for the motor and generator are, respect?
E., = 0.912/—10.8° per unit
E} = 1.075/6.03° per unit

ERED
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When the internal voltage of the motor is short-circuited, the current I,
as determined from Fig. 13.17, is

7 1.075/6.03°

a7 50.5 + 505

Equation (13.19) shows that I,» = — .1, since I,0 = 0. Therefore
I, = —0.113 + 71.068 = 1.075/96.03°

= 1.075/—83.97° = 0.113 — ;1.068

When the internal voltage of the generator is short-circuited, the current
Ial iS
0.912/—10.8°

e N

—0.912/~100.8° = 0.171 + j0.897

and
I, = —0.171 — ;50.897

By the principle of superposition, due to the internal voltages of both
the motor and the generator,

I = 0.113 — 71.068 + 0.171 + ;j0.897 = 0.284 — j0.171
= 0.331/—3L1°

I = —0.284 + j0.171 = 0.331/148.9°

Io=Tai+ lax+ Lo =0

I = a*ly = 0.331/208.9° = —0.290 — 70.160

Iy = al. = 0.331/268.9° = —0.006 — j0.331

I = —0.290 — j0.160 — 0.006 — 70.331 = —0.296 — 70.491
= 0.573/238.9° per unit

T = ala = 0.331/88.9° = 0.006 + j0.331

I = a*ls, = 0.331/28. .0° = 0.290 + 70.160

I, = 0.006 + 70.331 + 0.290 + 70.160 = 0.296 + j0.491
= 0.573/58.9° per unit

If

In amperes, at the motor,

I.=0
I, = 7,220 X 0.573/238.9° = 4,140/238.9° amp

I, = 7,220 X 0.573/58.9° = 4,140/58.9° 9° amp

In Example 13.2, the principle of superposition was used to derg onst
the method to be followed in more complicated problems,
simple network of this example, use of the principle
has no advantage over the solution by Kirchhoff-l
transient quantities were used in the positive-seq
subtransient currents were found.

To find the steady-state currents in the netw
the magnitudes of the voltages behind synchrong

ctaﬁ% TERED ¢
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296 ELEMENTS OF POWER SYSTEM ANALYSIS

found together with the angle between the voltages under steady-state
conditions with one line open. Very often the two remaining conductors
are incapable of transmitting all the load that was previously carried by
three conductors. The following example indicates the method of find-
ing the angle between the voltages behind synchronous reactance.

Example 13.3

Determine whether the equivalent motor of Example 13.1 can continue
to carry its load of 5,000 hp at 889 efficiency under steady-state con-
ditions after one line is opened at the motor terminals. Assume that
both the motor and generator have synchronous reactances of 1009, on
the chosen base.

Solution

If we assume that the excitation of the machines does not change, the
magnitudes of the voltages behind synchronous reactance are unchanged
by opening one line. Their computation is similar to the computation
of voltages behind subtransient reactance in Example 13.1, except that
synchronous reactances replace the subtransient reactances in the posi-
tive sequence network of Fig. 13.10. For the motor,

E,. = 1.0 — j1.0(0.566 — j0.351) = 1.0 — j0.566 — 0.351
= 0.649 — 70.566 = 0.860/—41.1° per unit
and, for the generator,

E, = 1.0 + j1.1(0.566 — j0.351) = 1.0 + j0.623 + 0.386
= 1.386 + j0.623 = 1.52/24.2° per unit

The per-unit power drawn by the motor, on the assumption of the
same efficiency as in Example 13.1, is -

5,000 X 0.746/0.88
7,500

According to Eq. (7.6) the power received at the end of a four-terminal
network is

PR=|

P, =

= 0.565 per unit

| V| |A[ - [ VR]?

cos (8 — 0) — — 57 — ¢0s (8 —
|B| ( ) — |B‘ ( 0‘)
The connection of the sequence networks shown in Fg
that we are dealing with two emfs applied to a ciii §

series impedance only. Equations (6.18) give t values for

the ABCD constants of such a circuit:
A4=1 C
B =R +jX D

I
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Neglecting resistance and substituting the values of the A BCD constants
in the equation for power received gives

_ Vsl |V
= —Tv— 21

PR .X|

né
If we consider the reactance of each machine as part of the series imped-
ance X, we have for the sending- and receiving-end voltages

Vsl = Bl and  |Va| = [E,|

The series impedance is the sum of the impedances of the positive- and
negative-sequence networks. So,

X = 1.0 + j0.1 4+ j0.1 4 j0.1 + j0.3 + ;1.0 = j2.6
The equation for power received becomes

1.52 X 0.860 .
= — 781

Pr 2.6

n 6 = (0.503 sin &
Since Pr = Py,
0.503 sin & = 0.565
sin 8§ = 1.12

Since the sine of an angle cannot exceed 1.0, the motor cannot carry the
specified load if one line is open. The motor can carry some smaller
load with one line open. A new angle

5 found in the same manner as that Yo Ve
followed in the preceding solution is L

the angle between E,, and E, for the v, Vy
smaller load. After the value of 6 is -
determined, the circuit can be solved i v v

for the line currents.

. ———i
Sequence networks can be intercon- I

nected to simulate fwo open conductors Fie. 13.18 Section of a three-phase
in an otherwise symmetrical three- line with lines b and ¢ open.

phase system. Figure 13.18 shows lines b and c open. The voltages are
designated V5 and V., on one side of the open conductors and Vy and V
on the other side. Sinceline aisnot open, V,isequalto V,. At the fault

ILi=0 I.=0 Vi—Vy=Vu=0

Then,
I = Y51, + aly + a?l,) =

lay = Y4(1a + a*ly + al,) =

Lo = 25(Ia + I + L) =
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So,
Ty = Tas = Iao (1320)
and, since Vo = 0, we obtain
Vaa'l + Vaa'2 + Vaa'O =0 (1321)

Equations (13.20) and (13.21) are satisfied by opening each sequence
network at the fault point and connecting the three networks.in series
as shown in Fig. 13.19 for the system of Fig. 13.2 with the open-con-
ductor fault in the transmission line. Problems involving two open

Fi1c. 13.19 Connection of the sequence networks for the system of Fig. 13.2 with
conductors b and ¢ open at point P.

conductors are solved in a manner similar to that followed in Example
13.2. No current will flow in the sequence networks of the system of
Fig. 13.2 if they are connected to simulate two open conductors at the
motor terminals rather than in the transmission line, because the zero-
sequence network offers infinite impedance to the current in that case.
Examination of the system of Fig. 13.2 shows us that no current could
flow into the motor through line @ from the transformer when lines b
and ¢ are open, because the A-connected secondary of the transformer
does not provide a return path through the ground for the current. It
the transformer secondary were Y-connected with the neutral grounded,
current could flow in line a with lines b and ¢ open.

PROBLEMS

13.1 The reactances of a generator rated 10,000 kva, 6.9 kv are X’ = X, = 15%
and Xo = 5%. The neutral of the generator is grounded through a reaggor of
ohm. The generator is connected to a A-Y transformer rated 10, 00
44Y kv w 1th a reactance of 7.59,. The nultral of the transformel

occurs on the open-circuited, high—tension side of the trans
symmetrical rms current in all phases of the generator.

13.2 A 5,000-kva, 13.8-kv generator is Y-connected a
reactance of 2.5%. The reactances of the generator
X = 259%. The generator supplies a A-connected moto
with reactances of X" = X, = 20% and Xo = 10%,. 2
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current at rated voltage and 0.8 power factor lagging when a single line-to-ground fault
occurs on the line of negligible impedance connecting the generator and motor. Find
the initial symmetrical rms current in the fault and in the faulted line at the generator
and at the motor.

13.3 A double line-to-ground fault occurs on lines b and ¢ at the point P in the
circuit whose one-line diagram is shown in Fig. 13.20. Find the subtransient eurrent
in phase b of machine 1. Machine 2 is operating as a synchronous motor and drawing
800 kw at rated voltage and 0.8 power factor leading, when the fault occurs. Both

T T;
1 ! 2 2
O 1O
¢ 3
LY Ay LYD Yoy
F1c. 13.20 ) One-line diagram for Prob. 13.3.

machines are rated 1,250 kva, 600 volts with reactances of X" = X, = 109 and
Xy = 4%. FEach three-phase transformer is rated 1,250 kva, 6004-4,160Y volts
with leakage reactance of 5%. The reactances of the transmission line are
X, = X3 = 15% and X, = 50% on a base of 1,250 kva, 4.16 kv.

13.4 Find the initial symmetrical rms current in each phase of the generator and
equivalent motor of the system of Example 13.1 for a single line-to-ground fault at the
motor terminals when the generator is operating at rated voltage and the motors are
unloaded.  Assume that the motors draw negligible current at no load.

18.6 Find the initial symmetrical rms current in the faulted phase of the generator
of the system of Example 13.1 for a single line-to-ground fault at the terminals of the
generator when it is delivering rated current with rated voltage and unity power
factor at its terminals. The reactance in the neutral of the generator is 59.

13.6 A single line-to-ground fault occurs at the middle of a transmission line. The
one-line diagram is the same as that of Fig. 13.20 except that 7' is ungrounded.
Find the subtransient current in the fault and in cach line on both sides of the fault.
Draw a sketch of the lines at the fault and mark the subtransient current carried by
cach line. Express each current as a phasor. Select as reference the prefault voltage
from line @ to neutral at the fault. Line-to-line voltage at the fault is 110 kv before
the fault oceurs, and the line current is 78.7 amp at unity power factor. Machine 2
is a motor. Both machines are rated 15,000 kva, 6.6 kv, X" =30% X, = 409, and
Xo = 5%. The line is rated 15,000 kva, 110 kv, X; = X, = 8%, Xo = 249,. The
transformers are composed of single-phase units, each of which is rated 5,000 kva,
6.6-63.5 kv with X = 109,

13.7 Line o is suddenly opened at the point P in the cireuit deseribed in Prob. 13.3
and shown in the one-line diagram of Fig. 13.20. At the time the line is opened,
machine 2 is operating as a motor drawing 1,250 kva at 600 volts, 0.8 power factor
leading. Find the subtransient current in amperes in each phase of the geng
and motor.

13.8 Lines b and c are suddenly opened at the point P in the
Prob. 13.3 and shown in the one-line diagram of Fig. 13.20. A
are opened, machine 2 is operating as a motor drawing 1,
power factor leading. Find the subtransient current in am
generator and motor.

13.9 Find the maximum power that can be transfery
motor of Prob. 13.3, first with one line open at P, the
Assume that the d-c excitation of the machines remains
Synchronous reactances of the generator and motor a

REGISTERED

e e as in Prob. 13.3.
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CHAPTER 14

UNSYMMETRICAL SYSTEMS

141 The Occurrence of Unsymmetrical Systems. The preceding
chapters have discussed systems which are normally symmetrical. Each
phase of a symmetrical system offers the same impedance as any other
phase to the flow of current of a particular sequence. Complete trans-
positions of transmission lines have been assumed in order to achieve
such a symmetrical system. If a line is not transposed, the dissymmetry
is so slight that the resulting unbalance is neglected without greatly
affecting the calculations. The only dissymmetries which we have con-
sidered are the abnormal ones introduced by unsymmetrical faults con-
sisting of open conductors or by short circuits including faults through
impedance.

Let us turn our attention to unsymmetrical three-phase systems where
the impedance is not the same in all three phases under normal conditions
of operation. We shall restrict our discussion, however, to systems which
do not involve coupling between phases. In such systems, current flow-
ing in one phase does not induce a voltage in any other phase. Because
of the way in which the reactances are calculated, the restriction does not
apply to three-phase transmission lines even though current in a cone
ductor of one phase induces a voltage in the conductors of the other
phases. The calculation of inductance on the assumption of complete
transposition of a line results in a value of self-inductance which includes
the effect of mutual inductance. When inductance is so calculated,
correct results are achieved by considering no coupling to exist between
phases.

Unsymmetrical circuits arise when the system is serving
loads or when unequal impedances are in series with the
phase. Unbalanced series impedances exist when tran!
nected open-A, when current-limiting impedancesgs
installed in each phase, or when transformer bank
similar units. Open-conductor faults and thega
reclosing breakers are special cases of unsymmW
where one or two of the series impedances a
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posed of dis-
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unbalanced three-phase load, not involving coupling between phases, will
be discussed, as will single-phase loads from line to neutral and from line
to line.

14.2 The Effects of Unsymmetrical Circuits. In the symmetrical
systems discussed in previous chapters the currents of any particular
sequence produce voltage drops of like sequence only. Therefore, the
current flowing in any sequence network for such a system is the current
of that particular sequence only. We have not encountered coupling
between the sequence networks. In unsymmetrical three-phase circuits
we shall see that current of a given sequence, in general, produces voltage
drops of all three sequences. Positive-sequence current, for instance,
may produce negative- and zero-sequence voltage drops in addition to
positive-sequence voltage drops. Therefore any possible connection of
the sequence networks to represent the unbalanced system must have
positive-sequence current flowing through impedances in a portion of the
negative- and zero-sequence networks to give the required voltage drops
in those networks. Thus, there is a mutual impedance between net-
works. Such coupling between sequence networks is not to be confused
with coupling between phases of the actual circuit. Coupling between
sequence networks exists even though there may be no coupling between
phases.

In addition to understanding the effect of an unbalanced system in
causing coupling between sequence networks, the engineer must know the
effects of the unbalance on the operation of the system in order to calcu-
late the amount of unbalance which can be tolerated. One disadvantage
of unbalanced systems is the negative-sequence current which flows
because of the negative-sequence voltage induced by the coupling between
sequence networks. Negative-sequence current flowing in the armature
of a three-phase machine causes a magnetic field which revolves at
synchronous speed opposite to the direction of rotation of the rotor.
Currents of double the frequency of the system are thereby induced in
the rotors of generators and synchronous motors. The negative-sequence
current in the armature of an induction motor induces rotor currents of
(2 — &) times the frequency of the supply, where s is the slip of the motor.
The negative-sequence current causes a reduction in the torque of the
induction motor because the oppositely revolving magnetic field cagik
torque in the reverse direction. The reverse torque is small
because of the high reactance of the rotor to the high (i
currents. More important than reduced torque is the i

due to the negative-sequence current. In large sy
must be kept within reasonable limits to prevent ovelllta
rotors of the turbogenerators. Turbogenerato g(rRE@’
t§:te curren STERED
VERSION
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When the impedances of a system are unsymmetrical under normal
operating conditions, the resulting unbalance may cause the voltage
between two of the lines to exceed the maximum allowable when normal
voltage is maintained between another pair of lines. Thus, allowable
unbalance of voltage rather than the heating of negative-sequence current
may be the limiting factor in determining the amount of unbalance to be
tolerated.

14.3 General Equations Involving Unsymmetrical Series Imped-
ances. Some of the types of unbalanced systems previously enumerated
can best be analyzed by developing a set of equations for the positive-,

. 2 negative-, and zero-sequence voltage
a a

@ T AN o drops between two points on either side

of the unsymmetrical part of the system,

L Z, . Thethree sequence voltage drops will be

b ————WWWW———¥  (erived in terms of the symmetrical

L. Z components of the current and the series

¢ — =AM ¢’ impedances between the pointson either

Fic. 14.1 Portion of a three-phase side of the dissymmetry in each phase.

system showing threc unequal series Figure 14.1 shows the unsymmetrical
impedances.

part of a system with three unequal
series impedances Z,, Z;, and Z,. No coupling exists between the phases
of the system. The voltage drops across the part of the system shown are

Vaa’ = ]aZa
Vi = 1Zy (14.1)
Vcc' = Ich

Replacing I, I;, and I, in Eqgs. (14.1) by their symmetrical components

yields
Vaa’ = (]al + Ia2 + IaO)Za
Vbz,' = (a2]a1 |- a]az + Iao)Zb (142) -
Vcc’ = (a]al + a2]a2 + IaO)Zc
The symmetrical components of each voltage drop are
Va,a’l = }é(Vaa’ + a/Vbb’ + a2Vcc’)
Vawr = Y4(Vaw + a*Viy + aV,o) (14.3)
Vaa’O = }é(vaa’ + Vbb’ + Vcc’)
Substituting Eqgs. (14.2) in (14.3) and collecting terms yields

Vaa’l = }élal(za + Zb + Zc) + }éltﬂ(za + a2Zb + a/Zc
+ %Iaﬂ(za + aZ Z@TERED V@@
$

Vaa'Z = %[al(za + aZb + a2Zc) + }é-[(ﬂ(za + Zb (144)

+ %IaO(Z 4 aZ”) .
Vawo = V5 IaZa + 02 + aZ)) + 151(Z. + R vngIS TERED ©
+ }élao c ¢
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Equations (14.4) are the general equations for the symmetrical com-
ponents of the voltage drop from point @ to point @’ in terms of the sym-
metrical components of the current I, and the unbalanced series imped-
ances between the points.

FEquations (14.4) can be written more concisely and in a form which is
more easily remembered by letting

Zs = /‘/é(Za + Z, + Zc)
Zur = WL, + aZy + a*Z,) (14.5)
Zyr = Y5(Zo + a*Zy + aZ,)
Then
Vaa’l = IaIZS -+ [aZZMZ + IaOZMI
Vs = TaZosn + lasZs + LaosZor (14.6)
Vo = TaiZins + lasZay + LaoZs

The impedance Zy is called the sequence self~impedance. The product
of a current of any sequence and the sequence self-impedance yields a
voltage drop of the same sequence as that of the current. For instance,
the product of the positive-sequence current /,; and Zs is a component, of
the positive-sequence voltage drop Vg1

The impedances Z,; and Zy, are called sequence mutual tmpedances.
The product of a current of one sequence and a sequence mutual imped-
ance yields a voltage drop of a sequence different from that of the current.
For instance, the product of the positive-sequence current I,; and the
sequence mutual impedance Z, is a component of the negative-sequence
voltage drop V,rs. Similarly, the product of the positive-sequence
current I,; and the sequence mutual impedance Z . is a component of the
zero-sequence voltage drop Vuo.

The equations for the sequence self-impedance and mutual impedances
in terms of the impedances of the phases of the circuit are similar in form
to Eqgs. (10.9), (10.13), and (10.15), and Egs. (10.19) to (10.21), respec-
tively, for the symmetrical components of voltage and current. The
equation for the sequence self-impedance Zs corresponds to the equations
for zero-sequence components of voltage and current. The sequence
mutual impedances Z,1 and Z ., correspond to the equations for positive-
and negative-sequence components of voltage and current, respectively.
Thus, the sequence self-impedance Zs might have been called the zg
sequence component of the phase impedances, and the mutual i
Zyi and Zy; might have been called the positive- and negi ER E D
components of the phase impedances. Positive-, negaj @ -

V@sly, how-
to the flow

sequence impedances are names which have been u

o postives et ane sevpcenonce @l %
of postive, negatives, ; “REGISTERED ©)
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impedance and mutual-impedance equations and the equations for the
symmetrical components of voltage and current is an aid in remembering
Egs. (14.5). The numerical subseripts for the sequence mutual imped-
ances have been chosen to emphasize this similarity, and the absence
of a numerical subscript on the self-impedance term may be interpreted
as a numerical subscript of zero.

A further aid in remembering the equations is the fact that the sum of
the numerical subscripts of the symbols for current and impedance in each
term composing the positive-sequence voltage drop is 1 or 4. The sum is
2 for the negative-sequence voltage drop and 0 or 3 for the zero-sequence
voltage drop.

14.4 Unsymmetrical Three-phase Load. An unsymmetrical three-
phase load is a special case of three unsymmetrical series impedances

Fia. 14.2 Generator supplying an unsymmetrical Y load grounded through Z,.

where the ends of the three series impedances are connected to a com-
mon point. If the points @/, b’, and ¢’ of Fig. 14.1 are connected together,
and the common point is grounded through Z,, the impedances Z,, Zs, and
Z. become the impedances of a grounded, unbalanced three-phase load.
With the addition of a generator grounded through a reactor to represent
the system to the left of points a, b, and ¢ of Fig. 14.1, the circuit becomes
that shown in Fig. 14.2.

The sequence components of voltage of the unbalanced load from line a
to neutral are, from Eqs. (14.6),

Vanl = IaIZS + IaZZMZ + IaOZMl

Van2 = IaIZMI + IaZZS + IaOZMZ (147)

VanO = IaIZMZ + IaZZMl + IaOZS
where Zs, Zi1, and Zy. are determined from Eqs. (14.5).

From Eqgs. (11.2) to (11.4) the sequence components of
point a to ground are

Val = Ea - IaIZI
VaZ = _Ia2Z2
VaO = _IaOZO

where Z, and Z, are the positive- and negative-se
generator and connecting lines, and Z, is the

én-pRaEGCfSlél' ERED ©

1uen( e impedance ¢
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of the generator and conneeting lines plus 3Z,, to account for the imped-
ance in the generator neutral.

Since the voltage from point @ to ground is independent of the path,
V. and Vi, are equal, respectively, to Van; and V.o Vo is equal to
Vano + 3LacZn.  Therefore, from Lqs. (14.7) and (14.8),

Ea == ]al(Zl + ZS) + ]a2ZM2 + Z'aOZ."vII
0= ]aIZMl + Ia2(Z2 + Zs) + [aOZM2 (149)
0 = TuZus + LaoZon + Lao(Zo + Zs + 37,)

Equations (14.9) can be solved for the symmetrical components of current
in terms of E, and the impedances.

If the unsymmetrical load is connected to a very large system, addition
of the load has negligible effect on the system. With balanced voltages
at the load and a very large system, Eqs. (14.9) are simplified by substi-
tuting for £, the positive-sequence component of the voltage from a to n,
Va1, and by letting Z,, Z,, and Z, be zero. Then

Val = Ialzs -+ [a2ZM2 + [aOZMl
0 = IaZus + TsZs + TaoZys (14.10)
0= ]a1ZM2 + Ia2ZM1 + [uO(ZS + 3Zn)

In such a system, if the neutral of the load is solidly grounded, Z, is
zero. Hquations (14.10) are not needed to compute the load currents,
however, when the neutral is solidly grounded since the voltages to
neutral are then balanced, and thus the currents can be easily determined
by ordinary methods. In fact, a solution by Kirchhoff’s law is simpler
than using Eqgs. (14.10) whenever the voltages applied to the grounded-Y
load are balanced, regardless of the impedance in the neutral. Both
methods require the simultaneous solution of three equations, but the
solution by Kirchhoff-law equations is less involved than the solution by
symmetrical components. If the supply is not an infinite bus, Eqgs.
(14.9) must be used since they account for the different values of imped-
ance of the system to positive-, negative-, and zero-sequence currents.

If the unbalanced-Y load is not connected to ground at the neutral,

zero-sequence current cannot flow. With zero-sequence currents absent,
Eqs. (14.9) become

Ea = Ial(Zl + ZS) + -[aZZMZ
0= IaIZMl + ]aZ(Z2 + Zs)
0= IaIZMZ + [aZZMl + Vn

where V', is the voltage from the neutral of the load ? i
(14.13) contains the voltage V, since the zerg-sg aQae voltage from

point a to ground is Vo = Vo + Va = @nsRIEGIsq- ERE D

(14.12) are solved by determinants with the follg esults: ¢
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EZy, + Zy) .

a = 77 7, 14.1
Lar (Zy ¥ Z)(Zs ¥ Zs) — ZyrZous (14.14)
I, = — B2 (14.15)

Zy+ Z)(Zs + Zs) — ZnrZa

Example 14.1

A generator has a synchronous reactance of 1.0 per unit. Negative-
and zero-sequence reactances are 0.3 and 0.05 per unit, respectively.
The resistance of the generator may be neglected. The load is Y-con-
nected and ungrounded, with pure resistance of 1.0 per unit in phase ¢,
and impedances in phases b and ¢ of 0 + j1.0 per unit. Find the voltage
in per unit across each impedance of the load and from the neutral of the
load to the neutral of the generator. The no-load voltage of the gen-
erator is 1.3 per unit.

Solution
Zo=1440 Z, =0+l
Zy =04 71 Zy =04 0.3
Zo=0+41 E,=13+40

(1 +72) = 0.333 + 70.667

[1 4 j(—0.5 + j0.866) + j(—0.5 — 50.866)]

Zs = 13
Zwl = }é

0.333 — j0.333 = 0.471/—45°

1411 + j(—0.5 — j0.866) + j(—0.5 + j0.866)]
0.333 — j0.333 = 0.471/—45°

Zz

B 1.3(j0.3 + 0.333 + j0.667)
a1 = 710 + 0.333 £ j0.667)(j0.3 + 0.333 + j0.667) — (0.471/—45°
X 0.471/—45°

0.433 +j1.259  1.33/71.0° - o .
= _1.510++le.097 = 186/ 144.0° = 0.715/—73.0° = 0.209 — ;j0.684
~1.3 X 0.471/—45°
@~ 1.86/144°
I, = 0.209 — j0.684 + 0.325 — j0.052
0.534 — j0.736 = 0.907/—54.0° per unit
0.715/240° — 73.0° = 0.715/167.0° = —0.697 + j0.161
—0.118 + j0.307

= 0.329/ —9.0° = 0.325 — j0.052

I

I
Ty

Il

0.329/120° — 9.0° = 0.329/111. Oo
Iy

Il

I

ld = 0.715/120° — 73.0° = 0.715/47.0°
Ig = 0329/2-10o — 9.0° = 0.329/231.0° =
I, =
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Vo, =1 X (0.534 — j0.736) = 0.534 — j0.736
= 0.907/—54.0 per unit (line-to-neutral base)
Von = j1 X (—0.815 4 j0.468) = —0.468 — jO.815
= 0.941/240.1° per unit (line-to-neutral base)
Vo = 71 X (0.281 + j0.268) = —0.268 + j0.281

fl

0.388/113.7° per unit (line-to-neutral base)

From Eq. (14.13),

Ve —(Ialzuz -+ IaZZ’Wl)
= —(0.715/—73.0° X 0.471/—45° + 0.329/—9.0° X 0.471/—45°)

— —(0.337/—118.0° + 0.155/— 54.0°)
= 0.067 4+ j0.424 = 0.430/81.2° per unit (line-to-neutral base)

I

If the unbalanced load is A-connected, it can be converted to its
equivalent Y. The neutral of the equivalent Y is ungrounded, and zero-
sequence current is absent. The components of the line current are
found by Egs. (14.14) and (14.15) with self and mutual impedances to
correspond to the equivalent Y.

In the derivation of equations for unsymmetrical three-phase loads
a simple system of one generator and one load was assumed. Analysis in
terms of one generator is sufficient if all the unbalanced loads are at
one location, for a symmetrical system containing more than one emf can
be reduced to a single emf and series impedance by the Helmholtz-
Thévenin theorem. The voltage E, in the equations is replaced by the
voltage from line a to ground at the load point with the unsymmetrical
loads disconnected. The impedances Z;, Z,, and Z, are the positive-,
negative-, and zero-sequence impedances looking into the network at
the load point with the unsymmetrical loads disconnected. Synchronous
reactance rather than subtransient or transient reactance determines Z,
since steady-state values are desired.

14.5 Single-phase Line-to-line Load. A single-phase load connected
from line to line is identical to an ungrounded Y-connected load having
infinite impedance in one phase. If the load is on lines b and ¢, the
impedance in phase a of the Y is infinite, as shown in Fig. 14.3 where
the impedance Z;, is divided equally between phases b and ¢. The Y load
of Iig. 14.3b is identical to the single-phase load of Fig. 14.3a.

Since there is no ground connection, only positive- andiie

sequence currents will flow in the circuit, and Eqgs. (1 E

give the values of /., and /., Since Z, = Z,, \ D ,/@
Q/C? (14.16) 4)

(14.17)

Zs = Y5(Za + 2Zu)
Zyr = Zy = 145(Za — Zy Q.
The impedance terms in the numerator and de Sﬁr (RE G"S)TE R E D ¢
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a
¢ b
Z
(a) Single-phase load (b) Unbalanced-wye load equivalent to
between lines b and ¢ single-phase load Z, between lines b and ¢

F1c. 14.3 Generator supplving a single-phase line-to-line load Zz.

are
Zo+ Zs = Zy + Za g 27 (14.18)
(Zs+ Z)(Zo + 7s) = ZiZs + leagzzlzb o %ol 4; 277
2 4Z,Z)Zb + 47, (14.19)
DnZios = 22~ QZSZ” + % (14.20)

After substitution of these terms in Eq. (14.14), the numerator and
denominator of the right-hand side of the equation are divided by Z,, and
as Z, approaches infinity

E./3

I, = 7 ¥ Z2/3 + (Zs ¥ 22/9 (14.21)
E
T = 57— —nsr 14.22
'S 7+ 2. 22, (14.22)
and, since 7, = Z,/2
z ‘
I = "7 .
VT 7, + 7 (14.23)
Similarly, from Kq. (14.15),
—FE
Tos = 5 | 5ty 14.
=T+ %t 7 (14.24)

n both
vorks may be Xy
1ne-to-line load

o
EGISTERED %

m the impedance Zy.

RSION
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cases. Therefore, the positive- and negative-sequy
interconnected as shown in Fig. 14.4 to reprgg
on an otherwise symmetrical system in the sal¥
in Fig. 13.14¢, to represent a line-to-line fault
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R [ N
Pos.-seq. net. Neg.-seq. net.
P P
NV
Z

Fia. 14.4 Connection of the sequence networks for a single-phase line-to-line load 7

Example 14.2

A 1,000-kva, 240-volt turbine generator has a synchronous reactance
of 1009, and a negative-sequence reactance of 109,. At its terminals, the
generator is supplying a balanced three-phase load of 900 kw at 240 volts.
The load is pure resistance. If a single-phase load of 100 kw, purely
resistive, is applied between two of the terminals of the generator, find
the negative-sequence current in the generator in per cent of rated current
and the line voltages in per cent of rated voltage.

Solution

Choose as base 1,000 kva, 240 volts.
(0.24)* X 1,000

1,000

= 0.0576 ohm

(240/4/3)* _ .
900,000/3 ~ 0.064 ohm
0.064 .

= 0.0576 = 1.11 per unit
(240)*
100,000
0.576 .
= 00576 = 10.0 per unit
Tigure 14.5 shows the connection of the sequence networks. The Helm-

holtz-Thévenin equivalent of the positive-sequence network has a gen-

l

Base impedance =

Impedance of the three-phase load =

Impedance of the single-phase load = 0.576 ohm

Ii

L1450 Jjo1 LIT+j0

MWV
10.0+,0
Fia. 14.5 Diagram of the sequence networks for Iixa

erated voltage of 1.0 per unit, since the terminal voldaog

§?o.-53EGIS TERED ©)
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Lo X LIL o _ 8
Zy = 111 + 710 0.743/48.0° = 0.
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For the negative-sequence network

_j01 X 111
T I 4401

Then, from Eqgs. (14.23) and (14.24),

1.0
0.498 -+ 70.552 + 0.009 + j0.099 + 10.0

1.0 )
= 10507 + jo.e51 ~ 0095/=3.6

Zs = 0.099/84.8° = 0.009 -+ ;0.099

Ial =

and

Ia2 = _Ial = 0095/176&?
The negative-sequence current divides between the two branches of the
network inversely as the impedances. The magnitude of the portion of
the negative-sequence current through the generator is

1.11 ~ .
0.095 A1 + 01 = 0.095 per unit

Since the rated current is 1.0 per unit, the negative-sequence current in
the generator in terms of rated current is 9.5%.
The voltages are calculated as follows:

Vo = 1.0 — 0.095/—3.6° X 0.743/48.0° = 1.0 — 0.051 — 70.049

= 0.949 — j0.049 = 0.949/—-3.0°
Vaz = —0.095/176.4° X 0.099/84.8° = 0.0094/81.2° = 0.0014 + j0.0093
Va + Ve = 0.950 — j0.040 per unit (line-to-neutral base)
Ve = 0.949/237.0° = —0.516 — j0.796

N
)
I

Vi = 0.0094/201.2° = —0.009 — ;0.003

V, = —0.525 — j0.799 per unit (line-to-neutral base)
Vo = 0.949/117.0° = —0.432 + ;0.845
V.. = 0.0094/321.2° = 0.007 — 50.006

V., = —0.425 + 70.839 per unit (line-to-neutral base)

In per unit of the base line-to-line voltage,

Vo Vo 1 ‘ .
Vo = 22 =% — _°_(0.950 — j0.040 + 0.525 + 70.799
o 3 3 ( J J )
= 0.958/27.2° per unit
V= Vo= Ve L (o525 — j0.799 + 0.425 — j0.839)
V3 V3
Ve— V. 1 . .
V= 2= Va2 (0.425 + j0.839 — 0.950 gu il
73 5 ( J @4)
- @414" per unit )

If V. is raised to 240 volts by increasing t
erator, all the above voltages and currents ared

JREGISTERED O

.@ed by a factor o
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1.0/0.945 = 1.06. Then the negative-sequence current in the generator
in terms of rated current is 1.06 X 9.5% = 10.1%, and

Vb 1.06 X 0.958 = 1.016 per unit = 101.69, of rated voltage
Ve = 1009, of rated voltage
Ve = 1.06 X 0.941 = 0.999 per unit

Il
It

99.99, of rated voltage

14.6 Single-phase Line-to-neutral Load. A simple method of finding
the relations between the sequence networks for a single-phase line-to-
neutral load is to recognize that the line-to-neutral locad has the same
effect as a sustained line-to-ground fault through impedance. Instead
of deriving the relations between the ——
sequence networks from Eqgs. (14.9), let us
refer to the derivation of Eq. (13.11) and v, | “pos-seq net. .
ncte that the load impedance Z, in Fig. P
14.6 corresponds to a fault impedance Z;.

R Iall

Vo2 Neg.-seq. net. 1y
P a.
N IaZl
Vio |  Zero-seq. net,
P
T 1)
—AAMA—
3z,

Fic. 14.6 Generator supplying a single-phase Fic. 14.7 Connection of the
line-to-neutral load Zy. sequence networks for a single-
phase line-to-neutral load Zy.

Then, for a single generator supplying a line-to-neutral load only,

Ial - [a2 - IaO (1425)
and

K,
Zh+ Zy+ Zo+ 37,
where E, is the no-load generated voltage of phase a. 'T'he zerc-sequence

impedance Z, includes 3Z, to account for the impedance in
of the generater.

If the line-to-neutral load occurs in a system which id
metrical, the system is replaced by its Helmholtz—gaad
with the impedances handled in the usual manner.

Ve
: e T 'S)(S‘
Fig. 13.14b the sequence networks must be congag Q‘s own in Fig. o
14.7.  The solution of problems proceeds in a . § suREG‘IéTER E D %

discussed for the single-phase line-to-line load.
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14.7 The Special Case of Two Equal Series Impedances. When
two of three unsymmetrical series impedances are equal, an interconnec-
tion of sequence networks can be made to represent the unsymmetrical
circuit. An example of such an unsymmetrical series circuit, as will be
shown later, is the equivalent circuit of an open-A transformer bank.
Other examples occur when one of three reactances (such.as a series
capacitor or current-limiting reactor) differs from the other two, or when
an impedance is inserted in series with only one of the lines. The opera-
tion of a single-pole reclosing breaker during

T Pos. seq. net. a fault inserts an infinite impedance between

a; &/ two points in one phase while the impedance

Ta _J[ = is zero between corresponding points of the

2T other two phases. Another instance of an

unsymmetrical series circuit where the im-

" Neg seq. net. pedances are equal in two of the phases is

a, aj the line having one open conductor, which

L2 - r—| was discussed in Chap. 13. Lines having

— ZV,V—VZVMV_ J two open conductors are in the same

category.

T Zeoseg et When the two impedances Z; and Z, are

% a; equal in an unsymmetrical series ecircuit

Lo — r_—_‘ composed of the impedances Z,, Z:, and Z,

27y in phases a, b, and ¢, respectiyely, Zy 18

Li+Lo+Lo equal to Zys. Upon substitution of Z, for
— "/2’;"" Z.in Eqs. (14.5), we have

Fre. 14.8 Connection of the 7., = 14(Z, + aZy + a*Zy) = 14(Z. — Zy)

sequence networks for equal 1 2 — 14 _
series impedances in two of the ez P8Ze + OTt 0Z) ” (Z[214 ZZ;g

three lines.
and, letting Zy1 = Zys = Zyx, Eqs. (14.6) become

Vaa’l = IaIZS + ]aZZM + [(ZOZM
Vaa’2 = ](ZIZM + ]a2ZS + IaOZM (1428)
Vaa’O = ]ale + ]a2ZM + IaOZS

The interconnection of the sequence networks shown in Fig. 14.8 satisfies
Eqgs. (14.28). The impedance Zs — Zy is inserted in each nejiork
between points a and o’ in series with the mutual impedanci
is common to all three sequence networks between the

Now let us evaluate the impedance terms Z» apd
special circuits in all of which Z, = Z, and the co
valid. We shall call Case I the condition havin
Zy = Z,. Conditions for the four cases that v

ERED
S N
’ Q&s‘mctlon that
W@%@@Eﬂﬁﬁ@ 2
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Case I: Z, arbitrary, Z, arbitrary, Z, = Z,
Case II: Z, arbitrary, Z, = Z. = 0
Case II1: Z, = 0, Zy arbitrary, Z. = Z,
CaseIV:Z, = «,Zy =2, =0
The values of Z, and Zs — Zx computed for the above four cases are
shown in Table 14.1.

Pos. seq. net. Pos. seq. net.
a, aj e, a
i A s 1
Zp
Neg. seq. net. Neg. seq. net.
a, a; a; a;
i - i S
YW u
Zy
Zero seq. net. Zero seq. net.,
a, ag Qg Cg
i A o N
o | 1
% _aay- AW
V4(Zo—Zp) Z/3
(a) Case] 2Z,=2Z, (b) Case Il Zy=Z=0
Pos. seg. neé. ’ Pos, seg.ln;:;tl.,
11— e S e
YV [ S 1
Zp
Neg. seq net Neg. seq. net.
a, a;
_L L"‘ T
L ] 'L
Zy
Zero seq. net Zero seq. net,
a, a; a4 Qg
9 1 r—
L o—1 ] 1
Zp
MWW
’Zb/s
(c) Case IIl Z,~=0, Z,=2Z, (d) Case IV Z,=o0Z,=Z ~

Fre. 14.9 Connections of the sequence networks for special casey
series circuits, in all of which Z, = Z,.

in Fig. 14.8, the sequence network connectio

as shown in ’Fig. 14.9. Case 1V is that for one ndRE@‘SJERED ¢
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would be expected, the interconnection of the networks is identical to
that shown in Fig. 13.16.

TasLE 14.1 ImpeEpanceE TerMms vor Fia. 14.8

Series impedance
Case Zs —Zy Zy
Phase a | Phase b | Phase ¢

I Zs Z, Z, Z V4(Za — Zb)
I Za 0 0 0 Za/3

1 0 Z Z Z —Z,/3

v % 0 0 0 I

If there is no path for zero-sequence current, a simple relation exists
between I,; and [,s in an unsymmetrical series circuit with Z, = Z,.
The connection of the sequence networks is shown in Fig. 14.10,

from which, by recognizing that I, splits in-

- versely as the impedances in' the two parallel
Pos. Seq('znit'. branches, we obtain
1 %1
I B - 7 s A
AN~ @ AT+ Zs — Zu) + Zs
ZgZy Z (
Tup = — L 22 14.29)
Neg. seq. net. Zs + Z,
Lo 22 where Z, is the series impedance of the nega-
«a_’\/\/\/\/ tive-sequence network measured between
ZsZy Lytl points a and ¢’. Equation (14.29) provides
a convenient method of determining the
Zay '

. negative-sequence current as a percentage of
:;I(;}u:: cioneg?gflf:t;gﬁ ﬁﬁ; the positive.-s'eguence curren’? when examin-
series impedances in two lines  ing the possibility of overheating due to nega-
of a three-phase system, zero-  tive-sequence current.
sequence currents absent. If two of three series impedances are infi-
nite, the proper interconnection of the networks cannot be determined
from Fig. 14.8 because Eqs. (14.28) are indeterminate in such a
IfZ,=0and Zy = Z, = =,

Z
ZS:%(Za-}_Zb_*-Zc):% @
Zwy = Y4(Za + aZy + a’Z,) = (14.30) 4)@

REGISTERED /QL
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Zyus = }é(za + a*Zy + aZc)
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and Eqgs. (14.28) become

Vw1 = Y4(21a1Zy — LasZp — TaZp) = 16Z4(21a1 — Tao — Lao)
Vawz = 5(—TaZy + 21usZy — LaoZs)

= 187y(—Tar + 21a2 — lao) (14.31)
Vawo = Y3(—ITarZy — TaaZp 4 2100Zs)

= 14Z(—Ta1 — Taz + 21a0)

Since it was shown in Chap. 13 that I,y = T2 = lao when two conductors
are open, Eqgs. (14.31) are indeterminate, because the voltages are the
product of zero times infinity. The proper connection of the networks
for two open conductors is discussed in Chap. 13 and shown in Fig. 13.19.

148 The Open-A Transformer Bank. One reason some power
companies prefer to use banks of single-phase transformers rather than
a single three-phase unit is that a bank can be operated open-A in the

a a’
b ¢
c b

Fia. 14.11 Wiring diagram of an open-A transformer bank.

event of damage to the windings of one phase. On a growing system
open-A banks are sometimes installed at first, and the additional unit
is added when the load requirements increase beyond the rating of the
open A.

The open-A transformer bank constitutes an unbalanced series imped-
ance in the system. If the two units are identical, the equivalent circuit,
with magnetizing current disregarded,

. . . . . a’
comprises equal impedances 1n series in

two phases and zero impedance in the Z
third phase. Figure 14.11 shows the & 414% b’
connections of an open-A transformer Z,
bank, and the circuit has been drawn ¢ LIITO- ¢

deliberately to show that the circuit can Fie. 14.12  Equivalent circu
. . open-A transformer b4
be treated as a Y connection with one  jng current neglaeted
phase short-circuited. Thus, the equi-
valent circuit of the open-A transformer bank is the
transformer with one phase short-circuited, as sho
The proper value of per-unit impedance for the
be determined. The leakage impedance of t

will usually be given in per cent or per unit based

A1+t circuit must 6}

S REGISTERED &
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Let

Zy = leakage impedance of each transformer in ohms

Z; = per-unit leakage impedance of each transformer on the three-
phase base of the system

Zy = per-unit leakage impedance of each transformer based on the
rating of the transformer

[

Then
Zr(kva)

Ze = (kv)? X 1,000

(14.32)

where (kv) and (kva) are rated values for the transformer. If the rated
kv of each transformer is the base line-to-line kv of the system and the
base three-phase kva of the system is 3 X rated kva of each transformer,
the per-unit impedance of the transformer on the base of the three-phase
system is

3Z (kva)

Ze = (kv)? X 1,000

= 3%, (14.33)

where (kv) and (kva) have the same values as in Eq. (14.32). In the
equivalent circuit shown in Fig. 14.12, a per-unit series impedance of
Z, is shown, in agreement with the above discussion.

As shown by Fig. 14.12, the equivalent circuit of the open-A trans-
former bank is an example of Case III of Table 14.1. Since zero-sequence
current cannot flow, the connection of the sequence networks is that
shown in Fig. 14.10 with Zs = 2Z,/3, Zyy = —Z,/3, and Zy — Zy = Z,.
From Eq. (14.29), the negative-sequence current in the transformer bank
in terms of the positive-sequence current is

~7Z./3
“2Z.,/3 + Z,
Z
o7, + 37,

]a2 = —[ -
(14.34)
[ag = [

In Eq. (14.34) the impedances may be in per unit referred to a base as
discussed above, or the impedances may be in ohms where the leakage
impedance of the transformer is referred to the side of the transformer
to which the motor is connected.

Example 14.3

A 500-hp, 6.9-kv, 0.8-power factor synchronoug
an infinite bus through an open-A transformer ba )
transformer bank is rated 13.8-6.9 kv, 200 kvs
of 89. Find the negative-sequence current 1%
of the positive-sequence current.

ERED

/ E@, un:es o the ,/é\'%
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Solution

Since the kva rating of the motor is not specified, it will be assumed
to be 1.1 times the rated horsepower

. o : : Neutral bus
in accord with the rule given in Negative-seuranca network
Sec. 8.4. Thus,

kva = 1.1 X 500 = 550 jo.218

. . I Lo TI
A typical value of 209, will be as- ll Seu— Loz al

sumed for negative-sequence react- j0.24
ance, and negative-sequence resist- L i

. L e
ance will be neglected. —j008 I+l

Select a three-phase base of 600 TFiec. 14.13 Negative-sequence net-

kva, which is three times the rated Work and mutual impedance common
! . to the positive- and negative-sequence
kva of one transformer, and a line- | ctworks for Example 14.3.
to-line base voltage of 6.9 kv. Then,
the per-unit leakage reactance of the transformer is
Zy = jXp = 70.08 per unit
and on the three-phase system base
Z; = 3Zy = 3 X j0.08 = 50.24 per unit
The negative-sequence reactance of the motor on the selected base is
Zy = jX, = j0.2 X 600£x, = j0.218 per unit
For the open-A transformer bank,
Zs =10 Zy =2, = Z; = j0.24
Zs = 143(0 4 70.24 + 50.24) = j0.16
Zy = 140 + ¢j0.24 4 0*0.24) = —750.08
Zs — Zy = 70.24
Since only the ratio [,./1,: is desired, the positive-sequence network

is not needed. The significant portion of the network connection is
shown in Fig. 14.13. From Fig. 14.13,

_ —70.08 _ J0.08
Tor = L“jO.24 — 70.08 + 70.218 = Tl 5378 70.378 = 021214
or from Eq. (14.34),
o, o _ o, J024
o = lu i io6ma = Totjtag1 — 0212«

and
Ia2 .
7. =212%

If the supply is not an infinite bus, the impgd
sequence network between a and o is larger th
problem, and I,; is a smaller percentage of I,1.

e the negative-
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PROBLEMS

14.1 Balanced three-phase voltages of 100 volts line-to-line are applied to a
Y-connected load consisting of three resistors. The neutral of the load is not
grounded. The resistance in phase a is 10 ohms, in phase b 20 ohms, and in phase ¢
30 ohms. Find the current in phase a by symmetrical components.

14.2 If the load of Prob. 14.1 is supplied by a generator rated 500 volt- -amps,
100 volts, find the current in phase a. Assume that the field of the generator ig
adjusted to give a terminal voltage of 100 volts line-to-line at no load. The per-unit
reactances of the generator are X; = 1.0, X, = 0.10, and X, = 0.05.

14.3 A 1,000-hp, 2,300-volt, synchronous motor has per-unit reactances of
X; = 1.0, X" =0.15, X; = 0.10, and X, = 0.05. It is delivering full load while
operating at 2,300 volts, unity power factor. The efficiency of the motor is 90%.
The motor is directly connected to a 2,000-kva, 2,300-volt generator having per-unit
reactances of X; = 1.0, X, = 0.15, and X, = 0.10. Sometime later a single-phase
lighting load rated 1,000 kw, 2,300 volts is connected between two of the lines. Find
the ratio of the negative-sequence current in the generator to the rated current of the
generator. Find the ratio of the negative-sequence current in the motor to the rated
current of the motor. Find all terminal voltages.

14.4 The high-tension side of a transformer is connected to an infinite bus, and
the low-tension side is connected through series reactors to a bus supplying a group of
motors. The three-phase transformer is rated 4,500 kva, 2.4A-115Y kv with leakage
reactance of 10%. The reactance of one of the current-limiting reactors connecting
the transformer to the motor bus is 0.3 ochm. The reactance of each of the other
two reactors is 0.2 ohm. The group of motors consists of induction motors having a
total rating of 2,000 hp and synchronous motors having a total rating of 1,000 hp.
All the motors are rated 2,300 volts. The induction motors are rated at 70.7 9, power-
factor with 85¢, efficiency and have a negative-sequence reactance of 109%. The
synchronous motors are rated at unity powerfactor with 90% efficiency and have a
negative-sequence reactance of 20%. Determine the negative-sequence current in
the series reactors in per cent of the positive-sequence current.

146 A 15-kva, 1,150-volt alternator has per-unit reactances of X, = 1.0,
X, = 0.20, and X, = 0.10. 'The alternator supplies a balanced three-phase load of
resistors rated 15 kva, 115 volts. The transformer connecting the alternator and
load is & A-A bank, each unit of which is rated 5 kva, 1,150-115 volts with a leakage
reactance of 109. The voltage at the load is 115 volts when two 1.5-kva, 115-volt
loads of pure resistance are connected across two pairs of lines on the low-tension
side of the transformer. Find the ratio of negative-sequence to positive-sequence
current in the generator.

14.6 A 10,000kva, 11.5-kv generator supplies a 10,000-kva, 2,200-volt motor
through an open-A transformer bank. Each transformer is rated 7,500 kva, 11.5-2.3
kv and has a leakage reactance of 10%. The motor draws rated kva at rated vq
Based on their respective ratings the generator and motor have the i
reactances of X; = 1.0, X" = X, = 0.10, and X, = 0.05. Deijgmmi
negative- to positive-sequence current in the gencrator.

14.7 'Two transformers rated 6.9-2.3 kv, 75 kva with 8 Z
in open delta to the 6.9-kv lines of a very large system.
synchronous motor rated 2,300 volts, 100 hp (110 kva), af
negative-sequence reactance of the motor is25%,. Find
current in the motor to positive-sequence current in the
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CHAPTER 15

POWER SYSTEM STABILITY

15.1 The Stability Problem. When a-c generators were driven by
reciprocating steam engines, one of the major problems in the operation
of machinery was hunting. The periodic variations in the torque applied
to the generators caused periodic variations in speed. The resulting
periodic variations in voltage and frequency were transmitted to the
motors connected to the system. Oscillations of the motors caused by
the variations in voltage and frequency sometimes caused the motors
to lose synchronism entirely if their natural frequency of oscillation
coincided with the frequency of oscillation caused by the engines driving
the generators. Damper windings were first used to minimize hunting
by the damping action of the losses resulting from the currents induced
in the damper windings by any relative motion between the rotor and
the rotating field set up by the armature current. The use of turbines
has reduced the problem of hunting, although it is still present where the
prime mover is a diesel engine. Maintaining synchronism between the
various parts of a power system becomes increasingly difficult, however,
as the systems and interconnections between systems continue to grow.
The tendency of a power system or its component parts to develop
forces to maintain synchronism and equilibrium is known as stability.
Much study has been devoted to stability since about 1920.

Let us consider a synchronous motor connected through a transformer
to a large power source. We shall see later that the power delivered to
the motor is determined by the voltage of the source, the internal voltage
of the motor, and the phase angle between these two voltages. The
phase angle depends upon the position of the rotor of the
power delivered to the motor when it is running at constant
course, equal to the power output of the motor plus 1d
If the mechanical load on the motor is increased, the

the entire load until its power input increases. , the motor

slows down. The phase angle between the inteznal e of the motor 6}
and the voltage of the system increases until e@mREI@,rsuTE RED O
to the motor is equal to the power output plus s While the angle ¢
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is increasing the excess of the power required by the motor over the
electric power input is supplied by the stored energy in the rotating
system. As the motor speed decreases, the stored energy supplies part
of the load. If the motor oscillates around the new point of equilibrium
and eventually comes to rest, the application of the load has not caused
the motor to lose stability. If the increase in load is too large or is
applied too suddenly, the motor may lose synchronism, in which case the
stability limdt is said to have been exceeded. If the reactance of the
transformer or of a transmission line between the motor and the power
source is increased, the likelihood of maintaining stability is decreased, as
we shall see later.

Lines having increased impedance and lower cost became practical
with the advent of voltage regulators, but the increased reactance pre-
sented power system engineers with a more acute problem of stability.
The rapid development of power systems after World War I was inter-
rupted only temporarily by the depression of the early thirties, and as the
individual power systems grew so did the interconnections between them.
The interchange of power between different power companies and the
long distance transmission of power now pcssible are a tribute to the
ability of engineers to solve the stability problem in spite of the high
reactance which is inherent in long lines between sources of power and
the load. In the fall of 1941, when preparations for World War II were
putting an increased demand on many power systems, an acute water
shortage threatened to reduce the power available from hydro installa-
tions and curtail important war industries in Alabama, Georgia, and
Tennessee. Because of the progress that had been made in the design
of systems for stable operation, power was sent into the area of critical
shortage from Texas, Florida, Virginia, the Carolinas, Pittsburgh,
Pennsylvania and Chicago, Illinois. The continued development of the -
hydraulic resources of the United States with the resulting increase in
distance from points of generation to load centers will increase the
importance of stability studies in the years ahead.

Stability and the stability limit are defined in ‘“American Standard
Definitions of Electrical Terms,” published by the American Institute of
Electrical Engineers,! as follows:

“Stability, when used with reference to a power system, i
bute of the system, or part of the system, which enalgas id

the disturbing forces so as to restore a state of eq
elements,
“A stability limit is the maximum power flq

L ¢ American Standard Definitions of Electrical Term
American Institute of Electrical Engineers, New Yor
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particular point in the system when the entire system or the part of the
system to which the stability limit refers is operating with stability.”

The terms stability and stability limit are applied to both steady-state
and transient conditions. Steady-state stability limit refers to the maxi-
mum flow of power possible through a particular point without the loss
of stability when the power is increased very gradually. 7Transient
stability limit refers to the maximum flow of power possible through a
point without the loss of stability when a sudden disturbance occurs.
The transient disturbance may be a sudden increment of load which
could be carried with stability if it were applied gradually but which
causes the loss of stability because of the rapidity of its application.
More often the disturbance for which it is desired to know the transient
stability limit is caused by a fault, or by switching one of several parallel
lines out of the circuit, or by a combination of a fault and its subsequent
isolation by disconnecting part of the system. The transient stability
limit differs from the steady-state stability limit because the former
depends on the nature and severity of the disturbance and is always
below the steady-state stability limit. Because every system is subjeet
to transient disturbances and because the transient stability limit is
always lower than the steady-state stability limit, transient stability is
the more important of the two and will be given more treatment in the
discussion to follow.

A very simple power system consists of a generator or motor connected
to an infinite bus. Almost as simple is a system containing only two
synchronous machines. Since the machines located at any one point in a
power system usually act together, it is customary in stability studies
to consider all the machines at one point as one large machine. Often
machines which are not actually connected to the same bus but which
are not separated by lines of high reactance may be lumped together
and considered as one machine. When studying the performance of
one machine connected to a large system, the system may be considered to
have constant voltage and constant frequency. Such a system is called
an infinite bus. Thus, a multimachine system sometimes can be reduced
to the equivalent of a two-machine system. The factors affecting the
stability of a two-machine system, or the stability of one machine con-
nected to an infinite bus, are the same as those which 1nﬂuence a

of one machine and an mﬁmte bus, is so much less co E
the analysis of a multimachine system that stabili b
qu1valent finite
W. Kimbark
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2 A system consisting of two finite machines may be treatd
machine and an infinite bus if certain modifications are g
“Power System Stability,” Vol. I, “Elements of Stabilit
John Wiley & Sons, Inc., New York, 1948,
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understood by studying one machine connected to an infinite bus.
Multimachine stability problems are beyond the scope of this book.

15.2 Steady-state Stability. For balanced conditions the equivalent
circuit of a two-machine system is a four-terminal network, as discussed
in Chap. 6. The sending-end voltage for steady-state conditions is the
voltage behind synchronous reactance of the generator, and the receiving-
end voltage is the voltage behind synchronous reactance of the motor.
Equations (7.6) and (7.8) were developed from the circle diagrams of a
four-terminal network to give the power at the receiving end and sending
end of the network. The same equations apply to the two-machine
system and give power developed by the generator and the motor if the
voltages behind synchronous reactance of the machines replace V¢ and
V= and if the generalized circuit constants include the network formed
by the synchronous impedances of the machines and the circuit connect-
ing them. The equations become
|Eg||B:Eml cos (ﬂ _ 5) —
|Ey| - | B

|B|

|A] - |Enl*

Motor: P, =
1B

cos (8 — ) (15.1)

cos (8 + §)

Generator: P, = —

|D| - |E,
~ [B]

+ cos B —4) (15.2)
Similarly, from Egs. (7.7) and (7.9) the maximum power developed by
the motor and generator can be found from the equations below:

E,| - |En| _ |A] - By
|B| IB{
Byl - | En|
B

P = cos (8 — a) (15.3)

P = cos (B — A) (15.4)
The power given by the preceding equations is power per phase if the
voltages are line-to-neutral voltages. If the voltages in the equations
are three-phase line-to-line voltages, the power is total three-phase power.
As explained in Sec. 7.4, if the circuit contains any resistance, the maxi-
mum power output of the generator cannot be realized, for the maximum
power input to the motor will be exceeded before the maximum output
of the generator is reached.

The circle diagrams of the power developed by the genera
of a two-machine system are shown in Fig. 15.1. The ¢

for equal values of E, and E,, and are similar to tjeezg Q{g,
he tor

sending-end circles discussed in Chap. 7. The poiY
the maximum power that can be developed by thgs ?s TERED
to increase. The load may be increased until § = J which condition ¢

angle § is less than 3, any additional load placed e%afREﬁ
RSION
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the motor is developing maximum power. If the load on the shaft
requires a power greater than that developed when § = 8, § will continue
to increase since the motor cannot maintain synchronous speed if its
developed power is less than the power output to the shaft. The excess
of power required over power de-

Kvars
veloped must come from the stored  inquctive P
energy of the rotating system as it 8 . smex)
slows down. Theresultingincrease
in & above the value of 8 causes a
smaller developed power, and the Power circle
motor slows down still further, / for the

. . t
causing larger values of § and still gener:vsr
lower developed power. The mo-
tor will lose synchronism completely.

The point marked P, ... in Fig. PO\#?I’ circle for
15.1 is the theoretical maximum @ motor
power that can be developed by the Y=

B, (max}

generator, but it need not be con-
sidered in the two-machine system calf)\g::ri%ve
since the motor loses synchronism Fig. 15.1 Power circle diagrams for the
when § = g and beforethe generator generator and motor of a two-machine
is developing its maximum power, System.
The difference between motor and generator developed power at any torque
angle is the power loss in the connecting network.

If resistance is neglected, the positive-sequence impedance diagram for
a two-machine system is that shown in Fig. 15.2, where X includes the
per-unit synchronous reactances of the generator and motor and the
reactances of the comnecting circuit. Since
resistance and shunt admittance are neglected,
the generalized circuit constants of the network
are

Z=jX

E E,
: A=1/0° B=x/%0°
_ — o
F1c.15.2 Positive-sequence ¢=0 D =1/0
impedance diagram of a

7 . e
fwo-machine system. When the above generalized circuit constants

are substituted in Eqgs. (15.1) and (13.2), p,
transferred between the machines is given by

_B R
P = x| 8

Q_%chble power ,?(S‘/
§ REQ"’5§)TERED %
VERSION
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Since resistance is neglected, there are no I*R losses, and all the electric
power developed by the generator is received by the motor.

Neglecting resistance and shunt capacitance results in a higher calcu-
lated value for the steady-state stability limit for the motor than actually
exists, as may be seen by comparing Egs. (15.3) and (15.6). The con-
stant B in Eq. (15.3) is the series impedance of the circuit, and, if resist-
ance is included, B is slightly larger than the term X in Eq. (15.6). The
angle B, which is the impedance angle, is less than 90° if resistance is
considered. Both these factors make the power calculated by including
resistance smaller than that calculated when resistance is neglected; that
is, omission of R gives an optimistic result. When shunt capacitance is
included, the transmission line between the sending and receiving ends
may be represented by a nominal or an equivalent 7. For a symmetrical
m, Fgs. (6.20) give for the generalized eircuit constants

=1+—Z2~Y and B=7

When Y is zero, the constant A is 1.0/0°, but when both resistance and
shunt capacitance are included, A4 is less than 1.0, and « is a small posi-
tive angle. Decreasing A and increasing « have opposite effects on the
maximum power. Usually, neglecting shunt capacitance gives a pessi-
mistic result for the stability limit. In stability calculations the same
judgment must be used with regard to the inclusion of resistance and
shunt admittance in the analysis as is used when making any other calcu-
lations. Often the degree of accuracy obtained by making a more exact
calculation does not justify the additional complications involved. In
the case of transient stability, resistance is important in damping oscilla-
tions, and its neglect gives a pessimistic result.

The methods of increasing the steady-state stability limits of a system
are suggested by Eq. (15.6). An inecrease in the excitation of the gener-
ator or motor, or both, increases the maximum power that can be trans-
ferred between the machines. If the internal voltages are increased
without an increase in the power transferred, the torque angle § decreases,
as may be seen from Eq. (15.5). Any reduction in the reactance of the
network increases the stability limit. If the transmission line
a significant amount to the total reactance of the system, a
the stability limit can be obtained by using two pa
installation of parallel lines will also increase thegden
system since one line will still carry power while 2 t@

xQo'e voltage regu-

line. Series capacitors have been used in lines

lation, and more such installations are cons¥ §enREG IsyTE RE D

decreasing the line reactance they raise the stabj ¢
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15.3 Transient Stability—Review of Mechanics. The analysis of
any power system to determine its transient stability involves some
mechanical properties of the machines of the system, for after every dis-
turbance the machines must adjust the relative angles of their rotors to
meet the conditions of power transfer imposed. The problem is mechan-
ical as well as electrical, and certain mechanical principles must be kept
clearly in mind when considering the problem. Table 15.1 gives the
quantities which appear in problems concerned with the mechanics of
linear motion, or translation. The corresponding quantities for the
mechanics of rotation are also given in the table. The relations for
rotational systems apply to the solutions of transient-stability problems
and may be visualized by comparison with the more familiar relations
for translational systems.

TasrLe 15.1 CoMPaRISON OF QuUaNTITIES USED IN THE MECHANICS OF
TransLaTION AND RoTation
Translation Rotation
Quantity | Symbol | Equation Mks unit Quantity Symbol Equation Mks unit
Length 8 — meter Angular [ g =2 radian
displace- T
ment
Mass m — kilogram Moment of I [rrdm kilogram-
inertia meter?
Time t - second Time t —_ second
d r de
Veloeity » v = F: meter /sec A\?:l:zfiltly w © = rad /sec
soler 3 d.
Aceclera- « a = dv meter /sec? Angular @ a =2 rad/sec?
tion dat accelera- dt
tion
Force F F = newton Torque T T =Fr = ]a | newton-
meter or
joule /rad
Monientum M’ M = mv newton-sec | Angular M M =TIw joule-sec
momen- per radian
tum
Work w = [Fds| joule Work w W= /[Tdo |joule
aw w
Power P = watt Power P = L = Tw| watt
t dt
The kinetic energy of a rotating body is
= 1gJw? joules

which is analogous to the kinetic energy of trans
is in radians per second, Eq. (15.7) shows that mo
expressed in units of joule-seconds squared per y
the unit of joule-second per radian is derived

The stored energy of an electric machine is

fnertia may be
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in megajoules, and in engineering work angles are more often measured
in degrees. Accordingly, angular momentum M is often measured in
megajoule-seconds per electrical degree. When M is computed from
Jw with » determined by the synchronous speed of the machine, M is
called the inertia constant. This practice leads to some confusion, since
another term denoted by the letter H is also called the inertia constant.
The inertia constant H is defined as the megajoules of stored energy of a
machine at synchronous speed per megavolt-ampere of the machine

10
A
-
™
§ g 8 4 N
inx ™ =
T AN B———
€6 <
g B
8
< !
= I~
2
M r—l_IC
2
0 20 40 60 80 100

Generator rating—megavolt-amperes

Tic. 15.3 Inertia constants of large steam turbogenerators, including the turbine.
A, 1,800 rpm condensing; B, 3,600 rpm condensing; C, 3,600 rpm noncondensing.
(Repubhshed from Elec. Eng., Vol 56, p. 268, February, 1937)

rating. When so defined, the relation between M and H is derived as

follows:
Let
_ stored energy in megajoules
machine rating in megavolt-amperes
and
(@ = rating of machine in megavolt-amperes
Then

GH = megajoules of stored energy

From Eq. (15.7),

Stored energy = 14/w? = L4Mow (since

If M is in megajoule-seconds per electrical degreegand
degrees per second, the stored energy will be gi
megajoules. In electrical degrees per second, @
quency in cycles per second. Thus, Eq. (15.8

GH = 14 M (360f)

he.re f 1.s fr;e- @
'@ REGISTERED © 2
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and

M = 1%:)17 megajoule-sec/electrical degree (15.9)

As we shall see later, M must be determined in order to study transient
stability, but M depends on the size of a machine as well as on its type,
whereas H does not vary widely with size.

45
A
o 4 1/r
&g v L1
ile £V
= W B~
I g A A el =
€ r LT 1Dl —TT
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g A
-‘_Ev 2 <
2
1
0 20 40 60 80 100

Generator rating—megavolt-amperes

Fig. 15.4 Inertia constants of large vertical-type water-wheel generators, including
allowance of 159 for water wheels. A, 450-514 rpm; B, 200-400 rpm; C, 138-180
rpm; D, 80-120 rpm. (Republished from Elec. Enyg., vol. 56, p. 268, February, 1937.)

The quantity H has a relatively narrow range of values for each class
of machine regardless of the kva and speed rating of the machine. In
1937 an AIEE Subcommittee on Interconnection and Stability Factors®
presented data on average values of H, which are given in the table
below and in Figs. 15.3 and 15.4.

TaBLE 15.2. INERTIA CONSTANTS OF SYNCHRONOUS MACHINES*
Inertia constant H,

Type megajoules/megavolt-amp
Turbogenerators. . ........... See Fig. 15.3
Waterwheel generators. ....... See Fig. 15.4
Synchronous condensers:{

Large..................... 1.25
Small............... ... ... 1.00
Synchronous motors. .. 2.00

* Republished from Elec. Eng., p. 260 February, 1937.
t Hydrogen cooled, 259, less.

If the WR? of the machine is known,* including the p!

3 AIEE Subcommittee on Interconnection and Stability L
Power System Stability,” Elec. Eng., vol. 56, pp. 261-282,

* The term W R? is equal to the weight of the rotating parts g
the prime mover or load) multiplied by the square of 1
WR? is moment of inertia in pound-feet squared. WR?2
slug-feet squared.
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generator and the connected load for a motor, H may be determined as

follows:
From Eq. (15.7), using English units, we obtain
_ 1 WR?| 2z (rpm) g .
KE. =2 5559 [ﬁ(—)—()— ft-1b ' (15.10)

Converting foot-pounds to megajoules and dividing by the machine
rating in megavolt-amperes, we obtain

748 X 10— ‘*% %@ [%%8@]2
I - (15.11)
mva rating
—10 2 2
g _ 231 X 107 R*(rpm) (15.12)

mvsy rating

When several machines at one location are considered as one machine,
the single equivalent machine has a rating equal to the sum of the ratings
of the several machines considered to act together during the transient
period. The inertia constant M of the equivalent machine is the sum
of the inertia constants M of the individual machines.

15.4 The Swing Equation. If the torque caused by friction, windage,
and core loss in a machine is disregarded, any difference between the shaft
torque and the electromagnetic torque developed must cause acceleration
or deceleration of the machine. If T, represents shaft torque and 7,
is electromagnetic torque and if these values of torque are considered
positive for a generator (that is, with mechanical input on the shaft and
electric output torque developed), the torque causing acceleration is

T,=T,— T, (15.13)

and T, is positive denoting acceleration when T, is greater than 7..
When the same equation is used for a motor with 7', and T, both negative
to denote electric input and mechanical output, 7', is positive and indi-
cates acceleration when 7. is greater than 7. A similar equation holds
for accelerating power, namely,

P, =P, — P, (15.14)

where P, is the shaft power and P, is the electric power de
a generator. For a motor, P, is the negative of the diffe
the electric power input and the electric losses of the
is the negative of the electric power developed.
(friction, windage, and core losses including eddy—
damper winding) are considered, P, is the neg e _shaft power

output plus rotational losses for a motor, and P; K afR IStTERED ¢
minus rotational losses for a generator.
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Since power is equal to torque times angular velocity,
Po=Tw=TIaw =M« (15.15)

The accelerating power P, is in megawatts if M is in megajoule-seconds
per electrical degree and the angular acceleration « is in electrical degrees
per second squared. The acceleration « expressed in terms of the angular
position 8 of the rotor is

a6
ar

o = (15.16)

Since 6 is continually changing with time, it is more convenient to
measure angular position with respect to a reference axis which is rotat-
ing at synchronous speed. If 8 is the angular displacement in electrical
degrees from the synchronously rotating reference axis and w, is the
synchronous speed in electrical degrees per second,

6 = wt -+ & (15.17)
Taking the derivative with respect to ¢, we obtain

de ds

prair + 7 (15.18)

and taking the derivative again

d*e  d*
JE = dP (15.19)
From Egs. (15.15), (15.16), and (15.19), we obtain
]l[ = = P, =P, — P, (15.20)

dt2
Equation (15.20) is called the swing equation. The angle § for a machine
connected to an infinite bus is the torque angle as used in Eqgs. (15.1),
(15.2), and (15.5) since this angle is the difference between the internal
angle of the machine and the angle of the synchronously rotating refer-
ence frame, which in this case is the infinite bus. For a two-machine
system two swing equations are necessary, one for each machine. The
torque angle between the two machines depends on the angles bet
each machine and the synchronously rotating reference framg

The angular momentum M of a machine is not cog AT

angular velecity is changing, but M may be treated as @1 AL ED ,/
clronous speed @@
%ﬂ (also d631g—

1] ¢ Speed Of trhe ma(‘hine does nOt/ diffel muCh ft'()IIl 1§
¢

unless the stability limit is exceeded. The inertia
nated as M) is truly constant because it is defing
at synchronous speed. Shaft power P, is con?
solution of the equation. For a generator thi
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even though the input from the prime mover may be controlled by
governor action, since governors do not act until the speed changes by
at least 19, and response to their action is not instantaneous in any case.
For a motor the load remains constant since the speed does not change
appreciably unless stability is lost. Electric power P. is given by
Eqgs. (15.1), (15.2), or (15.5). Transient reactance is used to determine
the generalized circuit constants in Eqgs. (15.1) and (15.2) and to deter-
mine X for Eq. (15.5), where resistance is neglected. Transient reactance
is the best value to use because the rotor of the machine is constantly
changing position with respect to the mmf of the armature current so
that flux changes over the rotor face in a manner similar to that of the
changing flux when transient reactance is evaluated. E, and E, are
voltages behind the transient reactance of the generator and of the motor.
From Eq. (15.5), the swing equation becomes

d* _ B B

M =P, X

sin & (15.21)
or from Eq. (15.6),
M % =P, — Puucsin g (15.22)

For a multimachine system involving several swing equations, no
formal solution of the equation is attempted, and a point-by-point
solution, usually with the help of a calculating board, must be made.
Even for the simple case of one machine and an infinite bus with resistance
neglected, which involves the solution of Eq. (15.22) alone, the formal
solution requires the use of elliptic integrals. The solution gives values
of & for different times, and a graph of & versus ¢ is usually plotted.
Such a graph is called the swing curve. If the swing curve indicates
that the angle § starts to decrease after reaching a maximum value, it is
usually assumed that the system will not lose stability and that the
oscillations of & around the equilibrium point will become successively
smaller and eventually be damped out.

15.5 Equal-area Criterion of Stability. In a system where one
machine is swinging with respect to an infinite bus, it is not necessary to
plot and inspect the swing curves to determine whether the torque angle
of the machine increases indefinitely or oscillates around an g
position. Solution of the swing equation, with the usual asg
constant P,, a purely reactive network, and consta
transient reactance, shows that & oscillates around
with constant amplitude if the transient stability
The principle by which stability under transienfge
without solving the swing equation is called
stability., It may be applied to any two-ma

an’s 18 determmed

@arRE@I&TERED 2

system, but it is
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especially simple for one machine and an infinite bus, for which the
derivation follows.
The swing equation for the machine connected to the bus is
d2s

M%7 =P, ~ P, (15.23)

Multiplying both sides of the equation by %5, we have

d%s dé ds
M 7l T (Ps — P,) i (15.24)
The left side of Eq. (15.24) may be rewritten to give®
1. d(ds/d)? . dé _
§ M T = (Ps Pe) % (1520)

Rearranging, multiplying by dt, and integrating, we obtain

ds\’ b9(P, — P,)

(Ez?) = /EB——M——da (15.26)
or

do \/ S9(P, — P.)

7= /B S db (15.27)

where 8, is the torque angle when the machine is operated synchronously
before the disturbance occurs, at which time dé/dt = 0. The angle § will
cease to change, and the machine will again be operating at synchronous
speed after a disturbance, when dé/dt = 0 or when

bo(P, — P.)
/50 m e = 0 (15.28)

As we shall see later, the machine will not remain at rest with respect
to the infinite bus the first time dé/dt becomes zero, but the fact that &
has momentarily stopped changing may be taken to indicate stability,
which corresponds to the interpretation that the swing curve indicates
stability when the angle 5 reaches a maximum and starts to decrease.
Some of the conditions caused by the sudden increase in the mechanical
load on a synchronous motor connected to an infinite bus can be
dicted by analyzing Fig. 15.5. The sinusoidal curve P, is a
electric power input to the motor with all resistance geold
curve P, is plotted from Egs. (15.5) and (15.6), where |}

5 The rearrangement of the left side of Eq. (15.24) to ol
verified by substituting dxz/d¢ for x in the formula

@_ dx
dt T dt
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of the infinite bus, |E,| is the voltage behind transient reactance of the
motor, and X is determined from the transient reactance of the motor
plus the reactance of the transformer and line, if any, between the motor
and the infinite bus.

Originally the motor is operating at synchronous speed with a torque
angle of 8, and the mechanical power output P, is equal to the electric
power input P, corresponding to . When the mechanical load is sud-
denly increased so that the power output is P,, which is greater than the
electric power input at §o, the difference in power must come from the
kinetic energy stored in the rotating system. This can be accomplished

only by a decrease in speed, which re-

. sults in an increase in the torque angle

Aec/\li =Easin® 5 As 6 increases, the electric power

B IV T received from the bus increases until
P, = P, at point b on the curve. At

E —fa this point there is an equilibrium of in-
put and output torque so that accelera-

0 5 5 5 T50° tion is zero, but the motor is running

Fic. 15.5 Electric power input to a at, I?SS thm.l synchronous speed SO, that
motor as a function of torque angle 5. 0 18 INCreasing. The angle § continues
The load is suddenly increased from to increase, but after passing through
]: r"outg di:’b::vgeeihgo :;(zlt%rm'osmuates point b the electric power input P, is

greater than P, and the difference
must be stored in the system through an increase in kinetic energy accom-
panying an increase in speed. Thus, between points b and ¢ as é increases,
the speed is increasing, until synchronous speed is again reached at pointc,
where the torque angle is 8,,. At point ¢, P. is still greater than P,, and
speed continues to increase, but 8 starts to decrease as soon as the speed
of the motor exceeds synchronous speed. The maximum value of § is
dm, at point ¢. As & decreases, point b is reached again with the speed:
above synchronous speed so that § continues to decrease until point a is
reached. The motor is again operating at synchronous speed, and the
cycle is repeated.

The motor oscillates around the equilibrium torque angle 8, between
angles 3, and §,. If damping is present, the oscillations decrease, and
stable operation results at 8,. Table 15.3 shows the changes in gaced,
angle, electric power input, mechanical power output, st
and acceleration or deceleration as the machine oscill@e L }E D
study of this table will lead to a better understagis ‘%t ;ﬁ len ,/@
disturbances. /?

The changing position of the synchronous motog éﬂg with respect
to an infinite bus may be visualized by an anald mﬁ

swinging from a pivot on a stationary frame, B wn 1n§§zSTE R E D ¢
VERSION
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Points a and ¢ are the maximum points of the oscillation of the pendulum
about the equilibrium point b. Damping will eventually bring the
pendulum to rest at b. Now imagine a disk rotating in a clockwise
direction about the pivot of the pendulum, as shown in Fig. 15.6b, and
superimpose the motion of the pendulum on the motion of the disk.

TaBLE 15.3 Cuanging CONDITIONS IN A SYNCHRONOUS MOTOR SWINGING
wiTH REsPECT TO AN INFINITE BUS BECAUSE oF A SUDDEN INCREASE IN Loap

Position in cycle Motor Torque Eleetric if::gcj slifcs)tirtrinigs
(see Fig. 15.5) speed, w | angle, 5§ | power, P, 151? — W| undergoing—
Atpointa........... @ = s, § = &, P, <P, | W = W,*| Deceeleration
decreas- | mini- mini- decreas-
ing mum mum ing
From a toward b. .. .. @ < ws, increasing | P, < P,, | W < W, | Deceleration
decreas- increas- decreas~
ing ing ing
Atpointb........... w < w,, 8 = &, P.=pP, |W<W,
mini~ increas- increas- mini-
mum ing ing mum
From b toward ¢. .. .. w < ws, increasing | P, > P,, | W < W,, | Acceleration
increas- increas- increas-
ing ing ing
Atpointe... ... ..., w = wy, 8 = dm, P, > P, W = W,, | Acceleration
increas- maxi- maxi- increas-
ing mum mum ing
From ¢ toward b...... @ > w,, deereasing | P, > P,, | W > W,, | Acceleration
increas- decreas- increas-
ing ing ing
Atpointb......... .. w > w,, 8 = Js, P,=P, |W>W,
maxi- deereas- | decreas- | maxi-
mum ing ing mum
From b toward a. .. .. w > s, dcereasing | P. < P,, | W > W,, | Deccleration
decreas- mini- decreas-
ing mumn ing
Atpointa........... Cycle starts to repeat as above

* W, is the stored energy at synchronous speed; that is, W, = 4lw,?

When the pendulum is moving from a to ¢, the combined ang
is slower than that of the disk. When the pendulum ig mo
to a, the combined angular velocity is faster than that
points a and ¢, the angular velocity of the pendul
the combined angular velocity equals that of the 4 he angular
velocity of the disk corresponds to the synchroupg of the motor 6}

and if the motion of the pendulum alone repre S‘RE@I&T E RE D %

motor with respect to an infinite bus, the supe d motion of the
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pendulum on the motion of the disk represents the actual oscillation of
the motor.

The maximum swing of the motor, to a torque angle 5,, is found by a
graphic interpretation of Eq. (15.28). When this equation is satisfied, the
maximum value of 3 is reached and ds/dt = 0. The shaded area 4, in

(a) Pendulum (&) Pendulum on disc
Tic. 15.6 Pendulum and rotating disk to illustrate a motor swinging with respect to
an infinite bus.

Tig. 15.5 is
8o
A, = /6 (P, — P,) db (15.29)
Similarly, the shaded area A, is
A, = /55 (P, — P ds (15.30)
and .
A — A, = [*(P,— Py ds — /B (P, — Pyds  (15.31)
A — Ag = /: (P, — P,) db (15.32)

Equation (15.28) is satisfied and dé/dt = 0 when A4, = A,. The maxi-
mum torque angle 8, is located graphically so as to make A equal to 4.
A study of Table 15.3 shows that the energy lost as the motor decelerates
and 6 increases to &, is regained by the time 6, is reached.

Figure 15.7 shows a suddenly applied load which is larger than that
shown in Fig. 15.5. The area 4, above P, under the curve P, is less than
A, and db/dt is not zero at & = 5,. Therefore & continues o ingliN
after 8 = §,. P, again becomes less than P,. The torque 4
tinues to increase beyond §,, and restoring forces are E(RE D
The system is stable only if an area 4, can be located SFve uSual to @
A,. The test of equal areas is called the equa b & rion The /?
maximum allowable increase in the power suddep {~rom the motor
originally supplying the power P, is shown i g )7' E RE D
applied load greater than that shown in Fig. 15 Q ld not permit the ¢
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torque angle of the motor to stop decreasing before the input power
became less than the power required, since the area above P, would be

less than A;.

A
P 2

Aj
Fe

5 O
TFia. 15.7 Electric power input to a
motor as a function of torque angle for a
suddenly increased load such that
A, < Ay

15.6 Further Applications of the Equal-area Criterion,

A2

Ay

Py

v

8o Sm
Fic. 15.8 Electric power input to a
motor as a function of torque angle for
the maximum sudden increase of load
without loss of stability.

The equal-

area criterion of transient stability can be applied to disturbances other
than the sudden increase in load on a motor. We shall discuss some of
the more important disturbances.

O :
Infinite
(a) One-line diagram bus
70000
LTI

"%

(b) Positive-sequence impedance diagram

==

(c) Positive-sequence impedance diagram
with one line open
Fic. 159 One-line diagram and positive-sequence impedance diagrams g
supplying power to an infinite bus through two transformers at ogpositg
parallel transmission lines.

@\%;EEIE} ,/@

se the gen- ,?QS‘

Qé' supplied over o

OHQM%TERED o)
""VERSION

ADDS NO

ED

When a generator is supplying power to an infinitq
transmission lines, the opening of one of the lines
erator to lose synchronism even though the loagss
the remaining line under steady-state conditions®
of such a system is shown in Fig. 15.9a. The g
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ance diagram is shown in Fig. 15.9b. When one line is opened, the

positive-sequence impedance diagram becomes that of Fig. 15.9c. The

opening of one line increases the reactance between the generator and the

bus. Increased reactance means that the torque angle must increase in

order to transfer the same power over the system as was carried before

opening the line. The generator is accelerated because the reduced power

output resulting from the increased reactance is less than the power input.

Acceleration increases the torque

P, (2 lines) angle. Power output curves plotted

against torque angle are shown in Fig,

P (1 line) 15.10 for the double-cireuit and single-

A € circult line. P, is the mechanical

power input to the generator. When

one line is opened, power output drops

8 8 8y from the point determined by the §,

Fie. 15.10 Equal-area criterion ap- ordinate and the upper power curve to

plied to the opening of onc trans-  the power determined by the 6, ordi-
mission line in the system of Fig. 15.9.

° nate and the lower power curve. The
excess of power input over power output causes the acceleration, which in
turn results in an increased torque angle. The torque angle oscillates be-
tween &, and 6, around the equilibrium value §,, as determined by the
equal-area criterion. As the line P, is raised, a value of P, will be found
where equal areas A; and A, are determined when §,, is at the intersection
of P, and the lower electric power output curve. This value of P, is the
transient stability limit for the switching operation described.

Short-circuit faults often cause loss of
stability, even though they may be removed
by isolating the fault from the rest of the p
system in a relatively short time. A three-
phase fault at one end of a double-circuit
line is represented in Fig. 15.11. All the
current from the generator flows through g . 15'11' Reactance diagram
pure reactances to the fault. Only reactive for a three-phase fault at the
power flows, and the real power output of end of a double-circuit line con-
the generator is zero. If the fault is sus- ?negrt:tlg buz. generator o an
tained and constant input is assumed, § will
increase indefinitely because all the input power must
acceleration.

When a three-phase fault at one end of a double-gire
by opening breakers at both ends of the faulted §
transmitted from the generator to the infinite
line. The equal-area criterion is applied as s
upper curve shows the variation of transmitteg

Ay

Ba

éRlE‘GIS’ITERED 2

pboer plotted against
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torque angle before the fault occurs. During the fault no power is trans-
mitted. When the fault is cleared at § = 8§, the power transmitted over
the remaining circuit is shown by the lower curve. The maximum angle
of swing is fixed by the condition that 4; and 4, must be equal. If clear-
ing of the fault takes place later than
for the case illustrated in Fig. 15.12
(that is, for a larger 4,.), it may be im-
possible to make the area A4, above S \
P, equal to A,, and the system will Vs <

lose stability. Thus, for any P, there § E tiine)
is a critical clearing angle, and, unless )
the fault is cleared before the torque
angle equals the critical clearing
angle, the machine will lose syn- gy 1512 Equal-area criterion applied
chronism. Tt is evident from Fig. to a three-phase fault removed from a
15.12 that larger values of P, require  System by opening one of two parallel
R . . transmission lines. No power is trans-
quicker clearing of the fault to main-  jitted during the fault.

tain stable operation.

When a three-phase fault occurs at some point on a double-circuit
line other than on the paralleling busses or at the extreme ends of the
line, there is some impedance between the paralleling busses and the fault.
Therefore, some power is transmitted while the fault is still on the system.
Regardless of their location, short-circuit faults not involving all three

Eg( ; i ; ) En Ey( ; _% ; ) En

(a) Circuit for three-phase fault at (b) Circuit for fault other than a three-
middie of one of two parallel lines phase fault at end of one line

B (2 lines)

Bae]

8 8, 8
o e m Rz during fault

LIILA

(¢) Circuit equivalent to (a) or ()
F1a. 15.13 Network reduction preceding stability deter

presented
he reference 6}

“REGISTERED
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phases allow the transmission of some power, because
by connecting some impedance between the fault poj
bus in the positive-sequence impedance diagra
circuit as shown for a three-phase fault in Fig.
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impedance shunted across the positive-sequence network to represent the
fault, the larger the power transmitted during the fault.

The power transmitted during a fault may be calculated after reducing
the network which represents the fault condition to a A-connected circuit
between the internal voltage of the generator and the infinite bus. Two
circuits before reduction are shown in Figs. 15.13a and 15.13b. Either
may be reduced to the A network of Fig. 15.13¢c. The current in the
reactance X, is 90° out of phase with the generator voltage, and the power
Bl - |Em|

1Kl
E, is the voltage behind transient reactance of the generator and E, is
the voltage of the infinite bus.

If power is transmitted during the fault, the equal-area criterion is
applied as shown in Fig. 15.14, where Pun.x sin § 1s the power transmitted
before the fault, 71Pua sin 8 is the power transmitted during the fault, and
72Pmax Sin 8 is the power trans-
mitted after the fault is cleared

in this leg is reactive. Real power transmitted is sin 8, where

Boaxsind i

% by switching at the instant when
3 // 2 ‘ 6 = 8. The terms r; and 7, are
A 7y Bnax sin & ratios of the maximum power that
T r P i can be transmitted during and

) Fnax sin 8 g
after the fault, respectively, to the
& & o maximum power that can be trans-

Fie. 15.14 Equal-area criterion. applied  itted before the fault. For the
to fault clearing when power is trans- . . . .
mitted during the fault. case illustrated in Fig. 15.14, §, is
evidently the critical -clearing
angle, since A, becomes equal to A, for the torque angle where P,
intersects 72Pmax sin 8. The power transmitted during the fault helps
to reduce the value of A; for any given clearing angle. Thus, smaller
values of r; result in greater disturbances to the system, for low r; means
low power transmitted during the fault.
In order of increasing severity (decreasing r1Pu.x) the various faults are:
1. Single line-to-ground fault
2. Line-to-line fault
3. Double line-to-ground fault
4. Three-phase fault
The single line-to-ground fault occurs most frequently, a
phase fault is least frequent. For complete reliabilit e
be designed for transient stability for three-phase [ a %(g\:tED ,/@@
$

locations. If this is impracticable from the econoi dint, reliabil-
ity may be sacrificed to the extent of designing fog ¥nt stability for

double line-to-ground faults. % Rﬁﬁolr%hl-ERED /()¢

An analysis can be made of Fig. 15.14 to ¢ a@a formu
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critical clearing angle. The shaded areas are

Al = Ps(ac - 60) - -L‘SC 7'1Pmux sin & dé

Ay = Py(8:; — 80) + 71Pmax(c0Os 8, — cos dp)
and

4; = fam 9P rse sIN 8 d8 — Py(8y — &)

¢

Ay = 79Puax(C0S 8, — €08 0p) — Po(8, — 8,)
For stability, A; = A,, or

P.b. — Pobg + 71Puax €08 8¢ — 71 Prax COS 8¢ = 72P max COS 60\
. — 19P ey €08 8, — P, + P4,
(r1 — 72)Puax €08 8, = P,(8¢ — 8p) + 71Pmex COS 8¢
o — 73Pmax COS
Solving for §,, we obtain

8, = cos™—t (Px/Pmax) (5m - 60) 4+ r2 cos 8, — r1 COS 8¢
’ Te — Ty
To evaluate 8,, we note that

P‘g =mesin 50
P, = ryPrax sin 6,

8¢ = sin™? PP* where 5, < 90°

8n = sin~! where §,, > 90°

Tod” max

339

(15.33)
(15.34)

(15.35)
(15.36)

(15.37)

(15.38)

(15.39)

(15.40)
(15.41)

(15.42)

(15.43)

The reader may derive special formulas for the critical clearing angle
with zero transmitted power during the fault, or for the maximum value

of P, with a sustained fault.

Example 15.1

The single-line diagram of Fig. 15.15 shows a generator connected
through parallel high-voltage transmission lines to a large metropolitan
system considered as an infinite bus. Numbers on the diagram indicate
the values of the reactances in per unit. The transient reactance of the

JjO.16

§{3 j0.24

j0.28 -

Fo~
j0.24

jo.16
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generator is included in the values marked. Breakers adjacent to a fauyly
on both sides are arranged to clear simultaneously. Specify in electrical
degrees the critical clearing angle for the generator for a three-phase

Jj0.16

j0.24

Jj0.24

j0.16

Jj0.16

Fic. 15.16 Positive-sequence impedance diagram for the system of Fig. 15.15.

fault at the point P when the generator is delivering 1.0 per-unit power.
Assume that the voltage behind transient reactance is 1.25 per unit for

the generator and that the voltage at
the infinite bus is 1.0 per unit.

Solution

The positive-sequence impedance
diagram is shown in Fig. 15.16.
Before the fault the impedance be-
tween the generator and the infinite
bus is

X =028 4 0.16
+ 0.16 + 0.24 + 0.16

5 = (.72

After the fault is cleared by opening
the circuit breakers at both ends of the
faulted line, the impedance between
the generator and the infinite bus is

X =0.28 -4 0.16 4 0.16 4 0.24
+ 0.16 = 1.00

During the fault the circuit is rep-
resented by the network shown in
Fig. 15.17a. Reduction of this circuit
to a A is accomplished by two Y-A

transformations as shown in Figs. 15.170 and 15.17c¢.

are as follows:

b

Jj0.56

4

j0.28
a

Jj0.16

Jj0.40

JjO.16

n

(a) Origina! faulted network

Jj0.08

o 70.20

(&) Network after delta-wye transformation

a

Jj2.98

d

¢

n

(c) Equivalent-delta network

= 0.080

X - 0.56 X 0.16 ~0.0895
7 056 + 0.16 + 0.40  L.12
X, — 0.40 X 0.56 _ 0.224 _ o0

1.12 112

Fig. 15.17 Steps in circuit redgati
for Example 15.1.
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0.16 X 0.40  0.064
Xno =49 — = 7z = 007
Xao = 0.28 4 0.08 = 0.36
Xa, = 0.20 4 0.16 = 0.36
x,, — 036 X 0.057 + 0.36 X 0.36 + 0.36 X 0.057

0.057

Il

= 2.08

It is not necessary to calculate X,. and X, since these purely reactive
shunts across the voltages of the generator and the infinite bus can absorb
no real power.

Equations for the power output of the generator are

1.0 X 1.25

Before the fault: Pu. sin § = —WM sin § = 1.735 sin 6
During the fault: 71Pp.x sin § = 1%%@ gin § = 0.42 sin §
After the fault: 7:Pun. sin 8 = 1—05%25 sin § = 1.25 sin 6
Hence,
0.42
ry = 1735 — 0.242
1.25 ,,
From Eqgs. (15.42) and (15.43), we obtain
. 1.0 v 60 . .
8o = sin~! 735 = 35.2° or 0.615 radian
8, = sin™! ]l. 5= 126.9°, or 2.22 radians

Substituting in Eq. (15.39) gives

5. — oog-1 [(1-0/ 1.735)(2.22 — 0.615) + 0.72 cos 126.9° — 0.242 cos 35.2"]

0.72 — 0.242
_ 0923—0432—0197 - _ no
= COS~ 0.478 cos™ ! 0.62 = 51.6

15.7 Point-by-point Solution of the Swing Curve.
criterion of stability is useful in determining whether or
remain stable for a sustained fault and in determining
which a machine may be permitted to swing befgs
It does not determine directly the length of time p hefore clear-
ing a fault if stability is to be maintained. ull perdtl étlme

for circuit breakers and their associated relays Xl orR& A&TE R E D ¢

a fault occurs. Constant progress in the desig -speed breakers is
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enabling them to operate in circuits of lower and lower voltage. In order
to specify a breaker of the proper speed the engineer must know the
critical clearing time, which is the time for a machine to swing from its
original position to its critical clearing angle. The critical clearing time
should be calculated for a fault in the position which will allow the least
transfer of power from the machine and for the most severe type of fault
for which protection against loss of stability is justified. If the critical
clearing angle has been determined by the equal-area criterion, a method
must be found to relate the angular position of the rotor to time. As
was previously pointed out, the solution of the swing equation yields
values from which a curve of angular position versus time, called the
swing curve, may be plotted. From the swing curve the time from the
beginning of a disturbance until the rotor reaches any angular position
may be read. A swing curve for the data of Example 15.1 could be used
to find the critical clearing time, corresponding to the critical clearing
angle determined by the equal-area criterion.

Generally, the only feasible method of solving the swing curve is by
making a point-by-point solution. In a point-by-point solution the
change in the angular position of the rotor during a short interval of time
is computed by assuming the variables in the swing equation to be con-
stant or to vary linearly over the interval. New values of the variables
are calculated at the end of each interval. The solution progresses
through enough intervals to obtain points for plotting the swing curve.
The accuracy of the resulting curve depends on the nature of the assump-
tions and the length of the intervals. Greater accuracy is obtained when
small intervals are used. An interval of 0.05 sec is usually satisfactory:

Several methods of point-by-point solution have been proposed.® The
most widely used method is based on the following assumptions:

1. The accelerating power P, computed at the beginning of an'interval
is constant from the middle of the preceding interval to the middle of the
interval considered.

2. The angular velocity is constant throughout any interval at the
value computed for the middle of the interval. Of course, neither
of the assumptions is true, since 8 is changing continuously and both P,
and w are functions of 8. As the time interval is decreased the computed
swing curve approaches the true curve.

Figure 15.18 will help in visualizing the assumptions,
ing power is computed for the points enclosed in cn‘cles
n — 2, n — 1, and n intervals, which are the beginging
andn + 1 mtervals The step curve of P, in Fig.
assumption that P, is constant between mi SQ'[' the intervals.

6. G. C. Dahl, “Electric Power Circuits,” Vol. II §SyR&‘s TERED
pp. 391-401, McGraw-Hill Book Company, Inc., New ; 8. ¢
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Similarly, o', the excess of the angular velocity « over the synchronous
angular velocity w,, is shown as a step curve which is constant throughout
the interval at the value computed for the mid-point. Between the
ordinates n — 34 and n — 14 there is a change of speed caused by the
constant accelerating power. The change in speed is the product of the
acceleration and the time interval,

50

2
Wy — why_gg = %{f At = ]i’j}‘” At e

Bty
(15.44)

I?l(n}
The change in § over any interval
is the product of o' for the interval
and the time of the interval.
Thus, the change in § during the
n — 1linterval is

E

n

Ay = Bnq — dno = Al & s | — Assumed

n—3 | Actual
=
(15.45)  wpa| _+%}w o
N I R Vs L n-3~%ny
wh-2 7@4 2z

and during the nth interval -

|

| |

A, = 8p — Opy = Al w1 | :
(15.46) | |

Subtracting Eq. (15.45) {rom E !
Eq. (15.46) and substituting Eq. n-5 | n-
(15.44) in the resulting equation to AL e AL —>]
eliminate all values of o yields

Pon-

Ad, = Dby + I (AD)° e .
3 Ab,
(15.47) /4 R
&,-
/@4& !

Equation (15.47) is the impor- | =% 7777
tant one for the point~hy-point
solution of the swing equation, for

it shows how to calculate the n2  n-l n

change in 6 during an interval if giGw,l 5;3 6‘:?}11?31@2?&: nglgrfi values of

the change in & for the previous Y '

interval and the accelerating power for the interval in questio

Equation (15.47) shows that, subject to the stated assum]

in torque angle during a given interval is equal tgabs

angle during the preceding interval plus the acce

beginning of the interval times (At)%/M.
The occurrence of a fault causes a discontin

power P, which is zero before the fault and a defig

, f‘szeG_JSJERED )
b wiount immediately
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344 ELEMENTS OF POWER SYSTEM ANALYSIS

following the fault. The discontinuity occurs at the beginning of the
interval, when ¢ = 0. Reference to Fig. 15.18 shows that our method of
calculation assumes the accelerating power computed at the beginning
of an interval to be constant from the middle of the preceding interval
to the middle of the interval considered. When the fault occurs, we
have two values of P, at the beginning of an interval, and we must take
the average of these two values as our constant accelerating power. The
procedure is illustrated in the following example.

Example 15.2

Specify in cycles the critical clearing time for the breakers at the
ends of the high-tension lines of Example 15.1 for the fault condition
described. Also plot swing curves for clearing the fault at two values of ¢
less than the critical clearing time. For the generator, assume H = 3.0,
and carry out the calculations in per unit.

Solution

The inertia constant is

GH 1.0 %X 3.0

M = 1307 = 180 X 60

= 2.78 X 10~* per unit

For the time interval At = 0.05 sec,

(Af)? 25 X 10~

M arsxios - 20

From Example 15.1,

When the fault ocecurs: § = 35.2°
During the fault: P, =042sin é

Therefore
P,=P,—-P,=10—042sin §

At the beginning of the first interval there is a discontinuity in the accel-
erating power. Just before the fault occurs, P, = 0, and just afteggthe
fault occurs

P, =10 — 0.42 sin 35.2° = 1.0 — 0.242 = 0.73
The average value of P, is L3 X 0.738 = 0.379 pe

(ane

i P, =9 X037 =3

0+ 341 =

Ady

i
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when ¢t = 0.05 sec,
8, = 35.2° + 3.41° = 38.61°
P, = 1.0 — 0.42 sin 38.61° = 1.0 — 0.262 = 0.738

(at)*
5f Pe=9X0738 = 6.64

= 3.41° 4+ 6.64° = 10.05°, or 10.1°
When i = 0.10 sec,
8, = 38.6° + 10.1° = 48.7°
The computations are shown in Table 15.4.

TaBLE 15.4 CompuraTiONs OF SwING CURVE FOR SUSTAINED Fauwnr

Af)2 " n
t, sec Pe Po %l'/[)— Pa d(f}gare,es degrées
0— 1.0 0.00 T R 35.2
0+ 0.242 0.758 R 35.2
Qav | ..... 0.379 3.41 3.41 35.2
0.05 0.262 0.738 6.64 10.05 38.6
0.10 0.315 0.685 6.17 16.22 48.7
0.15 0.380 0.620 5.58 21.80 64.9
0.20 0.419 0.581 5.23 27.03 86.7
0.25 | ..... | ... T R 113.7

In Example 15.1 the critical clearing angle was found to be 51.6°. The
critical clearing time may be estimated from the values shown in Table
15.4. The swing curve is plotted in Fig. 15.19, and the critical clearing
time, corresponding to the critical clearing angle, may be read from the
curve. The critical clearing time is 0.11 see, or 6.6 cycles. A 5-cycle
breaker would be satisfactory for the application. An 8-cycle breaker
would not isolate the fault quickly enough, and the machine would lose
synchronism. The swing curves for clearing the fault in 3 cycles and
4.5 cycles are also shown in Fig. 15.19. The data for the latter curves are
shown in Tables 15.5 and 15.6.

At the instant the fault is cleared a discontinuity occurs in the acgeler-
ating power P,. When clearing is at 3 cycles, the disconigmui
0.05 sec, which is at the beginning of an interval. Twq,
ating power result from the two expressions (one du
one after clearing) for the power output of the ;
ning of the interval. Since the discontinuity occurs
interval, the average of the two values is assurgs
of P, from 0.025 t0 0.075 sec. The procedure is'X
upon the occurrence of the fault.

V Dy
begin- %
ginning of an

5§ ﬁ?&l&“ﬁ‘ERED )
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346 ELEMENTS OF POWER SYSTEM ANALYSIS

When clearing is at 4.5 cycles, the discontinuity is at 0.075 sec, which
is at the middle of an interval. No special procedure is required, because
we assume a discontinuity in accelerating power at the middle of an
interval. The assumed constant value of P, at the beginning of the
interval during which the fault is cleared is determined by the electric
power input during the fault for the value of & at the beginning of the

100

Sustained fault

90 L j~Fault cleared at

L[ Ao orcles T
\ ERN

/ ~
s \

60 \

N4
1/

30

—]

& electrical degrees

Y
A

AL

o

0.1 0.2 0.3 04 05 0.6 0.7
t seconds

Fre. 15.19 Swing curves for Example 15.2 for a sustained fault and for clearing in
3.0 and 4.5 cycles.
interval. At the beginning of the interval following clearing, the assy med
constant value of P, is that computed from the electric pgge
after clearing for the value of § at the beginning of the igde
clearing. Careful study of Table 15.6 will clarify the p
Rather than actually plotting the swing curve
on a system consisting of one machine and an infi
precalculated swing curves.” The data must

7 1. H. Summers and J. B. McClure, ‘“Progress in the
Trans. AIEE, vol. 49, pp. 132-158, January, 1930.
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TaBLE 15.5 CoMpPUTATIONS OF SWING CURVE FOR Faurt CLEARED AT

t = 0.05 sEC
5 At)? Abn, n
t, scc Pe Pa ( M) Pq degérees degrees
0— 1.0 0.00 | ...... | ...... 35.2
0+ 0.242 0.758 | ...... | ..., 35.2
OQav | ..... 0.379 3.41 3.41 35.2
0.05— 0.262 0.738 | ...... | ...... 38.6
0.05+4 0.780 0.220 | ...... | ...... 38.6
0.05av | ..... 0.479 4.31 7.72 38.6
0.10 0.905 0.095 0.86 8.58 46.3
0.15 1.02 —0.02 —0.20 8.38 54.9
0.20 1.12 —0.12 —1.08 7.30 63.3
0.25 1.18 —0.18 —1.62 5.68 70.6
0.30 1.22 —0.22 —1.98 3.70 76.3
0.35 1.23 —-0.23 —2.07 1.63 80.0
0.40 1.24 —-0.24 —2.16 —0.53 81.6
0.45 1.24 —0.24 —2.16 —2.69 81.1
0.50 1.23 —0.23 —2.07 —4.76 78.4
0.55 1.20 —-0.20 —1.80 —6.56 73.6
0.60 1.15 —0.15 —1.35 —7.91 67.0
0.65 1.07 —0.07 —-0.63 . —8.54 59.1
0.70 | ..o ool b 50.6

Note: During the fault, P, = 0.42 sin 6.
After the fault, P, = 1.25 sin 4.

TABLE 15.6 CoMPUTATIONS OF SWING CURVE FOR Faurt CLEARED AT

t = 0.075 sEC

Al)? Ady, n
t, sec P, Pu LM)_P e degérees degrees
0— 1.0 0.00 | ... ] ool 35.2
0+ 0.242 0.788 | ... | ... 35.2
Oav | ..... 0.379 3.41 3.41 35.2
0.05 0.262 0.738 6.64 10.05 38.6
0.10 0.094 0.06 0.54 10.59 48.7
0.15 1.08 —0.08 —0.72 9.87 59.3
0.20 1.17 —0.17 —1.53 8.34 69.2
0.25 1.22 —0.22 —1.98 6.36 78.2
0.30 1.24 —0.24 —2.16 4.20 84.5
0.35 1.25 —0.25 —2.25 1.95 88.7
0.40 1.25 —0.25 —-2.25 0. 90.7,
0.45 1.25 —0.25 —2.25 2. y:
0.50 1.25 —0.25 —2.25 4.
0.55 1.24 —0.24 —2.16 6.
0.60 1.21 -0.21 —1.89 8.
0.65 1.15 —0.15 —1.35 0.
0.70 | ... 1 oo o

Note: During the fault, /. = 0.42 sin 4.
After the fault, P, = 1.25 sin 4.
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dimensionless form. The appropriate swing curve is then selected from
a group of curves found in the article referred to in footnote 7. A
method is also available for determining the critical clearing time for one
machine connected to an infinite bus.® Either of these methods may be
used for a system consisting of two finite machines.

15.8 Use of the Calculating Board to Determine Swing Curves. The
computation of swing curves for all the machines in a multimachine sys-
tem is best accomplished with the aid of a calculating board. The same
point-by-point method is still followed, but the calculating board greatly
simplifies the work. The developed power (and hence the accelerating
power) of each machine is dependent on the angular position of every
machine in the system. If a calculating board is not used, a very great
amount of network reduction and tedious calculations are necessary to
determine the accelerating power of each machine at the beginning of
each time interval.

When a calculating board is used the positive-sequence network is set
up, and the fault is represented by the appropriate impedance. Each
machine should be represented by its transient reactance and its voltage
behind transient reactance adjusted to the proper phase angle and mag-
nitude to give the power flow and power factor existing before the fault
occurs. The fault is then applied by closing a switch, and the electric
power P, of each machine is read. The accelerating power is the differ-
ence between the electric power developed and the constant value
assumed for P,. The change in angular position with respect to the
synchronous position is then calculated for each machine over the selected
mterval by Eq. (15.47). The generators representing each machine are
then adjusted to agree with the rotor position determined. Electrie
power P, for each machine is read again, and new angular positions
are computed. The point-by-point analysis is continued in this manner
until enough points on the curves have been found to indicate which
machines, if any, are unstable.

15.9 Some Factors Affecting Transient Stability. Aside from the
type of fault and its location, which are beyond the control of the system
designer, there are certain other factors which affect transient stability
and which may be altered in order to raise the transient stablhty limit
of the system. Inspection of Eq. (15.47) indicates that an incgg
inertia constant M of a machine reduces the angle throug
swings during any time interval and thus allows a longel
operation to isolate the fault before the machine pasggsd
clearing angle. An increase in M offers a means o
but it has not been used extensively for econo

§H. L. Byrd and 8. R. Pritchard, Jr., “Solution of
Problem,” Gen. Elec. Rev., vol. 36, pp. 81-93, Februar,
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The methods frequently used to increase stability are:

1. Increase in the system voltage.

2. Reduction of series reactance by parallel lines.

3. Use of high-speed circuit breakers, including reclosing breakers.

As shown by Eq. (15.6), Pu. is increased by an increase in the internal
voltage of a machine or in the voltage of the infinite bus to which the
machine is connected through a reactance. For a given shaft power the
initial torque angle 6, is decreased by an increase in P..., as shown by
Eq. (15.42). Examination of Fig. 15.14 shows that all three power curves
are raised when P, is increased, and the results are a lower §;, an
increased 8, and a greater difference between §; and 8,. Therefore,
increasing Pr.. allows a machine to swing through a larger angle from its
original position before it reaches the critical clearing angle. Thus, rais-
ing Pu.. increases the critical clearing time and the probability of main-
taining stability.

Reducing the reactance of a transmission line has the same effect as
raising Pu... Compensation for line reactance by series capacitors is
economical for increasing the stability of lines more than 200 miles long.
Increasing the number of parallel lines between two points is a common
means of reducing reactance. When parallel transmission lines are used
instead of a single line, some power is transferred over the remaining line
even during a three-phase fault on one of the lines unless the fault oceurs
at a paralleling bus. For other types of faults on one line, more power is
transferred during the fault if there are two lines in parallel than is
transferred over a single faulted line. For more than two lines in parallel
the power transferred during the fault is even greater. Power trans-
ferred is subtracted from power input to obtain accelerating power.
Thus increased power transferred during a fault means lower accelerating
power for the machine and increased chance of stability.

Obviously the quicker a fault is isolated from a system the less dis-
turbance it causes. It has been pointed out that there is a critical
clearing time before which circuit breakers must operate to clear the
fault if stability is to be maintained. The use of high-speed ecircuit
breakers on power systems has greatly improved their stability and at
the same time has reduced the need for making other changes in design
to effect stable operation. It is still important, however, for
designer and operator to understand the reasons for the loss

and the means for its prevention.
©)
< R
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PROBLEMS

15.1 The generalized circuit constants of a nominal-
phase transmission line are
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A =D = 0.980/0.3°
B = 82.5/76.0° ohms
€ = 0.0005/90° mho

Find the steady-state stability limit of the line if |[Vs| and |Vz| are held constant at
110 kv. What is the steady-state stability limit if the shunt admittance is assumed
to be zero? What is the steady-state stability limit if the shunt admittance is assumed
to be zero and the series resistance is neglected? i

16.2 A 60-cycle, four-pole turbogenerator rated 20,000 kva, 13.2 kv has an inertia
constant of H = 9.0 kw-sec/kva. Find the kinetic energy stored in the rotor at
synchronous speed. Find the acceleration if the input less the rotational losses is
26,800 hp and the electric power developed is 16,000 kw.

15.83 If the acceleration computed for the generator desecribed in Prob. 15.2 is
constant for a period of 15 cycles, find the change in torque angle in that period and
the rpm at the end of 15 cycles. Assume that the generator is synchronized with a
large system and has no accelerating torque before the 15-cycle period begins.

15.4 The generator of Prob. 15.2 is delivering rated kva at 0.8 power factor lag
when a fault reduces the electric power output by 509. Determine the accelerating
torque at the time the fault occurs. Neglect losses and assume constant power input
to the shaft.

16.6 A motor is receiving 25% of the power which it is capable of receiving from
an infinite bus. If the load on the motor is doubled, calculate the maximum value of §
during the swinging of the motor around its new equilibrium position.

156.6 A 60-cycle generator is delivering 509 of the power which it is capable of
delivering through a transmission line to an infinite bus. A fault occurs which
increases the reactance between the generator and the infinite bus to 4009, of the
value before the fault. When the fault is isolated the maximum power which can be
delivered is 75% of the original maximum value. Determine the critical clearing
angle for the condition described.

15.7 If the generator of Prob. 15.6 has an inertia constant of H = 5.0 megajoules/
megavolt-amp, find the critical clearing time for the condition described. Use
At = 0.05 sec.

16.8 A 60-cycle generator with an inertia constant of H = 5.0 megajoules/
megavolt-amp is connected through a step-up transformer to a transmission line.
At the other end of the line is a step-down transformer which connects the line to a
large system which may be treated as an infinite bus. Reduced to a common base
the per-unit reactances of the generator are X’ = 0.3, X, = 0.15, and X, = 0.05,
those of the transformers are X; = X, = X, = 0.10, and those of the transmission
line are X1 = X, = 0.25 and X, = 0.70. The transformers are connected in A on
the low-tension side and in Y, with a solidly grounded neutral, on the high-tension
side. A single line-to-ground fault oceurs on the high-tension side of the transformer
connected to the generator when the generator is delivering power of 1.0 per unit.
The voltage behind transient reactance of the generator is 1.30 per unit, andathe
voltage of the infinite bus is 1.0 per unit. The fault is cleared by the gipult
action of single-pole breakers on both sides of the fault. The bre 4
the faulted phase open 0.15 sec after the fault occurs and red
opening. The fault does not recur after reclosure. Plot the 3
generator.
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TasrLe A.1 CroaracTeRIsTICS oF Copprir Conpucrtors, HArp-prRAWN, 97.3 % ConpucTiviTy*

Size of
conductor

AWG.
or
B.&8.

Circular
mils

1,000,000
900,000
800,000
750,000

700,000
600,000
500,000
500,000

450,000
400,000
350.000
350,000

300,000
300,000
250,000
250,000

211,600
211,600
211,600
167,800

4/0
4/0
/0
3/0

Diam- Approx.| Geo-
Num- e»ter .Of Outside |Breaking| .., . curre9t— mefric
indi- . ‘Weight, | carrying] mean
ber of . diam- |strength, o 5
¢ vidual N Ib/mile | capae- radins
strands \ strands, cter, 1n. 1b [ ity t at 60
1‘ in. amp | eycles, ft
i
1
|
|
1
37 0.1644 | 1.151 43,830 | 16,300 | 1,300 0.0368
37 L1560 | 1.092 : 39,510 | 14,670 | 1,220 0349
37 (1470 | 1.029 35,120 | 13,040 | 1,130 .0329
37 1424 | 0,997 33,400 | 12,230 | 1,090 .0319
37 1375 .963 31,170 | 11,410 | 1,040 .0308
37 .1273 891 27,020 9,781 940 0285
37 1162 .814 22,510 8,151 840 . 0260
19 .1622 811 21,590 8,131 840 . 0256
19 .1539 770 19,750 7,336 780 0243
19 1451 726 17,560 6,521 730 0229
19 1357 679 15,590 5,706 870 0214
12 1708 710 15,140 5,706 670 0225
19 1257 .629 13,510 4,891 610 .01987
12 . 1581 657 13,170 4,891 610 .0208
19 1147 674 11,360 4,076 540 01813
12 1443 .600 11,130 4,076 540 .01902
19 1055 | 528 9,617+ 3,450 480 01668
12 1328 552 9,483 ! 3,450 490 01750
7 1739 522 9,154 | 3,450 430 01579
12 1183 | 492 7,556 | 2,736 420 . 01559

Resistance,
ohms/conductor /mile

25°C (77°F)

50°C (122°F)

Inductive reactance,
ohms/conductor/
mile at 1-ft spacing

d-e

0.0585
.0650
0731
0780

0836
0975
1170
1170

1300
1462
L1871
L1671

1950
1950
234
.234

.276
.276
276
349

25
cycles

50
cycles

0.0594
.0658
0739
0787

0.0620
0682
0760
.0807

L0842
.0981
175
1175

.0861
.0997
.1188
1188

1304
. 1466
1675
.1675

. 1316,
. 1477
.1684
.1684

1953
. 1933
234
234

.1961
1961
.235
.235

.27
277
217
.349

277
277
277
.349

60
cycles

0 0634
. 0695
0772
. 0818

L0871
.1006
1196
. 1196

11323
1484
.1690
. 1690;

1966
.1966
235
.235

278
.278
278
L350

Q.
L0711
0860
0853

0640

0914
. 1066
1280
1280

1422
1600
1828
.1828

213
L2138
. 256
.256

.a02
.302
.302
.381

25
cycles

50
cycles

0 0648
0718
.0806
0859

0 (672
0710
.0826
.0878

0920
1071
. 1283
.1283

0937
. 1086
.1296
1296

1426
.1603
L1831
L1831

(1437
1613
.1840
1840,

214
214
.256
. 256

.214
214
257
.257

.303
303
.303
.381

303
.303
.303
.382

60
cycles

10.0685
L0752
L0837
0888

0947
.1095
.1303
1303

1443
.1619
1845
1845

215
215
.257
.257

.303
.303
.303
.382

25 50 60
cycles | cycles | cycles
(.1666(0.333 10.400

L1693) 339 | .406
L1722] 344 ) 413
J1739| .348 | 417
L1759 .352 1 (422
.1799| .360 | .432
L1845} 369 | .443
.1853] 371 | .445
J1879] .376 | .451
.1909) .382 | .458
(1943 .389 | .466
.1918) .384 | .460
(1982 (396 | .476
.1957| .392 | .470
.203 | 406 | .487
.200 | 401 | .481
207 | 4141 497
205 | .409 | .40
210 | .420 | .503
.210 | .421 | .505

Shunt capacitive
reactance,
megohms/conductor/
mile at 1-ft spacing
25 50 60
cycles | eycles | cycles
Q.216 {0.1081|0.0901
220 | .1100| .0916
224 | (1121} 0934
.226 ¢ .1132) 0943
229 | (1145] 0954
235 1 .1173) 0977
241 1 1205| .1004
.241 ) .1206| .1005
245 | (1224, 1020
249 | (1245 (1038
L2541 .1269| .1058
L2511 L1253) (1044
259 | .1296] .1080
256 | .1281] .1068
266 | .1329) .1108
263 | L1313] 1094
272 1 .1339] (1132
.269 | .1243| (1119
273 1 .1363] .1136
\277 | 1384 .1153

1

Table A.1 continued on page 354
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TaBLE A1 CHarRacTERISTICS OF Correr CoNpucromrs, HARD-bRAWN, 97.3 % ConpucriviTy.* (Continued)

yge

Size of Resistance, | .
conductor ohms/conductor/mile Inductive reactance, * Shunt capacitive
Diam- Approx. | Geo- ohms/conductor, reactan ce,
Num e.ter.of Outside [Breaking| current- metric mile at 1-ft spacing mf:]ao{hms,l’ncomlh{?tor/
ber of l'ndl- diam- |strength, W e/lgl.lt, carrying me?‘n 25°C (T7°F) 50°C (122°F) mile at 1-ft spacing
. ands vidual eter, i b Ib/mile | capac- | radius
Circular | A-W.G. | stran strands, ' ity,t | “at 60 —
mils or . amp | eycles, ft : | :
B. &8, 25 | 30 [ 60 25 050 - 60 | 25 | 50 { 60 | 25 | 50 ; 60
d d ;
cycles| cyeles | eycles cycles cycles |, cycles | aycles | eycles | eyeles | cycles | eyeles ‘ cycles
167,800 3/0 7 1548 464 7,366 2,736 420 014041 340 | 349 | 349 | .350 | .381 = .381 382 | 382 | .216 | .431 | .518 | .281 | .1405 1171
133,100 2/0 7 L1379 414 5,926 2,170 360 L01252) 440 | 440 | 440 | 440 | 481 481 | 481 | .481 | .222 | 443 | .532 | 289 | 1445 1205
105,500 1/0 7 1228 .368 4,752 1,720 310 01113 555 | .555 | .555 | .5565 ¢ .606 .607 | 607 i .607 | .227 | .465 | .546 | .298 | .1488 1240
83,690 1 7 1093 .328 | 3,804 1,364 270 -00992| 699 | .699 . -699 | 690 .765 233 | 467 | 560 . 306 | .1528° 1274
83,600 1 3 1670 .360 3,620 1,351 270 .01016| .692 692 | 692 | .692 | 757 ' L232 | 464 | 557 ¢ 209 | (1495] .1246
66,370 2 7 0974 292 3,045 1,082 230 .00883| .881 | .882 | .882 | .882 | .964 2239 1 478 | 574 314 | .1570| .1308
66,370 2 3 1487 320 2,913 1,071 240 .00903! .873 955 288 | 476 | 571 : .307 | .1537| .1281
66,370 2 1 258 3,003 1,061 220 00836 .864 | 945 242 | 484 | (581 .323 | .1614] .1345
52,630 3 7 .0867 260 2,433 858 200 .00787.1 112 1.216 245 1 490 | .588 .322 | .1611| .1343
52,630 3 3 1325 .285 2,359 850 200 .00805/1 101 1.204 ! 244 ¢ 488 | .585  .316 | .1578| .1315
52,630 3 1 7 ... 229 2,439 841 190 .00745(1.090 Same as d-¢ 1.192 Same as d-¢ .248 1496 595 | .331 | .1656| .1380
41,740 4 3 1180 254 1,879 674 180 .00717(1.388 1.518 250 1 .499 | 599 | .324 | .1619] .1349
41,740 4 1 1 . .204 1,970 667 170 .00663|1.374 1.503 254 | 507 | .609 | .339 | .1697| .1415
33,100 5 3 1050 . 226 1,505 534 150 006381, 750 1.914 .256 | 511 | .613 | .332 | .1661| .1384
33,100 5 1 ] ... L1819 1.591 524 140 .00590(1.733 1.895 260 | 519 | .623 | .348 | .1738| .1449
26,250 6 3 .0935 .20 1,205 424 130 .00568(2. 21 2.41 .262 | 523 | .628 | .341 | .1703] .1419
26,250 6 ) . 1620 1,280 420 120 .00526{2.18 2.39 .265 | .531 | .637 | .256 | .1779| .1483
20,820 T 1 ] (1443 | 1,030 333 110 .00468(2.75 3.01 .271 | .542 | .651 | .364 | .1821) .1517
16,510 8 .. 1285 .826 264 90 .00417(3.47 3.80 277 | 564 | .665 | .372 | .1862| .1552

* Republished by permission of the Westinghouse Electric Corporation from * Electrical Transmission and Distribution Reference Book.”
1 For conductor at 75°C, air at 25°C, wind 1.4 miles/hour (2 ft/sec), frequency = 60 cyecles.
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Tapre A.2 CHARACTERISTICS OF ALUMINUM CABLE, STEEL-REINFORCED*

(Aluminum Company of America)

Multilayer Conductors

. Resistance,
Aluminum Steel . )
Ap- ohms/conductor /mile Inductive reactance, Shunt capacitive
Copper Geot prox. ohms/conductor/ | reactance, megohms/
Circular . equiva- Ultimate ?:;zllc current-| 50°C (122°F) mile at 1-ft spacing conductor /mile at
mils or 5 lent,t h Weight, i CArry- 25°C (77°F) C . all currents 1-ft spacing
AWG. . ko circular streneth, Ib/mile radws ing Small currents urrent Approx.
. ! £ . ib at 60 75 % capacity}
aluminum 5:: E & mils or eycles,| APV
ARER AR RS L | s
Elel g lg e o 9 | 50 | 60 | . 1025 | 50 | 60 | 26 | 50 | 60 | 25 | 50 | 60
g g) ERR B E *g E] - cycles | eycles | cycles ¢ cycles |cycles leycles |eycles |eycles |eveles |eveles |eycles | eycles
@2 G |G @®|S7
1,590,000 |54] 3]0.1716]19|0. 1030|1.545(1,000,000| 56,000 | 16,777 0.0520] 1,380 |0.0587|0.0588|0.059010.0591|0.0646|0.06560.0675,0.0684(0.1495]0.209 |0.359 |0.1953|0.0977!0.0814
1,510,500 |54| 3| .1673|19| .1004|1.506] 950,000 53,200 | 10,237 | .0507| 1,340 | .0618/ .0619| .0621| .0622| .0680] .0690( .0710| .0720| .1508| .302 | .362 | .1971| .0986[ .0821
1,431,000 |54 3| .1628|19| .0977\1 465] 900,000{ 50,400 9,699 | 0493 1,300 | .0652| .0653; .0655 .06566| .0718| .0729| .0749] .0760] .1522| .304 | .365 | .1891; .0996] .0830
1,351,000 154 3| .1582(19] .0940(1.424| 850,000] 47,600 9,160 | .0479| 1,250 | .0691| .0692{ .0694| .0695 0761 0771 .0792| .0803| .1536| .307 | .369 | .201 | .1006] .0838
1,272,000 (34| 3| .1535/19] .0921|1.382| 800,000 44,800 8,621 | .0465] 1,200 | .0734] .0735; .0737| .0738) .0808] .0819| .0840| .0851 .1551| .310 | .372 | .203 | .1016| .0847
1,192,500 |54( 3] .1486(19| .0802|1.338| 750,000] 43,100 8,082 | .0450¢ 1,160 | .0783j .0784| .0786] .0788| .0862| .0872) .0894| .0906| .1568] .314 | .376 | .206 | .1028| .0857
1,113,000 J54 3| .1136{19] .0862{1.293( 700,000! 40,200 7,544 0435, 1,110 | .0839| .0840[ .0842] .0844| .0924| .0935| .0957| .0969| .1585] .317 | .380 | .208 | .1040| .0867
1,033,500 '54; 3| .1384] 7. .1384{1.246| 650,000} 37,100 7,019 | 0420, 1,060 | .0903| .0905| .0907) .0009| 0094} .1005| .1025] .1035 .1603| .321 | .385 | .211 | .1053] .0878
954,000 J54 3| .13291 7| .1329|1 196{ 600,000| 34,200 6,479 i .0403‘ 1,010 | .0979] .0980; .0981| .0982( .1078| .1088| .1118| .1128| .1624| .325 | .300 | .214 | .1068| .0890
900,000 ;54] 3| .1293| 7| .1291|1.162| 566,000| 32,300 6,112 ‘ 0391 970 | .104 | .104 | .104 | .104 | 1145 .1155) .1175| .1185| .1639 .328 | .333 | .216 | .1078| .0898
874,500 54| 3] .1273| 7] .1273|1.146| 550,000| 31,400 5,940 | 0386 950 | .107 | .107 | .107 | .108 [ 1178} .1188| .1218] .1228] .1646| .329 | .395 | .217 | .1083| .0903
795,000 {54 3| .1214| 7] .1214(|1.093| 500,000| 28,500 5,399 1 .0368 900 | .117 | .118 [ .118 { .119 | .1288] .1308; .1358| .1378| .1670] .334 | .401 | .220 | .1100} .0917
795,000 126 2| .1749] 7{ .1360/1.108] 500,000, 31,200 5,770 | 0375 900 | 117 | .117 | 117 | 117 | 1288, .1288| .1288] .1288] .1660{ .332 | .399 | .219 | .1095| .0912
795,000 30| 3| .1628/19) .0977{1.140| 500,000 38,400 6,517 : .0393 910 | 117 | 117} 117 | .117 | .1288] .1288| .1288| .1288| .1637| .327 | .393 | .217 | .1085 .0904
715,500 54| 3) (1151} 7{ .1151]1.036{ 450,000 26,300 4,859 0349 830 | .131 | .131 | 131 | .132 | .1442) .1452| .1472| .1482) .1697| .339 | .407 | .224 | .1119] .0932
715,500 (26| 2| .1659 7| .1290{1.051| 450,000 28,100 5,193 | .0355 840 | (131 | (131 | .131 | .131 | .1442] 1442 .1442; .1442| .1687| .337 | .405 | .223 | .1114| .0928
715,500 (30| 2| .1544/19| .0926]1.081| 450,000/ 34,600 5,865 | .0372 840 | 131 | 131 | 131 | 131 | .1442] .1442] .1442| .1442{ .1664| .333 | .399 | .221 | .1104| .0920
666,600 |54 3] .1111] 7{ .1111{1.000] 419,000 24,500 4,527 | .0337 800 | .140 1 .140 | .141 | .141 | .1541| .1571| .1501| .1601| .1715) .343 | 412 | .226 | .1132| .0943
636,000 |54] 3] .1085] 7| .1085/0.977| 400,000/ 23,600 4,319 | .0329 770 | .147 | (147 | (148 | 148 | (1618 .1638] .1678| .1688| .1726) .345 | .414 | .228 | .1140] .(950
636,000 |26| 2| .1564] 7| .1216| .990| 400,000, 25,000 4,616 | .0335 780 | (147 | (147 | (147 | (147 | .1618| .1618} .1618] .1618| .1718| .344 | .412 | .227 | .1135| .0946
636,000 |30| 2| .1456/19| .0874/1.019 400,000, 31,500 5,213 1 .0351 780 | .147 | 147 | 147 | .147 | .1618| .1618| .1618; .1618| .1693} .339 | .406 | .225 | 1125 .0937
605,000 |54 3; .1059| 7| .1059(0.953] 380,500 22,500 4,109 | .0321 750 | .154 | .155 { .1585 | .155 | .1695] .1715| .1755] .1775| .1739| .348 | .417 | .230 | .1149| .0957
605,000 |26] 2| .1525| 7| .1186| .966| 380,500; 24,100 4,391 | .0327 760 | 154 | 164 | .154 | .154 | .1700| .1720| .1720| .1720| .1730| .346 | .415 | .220 | .1144] .0953
566,500 26| 2| .1463 7 .1138) .927| 350,000| 22,400 | .4,039 | .0313 730 | .168 | .168 | .168 | .168 | .1849| .1859( .1859| .1859) .1751] .350 | .420 | .232 | .1159| .0965

Table A.2 continued on page 356
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TapLeE A.2 CHARACTERISTICS OF ALUMINUM CABLE, STEEL-REINFORCED.*

(Continued)

266,800 %26

Resistance,
ohms/conductor /mile

25°C (77°F)
Small currents

50°C (122°F)
Current approx.
75% capacityt

Inductive reactance,
ohms/conductor/
mile at 1-ft spacing
all currents

Shunt capacitive
reactance, megohms/
conductor/mile at
1-ft spacing

11,250 i

Aluminum | Steel
c Geo- A
. opper metrie] PrO%
Circular equiva- 5 current-
. - Ultimate| . . mean
tnils or g lent,t trength Weight, radius| €AY
AWG. . . % circular | l: ’} 1b/mile e;t 60 ing
aluminum z g E mils or capac-
E o g - eycles,| 0
" = g .| AWG. it ity, §
Bl = g wE |3 amp
g8 2x18| 2|7
El> 2 |E| g8 |2
Bla B lElES |DHE
DT | 10T
556,500 (30} 2| .1362] 7| .1362| .953] 350,000 27,200 4,588 | .0328 730
500,000 130| 2{ .1291| 7| .1291| .904] 314,500 24,400 4,122 § .0311 690
477,000 |26| 20 .1355) 7) .1054| .858] 300,000! 19,430 3,462 | 0290, 670
477,000 (30| 2} .1261| 7| .1261| .883| 300,000 23,300 3,933 | .0304 670
397,500 |26| 2| .1236| 7| .0961 783 250,000| 16,190 2,885 | 0265 590
397.500 130; 21 (1151} 71 .1151) .806 250,000 19,980 3,277 | .0278 600
336,406 |26 2; (1138 7 0885! 21 4/0 14,050 2,442 | L0244 530
336,400 |30: 2‘ 10590 7| . 1059 .74]‘ 4,0 17,040 2,774 | 0255 530
300,000 26 2{ .1074 7; .0835 .680, 188,700' 12,650 2,178 . .0230] 490
300,000 (30! 2| .1000 7‘ 1000 .700| 188,700, 15.430 | 2,473 | .0241 500
2° 1013 7? 0788| .6421  3/0 1,936 | .0217. 460

i

25 50 60
cyclesleyeles | cycles

(168 | (168 | .168 | .168
J187 | (187 | 187 | .187
L196 | 196 0 (196 ' 196
(196 | 196 (196 .196
235 ¢ .
235 Same as d-¢

.278
.278
311
31 |
L350 ¢

| |

d-¢

1849
.206
.216

.216

.259
.259

.306

.306 |

. 342
242
385

25
cycles

1859

Same as d-¢

50 60
cycles eycles

.1859° 1859

25
eyeles

1728
1754
L1790
1766
L1836
1812

L1872

1855
.1908
1883
1936

50

cycles

346
.361
.3568
.353
.367

.362

.376

60
cycles

415
421
.430
424
.441
.435

25 50 60
cycles| eycles | cycles

.230 | .1149] .0957
.234 | .1167] .0973
.237 | .1186] .0988
.235 | .1176] .0980
244 | 1219; 1015
242 | .1208) .1006

250 | 1248|1039
248 | 1238 (1032
(254 | 1269] .1057
(252 ¢ 1258 1049
.258 | .1289] (1674

* Republished by permission of the Westinghouse Electric Corporation from * Electrical Transmission and Distribution Reference Book.”
+ Based on copper 97 %, aluminum 61 ¢ conductivity. .
1" Current approx. 75% capacity” is 75% of the “Approx. current-carrying capacity, amp” shown in Column 4 and is approximately the current which will produce 50°C conductor
temp. (25°C rise) with 25°C air temp., wind 1.4 miles/hour. g
§ For conductor at 75°C, air at 25°C, wind 1.4 miles/hour (2 ft,/sec), frequency = 60 eycles.
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TaBLE A.2 CHARACTERISTICS OF ALUMINUM CABLE, STEEL-REINFORCED, *
Stngle-Layer Conductors

(Continued)

Circular
mils
or
AWG.
alu-
minum

e

~N
266,800
4,0
3/
2/0
1/0

O N N

Aluminum | Steel
] 3
g 2
2 =2
3 ]
n =
ZDle 2 <l =
E ] 2| =
Sl E5 |8 E¢
21z 28 |B| =£
R|=| @ & »
6]1]0.2109] 7[0.0703
611 .1878| 1| .1878
61| .1672)1; .1672
1| .1490| 1] .1490
1] .1327| 1 .1327
1 11821} .1182i
611 .1052| 1| .1052;
711 .0974| 1| 1299
61| .0937| 1| .0937
61| .0834[ 1| .0834
71| .0772(1] 1029
611 .0743| 1| .0743
61} .0661) 1| 0661

Qutside diameter,
in.

0.633
563
.502
.447
.398
.355

.316
.325
281
250
.257
223
198

Copper
equiva-
lent,
circular
mils or
AWG.

3/0
2/0
1/0

[ENECS

I ==

Ultimate
strength,
Ib.

9,645
8,420
6,675
5,345
4,280
3,480

2,790
3,525
2,250
1,830
2,288
1,460
1,170

Weight,
1b/

nile

1,802
1,542
1,223
970
769
610

484
566
384
304
356
241
191

Geo-
metric
mean
radius
at 60
cycles,
feet,
for
cur-
rent
ap-
prox.
75%
ca-
pacity§

0.00684
00814
00600
.00510
.00446
00418

00418
. 00504
.00430
00437
. 00452
00416
00394

Ap-
prox.
cur-
rent-
carry-
ing
capac-
ity,§
amp

460
340
300
270
230
200

180
180
160
140
140
120
100

Resistance
ohms/conductor /mile

Inductive reactance,
ohms/conductor/mile
at 1-ft spacing

0.

IS

Shunt capacitive

[CRICpnrayergyun

reactance,
megohms/
| conductor/
95°C (77°F) ‘\’)0 C (122°F) ) Current ap- mile af
Current approx. Smal} currents prox. 75% 1-ft spacing
Small currents ! .
75 % capacityl capacityt
& g 8 € 3 2 g g 3 2 8 & k) 3 3
T ] T I I = T - BT (=T = T =IO e T ] ]
I S = I » > > > - > > > > > =
. = o o o 5] o =l < < = = < < @ ©
Tl e | o| 2 Tleloglglw|lojlo v|lo|lol w < =
= | o ® | v« BB | A e @ | N B | © ™ ey ©
351;0.351,0.35110.352,0.38610. 430{0. 5100. 552/0.194/0.388/0.466(0. 252{0. 504/0. 605(0 . 25910.1294(0. 1079
~441) 4427 .444) .445| .485| .514| .567) .592| .218| .437| .524| .242| .484] .58t .287| .1336| .1113
-556) .857| .559| .560) .612] .642| .697| .723 .225) .450| .540. .259] .517] .621| .275| (1377 .1147
.702) .702| .704) .706] .773| .806| .8G6| .895| .231] .462| .554| 267 .534| .641| .284| .1418] 1182
.885| .885) 887| .888) .974/1.01 |1.08 [1.12 | .237) .473) .568] .273| .547| .656] .202| .1460| 1216
12 (1.12 |1.32 |1.12 1.23 |1.27 11.34 (1.38 | .242] .483| .580] .277| .554| .665) 3000 .1500{ .1250
41 |1.41 11.41 |1.41 |1.56 |1.59 |1.66 (1.69 | .247| .493| .592| .277| .554| .665| .308| .1542| 1285
41 [1.41 11,41 |1.41 1.55 {1.59 |1.62 |1.65 | .247| .493) .592] .267| 535 .642| 306 .1532| .1276
78 |1.78 |1.78 |1.78 |1.05 |1.98 (2.04 [2.07 | .252 .503| .604] .275| .551| .661] .317) 1583 1320
24 |2 24 12,24 |2.24 (2.47 |2.50 |2.54 |2.57 | .257) .514] .611] .274| .549| .659] 325 1627 .1355
24 (2.24 |2.24 |2 24 {2.47 |2 50 |2.53 |2.55 257| .515) .618| 2730 .545| 655 .323] 1615| .1348
82 (2.82 |2.82 |2.82 (3.10 |3.12 [3.16 (3.18 | .262| .525/ .630| .279| .557| .665| .333] .1666| .1388
56 13.56 13.56 |3.56 |3.92 |3.94 13.97 |3.98 | .268| .536| .643| .281| .561| .673] .342) .1708{ .1493

* Republished by permission of the Westinghouse Electric Corporation from * Electrical Transmission and Distribution Reference Book."
t Based on copper 97 %, aluminum 61 % conductivity.
1*“Current approx. 75% capacity” is 75% of the ‘“ Approx. current-carrying capacity, amp’ shown in Column 9 and is approximately the current which Will produce 50°C conductor
temp. (25°C rise) with 25°C air temp., wind 1.4 miles/hour.
§ For conductor at 75°C, air at 25°C, wind 1.4 miles/hour (2 ft/sec), frequency = 60 cycles.
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358 ELEMENTS OF POWER SYSTEM ANALYSIS

TasrLe A.3 IxpucTive ReEAcTANCE SpaciNg FacTror AT 60 CycLes*
(Ohms per conductor per mile)

Separation
Inches

Feet

0 1 2 3 4 5 6 7 8 9 10 11
0 — |—.3015|—.2174| —.1682| —.1333| —.1062| —.0841| —.0654| —.0492| —.0349| —.0221| —.0106
1 0 L0097 .0187] .0271] .0349] .0423| .0492] .0558 .0620{ .0679| .0735| .0789
2 0841 .0891] .0938] .0984| .1028; .1071] .1112| .1152] .1190] .1227) .1264] .1209
3 .1333| .1366] .1399| .1430| .1461] .1491| .1520| .1549 .1577| .1604| .1631| .1657
4 1682 1707 .1732| .1756] .1779| .1802| .1825| .1847| .1869; .1801| .1912| .1933
5 1953|1973 .1993] .2012] .2031| .2050| .2069 .2087) .2105] .2123] .2140{ .2157
6 2174 .2191] .2207| .2224| .2240| .2256| .2271 .2287) .2302| .2317| .2332| .2347
7 2361 .2376! .2390] .2404] .2418| .2431] 2445 .2458| .2472| .2485| .2498| .2511
8 .2523
9 2666
10 2794
11 2910
12 3015
13 3112
14 3202
15 .3286
16 3364
17 .3438
18 3507
19 3573
20 .3635
21 .3694
22 3751
23 3805
24 .3856
25 .3906!
26 .3953
27 .3999
28 4043
29 4086
30 4127
31 4167
32 4205
33 4243
34 4279
35 4314
36 4348
37 4382
38 4414
39 4445
40 4476
41 .4506
42 4535
43 4564
44 4592
45 4619
46 4646
47 4672
48 4697
49 4722

* Republished by permission of the Westinghouse Electric Corporati
and Distribution Reference Book.”
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APPENDIX 359

TaeLE A.4 SHUNT CaraciTivE REacrance Spacing Facror ar 60 CycLEs*
(Megohms per conductor per mile)

Separation
Inches

Feet Y

0 1 2 3 4 5 6 7 8 9 10 11
0 —  |—.0737]| —.0532| —.0411] —.0326| —.0260] —.0206/ — .0160{ —.0120] —.0085| —.0054] —.0026
1 0 L0024 .0046] .0066] .0085/ .0103| .0120] .0136, .0152] .0166/ .0180, .0193
2 .0206] .0218] .0229] .0241| .0251] .0262] .0272; .0282] .0291] .0300| .0309| .0318
3 .0326( .0334] .0342| .0350| .0357| .0365 .0372| .0379l .0385| .0392| .0399| .0405
4 0411 0417 .0423| .0429] .0435| .0441] .0446| .0452| .0457| .0462] .0467| .0473
5 L0478 .0482| .0487| .0492( .0497| .0501| .0506| .0510| .0515] .0519| 0.523| 0.527
6 0532 .0536] .0540{ .0544( .0548] .0552{ .0555| .0559f .0563] .0567| .0570, .0574
7 .0577] .0581 .0584] .0588] .0591] .0594] .0598, .0601] .0604] .0608] .0611} .0614
8 L0617
9 0652
10 .0683
11 0711
12 .0737
13 L0761
14 .0783
15 .0803
16 0823
17 0841
18 .0858
19 L0874
20 .0889
21 .0903
22 0917
23 .0930
24 .0943
25 .0955
26 0967
27 .0978|
28 0989
29 .0999
30 1009
31 1019
32 .1028
33 .1037
34 1046
35 1055
36 .1063
37 L1071
38 1079
39 .1087
40 .1094
41 1102
42 1109
43 L1116
44 .1123
45 .1129
46 .1136
47 1142
48 1149
49 1155

* Republished by permission of the Westinghouse Electric Corporaigs
and Distribution Reference Book.”
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360 ELEMENTS OF POWER SYSTEM ANALYSIS

TaBLe A.5 TyricaL CoNsSTANTS OF THREE-PHASE SYNCHRONOUS MACHINES*
(Reactances are per unit. Values below the line give the normal range of values,
while those above give an average value.)

1 2 3 4 5 6
¥ X, X, X7 X, XTO
( rl“jt ) rated rated rated rated cated
st current voltage voltage current
current
Two-pole tur-| 1 90 | 1.16 0.15 0.09 _x” 0.03
oo 0.951.450.92-1.42  0.12-0.21 | 0.07-0 14 ¢ 10.01-0.08
Four-pole tur- |y 9 1.16 0.23 0.14 e 0.08
bine gen- - =X, [0
eratons 1.00-1.450.92-1.42| 0.20-0.28 | 0.12-0.17 0.015-0. 14

Salient-pole

§Zﬁe$§(§§l 1.25 0.70 0.30 0.20 0.20 0.18
(with 0.60-1.50|0.40-0.80|0.20-0.50%|0.13-0.321|0.13-0.321 0.030.23
dampers)
Salient-pole
generators 1.25 0.70 0.30 0.30 0.48 0.19
(without 0.60-1.50(0.40—0.80[0.20-0.50}|0.20-0.501| 0.35-0.65 | 0.03-0.24
dampers)
Condensers, 1.85 1.15 0.40 0.27 0.26 0.12
air-cooled |7 95°9720(0.95-1.30| 0.30-0.50 | 0.19-0.30 | 0.18-0. 40 {0.025-0. 15
Condensers,
Sgggfiggg- 2.20 1.35 0.48 0.32 0.31 0.14
14 psi kva  |1-50-2.65/1.10-1.55/ 0.36-0.60 | 0.23-0.36 | 0.22-0.48 [0.030-0. 18
rating

* Republished by permission of the Westinghouse Eleetric Corporation from
‘‘Electrical Transmission and Distribution Reference Book.”

T Xo varies so critically with armature winding pitch that an average value can

hardly be given. Variation is from 0.1 to 0.7 of X);. Low limit is for 24 pitch
windings.

{ High-speed units tend to have low reactance and low-speed units high reactance.
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APPENDIX 361

TasrLE A.6 TRANSFORMER REACTANCES AND IMPEDANCES*
(Typical full-load values in per cent of full-load kva base)

Voltage class in kv
Single- 2.5 15 25 69 138 161 230
phase _
kva o g © 8 © 8 ® 8 < 8 ) 8 © g
. & cl e g g & < g S =i o =i 51 =
rating | @51 9% 55| &5 55| %S| 25| &2 | L5 €5 | 5| &S 95| &
R RS R S - ER - E RS A
SEcE|SE e e IS 2|28 S5 EEPEI B 2E
B B B B B e e I R e R A Bl I el IRl I
311.1{2.2/0.8/2.8
10 |1.512.2(1.3[2.414.4|5.2
2512.0/2.511.7/2.3/4.8/5.2
50(2.1/2.412.112.5/4.9|5.2(/6.3] 6.5
100 13.113.3/2.9/3.2/5.0{5.2/6.3| 6.5
500 |4.7/4.8/4.9/5.0/5.1/5.2/6.41 6.5
Imped- | Imped- | Imped- | Imped- Imped- Imped- Imped-
ance ance ance ance ance ance ance
range range range range range range range
1000 |.........14.5-8.015.5-9.0 |7.0-11.0 |8.5-17.0
5000 |.........14.5-8.0(5.59.0 |7.0-11.0 {8.5-17.0 {9.5-18.5
10000 {.........{4.5-8.0 |5.5-9.0 | 7.0-11.0 |8.5-17.0 [9.5-18.5 5-20.5
25000 ... et 5.5-9.0 | 7.0-11.0 |8.5-17.0 |9.5-18.5 .5-20.5
50000 ...t e . 18.5-17.0 19.5-18.5 | 11.5-20.5

* Republished by permission of the Westinghouse Electric Corporation.
Notes: (1) Above 500 kva, reactance and impedance values are nearly equal, and only

the normal design impedance range is given.
(2) For three-phase transformers use 14 of the three-phase kva rating, and
enter the table with rated line-to-line voltage.
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362 ELEMENTS OF POWER SYSTEM ANALYSIS

TasLE A.7 TypicaL

Line Length, | Voltage, L )
No. Company miles kv Circuits Conductor
1 | Union Electric Company 16.56 66 2 4/0'copper
of Missouri
2 | Georgia Power Company | 102.65 10 | 1 397,500 CM
26/7 ACSR
3 | Carolina Power and 47.0 132 1 | 397,500 CM
Light Company ; [ 26/7 ACSR
4 | Union Electric Company | 119.5 132 2 250,000 CM
of Missouri 19-strand copper
5 | Hydro-Electric Power 153.8 132 2 336,400 CM
Commission of Ontario ACSR
6 | Southern California 233 .4 220 1 605,000 CM
Edison Company 30/19 ACSR
7 | Southern California 7.0 220 1 | 1,033,500 CM
Edison Company 54/7 ACSR
8 | American Gas and * 330 2 Expanded ACSR
Electric Company 1.6” O.D.
i

* A single-circuit line of the first portion of the 330-kv system of the American Gas
and Electric Company was completed between the Philip Sporn and Kanawa River
plants, a distance of 63 miles, in 1952. A second circuit will be added later on the
same towers.
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APPENDIX 363

Power TransMmissioN LiNes

Type of
Ground wire Location of line construc- Dimensions
tion
3/0 ACSR Venice-Alton B D, = 116" 8 =8
D2 — 18/6// h 8/4//
D; = 146" H = 46’6’ av
3¢" 7-strand South Macon—Vidalia A D =14 h = 126" approx
galv. steel d = 14 H = 288" max
= 19’7 min
34" S-M steel | Roxboro-Raleigh : A D =136" h=T
| d=136" H =22 ay
'\
746"’ S-M steel | Osage-Rivermines i C D, = 29/ d = 29’
D, = 35 h = 20'8""
Dy = 29’ H = 42’4 av
S = 14
3¢ steel B D, = 186" h = 10’ approx
D, = 286" H = 55 max
D; = 186" = 22’ min
S =11’
|
14’ 7-strand Hoover Dam—Chino ! A D = 23/ h =20
steel d = 24’ H = 45 av
14" 7-strand East Laguna Bell- A D = 23 h = 20’
steel Lighthipe d = 24 H = 45 av
159,000 CM B D, = 356" h =15
ACSR D, = 486”7 H = 88’ max
D, = 386" = 35’ min
S = 216"
. -
e—d — I3
(e} (e} [oF o
k—D——D—
H
-

Type A %" REGISTERED ¢
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ABCD constants, advantages of, 126
of four-terminal networks, 109, 110
of long transmission lines, 113
measurement of, 124-126
of networks, in parallel, 124

in series, 123

Povejsil-Johnson charts of, 113-122

relations between, 110-112

of short transmission lines, 112

of transmission lines in per unit of
|z, 113-122

of unsymmetrical-r networks, 112

of unsymmetrical-T networks, 108,
109

ACBR (see Aluminum cable, steel rein-

forced)

Admittance, driving-point, 173-176
shunt, of transmission lines, 88-94
transfer, 176
to zero-sequence exciting current of

transformers, 243, 244
Air-gap voltage, 196-200
Alternator, magnetomotive forces in,
195-197
short-circuit current in unloaded, 190
transient current in, 190-193
(See also Synchronous machines)
Aluminum cable, steel reinforced
(ACSR), 25, 26
geometric mean distance applied
to, 31
tables of characteristics of, 355-357
American Standards Association (ASA),
151, 152
Attenuation constant, 95

Base quantities, change of, 159
relations between, 157, 158
selection of values for, 157—164
Ber and bei funetions, 79
Bessel functions, 77-79
365

Calculating board, 6—9
a-c, 180-184
d-c¢, 176-180
load study on, results of, 8, 9
for stability problems, 348
table of elements of, 182
types of studies solved by, 183, 184
Capacitance, definition of, 47
effect on, of earth, 61-64, 259-263
of nonuniform charge distribution,
52, 53
line-to-line, 51, 52
line-to-neutral, 51, 52
of stranded conductors, 53
of three-phase lines, with equilateral
spacing, 56, 57
parallel-circuit, 64
with unsymmetrical spacing, 57-61
transposition to balance, 57-60, 62—
64, 66
of two-wire lines, 49-54
zero-sequence (see Zero-sequence
capacitance)
Capacitive reactance at 1-ft spacing, 53, 54
tables of, 3563-357
Capacitive reactance spacing factor, 53, 54
table of, 359
Capacity, installed, in United States,
table of, 4
Carson’s equations, 250-253
Characteristic impedance, 95
plotted as a function of w
termination of line by, 98

éf\%;glg,RED ,/é\@
)

&
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of line losses,
of receivi
of sending-N
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Circuit breakers, 10, 11, 151
interrupting rating of, 188, 205-208
momentary rating of, 188 205-207
operating time of, 341, 342
selection of, 205—208
symbols for, 152

Composite conductors, inductance of,

27-29, 34
tables of characteristics of, 353-357
types of, 25-27

Corona loss, 84, 85

Counterpoises, 258, 259

Critical clearing angle, 337-341, 348, 349

Critical clearing time, 342, 344, 345, 348

349
Current, charging, 47
equations of, for long transmission
lines, 95, 97, 100
for medium-length transmission
lines, 92
for short transmission lines, 90
momentary, in cireuit breakers, 11,
188, 205-207
subtransient, 192-195
transient, in alternators, 190-193
in RL circuits, 188, 189

A-Y transformation, 169
A-Y transformers, per-unit impedance
of, 163
phase shift in, 220-225
D-¢ transmission, 3
Double line-to-ground faults, on loaded
systems, 275, 276
on unloaded generators, 236-239
Driving-point admittance, 173-176

Earth, effect of, on capacitance, 61-64
Energy, annual production of, in United
States, table of, 4
kinetic, 325, 326, 328, 333
Equal-area criterion, 330-335
application of, 335-341
Equivalent eircuit, of long transmis-
sion line, 103-105
of transformer, 154-156, 242
Equivalent equilateral spacing, in ca-
pacitance computations, 59, 60, 67,
68
in inductance computations, 40, 41

Equivalent-r circuit, 103-105
determined from ABCD constants, 112

Faults, definition of, 10
through impedance, 289-293
on loaded systems, 272-274
double line-to-ground, 275, 276
line-to-line, 275
single line-to-ground, 274, 275
open-conductor, 293-298
three-phase, on synchronous ma-
chines, 200-205
on unloaded generators, double line-
to-ground, 236--239
line-to-line, 234, 236
single line-to-ground, 230-233
various types of, occurrence of, 11
severity of, on stability, 338
Field intensity, 18
Flux linkages, 14-16
of coils, 15
constant, principle of, 198
of isolated conductor, 19, 20
of one conductor in a group, 23-25
partial, 16, 17
in synchronous machines, 198-200
varying, voltage drop due to, 16
Fortescue, C. L., 210
Four-terminal networks, 108
ABCD constants of, 109, 110

Generalized circuit constants (see ABCD
constants)
Generators (see Synchronous machines)
Geometric mean distance (GMD),
applied to ACSR, 31
of area to area, 30
method of, inductance calculations by,
27-35, 40-44
modified, capacitance caleulatigas
by, 65-68
mutual, 27
of point to area, 3
self, 27, 28
of area, 30




Ground wires, 253-259, 261-263
Grounding practices, 152, 153

Helmholtz-Thévenin theorem, applica-~
tion of, to caleulation of three-
phase fault currents, 200-205
to solution of interconnected net-
works, 277-288
statement of, 177
Hyperbolic functions, 100-102

Image charges, 61, 62, 259-262
Impedance, characteristic (see Charac-
teristic impedance)
in faults, 289-293
internal, of eylindrical conductors,
79-81
negative-sequence (see Negative-
sequence impedance)
per-unit, of three-winding transfor-
mer, 165-167
of two-winding transformer,
163, 243
table of, 361
positive-sequence, 228-230, 248-250
sequence mutual, of unsymmetrical
systems, 303, 304
sequence self-, of unsymmetrical sys-
tems, 303, 304
surge, 98
of transformers, 242-244
table of, 361
unsymmetrical (see Unsymmetrical
loads; Unsymmetrical systems)
zero-sequence (see Zero-sequence im-
pedance)
Impedance diagrams, 154-156
Incident voltage and current, 96-98

Inductance, calculation of, by method of

geometric mean distance, 27-35,
4044
of composite-conductor lines, 25-29
definition of, 14-16
due to internal flux, 17-19
internal, ratio of actual, to d-¢, 84
mutual, 116
of parallel-circuit three-phase line,
41-44
of single-phase two-wire line, 20-23
of three-phase line, with equilateral
spacing, 37, 38

INDEX 367

Inductance, of three-phase line, with
unsymmetrical spacing, 38-41
transposition to balance, 38, 39, 41
zero-sequence, of transmission lines,
250-259
(See also Reactance)
Induction motors, 154, 155 B
effect of negative-sequence current in,
301
impedance of, negative-sequence,
248-250
positive-sequence, 248-250
zero-sequence, 250
kva rating of, 160
Inductive reactance at 1-ft spacing, 35-37
tables of, 353-357
Inductive reactance spacing factor, 35-37
table of, 358
Inertia constants, 326-328
Infinite bus, definition of, 178
Interconnection of power systems, 5, 6
Interrupting rating of circuit breakers,
188, 205-208

Kinetic energy, 325, 326, 328, 333

Leakage at insulators, 85
Leakage reactance of transformers, 154-
156, 242-244
Line-to-line faults, on loaded systems,
275
on unloaded generators, 234-236
Loads, unsymmetrical (see Unsymmetri-
cal loads)
Long-line equations, ABCD constants
for, 113
Povejsil-Johnson charts of, 113-122
hyperbolic form of, 100-103
interpretation of, 95-100
solution of, 92-95
Long-line equivalent circuit, 103-105
Loss diagrams, 148-149
Losses in transmission lines,
84, 85
by leakage, 85
by proximity g
by resistance,
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Magnetomotive force, around closed
paths, 17

Medium-length line, 89, 91, 92

Momentary rating of circuit breakers,
11, 188, 205-207

Negative-sequence components, 210-215
Negative-sequence current in unbalanced
systems, 301
Negative-sequence impedance, 228230
of induction motors, 248250
of synchronous machines, 244-246
table of, 360
Negative-sequence networks, 228-230,
263, 264
Network analyzer (see Calculating
board)
Network calculator (see Calculating
board)
Network reduction, 168-176
Networks, four-terminal, 108-110
sequence, 228-230
(See also Negative-sequence networks;
Positive-sequence networks; Zero-
sequence networks)
Nominal-r cireuit to represent medium-
length lines, 91, 92
Nominal-T eircuit to represent medium-
length lines, 91, 92

One-line diagrams, 151-153
Open conductors, 293-298
Open-A transformers, 315-317
Operators, 212-214

Per-unit impedance, of three-winding
transformer, 165-167
of two-winding transformers, 163, 243
(See also Per-unit quantities)
Per-unit quantities, base for, change of,
159
selection of, 157-164
definition of, 156
Petersen coil, 153
Phase constant, 95
Phase shift in three-phase transformers,
220-225
= eircuit, equations for unsymimetrical,
112

7 circuit, nominal, to represent medium-
length line, 91, 92
=T transformation, 169
Polarity markings for transformers, 220
222
Positive-sequence components, 210-215
Positive-sequence impedance, 228230
of induction motors, 248-250
Positive-sequence networks, 228230,
263, 264
Povejsil-Johnson charts, 113-122
Power, accelerating, 328-330
at receiving end of four-terminal net-
work, 137-138
at sending end of four-terminal net-
work, 138
Propagation constant, 95
Propagation velocity, 99
Proximity effect, 86

Reactance, capacitive, at 1-ft spacing,
53, 54, 353-357
direct-axis, 191-200
table of, 360
leakage, of transformers, 154—156,
242-244
quadrature-axis, 195-200
table of, 360
subtransient, 153, 192
measurement of, 199, 200
significance of, 197-200
table of, 360
voltage behind, 201-202
synchronous, 191, 195-197
of synchronous machines, table of, 360
of transformers, table of, 361
transient, 192
significance of, 197
table of, 360
voltage behind, 201-202
zero-sequence, of transmission lines,
250-259
(See also Impedance)
Reactance diagrams
Reactive power, sign)
Reciprocity thg
Reduction of nd —176

Reflected vo Q@urrent, 96, 97 6}
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Resistance, tables of, 3563-357
variation of, with temperature, 71
Resistivity, 70
of ground, 251

Sequence-network connections, for
open-A transformer banks, 315-317
for single-phase line-to-line loads,
307-309
for single-phase line-to-neutral loads,
311
for two equal series impedances, 312—
315
Sequence networks, 228-230
(See also Negative-sequence net-
works; Positive-sequence net-
works; Zero-sequence networks)
Short-line equations, 90
ABCD constants for, 112
Short-line equivalent circuit, 89
Shunt admittance of transmission lines,
88-94
Sign of reactive power, 130, 131
Single line-to-ground faults, on loaded
systems, 274, 275
on unloaded generators, 230-233
Skin effect, 35
qualitative description of, 71-73
Skin-effeet inductance ratio, 83, 84
Skin-effect resistance ratio, 81, 82
Stability, definition of, 319, 320
steady-state, 322-324
transient (see Stability limit, transi-
ent)
Stability limit, 13
definition of, 320
steady-state, 13, 322-324
definition of, 321
methods of inecreasing, 324
transient, 13
definition of, 322
equal-area criterion to determine,
330-341
methods of increasing, 348-349
Stability studies, description of, 11-13
Star-mesh equivalent circuits, 169
Steady-state stability limit, 321-324
Stranded conductors, capacitance of, 53
(See also Composite conductors)
Subtransient current, 192-195

Surge impedance, 98
(See also Characteristic impedance)
Swing equation, 329, 330
point-by-point solution of, 341-348
on calculating board, 348
Symbols for one-line diagrams, 152
Symmetrical components, definition of,
210-212
of unsymmetrical phasors, 214, 215
Synchronous machines, 154
effect of negative-sequence current in,
301
equal-area criterion for stability of,
330-341
inertia constants of, 326-328
negative-sequence impedance of, 244-
246
table of, 360
positive-sequence reactances of (see
Reactance)
reactances of, table of, 360
three-phase faults on, 200-205
zero-sequence impedance of, 246-248
table of, 360
Synchronous motors, kva rating of, 160

T circuit, equations for unsymmetrical,
108, 109
nominal, to represent medium-length
line, 91, 92
T-r transformation, 168
Thévenin’s theorem (see Helmholtz-
Thévenin theorem)
Three-phase faults on synchronous ma-
chines, 200-205
Torque, 325, 328, 329
Torque angle, 133, 136-141, 322-324,
333-337
Transfer admittance, 176
Transformers, A-Y connections of, 156
equivalent circuit of, 154-156, 24
open-4, 315-317
per-unit impedance;
163, 243
of Y-a, 163
phase shift in
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Transformers, types of three-phase, 243
Y-Y connection of, 156
zero-sequence admittance of three-

phase, 243, 244
Transient current, in alternators, 190~
193
in RL circuits, 188, 189

Transient stability limit (see Stability

limit)

Transmission lines, characteristics of

typical, 362, 363
classification by length, 89
shunt admittance of, 88-94
zero-sequence capacitance of, with
ground wires, 261-263
without ground wires, 259-261
gero-sequence impedance of, with
ground wires, 2563-259
without ground wires, 250-253
Transposition, 38, 39
to balance capacitance, 57-60, 62-64,
66
to balance inductance, 38, 39, 41
Two-reaction theory, 195-197

Unsymmetrical loads, single-phase, line-
to-line, 307-311
line-to-neutral, 311
three-phase, 304-307
Unsymmetrical systems, effects of, 301,
302
oceurrence of, 300
sequence self- and mutual impedances
of, 303, 304
with two equal series impedances,
312-315
(See also Unsymmetrical loads)
Velocity of propagation, 99

Voltage, choice of, 4, 5
equations of, for long transmission
line, 95, 97, 101
for medium-length transmission
line, 92
for short transmission line, 90
incident wave of, 96-98
operating, increases in, 4
reflected wave of, 96-98
Voltage regulation, definition of, 90
of short transmission lines, 90, 91

Wavelength, 98, 99
Waves, incident and reflected, 96-98

Y-A transformation, 168
Y-A transformers, per-unit impedance
of, 163
phase shift in, 220-225
Y-Y transformer connections, 156

Zero-sequence capacitance of transmis-
sion lines, with ground wires, 261—
263
without ground wires, 259-261
Zero-sequence components, 210-215
Zero-sequence impedance, 228-230
of induction motors, 250
of synchronous machines, 246-248
table of, 360
of transformers, 242-244
of transmission lines, with ground
wires, 253-259
without ground wires, 250-253
Zero-sequence networks, 228-230
of A-connected loads, 266
of three-phase transformers, 266-269
of Y-connected loads, 265, 266
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