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Editors’ Preface to the
Manchester Physics Series

The Manchester Physics Series is a series of textbooks at first degree level. It grew
out of our experience at the University of Manchester, widely shared elsewhere,
that many textbooks contain much more material than can be accommodated in a
typical undergraduate course; and that this material is only rarely so arranged as
to allow the definition of a short self-contained course. In planning these books
we have had two objectives. One was to produce short books so that lecturers
would find them attractive for undergraduate courses, and so that students would
not be frightened off by their encyclopaedic size or price. To achieve this, we
have been very selective in the choice of topics, with the emphasis on the basic
physics together with some instructive, stimulating and useful applications. Our
second objective was to produce books which allow courses of different lengths
and difficulty to be selected with emphasis on different applications. To achieve
such flexibility we have encouraged authors to use flow diagrams showing the
logical connections between different chapters and to put some topics in starred
sections. These cover more advanced and alternative material which is not required
for the understanding of latter parts of each volume.

Although these books were conceived as a series, each of them is self-contained
and can be used independently of the others. Several of them are suitable for
wider use in other sciences. Each Author’s Preface gives details about the level,
prerequisites, etc., of that volume.

The Manchester Physics Series has been very successful since its inception
40 years ago, with total sales of more than a quarter of a million copies. We are
extremely grateful to the many students and colleagues, at Manchester and else-
where, for helpful criticisms and stimulating comments. Our particular thanks go
to the authors for all the work they have done, for the many new ideas they have
contributed, and for discussing patiently, and often accepting, the suggestions of
the editors.



xii Editors’ Preface to the Manchester Physics Series

Finally we would like to thank our publishers, John Wiley & Sons, Ltd., for
their enthusiastic and continued commitment to the Manchester Physics Series.

F. K. Loebinger
F. Mandl

D. J. Sandiford
August 2008



Authors’ Preface

In writing this book, our goal is to help the student develop a good understanding of
classical dynamics and special relativity. We have tried to start out gently: the first
part of the book aims to provide the solid foundations upon which the second half
builds. In the end, we are able, in the final chapter, to cover some quite advanced
material for a book at this level (when we venture into the terrain of Einstein’s
General Theory of Relativity) and it is our hope that our pedagogical style will
lead the keen student all the way to the denouement. That said, we do not assume
too much prior knowledge. A little calculus, trigonometry and some exposure to
vectors would help but not much more than that is needed in order to get going.
We have in mind that the first half of the book covers material core to a typical first
year of undergraduate studies in physics, whilst the second half covers material that
might appear in more advanced first or second year courses (e.g. material such as
the general rotation of rigid bodies and the role of four-vectors in special relativity).

The classical mechanics of Newton and the theory of relativity, developed by
Einstein, both make assumptions as to the structure of space and time. For Newton
time is an absolute, something to be agreed upon by everyone, whilst for Einstein
time is more subjective and clocks tick at different rates depending upon where
they are and how they are moving. Such different views lead to different physics
and by presenting Newtonian mechanics alongside relativity, as we do in this book,
it becomes possible to compare and contrast the two. Of course, we shall see how
Newtonian physics provides a very good approximation to that of Einstein for most
everday phenomena, but that it fails totally when things whizz around at speeds
approaching the speed of light.

In this era of electronic communications and online resources that can be
researched at the push of a button, it might seem that the need for textbooks is
diminished. Perhaps not surprisingly we don’t think that is the case. Quiet time
spent with a textbook, some paper and a pen, reading and solving problems, is
probably still the best way to do physics. Just as one cannot claim to be a pianist
without playing a piano, one cannot claim to be a physicist without solving
physics problems. It is a point much laboured, but it is true nonetheless. The
problems that really help develop understanding are usually those that take time
to crack. The painful process of failing to solve a problem is familiar to every
successful physicist, as is the excitement of figuring out the way forward. Our
advice when solving the problems in this book is to persevere for as long as



xiv Authors’ Preface

possible before peeking at the solution, to try and enjoy the process and not to
panic if you cannot see how to start a problem.

We have deliberately tried to keep the figures as simple as possible. A good
drawing can often be an important step to solving a physics problem, and we
encourage you to make them at every opportunity. For that reason, we have illus-
trated the book with the sorts of drawings that we would normally use in lectures
or tutorials and have deliberately avoided the sort of embellishments that would
undoubtedly make the book look prettier. Our aim is to present diagrams that are
easy to reproduce.

A comment is in order on our usage of the word “classical”. For us “classical”
refers to physics pre-Einstein but not everyone uses that terminology. Sometimes,
classical is used to refer to the laws of physics in the absence of quantum mechanics
and in that sense, special relativity could be said to be a classical theory. We have
nothing to say about the quantum theory in this book, except that quantum theories
that are also consistent with relativity lie at the very heart of modern physics.
Hopefully this book will help whet the appetite for further studies in that direction.

We should like to express our gratitude to all those who have read the manuscript
and provided helpful suggestions. In particular we thank Rob Appleby, Richard
Battye, Mike Birse, Brian Cox, Joe Dare, Fred Loebinger, Nicola Lumley, Franz
Mandl, Edward Reeves, David Sandiford and Martin Yates.

Finally, we would like to express particular gratitude to our parents, Thomas &
Sylvia Forshaw and Roy & Marion Smith, for their constant support. For their love
and understanding, our heartfelt thanks go to Naomi, Isabel, Jo, Ellie, Matt and
Josh.

Jeffrey R. Forshaw
A. Gavin Smith

October 2008



Part I
Introductory Dynamics





1
Space, Time and Motion

1.1 DEFINING SPACE AND TIME

If there is one part of physics that underpins all others, it is the study of motion.
The accurate description of the paths of celestial objects, of planets and moons,
is historically the most celebrated success of a classical mechanics underpinned
by Newton’s laws1. The range of applicability of these laws is vast, encompass-
ing a scale that extends from the astronomical to the microscopic. We have come
to understand that many phenomena not previously associated with motion are in
fact linked to the movement of microscopic objects. The absorption and emission
spectra of atoms and molecules arise as a result of transitions made by their con-
stituent electrons, and the random motion of ensembles of atoms and molecules
forms the basis for the modern statistical description of thermodynamics. Although
atomic and subatomic objects are properly described using quantum mechanics, an
understanding of the principles of classical mechanics is essential in making the
conceptual leap from continuous classical systems with which we are most familiar,
to the discretised quantum mechanical systems, which often behave in a manner
at odds with our intuition. Indeed, the calculational techniques that are routinely
used in quantum mechanics have their roots in the classical mechanics of particles
and waves; a close familiarity with their use in classical systems is an asset when
facing problems of an inherently quantum mechanical nature.

As we shall see in the second part of this book, when objects move at speeds
approaching the speed of light classical notions about the nature of space and
time fail us. As a result, the classical mechanics of Newton should be viewed as a
low-velocity approximation to the more accurate relativistic theory of Einstein2. To
look carefully at the differences between relativistic and non-relativistic theories

1 After Isaac Newton (1643–1727).
2 Albert Einstein (1879–1955).
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4 Space, Time and Motion

forces us to recognise that our intuitive ideas about how things move are often
incorrect. At the most fundamental level, mechanics of either the classical or the
quantum kind, in either the relativistic or non-relativistic limit, is a study of motion
and to study motion is to ask some fundamental questions about the nature of space
and time. In this book we will draw out explicitly the different underlying structures
of space and time used in the approaches of Newton and Einstein.

1.1.1 Space and the classical particle

We all have strong intuitive ideas about space, time and motion and it is precisely
because of this familiarity that we must take special care in our attempts to define
these fundamental concepts, so as not to carry too many unrecognised assumptions
along with us as we develop the physics. So let us start by picking apart what
we mean by position. We can usually agree what it means for London to be
further away than Inverness and we all know that in order to go to London from
Inverness we must also know the direction in which to travel. It may also seem
to be fairly uncontentious that an object, such as London, has a position that
can be specified, i.e. it is assumed that given enough information there will be no
ambiguity about where it is. Although this seems reasonable, there is immediately a
problem: day-to-day objects such as tennis balls and cities have finite size; there are
a number of ‘positions’ for a given object that describe different parts of the object.
Having directions to London may not be enough to find Kings Cross station, and
having directions to Kings Cross station may not be enough to find platform number
nine. To unambiguously give the position of an object is therefore only possible if
the object is very small – vanishingly small, in fact. This hypothetical, vanishingly
small object is called a particle. It might be suggested that with the discovery of the
substructure of the atom, true particles, with mass but no spatial extent, have been
identified. However, at this level, the situation becomes complicated by quantum
uncertainty which makes the simultaneous specification of position and momentum
impossible. The classical particle is therefore an idealisation, a limit in which the
size of an object tends to zero but in which we ignore quantum phenomena. Later
we shall see that it is possible to define a point called the centre of mass of an
extended object and that this point behaves much like a classical particle. The
collection of all possible positions for a particle forms what we call space.

The mathematical object possessing the properties we require for the description
of position is called the vector. A vector has both magnitude and direction and we
must be careful to distinguish it from a pure number which has a magnitude, but no
directional properties. The paradigm for the vector comes from the displacement of
a particle from point A to point B as shown in Figure 1.1. The displacement from
A to B is represented by the directed-line-segment AB. We can imagine specifying
the displacement as, for example, “start at A and move 3 km to the northeast”
or “start at A and go 1 parsec in the direction of Alpha Centuri”. Once we have
specified a displacement between the two points A and B we can imagine sliding
each end of the line segment in space until it connects another two points C and D.
To do this, we move each end through the same distance and in the same direction,
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A

B

CAB

CD

a

D

Figure 1.1 Displacement of a particle from point A to point B is illustrated by the directed
line segment AB . Parallel transport of this line gives the displacement from point C to
point D. The displacement vector a is not associated with any particular starting point.

an operation that is known as parallel transport. Now the displacement is denoted
CD but its direction and magnitude are the same. It should be clear that there is
an infinity of such displacements that may be obtained by parallel transport of the
directed line segment. The displacement vector a has the magnitude and direction
common to this infinite set of displacements but is not associated with a particular
position in space. This is an important point which sometimes causes confusion
since vectors are illustrated as directed line segments, which appear to have a
well defined beginning and an end in space: A vector has magnitude and direction
but not location. The position of a particle in space may be given generally by a
position vector r only in conjunction with a fixed point of origin.

Now, all of this assumes that we understand what it means for lines to be
parallel. At this point we assume that we are working in Euclidean space, which
means that parallel lines remain equidistant everywhere, i.e. they never intersect.
In non-Euclidean spaces, such as the two-dimensional surface of a sphere, parallel
lines do intersect3 and extra mathematics is required to specify how local geometries
are transported to different locations in the space. For the moment, since we have
no need of non-Euclidean geometry, we will rest our discussion of vectors firmly
on the familiar Euclidean notion of parallel lines. Later, when we consider the
space-time geometry associated with relativistic motion we will be forced to drop
this deep-rooted assumption about the nature of space.

So far, we have been considering only vectors that are associated with displace-
ments from one point to another. Their utility is far more wide ranging than that
though: vectors are used to represent other interesting quantities in physics. For
example the electric field strength in the vicinity of an electric charge is correctly
represented by specifying both its magnitude and direction, i.e. it is a vector. Since
it is important to maintain the distinction between vectors and ordinary numbers

3 For example lines of longitude meet at the poles.
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(called scalars) we identify vector quantities in this book by the use of bold font.
When writing vectors by hand it is usual to either underline the vector, or to put
an arrow over the top. Thus

a ≡ −→a ≡ a.

Use the notation that you find most convenient, but always maintain the distinction
between vector and scalar quantities. In this book both upper case (A) and lower
case (a) notion will be used for vectors where A is in general a different vector
from a. When a vector has zero magnitude it is impossible to define its direction;
we call such a vector the null vector 0.

1.1.2 Unit vectors

The length of a vector a is known as its magnitude, often denoted |a|. To simplify
the notation we shall adopt the convention that vectors are printed in bold and their
magnitudes are indicated by dropping the bold font, thus a ≡ |a|. Often we will
separate the magnitude and direction of a vector, writing

a = aâ,

where â is the vector of unit magnitude with the same direction as a. Unit vectors,
of which â is an example, are often used to specify directions such as the directions
of the axes of a co-ordinate system (see below).

1.1.3 Addition and subtraction of vectors

The geometrical rules for adding and subtracting vectors are illustrated in
Figure 1.2. Addition of the vectors A and B involves sliding the vectors until
they are “head-to-tail”, so that the resultant vector connects the tail of A to the
head of B. The vector −A is defined as a vector with the same magnitude, but
opposite direction to A. The difference B − A is constructed by adding B and −A
as shown. Subtraction of a vector from itself gives the null vector:

A − A = 0.

B

A

B − A

B

A + B − A

Figure 1.2 Adding and subtracting vectors.
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1.1.4 Multiplication of vectors

There are two types of vector multiplication that are useful in classical physics.
The scalar (or dot) product of two vectors A and B is defined to be

A · B = AB cos θ, (1.1)

This scalar quantity (a pure number) has a simple geometrical interpretation.
It is the projection of B on A, i.e. B cos θ , multiplied by the length of A (see
Figure 1.3). Equally, it may be thought of as the projection of A on B, i.e. A cos θ ,
multiplied by the length of B. Clearly the scalar product is insensitive to the order
of the vectors and hence A · B = B · A. The scalar product takes its maximum
value of AB when the two vectors are parallel, and it is zero when the vectors
are mutually perpendicular.

B cos q

q

A cos q

A

B

Figure 1.3 Geometry of the scalar product. A · B is the product of the length of A, and the
projection of B onto A or alternatively the product of the length of B, and the projection of
A onto B.

The vector (or cross) product is another method of multiplying vectors that is
frequently used in physics. The cross product of vectors A and B is defined to be

A × B = AB sin θ n̂, (1.2)

where θ is the angle between A and B and n̂ is a unit vector normal to the
plane containing both A and B. Whether n̂ is ‘up’ or ‘down’ is determined by
convention and in our case we choose to use the right-hand screw rule; turning
the fingers of the right hand from A to B causes the thumb to point in the sense
of n̂ as is shown in Figure 1.4. Interchanging the order of the vectors in the
product means that the fingers of the right hand curl in the opposite sense and the
direction of the thumb is reversed. So we have

B × A = −A × B. (1.3)

The magnitude of the vector product AB sin θ also has a simple geometrical
interpretation. It is the area of the parallelogram formed by the vectors A and B.
Alternatively it can be viewed as the magnitude of one vector times the projection
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B

A

A × B

q

Thumb

Fingers

Figure 1.4 Vector product of A and B.

of the second on an axis which is perpendicular to the first and which lies in the
plane of the two vectors. It is this second geometric interpretation that has most
relevance in dynamics. As we shall see later, moments of force and momentum
involve this type of perpendicular projection. In this book the vector product will
find its principal application in the study of rotational dynamics.

The scalar and vector products are interesting to us precisely because they have
a geometrical interpretation. That means they represent real things is space. In a
sense, we can think of the scalar product as a machine that takes two vectors as
input and returns a scalar as output. Similarly the vector product also takes two
vectors as its input but instead returns a vector as its output. There are in fact
no other significantly different4 machines that are able to convert two vectors into
scalar or vector quantities and as a result you will rarely see anything other than
the scalar and vector products in undergraduate/college level physics. There is in
fact a machine that is able to take two vectors as its input and return a new type of
geometrical object that is neither scalar nor vector. We will even meet such a thing
later in this book when we encounter tensors in our studies of advanced dynamics
and advanced relativity.

1.1.5 Time

We are constantly exposed to natural phenomena that recur: the beat of a pulse;
the setting of the Sun; the chirp of a cricket; the drip of a tap; the longest day of
the year. Periodic phenomena such as these give us a profound sense of time and
we measure time by counting periodic events. On the other hand, many aspects of
the natural world do not appear to be periodic: living things die and decay without
rising phoenix-like from their ashes to repeat their life-cycle; an egg dropped on
the floor breaks and never spontaneously re-forms into its original state; a candle
burns down but never up. There is a sense that disorder follows easily from order,
that unstructured things are easily made from structured things but that the reverse
is much more difficult to achieve. That is not to say that it is impossible to create
order from disorder – you can do that by tidying your room – just that on average

4 i.e. other than trivial changes such as would occur if we choose instead to define the scalar product to
be A · B = λ AB cos θ where λ is a constant. We choose λ = 1 because it is most convenient but any
other choice is allowed provided we take care to revise the geometrical interpretation accordingly.
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things go the other way with the passing of time. This idea is central to the study
of thermodynamics where the disorder in a system is a measurable quantity called
entropy. The total entropy of the Universe appears always to increase with time. It
is possible to decrease the entropy (increase the order) of a part of the Universe,
but only at the expense of increasing the entropy of the rest of the Universe by a
larger amount. This net disordering of the Universe is in accord with our perception
that time has a direction. We cannot use natural processes to “wind the clock back”
and put the Universe into the state it was in yesterday – yesterday is truly gone
forever. That is not to say that the laws of physics forbid the possibility that a
cup smashed on the floor will spontaneously re-assemble itself out of the pieces
and leap onto the table from which it fell. They do not; it is simply that the
likelihood of order forming spontaneously out of disorder like this is incredibly
small. In fact, the laws of physics are, to a very good approximation, said to be
“time-reversal invariant”. The exception occurs in the field of particle physics where
“CP-violation” experiments indicate that time-reversal symmetry is not respected
in all fundamental interactions. This is evidence for a genuine direction to time
that is independent of entropy. Entropy increase is a purely statistical effect, which
occurs even when fundamental interactions obey time-reversal symmetry.

Thermodynamics gives us a direction to time and periodic events allow us to
measure time intervals. A clock is a device that is constructed to count the number
of times some recurring event occurs. A priori there is no guarantee that two clocks
will measure the same time, but it is an experimental fact that two clocks that are
engineered to be the same and which are placed next to each other, will measure,
at least approximately, the same time intervals. This approximate equivalence of
clocks leads us to conjecture the existence of absolute time, which is the same
everywhere. A real clock is thus an imperfect means of measuring absolute time
and a good clock is one that measures absolute time accurately. One problem with
this idea is that absolute time is an abstraction, a theoretical idea that comes from
an extrapolation of the experimental observation of the similar nature of different
clocks. We can only measure absolute time with real clocks and without some
notion of which clocks are better than others we have no handle on absolute time.
One way to identify a reliable clock is to build lots of copies of it and treat all the
copies exactly the same, i.e. put them in the same place, keep them at the same
temperature and atmospheric conditions etc. If it is a reliable clock the copies
will deviate little from each other over long time intervals. However, a reliable
clock is not necessarily a good clock; similarly constructed clocks may run down
in similar ways so that, for example, the time intervals between ticks might get
longer the longer a clock runs, but in such a way that the similar clocks still read the
same time. We can get around this by comparing equally reliable clocks based on
different mechanisms. If enough equally-reliable clocks, based on enough different
physical processes, all record the same time then we can start to feel confident
that there is such a thing as absolute time. It is worth pointing out that in the 17th
century reliable clocks were hard to come by and Newton certainly did not come to
the idea of absolute time as a result of the observation of the constancy of clocks.
Newton had an innate faith in the idea of absolute time and constructed his system
of mechanics on that basis.
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There is no doubt that absolute time is a useful concept; in this book we shall
at first examine the motion of things under the influence of forces, treating time as
though it is the same for every observer, and we will get answers accurate to a high
degree. However, absolute time is a flawed concept, but flawed in such a way that
the cracks only begin to appear under extreme conditions. We shall see later how
clocks that are moving at very high relative velocities do not record the same time
and that time depends on the state of motion of the observer. Einstein’s Special
Theory of Relativity tells us how to relate the time measured by different observers
although the deviations from absolute time are only important when things start to
move around at speeds approaching the speed of light. In describing the motion of
things that do not approach the speed of light we can ignore relativistic effects with
impunity, avoiding the conceptual and computational complications that arise from
a full relativistic treatment. This will allow us to focus on concepts such as force,
linear and angular momentum and energy. Once the basic concepts of classical
mechanics have been established we will move on to study Special Relativity
in Part II. Even then we will not completely throw out the concepts that are so
successful in classical mechanics. Rather, these shall be adapted into the more
general ideas of energy, momentum, space and time that are valid for all speeds.

1.1.6 Absolute space and space-time

At a fundamental level, the natural philosophy of Aristotle and the physics of
Newton differ from the physics of Galileo5 and Einstein in the way that space and
time are thought to be connected. One very basic question involves whether space
can be thought of as absolute. Consider the corner of the room you might be sitting
in. The intersection of the two walls and the ceiling of a room certainly defines a
point, but will this point be at the same place a microsecond later? We might be
tempted to think so, that is, until the motion of the Earth is considered; the room is
hurtling through space and so is our chosen point. Clearly the corner of the room
defines a ‘different’ point at each instant. So would it be better to define a ‘fixed’
point with reference to some features of the Milky Way? This might satisfy us, at
least until we discover that the Milky Way is moving relative to the other galaxies,
so such a point cannot really be regarded as fixed. We find it difficult to escape com-
pletely from the idea that there is some sort of fixed background framework with
respect to which we can measure all motion, but there is, crucially, no experimental
evidence for this structure. Such a fixed framework is known as absolute space.

The concept of absolute space, which originates with Aristotle and his contem-
poraries, can be represented geometrically as shown in Figure 1.5(a). Here we have
time as another Cartesian axis, tacked onto the spatial axes to produce a composite
space that we call space-time. Consider two things that happen at times and posi-
tions that are measured using clocks and co-ordinate axes. We call these happenings
‘events’ and mark them on our space-time diagram as A and B. In the picture of
absolute space, if the spatial co-ordinates of events A and B are identical we say that
they represent the same point in space at different times. We can construct a path
shown by the dotted line that connects the same point in space for all times. Galilean

5 Galileo Galilei (1564–1642).
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(a) (b)

Time

Space

Space
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Space

Time

x

y
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B

Figure 1.5 Different structures of space and time: (a) absolute space where points A and
B are the same point in space; (b) a fibre-bundle structure where each moment in time has
its own space.

relativity challenges this picture by rejecting the notion of absolute space and
replacing it with the idea that space is defined relative to some chosen set of axes
at a given instant in time. This is more like the picture in Figure 1.5(b), a structure
that mathematicians call a fibre bundle. The same events A and B now lie in differ-
ent spaces and the connection between them is no longer obvious. The fibre bundle
is a more abstract structure to deal with than the space × time structure of (a). Imag-
ine, for example, trying to calculate the displacement from A to B. To do this we
have to assume some additional structure of space-time that allows us to compare
points A and B. It is as if space is erased and redefined at each successive instant
and we have no automatic rule for saying how the ‘new’ space relates to the ‘old’
one. Notice that this view still treats time as absolute; observers at different points
in the x − y plane agree on the common time t . In later chapters we will recon-
sider the geometry of space and time when we come to study the theory of Special
Relativity, where universal time will be rejected in favour of a new space-time
geometry in which observers at different positions each have their own local time.

1.2 VECTORS AND CO-ORDINATE SYSTEMS

As far as we can tell, space is three-dimensional, which means that three numbers
are required to define a unique position. How we specify the three position-giving
numbers defines what is known as the co-ordinate system. The co-ordinate system
therefore introduces a sort of invisible grid or mesh that maps every point in
space onto a unique ordered set of three real numbers. Figure 1.6 shows two
commonly-used 3-dimensional co-ordinate systems. The Cartesian system is named
after the French philosopher and mathematician René Descartes (1596–1650), who
is reputed to have invented it from his bed while considering how he might specify
the position of a fly that was buzzing around his room. This co-ordinate system
consists of three mutually perpendicular axes, labelled x, y and z, that intersect at
the point O, called the origin. The position of a particle at P may be specified
by giving the set of three distances (x, y, z). Another frequently used co-ordinate
system, the spherical-polar system, is obtained when the position of the particle is
given instead by the distance from the origin r and two angles: the polar angle
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Figure 1.6 Two 3-dimensional co-ordinate systems covering the same space. The Cartesian
co-ordinates consist of the set (x, y, z). The spherical polar co-ordinates consist of the set
(r, θ, φ).

θ and the azimuthal angle φ. The Cartesian and the spherical polar systems are
just two possible ways of mapping the same space, and it should be clear that
for any given physical problem there will be an infinite number of equally-valid
co-ordinate systems. The decision as to which one to use is based on the nature
of the problem, and the ease or difficulty of the calculation that results from the
choice.

Choosing a co-ordinate system immediately gives us a way to represent vectors.
Associated with any co-ordinate system are a set of unit vectors known as basis
vectors. Each co-ordinate has an associated basis vector that points in the direction
in which that co-ordinate is increasing. For example, in the 3D Cartesian system
i points in the direction of increasing x, i.e. along the x-axis, while j and k point
along the y− and z−axes, respectively. Suppose that the position of a particle
relative to the origin is given by the vector r, known as the ‘position vector’ of the
particle. Then r can be written in terms of the Cartesian basis vectors as

r = xi + yj + zk, (1.4)

where the numbers (x, y, z) are the Cartesian co-ordinates of the particle. The
magnitude of the position vector, which is the distance between the particle and
the origin, can be calculated by Pythagoras’ Theorem and is

r = √
r · r =

√
x2 + y2 + z2. (1.5)

We have focussed upon a position vector in the Cartesian basis but we could
have talked about a force, or an acceleration or a magnetic field etc. Any vector A
can be expressed in terms of its components (Ax, Ay, Az) according to

A = Ax i + Ayj + Azk. (1.6)

It is not our aim here to present a full discussion of the algebraic properties of
vectors. Some key results, which will prove useful later are listed in Table 1.1.

Very often, the motion of an object may be constrained to a known plane, such
as in the case of a ball on a pool table, or a planet in orbit around the Sun. In such
situations the full 3D co-ordinate system is not required and a two-dimensional
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TABLE 1.1 Vector operations in the Cartesian basis. A and B are vectors, λ is a scalar.

Operation Notation Resultant

Negation −A (−Ax)i + (−Ay)j + (−Az)k
Addition A + B (Ax + Bx)i + (Ay + By)j + (Az + Bz)k
Subtraction A − B (Ax − Bx)i + (Ay − By)j + (Az − Bz)k
Scalar (Dot) Product A · B AxBx + AyBy + AzBz

Vector (Cross) Product A × B (AyBz − AzBy)i + (AzBx − AxBz)j + (AxBy − AyBx)k
Scalar Multiplication λA λAx i + λAyj + λAzk

P

x axis

y axis

r
q

i

r

0 x

y

q

j

Figure 1.7 2D co-ordinate systems. The Cartesian co-ordinates consist of the set (x, y).
The plane polar co-ordinates consist of the set (r, θ).

system may be used. Two of these are shown in Figure 1.7. The Cartesian 2D
co-ordinate system has basis vectors i and j and co-ordinates (x, y). The plane-polar
co-ordinates are (r, θ)6 where

r =
√

x2 + y2 and θ = tan−1 y

x
. (1.7)

The plane-polar system has basis vectors r̂ and θ̂ . These may be expressed in
terms of i and j as

r̂ = i cos θ + j sin θ,

θ̂ = −i sin θ + j cos θ. (1.8)

The general position vector in the plane may therefore be written as

r = r r̂ = r(i cos θ + j sin θ) = xi + yj. (1.9)

Some care is required when using polar co-ordinates to describe the motion of a
particle since the basis vectors depend on the co-ordinate θ , which may itself depend
on time. This means that as the particle moves, the basis vectors change direction.

6 Note the conventional use of θ for the angle to the x axis rather than φ, which is used for the
corresponding angle in the spherical (3D) polar system.
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This will lead to more complicated expressions for velocity and acceleration in
polar co-ordinates than are obtained for Cartesian co-ordinates, as will be seen in
the next section.

1.3 VELOCITY AND ACCELERATION

A particle is in motion when its position vector depends on time. The Ancient
Greek philosophers had problems accepting the idea of a body being both in motion,
and being ‘at a point in space’ at the same time. Zeno, in presenting his ‘runner’s
paradox’, divided up the interval between the start and finish of a race to produce
an infinite sum for the total distance covered. He argued that before the runner
completes the full distance (l) he must get half-way, and before he gets to the end
of the second half he must get to half of that length and so on. The total distance
covered can therefore be written as the infinite series

l

[
1

2
+ 1

4
+ 1

8
+ · · ·

]
.

Zeno argued that it would be impossible for the runner to cover all of the
sub-stretches in a finite time, and would therefore never get to the finish line. This
contradiction forced him to decide that motion is impossible and that what we
perceive as motion must be an illusion. We now know that the resolution of this
paradox lies in an understanding of calculus. As the series continues, the steps get
shorter and shorter, as do the time intervals taken for the runner to cover each
step and we tend to a situation in which a vanishingly short distance is covered in
a vanishingly small time.

Assuming that the position is a smooth function of time, we define the velocity as

v(t) = dr(t)
dt

= limit
�t→0

(
r(t + �t) − r(t)

�t

)
. (1.10)

Notice that it involves a difference in the position vector at time t + �t and at
time t . This difference, divided by the time interval �t , only becomes the velocity
in the limit that �t goes to zero. Thus the velocity is defined in terms of an
infinitesimally small displacement divided by an infinitesimally small time interval.
Notice that the vector nature of v follows directly from the vector nature of
r(t + �t) − r(t), which differs from v only by division by the scalar �t . Often it
is useful to refer to the magnitude of the velocity; this is known as the speed v, i.e.

v = |v| .

With the notion that the ratio of two infinitesimally small quantities can be a
finite number, we return to the Runner’s Paradox. Zeno’s argument does not rely
on the particular choice of infinite series stated above. So we can simplify things
by instead using a series made of equal-length steps. First we divide l up into
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N equal lengths �x = l
N

. Assuming that the runner has a constant speed v in a
straight line, we can write

l =
N∑

i=1

�x =
N∑

i=1

�x

�t
�t, (1.11)

where �t is the time taken for the runner to cover the distance �x. If we now let
N → ∞, then �t → 0 and �x

�t
→ v, so that

l = v

∞∑
i=1

�t.

The time taken to run the whole race is therefore

t =
∞∑
i=1

�t = l

v
.

Thus, provided that we are happy that the limit Eq. (1.10) exists, and that v is a
non-zero number, then we can explain why the runner finishes the race in a finite
time: there is no paradox. We may have laboured the point rather, the bottom line
is of course that the distance travelled involves both integration and differentation:

l =
∫

dx

dt
dt, (1.12)

which works even if the speed is varying from point to point.
Just as velocity captures the rate at which a displacement changes so we introduce

the acceleration, in order to quantify the rate of change of velocity:

a(t) = dv(t)

dt
= d2r(t)

dt2
= limit

�t→0

(
v(t + �t) − v(t)

�t

)
. (1.13)

Again, a is a vector since it is defined as a vector divided by a scalar. In the
Cartesian system, the velocity and acceleration take on a particularly simple form,
since the basis vectors i, j and k do not depend on time. Thus, if

r(t) = x(t)i + y(t)j + z(t)k,

use of the definitions Eq. (1.10) and Eq. (1.13) leads to

v(t) = dx

dt
i + dy

dt
j + dz

dt
k,

a(t) = d2x

dt2
i + d2y

dt2
j + d2z

dt
k. (1.14)
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Example 1.3.1 Calculate the acceleration of a particle with the time-dependent
position vector given by

r(t) = A sin(ωt)i + 1

2
at2j.

Solution 1.3.1 Differentiation once gives

v(t) = Aω cos(ωt)i + atj

and again to obtain

a(t) = −Aω2 sin(ωt)i + aj.

1.3.1 Frames of reference

To describe the motion of a particle we need a position vector and a point of
origin. We have seen that a position vector may be represented by components in a
given co-ordinate system. The question immediately arises as to how one chooses
a co-ordinate system to best suit a given physical situation.

For example, consider a cabin attendant who pushes a trolley along the aisle of
an aircraft in flight. For a passenger on the aircraft a natural co-ordinate system
to use would be one fixed to the aircraft, perhaps a Cartesian system with one
axis pointed along the aisle. On the other hand, an observer on the ground might
prefer a co-ordinate system fixed to the Earth. The reason why the observers tend
to choose different co-ordinate systems is that each observer is surrounded by a
different collection of objects that appear to be stationary. The passenger on the
aircraft regards the structure of the aircraft as fixed whereas the observer on the
ground regards objects on the Earth as stationary. We say that the passenger and
the observer on the ground have different frames of reference.

A frame of reference is an abstraction of a rigid structure. We might think of a
collection of particles whose relative positions do not change with time. However,
it is not necessary for the particles to actually exist in order to define a frame
of reference, we simply understand that the particles could exist in some sort of
static arrangement that defines the frame of reference. Within a particular frame of
reference there is always an infinite choice of co-ordinate systems. For example,
if the observer on the ground chooses Cartesian co-ordinates, there are an infi-
nite number of ways in which the axes may be oriented. Alternatively, latitude,
longitude and distance from the centre of the Earth may be chosen as the three
co-ordinates, with an arbitrary choice of where the meridian lines lie. The choice
of co-ordinate system implies a particular frame of reference, but we can discuss
frames of reference without commitment to a particular co-ordinate system.

1.3.2 Relative motion

In describing the motion of two particles it is often advantageous to use relative
position and velocity vectors. The relative position vector Rab(t) = rb(t) − ra(t)

is the displacement from the position of particle a to that of particle b and it is,
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in general, a function of time. We differentiate with respect to time to obtain the
relative velocity, Vab(t),

Vab(t) = dRab(t)

dt
= vb(t) − va(t), (1.15)

where va(t) and vb(t) are the velocities of particles a and b.

Example 1.3.2 Consider an air-traffic controller tracking the positions of two air-
craft. The controller knows the positions and velocities of the aircraft at some instant
in time (t = 0). Assuming that the aircraft maintain their velocities, show that the
relative velocity can be used to decide whether there is a danger of a collision at
some later time.

Solution 1.3.2 The relative position vector at t = 0 is

R0 = Rab(0) = rb(0) − ra(0).

The relative velocity is computed from the velocities of the aircraft:

V0 = Vab(0) = vb(0) − va(0).

Since the aircraft have constant velocities the relative velocity is also constant and
it can be integrated with respect to time to obtain

Rab(t) = R0 + V0t.

The aircraft will collide if at some time t , Rab(t) = 0, i.e. when R0 = −V0t. This is
a vector equation and it can only be satisfied if both the directions and magnitudes
of both sides of the equation are the same. Clearly we can only obtain a solution for
t > 0 if R0 and V0 are anti-parallel i.e. if R0 = R0n̂ and V0 = −V0n̂, where R0 and
V0 are positive magnitudes and n̂ is a unit vector. If the vectors are anti-parallel,
the collision time is R0/V0.

In the previous example, we worked entirely in the frame of reference in which
the air traffic controller is at rest. It is tempting to identify the relative velocity Vab

also as the velocity of the aircraft b relative to the pilot of aircraft a. Strictly speak-
ing we have not proved this: Vab is the velocity of b relative to a as determined
by the air traffic controller, not by the pilot of aircraft a. In classical mechanics,
where time is universal, the two are equivalent and specifying the relative velocity
between two bodies does not need us to further specify who is doing the observ-
ing. That the assumption of universal time enters into this matter can be seen by
exploring the expression Vab(t) = dRab(t)

dt
. Whose time is represented by t? That of

the air-traffic controller or that of the pilot in aircraft a? If we accept the concept
of absolute time then it doesn’t matter and both record the same relative velocity.
But we really ought to recognise that the assumption of universal time is just that:
an assumption. This is not an irrelevant matter for, as we shall see in Part II, the
universality of time breaks down, becoming most apparent when relative velocities
start to approach the speed of light.
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1.3.3 Uniform acceleration

In many physical situations the acceleration does not change with time. Integra-
tion of Eq. (1.13) then gives

v =
∫

a dt = v0 + a t, (1.16)

where v0 is the velocity at time t = 0. Since v0 is a constant vector, integration
again yields

r = r0 + v0t + 1

2
a t2. (1.17)

In general the vectors r0, v0 and a will have different directions and each of the
vector equations, Eq. (1.16) and Eq. (1.17), is shorthand for three different scalar
equations, one for each of the three spatial components. An important simplifica-
tion occurs in situations where the velocity, acceleration and displacement are all
collinear (i.e. all in the same direction). Then we need only consider the components
of the vectors along the direction of motion, i.e.

v = v0 + at (1.18)

and

r = r0 + v0t + 1

2
at2. (1.19)

Squaring Eq. (1.18) and substituting using Eq. (1.19) yields a third equation that
is often useful in solving problems that don’t deal explicitly with time:

v2 = v2
0 + 2a(r − r0). (1.20)

Even if r, v and a are not collinear then Eq. (1.18), Eq. (1.19) and Eq. (1.20) can
still be applied to each of the Cartesian components of the vectors since the basis
vectors i, j and k are independent of time.

As an example, let us consider the problem of projectile motion in a uniform
gravitational field. Close to the Earth’s surface any object accelerates towards the
centre of the Earth. This acceleration has magnitude

g ≈ 9.81 ms−2

although the exact value depends on where you are on the surface of the Earth.
The fact that all objects fall at the same rate is rather amazing, but we will defer a
discussion of that until the next chapter. Here we only want to use the result that
the acceleration is uniform, which is true so long as we stick to low altitudes and
ignore the effects of air resistance.

Example 1.3.3 Determine the path of a projectile fired with speed u at an angle θ

to the horizontal. Neglect air resistance. Use the path to determine the range of the
projectile.
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Solution 1.3.3 The choice the co-ordinate system is up to us. Since we want to
separate the description of the motion into Cartesian components, we choose the
y-axis to be upwards and the x-axis to be horizontal and in the same plane as the
initial velocity. We then have

a = −gj, and

u = ux i + uyj = u cos θ i + u sin θ j.

We write the position of the projectile as

r = xi + yj,

where x and y depend on time. For convenience we let r = 0 at t = 0. Our choice
of co-ordinate system means that there is no acceleration in the x-direction. Thus
we have,

x = uxt = ut cos θ.

In the y-direction we have

y = uyt − 1

2
gt2 = ut sin θ − 1

2
gt2.

These are parametric equations for x and y (with time as the parameter). To obtain
the path of the projectile we eliminate t to get y as a function of x:

y = uy

ux

x − g

2u2
x

x2 = x tan θ − g

2u2 cos2 θ
x2.

This is the equation of a parabola (see Figure 1.8). To obtain the range of the
projectile we need to find values of x such that y = 0. These are x = 0, the launch
position, and x = (2u2 sin θ cos θ)/g = (u2 sin 2θ)/g, the horizontal range of the
projectile. Notice that the range is maximal for θ = 45◦.
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Figure 1.8 Parabolic path of a projectile fired at 30◦ to the horizontal with an initial speed
of 105 ms−1. Note that the distance scales are different on the horizontal and vertical axes.



20 Space, Time and Motion

1.3.4 Velocity and acceleration in plane-polar co-ordinates: uniform
circular motion

Circular motion arises frequently in physics. Examples may be as simple as a
mass whirled on a string, but also include the orbits of satellites around the Earth,
and the motion of charged particles in a magnetic field. Where circular motion
is concerned, problems are often most easily solved in polar co-ordinates. In
this section we determine the equations for the velocity and acceleration in polar
co-ordinates.

The position of a particle moving in a plane is

r = r r̂. (1.21)

As the particle moves, both r and r̂ may change, i.e. they are both implicitly
time-dependent. The velocity of the particle is calculated by differentiation of the
product r r̂.

v = d

dt
(r r̂) = dr

dt
r̂ + r

dr̂
dt

. (1.22)

Since r̂ = cos θ i + sin θ j,

dr̂
dt

= − sin θ
dθ

dt
i + cos θ

dθ

dt
j = dθ

dt
θ̂ , (1.23)

where we have used the definition Eq. (1.8) for θ̂ . Thus,

v = dr

dt
r̂ + r

dθ

dt
θ̂ . (1.24)

The tangential contribution r dθ
dt

θ̂ is zero if the particle moves radially (constant θ )
whereas the radial velocity dr

dt
r̂ is zero for motion in a circle (constant r). We intro-

duce the angular speed ω = dθ/dt , to simplify the notation. The velocity is then

v = dr

dt
r̂ + rωθ̂ . (1.25)

The general expression for acceleration can be obtained by differentiation of
Eq. (1.24) and further application of Eq. (1.8). However, at this point we will
concern ourselves with the case of uniform circular motion, i.e. dr

dt
= 0 and ω

constant. In which case, we only need worry about the tangential term in (1.24) and

a = d

dt
(rωθ̂) = dr

dt
ωθ̂ + r

dω

dt
θ̂ − rω2r̂, (1.26)

where we have used

dθ̂

dt
= −ωr̂.
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The first two terms in Eq. (1.26) are zero for uniform circular motion, so we obtain

a(uniform circular motion) = −rω2r̂. (1.27)

Notice that the acceleration here is not a result of a change in the magnitude of
v; this is constant. Rather, the direction of θ̂ (and hence that of v) is constantly
changing and this gives rise to the acceleration in the radial direction. Notice also
that the acceleration in Eq. (1.27) points towards the centre of the circular orbit,
i.e. in the direction of −r̂.

We have derived Eq. (1.27) using the formal differentiation of the time-dependent
position vector r r̂. We can also understand the result geometrically. We begin by
sketching the important vectors in Figure 1.9. We show the position of the particle
at times t and t + �t (points A and B respectively) as well as the corresponding
velocity vectors. The velocity vectors are tangential to the path of the particle
and have equal magnitudes (v = rω). Let’s construct the velocity difference �v =
v(t + �t) − v(t): you should be able to see from the diagram that �v points
approximately towards the centre of the circle from the midpoint of the circular arc
between A and B. In the triangle of velocity vectors formed by v(t + �t), v(t)

and �v we can approximate the magnitude of �v by a circular arc, and write
�v ≈ v�θ = vω�t = rω2�t . In the limit �t → 0 the approximation becomes
exact, a = �v/�t → rω2, and the acceleration points exactly in the direction −r̂.
We are therefore led to Eq. (1.27).

∆v

v(t)
w∆t

v(t)

v(t + ∆t) = v(t) + ∆v

v(t + ∆t)

B

A

Figure 1.9 Uniform circular motion. Notice that the changing direction of the velocity
vector results in a vector �v that points approximately towards the centre of the circle.
In the limit of vanishingly-small �t this vector corresponds to the acceleration and points
exactly towards the centre.

1.4 STANDARDS AND UNITS

In this chapter we have introduced the concepts of space and time without saying
too much about measurement. Measurement of a physical quantity consists of
making a comparison of that quantity, either directly or indirectly, with a standard.
A standard is something on which we must all be able to agree and which defines
the unit in which the measurement will be expressed. We will illustrate the idea
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by considering the legendary origins of the yard as a unit of length. Legend has
it that the yard was originally defined to be the distance from tip of King Henry I
of England’s nose to the end of his thumb. Clearly the direct use of this standard
of measurement would have been a little inconvenient; you can be sure that pretty
soon a rod would have been cut to the correct length and used as a substitute for
the King’s own person. The use of this rod for measurement is an example of
indirect measurement, though still using the same standard yard it doesn’t require
the King to be present. Desirable characteristics of a standard are reproducibility and
precision. Reproducibility means that the standard can be used over and over again
to give a consistent definition of the unit, one which doesn’t vary with time. If the
English people had reason to suspect that the King had grown or shrunk (perhaps
by later comparisons with the rod) then they might have faced a dilemma: reject
the King as the means to define the standard yard (in favour of the rod) or keep the
definition using the King and face the problems associated with their not choosing
a reproducible standard of length. Furthermore, the distance from the tip of the
King’s nose to the end of his thumb is not a terribly precise standard. Just consider
the question of how he should hold his head while the measurement is taking place.
The yard defined in this way clearly can only be expected to be accurate at the
level of a few percent. It is easy to think of standards for length that are both more
reproducible and more precise than this legendary definition.

Units are either fundamental, as is the case with the second (s), the kilogram
(kg) and the metre (m), or they are derived units, such as the unit of velocity
(m s−1). For each of the fundamental units, there must be a precise and reproducible
laboratory standard. In the case of the S.I. unit of mass, the kilogram, the standard
is a lump of platinum-iridium alloy kept at the International Bureau of Weights
and Measures (BIPM), at Sèvres in France. The SI unit of time, the second, was
originally 1/86,400 of the mean solar day, and then later defined as a fraction of
the mean tropical year. Neither of these standards could approach the accuracy of
those based on the frequency of radiation emitted by certain atoms and in 1967
the second was redefined as exactly 9,192,631,770 cycles of the transition between
two hyperfine levels in 133Cs. In practice this standard uses a cavity filled with an
ionised vapour of 133Cs. Standing electromagnetic waves are created in the cavity
using a radio-frequency oscillator circuit. When the frequency of the oscillator
matches that of the atomic transition a resonance is observed. At resonance the
oscillator circuit will then, by definition, make precisely 9,192,631,770 cycles in
one second. Clocks based on sophisticated versions of this technique, such as those
at the National Institute of Standards and Technology in the USA, are capable of
measuring time to an accuracy of better than one nanosecond in a day.

The standard unit of length, the metre was once defined as one ten-millionth
of the distance on the Meridian through Paris from the pole to the equator. This
standard was replaced in 1874 and 1889 by standards based on the length, at zero
degrees centigrade, of a prototype platinum-iridium bar. In 1984, standards based
on prototype bars were superseded by the current standard distance that light travels
in vacuum during a time interval of exactly 1/299,792,458 of a second. The effect
of this definition is to fix the speed of light in vacuum at exactly 299,792,458 ms−1.
The justification for this choice of standard relies on our belief in the constancy of
the speed of light in vacuum, a phenomenon that will be discussed in later chapters.
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PROBLEMS 1

1.1 For the vectors a = i + j − 2k and b = 3i − j + k, find:

(a) the vectors c = a + b and d = a − b;
(b) the magnitudes of a, b and c;
(c) a unit vector in the same direction as a.

1.2 A bird leaves its nest and flies 100 m NE (i.e. at a bearing of 45◦) then 150 m
at a bearing of 150◦ and finally 50 m due W, where it lands in a tree. How
far is the tree from the nest? In what direction is the tree from the nest?

1.3 The vertices of a triangle, A, B and C, have position vectors rA, rB and rC .
Write down

−→
AB, the position of B relative to A, in terms of rA and rB . Hence

show that the vector sum of the successive sides of the triangle (
−→
AB + −→

BC +−→
CA) is zero. Draw a sketch to demonstrate this result geometrically.

1.4 Hubble found that distant galaxies are receding from us with a speed pro-
portional to their distance from the Earth. The velocity of the i-th galaxy is
given by

vi = H0ri ,

where ri is the position vector of that galaxy with respect to us at the origin,
and H0 is a constant (known as Hubble’s constant). Show that this recession
of the galaxies does not imply that we are at the centre of the Universe.

1.5 For the vectors

A = i + j + k,

B = 2i − 2j − 2k,

C = 4i − j − 3k,

D = −i + j + k,

find their magnitudes and the scalar products A · B, A · C, A · D and B · D.
Hence find the angles between A and each of B, C and D and that between
B and D. Evaluate the vector products A × B, A × D and B × D. Check that
the magnitudes of these agree with the corresponding geometrical expressions
(|A × B| = |A||B| sin θ etc.).

1.6 A charged particle is accelerated uniformly from rest in an electric field. If
after 1.0 nanoseconds the particle has travelled 10 µm, work out its acceler-
ation.

1.7 A coin is dropped from the top of a tall building. If an observer on the ground
measures the speed of the coin immediately before impact to be 65.0 ms−1,
how tall is the building? For how long was the coin falling? Neglect effects
due to air resistance.

1.8 A missile malfunctions in flight and has a subsequent trajectory described by
the position vector (s) at time (t), given by,

s = 0.3t i + 0.5t j − 0.005t2 k,



24 Space, Time and Motion

where t is measured in seconds and the magnitude of s is measured in km.

(a) What is the speed of the missile at t = 0? In which plane is the velocity
at this time?

(b) What is the speed of the missile at t = 30 s? What is the angle between
the velocity vector and the (positive) z axis at this time?

1.9 An airport travelator of length 50.0 m moves at a speed of 1.0 ms−1. An
athlete capable of running at a speed of 10.0 ms−1 bets a friend that he can
run to the end of the travelator and back again in exactly 10.0 s, as long as
the time to change direction and restart is not included. The athlete loses the
bet. What mistake has the athlete made? (Assume that at the start of each leg,
the athlete is already running at full speed.)

1.10 A ferryman crosses a fast-flowing river. The ferryman knows that her boat
travels at a speed v in still water, and that with the engine off the boat will
drift at a speed u in a direction parallel to the bank, where u is less than v.
If the line joining the two ferry stations makes a right-angle with the bank,
and the stations are separated by a distance d, derive an expression for the
time taken to cross the river. What happens if u is greater than v?



2
Force, Momentum and
Newton’s Laws

A force is something that pushes or pulls. The push or pull of a force may set
an object in motion, as is the case when we throw a ball, push a book along the
surface of a table or drop something from a height. Alternatively, forces may be
used to stop objects already in motion; the friction between the brake-pads and the
wheels of a car and between the tyres of the car and the road surface can quickly
arrest the car’s motion. In these dynamical situations the direction of the applied
force is crucial in achieving the desired effect: a stationary object starts to move
in the direction of an applied force; to stop a moving object we apply a force in
the opposite direction to the motion. This directional property suggests that forces
may be represented mathematically by vectors. Forces are often found in static,
rather than dynamic situations. Medieval cathedrals are impressive examples of
how gravitational forces can be balanced by the electrostatic forces between atoms
to create structures that are stable for many hundreds of years. To start this chapter
we shall seek to place these intuitive ideas on a firmer footing and establish a useful
definition of force. We shall do this first by looking at forces in static situations
and only once we have a definition of force will we strive to link forces to the
motion of things.

2.1 FORCE AND STATIC EQUILIBRIUM

How are we to define force? We wish to do so in a way that relies on as few other
concepts as possible and to this end we remove the complication of motion and
look at a case in which nothing is moving. Figure 2.1 shows a situation in which a
mass is held stationary on a very smooth horizontal surface between three stretched
springs. The springs each pull on the mass and we say that each spring exerts a
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Mass

Figure 2.1 Identical, equally-stretched springs with a mass in static equilibrium in the
horizontal plane. The mass is supported vertically on a low-friction surface (such as an
air-hockey table). Equally you could imagine the experiment as being performed in outer
space.

force on the mass. Let us further say that the springs are carefully constructed to
be as similar as possible; for the sake of this argument they can be considered to be
identical. To further make sure that the springs behave identically we change the
angles that the springs make with each other and look for a situation in which each
spring is stretched by the same amount. When we perform this experiment in the
lab we observe that the mass is stationary if and only if the angle between any pair
of equally-stretched adjacent springs is 120◦. Our definition of force must take the
result of this type of experiment into account. Since we know from experience that
pushing or pulling can produce motion we assert that our experiment with three
springs, in which the mass doesn’t move, corresponds to a total force of zero. In
this way we are led to the idea that force must be a vector quantity, which sums to
give zero in our experiment. That the vector should also point along the axis of the
spring can be deduced from a similar experiment constructed with two collinear
springs: there is then no special direction other than the axis of the springs and
any physical property of the system should not break this symmetry, so the force
must point along the length of the spring. Force is thus to be regarded as a vector
quantity representing a push or pull, which: (a) points along the axis of a stretched
spring; (b) is additive when several springs are involved; (c) results in no motion
when that sum is zero. We also know from experience that there are things other
than springs which may push or pull, so we state as part of our definition that any
thing that can potentially replace one of the springs in the above experiment also
exerts a force on the mass.

This sounds pretty close to a good definition of force, albeit in a fairly specific
scenario, but there is a weakness that you may have already noticed. We stated
that the force is zero when the mass is stationary. That is quite reasonable for
experiments performed at rest on the Earth but what happens if we do the exper-
iment in outer space? How do we agree on what frame of reference to use for
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our force experiment and for our definition of force? An observer moving relative
to us will claim that the mass in Figure 2.1 is in motion whilst we assert that it
is stationary. We need, as a matter of some urgency, to encorporate the frame of
reference into our definition of force. To help us choose a good frame of reference
we shall consider a situation in which no forces are present.

For a force on a particle to exist there must be something else somewhere in the
Universe that is responsible, i.e. a spring or something that can counter a spring.
A particle, completely alone in the Universe would experience no forces. This
hypothetical object, of point size and subject to no forces, is referred to as an
isolated particle. What sort of motion do we expect for such an isolated particle?
Similar problems troubled ancient thinkers who concluded that force was necessary
to maintain the motion of a body1. This is a conclusion very close to our everyday
experience. If you push a book along a table it may move, but when you decide to
stop pushing, the book stops moving: the force is needed to maintain the motion.
If however, one looks at a rolling ball, then the behaviour is noticeably different.
A hard sphere set in motion on a flat, hard, horizontal surface travels a long
way before stopping. So the rule that force is needed to maintain motion appears
suspect. It was Galileo, studying the motion of rolling spheres on inclined planes
who proposed that a moving body continues moving, i.e. we might say that the
body has “inertia”. This means that the behaviour of the rolling ball is closer to
that of the isolated particle than is that of the book on the table. Galileo’s genius
was to realise that the motion of everyday objects is complicated by friction and
that to see the raw, unhindered, motion of an isolated particle we need to devise
careful experiments that are insensitive to friction.

Newton’s First Law, as written in Principia is is restatement of Galileo’s Princi-
ple of Inertia: “every body preserves its state of rest, or of uniform motion in a right
line, unless compelled to change that state by forces acting upon it.” In other words,
the isolated particle will have a constant velocity vector, and this velocity may be
zero. Forces are responsible for changes in the velocity of a body. On the surface
this sounds very clear; a watertight rule for the motion of bodies in the absence of
forces. There is however, an important weakness in the First Law as stated above.
Specifically, there is no statement as to what frame of reference should be used,
and this is crucial for the complete description of the state of motion of the parti-
cle. Consider the situation illustrated by the cartoon in Figure 2.2. Two observers,
called A and B are measuring the motion of an isolated particle. B observes that
the particle is stationary and, according to the First Law, the particle will remain

A B

Figure 2.2 Two observers and the motion of an isolated particle.

1 A common view among the Ancient Greek philosophers was that the ability to cause motion was a
sign of life. The apparent motion of the heavenly bodies was taken as a sign of their divine nature.
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in that state. Observer A is moving, relative to a frame of reference in which B is
at rest, with velocity v and acceleration a. A will therefore measure the particle to
be moving with velocity −v and acceleration −a. So what does A conclude? The
particle is accelerating, so there must be a force acting on it (according to the First
Law). However, as the particle is isolated, by definition it cannot be subject to any
forces. This contradiction is a direct result of observing the particle from an accel-
erating frame of reference. If a = 0 then A observes the particle with velocity −v,
but with zero acceleration. Since this is uniform motion, the First Law still holds
for the isolated particle. Thus there are two classes of frames of reference, those
in which a = 0, called inertial frames of reference, and those for which a �= 0,
called non-inertial frames of reference. The First Law thus becomes essentially a
statement upon the existence of inertial frames of reference:

There exist inertial frames of reference, with respect to which an isolated particle
moves in a straight line of constant velocity (including zero).

This reformulation of the first law supposes that we can find an isolated particle.
Clearly there is no real object so alone in the Universe that it is devoid of all
forces; the very act of observing something involves an interaction at some level,
even if it is only the force involved in reflecting light. So how do we ever find, in
practice, a good inertial frame? From a practical point of view we must find ways
of isolating a particle other than by removing it to a remote region of the Universe.
This involves using our knowledge of forces to arrange things in such a way that
there is no net force on a body. An air-hockey table is just such a construction: air
is blown through tiny holes to create a force on the puck that cancels the effect of
the Earth’s gravity. In addition, supporting the puck on a layer of air means that
frictional forces are greatly reduced for most laboratory experiments. With the table
adjusted properly, a puck will glide at nearly constant velocity across the table, with
only a small change in speed. So does the air-hockey table define an inertial frame
of reference? Approximately, yes, but at some level of precision the effects of the
Earth’s rotation will become apparent. As was shown in Section 1.3.4, an object
moving in a circle at constant angular speed is accelerating towards the centre of
the circle. Thus any laboratory fixed to the surface of the Earth is accelerating
and therefore constitutes a non-inertial frame of reference. Similarly the rotation
of our neighbouring stars about the galactic centre means that even the “fixed”
stars cannot be counted upon to define a perfect inertial frame. We cannot take the
principle of inertia as a statement that can be verified experimentally in isolation
of the rest of mechanics. By itself, the First Law may be thought of as a statement
of faith in the existence of inertial frames of reference. In practice it matters little
that we cannot find perfect inertial frames. Approximate ones are good enough for
the development of classical mechanics and experiment confirms the results to a
sufficiently high degree of accuracy under a wide range of conditions.

Now that we have hammered out the definition of an inertial frame we are in
a position to clarify what we mean by ‘no motion’ in our force experiment of
Figure 2.1. We define a particle to be in static equilibrium when it is acted on by
forces and yet is at rest in some inertial frame. This is equivalent to saying that the
particle must be moving with constant velocity when measured in any inertial frame.
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In other words, a particle in static equilibrium behaves like an isolated particle. Thus
observers in all inertial frames agree upon the static nature of our force experiment.

For the moment, let us not delve too deeply into the complexities that arise
when forces act upon extended bodies (ensembles of particles). We will work on
this in detail in the next section when we show that the centre of mass of a system
of particles behaves very much like a classical particle. For a particle in static
equilibrium the vector sum of all forces acting on it is the null vector. For example,
if forces F1, F2 and F3 act on a particle, the condition for static equilibrium is

F1 + F2 + F3 = 0. (2.1)

This condition may be interpreted geometrically (Figure 2.3) as the three vectors
forming a triangle when placed head-to-tail. For larger numbers of forces, Fi ,
i = 1, 2, 3 . . .N, static equilibrium occurs when

∑N
i=1 Fi = 0.

F1

F2

F3

Figure 2.3 Forces in static equilibrium.

To measure the magnitude of forces we need a force meter. Let’s figure out how
we might make one. Imagine a situation of static equilibrium whereby one extended
spring is balanced by N others. Figure 2.4 shows the setup for N = 3. For ideal
springs, the extension of the single spring will be N times that of the springs on
the other side, i.e. x1 = NxN . Using this result we can obtain an expression for the
force exerted by a spring as a function of distance. Since we have static equilibrium
and all of the springs are collinear we can write

F(x1) = NF(xN) = NF(x1/N), (2.2)

Mass

xN x1

Figure 2.4 Static equilibrium with several identical springs. The extensions of the springs
x1 and xN are measured relative to the length of an unstretched spring.
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where F(x) is the magnitude of F(x). Putting x = x1/N allows us to write, for
fixed x1,

F(x)

x
= F(x1)

x1
= k. (2.3)

Since Eq. (2.3) must hold for any N the function g(x) = F(x)/x must take on
the same value at an infinite number of different points, i.e. g(x1) = g(x1/2)

= g(x1/3) = · · · for N = 1, 2 and 3 etc. Assuming that F(x) is smooth allows
us then to conclude that F(x)/x = k for all values of x. Thus we deduce that the
force produced by a stretched spring is proportional to its extension x, a result
known as Hooke’s Law:

F = −kx. (2.4)

The choice of sign fixes the direction of the force and k is some constant charac-
teristic of the spring, usually called the “spring constant”.

It may seem rather restrictive that we should be using mechanical springs to
define the magnitude of a force. But remember, once we have defined our standard
force meter we can in principle use it to measure the magnitude of any other force.
Also, and as we shall see in Section 3.2.3, very many systems actually behave just
like springs, in that for small deviations from equilibrium they experience restoring
forces that satisfy Hooke’s Law.

Now we have established a force meter we can begin to look at other forces.
The condition of static equilibrium allows us to put forces that arise from differ-
ent sources on an equal footing. An example of this is illustrated schematically
in Figure 2.5 in which a mass is in static equilibrium. There are two forces act-
ing on the mass: the elastic force of the stretched spring is given by Hooke’s
Law, and is upwards with a magnitude kx; and the gravitational force or weight.
Experiments like this on different masses show that the gravitational force is
proportional to the amount of matter in the block, i.e. for identically consti-
tuted blocks, a doubling of the volume doubles the gravitational force (etc.) and
so F ∝ m′, where m′ characterizes the amount of matter within the body and

Mass

kx

m′g′ (m′)

x

Figure 2.5 Static equilibrium of a mass under the influence of the force of gravity and that
of a stretched spring.
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is called the gravitational mass. Introducing a constant of proportionality g′ we
write

F = m′g′. (2.5)

As we shall soon see we can choose g′ to be the acceleration of all bodies in
free-fall. Since the mass is in static equilibrium, then the two forces that act
upon it must be equal in magnitude and opposite in direction, and we can write
kx = m′g′. Thus the elastic extension of the spring is related to the gravitational
mass of the object, the principle behind some types of weighing scales. We can
do similar experiments with other forces; Millikan’s oil-drop experiment uses the
the static equilibrium between the electrostatic, viscous and gravitational forces
on charged oil drops to determine the electrical charge of the electron.

By using static equilibrium in various experiments we can investigate the prop-
erties of different forces, putting them on a common scale. While this procedure
is practicable for many physical systems, it is not always convenient to observe
forces in static equilibrium. Forces more generally affect the motion of things, as
is the case with the gravitational attraction between the Moon and the Earth, or the
force on an electron moving in a magnetic field. It is now time for us to study the
way in which forces affect motion.

2.2 FORCE AND MOTION

We return to the experiment with springs depicted in Figure 2.4. Suppose we
were to suddenly sever the three springs on the left-hand side of the mass, what
would we observe? Such an experiment can be easily performed in the lab, and
is depicted in Figure 2.6. Now the mass moves so we write the extension of
the spring as a function of time x(t). From experiment the observed motion is
oscillatory and can be expressed as2

x(t) = A cos ωt, (2.6)

Mass

x(t)

Figure 2.6 Mass on a spring in motion. The mass moves horizontally over a very smooth
surface.

2 Strictly speaking the motion will have some degree of damping and the amplitude of the oscillation
will not be constant. We will assume that the damping is small enough to be ignored.
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where ω is the angular frequency of the oscillation. It is related to the time taken
to complete one cycle (i.e. the period) T by ω = 2π

T
. What can we deduce from

this result? Differentiating with respect to time gives us

v(t) = dx

dt
= −Aω sin ωt (2.7)

and

a(t) = d2x

dt2
= −Aω2 cos ωt. (2.8)

So we can write

a(t) = −ω2x. (2.9)

We can connect the force with the motion by simply substituting for x using
Hooke’s Law, i.e.

F = k

ω2
a. (2.10)

Here k is constant and ω is measured in the experiment. We can reasonably ask
the question “on what does ω depend?”. To answer this we need to do some more
experiments. We can imagine using different calibrated springs and different masses
on the end. We could for example replace the single block on the end of the spring
with N identical blocks of the same material all glued together, i.e. we increase
the amount of ‘stuff’ on the end of the spring by N times. Doing this experiment
results in a decrease in ω by a factor

√
N . We repeat this process with springs of

different k and we start to observe a remarkable pattern in the data. The coefficient
k

ω2 is proportional to the number of blocks no matter which spring we choose, i.e.

k

ω2
= Nm0, (2.11)

where m0 is independent of k. What this means is that our experiments have
revealed a property of the motion that has nothing to do with the particular spring
we use but which depends on whatever is on the end of the spring. Not only that,
but the property depends linearly on the amount of ‘stuff’ in motion. We define
Nm0 = m to be the inertial mass of what is on the end of the spring. In which
case we can rewrite Eq. (2.10) as

F = ma. (2.12)

We are now in a position where we can try to write down a law of motion. But
first we shall introduce the momentum, p, of a classical particle:

p = mv, (2.13)
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where v is the velocity and m is the inertial mass of the particle. We postulate that
the equation of motion is

F = dp
dt

. (2.14)

For a particle of fixed mass this equation reduces to

F = d(mv)

dt
= ma (2.15)

and this is in accord with Eq. (2.12). Of course Eq. (2.14) looks like a more
general equation for it has the capacity to describe systems of variable mass. That
is indeed the case, as we shall explore in the following example. Eq. (2.14) is a
very important equation: it is Newton’s Second Law.

Example 2.2.1 Flour falls from a hopper onto a railroad truck at a rate of 30 kg s−1.
What horizontal force is required to pull the truck at a constant speed of 5 ms−1.

Solution 2.2.1 The speed of the truck is constant, but the mass of the truck, and
therefore the momentum, changes continuously. Using Eq. (2.14), we obtain

F = dp
dt

= d(mv)

dt

= v
dm

dt
.

The force needed has magnitude F = v dm
dt

= 30 × 5 kg m s−2 = 150 N. Note that in
this problem we have considered the horizontal forces only; the vertical force that
stops the sand is provided by the normal reaction of the truck.

Momentum lies at the heart of Newton’s Second Law. For a particle we have
defined it to be the product of mass and velocity and through Newton’s Sec-
ond Law we see that a change in momentum can be induced by applying a
force. The bigger the force, the more one can change the momentum. Thus we
understand that the momentum of something expresses how hard it is to stop or
deflect it.

We can also use Eq. (2.14) to fix the scale of inertial mass. Two bodies, subject
to the same force, will experience accelerations a1 and a2 in the direction of the
applied force. The ratio of the masses of the two bodies is then

m1

m2
= a2

a1
. (2.16)

Choosing a standard mass (a lump of platinum-iridium alloy in the case of the
S.I. system of units) fixes the mass scale. We can then fix the unit of force, using
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Eq. (2.15). One newton of force (N) causes a mass of one kilogram to accelerate
at one m s−2, i.e. 1 N ≡ kg m s−2.

The attentive reader may well have noticed that we have introduced two different
types of mass. There is the mass m′ that appeared in our definition of the force due
to gravity and then there is the mass m that is the constant of proportionality in
Newton’s Second Law. A priori they are two different quantities and we were quite
right to keep them distinct. But careful experiments reveal something remarkable:
all bodies fall with the same acceleration in the vicinity of the surface of the Earth.
We shall use the symbol g to denote that special acceleration. Now we know the
gravitational force acting on any body close to the Earth (Eq. (2.5)) and that can
be inserted into Newton’s Second Law to give

m′g′ = mg. (2.17)

The fact that g is a constant leads (since g′ is also a constant) to the conclusion
that m′ ∝ m. Since we haven’t yet defined the scale for gravitational masses we
are perfectly at liberty to fix the constant of proportionality to unity (i.e. to choose
g′ = g) and henceforth m′ = m and we need not distinguish between the two
different types of mass, although we ought to be impressed that Nature has arranged
for their equivalence. This all may seem like pedantry but it is not. Einstein took
very seriously the equivalence of gravitational and inertial mass and it played a
crucial role in his development of the General Theory of Relativity. The General
Theory is our modern theory of gravity and we shall introduce it in Section 14.2.
It is characterized by the fact that it offers an explanation for the equivalence
of inertial and gravitational mass – in fact gravitational mass never appears in
Einstein’s theory.

So far we have only been talking about the effect of gravity on objects close to
the surface of the Earth using F = mg. Actually, this is a special case of the more
general result discovered by Newton, building on the earlier studies of Johannes
Kepler following observations of the planets within our Solar System. The more
general result states that the gravitational force acts between any two massive
bodies according to

F = −G
Mm

r2
er , (2.18)

where M and m are the two masses, r is the separation of their centres and er is
a unit vector pointing from the centre3 of the mass M to the centre of the mass
m. G is a constant of proportionality to be fixed by the data (it is usually called
Newton’s gravitational constant). The force F is then the force acting upon mass m

(the force on the mass M is equal in magnitude but opposite in direction). We have
taken care to completely specify the force, making an appropriate use of vectors,
but the maths should not obscure the simple fact that this is an inverse square law
of attraction (i.e. the forces act to pull the bodies towards each other), which grows

3 Gravitation will be studied in much more detail in Chapter 9 but for now it suffices to consider only
the gravitational forces between spherical bodies.
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in size in proportion to each of the masses. Notice that if the distance r is fixed so
that it is equal to the radius of the Earth, RE , then Eq. (2.18) simplifies to

F = −mger , (2.19)

where

g = GM

R2
E

and M is the mass of the Earth. In this way we can view our earlier expression,
F = mg as a special case and we have the bonus of relating g to the mass and
radius of the Earth once we know G.

2.2.1 Newton’s Third Law

So far we have not worried too much about just how forces act on extended
bodies. What about all of the forces internal to the body? They certainly do not
appear to play a role in the motion of the body as a whole so it seems they must
cancel each other out somehow. Similarly, when we speak of the acceleration of an
extended body, it is not immediately clear whether we are speaking about all parts
of the body or perhaps one special point within it. The example of a spinning ball
thrown through the air illustrates the point because different parts of the ball clearly
accelerate differently (remember that rotation is associated with acceleration). In
this section we shall make progress towards resolving these matters by considering
the behaviour of extended bodies, although we shall have to wait until Chapter 10
before we finally solve the problem of a spinning object thrown through the air.
As a bonus, we shall also solve another problem that we have left hanging in the
air – just how do we define an inertial frame? That is a serious problem because
we have shown that non-inertial frames are characterized by the fact that isolated
particles accelerate. But there is a nasty loophole since we can presumably never
be sure that the acceleration has not arisen as the result of a force and that the
particle is not actually isolated.

Progress in addressing these matters can be made once we have a grasp of
Newton’s Third Law, which expresses the empirical fact that real forces are found
in pairs. Applied to particles it asserts that:

If particle B exerts a force on particle A given by FAB, then A will exert a force
on B (FBA) such that FBA = −FAB.

In other words the force exerted on particle A by particle B is equal in magnitude,
but opposite in direction, to the force exerted on particle B by particle A.

Immediately we see that the Third Law gives us a mechanism for distinguishing
between acceleration caused by a real force, and that which is the result of choosing
a non-inertial frame of reference. Let us consider particle A. If this particle is
observed to be accelerating, then either there is a force acting on it, or the observer
is using a non-inertial frame. The observer may then look for another particle that
is responsible for the force. If that particle (B) can be identified, it must be subject
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to a force equal in magnitude but opposite in direction to that acting on A. If such
a mutual interaction cannot be identified, the only conclusion that can be reached
(other than we did not look hard enough) is that the force is fictitious; a result of
starting from a non-inertial frame.

The Third Law also allows us to generalize from the mechanics of particles
to the mechanics of extended bodies. To do this we will consider a body as being
composed of N classical particles. These particles may interact with each other
as well as with other particles that are not part of the body. We consider two
particles within the body i and j (see Figure 2.7). The mutual interaction between
theses particles consists of two forces: Fij acting on particle i and Fji acting on
particle j . The Third Law states that these forces must be equal in magnitude but
opposite in direction. The net external force acting on particle i is F(e)

i and for
particle j it is F(e)

j . Since the remote particles responsible for these forces, and
the nature of the interactions, are unspecified, we cannot deduce any relationship
between F(e)

i and F(e)
j in the general case.

Fij

Fji
Fj

(e)

Fi
(e)

Limit of Body

Figure 2.7 Internal and external forces on particles i and j in an extended body.

Using this separation into internal and external forces, the net force on particle
i may be written

Fi = F(e)
i +

N∑
j=1

Fij, (2.20)

where the sum over j does not include a contribution from j = i (i.e. particles do
not act upon themselves). We now consider the total force acting on the body. This
is the sum

F =
N∑

i=1

Fi =
∑

i

F(e)
i +

∑
i

∑
j

Fij. (2.21)

The second term is a summation of all the forces that arise from mutual interactions
between particles within the body. We can group terms corresponding to the same
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pair of particles and rewrite this sum as

∑
i

∑
j

Fij =
∑

i

∑
j<i

(Fij + Fji). (2.22)

The Third Law requires that each term (Fij + Fji) is null, therefore the sum is null
and

F =
N∑

i=1

Fi =
∑

i

F(e)
i , (2.23)

i.e. the net force acting on any body is the sum of all the forces of external origin.
This allows us to determine a version of the Second Law that is valid for an
extended body. Applying the Second Law to each particle

F =
N∑

i=1

Fi =
N∑

i=1

miai =
∑

i

F(e)
i (2.24)

now

N∑
i=1

miai =
N∑

i=1

mi

d2

dt2
ri

= d2

dt2

N∑
i=1

miri (2.25)

since the mass of each particle is independent of time. Furthermore, if we divide
by the total mass M = ∑

i mi , we obtain

F
M

= d2

dt2

[
1

M

N∑
i=1

miri

]
. (2.26)

The term on the right hand side is the second time derivative of the weighted-mean
position of all the particles in the body, where the “weights” are the masses of the
particles. This special position is known as the centre of mass of the body, it is
located at

R = 1

M

N∑
i=1

miri . (2.27)

We are thus led to a version of the Second Law valid for any extended body or
collection of particles:

F = M
d2R
dt2

= MA, (2.28)
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where A is the acceleration of the centre of mass. Eq. (2.28) represents an extremely
important simplification of the dynamics of complex systems. In a macroscopic
object there are of the order of 1023 particles. If these particles all interact with
each other, there will be of the order of 1046 forces to consider; clearly, solving
the motion for so many particles is an impossible task. The beauty of Eq. (2.28)
is that irrespective of the details of the internal forces, the motion of the centre of
mass is governed only by external forces.

Example 2.2.2 Show that the centre of mass of an extended body falls with a uni-
form acceleration g near the Earth’s surface. Neglect air resistance.

Solution 2.2.2 Each particle within the body experiences an external force mig.
The total force on the body is thus

F =
∑

mig = g
∑

mi = Mg.

The acceleration of the centre of mass is therefore A = F/M = g, as required.

The Third Law applies equally to extended bodies as it does to particles. If we
consider two bodies, A and B, then because the internal forces sum to zero in both
bodies, the total force that A exerts on B is the sum of the forces that the particles
in A exert on the particles in B. This sum is equal in magnitude but opposite in
direction to the force that the particles in B exert on the particles in A. So the
Third Law can be stated for extended bodies:

If body B exerts a force on body A given by FAB, then A will exert a force on B

(FBA) such that FBA = −FAB.

It is important to be clear that these two forces act on different bodies. Figure 2.8
illustrates this with two bodies connected by a massless spring. The spring in the
figure is a symbolic representation of any real force.

A B

FAB = mAaA FBA = mBaB

Figure 2.8 Equal magnitudes but opposite directions for forces acting on mutually inter-
acting bodies A and B.

In many practical situations it is impossible to consider explicitly all the parti-
cles that make up a system to determine the position vector of the centre of mass.
Instead, a macroscopic body can often be approximated as a continuous distri-
bution of matter with a spatially-dependent density function. The calculation of
the centre of mass position then becomes an integral rather than a discrete sum.
Depending on the situation this integral may be either over a line, a surface or a
volume.
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Example 2.2.3 Calculate the position of the centre of mass of a uniform thin rod
of length l and linear mass density ρ(x) = dm

dx
= κx where x is the distance from

one end of the rod.

Solution 2.2.3 We consider the rod as being made up of many tiny pieces, each of
length dx and mass dm = ρ(x)dx (see Figure 2.9). The position of the centre of
mass is given by

R = 1

M

∑
i

mixi i = 1

M

∑
i

ρ(xi)xi dx i

and in the limit that dx → 0 the sum can be replaced by an integral, i.e.

R = 1

M

∫ l

0
xρ(x) dx i = 1

M

∫ l

0
κx2 dx i,

where M = ∫ l

0 κx dx = 1
2κl2 and i is the unit vector in the direction of increasing

x. Thus

R = 2

3
l i,

i.e. the centre of mass lies two-thirds of the way along the rod, on the high-density
side of the geometric centre.

dx

x

Figure 2.9 Slicing a rod into pieces in order to compute the centre of mass of a thin rod
of non-uniform density.

2.2.2 Newton’s bucket and Mach’s principle

Earlier in this chapter we discussed the idea that an isolated particle viewed from
an inertial frame of reference moves with constant velocity. This is the essential
content of the First Law in Newtonian mechanics; it provides a way of select-
ing inertial frames from non-inertial ones. Within an inertial frame, accelerations
are the result of pairs of forces operating between particles. We have shown that
all inertial frames move at constant relative velocities and are thus led to the
idea of an infinite set of inertial frames, which are all equally valid for doing
physics. The concept of the inertial frame thus underpins classical mechanics, but
there is no deeper explanation given as to why these particular frames of refer-
ence are so special in our Universe. In this section we will try to probe a little
deeper.

In classical mechanics there are no absolute velocities and only relative velocities
have any meaning. The same thing cannot be said for accelerations. Acceleration
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(a) (b) (c)

Figure 2.10 A variant of Newton’s rotating bucket.

relative to the infinite set of inertial frames is absolute. Newton used the following
experiment to demonstrate this point. A bucket filled with water is hung from a
ceiling on a long rope. The bucket is slowly rotated many times so that the rope
twists. Once the rope is sufficiently twisted, and any motion of the water has died
away the surface of the water is horizontal as shown in Figure 2.10(a). The bucket
is then released and starts to rotate with increasing angular speed about the axis
of the rope. The water is dragged along by the inner wall of the bucket until the
situation is as shown in Figure 2.10(b), where both the water and the bucket are
rotating in the same sense. Once this state is established we grab hold of the bucket
to stop the rotation and we observe that the water continues to rotate even though
the bucket is stationary as shown in Figure 2.10(c). What can we conclude? The
fact that the surface of the water makes a concave shape in (b) and (c) seems to
imply that the water is accelerating. We might therefore venture to propose that
the water’s surface can be used to identify the existence of accelerations. But we
must be careful because the water does not rotate relative to the bucket in (b) yet
it is still pushed up the sides of the bucket. This is because the rotating bucket in
(b) constitutes a non-inertial frame, so what we really mean is that curvature of the
water’s surface defines a non-zero acceleration relative to any inertial frame.

If you feel uneasy about the specialness of inertial frames then you are in good
company. The physicist Ernst Mach (1838–1916) attempted to eliminate the dis-
tinction between inertial and non-inertial frames by attributing the curvature of the
water’s surface in Newton’s bucket to an interaction between the water and the
rest of the Universe (Mach’s Principle). This interaction is constrained by the fact
that we should not be able to tell the difference between a situation in which the
bucket rotates and the rest of the Universe is fixed, and one in which the bucket
is stationary and the Universe rotates. Inertial frames are then special only in so
far as they are the set of frames in which the force of interaction with the rest of
the Universe just happens to vanish. The obvious question to ask is whether such
a force actually exists. Since it is both additive and operates over large distances,
the prime candidate is the force of gravity. There have been several attempts to
investigate the gravitational forces produced by distant rotating shells of matter and
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they do show that it is possible to obtain gravitational accelerations similar to the
centrifugal and Coriolis accelerations that appear in frames of reference that rotate
relative to the distant stars. That said, the agreement is not exact and depends on
the assumed distribution of matter in the shell. To a large extent, the specialness
of inertial frames is diminished in Einstein’s General Theory of Relativity (see
in particular the discussion following Eq. (14.35)) and Mach’s concerns become
much less pressing.

2.3 APPLICATIONS OF NEWTON’S LAWS

We have discussed at some length the theoretical content of Newton’s laws of
motion and are now in a position to apply them to dynamical problems. While this
is in some cases a straightforward exercise, the versatility of classical mechanics
ensures that there exist a huge range of different types of problems that can be
posed. Different problems often require different approaches. While many people
can happily follow the solution to a given problem, it is often the case that when
facing a fresh problem on their own they cannot see how to start. Problem solving
in dynamics is therefore a skill that needs to be learnt and which improves greatly
with practice. In this section we will look at a technique for solving dynamical
problems based on “free-body” diagrams. We will also show how some problems
can be more easily solved using the principle of momentum conservation. Friction
and viscous forces play an important role in the behaviour of macroscopic systems
and they will also be discussed in the present section.

2.3.1 Free Body Diagrams

Solving problems in dynamics usually involves a sequence of several steps.
While the following programme is not always the most efficient or elegant way to
proceed (the use of conserved quantities often works better) it represents a direct
approach to finding the solution and is a good fall-back position when you cannot
spot a clever trick to use.

The problem-solving recipe is generally as follows:

• Identify the forces acting on the system
• Choose a system of co-ordinates (and associated basis vectors) appropriate to

the geometry.
• Apply the Second Law to the components of the system to get second order

differential equations of motion.
• Solve the equations of motion together with any constraints or boundary con-

ditions.

To aid in the first step of this procedure it is almost always crucial to draw a
good diagram. We will try to make this diagram as uncluttered as possible, while
including all forces. To this end we draw each body as “free” in the sense that
there are no supports drawn on the diagram (although the forces exerted by them
should certainly be included). In addition we shall represent the position of a body
by the position of its centre of mass. We indicate the forces as arrows and draw
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any acceleration vectors to the side of the diagram. Figure 2.11 shows a free-body
diagram for a book in static equilibrium on a table. The weight of the book and
the normal force from the table are in opposite directions. The condition of static
equilibrium implies that the magnitudes of these two forces are equal and that the
acceleration of the centre of mass is zero.

mg

a = 0

N

Figure 2.11 Free-body diagram for a book in static equilibrium on a table.

2.3.2 Three worked examples

In order to illustrate the methodology that we presented in the last section we
will work through three specific examples. Like so often in physics, it is useful
first to work through problems that are selected because they really help to develop
an ability to apply the key ideas and principles that we have spent so much time
developing. The problems are not chosen because they represent particularly excit-
ing phenomena. The study of exciting things comes later, once one has a grasp of
the key ideas. In this section we shall take a look at the motion of a pendulum,
two spaceships connected by a cable and two masses hung over a pulley.

Example 2.3.1 When the bob of a pendulum is made to describe a circular orbit in
the horizontal plane, rather than executing the usual oscillatory motion in a vertical
plane, it is known as a conical pendulum. Determine the period of revolution of a
conical pendulum of mass m and length l which makes an angle α to the vertical
(see Figure 2.12). Ignore the mass of the pendulum string.

From above

Side view

l
a

RR

Figure 2.12 Geometric diagram of a conical pendulum.
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T
co

s
α 

a

mg

T sin α 

Tα

Figure 2.13 A free body diagram for the bob of a conical pendulum.

Solution 2.3.1 The forces acting on the pendulum bob are its weight mg and the
tension in the string T. We construct a free-body diagram as shown in Figure 2.13
where the force vectors are resolved into vertical and horizontal components. Since
the bob describes a circular orbit in the horizontal plane, the acceleration is hor-
izontal and points towards the centre of the orbit. There is no acceleration in the
vertical direction so

mg = T cos α.

Applying the Second Law in the horizontal plane we have

T sin α = ma = mRω2,

where R = l sin α is the radius, ω = 2π/τ the angular frequency of the orbit and τ

is the period. Substitution for R gives

T = mlω2,

which can be used to eliminate the unknown tension in the vertical equation to give

ω =
√

g

l cos α
.

Often we are interested in the motion of several parts of a system, as the following
example illustrates. We divide the system into discrete parts, each with its own
free-body diagram and in so doing we must be careful to identify which body each
force acts upon.

Example 2.3.2 Spacecraft A and B with masses MA and MB are adrift in outer
space and connected by a cable (see Figure 2.14). Winches on both craft are used to
wind up the cable to reduce their separation. The winch on A is capable of producing
a force FA on the cable and that of B a force FB . Determine the acceleration of
both A and B in the limit that the mass of the cable is negligible compared to the
masses of the spaceships. Ignore gravitational forces.
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A
Cable

B

Figure 2.14 Spacecraft connected by a cable.

Solution 2.3.2 We construct three free body diagrams for the problem; one for each
spacecraft and one for the cable as shown in Figure 2.15. The Third Law can be
applied to give FA = F ′

A and FB = F ′
B . The equation of motion for the cable is

FB − FA = MCaC,

where MC is the mass and aC is the acceleration of the centre of mass of the cable.
If we take the limit where we can ignore the mass of the cable then FA = FB , i.e.
irrespective of the relative capabilities of the two winches, each spaceship experi-
ences a force of the same magnitude. Ship A therefore experiences an acceleration
of magnitude

aA = FA

MA

and B experiences an acceleration

aB = FB

MB

= FA

MB

with the directions of the acceleration vectors as shown in Figure 2.15.

aA aC aB

A

F′A FA FB F′B

BC

Figure 2.15 Free body diagram for two spacecraft connected by a cable.

Example 2.3.3 Atwood’s machine consists of two masses m1 and m2 connected by
an inextensible rope of length l which is slung over a frictionless pulley of negligible
mass (Figure 2.16). Determine the acceleration of the masses and the tension in the
rope (you may assume that the tension is constant throughout the rope4).

Solution 2.3.3 The masses are linked by a rope of constant length, which couples
their motion such that y1 + y2 is a constant. Differentiation of this equation

4 After reading Chapter 4 you might like to convince yourself that this is a good approximation if the
mass of the pulley is small compared to m1 and m2.
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y1

y2

m1

m2

Figure 2.16 Two masses attached by a string which passes over a pulley. The device is
known as Atwood’s machine.

twice leads to an equation of constraint between the accelerations: a1 = d2y1/dt2

= −a2 = a. Since the pulley is massless, it cannot alter the tension, hence
each mass experiences a force T due to the rope (see the free-body diagram in
Figure 2.17). Applying the Second Law to each mass in turn leads to the following
equations of motion:

m1g − T = m1a,

m2g − T = −m2a.

Subtraction of the equations eliminates T and yields

(m1 − m2)g = (m1 + m2)a

or

a = m1 − m2

m1 + m2
g.

If the masses are only slightly different a may be small and hence easily measured,
leading to a simple method for the determination of g.

a1 a2m1g
m2g

TT

Figure 2.17 Free body diagrams for the masses of Atwood’s machine.
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T may be determined by the elimination of a from the equations of motion,

(m1 + m2)g − 2T = (m1 − m2)a

then

T = 1

2
(m1(g − a) + m2(g + a)) = 2m1m2g

m1 + m2
.

Notice that if m1 = m2 = m then a = 0 and T = mg.

2.3.3 Normal forces and friction

Although there are only four known fundamental forces in Nature (the electro-
magnetic, gravitational, strong and weak nuclear forces) it often seems like there
are many more. We speak of the force of the wind and the sea or the tension in
a rope. Each of these has their origins in the electromagnetic force, but it seldom
helps in everday life to think in such terms. In this section we turn our attention
to another essentially electromagnetic force that often plays a very important role
when it comes to understanding the dynamics of everyday things: friction.

When solid surfaces are brought into contact the interaction between them is
primarily electrostatic and depends on the structure of the two surfaces. No surfaces
are perfectly smooth, zooming in on them would reveal microscopic ridges and
valleys whose prominence and depth are determined by the material and the way
it was prepared, see Figure 2.18. We can quite generally express the force that
results when two surfaces are put into contact as the sum of components parallel
and perpendicular to the surface. The perpendicular component is known as the
normal force. It is the result of a microscopic compression of the layers of atoms
within the surface. It does not take much displacement of the layers of atoms to
support everyday objects on solid surfaces, and for the most part the compression
giving rise to the normal force goes unnoticed, i.e. things are solid. Experiments
with reflected laser beams from polished metal surfaces are able to measure this
compression. If we imagine pushing the two surfaces together, the amount of
compression increases. Usually, the contact area is a tiny fraction of the total

Normal force on A

Friction on B

Friction on A

Normal force on B

Surface A

Surface B

Figure 2.18 Illustration of two surfaces touching. The contact area is a tiny fraction of the
area of either surface.
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surface area and increasing the compression causes this fraction to increase by
deformation of the points of contact. The parallel component of the force is called
friction; it clearly acts to resist any motion if we attempt to drag one surface across
the other. Already we can guess that as the normal force increases so will the
friction because of the more intimate contact between the two surfaces.

mk N

F

A

F = A

ms N

Figure 2.19 The magnitude of friction F plotted against the applied force A.

Now consider a simple experiment. A wooden block rests on a table. A force
A is applied to the block in some direction parallel to the plane of the table.
As the magnitude of A is increased from zero the following is observed. For
small values of A the block remains stationary. The fact that the block does not
accelerate as A is increased implies that friction must be equal in magnitude
but opposite in direction to the applied force. This is represented by the linear
portion of the graph of F against A in Figure 2.19. At some value of A the block
begins to move indicating that there must be a maximum value of friction, Fmax,
acting between the block and the table. It is found experimentally that Fmax is
proportional to the normal force. This is hardly surprising since the two forces
have a similar origin, and both are dependent on the actual contact area between
the surfaces. This connection is expressed via

Fmax = µsN, (2.29)

where the constant µs is known as the coefficient of static friction and is
dependent on the nature of the surfaces. µs is typically found to lie in the range
0.1 − 0.9 for everyday objects, although it is possible to manufacture materials
that have µs considerably greater than unity. When the applied force exceeds
Fmax the object will start to move and the magnitude of friction will decrease
slightly to a roughly constant value of µkN where µk is the coefficient of kinetic
friction. Although µk does have a weak and complicated dependence on velocity,
for simplicity of calculation we will treat it as a constant, dependent only on the
nature of the surfaces in contact. Certain fluids can have a dramatic effect on the
friction between two surfaces. When oil is used to coat surfaces it acts as a buffer
between the ridges and drastically reduces the value of µs . Note that Eq. (2.29) is
not a vector equation. It expresses the relationship between the magnitudes of two
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vectors Fmax and N that are perpendicular to each other; Eq. (2.29) written with
Fmax and N as vectors would incorrectly imply that these vectors were parallel.

Example 2.3.4 A wooden block is at rest on a horizontal wooden plank. One end
of the plank is slowly raised. Determine the angle that the plank makes with the
horizontal when the block begins to slide. The coefficient of static friction between
the block and the plank is 0.3.

Solution 2.3.4 Let the mass of the block be m. The weight of the block has
components mg sin θ parallel, and mg cos θ perpendicular, to the surface of
the plank. Static friction opposes the force down the slope and has a maximum
value µsmg cos θ . When the component of the weight down the slope reaches this
maximum value, the block begins to slide. This occurs at an angle θm where

mg sin θm = µsmg cos θm.

Hence

θm = tan−1 µs.

Using µs = 0.3 this gives θm = 16.7◦.

Electrostatic forces between surfaces are of crucial importance to everyday life.
That you are able to stand on the floor is only possible because a condition of static
equilibrium exists with the normal force counteracting your weight. You are able
to write only if the maximum value of static friction between your fingers and the
pen exceeds the force that the writing surface exerts on the pen in a direction along
its length. In some circumstances we try to reduce friction to facilitate motion -
the application of oil to a rusty lock, for example. In other situations friction is
essential to motion: when we walk, it is the friction between the floor and our
feet that causes us to accelerate horizontally. The maximum horizontal force that
we can apply to the floor is equal in magnitude but opposite in direction to the
maximum horizontal force that the floor can apply to our feet and this force is
limited by the maximum static friction. Therefore, running shoes and car tires are
both designed to produce large static friction so that the runner or car engine may
exert large forces on the ground without slipping.

Example 2.3.5 Calculate the maximum acceleration that a four-wheel drive car
may achieve going (a) straight uphill or (b) straight downhill, on a slope that makes
an angle θ with the horizontal.

Solution 2.3.5 As with the block in the previous example, the weight will have
components mg sin θ and mg cos θ parallel and perpendicular to the slope. Since
there is no component of acceleration perpendicular to the slope, the normal force
must have magnitude mg cos θ and the maximum value of static friction will be
µsmg cos θ . This is the maximum force that the engine can exert without causing
the wheels to spin. Applying the Second Law to components parallel to the slope,
and taking acceleration uphill as positive gives

ma = mg(µs cos θ − sin θ)
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or

a = g(µs cos θ − sin θ)

in case (a) where the car is going uphill. Under normal circumstances a will be
positive, but we can well imagine the situation where the road is icy; µs is then very
small and we may easily get tan θ > µs . Then the acceleration becomes negative
and the car slides downhill. Under these circumstances, the wheels will be spinning
and we no longer have a condition of static friction between the tyres and the road
and µk replaces µs to give

a = g(µk cos θ − sin θ).

For case (b) where the car is heading downhill we simply reverse the sign of the
friction to give

a = g(−µs cos θ − sin θ).

A couple of comments are perhaps in order following this example. Firstly, it may
seem strange that static friction is used to describe the behaviour of a wheel, which
after all is designed to roll. A little thought should enable you to visualise what is
happening. At any instant, there is some area of the wheel that makes contact with
the road and over this contact area the surfaces of the wheel and the road may look
something like those shown in Figure 2.18: that part of wheel that is in contact with
the road is instantaneously at rest. The wheel pushes against the road but does not
slip, rather the forward motion creates a new region of contact between the tyre and
the road, and again we have instantaneous static friction over this new area. The
continual making and breaking of these contact regions does have a cost, however,
producing what is known as rolling friction, characterised by the coefficient of
rolling friction µr . Rolling friction accounts for the slowing down of a wheel
rolled on a surface in vacuum. In many dynamical problems µr can be ignored,
since it is typically an order of magnitude smaller than µs . Secondly, in the solution
to the previous example we did not explicitly consider the fact that there were four
wheels in contact with the road. This simplification is partially justified because the
final result is independent of the mass. Thus is doesn’t matter how the weight is
distributed over the four wheels, the maximum value of a is the same. In practice,
uneven forces on the wheels might lead to other problems, such as the rotation of the
car about its centre of mass, but we shall not concern ourselves with such matters.

2.3.4 Momentum conservation

Consider a system of particles and assume that the ith particle experiences a
force Fi and has momentum pi . Since each particle obeys Newton’s Second Law
(Eq. (2.14)) we can write

F = dP
dt

, (2.30)

where F = ∑
i Fi is the net force acting on, and P = ∑

i pi is the total momentum
of, the system of particles. If the net force is zero then it follows that the total
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momentum of the system is constant irrespective of the details of the internal forces
of the system. This very important result is known as the law of conservation of
momentum. For us, momentum conservation follows immediately as a consequence
of Newton’s Second Law. However, that is to undermine the significance of what
is now understood to be a fundamental law of physics: momentum conservation
applies even in circumstances where Newton’s Second Law does not5. Momentum
conservation will also play a very important role in Chapter 11. From the perspec-
tive of this chapter, it will provide a very powerful tool to help us solve problems
in dynamics. The beauty is that it can be used in circumstances where unknown
forces act within a system, for example when two objects collide elastically the
forces that are present during the impact are not generally known but since they are
internal to the system as a whole the total momentum of the system is unchanged.
It means that we can go ahead and compute the momentum of the system before
the action of the forces and then again afterwards, and the two must be the same.

Example 2.3.6 A cannon fires a cannonball at an angle θ to the horizontal and at
a speed v0 relative to its muzzle. The cannon is constrained so that it recoils along
horizontal rails. Use momentum conservation to calculate the recoil velocity of the
cannon. Assume that the rails are frictionless.

Solution 2.3.6 Let the mass of the cannon be M , the mass of the cannonball m and
the recoil velocity be horizontal and of magnitude v. We will take the “system” to
be the cannon and cannonball. Since the rails are frictionless there are no exter-
nal forces acting in the horizontal direction and we can therefore use momentum
conservation in this direction. Naturally enough, we work in a frame of reference in
which the cannon and cannonball are both initially at rest. Momentum conservation
in the horizontal direction then gives

0 = m(v0 cos θ − v) − Mv,

where the recoil speed of the cannon has been subtracted from the horizontal com-
ponent of the cannonball’s velocity relative to the muzzle. This can be rearranged
to give

0 = mv0 cos θ − v(M + m),

i.e. v = mv0 cos θ

m + M
.

In this last example, the importance of the rails being frictionless should be
emphasised. Friction is to be viewed as an external force, for if it is not negligi-
ble then we would need to take account of the fact that some of the horizontal
momentum is transferred to the Earth. Momentum conservation would still apply
but now only if we widen the definition of our system to include the Earth. Just
how much recoil momentum is transferred, via friction, to the Earth requires an

5 e.g. the study of quantum mechanical systems.
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understanding of the frictional forces that act. In such circumstances, the law of
momentum conservation is not so useful.

Momentum conservation will recur frequently throughout the rest of this book,
not least when we come to discuss collisions in Section 3.3.

2.3.5 Impulse

When forces act over a short time, as in the collision of a ball with the ground,
the detailed time-dependence of the force is usually unknown. We can in some
cases instead work with the time integral of the force, which is equivalent to the
change in momentum. Suppose a force F(t) acts on a particle for a short time,
from t1 to t2. The impulse is defined to be

∫ t2

t1

F(t) dt =
∫ t2

t1

dP
dt

dt = P(t2) − P(t1) = �P. (2.31)

Example 2.3.7 Estimate the force involved in serving a tennis ball at a speed of
120 km hr−1.

Solution 2.3.7 The mass of a tennis ball is roughly 60 g. The ball is hit at the
highest point of the toss where it is stationary, so the change in momentum is
equal to the momentum of the ball after serving. The collision takes typically about
2 milliseconds.

�P = 60 × 120 × 10−3 × 103 kg m

60×60 s
= 2.0 kg m s−1.

This leads to a mean value of the force:

Fav = �P
�t

= 2

2 × 10−3
N = 103 N.

This is roughly the weight of a 100 kg mass and that may seem surprising given that
the mass of a typical tennis player is less than 75 kg. To determine what effect this
force has on the tennis player, we can calculate their speed of recoil assuming that
they are off the ground when contact is made:

v = �P

M
∼ 2.0 kg m s−1

75 kg
= 0.027 m s−1

or about 0.1 kmhr−1. Thus, despite the large force involved in propelling the ball,
the duration is short enough, and the mass of the player large enough, such that the
player experiences only a very small recoil velocity.

2.3.6 Motion in fluids

When a solid body moves through a fluid, some of the fluid is dragged along
with the body and the fluid acquires momentum in the direction of the object’s
motion. This change in momentum of the fluid is associated with a force that the
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body exerts on the fluid and, according to Newton’s Third Law, the fluid must
exert an equal and opposite force upon the body. In this way the body experiences
a resistive “viscous” force. The details depend upon the nature of the fluid and on
the efficiency with which the body interacts with it. The latter is in turn dependent
on the geometry of the body and on the nature of the surfaces that drag the fluid, as
well as the velocity of the object relative to the fluid. Empirical evidence supports
the following expression for the viscous force:

Fv = −Cv − Dv2. (2.32)

For motion in liquids C 	 D and Fv ≈ −Cv, at least for low speeds. For motion
in air the quadratic term dominates and Fv ≈ −Dv2.

Example 2.3.8 A ball bearing is released at rest in a tall cylinder of glycerol and
falls under the influence of gravity. Show that the speed tends to a limiting value.

Solution 2.3.8 The forces acting on the ball bearing are gravity and the viscous
force. The Second Law gives

ma = m
dv

dt
= mg − Cv.

This is a first order differential equation in v. Rearranging gives∫
dv

1 − C

mg
v

=
∫

g dt

which can be integrated (substitute for 1 − C
mg

v) to yield

ln

(
1 − C

mg
v

)
= −C

m
t + B,

where B is the constant of integration. Rearrangement, and fixing the constant of
integration by the requirement that v = 0 at t = 0, gives

v = mg

C

(
1 − e− C

m t
)

.

The above equation contains the essential features of an object falling in a fluid.
There is a limiting (or terminal) velocity vt = mg

C
that the speed tends towards for

large t . The time taken to reach a speed of (e − 1)/e of vt is m
C

, which is shorter the
more viscous the medium. Note that objects of different mass but the same value of C

have different terminal speeds. This is in contrast to the behaviour of falling objects
in vacuum, where the acceleration g is constant and independent of the mass. For
a medium of vanishing small viscosity, or for very small t , a Taylor expansion of
the exponential leads to

v ≈ mg

C

(
1 − 1 + C

m
t + . . .

)
≈ gt,

which is as expected.
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PROBLEMS 2

2.1 sfasfd(a) Two masses m1 and m2 have position vectors r1 and r2 respectively.
Write down the position vector of the centre of mass of this system.
Find the vector equation for the straight line through the two masses and
hence show that the centre of mass lies on this line.

(b) Write down the position vector of the centre of mass for three equal
masses with position vectors a, b and c.
Show that the centre of mass lies at the intersection of the medians of the
triangle defined by the positions of the masses. [A median of a triangle
is a line running from one of its corners to the midpoint of the opposite
side.]

2.2 A system is composed of three isolated particles with masses m1 = 10 g,
m2 = 30 g and m3 = 40 g at positions r1 = 2i − 2j, r2 = −3i + j and r3 =
5i + 6j respectively (all distances are measured in metres). Calculate the posi-
tion vector of the centre of mass. If a force F = 3i (newtons) is applied to
one of the particles, work out the acceleration of the centre of mass. Does it
matter to which particle the force is applied?

2.3 A hose sends a stream of water at a rate of 2 kgs−1 and a velocity of 10 ms−1

against a wall. If all the water runs down the wall, what is the force on the
wall?

2.4 A prisoner of mass 80 kg plans an escape using a rope made of strips of
bed sheets. If his window is 20 m from the ground, and the makeshift rope
will not support a tension of greater than 600 N without breaking, find the
minimum speed at which the prisoner hits the ground assuming he descends
by sliding vertically down the rope without making contact with the wall.

2.5 Ancient Egyptians push a 5.00 tonne block of stone on rollers up a slope with
an acceleration of 0.30 ms−2. The slope is inclined at 20.0◦ to the horizontal.
Assuming that the rollers produce a frictionless surface, and that the mass of
the rollers can be ignored, calculate the force applied by the Egyptians to the
block. Calculate the normal force acting on the block.

2.6 A skier of mass 75.0 kg skis over a hemispherical mound of snow of radius
10.0 m. At the top of the mound the skier’s velocity vector is horizontal with
a magnitude of 30.0 km hr−1. Assuming the snow to be frictionless, calculate
the magnitude and direction of the force exerted by the skier on the snow at
the top of the mound.

2.7 Two blocks of mass m1 = 3.0 kg and m2 = 1.0 kg rest in contact on a fric-
tionless horizontal surface. If a force of 3.0 N is applied to m1 such that both
blocks accelerate, deduce the contact force between the blocks.

2.8 A 2 kg block rests on a 4 kg block that rests on a frictionless surface. The
coefficients of friction between the blocks are µs = 0.3 and µk = 0.2.
(a) What is the maximum horizontal force F that can be applied to the 4 kg

block if the 2 kg block is not to slip?
(b) If F has half the value found in (a), find the acceleration of each block

and the force of friction acting on each block.
(c) If F has twice the value found in (a), find the acceleration of each block.
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2.9 Rocket propulsion is achieved by the emission of exhaust material at high
speed. A rocket of mass m travelling with velocity v emits exhaust gases at
constant velocity u relative to the rocket. Show that the net external force on
the rocket F satisfies

F = m
dv
dt

− u
dm

dt
.

Prove that a free rocket accelerating from rest attains a final velocity

vf = −u ln
mi

mf

,

where mi and mf are the initial and final masses of the rocket.
If the rocket accelerates from rest, for a time t , in a uniform gravitational
field g show that

vf = −u ln
mi

mf

+ gt.

Use the above expression to explain why space rockets are designed to burn
their fuel quickly.



3
Energy

Newton’s laws of motion lay down the foundations for a complete understanding
of dynamical systems. Starting from Newton’s laws we showed, in Section 2.3.4,
that momentum is conserved for isolated systems and that it turns out to be very
useful when tackling problems. We also remarked that momentum conservation
really ought to be thought of as possessing a fundamental significance in its
own right. In particular, it is not right to think of momentum conservation as
being only a consequence of Newton’s Second Law, rather we should think that
Newton’s laws had better be consistent with the law of momentum conservation.
Why do we say that? Why is momentum conservation so fundamental that even
Newton’s laws are destined to respect it? The answer is easy to state but less
easy to prove: momentum is conserved for the same reason that an experiment
performed in Manchester should deliver the same result as the same experiment
performed in New York. Of course that is true provided the experiment does not
depend upon local differences, such as the difference in temperature etc. The key
point is that moving experiments around should not, in itself, change the outcome.
It is a pity that the proof is a little too sophisticated for us to include it here and
that we are reduced to stating the result without any proof. Now it is clear why
Newton’s laws are duty bound to satisfy momentum conservation. The idea that
it does not matter where an experiment is performed, all other things equal, is
an example of a symmetry of Nature and the link between symmetries of Nature
and conservation laws is not unique to momentum. It turns out that for every
symmetry in Nature there is a corresponding conserved quantity. Perhaps chief
amongst the other conserved quantities is the one associated with the fact that it
does not matter when we perform an experiment: an experiment performed today
should give the same result as the same experiment performed tomorrow (all other
things being equal). That quantity is called “energy”1.

1 The conservation of angular momentum is a result of the fact that experiments can be turned around
(i.e. rotated) without affecting their result.

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd
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Unlike momentum, we will see that energy can appear in many different forms.
Kinetic energy is associated with the motion of things. In a macroscopic body
made of very many atoms it is usual to distinguish between the kinetic energy
of the body as a whole, which arises as a result of the coherent motion of all of
the atoms, and the kinetic energy possessed by the atoms as they jiggle randomly
around within the body. The latter is commonly called the thermal energy of the
body: hotter bodies have more thermal energy than colder ones. Potential energy
is the energy that is stored up within a system. It might be the energy stored up as
a result of the specific chemical arrangements of molecules in a mouthful of food
or a drop of petrol. Or it could be the energy stored up by gravity at the start of a
roller-coaster ride, or in a collapsing star. What is important is that energy can be
converted from one type to another and yet, provided we account for all forms of
energy, the total is a conserved quantity. This is hugely significant. Provided we
do the book keeping correctly, and add up the numerical values of all the forms
of energy of an isolated system, the total will always be the same, irrespective
of the details. A roller coaster starting its decent can be described in terms of a
transformation of gravitational potential energy into kinetic energy; a tennis player
may use the chemical energy stored in a banana to help her complete a match;
a rocket converts chemical energy into gravitational potential energy and kinetic
energy following its launch.

Just as the conservation of momentum can be derived using Newton’s laws so
we will see that energy conservation is also already encoded within them. We shall
see this soon when we encounter the Work-Energy Theorem. But to pave the way
we first need to introduce the idea of work.

3.1 WORK, POWER AND KINETIC ENERGY

The work done dW by a force F acting on a particle as it moves through an
infinitesimal displacement dr is defined to be

dW = F · dr. (3.1)

The SI unit of work is the joule2 (1.0 J ≡ 1.0 N m).
The utility of this definition will become apparent very soon, for now we shall

explore some of its properties. Consider the situation depicted in Figure 3.1. A
force F is pushing a block against a wall. We can resolve F into components
parallel and perpendicular to the wall but the displacement is constrained always
to be parallel to the wall. Notice that it is only the component of force parallel to
the displacement that contributes to the work; the perpendicular component of the
force does not contribute to the scalar product in Eq. (3.1) and hence does no work.

So how do we calculate the work done when a particle travels between two points
along an arbitrary path? It may not be immediately obvious how the definition
Eq. (3.1) for the infinitesimal work dW is to be turned into an expression for
the work done along a path of finite length. Some insight can be obtained by

2 After James Prescott Joule (1818–89).



Work, Power and Kinetic Energy 57

F

dr

Figure 3.1 The forces involved when pushing a block against a wall.

A

B

∆ri

∆Wi = Fi · ∆ri

Figure 3.2 The path between A and B is made up of a series of discrete steps.

considering a given smooth path to be approximated by a series of N small but
finite displacements (�ri ) each corresponding to an interval of time �t . Figure 3.2
illustrates this for a particle making the journey from point A to point B. You
might like to consider the vertices on the path as successive positions of the particle
when illuminated by a stroboscope where the interval between the flashes is �t .
The displacement vector that takes us from A to B can then be written as

rAB = rB − rA =
N∑

i=1

�ri , (3.2)

where rA and rB are the position vectors of A and B, respectively. For each of the
steps we can calculate the work done:

�Wi = Fi · �ri , (3.3)

where Fi is the force vector acting on the particle at the ith step. We can then
approximate the total work done in going from A to B as

WAB ≈
N∑

i=1

�Wi. (3.4)

This approximation becomes more accurate as �t gets smaller (i.e. N gets larger)
and the displacement in each step gets smaller. In the limit that N → ∞ the
displacement �ri → dr and it becomes parallel to a tangent vector to the curve.
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A

B

dW = F · dr

dr

Figure 3.3 The path taken by a particle as it moves from A to B. The work done is the
integral of F · dr along the path. The direction of dr is indicated.

Simultaneously the ratio �ri

�t
→ v(t), the velocity at time t . This limit is shown in

Figure 3.3. Now the work done in going from A to B is expressed exactly as the
integral

WAB =
∫ B

A

F(r) · dr, (3.5)

where the force F(r) is written explicitly as a function of position.

Example 3.1.1 Calculate the work done by gravity on a projectile of mass m that
is fired to an altitude h.

Solution 3.1.1 We use a co-ordinate system where i is horizontal and j is vertical.
Then (see Figure 3.4)

dr = dx i + dy j.

0 200 400 600 800
x

0

50

100

150

y

h

dy dr

dx

Figure 3.4 Parabolic path of a projectile launched from the origin.
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The force of gravity is represented (for low altitudes) as F = −mg j . So

dW = −mg j · (dx i + dy j) = −mg dy,

i.e. only the vertical component of the path contributes to the work. We integrate
the above expression to obtain

W =
∫

dW = −mgh.

So although the path is parabolic we need only know the maximum height reached
in order to determine the work done.

We are now ready to establish why work is such a useful concept. To do this we
shall use Newton’s Second Law in order to evaluate the work done on a particle.
Consider

WAB =
∫ B

A

F(r) · dr =
∫ B

A

d(mv)

dt
· dr. (3.6)

We can use dr = v dt , allowing us to write

WAB =
∫ B

A

d(mv)

dt
· v dt =

∫ B

A

m
d(v)

dt
· v dt. (3.7)

This integral is easily evaluated once we recognise that

d(v2)

dt
= d(v · v)

dt
= 2v · dv

dt
,

where we have used the product rule for differentiation of the scalar product. We
are therefore able to rewrite Eq. (3.7) as

WAB =
∫ B

A

d
( 1

2mv2
)

dt
dt = 1

2
mv2

B − 1

2
mv2

A = TB − TA, (3.8)

where vA and vB are the speeds of the particle at positions A and B respectively.
The quantity

T = 1

2
mv2 (3.9)

is the kinetic energy and the effect of the force is to alter the kinetic energy by
doing work. Eq. (3.8) is called the Work-Energy Theorem.

Example 3.1.2 Let us consider again the example of the projectile. We can now
use Eq. (3.8) to calculate the speed of the projectile at an altitude y having been
launched from y = 0.
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Solution 3.1.2 Recall that the initial velocity is u. The Work-Energy Theorem allows
us to compute the answer straight away:

−mgy = 1

2
m(v2 − u2)

so
v =

√
u2 − 2gy.

Note that we could have just as easily derived this result using Eq. (1.20).

Forces of
Constraint

Velocity

A

B

h

Figure 3.5 A roller-coaster travels along a track. The forces of constraint do no work.

It often happens that a body is forced to follow a well determined path in a
field of force as a result of some constraint. For example, the roller coaster shown
in Figure 3.5 is constrained to follow the tracks. The car begins its journey at A

then descends along the track, rises again before falling to B. If we ignore friction
and air-resistance then the only forces acting on the car are gravity and the normal
forces between the rails and the wheels that serve to keep the roller-coaster on the
track. Because the wheels of a roller-coaster form an interlocking structure with
the track, the normal forces may act either inwardly or outwardly depending on
whether the tendency is for the car to ‘push into the track’ or ‘fly off the rails’. At
some point on the path between A and B we determine the infinitesimal work to be

dW = F · dr = (−mg + N) · v dt, (3.10)

where N is the normal force. Since N and v are orthogonal this gives

dW = −mg · v dt = −mg dy. (3.11)

The work done in going from A to B is then obtained by integration:

WAB =
∫ B

A

dW = −
∫ yB

yA

mg dy = mg(yA − yB) = mgh. (3.12)
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This shows that while work is done by gravity, no work is done by the forces
of constraint. This is a specific example of a more general result, which states
that, for many systems, the work done by the forces of constraint is zero. In the
roller-coaster example the work done depends on the change in height, as it did
with the free projectile. This is an important simplification, which allows us to
calculate the kinetic energy at any point on the path knowing only the height,
despite the fact that we know neither the detailed equation of the path, nor any
details about the forces keeping the roller coaster on the rails.

Power is defined as the rate at which work is done. If a force F acts on a
body, which undergoes a displacement dr, then the infinitesimal work done is
dW = F · dr. The instantaneous power P is simply this work divided by the time
interval dt in which the displacement occurs

P = dW

dt
= F · dr

dt
= F · v. (3.13)

In the SI system the unit of power is the watt3 (W):

1 W = 1 J s−1.

3.2 POTENTIAL ENERGY

In the previous section we defined work in terms of the integral over a path
between two points. We also proved that for a uniform gravitational field, the work
done is proportional to the difference in height between the two points, but does
not depend on the path taken between them. Such dependence on the initial and
final positions but not on the path taken is the defining feature of a conservative
field of force.

A field of force F(r) is conservative if the work done in going between positions
rA and rB is independent of the path taken. A field of force that is not conservative
is known as non-conservative or dissipative.

A corollary to the above definition is that if a path ends at the starting point to
form a closed loop the work done is always zero for a conservative force.

Gravity and electrostatic forces provide us with two examples of conservative
forces whilst friction and air-resistance are both non-conservative. It is easy to see
that the work done by friction must always be path-dependent. A longer path will
result in more work being done since the frictional force always acts in opposition
to the motion. For such a situation we obtain

W =
∫ B

A

F · dr = −µkN

∫ B

A

dr = −µkNl , (3.14)

where l is the length of the path and µk is the coefficient of kinetic friction. Notice
that, even for a closed loop like that illustrated in Figure 3.6, the work done by
friction is still negative (which simply means that the kinetic energy reduces).

3 James Watt (1736–1819).
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A

B

D

Ffriction

Ffriction

dr

dr

C

Figure 3.6 The work done against friction is negative, even for a closed loop.

What if all of the forces acting on a particle are conservative? In that case we are
free to construct a special function of position, which we call the potential energy,
U(r). It is defined by

U(rB) − U(rA) = −WAB , (3.15)

which is the negative of the work done by the net force in going from A to B.
Note that no such special function can be found for non-conservative forces because
the work done in going from A to B depends on more than just the position of
the end-points. The motivation for taking the negative of the work done in the
definition is because, when combined with Eq. (3.8), we get

U(rB) − U(rA) = TA − TB

and therefore

TA + U(rA) = TB + U(rB). (3.16)

Thus for motion of a particle under the influence of conservative forces only we
see that the sum of the kinetic and potential energy is a conserved quantity. We
call this sum the mechanical energy, E:

E = 1

2
mv2 + U(r). (3.17)

Note that the opposite sign in Eq. (3.15) would be equally valid, we would just have
to flip the sign of the potential energy in Eq. (3.16) and it would be the difference
rather than the sum of the kinetic and potential energies that would be conserved.
Also note that Eq. (3.15) does not uniquely define the function U(r), since it
is possible to add any constant to it and yet still maintain the same difference in
potential energy between any two given points. The mechanical energy of a particle
is therefore not an absolute quantity but rather it is always defined relative to an
arbitrary position of zero potential energy.
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Example 3.2.1 Obtain an expression for the potential energy of a particle in the
gravitational field of a planet.4

Solution 3.2.1 The force is given by

FG = −GMm

r2
r̂,

where M is the mass of the planet, m is the mass of the particle, r is the distance and
r̂ is a unit vector directed from the centre of the planet to the particle. To calculate
the potential energy we will determine the work done in bringing the particle in
from a point at infinity along a path anti-parallel to the unit vector r̂. Starting the
particle out at infinity is our choice, any other point would do equally well. In this
case dr = dr r̂ and

W∞B =
∫ rB

∞
−GMm

r2
r̂ · r̂ dr = −

∫ rB

∞

GMm

r2
dr.

This integral is evaluated to give

W∞B = GMm

rB

.

Thus the work done in bringing the particle from an infinite separation to a distance
rB from the centre of the planet is a positive quantity. This is what we expect, since
together with the Work-Energy Theorem this implies an increase in kinetic energy,
consistent with the effect of an attractive force. To obtain the potential energy we
need to choose where it should be zero. The natural choice is to pick the potential
to be zero at infinity, in which case

U(r) = −GMm

r
. (3.18)

Example 3.2.2 Calculate the escape speed of a projectile launched from the surface
of the Earth.

Solution 3.2.2 If we ignore the effects of air-resistance, which is a dissipative force,
then the mechanical energy is conserved. We want to consider a projectile launched
with an initial velocity v0 from the Earth’s surface (r = rE) that is able to reach a
separation r → ∞. Since this is, by definition, the separation at which the potential
energy is zero in Eq. (3.18) we get

1

2
mv2

0 − GMm

rE
= 0

since the final kinetic will be identically zero if the projectile has just enough energy

4 The proof that the gravitational force is conservative can be found in Section 9.1.
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to escape. Rearranging gives

v0 =
√

2GM

rE
.

3.2.1 The stability of mechanical systems

In Chapter 2 we defined static equilibrium to hold when the net force on a
particle is zero. Suppose we have a system in which all the forces acting on the
particle are conservative, and which the particle is free to move in one dimension
only (we go beyond one dimension in Chapter 9). As we have seen, we can then
define a potential energy U(x) where x represents the position of the particle.
Using Eq. (3.1), dW = −dU = F(x) dx and so

F(x) = −dU(x)

dx
. (3.19)

The condition of static equilibrium can thus be written

dU

dx
= 0, (3.20)

i.e. the potential energy has a stationary point where the force is zero. This sta-
tionary point can be either a maximum or a minimum, as illustrated in Figure 3.7.
Figure (a) illustrates the potential energy in the case that there is a maximum at
x = x0. The particle is in static equilibrium at this point, but if we consider even
tiny departures from x = x0 we see that the equilibrium is unstable. For example,
moving the particle to x < x0 results in a potential energy surface with positive
gradient. Thus F = − dU

dx
is negative and the force drives the particle away from

StableUnstable

x x

U(x) U(x)

x0 x0

F > 0 F < 0F < 0 F > 0

(a) (b)

Figure 3.7 Potential energy as a function of distance for two one-dimensional systems. In
(a) a maximum in U results in unstable equilibrium: for x �= x0 the force acts to move the
particle away from x0. In (b) for x �= x0 the force acts to move the particle towards x0 and
the equilibrium is stable.
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x = x0. If we move the particle to x > x0 then dU
dx

is negative, the force positive
and the particle is driven to higher values of x. Thus for system (a), any small
departure from x = x0 results in a force that works in the same direction as the
displacement. The equilibrium is therefore unstable to small perturbations away
from x = x0. In Figure 3.7(b) a minimum in the potential energy is illustrated.
Now the behaviour is reversed and small displacements from equilibrium result in
forces that act in opposition to the displacement. These restoring forces ensure that
small perturbations do not produce large effects; the equilibrium in (b) is stable.

In practice, positions of unstable equilibrium can never be achieved. While we
can imagine setting up a system in unstable static equilibrium by ensuring that the
condition x = x0 is perfectly observed, this is impossible to achieve in practice.
However, in a situation of stable equilibrium, small perturbations produce small
effects that tend to return the system back to its starting point.

The relationship between potential energy and stability is of course not limited
to systems involving one degree of freedom. A good example of a potential energy
surface in two dimensions is obtained upon considering a marble on the surface
of a hemispherical bowl. Since the gravitational potential energy is proportional to
the height of the marble it can be written as a function of the marble’s position
in the horizontal plane using the equation for the surface of the bowl. The contact
forces between the marble and the bowl act as forces of constraint and do not
contribute to the potential energy. Consider first the bowl placed with its rim on
a flat horizontal surface and the opening downwards. If the marble is placed on
the highest point of the outer surface of the upturned bowl then this is a position
of unstable equilibrium, similar to Figure 3.7(a) and is impossible to achieve. If,
however, the bowl sits so that the opening is upwards and the marble is positioned
at the lowest point of the inner surface, this represents stable equilibrium. In this
example, the potential energy can be expressed as a function of the two position
co-ordinates in the horizontal plane, x and y. To achieve static equilibrium, the
potential energy must be a stationary point with respect to variations in both x and
y. In other words, both the x and y components of the force in the horizontal plane
must be zero in order to have static equilibrium. Notice that since the potential
energy close to the surface of the Earth is proportional to height, it follows that the
surface of the bowl just happens to provide a visual map of the potential energy
surface appropriate to the marble’s motion.

3.2.2 The harmonic oscillator

Using the idea of potential energy, we can explore what is perhaps the single most
important physical system in the whole of physics, both classical and quantum: the
simple harmonic oscillator. In so doing we will learn, in this section and the next,
just why an object so ordinary as a stretched spring should provide the prototype
for the behaviour of a vast range of physical systems close to equilibrium. We start
by considering a one-dimensional system for which the only force F acting on a
particle of mass m satisfies Hooke’s Law, F = −kx (think of a stretched spring if
you like). Such a system is known as a simple harmonic oscillator.
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The Second Law specifies the equation of motion:

m
d2x

dt2
= −kx (3.21)

for which the general solution is

x(t) = A sin(ωt) + B cos(ωt), (3.22)

where A and B are arbitrary constants and ω =
√

k
m

is the angular frequency of
the oscillation. If you cannot already see it, then you should check that Eq. (3.22)
is a solution to Eq. (3.21) and that you agree with the expression for ω. Thus a
simple harmonic oscillator is characterised by an oscillation of constant frequency.
We are at liberty to define x(0) = 0, that is we put the particle at the origin at time
zero. In which case, we have B = 0 and

x(t) = A sin(ωt). (3.23)

We can deduce an expression for the potential energy of a harmonic oscillator
by computing the work done in going from x = xA to x = xB

WAB = −
∫ xB

xA

kx dx = 1

2
k

(
x2

A − x2
B

)
. (3.24)

As usual we are free to select the point where the potential energy is zero, and we
choose the origin x = 0. So, setting xA = 0 and defining U(0) = 0 we obtain

WAB = U(xA) − U(xB) = −U(xB) = −1

2
kx2

B. (3.25)

Thus, the potential energy of a harmonic oscillator is given by

U(x) = 1

2
kx2. (3.26)

The harmonic oscillator constitutes a conservative system and we can write the
mechanical energy:

E = 1

2
mv2 + 1

2
kx2, (3.27)

where v is the speed of the particle. We can verify that this is a conserved quantity
by direct substitution of the solution (Eq. (3.23)) into the energy equation, i.e.

E = K + U = 1

2
mω2A2 cos2 ωt + 1

2
kA2 sin2 ωt = 1

2
kA2. (3.28)

Example 3.2.3 Determine the force acting on a particle that moves with a potential
energy U(x) = 1

2kx2 + αx4.
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Solution 3.2.3 We use Eq. (3.19) to get from the potential energy to an expression
for the force on the particle:

F(x) = −dU

dx
= −kx − 4αx3.

This deviates from Hooke’s Law by the addition of the term Fa = −4αx3. Notice
that Fa is still a restoring force since it depends on an odd-power of x, i.e. it points
towards the origin (x = 0) whatever the sign of x. As a result, we can still expect
the particle to oscillate about the origin. However, Newton’s Second Law now leads
to the equation of motion

m
d2x

dt2
= −kx − 4αx3,

where m is the mass of the particle. A simple sine or cosine function with fixed
frequency cannot satisfy this equation and the motion is more complicated. Such a
system is referred to as an anharmonic oscillator.

3.2.3 Motion about a point of stable equilibrium

Finally, we are ready to reveal why springs are so important in physics. Consider
a particle at a point of stable equilibrium x = x0 in a potential U(x). What motion
do we expect for small departures from equilibrium? We may expand the potential
as a Taylor series about x0 as

U(x) ≈ U(x0) + (x − x0)
dU

dx

∣∣∣∣
x0

+ 1

2
(x − x0)

2 d2U

dx2

∣∣∣∣
x0

+ . . . (3.29)

Since the equilibrium is stable we must have dU
dx

∣∣
x0

= 0 and d2U

dx2

∣∣∣
x0

≥ 0. We set the

constant d2U

dx2

∣∣∣
x0

= k and redefine our scale of potential energy such that U(x0) = 0.

Thus
U(x) ≈ 1

2
k(x − x0)

2 (3.30)

and so, for small enough departures from equilibrium, the potential energy of (and
hence the restoring forces acting on) the particle are identical to those of the
harmonic oscillator.

The above argument may be generalised to three dimensions leading to three
terms in the potential energy:

U(x, y, z) ≈ 1

2
kx(x − x0)

2 + 1

2
ky(y − y0)

2 + 1

2
kz(z − z0)

2, (3.31)

where the three spring constants, kx ky and kz, correspond to the generally different
restoring forces in the x, y and z directions, respectively. The equilibrium position
is given by the co-ordinates (x0, y0, z0).
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Thus we see that although an ideal spring obeys Hooke’s Law and therefore
is a harmonic oscillator it is not the only harmonic oscillator. We have just seen
that any system close to a point of stable equilibrium also constitutes a harmonic
oscillator and therefore behaves like a spring. The only exception is those systems
for which the second derivative of the potential just happens to vanish at the point
of equilibrium, i.e. k = 0.

3.3 COLLISIONS

At the very heart of the Newtonian programme to understand the world is the
idea that particles move around and collide with each other. Collisions will typi-
cally change the energies and momenta of the colliding particles but always such
that the total energy and total momentum remain unchanged. We must be very
careful though in how we use energy conservation because it is possible for some
energy to “leak away”, e.g. the energy carried away by a sound wave when two
objects collide, and it strictly needs to be included when we come to compute
the total energy after the collision. These days, collisions are exploited daily at
the world’s particle physics colliders in order to develop an understanding of how
matter behaves at the shortest distances. Although Newton’s laws do not apply in
those experiments (we need relativity and the quantum theory instead) it is nev-
ertheless true that energy and momentum remain conserved. It is also true that
the methods used in solving collision problems in Newtonian mechanics are very
similar to those used when it comes to tackling collisions in particle physics and
that is something we will explore in more detail in Section 7.2.

3.3.1 Zero-momentum frames

We will consider the collision between two classical particles that interact by a
force that goes to zero at large distances. This allows us to separate the process
into three stages (see Figure 3.8): (a) the early stage, when the particles are far
enough apart to be each considered isolated; (b) the interaction stage when the
mutual interaction is significant and the particles are accelerating; (c) the late stage
when the particles are once again isolated. The particles have masses m1 and m2

with initial velocities v1 and v2, respectively. In stage (c), after the collision, the
velocities are v′

1 and v′
2 respectively. In constructing Figure 3.8 we have chosen

a frame of reference in which to view the collision. Naturally enough we take
this to be the frame in which the experimenter is stationary. This frame is known
as the lab frame. While the lab frame is a familiar frame of reference to use in
thinking about the collision, it turns out not to be the most useful for calculations.
All isolated collisions conserve linear momentum, which is a vector quantity. So if
we want to make things easy for ourselves we could choose a frame of reference
in which the total momentum is zero. We will call this the zero-momentum frame.
Let us suppose that we transform to a frame of reference travelling with velocity
V with respect to the lab frame. How will the particles move in this new frame of
reference? As discussed in Section 1.3.2, we know5 that

5 These results change in Special Relativity.
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(a) (b)

(c)

m1

m2

m2

v′2
v′1

m1

m1

m2

v2

v1

Figure 3.8 The collision between two particles in the lab frame is considered in three stages.
At times long before (a) and long after (c) the collision the particles are far enough apart that
we can ignore their mutual interaction and both may be treated as isolated particles. During
the interaction stage (b) the particles interact and their velocity vectors are continuously
changing.

v1c = v1 − V

v2c = v2 − V, (3.32)

where v1c and v2c are the velocities in the new frame of reference. We assert that
the total momentum in this frame is zero, i.e.

m1v1c + m2v2c = 0, (3.33)

and solve for V to obtain

V = m1v1 + m2v2

m1 + m2
. (3.34)

Notice that the form of this equation is reminiscent of the expression for the
centre-of-mass vector, Eq. (2.27). In fact, for two colliding particles with position
vectors r1 and r2 the time-derivative of the position of the centre-of-mass is

dR
dt

= 1

m1 + m2

(
m1

dr1

dt
+ m2

dr2

dt

)
= V. (3.35)

Thus we see that zero-momentum frames are characterized by the fact that they
are those frames in which the centre of mass is at rest. We have used the plural
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“frames” here because so far we did not specify the location of the origin, so there
exist an infinite number of zero momentum frames all moving parallel to each other
and differing only in the location of the origin. We are at liberty to specify the
location of the origin and shall usually choose it to be the position of the centre of
mass R and we refer to this particular zero-momentum frame as the centre-of-mass
frame (although very often the two are used synonymously). While the distinction
is not important for the discussions in this chapter, it will be so in Chapter 4 when
we come to consider rotating bodies and will sometimes want to insist that the
origin is coincident with the position of the centre of mass.

We can compute the momenta of the colliding particles in the centre-of-mass
frame as follows:

p1c = m1v1c

= m1

(
v1 − m1v1 + m2v2

m1 + m2

)

= m1m2

m1 + m2
(v1 − v2). (3.36)

The result is a product of two terms, the reduced mass

µ = m1m2

m1 + m2
, (3.37)

and the relative velocity,

v = v1 − v2. (3.38)

Both µ and v feature heavily in two-body calculations. We could perform a similar
calculation for p2c but the result is clear from the fact that the total momentum
must be zero:

p1c = µv,

p2c = −µv. (3.39)

The total kinetic energy in the lab frame can be expressed in terms of velocities in
the centre-of-mass frame:

K = 1

2
m1v

2
1 + 1

2
m2v

2
2 = 1

2
m1(v1c + V) · (v1c + V) + 1

2
m2(v2c + V) · (v2c + V).

The simplification of this expression requires the evaluation of, e.g.

(v1c + V) · (v1c + V) = v2
1c + 2v1c · V + V 2,

which leads to

K = 1

2
m1v

2
1c + 1

2
m2v

2
2c + (m1v1c + m2v2c) · V + 1

2
(m1 + m2)V

2. (3.40)
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Since we are working in a zero-momentum frame (m1v1c + m2v2c) = 0 and so

K = Kc + 1

2
(m1 + m2)V

2, (3.41)

where the kinetic energy in the centre-of-mass frame is

Kc = 1

2
m1v

2
1c + 1

2
m2v

2
2c. (3.42)

So we see that the kinetic energy measured in the lab is a sum of two components:
the energy of the particles as measured in the centre-of-mass frame, and a kinetic
energy term 1

2 (m1 + m2)V
2 that we can ascribe to the motion of the total mass

of the system at the centre-of-mass velocity. Since the collision involves a system
of two particles for which there are no external forces, Eq. (2.28) implies that V
is constant. The energy contained in the motion of the centre of mass is therefore
unchanged during the collision and we can think of this contribution to the kinetic
energy as being ‘locked in’ to the motion of the system as a whole; it cannot be
used to alter the internal state of the system. Since V 2 ≥ 0, Eq. (3.41) also shows
that the zero-momentum frame is the inertial frame in which the system has the
lowest possible total kinetic energy.

3.3.2 Elastic and inelastic collisions

During the interaction stage (see Figure 3.8), Kc will generally change as a
result of the forces acting on the particles. If we assert that all of these forces are
conservative, then we can represent them by a potential U . The mechanical energy
in the centre-of-mass frame is then

Ec = Kc + U (3.43)

and this is a conserved quantity. We shall define the potential energy to be zero
when the particles are infinitely separated in which case U is zero both before
and after the collision and hence Kc has the same value both before and after the
collision (even though it can change during the collision). We distinguish quantities
measured after the collision from their counterparts beforehand by the use of a
prime (′). In this notation we can write that

Kc = K ′
c. (3.44)

Since 1
2 (m1 + m2)V

2 is a constant, this result is also true in the lab frame:

K = K ′. (3.45)

Furthermore, we can describe the collision by specifying the momentum vectors of
the two particles in the centre-of-mass frame (both before and after the collision).
They are always back-to-back since the total momentum is zero in this frame. The
collision will generally alter the direction of the momentum vectors, so that p′

1c and
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p2C

p′1C p1C

p′2C

qC

Figure 3.9 Momentum diagram for an elastic (Q = 0) collision.

p′
2c lie along a different axis to p1c and p2c, but it cannot alter the lengths of the

vectors (see Figure 3.9). The angle between these two axes defines the scattering
angle θc. This type of scattering, in which the kinetic energy is conserved, is known
as elastic scattering.

Frequently we want to consider collisions, not between point particles, but
between objects with some internal structure. For such objects it is again possible
that we observe elastic scattering as described above. Elastic scattering occurs if
the internal structure of the colliding bodies remains unchanged by the collision
process. This happens, to a good approximation, when we collide resilient objects
such as glass or steel marbles. In general however, energy may be absorbed or
released by rearrangement of the components of the bodies and such collisions are
referred to as inelastic. We define the energy released by internal rearrangements
as the Q-value:

Q = K ′ − K = K ′
c − Kc. (3.46)

Typically, for macroscopic bodies the Q-value is negative, i.e. the bodies absorb
energy when their internal structure changes. For example, when we drop a blob
of plasticine on the floor kinetic energy goes into deformation of the blob resulting
in a negative Q. Explosive collisions (i.e. those with Q > 0) occur when the
collision causes the release of stored internal energy; the rather contrived case of
the collision between two set mousetraps would be one example. Collisions with
Q > 0 are more common on the microscopic level, e.g. electromagnetic energy
stored within molecules can be released in exothermic chemical reactions.

Momentum diagrams for inelastic collisions are shown in Figure 3.10. Notice that
momentum conservation still applies since there are no external forces. However the
initial and final kinetic energies are now different, resulting in different magnitudes
for the initial and final momentum vectors. For Q > 0 the momentum vectors
increase in magnitude whereas for Q < 0 they decrease.

Example 3.3.1 Consider a collision between two cars each of mass m on a linear
air-track. The first car is initially travelling to the right with a speed v when it
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Figure 3.10 Momentum diagrams for inelastic collisions with Q > 0 and Q < 0.

collides with the second, stationary car. Calculate: (a) the final velocities of the
cars in the lab frame assuming an elastic collision; (b) the Q-value of an inelastic
collision if the cars stick together.

Solution 3.3.1 (a) We shall perform the calculation in the lab frame. The total
momentum is mv and the law of momentum conservation implies that the momenta
after the collision must satisfy

mv′
1 + mv′

2 = mv,

i.e.

v′
1 + v′

2 = v. (3.47)

The collision is elastic so

1

2
mv′2

1 + 1

2
mv′2

2 = 1

2
mv2,

i.e.
v′2

1 + v′2
2 = v2. (3.48)

Squaring Eq. (3.47) and subtracting Eq. (3.48) gives

2v′
1v

′
2 = 0,

which means that one of the cars must have zero final velocity. Eq. (3.47) then
implies that the other car must have final velocity v. Since Nature does not permit
the cars to pass through each other, the car with final velocity v must be the one
that was originally stationary. Thus, in terms of early- and late-stage velocities we
have, e.g., v1 = v v2 = 0; v′

1 = 0 v′
2 = v.



74 Energy

(b) For the case where the cars stick together we work in the centre-of-mass
frame. The centre-of-mass velocity, as measured in the lab, is (using Eq. (3.34))

V = 1

2m
(mv + m × 0) = v

2
.

Hence

v1c = v − v

2
= v

2
,

v2c = 0 − v

2
= −v

2
.

If the cars stick together then all of the kinetic energy in the centre-of-mass frame is
lost (presumably into deforming the material that sticks the cars together) and we
have

v′
1c = v′

2c = 0.

Thus

Q = 0 −
(

1

2
m

(v

2

)2 + 1

2
m

(−v

2

)2
)

= −1

4
mv2.

Example 3.3.2 An experiment measures the elastic scattering of a beam of particles
from a stationary target. The beam and target particles have equal mass. Show that
the angle between the final velocity vectors is 90◦, as long as the final velocities are
both non-zero.

Solution 3.3.2 The initial state is similar to that described in the previous example,
although we must be careful with the vector nature of the velocities. Momentum
conservation now gives

v′
1 + v′

2 = v,

where v is the velocity of the beam particles and v′
1 and v′

2 are the final velocity
vectors. Taking the scalar product of each side with itself (“squaring”) gives

v′2
1 + 2v′

1v
′
2 cos φ + v′2

2 = v2,

where φ is the angle between the final velocity vectors. Invoking energy conservation
for an elastic collision we have

v′2
1 + v′2

2 = v2

and therefore

2v′
1v

′
2 cos φ = 0.

Since both final speeds are non-zero we must have cos φ = 0 and we conclude that
the final velocity vectors form a right-angle in the lab frame.
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3.4 ENERGY CONSERVATION IN COMPLEX SYSTEMS

Consider what happens when you drop a heavy stone on a sandy beach. Initially
the stone has gravitational potential energy, which converts into kinetic energy as
the stone falls. When the stone hits the beach, the grains of sand are given kinetic
energy in the collision and they jostle against each other briefly, but in a very short
time everything comes to rest with the stone embedded in the sand. Where does
the energy go? We could say that friction acts between the stone and the sand,
and since friction is a non-conservative force the total mechanical energy of the
stone is not a constant of the motion once the stone hits the sand. But that is not
to answer the question.

You might be familiar with the heating that occurs when an electric drill is used
on a resilient surface, such as brick or ceramic tiles: the drill bit can become too hot
to handle. This type of experience demonstrates clearly that heat can result from
motion. In a series of careful experiments, Joule showed that heat could be regarded
as a form of energy and that a loss of mechanical energy could be associated with
a predictable temperature rise. In effect Joule demonstrated that the conservation
of energy can be rescued provided we are prepared to count thermal energy when
we are doing the book-keeping. So, when considering the stone that falls into the
sand we can now say that the total energy is conserved but that mechanical energy
is transformed into thermal energy as a result of the collision, and that we expect a
rise in temperature of the sand and stone that depends on the amount of mechanical
energy dissipated in the collision.

But is thermal energy really a fundamentally new type of energy? To gain a fuller
understanding requires us to view the system in terms of its microscopic constituent
particles. On this level, the details of the collision are very complicated. Many
atoms, interacting by way of electrostatic forces, jostle each other and the original
mechanical energy of the stone is dissipated into kinetic energy of the atoms within
the sand and the stone itself. In this way thermal energy can be viewed as nothing
more than atomic kinetic energy. Nevertheless, from a macroscopic perspective
it makes much more sense to talk about heat energy, since keeping track of the
kinetic energy of the individual atoms is not practicable. Figure 3.11 illustrates
another way to think about the distinction between kinetic and thermal energy: in
the former case there tends to be a collective, ordered, motion whilst in the latter
the motion tends to be disordered.

Disordered Motion Ordered Motion

Figure 3.11 Disordered and ordered motion of the molecules in a body.
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But what of the reverse process? Can disordered thermal motion spontaneously
be transformed into ordered motion? Is it possible that the stone and the sand can
spontaneously cool down, delivering the thermal energy back to the stone causing it
to leap into the air? Such a bizarre happening is clearly contrary to our experience,
but it is not impossible. It is just very unlikely to happen if the original mechanical
energy is dissipated randomly.

Real systems of many constituent particles may be rigid, as is the case of a
steel block, or they may be more fluid and deformable like a piece of plasticine.
A little care is required when using energy conservation with deformable systems
as it is often the case that the internal forces may dissipate kinetic energy into
thermal energy. In addition, it is possible for a complex, deformable, system to
convert internal potential energy into kinetic energy. An explosion provides a good
example of the latter process at work. It is also the case with the following example
of a ballerina’s sauté.

Example 3.4.1 Discuss which forces do the work when a ballerina sautés (jumps)
into the air. In particular, explain why the normal reaction from the ground does
no work.

Solution 3.4.1 It is quite sensible to first draw the free body diagrams illustrated
in the dotted boxes in Figure 3.12. Figure 3.12(a) refers to the period of the jump

(b)

mg

(a)

N = F

−F

F Ndx

mgmg

Figure 3.12 Diagram showing the mechanics of a ballerina’s sauté: (a) the
upwards-acceleration phase of the jump, illustrating the forces on the feet and the body;
(b) the jump phase, when the acceleration is downwards. Free-body diagrams, in which the
internal forces are ignored, are enclosed in dotted boxes.
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when the ballerina’s feet are in contact with the ground and Figure 3.12(b) refers
to the period when the ballerina is in the air. In the former case, the only forces
external to the ballerina’s body are gravity and the normal force from the floor.
Thus, motion of her centre of mass upwards is only possible if the magnitude of the
normal force exceeds that of gravity. As soon as the ballerina leaves the floor the
normal force is reduced to zero and the acceleration takes on a value g downwards.
To view the jump in terms of energy we must identify how work is done. During the
upwards acceleration phase the kinetic energy of the ballerina is increasing. Since
the normal force from the floor is responsible for the upwards motion of the centre
of mass it is tempting to suppose that this force does the work that is responsible for
the increase in kinetic energy. This is incorrect: the force coming from the ground
cannot do any work because the point of application does not move. This is not
surprising because we know that the ballerina leaps into the air using her own
internal energy and not energy from the Earth. At first sight, this may seem strange
given that Newton’s Third Law requires that all the internal forces sum to zero, i.e.∑

i,j Fij = 0. However, this statement does not imply that
∑

i,j Fij · dri = 0. This
is the crux of the matter: not all particles are displaced by the same amount (since
the ballerina constitutes a deformable system). For example, the atoms in the feet
do not move at all. Figure 3.12 shows the essential features of the mechanics. To
simplify matters we model the ballerina as a mass m sitting on a spring, which
initially sits on the floor (i.e. the ballerina’s feet are at the base of the spring).
It is a crude model but one that allows us to introduce the internal forces into
the problem. The internal forces that drive the upwards-acceleration phase of the
body are a result of the tension F in the compressed spring. This corresponds to
the starting point of the sauté, i.e. when the ballerina stands with her legs flexed.
Newton’s Third Law dictates that there is a corresponding force acting on the feet,
and since the feet do not move this is also equal to the normal reaction from the
ground, i.e. N = F. As the spring extends, the body moves upwards a distance dx so
that the work done by the tension in the spring is F dx and the net work done on the
body is (F − mg)dx = (N − mg)dx. Note that this is the result one would obtain
upon considering the free body diagram alone but now it is clear that the work
is done by the spring and not the ground. Notice also that in our model we have
a simple explanation for how the ballerina’s feet leave the ground: as the spring
moves from compression to extension, the tension reverses direction and that leads
to a net upwards force on the feet.

Conservation of energy in a complex system must therefore take account of the
fact that it is possible for the internal forces to do work. If the internal forces are
non-conservative then some of this work will be dissipated, e.g. it might lead to an
increase in the thermal energy of the system. Of course, external forces may also do
work on the system. Figure 3.13 illustrates how the different categories of force are
able to contribute to the total energy of a system. If we assume that all dissipated
energy becomes thermal energy, then we could write the law of conservation of
energy as

Wext = �K + �Uint + �Ethermal, (3.49)
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DissipationPotential energy
e.g. thermal energy
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Figure 3.13 A scheme showing how different categories of force contribute to energy.

where Wext is the work done on the system, �K and �Uint are the changes in kinetic
and internal potential energy, and �Ethermal is the change in thermal energy. In the
example of the ballerina’s sauté, the force of gravity can be viewed as an external
force that does negative work on the ballerina (i.e. it takes energy to jump) and we
can therefore write

−mg dx = �K − �Uint (3.50)

as the ballerina increases the position of her centre of mass by a height dx. Thus
the kinetic energy can only increase if the work done by internal forces (i.e. the
internal potential energy lost) exceeds the magnitude of the work done by gravity.
Note that since the external force is conservative, we could also think of Wext as a
change in external potential energy, i.e. Wext = −�Uext = −mg dx.

We are at liberty to choose the boundary of a complex system, and this choice
determines whether forces are to be considered as internal or external. Largely this
is a matter of convenience. In the ballerina example we could have extended the
system boundary to include the Earth, which would have resulted in a description
of the sauté purely in terms of internal forces. However, one should be careful
before choosing a system boundary such that there are non-conservative external
forces since the thermal energy generated will probably be distributed on both sides
of the system boundary, i.e. some part of �Ethermal will be external to the system.
A more detailed study of thermal energy would leads us naturally to the subject of
thermodynamics, but that is outside of the scope of this book.

PROBLEMS 3

3.1 A car of mass 900 kg travelling at 120 km per hour stops in 3.0 seconds.
Calculate the work done on the car by the road. Calculate also the power of
the braking system.

3.2 A force F = 3.0 i − 2.0 j (newtons) acts on a particle while it is displaced by
�s = −5.0 i − 1.0 j (cm). Calculate the work done in units of joules.

3.3 The “push-me-pull-you” is illustrated in the figure. It consists of two
cars of equal mass (m) connected by a spring of negligible mass.
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The cars are free to travel along a horizontal, frictionless, linear
air track. The spring has an equilibrium length l, and spring constant k.
At time t = 0 the car at x1 has zero velocity and the car at x2 has velocity v0.

x1

x2

(a) Show that the centre of mass lies half-way between the two masses.
(b) Use Hooke’s Law to obtain expressions for the force on each car in terms

of x1 and x2.
(c) Use Newton’s Second Law to obtain equations of motion for each of

the two cars. Add these to show that a frame of reference that has
its origin at the centre of mass has zero acceleration and is therefore
inertial.

(d) Calculate the velocity of the centre of mass in terms of v0.
(e) Introduce the relative coordinate u = x1 − x2 − l and hence show that

mü + 2ku = 0.
(f) Show that u = A sin(ωt) is a particular solution to the equation you

derived in (e) and hence determine an expression for ω. Show also that
A = −v0/ω.

(g) Describe the motion of the two cars as seen in the lab frame.
(h) Making use of Eq. (3.28), show that the total mechanical energy of the

system is fixed and equal to mv2
0/2.

3.4 A uniform rope of mass per unit length λ is coiled on a table. One end
is pulled straight up with constant velocity v. Consider the rate of change
of momentum and show that the force exerted on the end of the rope as a
function of height y is given by

Fa = λv2 + gλy.

What is the total work done in lifting the end of the rope to a height y?
Find an expression for the instantaneous power needed to lift the rope. Com-
pare this with the rate of change of the total mechanical energy of the rope
and comment on your result.

3.5 Two particles of mass m1 = 5.0 kg and m2 = 10.0 kg are moving with veloc-
ities v1 = (2.0 i + 3.0 j) ms−1 and v2 = (−1.0 i + 4.0 j) ms−1. Calculate the
reduced mass for this system and determine the velocity of the centre of mass
and the momentum of each of the particles as measured in the centre-of-mass
frame.
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3.6 The Lennard-Jones potential energy function is often used to represent the
interaction between a pair of atoms:

U(r) = ε

[( r0

r

)12
− 2

( r0

r

)6
]

,

where r is the separation of the atomic centres. Show that the equilib-
rium separation is r0 and that the depth of the potential is ε. Sketch a
graph of U(r). If the system of two atoms has a maximum vibrational
kinetic energy Kmax, use your graph to indicate the range of allowed sep-
arations.

3.7 A proton makes a low-energy, head-on, collision with an unknown parti-
cle and rebounds straight back along its path with 4/9 of its initial kinetic
energy. Assuming that the collision is elastic and that the unknown particle
is originally at rest, calculate the mass of the unknown particle.



4
Angular Momentum

We have seen that the motion of a classical particle is governed by Newton’s three
laws, the second of which is the equation of motion F = ma. We have also seen
that, by considering an extended body as a system of particles, the centre of mass
also moves according to F = ma, where F is the sum of the external forces acting
on the body and m is the sum of the masses of the constituent particles. In this
way, the dynamical behaviour of an extended body is reduced to the motion of its
centre of mass. However, for an extended body, centre-of-mass motion is only part
of the story. An extended object may also exhibit internal motion. For example,
the centre-of-mass motion of our Solar System tells us nothing about the elliptical
orbits of the individual planets and moons within it and the parabolic motion of
the centre of mass of a ball in flight tells us nothing about the spin of the ball.
The internal motion of an extended system is usually more complicated than the
motion of the centre of mass since it may well be associated with more degrees
of freedom. To deal with this complexity, physicists look for conserved quantities;
properties of the motion that do not change with with time, irrespective of the
internal interactions that occur between the constituent particles. We have seen in
the last chapter that momentum and energy are important conserved quantities. In
this chapter we examine another conserved quantity, which appears both in classical
and quantum physics. That conserved quantity is angular momentum.

4.1 ANGULAR MOMENTUM OF A PARTICLE

To introduce the subject of angular momentum we consider the simplest possible
system, a particle with position vector r and momentum p. The angular momentum
l is defined to be

l = r × p. (4.1)

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd
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From the properties of the vector product this is a vector perpendicular to the plane
containing r and p.

x

y

q

r

r⊥
p − q

p

Figure 4.1 Particle travelling in the x-y plane.

Example 4.1.1 A particle moves with momentum p and position vector r as shown
in Figure 4.1. Calculate the angular momentum.

Solution 4.1.1
l = |r × p| = rp sin θ

but sin θ = sin(π − θ) so

l = r⊥p.

We say that |l| is the moment of p about the origin and the direction of l may be
determined as explained in Chapter 1. Turning the fingers of the right-hand from
the direction of r to that of p causes the thumb to point out of the page, i.e. in the
positive z-direction.

Note that l depends on the choice of origin, as the following example demon-
strates.

Example 4.1.2 A particle is travelling with momentum p along the positive y – axis
of a Cartesian co-ordinate system. Calculate the angular momentum relative to: (a)
the origin; (b) the point (a,0,0).

Solution 4.1.2 Relative to the origin the angular momentum is

l = r × p =
∣∣∣∣∣∣

i j k
0 y 0
0 p 0

∣∣∣∣∣∣ = 0.

Relative to the point (a, 0, 0) however the position vector of the particle becomes
(−a, y, 0) and

l =
∣∣∣∣∣∣

i j k
−a y 0
0 p 0

∣∣∣∣∣∣ = −apk.
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Differentiating Eq. (4.1) with respect to time gives

dl
dt

= dr
dt

× p + r × dp
dt

= r × f (4.2)

since dr
dt

× p = 0 (because the momentum and velocity are in the same direction).
We have used Newton’s Second Law to rewrite the rate-of-change of momentum
as the force f. As soon as we do so, it is to be understood that we are working in
an inertial frame. The quantity τ = r × f is known as the torque. So, for a particle,
we have

τ = dl
dt

. (4.3)

Since this is a vector equation, it is independent of the choice of the origin of our
co-ordinate system, a statement that we can check explicitly. We can trivially write

b × f = d

dt
(b × p), (4.4)

where b is any constant vector. Eq. (4.4) can now be added to Eq. (4.3) to obtain

(r + b) × f = d

dt
((r + b) × p)

thus

τ ′ = dl′

dt
, (4.5)

where τ ′ and l′ are the torque and angular momentum calculated with respect to
the point r = −b. Since b can be any constant vector we have shown that Eq. (4.3)
is always true in an inertial frame of reference, even though the vectors l and τ

themselves depend on the choice of origin.

4.2 CONSERVATION OF ANGULAR MOMENTUM IN SYSTEMS OF
PARTICLES

So far we have not introduced any new physics into our study of angular
momentum; we have shown that, given the definitions of angular momentum and
torque, Eq. (4.3) is just another way of expressing Newton’s Second Law for
the motion of a particle. In particular, the conservation of angular momentum
seems to be nothing more than a trivial consequence of Newton’s Second Law,
i.e. Eq. (4.3) tells us that dl/dt = 0 if f = 0. The subject really starts to address
new physics when we consider the rotation of systems of particles and of extended
bodies.
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Let us consider an extended system, which we take to be composed of N particles
whose positions relative to an origin are given by the position vectors rj , where
j = 1, 2, 3, . . . , N is an index labelling the particles. The j th particle has mass mj

and velocity vj = drj

dt
. We shall define the total angular momentum of the system

L about the origin to be the vector sum of the particle angular momenta:

L =
N∑

j=1

rj × (mj vj ). (4.6)

Let’s now compute the rate of change of L:

dL
dt

=
N∑

j=1

vj × (mj vj ) +
N∑

j=1

rj × (mj aj ), (4.7)

where aj = dvj

dt
is the acceleration of particle j . The first term on the right-hand

side is identically zero so we have

dL
dt

=
N∑

j=1

rj × (mj aj ). (4.8)

It is tempting to do as we did for the single particle and use Newton’s Second Law
to introduce the force on the j th particle, Fj = mj aj . Doing this yields

dL
dt

=
N∑

j=1

τ j = τ . (4.9)

However, such a substitution is valid only if we are working in an inertial frame of
reference and we would like to be more general than that. Suppose instead that the
origin of the co-ordinate system (i.e. the point about which we compute the angular
momentum and torque) is accelerating relative to some inertial frame, which we
generically refer to as the lab frame. Provided that this accelerating co-ordinate
system is not rotating1 we can write

a′
j = A + aj , (4.10)

where A is the acceleration of the origin (of the accelerating co-ordinate system)
and a′

j is the acceleration of the j th particle, both determined in the lab frame.
Substitution for aj in Eq. (4.8) gives

dL
dt

=
N∑

j=1

mj rj (a′
j − A) (4.11)

1 Do not agonize over this caveat at this stage. We shall discuss rotating frames of reference in some
detail later on.
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and then

dL
dt

=
N∑

j=1

rj × mj a′
j −


 N∑

j=1

mj rj


 × A. (4.12)

Now we can go ahead and use Newton’s Second Law to simplify the first term:
it is the torque calculated about the accelerating origin in the lab. The second
term is generally not zero but notice that

∑N
j=1 mj rj is the position vector of the

centre-of-mass. Therefore, we can eliminate it if we choose the origin to coincide
with the centre of mass of the system of particles. In which case we have

dLc

dt
=

N∑
j=1

τ cj = τ c (4.13)

and the subscript c reminds us that we are to compute the angular momentum and
torque about the centre of mass.

Despite the apparently wide range of applicability of Eq. (4.13) and Eq. (4.9),
these equations involve sums over the mutual interactions between constituent
particles in a system to determine the net torque τ and these sums rapidly become
impossible to handle with increasing numbers of particles. To go further with
systems composed of many particles we need to make the distinction between
internal and external forces:

Fj = F(e)
j +

N∑
k=1

Fjk, (4.14)

where again Fjk is the force exerted on particle j due to particle k and F(e)
j is the

net force on particle j coming from some source outside of the system. Therefore
we now have

dL
dt

=
N∑

j=1

τ =
N∑

j=1

rj ×
(

F(e)
j +

N∑
k=1

Fjk

)
, (4.15)

which, upon expanding the bracket, gives

dL
dt

=
N∑

j=1

rj × F(e)
j +

N∑
j=1

N∑
k=1

(
rj × Fjk

)
. (4.16)

τ (e) = ∑N
j=1 rj × F(e)

j is the net external torque on the system and∑N
j=1

∑N
k=1

(
rj × Fjk

)
is the sum of all internal torques, i.e. torques exerted by

particles within the system on other particles within the system. In our analogous
discussion of the linear motion of extended bodies in Section 2.2.1, Newton’s
Third Law came to our rescue and told us that the sum of the internal forces is
the null vector. We cannot use the same argument to show that the sum of the
internal torques vanishes. To illustrate the issue, consider the situation depicted in
Figure 4.2. Two particles have position vectors r1 and r2 and are exerting forces
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O

F21

r1

r2

F12

Figure 4.2 A mutual interaction between two particles that gives rise to a net torque.

F12 and F21 on each other. Although these forces are equal in magnitude and have
opposite directions (consistent with Newton’s Third Law) that is not sufficient to
argue that the net torque is also zero. Thus, we cannot rely on Newton’s laws
to make a statement about the sum of internal torques. Nevertheless, it is an
experimental fact that these torques sum to zero and it is at this stage that new
physics enters our development. We therefore demand that

N∑
j=1

N∑
k=1

(
rj × Fjk

) = 0, (4.17)

which then gives for the rate of change of angular momentum:

dL
dt

=
N∑

j=1

rj × F(e)
j = τ , (4.18)

where the total torque τ is equal to the total torque due only to external forces
acting on the body. The physics of Eq. (4.17) is not hard to understand. If it did
not hold then the angular momentum of a body could change even if no external
torques act upon it and that would lead to the bizarre result that isolated bodies
could spontaneously start to rotate. We have thus arrived at a statement of the
principle of conservation of angular momentum:

In the absence of external torques, the total angular momentum of a system is a
conserved quantity.

4.3 ANGULAR MOMENTUM AND ROTATION ABOUT A FIXED AXIS

We have so far succeeded in finding an equation of motion that relates the
angular momentum to the net external torque. Our task in this section is to make
more explicit the link between the angular momentum and the spin of the rotating
body. To help simplify matters we will assert that the system of particles constitutes
a rigid body. By this we mean that the relative positions of the particles that make
up the body are fixed. Furthermore, we will make the restriction that the body is
rotating about an axis that has a fixed direction in space. Examples of rotation of
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a body about a fixed axis are plentiful: a CD on a CD player rotates about a fixed
axis through the centre of the CD; a yo-yo as it falls rotates about an axis whose
direction is fixed, even though the yo-yo is accelerating downwards; the rear wheel
of a bike shows fixed-axis rotation as long as the bike is travelling in a straight
line (when the cyclist takes a bend the direction of the rotation axis is no longer
fixed but changes as the direction of the bike’s motion changes). We shall widen
our brief to include rotations about non-fixed axes in Chapter 10.

rj

x

y

mj

z

w

dj

Figure 4.3 Fixed-axis rotation.

We therefore focus our attention upon the rotation of a rigid body about an axis
that we define to be the z-axis. Figure 4.3 illustrates the geometry. Particle j has
position vector rj , mass mj and is rotating about the z-axis with angular speed
ω. Since the body is rigid we can be sure that the value of ω is the same for all
particles. Furthermore, each particle executes a circular orbit of radius dj and we
can use Eq. (1.24) to write

vj = ωdj , (4.19)

where vj is the speed of the j th particle. This particle has angular momentum

Lj = rj × mj vj = mj rj × vj ,

where Lj is a vector perpendicular to the plane containing rj and vj . At this stage
we are only dealing with rotation about a fixed axis (the z-axis), in that case it is not
usually necessary to compute the x and y components of Lj . Thus we will consider
only the projection of Lj on k, the Cartesian basis vector in the z-direction, i.e.

Ljz = k · Lj = mj (k × rj ) · vj = mjdjvj . (4.20)

We have used the identity (for any vectors a, b and c):

(a × b) · c = a · (b × c) (4.21)
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as well as the result

k × rj = dj v̂j , (4.22)

where v̂j is a unit vector in the direction of vj . You should take a moment to make
sure that you can obtain Eq. (4.22) using the geometry shown in Figure 4.3.

The total angular momentum along the z−axis is obtained upon summing the
contributions from each particle:

Lz =
N∑

j=1

mjdjvj =

 N∑

j=1

mjd
2
j


 ω (4.23)

and we have made use of Eq. (4.19). The term in brackets is a property of the
rigid body and the axis of rotation. It is known as the moment of inertia about the
rotation axis, and is given the symbol I .

Via Eq. (4.23) we have succeeded in achieving our goal of relating the angular
momentum to the spin. Fixing the rotation axis means that we can focus our
attention on the z-component of L but we ought not to forget that L is really a
vector quantity. Likewise, the angular speed that appears on the right-hand side of
Eq. (4.23) should be viewed as the z-component of the angular velocity. As far as
this chapter is concerned we shall not really need to appreciate the vector nature of
the angular velocity but it will turn out to play an important role later in the book,
especially in Chapters 8 and 10. Now is a good time for us to take the trouble to
define the angular velocity ω. Of course it must be defined so that its z-component
is equal to the angular speed in the case of fixed-axis rotation, for that is what
appears in Eq. (4.23). We choose to define ω such that at any instant it points in
the same direction as the axis of rotation of the body and with a magnitude equal to
the angular speed at that instant. This definition allows for the possibility that the
body wobbles around or its angular speed changes: the direction and modulus of ω

changes accordingly. Notice that since we require ωz = ω for rotations about the
z-axis, in the sense illustrated in Figure 4.3, then we have defined that the direction
of ω should be parallel to the instantaneous axis of rotation as indicated by the right
hand rule, i.e. curl the fingers of your right hand as if following the circular path
of one of the particles in the body, then your thumb points in the direction of ω.

Returning to the case of rotations about the z-axis, we will save ink and write
L = Lz, i.e. we shall write Eq. (4.23) as

L = Iω. (4.24)

Of course, the complicated bit is hidden in the symbol for the moment of inertia:

I =
N∑

j=1

mjd
2
j (4.25)

and we turn our efforts next to showing how to compute it.
As was the case with the calculation of the centre of mass of a macroscopic

object it is impossible to calculate this sum over all particles. We must instead
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resort to the approximation that the matter in the body is continuous and specify
a function, ρ(r), to tell us how that matter is distributed in space. We now need
to write down the version of Eq. (4.25) appropriate for a continuous body. To that
end, we imagining breaking the body up into an infinity of tiny volume elements.
The mass of the element at r = (x, y, z) is

dm = ρ(r) dV = ρ(x, y, z) dx dy dz, (4.26)

where dV = dx dy dz is the volume of the element. The sum in Eq. (4.25) now
becomes a triple integral:

I =
∫ ∫ ∫

(x2 + y2)ρ(x, y, z) dx dy dz (4.27)

and we have used Pythagoras’ Theorem to write the square of the distance from
the rotation axis (the z-axis) as d2 = x2 + y2. Performing the integral is generally
not so easy and we underline the importance of looking for symmetries to make
the calculation easier.

Example 4.3.1 Calculate the moment of inertia of a uniform, thin, straight beam
of length l and mass M , for rotations about an axis that passes through one end of
the beam and runs perpendicular to it. Calculate also the moment of inertia when
the axis runs through the centre of the beam and is perpendicular to it.

Solution 4.3.1 This is a one-dimensional problem with a uniform mass distribution
and we can write the element of mass

dm = M

l
dx

with x as shown in Figure 4.4(a). The moment of inertia is

I =
∫ l

0
x2 M

l
dx.

Doing the integral gives

I = l3

3

M

l
= 1

3
Ml2 (4.28)

(a) (b)

dx

x

l R

r

dr

Figure 4.4 Calculating the moments of inertia of: (a) a beam and (b) a solid disc.
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for rotations about an axis at one end. In the case that the axis passes through the
centre, we need only change the limits of the integral:

I =
∫ +l/2

−l/2
x2 M

l
dx = 1

12
Ml2.

Example 4.3.2 Compare the moments of inertia of a uniform thin circular ring of
mass M and radius R with a thin uniform disc of the same mass and radius. In both
cases the rotation axis is the axis of rotational symmetry, i.e. perpendicular to the
plane of the ring and disc.

Solution 4.3.2 For the ring all the mass lies at the same distance R from the rota-
tion axis and so we can write down the result straightaway as I = MR2. For the
disc, the smart way to proceed is to realise that a disc can be built out of a series
of rings. The mass of a ring of thickness dr and radius r is

dm = M

πR2
2πr dr = 2M

R2
r dr.

Note that this is just the mass per unit area M

πR2 multiplied by the area of the ring,
see Figure 4.4(b). The moment of inertia is then

I =
∫

r2 dm = 2M

R2

∫ R

0
r3 dr = 1

2
MR2.

The moment of inertia of the disc is smaller than that of the ring with the same mass
even though the spatial extent of the two objects is the same. This is to be expected,
since the d2 term in Eq. (4.27) means that matter far from the axis of rotation has a
greater contribution to the moment of inertia than matter close to the rotation axis.

Notice that in each of our calculations above the moment of inertia was of the
form

I = Mk2, (4.29)

where M is the mass of the body and k is a length of the order of the spatial extent
of the body known as the radius of gyration. We can therefore specify the moment
of inertia by giving the mass and the radius of gyration (for a particular shape and
axis of rotation). Table 4.1 gives the radii of gyration for some simple objects. For
more complicated shapes the calculations become difficult, but a rough estimate
of the moment of inertia may be obtained by setting k equal to the approximate
size of the object (and that can be done without too much ambiguity provided the
object is not too elongated).

Example 4.3.3 An atomic nucleus with 150 nucleons and a size of around 6.4 fm
may be produced in a ‘high-spin’ state following a nuclear fusion reaction. In such
a state the nucleus rotates at ω ∼ 1021 s−1. Estimate the angular momentum of the
nucleus about an axis through its centre assuming the nucleus to be a rigid body.



Angular Momentum and Rotation About a Fixed Axis 91

TABLE 4.1 Radii of gyration for some simple uniform objects. In all cases the rotation
axis is through the centre of mass. For the bar the axis is perpendicular to the bar. For the
disc and the ring the axis is perpendicular to the plane in which the mass lies as shown in

(c) and (d) of Figure 4.5.

Shape k

Cylindrical shell (or thin ring) of radius R R

Bar of length l
l

2
√

3

Disc of radius R
R√

2

Solid sphere of radius R R

√
2

5

Spherical shell of radius R R

√
2

3

(c) (d)

w

R

I = MR2 I = 1
2 MR2

R

w w

I = 1
12 Ml2

I = 1
3 Ml2

l

l

(b)(a)

w

Figure 4.5 Moments of inertia for some simple uniform objects for rotation about the axes
shown. (a) and (b) correspond to thin rods, (c) is a thin circular ring and (d) is a flat circular
disc.

Solution 4.3.3 The mass is given in terms of the nucleon mass and is

M = 150 × 1.66 × 10−27 kg = 2.49 × 10−25 kg.

We do not know the detailed shape of the nucleus so we will approximate it by a
sphere and use the radius of gyration quoted in Table 4.1, i.e.

I = 2

5
MR2 = 2

5
× 2.49 × 10−25 × 41.0 × 10−30 kg m2 ≈ 4 × 10−54 kg m2.
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The angular momentum is then

L = Iω ∼ 4 × 10−33 kg m2 s−1.

As you can see, SI units are not so convenient for the description of subatomic
objects. Physicists would normally express the angular momentum of a nucleus in
terms of the fundamental quantity

� = 1.054589 × 10−34 kg m2 s−1

in which case we can write the answer as

L ∼ 40�.

In the above example we have used classical mechanics to obtain an
order-of-magnitude estimate for a calculation that should really be carried out
using quantum mechanics. While not strictly correct, such “ballpark” estimates
are frequently used as a quick first approach by professional physicists to get an
idea of an order of magnitude or to point the way forward to a more elaborate
(and more correct) calculation.

We have shown in this section that the calculation of the angular momentum of a
rigid body rotating at a known angular speed about a fixed axis boils down to being
able to calculate the appropriate moment of inertia. In the last section we stated
that it is an experimental fact that the sum of the internal torques is always zero.
We can now bring these two results together to establish the equation of motion
for the rotation of a rigid body about a fixed axis:

τ = dL

dt
= d(Iω)

dt
= I

dω

dt
= Iα, (4.30)

where we have introduced the angular acceleration,

α = dω

dt
.

In Eq. (4.30), τ is the component of net external torque τ in the direction of
the rotation axis. Notice that this equation is very similar in structure to New-
ton’s Second Law with torque replacing force, angular momentum replacing linear
momentum and angular acceleration replacing linear acceleration. This similarity
to Newton’s Second Law is handy to remember when it comes to problem solving.

Finally, we are ready to go ahead and study the motion of a particular rigid
body. We shall consider the situation illustrated in Figure 4.6. The body is free
to rotate about a horizontal axis in the Earth’s gravitational field and the centre
of mass of the object is at the point C. The perpendicular distance from the axis
of rotation to C is R and P is the point on the axis of rotation that lies directly
above C when the body is in equilibrium. The angle θ (see Figure 4.6) therefore
specifies the extent of deviations from equilibrium. Our task is to understand the
general motion of the body as it rotates about the axis and that is achieved if we
can figure out how θ varies with time. To do that, we must solve Eq. (4.30) above,
remembering that ω = dθ/dt and α = d2θ/dt2. We need the torque about P that
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(b)(a)

R

C

W = mg

P

q

C

R

P

Figure 4.6 A pendulum consisting of a rigid body free to rotate about an axis.

acts on the body (more specifically we need the component of the torque along the
axis of rotation) and this is provided by the weight. Now, the weight of the body
acts as if it is concentrated at the centre of mass2 and so we are able to work out
the torque about P . Our particular choice of the point P guarantees that the torque
is parallel to the axis of rotation, i.e.

τ = − |R × W| = −mg R sin θ, (4.31)

where W = mg is the weight of the body. Note the minus sign: the way we defined
the angle θ means that ω points out of the plane of the page in Figure 4.6(b)
whereas τ points into the page (from the definition of the vector product). We can
now substitute τ into Eq. (4.30):

−mg R sin θ = Iα = I
d2θ

dt2
. (4.32)

As a double check that we got the sign right for the torque, you should note that
the torque clearly must act so as to try and pull the body back towards equilibrium,
i.e. the angular acceleration must be negative for positive θ . Note that the weight
is not the only force to act upon the body. There will also be a normal reaction
coming from the axis but that produces no torque about P .

We can keep things simple if we focus on the case where θ is small. Then
sin θ ≈ θ and

d2θ

dt2
≈ −mgR

I
θ. (4.33)

Notice that this is none other than the equation for simple harmonic motion that
we met in Section 3.2.2. The solution is θ = A cos(2πf t) provided

f = 1

2π

√
mgR

I
. (4.34)

2 Can you prove this? It is easiest to consider a collection of particles. Work out the total gravitational
torque about the origin and then show that this is the same torque that you would obtain if you had all
the mass concentrated at the centre of mass.
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This particular solution corresponds to fixing t = 0 when the angular displacement
is at a maximum.

As an aside, we note that a measurement of the frequency of small oscillations,
f , (the period is just 1/f ) provides a method to determine the moment of inertia of
a body about the axis of rotation. However, that strategy runs into problems if we
want to measure the moment of inertia about an axis through the centre of mass.
Then there is no torque and the body doesn’t behave like a pendulum. In the next
section we will show how to circumvent that particular problem when we prove
that the moment of inertia for rotations about one axis is sufficient to determine
the moment of inertia about any parallel axis.

4.3.1 The parallel-axis theorem

Consider a rigid body, as illustrated in Figure 4.7. Two rotation axes are shown.
Axis C is chosen so that it goes through the centre of mass, axis O is parallel to
axis C. We imagine the body as being made up of slices perpendicular to the two
axes. In any of these slices the position of C relative to O is given by the position
vector a. We first consider an element of mass dm in one of the slices. We can
write

r = rC + a (4.35)

since the moment of inertia is constructed from r2 we take the scalar product of
this equation with itself to obtain

r2 = r · r = r2
C + 2rC · a + a2. (4.36)

The element dm thus makes a contribution to the moment of inertia for rotations
about O of

dI = r2 dm = (r2
C + 2rC · a + a2) dm. (4.37)

O
C

rC
dm

r

a

Figure 4.7 Geometry for the proof of the parallel-axis theorem.
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To get the moment of inertia of the entire body for rotations about axis O we need to
integrate over the whole slice and then over all the slices that make up the body, i.e.

I =
∫ (

r2
C + 2rC · a + a2) dm,

=
∫

r2
C dm + 2a ·

(∫
rC dm

)
+

∫
a2 dm. (4.38)

The term
∫

rC dm vanishes due to the definition of the centre of mass. We
therefore have

I =
∫

r2
C dm + a2

∫
dm,

i.e. I = IC + Ma2, (4.39)

where IC is the moment of inertia about axis C and M is the mass of the body. We
can see from Eq. (4.39) that I ≥ IC that is, the moment of inertia is a minimum
when the rotation axis goes through the centre of mass. Note that Eq. (4.39) says
nothing about axes that are not parallel to C.

Example 4.3.4 Determine the moment of inertia of a thin uniform circular disc
of radius R and mass M about an axis that just touches the edge and which is
perpendicular to the plane of the disc (axis O in Figure 4.8).

Solution 4.3.4 Since we know that the moment of inertia about axis C is 1
2 MR2 we

can use the parallel-axis theorem to find the moment of inertia about axis O:

IO = IC + MR2 = 3

2
MR2.

O C

R

Figure 4.8 Moment of inertia about the edge of a circular disc of radius R.

4.4 SLIDING AND ROLLING

The beauty of Eq. (4.13) is that it works even when the centre of mass of a system
of particles is accelerating, provided that we calculate the angular momentum and
torque about the centre of mass. We have also shown that the angular momentum
associated with fixed-axis rotation of a rigid body is determined by the angular
speed ω and the relevant moment of inertia (Eq. (4.6)). We can combine these two



96 Angular Momentum

results to give us

τC = dLC

dt
= IC

dω

dt
= IC α. (4.40)

We therefore have a framework for describing the combined rotational and trans-
lational motion of a rigid body, which works even if the body is accelerating. The
motion of the centre of mass is obtained by solving Newton’s Second Law (see
Section 2.2.1) and the rotation about the centre of mass may be handled using
Eq. (4.40), provided the rotation axis has a fixed direction. The following example
nicely illustrates how these two equations of motion are used together.

Example 4.4.1 A bowling ball is launched across a horizontal floor with speed V0

and no initial rotation about its centre of mass. At first it skids, then it begins to roll.
What is the speed of the ball when it starts to roll?

Solution 4.4.1 Figure 4.9 shows the forces and velocities. Initially the ball has
centre-of-mass velocity VC = V0 and angular speed ω = 0 about a horizontal axis
through the centre of mass (directed into the page in the figure). Kinetic friction at
the point of contact between the ball and the floor will cause ω to increase while at
the same time reducing VC . The normal force N determines the friction according to

F = µkN = µkMg,

where µk is the coefficient of kinetic friction and M is the mass of the ball. To find
the effect of this force on VC we use Newton’s Second Law:

−µkMg = M
dVC

dt
.

Integration with respect to time gives

VC = V0 − µkgt, (4.41)

where we have used the initial condition VC = V0 at t = 0. Now we turn our
attention to the rotation, remembering that since the ball accelerates horizonally
(i.e. it slows down) we must compute the angular momentum and torque about the
centre of the ball. We now use Eq. (4.40) to determine the effect of the torque on the

F N

VC

⊗ w

Figure 4.9 The dynamics of a bowling ball.
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angular velocity. The torque is a result of the friction acting at the point of contact
between the ball and the horizontal surface and has magnitude FR = µkMgR,
which causes an increase in ω. Hence

τC = µkMgR = IC

dω

dt
.

Integrating and using the condition ω = 0 at t = 0 we obtain

ω = µkMgRt

IC

. (4.42)

When does this skidding phase end? At some time tr the ball will start to roll. At
this time the friction drops to almost zero since the surfaces of the ball and the floor
no longer slide past each other. For rolling to occur the instantaneous velocity of
the point of contact with the floor must be zero, i.e. the sum of the centre-of-mass
velocity and the velocity due to rotation about the centre of mass must be zero:

0 = VC − Rω,

which gives

VC = Rω. (4.43)

Eq. (4.43) is the rolling condition. We may use it to express ω in terms of VC in
Eq. (4.42) when t = tr . We obtain

µkMgR2tr

IC

= V0 − µkgtr ,

which when rearranged gives

tr = V0

µkg

(
1 + MR2

IC

) .

We can also use Eq. (4.41) to deduce Vr , the speed at which rolling begins:

Vr = V0

1 + IC

MR2

.

For t > tr there is much less friction and as a result a much reduced force acting
on the ball. The ball’s velocity will therefore be approximately constant and so Vr

is approximately the final speed of the ball.

4.5 ANGULAR IMPULSE AND THE CENTRE OF PERCUSSION

Have you ever wondered why a cricket bat, a baseball bat or a tennis racquet has
a sweet spot? This is the point on the bat where the ball seems to be hit most cleanly,
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without producing much vibration in the handle. In this section we look at sudden
collisions that cause changes to both the linear and angular momenta of a rigid
body, as happens when you strike a ball with a bat or when a door slams against a
doorstop. In the event of such a collision there can be large forces exerted, just like
in the example of the tennis player’s serve in Section 2.3.5. Usually, we do not know
the details of how the forces depend on time but we can nevertheless make progress
if we know the impulse imparted by the collision, i.e. the change in momentum �p.
Likewise, the collision will generally produce a time-dependent torque but since we
don’t know the time-dependence of the force we speak about the angular impulse:

�L = r × �p = r ×
∫ t2

t1

F(t) dt, (4.44)

where the collision exerts a force F(t) at a position r from time t1 to t2.
Let us try to compute the position of the sweet spot in the collision between a

bat and a ball. For simplicity we will ignore the effect of gravity by considering a
bat at rest on a frictionless horizontal surface as shown in Figure 4.10. The centre
of mass of the bat is at C, a distance h from the handle of the bat H . A ball strikes
the bat, imparting an impulse �p a distance b from the centre of mass as shown in
the figure. We are interested in the subsequent motion of the bat and in particular
the motion of the handle H immediately after the impulse has been delivered. The
sweet spot ought to correspond to the special value of b such that H does not
move in the split second after the impact. After the collision the bat constitutes
an isolated system, so in an inertial frame the momentum of the centre of mass
and angular momentum of rotation about the centre of mass are both constant. The
final linear momentum is just the impulse:

�p = MVc, (4.45)

where Vc is the velocity of the centre of mass and M is the total mass of the bat.
Likewise, the final angular momentum (about C) is the angular impulse:

|�L| = |r × �p| = b�p. (4.46)

C

∆ p

H

w

h b

VC

⋅

Figure 4.10 An impulse �p causes translation and rotation of a rigid body.
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We can use this expression to figure out the angular speed, ω, about a vertical
axis through C, i.e.

b�p = ICω, (4.47)

where IC is the moment of inertia of the bat about the vertical axis. Armed with
this information, we can now figure out what is happening at the handle, H . The
velocity of H , immediately after the impulse, is parallel to �p and a superposition
of the velocity of the centre of mass (Vc) with the velocity relative to the centre
of mass, and the latter is the result of a pure rotation about the centre of mass.
Thus we can write

�x =
(

�p

M
− ωh

)
�t, (4.48)

where �x is the displacement of the handle (in the direction of �p) that occurs in
a short time �t after the impact. The sweet spot is defined such that �x = 0, i.e.

�p

M
= ωh. (4.49)

Finally, substitute for ω using Eq. (4.47) to determine the position of the sweet spot:

�p

M
= bh

IC

�p (4.50)

and so

b = IC

hM
. (4.51)

4.6 KINETIC ENERGY OF ROTATION

When an extended body rotates, its constituent particles will each have some
kinetic energy. We can figure out the total energy of a rigid body by summing up
all of these contributions. Referring to Figure 4.3, particle j has a kinetic energy

1

2
mjv

2
j = 1

2
mjd

2
j ω2 (4.52)

and the total kinetic energy of a system of many particles rotating about a fixed
axis is therefore

Krot = ω2

2

∑
j

mjd
2
j = 1

2
Iω2. (4.53)

If the body is only rotating about the fixed axis (i.e. the centre of mass is at rest)
then this is the sole contribution to the kinetic energy. However, if we allow the
body to undergo translation3 as well as rotation then we must add together the

3 Pure rotational motion arises if each and every part of the body is undergoing circular motion about
some axis as determined in any inertial frame.
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rotational and translational kinetic energies. In Section 3.3.1 we showed (at least
for a system of two particles4) that the total kinetic energy is equal to

K = 1

2
MV2

C + 1

2
ICω2, (4.54)

where the kinetic energy of rotation is calculated about a fixed axis through the
centre of mass. Note that this expression only holds if the rotation axis passes
through the centre of mass. This is so since the second term, which represents the
kinetic energy of the body in the centre-of-mass frame, only reduces to ICω2/2 if
the centre-of-mass lies on a fixed axis of rotation.

Example 4.6.1 Determine an expression for the total kinetic energy of a solid
sphere of mass M and radius R that is rolling without slipping on a flat surface at
speed v.

Solution 4.6.1 The key to this problem is to recognise that the ‘rolling without
slipping’ aspect of the motion implies that ω and v are connected by v = Rω. This
means that the rotational and translational motions are no longer independent. Thus

K = 1

2
Mv2 + 1

2
IC

v2

R2
.

The moment of inertia of a uniform solid sphere about its centre is 2
5 MR2 so we

have

K = 1

2
Mv2 + 1

5
Mv2 = 7

10
Mv2.

PROBLEMS 4

4.1 A turntable that rotates at a rate of 33 1
3 revolutions per minute has a mass

of 1.00 kg and a radius of 0.13 m. Assuming the turntable to be a uniform
disc, calculate the torque required if the operating speed is to be achieved in
a time of 2 seconds after it is switched on. The turntable then spins freely
and a lump of plasticine (mass 20 g) is dropped and sticks to the turntable
10 cm from the centre. What is the new angular frequency?

4.2 A stuntman stands on the roof of a bus, which is travelling at speed v around
a circular bend of radius r . The stuntman’s feet are a distance 2a apart, he
has mass m, and his centre of mass is a height h above the roof of the bus.
Obtain expressions for the normal forces acting on each of his feet. Assume
that the roof of the bus remains horizontal and that his feet are equidistant
from the vertical axis through his centre of mass.

4.3 A thin circular ring of radius R and mass m lies in the horizontal plane on
a frictionless surface. It is free to rotate about a vertical axis fixed at some
point on the circumference. A bug (mass mb) walks from the axis around the
ring at a constant speed v relative to the ring. Obtain an expression for the
angular speed of the ring when the bug is directly opposite the axis.

4 You may like to confirm that the result generalizes to any number of particles.
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4.4 A uniform circular disc of mass m rolls without slipping such that the linear
velocity of the centre of mass is v. Show that the kinetic energy is given by
K = 3mv2/4.

4.5 A uniform thin beam of length l and mass m is pivoted at one end and
supported at the other. The beam is initially horizontal before the support is
removed and the beam rotates (under gravity) in a vertical plane on the pivot.

(a) Obtain an expression for the force acting on the beam due to the pivot
before the support is removed.

(b) Show that the instantaneous force acting at the pivot immediately after
the support is removed is F = mg/4.

(c) By considering the mechanical energy of the system show that the angular
speed of rotation about the pivot when the beam makes an angle θ to the
horizontal is given by

ω =
√

3g sin θ

l
.

4.6 A uniform cylindrical drum of radius b and mass m rolls without slipping
down a plane inclined at an angle θ to the horizontal. Find the acceleration
of the centre of mass of the drum.
Use the principle of conservation of energy to determine the speed of the
centre of mass after the drum has rolled a distance x down the slope. Show
that this result is consistent with the expression for the linear acceleration that
you just determined.

4.7 Show that the moment of inertia of a solid sphere of mass m and radius R is
2
5 mR2. A spin bowler is able to impart a frictional force of 10 N on the seam
of a cricket ball (mass 0.15 kg and radius 4.0 cm) for 0.1 seconds. Estimate
the rotational speed of the ball.

4.8 The height of the cushion on a snooker table is chosen to be 7
5R, where R is

the radius of the snooker ball. This unique choice of height enables the ball
to roll without slipping when it rebounds. Prove this result. You will need to
use the result that the moment of inertia of the snooker ball about an axis
through the centre of mass is 2

5 MR2, where M is the mass of the snooker
ball.
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5
The Need for a New
Theory of Space and Time

5.1 SPACE AND TIME REVISITED

Perhaps the most astonishing idea underpinning Einstein’s Special Theory of
Relativity is the rejection of the assumption that both space and time are absolute.
Since the whole of Part I of this book was built on such an assumption, it means
we will have to start all over again. Of course that is not to say that Newton’s
theory is useless, for whatever Einstein’s theory says, it had better be experimen-
tally indistinguishable from Newton’s theory for a very wide range of phenomena.
Before we attempt to figure out what Einstein’s theory actually says, we should
first be very clear on what exactly it means to say that space and time are absolute.

Intuitively, absolute space means that we can imagine a gigantic fixed frame of
reference against which the positions of events can unambiguously be determined.
Of course the actual co-ordinates of an event will depend upon where the origin
of the reference frame is1 but its position vector will nevertheless specify a unique
position in absolute space. Absolute time is also very intuitive. We can imagine the
Universe being filled with tiny clocks all synchronised with each other and ticking
at exactly the same rate. The time of an event can unambiguously be measured
by the time registered on a clock located close to the event (these are imaginary
clocks so we don’t worry too much about the fact it isn’t really practicable to put
clocks everywhere). Again, although the actual time of an event will depend upon
when we set the clocks to zero it still specifies a unique moment in time. The
consequences of absolute space and time are clear: there is no argument about how
long a body is (it is the distance between two points in absolute space), or whether

1 They’ll also depend upon the orientation of our axes and on our choice of co-ordinate system (e.g.
cartesian or spherical polar).
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 2009 John Wiley & Sons, Ltd
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or not two events occured simultaneously (which means they occured at the same
absolute time).

If absolute space really existed, as Newton imagined it did, then it follows that
there exists a set of very special frames of reference. Namely, all those frames which
are at rest in the absolute space. Inertial frames are then those frames which are
moving with some constant velocity relative to absolute space. It is interesting that
long before Einstein, absolute space was under attack. Since no experiments have
ever been performed that are able to identify a special inertial frame it follows that
we cannot figure out which inertial frames are at rest in absolute space. Therefore, as
far as physics is concerned we can dispense with the idea of absolute space in favour
of the democracy of inertial frames. Physicists now take the equality of inertial
frames so seriously that they have elevated it to the status of a fundamental prin-
ciple: the Principle of (Special) Relativity. By postulating this relativity principle,
absolute space is dismissed from physics and consigned to the realm of philosophy.
Newton’s theory itself obeys the relativity principle, and as such does not require
the notion of absolute space. However it does assume that time is absolute.

Let’s prepare the ground for later developments and gain some experience of
thinking about events in space and time. Consider two inertial frames of reference,
S and S ′ and suppose an event occurs at a time t and has Cartesian co-ordinates
(x, y, z) in S. The question is, what are the corresponding co-ordinates measured
in S ′? To answer this we need to be more explicit and say how the S and S ′
move relative to each other. We’ll take their relative motion to be as illustrated in
Figure 5.1, i.e. S ′ moves at a speed v relative to S and in a direction parallel to the
x-axis. Let’s also suppose that their origins O and O ′ coincide at time t = t ′ = 0.
Clearly the y and z co-ordinates of the event are the same in both frames:

y = y ′, (5.1a)

z = z′. (5.1b)

More interesting is the relationship between the co-ordinates x and x ′. Common
sense tells us that

x = x ′ + vt . (5.2)

Of course this is the correct answer but only provided we assume absolute time,
i.e. that t = t ′. The proof goes like this. Firstly, we need to recognise that the

O ′ O

y′

u

x

S S′

x′ 

y

z z′

Figure 5.1 The two frames of reference S and S ′ moving with relative speed v in the sense
shown.



Space and Time Revisited 107

relationship must be of the linear form

x = ax ′ + bt (5.3)

where a and b are to be determined. We’ll not dwell on this, but if the relationship
were not linear then it would violate the relativity principle. We also know that the
point x ′ = 0 travels along the x-axis with speed v, i.e. along the line x = vt . From
this it follows that b = v. The relativity principle can be used again to figure out
a since one can equally well think of S ′ as being at rest and S as moving along
the negative x-axis with speed v. This implies that

x ′ = ax − vt . (5.4)

Substituting for x ′ into Eq. (5.3) implies that a = 1 and we have proved the result.
Notice that we did not need to invoke the idea of absolute space to derive this
result: all that was needed was the relativity principle and the assumption that time
is absolute. The equations (5.1) and (5.2) tell us how to relate the co-ordinates
of an event in two different inertial frames and they are often referred to as the
Galilean transformations.

In what follows we shall often speak of ‘observers’. These are the real or fictitious
people who we suppose are interested in recording the co-ordinates of events using
a specified system of co-ordinates. For example, we might say that ‘if an observer
at rest in S measures an event to occur at the point (x, y, z) then an observer at rest
in S ′ will measure the same event to occur at (x ′, y ′, z′) where the co-ordinates in
the two frames are related to each other by the Galilean transformations.’

Example 5.1.1 A rigid rod of length 1m is at rest and lies along the x-axis in an
inertial frame S. Show that if space and time are universal, the rod is also 1m long
as determined by an observer at rest in an inertial frame S ′ which moves at a speed
v relative to S in the positive x direction.

Solution 5.1.1 It is tempting to think that this result is so self-evident that it needs
no proof but as we shall see, it is not true in Einstein’s theory so it is a good idea
for us to work through the proof here assuming that Eq. (5.2) holds. We shall also
go very slowly and spell out explicity exactly how the length is measured in each
inertial frame. For this question this level of analysis may be a little over the top
but it will prepare us well for later, trickier, problems.

We can refer to Figure 5.1 and imagine two observers, one at rest in S and the
other at rest in S ′. Suppose that the observer at rest in S measures the positions of
each end of the rigid rod. In doing so, she records the space and time co-ordinates
of two events. The first event is the measurement of one end of the rod and the
second event is the measurement of the other end of the rod. To specify an event
we need to specify four numbers: the three spatial co-ordinates and the time at
which the event took place. The first event has co-ordinates (x1, 0, 0) and occurs
at time t whilst the second event has co-ordinates (x2, 0, 0) and also occurs at time
t . Obviously these two events take place at the same time since that is what we
mean by making a measurement of length: we measure the positions of the ends of
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the rod at an instant in time. We are told that x2 − x1 = 1 m and asked to find the
corresponding length as measured by an observer at rest in S ′.

Our second observer makes their measurement of the length of the rod. Let’s
suppose they do it at a time t ′ (the two observers don’t have to measure the length
at the same time so t ′ does not have to equal t). Again there are two events, the
measurement of one end of the rod at (x ′

1, 0, 0) and the measurement of the other end
of the rod at (x ′

2, 0, 0). Now using the Galilean transformations it follows that x ′
1 =

x1 − vt ′ and x ′
2 = x2 − vt ′ from which it follows that x ′

2 − x ′
1 = x2 − x1 = 1m, i.e.

both observers agree on the length of the rod.

The relationships between measurements of events in different inertial frames
under the assumption of absolute time is called ‘Galilean relativity’. According to
Galiliean relativity, all observers will agree on things like the length of a rod or
whether or not two events are simultaneous. It is now time to question the validity
of this simple and intuitive relativity theory.

5.2 EXPERIMENTAL EVIDENCE

We are going to need some pretty compelling reason to give up the Galilean view
of space and time. In this section we’ll motivate the need for something different
and we start with the 1887 experiment of Michelson and Morley.

5.2.1 The Michelson-Morley experiment

Is it possible to chase after a beam of light? In classical physics the answer
seems to be a resounding ‘yes’. We can even imagine running at close to the speed
of light whilst shining a torch ahead of us. If we run fast enough then we might
expect to see the light travelling slowly out of the front of the torch and when we
reach light speed the torch is finally rendered useless. Thinking like this we are
imagining that the light travels in a medium, just as every other wave we know
of in Nature, and that its speed of propagation is fixed relative to the medium.
The uselessness of our torch as we reach the speed of light is in this way entirely
analogous to the phenomenon whereby a jet aircraft travelling at the speed of sound
cannot be heard until it has passed by. This is a natural way to think, i.e. light
needs a medium to support its vibrations, but it is wrong and the experiment that
proves2 it is the Michelson-Morley experiment.

If light is a wave travelling through some medium, which is historically referred
to as the ‘ether’, then it should travel at a fixed speed c relative to the ether. This
means that different observers in different inertial frames will all measure different
speeds for a beam of light. Similarly an observer can tell if they are moving
relative to the ether by sending out two (or more) beams of light in non-parallel
directions. Only if the two beams travel at the same speed is the observer entitled
to say they are at rest relative to the ether and from any difference in speeds the
observer will be able to determine their speed relative to the ether. As an aside,

2 Actually it does not strictly prove the absence of a medium. Rather it provides some very compelling
evidence.
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the idea of the ether clearly violates the relativity principle in the sense we have
introduced it, because it provides a way to classify inertial frames. We need not a
priori worry about this since the fact that Newton’s laws do not allow us to classify
inertial frames does not necessarily imply that the theory of light should likewise
oblige.

Michelson and Morley set out to measure the anticipated difference in the
speed of light in two mutually perpendicular directions. Their experiment is shown
schematically in Figure 5.2. A coherent beam of light is split into two at P using
a half-silvered mirror and the two subsequent beams each then travel a distance L

along paths 1 and 2 before reflecting off mirrors and returning to the beam split-
ter where they interfere along path 3 whence they are observed. We don’t need
to bother with the details of this apparatus (it is known in optics as a Michelson
interferometer). All we need to concern ourselves with is the time it takes for light
to travel along each path. To simplify the calculation let us assume that the whole
apparatus is moving to the right with a speed v through the ether, as shown in
Figure 5.2 (we could equally well assume any other orientation: our main conclu-
sion won’t change). From the point of view of the experimenter, it is as though
the ether is moving to the left relative to the apparatus at a speed v. Let’s consider
path 1 first. The light beam has to travel a distance 2L and to work out the time
this takes we need to know the speed of light travelling perpendicular to the ether.
The velocity addition diagram is shown in Figure 5.3. Relative to the apparatus,
the velocity of the light which travels upwards along path 1 is u = v + c where v
is the velocity of the ether relative to the experiment and c is the velocity of the
light relative to the ether (it might help to notice that the situation is analogous to
computing the velocity of an aircraft relative to the ground given the velocity of
the air and the velocity of the aircraft relative to the air)3. We know that |c| = c

and |v| = v and hence that |u| = √
c2 − v2. The reflected light travels at the same

1

2

3 mirror

source

observer

mirror

L

L

P

u

Figure 5.2 The Michelson-Morley experiment.

3 One can think of the tip of the beam of light advancing through the streaming ether as if it were a
particle.
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u

c
u

Figure 5.3 The addition of velocities relevant to path 1 of the Michelson-Morley
experiment.

speed and so the total time take for the round trip is

t1 = 2L

c
√

1 − v2/c2
. (5.5)

Path 2 is easier since the light is either parallel or antiparallel to the direction of
the ether. On the outward path the light is travelling into the ether at speed c − v

whilst on the return path it is swept along by the ether at speed c + v. The time
for each leg is thus different and the total time taken is

t2 = L

c − v
+ L

c + v
= 2L

c(1 − v2/c2)
. (5.6)

The time taken by the light which travels along path 1 is therefore slightly shorter
than for the light which travels along path 2.

The experiment of Michelson and Morley was designed to be sufficiently sensi-
tive to this time difference that it could detect a speed through the ether comparable
to the speed with which the Earth rotates around the Sun (which is about 30 km/s).
In this way they hoped to be sure of seeing an effect at some time during the
year since if at one instant the Earth just happened to be at rest relative to the
ether, it would be unlikely to be at rest some time later and six months later one
might reasonably expect it to be travelling at twice the orbital speed, i.e. 60 km/s.
Of course we know that the Sun is moving at vast speeds relative to the centre
of the galaxy and that the galaxy moves relative to other galaxies so one really
ought to expect that the speed of the Earth through the ether is at the very least
equal to its orbital speed around the Sun. However, Michelson and Morley did not
measure any time difference. There was no error in their experiment, they were
simply forced to conclude that the Earth does not move relative to an ether.

5.2.2 Stellar aberration

The simplest way out of this null observation might seem to be to suppose that
the ether is being dragged along by the Earth, i.e. it is as if the Earth has an
atmosphere of ether. However, since 1727 it was well known that this could not
be so. James Bradley’s observations of stellar aberration seemed to require that
observers on Earth should be moving through the ether at relative speeds which
differ over the course of a year by an amount equal to twice the Earth’s rotational
speed about the Sun. Let’s go into a little more detail.
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Figure 5.4 Stellar aberration.

Stellar aberration is the phenomenon whereby the positions of the stars move
in ellipses over the course of each year and it is illustrated in Figure 5.4. The
figure shows the motion of an observer on the Earth as they travel around the Sun.
To simplify things, we assume that the observer is looking at a star which lies
in the same plane as the Earth’s orbit around the Sun (called the ‘ecliptic’). The
heavy arrows show the apparent position of the star when the Earth is at various
points in its orbit. If you are having difficulties with this diagram then it might
help to consider why someone running through the rain might tilt their umbrella
ahead of them even though the rain is falling vertically from an overhead cloud.
However this picture needs to be used carefully, for the light from a distant star
is incident as plane waves on the Earth and if the wavefront normals (i.e. the
vectors perpendicular to the planes of constant amplitude) are perpendicular to the
ether wind then they will be unchanged by it. The situation is analogous to waves
breaking on a beach: the waves may arrive parallel to the beach even if there is a
strong current flowing. However it is not the wavefront normals which matter to
an astronomer on Earth. The telescope they are using to view the star removes a
portion of the incident wavefront. In order to focus that incident portion onto the
eye of the astronomer, the telescope must be tilted to allow for the fact that the light
incident into the telescope is swept by the ether wind. Using the rainfall analogy,
consider a person running through vertically falling rain holding a cylindrical piece
of tubing, then in order for rain entering at the top of the tube to exit at the bottom
of the tube, the tube must be tilted.

Returning to the task in hand, we presume that the Sun is moving through the
ether too, at a speed V , and we denote the speed of the Earth relative to the Sun u.
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c a + d

V + u

Figure 5.5 The velocity of starlight relative to the Earth at point A in its orbit around the
Sun (denoted by the big arrow).

Note that if V = 0 it would follow that α = 0. When the Earth is at the point A, if
we suppose an ether wind is blowing at a speed V + u (in the opposite direction
to the direction of motion of the Earth) then adding the velocities of the ether and
the velocity of the starlight relative to the ether we can obtain the velocity of the
starlight relative to the Earth4. The addition of velocities is illustrated in Figure 5.5.
From the figure, we can determine that

tan(α + δ) = V + u

c
� α + δ (5.7)

and we assume all angles are small (which sounds reasonable since c is presumably
much larger than V ). Similarly, at positions B and D the apparent position of the
star is given by

tan α = V

c
� α. (5.8)

From these two equations it follows that δ � u/c. So, the star moves backwards
and forwards in the night sky over the course of 1 year reaching its extreme
positions when the Earth is at points A and C in its orbit. The angular size of this
oscillation is just 2δ = 2u/c which is independent of the Sun’s velocity. If the star
were not in the ecliptic then it would appear to move in an ellipse. In any case,
direct observation of these stellar aberrations led Bradley to conclude that the ratio
of ‘the Velocity of Light to the Velocity of the Eye (which in this Case may be
supposed the same as the Velocity of the Earth’s annual Motion in its Orbit) as
10210 to One.’5 Substituting for the known velocity of light gives u � 30 km/s
which is precisely the speed one expects given that the Earth travels around the
Sun once every 365 days. In their time, Bradley’s measurements had an additional
significance: they provided a direct verification of Copernicus’ claim that the Earth
rotates around the Sun.

4 More correctly it is the velocity of the light captured by the observer’s telescope relative to the
telescope.
5 Letter to Edmond Halley published in Philosophical Transactions of the Royal Society of London,
Vol. 35 (1727).
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So where do we stand? The null (no ether) result of the Michelson-Morley
experiment6 and the apparent need of an ether to explain stellar aberration have
led us into an impasse. It is an impasse which Einstein was ultimately able to
overcome.

5.3 EINSTEIN’S POSTULATES

Einstein was particularly concerned with the breakdown of the principle of rel-
ativity implied by the presence of an ether. Just a few years earlier, Maxwell had
written down the equations which define the classical theory of electromagnetism.
The equations are beautiful and encode the idea that light is an electromagnetic
wave. However, the equations taken at face value seem to predict that light travels
at a speed c = 1/

√
ε0µ0 independently of the motion of either the source which

produced it or the observer who measures it7. This circumstance seems absurd:
for a wave travelling through a medium the speed is indeed independent of the
motion of the source but it certainly depends upon the motion of the observer. Of
course one can sidestep this problem by supposing that Maxwell’s equations are
only approximately correct and that the speed c which appears in them ought to be
replaced by the speed of light appropriate to the frame in which one wants to use
the equations. This attempt to hold on to the ether has unpleasant consequences,
for example Coulomb’s Law would now be slightly different in different inertial
frames. With the evidence mounting, Einstein took the dramatic step of assuming
that the ether does not exist and that Maxwell’s equations are correct. At a stroke
he could explain the null result of Michelson-Morley, restore the principle of rel-
ativity to its central role in physics and keep the equations of Maxwell without
modification8.

In 1905, Einstein therefore made the two postulates that define his new theory
of space and time, and which we can state as follows.

1st postulate: The laws of physics are the same in all inertial frames. This is a
strong statement of the principle of special relativity which we discussed above and
which was anticipated by Galileo. We talk about ‘special relativity’ to remind us
that it is concerned only with the equivalence of inertial frames, i.e. it says nothing
about accelerated frames of reference. By this Einstein insists that there should be
no experiment in physics which can allow any one inertial frame to be singled out
as special. It is this principle which implies that the ether does not exist.

2nd postulate: The speed of light in vacuum is the same in all inertial frames.
This statement saves the laws of electromagnetism since if the speed of light did
vary from frame to frame then Maxwell’s equations would violate the 1st postulate.
It also explains in a trivial manner the null result of Michelson-Morley. We stress

6 Using masers, in 1959 Cedarholm & Townes constrained the speed of the ether relative to the Earth
to <30 m/s.
7 ε0 is the permittivity, and µ0 the permeability, of the vacuum.
8 We shall also see that his theory is able to explain the effect of stellar aberration.
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that this statement holds independently of the motion of the source or the observer.
It constitutes a clean break with classical thinking and it is the source of all of the
weird and wonderful physics we shall soon be encountering. As we shall see, it
can ony be true if we reject the notion of absolute time.

To illustrate how weird the 2nd postulate is consider the situation illustrated in
Figure 5.6. A light source sits at rest in S whilst a second frame S ′ moves towards
the light source with a speed v. The 2nd postulate implies that:

• An observer in S measures the light to travel towards an observer in S ′ at
a speed c + v. (When we say “an observer in S” we shall always mean an
observer at rest in S.)

• An observer in S measures the light to travel at speed c.
• An observer in S ′ measures the light to travel at speed c.

The first two of these statements are reasonable but the third really does appear
to be outrageous. Nevertheless it is a necessary consequence of the 2nd postulate.

y ′light source

O x

y

z S S′

O ′

u

z′

x′

Figure 5.6 A light source sits at rest in S. A second frame S ′ moves towards the light
source with a speed v.

PROBLEMS 5

5.1 A moving walkway moves at a speed of 0.7 ms−1 relative to the ground and is
20.0 m long. If a passenger steps on at one end and walks at 1.3 ms−1 relative
to the walkway, how much time does she require to reach the opposite end
if she walks (a) in the same direction as the walkway is moving? (b) in the
opposite direction?

5.2 Convince yourself that the first of the three bulleted items listed at the end
of Section 5.3 is correct.



6
Relativistic Kinematics

6.1 TIME DILATION, LENGTH CONTRACTION AND SIMULTANEITY

In the next section we shall find the new equations which will replace the Galilean
transformation equations (5.1) and (5.2), but before that let us derive perhaps the
two most remarkable results in Einstein’s theory: the fact that time passes at dif-
ferent rates in different inertial frames and that it doesn’t make sense to speak of
the length of a metre rule without also stating the frame in which it is at rest.

Historically people have regarded distance and time as fundamental units. For
example, as defined by a standard length of material and an accurate periodic
device. Speed is then a derived quantity determined by the ratio of distance travelled
and time taken. Nowadays, the scientific community has stopped thinking of the
metre as fundamental. Instead the metre is defined to be the distance travelled in
a vacuum by light in a time of exactly 1/2,9979,2458 seconds. This might look
like a rather arbitrary definition but that particular sequence of numbers in the
denominator means that the metre so defined corresponds to the length of the
old standard metre, which was a metal bar kept locked in a vault in Paris. The
advantage of defining the metre in terms of the speed of light and the unit of time
means that we no longer have to worry about the fact that the metal bar is forever
changing as it expands and contracts. By defining the metre this way we have
chosen a value for the speed of light in a vacuum, i.e. c = 2.99792458 × 108 m/s.
There is nothing particularly special about using the speed of light here, strictly
speaking one could define the metre to be the distance travelled by an average snail
in 15 minutes. Then the snail speed would be fundamental. However, given the
variability in snail speeds, this would not consitute a very reliable measure. Light
speed is much more preferable and it has the particular advantage that it is the only
speed which everyone agrees upon (by Einstein’s 2nd postulate); all other speeds
require the specification of an associated frame of reference.

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd
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Although this definition of distance suits most people, it isn’t really the best
definition for physicists who work with particles travelling close to light speed. As
a result, the metre is sometimes rejected in favour of a distance measure such that
1 unit of distance is equal to the distance travelled by light in 1 second. In these
units, which particle physicists prefer, c = 1.

6.1.1 Time Dilation and the Doppler Effect

Conversely, one could define time by specifying a speed and a distance.
For example, we could make a clock by bouncing light between two mirrors
spaced by a known distance, as illustrated in Figure 6.1. We can think of one
‘tick’ of this clock as corresponding to the time it takes the light to travel
between the two mirrors and back. The time interval between any two events can
then be determined by counting the number of ‘ticks’ of the light-clock which
have elapsed between the two events. Of course there is nothing special about
light here, for example we could define time by bouncing a ball between two
walls.

d light

Figure 6.1 A light-clock viewed in its rest frame.

This is a good place to discuss exactly how time measurements are to be made.
Consider an observer in some frame of reference S who is interested in making
some time measurements. Since Einstein’s theory is going to require that we drop
the notion of absolute time, we need to be more careful than usual in specifying
how the time of an event is determined. Ideally, the observer would like to have
a set of identical clocks all at rest in S with one clock at each point in space. For
convenience, the observer might choose that the clocks are all synchronised with
each other. The time of an event is then determined by the time registered on a
clock close to the event. Ideally the clock would be at the same place as the event
otherwise we should worry about just how the information travels from the event to
the clock. The observer can then determine the time of an event by travelling to the
clock co-incident with the event and reading the time at which the event occured
(we are imagining that the clock was stopped by the event and the time recorded).
Clearly this is not a very practicable way of measuring the time of an event but that
is not the point. We have succeeded in explaining in principle what we mean by
the time of an event. Most importantly, the time of the event clearly has nothing to
do with where the observer was when the event happened nor whether the observer
actually saw the event with their eyes. We may have laboured this point to excess

SairaMunir
Highlight
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but that is because there is room for much confusion if these ideas are not properly
appreciated.

Let us return to the light-clock of Figure 6.1. In its rest frame, the time it takes
for light to do the roundtrip between the mirrors (one ‘tick’) is clearly

�t0 = 2d

c
. (6.1)

Now let us imagine what happens if the clock is moving relative to the observer.
To be specific let us put the clock in S ′ and an observer in S where the two
frames are as usual defined by Figure 5.1. If the observer was in S ′ then the
time for one tick of the clock would be just �t0. Our task is to determine the
corresponding time when the observer is in S. According to this observer, the light
follows the path shown in Figure 6.2. We call �t the time it takes for the light to
complete one roundtrip as measured in S. Accordingly the clock moves a distance
x2 − x1 = v�t over the course of the roundtrip. Using Pythagoras’ Theorem, it
follows that the light travels a total distance 2(d2 + v2�t2/4)1/2. All of this is
as it would be in Galilean relativity. Now here comes the new idea. The light is
still travelling at speed c in S (in classical theory the speed would be (c2 + v2)1/2

by the simple addition of velocities). As a result, the time for the roundtrip in S

satisfies

�t = 2

c

(
d2 + v2�t2

4

)1/2

. (6.2)

y

d

S

x2x1 x

Figure 6.2 The path taken by the light in a moving light-clock.

Squaring both sides and re-arranging allows us to solve for �t :

�t = 2d

c
× 1√

1 − v2/c2
. (6.3)

The time measured in S is longer than the time measured in S′ and we are forced
to conclude that in Einstein’s theory moving clocks run slow. This effect is also
known as ‘time dilation’, and it is negligibly small if v/c � 1 but when v ∼ c

the effect is dramatic.
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The factor 1/
√

1 − v2/c2 appears so often in Special Relativity that it is given
its own symbol, i.e.

γ ≡ 1√
1 − v2/c2

(6.4)

and

�t = γ�t0. (6.5)

For v/c ≤ 1 it follows that γ > 1 and for v/c > 1 the theory doesn’t appear
to make much sense (unless we are prepared to entertain the idea of imaginary
time).

To conclude this section, let us quickly check that �t = �t0 in classical theory.
Replacing c in Eq. (6.2) by (c2 + v2)1/2 gives

�t = 2

(c2 + v2)1/2

(
d2 + v2�t2

4

)1/2

(6.6)

which has the solution �t = 2d/c as expected.
Eq. (6.5) is quite astonishing: it really does violate our intuition that time is

absolute. We emphasise that this effect has nothing to do with the fact that we
have considered light bouncing between two mirrors. We used light because it
allows us to make use of Einstein’s 2nd postulate. If we had used a bouncing ball
then we would have become stuck when we had to figure out the speed of the
ball in S because we are not entitled to assume that velocities add in the classical
manner. When we have a little more knowledge and know how velocities add we
will be able to return to the bouncing ball and we shall conclude that time is dilated
exactly as for the light-clock. Clearly this must be the case for we are talking about
the time interval between actual events.

The fact that time is actually different from our intuitive perception of it is no
problem for physics, no matter how odd it may seem to us. There is a lesson to be
learnt here. Namely, we should not expect our intuition based upon everday expe-
riences to necessarily hold true in unfamiliar circumstances. In relativity theory,
the unfamiliar circumstance is when objects are travelling close to the speed of
light. The lesson also applies when tackling quantum theory. In this case common
sense breaks down when we explore systems on very small length scales.

Example 6.1.1 Muons are elementary particles rather like electrons but 207 times
heavier. Unlike electrons, muons are unstable and they decay to an electron and a
pair of neutrinos with a characteristic lifetime. For a muon at rest, this lifetime is
2.2 µs.

Muons are created when cosmic rays impact upon the Earth’s atmosphere at an
altitude of 20 km and are observed to reach the Earth’s surface travelling at close
to the speed of light. (a) Use classical theory to estimate how far a typical muon
would travel before it decays (assume the muon is travelling at the speed of light).
(b) Now use time dilation to explain why the muons are able to travel the full 20 km
without decaying.
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Solution 6.1.1 (a) Muons travelling at speed c will (on average) travel, according
to classical thinking, a distance c�t0 before decaying where �t0 = 2.2 µs. Putting
the numbers in gives a distance of just 660 m.

(b) Let us suppose that the muon is travelling at a speed u towards the Earth. In
the muon’s rest frame its lifetime is a mere �t0 = 2.2 µs but from the point of view
of an observer on Earth this lifetime is dilated to �t = γ�t0. If γ is sufficiently
large it is therefore possible that the muon could travel the 20 km and reach the
Earth’s surface. We can determine how large u must be using

γ�t0 >
20 km

u
. (6.7)

Since γ = (1 − u2/c2)−1/2 we can solve this equation for u = 0.999c. Today, the
lifetime of the muon has been measured as a function of its speed and it is found to
be in excellent agreement with the prediction of time dilation.

Before leaving our discussion of time dilation we pause to consider the situation
illustrated in Figure 6.3. Figure 6.3(a) shows our two frames S and S ′ moving
relative to each other as shown. Time dilation says that, according to an observer
at rest in S, clocks in S ′ run slow, i.e. that �t = γ�t ′. This really does mean
that all clocks run slow and so according to S an observer in S ′ would age more
slowly. Now consider Figure 6.3(b). It represents exactly the same situation as
Figure 6.3(a) since one can either think of S ′ moving relative to S or vice versa.
Now an observer in S ′ will conclude that clocks in S run slow, i.e. that �t ′ = γ�t

and so from their perspective an observer at rest in S would age more slowly.
At first glance these two conclusions seem to contradict each other but they do
not since the observers are measuring intervals of time between different pairs
of events: the observer in S is using clocks at rest in S whereas the observer in
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Figure 6.3 Two observers each conclude that the other is ageing more slowly than them-
selves. This is not a contradiction.
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S ′ is using clocks at rest in S ′. Thus it is the case that each concludes that the
other is aging more slowly. Reflecting upon Einstein’s 1st postulate we can see
that this symmetrical situation must be correct for otherwise one could distinguish
between the two inertial frames. Of course if the two observers were to meet up
and compare notes then at least one of them must have undergone an acceleration.
This would break the symmetry between the two and leads to the fascinating
possibility that one of the observers would be genuinely older than the other upon
meeting (see Section 14.1.1).

We have been very careful to explain what we mean by measurements of time
and have stressed that they have nothing to do with seeing events with our eyes.
Nevertheless, people do see things and it is interesting to ask how our perception
of things changes in Special Relativity. Referring to Figure 5.1 we could imagine
an observer situated at the origin O who is watching a clock speed away from
them. We suppose that the clock is at rest at the origin O ′ in S ′. If one tick of the
clock takes a time �t ′ in S ′ what is the corresponding interval of time seen by
the observer in S? The key word here is ‘see’. Observations of events as we have
hitherto been discussing them have referred explicitly to a process which does not
depend upon the observer actually watching the event nor on where the observer
is located when the event takes place. In contrast, the act of seeing does depend
upon things like how far the observer is away from the things they are watching
and the quality of the eyesight of the person doing the seeing. That distance is
important when watching a moving clock becomes apparent once one appreciates
that the clock is becoming ever further away and as a result light takes longer and
longer to reach the observer. With this in mind, we can tackle the question in hand
and attempt to work out the time interval �tsee perceived by our observer at the
origin O. According to all observers in S, including our observer standing at the
origin, the time of one tick of the clock is given by the time dilation formula, i.e.
�t = γ�t ′. However this is not what we want. The time interval �tsee is longer
than �t by an amount equal to the time it takes for light to travel the extra distance
the clock has moved over the course of the tick, i.e. light from the end of the
clock’s tick has to travel further before it reaches the observer by an amount equal
to v�t . Therefore the perceived time interval between the start and the end of the
tick is

�tsee = γ�t ′ + γ�t ′
v

c
= γ�t ′

(
1 + v

c

)
= �t ′

(
1 + v/c

1 − v/c

)1/2

. (6.8)

It is very important to be clear that this extra slowing down of the clock
is an ‘optical illusion’, in contrast to the time dilation effect which is a real
slowing down of time. To emphasise this point, if light travels at a finite speed
then moving clocks will appear to run slow even in classical theory such that
�tsee = �t ′(1 + v/c).

Eq. (6.8) leads us on nicely to the Doppler effect for light. Let us consider
the situation illustrated in Figure 6.4. A light source is at rest in S ′ and is being
watched by someone at rest in S. The time interval �t ′ could just as well be the
time between the emission of successive peaks in a light wave, i.e. the frequency
of the wave is f ′ = 1/�t ′. The person watching the light source will instead see
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Figure 6.4 A light source of frequency f ′ at rest in S ′.

a frequency f = 1/�t . The two frequencies are related using Eq. (6.8):

f = f ′
(

1 − v/c

1 + v/c

)1/2

. (6.9)

This is the result in the case that the light source is moving away from the observer,
in which case Eq. (6.9) tells us that f < f ′ and so the light appears shifted to shorter
frequencies, i.e. it is ‘red-shifted’. If the source is moving towards the observer we
should reverse the sign of v in Eq. (6.9) and therefore conclude at f > f ′, i.e. the
light is now ‘blue-shifted’.

Example 6.1.2 How fast must the driver of a car be travelling towards a red traffic
light (λ = 675 nm) in order for the light to appear amber (λ = 575 nm)?

Solution 6.1.2 In the rest frame of the car, the traffic light is moving towards them
at a speed u. Our task is to determine u given the change in wavelength. We can
convert wavelengths to frequencies using c = f λ and then use Eq. (6.9) to solve
for u. Because the source is moving towards the car we should use Eq. (6.9) with
v = −u and so

c

575 × 10−9m
= c

675 × 10−9m

(
1 + u/c

1 − u/c

)1/2

,

⇒
(

675

575

)2

= 1 + β

1 − β
.

The solution to which is β = u/c = 0.159. It is often sensible to express speeds in
terms of the ratio u/c, although in this case expressing the result as a speed of just
over 13 km/s makes it clear that this effect is never going to impress a court of law.

6.1.2 Length contraction

We now shift our attention to the measurement of distances in different iner-
tial frames and to the phenomenon known as length contraction. Light bouncing
between mirrors can also be used to determine distances by accurately measuring
the time it takes for light to travel between the mirrors. Let us imagine a ruler of
length L0 when measured in its rest frame. Now we ask what is the length L of the
ruler when it is moving? Figure 6.5 shows a ruler moving with a speed v relative to
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Figure 6.5 Measuring the length of a moving ruler.

S. To measure the length of the ruler we shall mount a light-clock of equal length
next to it, as shown. The light-clock moves with the ruler. The light starts out from
one end of the ruler and reflects from a mirror located at the opposite end of the
ruler. Our strategy will be to determine the time taken for the roundtrip directly in S

and equate this to the time dilation result. As a result of time dilation, the roundtrip
time in S is related to the roundtrip time in the rest frame of the ruler �t0 by

�t = γ�t0 = γ
2L0

c
. (6.10)

We shall now endeavour to determine this time interval by considering the journey
of the light from the viewpoint of S. According to an observer in S, the total time is

�t = �tout + �tin, (6.11)

where �tout is the time taken for the light to travel on its outward journey, i.e.
from A to B, and �tin is the time taken on the return journey. The figure shows
explicitly the two positions of the ruler when the light starts its journey (dashed
line) and when the light reaches the opposite end of the ruler (solid line). In
order not to clutter the picture we have not shown the third position of the ruler,
i.e. when the light finally returns back to its starting point. Since Einstein’s 2nd
postulate tells us the speed of light according to S, we can write

c�tout = L + v�tout

⇒ �tout = L

c − v
. (6.12)

Each side of the first of these equations is equal to the total distance travelled by
the light on its outward journey (according to S) and it takes into account the fact
that the light has to travel a little further than the length of the ruler L as a result
of the ruler’s motion. Similarly for the return leg, the light has to travel a shorter
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distance than L, i.e.

c�tin = L − v�tin

⇒ �tin = L

c + v
. (6.13)

Adding together Eqs. (6.12) and (6.13) and equating the result to Eq. (6.10) gives
an equation relating L and L0, i.e.

L

c + v
+ L

c − v
= γ

2L0

c
. (6.14)

Solving for L gives

L = L0

γ
. (6.15)

Again a remarkable result; for the length of the ruler is smaller when it is in
motion than when it is at rest.

We could have anticipated the length contraction result knowing only the time
dilation result. The argument goes as follows. Let us consider again the muons
created in the upper atmosphere which we discussed in Example 6.1.1. From the
viewpoint of a muon, it still lives for 2.2 µs yet has travelled all the way to the
Earth’s surface. However this is not such an impossible task as it would be in
classical theory for the 20 km is reduced by a factor of γ . It has to be exactly the
same factor of γ as before because we know that muons created at an altitude of
20 km on average just reach the Earth before decaying if they have a speed of 0.999c

and from the viewpoint of such a muon the Earth moves towards it at that speed.

Example 6.1.3 A spaceship flies past the Earth at a speed of 0.990c. A crew member
on the ship measures its length to be 400 m. How long is the ship as measured by
an observer on Earth?

Solution 6.1.3 This is a straightforward application of the length contraction result
expressed in Eq. (6.15) with L0 = 400 m. Hence

γ = 1√
1 − 0.9902

= 7.09 (6.16)

and so L = 400/7.09 = 56.4 m. Perhaps the most common misuse of the length
contraction formula is to confuse L and L0.

6.1.3 Simultaneity

Classical physics, with its absolute time, has an unambiguous notion of what it
means to say two events are simultaneous. However, since time is more subjective
in Special Relativity, having meaning only within the context of a specified inertial
frame, it may not be suprising to hear that two events that are simultaneous in
one inertial frame will not in general be simultaneous in another inertial frame.
Moreover, according to one observer event A may precede event B but according to
a second observer event B might occur first. This last statement sounds particularly
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dangerous for it suggests problems with causality. Surely everyone must agree that
a person must be born before they die? And indeed they must. It is a remarkable
feature of Special Relativity that although the time ordering of events can be a
matter for debate this is only the case for causally disconnected events, i.e. events
which cannot influence each other. We shall return to this interesting discussion in
Part IV. For now we content ourselves with a thought experiment which illustrates
the breakdown of simultaneity.

Consider a train travelling along at a speed u relative to the platform. An observer
is standing in the middle of the train. Suppose that a flashlight is attached to each
end of the train and that the flashlights flash on for a brief instant. If the observer
receives the light from each flashlight at the same time then she will conclude
that the flashes occurred simultaneously, for the light from each flashlight had to
travel the same distance (half the length of the train) at the same speed. Now
consider a second observer standing on the platform watching proceedings. They
must observe that our first observer does indeed receive the light from either end
of the train at a particular instant in time. However, from their viewpoint the light
from the front of the train has less distance to travel than the light from the rear of
the train since the observer on the train is moving towards the point of emission at
the front of the train and away from the point of emission at the rear of the train.
None of what has been said so far is controversial; it holds in classical theory too.
Here comes the difference. As a result of the 2nd postulate, the observer on the
platform still sees each pulse of light travel at the same speed c. Now since both
pulses arrive at the centre of the train at the same time, and the pulse from the front
had less distance to travel, it follows that it must have been emitted later than the
light from the rear of the train. Classical physics avoids this conclusion because
although the light from the front has less distance to travel it is travelling more
slowly (its speed is c − u) than the light from the rear (its speed is c + u) and the
reduction in speed compensates the reduction in distance. You might like to check
that this compensation is exact and that both observers agree that the pulses were
emitted at the same time according to classical physics.

6.2 LORENTZ TRANSFORMATIONS

In Section 5.1 we derived the Galilean transformation equations which relate
the co-ordinates of an event in one inertial frame to the co-ordinates in a second
inertial frame. For their derivation we relied upon the idea of absolute time and,
as the last section showed, this is a flawed concept in Special Relativity. We must
therefore seek new equations to replace the Galilean transformations. These new
equations are the so-called Lorentz transformations.

To derive the Lorentz transformations we shall follow the methods of Section 5.1.
We shall define our two inertial frames S and S′ exactly as before, and as illustrated
in Figure 5.1, i.e. S ′ is moving along the positive x axis at a speed v relative to S.
Since the motion is parallel to the x and x ′ axes it follows that

y ′ = y (6.17)

z′ = z (6.18)
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as before. Recall that we want to express the co-ordinates in S ′ in terms of those
measured in S. Again in order for the 1st postulate to remain valid the transforma-
tions must be of the form

x ′ = ax + bt, (6.19a)

t ′ = dx + et. (6.19b)

Notice that we have not assumed that there exists a unique time variable, i.e. we
allow for t ′ �= t . Our goal is to solve for the coefficients a, b, d and e. As with the
derivation of the Galilean transforms we require that the origin O ′ (i.e. the point
x ′ = 0) move along the x-axis according to x = vt . Substituting this information
into Eq. (6.19a) yields

−b/a = v. (6.20)

Similarly we require that the origin O move along the line x ′ = −vt ′. From
Eqs. (6.19) the point x = 0 satisfies x ′ = bt and t ′ = et such that x ′ = −vt ′ implies
that

−b/e = v. (6.21)

Eqs. (6.20) and (6.21) imply that e = a and b = −av. Substituting these into
Eqs. (6.19) gives

x ′ = ax − avt,

t ′ = dx + at. (6.22)

We have two unknowns, a and d, remaining and have two postulates to implement.
Let us first implement the 2nd postulate. We shall do this by considering a pulse
of light emitted at the origins O and O ′ when they are coincident, i.e. when
t = t ′ = 0. We know that this pulse must travel outwards along the x and x ′ axes
such that it satisfies x = ct and x ′ = ct ′, i.e. it travels out at the same speed c in
both frames. These two equations must be simultaneous solutions to Eqs. (6.22)
and so we require that

ct ′ = act − avt,

t ′ = dct + at. (6.23)

From which it follows directly that

d = −av

c2
. (6.24)

It only remains to determine the value of a. Let us summarise progress so far. We
have reduced Eqs. (6.19a) and (6.19b) to

x ′ = a(x − vt), (6.25a)

t ′ = a
(
t − vx

c2

)
. (6.25b)
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Now it is time to make use of the 1st postulate which says that if Eqs. (6.25) are
true then so necessarily are

x = a(x ′ + vt ′), (6.26a)

t = a

(
t ′ + vx ′

c2

)
. (6.26b)

This makes manifest the equivalence of the two frames. It can be seen by consid-
ering Figure 5.1 and swapping the primed and unprimed co-ordinate labels around
whilst at the same time reversing the direction of v. We can determine the coefficient
a now by substituting for x ′ and t ′ using Eqs. (6.25) into either of Eqs. (6.26), i.e.

x = a

(
ax − avt + avt − av2x

c2

)
= a2x

(
1 − v2

c2

)

⇒ a = 1√
1 − v2/c2

= γ. (6.27)

We have succeeded in deriving the Lorentz transformations:

x ′ = γ (x − vt), (6.28a)

t ′ = γ (t − vx/c2), (6.28b)

y ′ = y, (6.28c)

z′ = z. (6.28d)

Sometimes the inverse transformations will be more useful:

x = γ (x ′ + vt ′), (6.29a)

t = γ (t ′ + vx ′/c2). (6.29b)

Eqs. (6.28) are perhaps the most important equations we have derived so far in this
part of the book.

Example 6.2.1 Use the Lorentz transformations to derive the formula for time
dilation.

Solution 6.2.1 Let us consider the situation illustrated in Figure 6.6. A clock is at
rest in S ′, let’s suppose it is at position x ′

0. Now consider one tick of the clock. In S ′,
we suppose that the tick starts at time t ′1 and ends at time t ′2 such that �t ′ = t ′2 − t ′1
is the duration in the clock’s rest frame. The question is: ‘what is the duration of
the same tick as determined by an observer in S?’

There are two events to consider. Event 1 (start of the tick) has co-ordinates
(x ′

0, t ′1) in S ′ and event 2 (end of tick) which has co-ordinates (x ′
0, t ′2) in S ′. We want

to know the time of each event in S. Given that we know both the location and time of
the events in S ′ we should use Eq. (6.29b) to give us the corresponding times in S:

t1 = γ (t ′1 + vx ′
0/c

2),

t2 = γ (t ′2 + vx ′
0/c

2).
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Figure 6.6 A moving clock.

Subtracting these two equations gives

�t = t2 − t1 = γ�t ′,

which is the required result. Notice that to derive this result it was crucial to be
clear that the clock is at rest in S ′.

Example 6.2.2 Use the Lorentz transformations to derive the formula for length
contraction.

Solution 6.2.2 We now consider the situation illustrated in Figure 6.7 where we
have placed a ruler in S ′ such that it lies along the x ′-axis with one end located
at x ′

1 and the other at x ′
2. The length of the ruler in its rest frame is therefore

�x ′ = x ′
2 − x ′

1. The question now is: ‘what is the length of the ruler as determined
by an observer in S?’

O

u
S′S

x

y

z z′

y′

x′1 x′2
x′O′

Figure 6.7 A moving ruler.

Again there are two events to consider. Event 1 (measurement of one end of the
ruler) and event 2 (measurement of the other end of the ruler). The crucial point
now is that both events occur at the same time in S because that is what is meant
by a measurement of length. Let’s call this time t0. Given that we know the location
of the two events in S ′ and the time of the events in S we should use Eq. (6.28a) to
give us the location of the events in S:

x ′
1 = γ (x1 − vt0),

x ′
2 = γ (x2 − vt0).
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Figure 6.8 A ball bouncing back and forth between two points.

Subtracting these two equations gives

�x ′ = x ′
2 − x ′

1 = γ�x

⇒ �x = 1

γ
�x ′,

which is the required result.

Example 6.2.3 A ball is rolled at speed u from the point x1 on the x-axis to the
point x2 = x1 + L at which point it is reflected back again elastically, as illustrated
in Figure 6.8. In a frame moving with speed v along the positive x-axis compute:

(a) The spatial separation between the point where the ball starts its journey and
the point where it is reflected;

(b) The time taken for the outward part of the ball’s journey;
(c) The time taken for the return part of the ball’s journey.

Solution 6.2.3 (a) Event 1 is when the ball starts on its journey and has co-
ordinates (x1, t1) in S. Event 2 is when the ball arrives at the point of reflection. It
has co-ordinates (x2, t1 + L/u). We are asked to find �x ′ = x ′

2 − x ′
1. Note that it is

not going to be given by the length contraction formula since the two events are not
simultaneous in either S or S ′. We know both �x = x2 − x1 = L and �t = L/u

and need �x ′. We therefore need to use Eq. (6.28a) which informs us that

�x ′ = γ (�x − v�t),

= γL(1 − v/u) (6.30)

and γ is of course evaluated using the relative speed of the two frames v.
(b) To get the time taken for the outward part of the journey we should use

Eq. (6.28b) (we hope that by now the reader is getting the hang of selecting the
correct equation to use), i.e.

�t ′out = γ (�t − v�x/c2),

= γL

u
(1 − uv/c2). (6.31)
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(c) And for the return leg we introduce a third event corresponding to when
the ball returns. In S it has co-ordinates (x1, t1 + 2L/u). As in part (b) we use
Eq. (6.28b). Notice that x3 − x2 = −�x this time whilst t3 − t2 = �t and so

�t ′in = γ (�t + v�x/c2),

= γL

u
(1 + uv/c2). (6.32)

Notice also that the total time for the journey is just as we would expect
from time dilation, i.e �t ′tot = γ (2L/u) as it should be since the point of
departure and point of return are one and the same place. This result confirms our
earlier claim that there was nothing special about a light-clock.

6.3 VELOCITY TRANSFORMATIONS

6.3.1 Addition of Velocities

We can use the Lorentz transformations to figure out how the rules for adding
velocities must change in Special Relativity. Consider an object moving with a
velocity v′ in S ′. Let us determine its velocity v in S. The situation is illustrated
in Figure 6.9. Notice that to avoid confusion the relative speed between the two
frames is now u and we have simplified to the case of motion in two dimensions
(in the x − y plane). It is straightforward to generalize to three-dimensions. Recall
that according to Galilean relativity vx = v′

x + u and vy = v′
y. Neither of these

holds true in Special Relativity, as we shall now see.

u′

u

O′O x

y y′S S′

x′

υ′x

υ′y

Figure 6.9 Relative velocities.

To determine the x-component of the velocity in S we make use of the Lorentz
transformation formulae for x and for t :

vx = dx

dt
= γ (dx ′ + udt ′)

γ (dt ′ + udx ′/c2)
= (dx ′/dt ′) + u

1 + u(dx ′/dt ′)c2

= v′
x + u

1 + uv′
x/c

2
. (6.33)
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Similarly we can determine the y-component of the velocity:

vy = dy

dt
= dy ′

γ (dt ′ + udx ′/c2)
= dy ′/dt ′

γ (1 + u(dx ′/dt ′)c2)

= v′
y

γ (1 + uv′
x/c

2)
. (6.34)

Notice that for uv′
x � c2 and u � c these results reduce to the expectation based on

classical thinking. Eqs. (6.33) and (6.34) are known as the velocity transformation
equations and their use is pretty straightforward. Perhaps the only place where
there is room for error is when it comes to figuring out the signs. For example, if
S ′ were moving in the negative x-direction then we should replace u → −u in the
equations. We can quickly check to see that the velocity transformation equations
satisfy the 2nd postulate, i.e. if v′

x = c and vy = 0 we have

vx = c + u

1 + uc/c2
= c, (6.35)

which is as it should be.

6.3.2 Stellar Aberration Revisited

It is at this point that we can confirm that although Einstein has abolished
the ether his new theory is still capable of explaining the phenomenon of stellar
aberration. To understand this, let us consider the particular situation illustrated in
Figure 6.10. We imagine that the Sun, Earth and star all lie in the same plane and
that the Sun is at rest in S ′. Suppose that light emitted from the star arrives at an
angle angle α′ to the vertical in S ′. We shall take the relative speed between the
Earth and Sun to be u and α is the angle at which the starlight arrives on Earth.

Using the velocity addition formulae with v′
x = −c sin α′ and v′

y = −c cos α′ we
have that

vx = u − c sin α′

1 − u
c

sin α′ , (6.36)

Earth

y S

x

Sun
x′

y′ S′

a′

u

a

Figure 6.10 Incident starlight in the Earth and Sun rest frames.
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vy = −c cos α′

γ (u)(1 − u
c

sin α′)
. (6.37)

These two equations imply that

tan α = vx

vy

= sin α′ − u/c

cos α′
1√

1 − u2/c2
. (6.38)

Stellar aberration is greatest when α′ = 0, in which case this result simplifies to

tan α = −u

c

1√
1 − u2/c2

,

i.e. sin α = −u

c
.

Now if u � c then this is gives rise to a variation in the star’s angular position of
≈ 2u/c over the course of one year, which is in accord with observations.

Example 6.3.1 Consider three galaxies, A, B and C. An observer in A measures
the velocities of B and C and finds they are moving in opposite directions each
with a speed of 0.7c. (a) At what rate does the distance between B and C increase
according to A? (b) What is the speed of A observed in B? (c) What is the speed of
C observed in B?

Solution 6.3.1 Again it really helps to draw a picture: we refer to Figure 6.11.
(a) The relative speed between B and C according to A is just 2u = 1.4c. We do
not of course worry that this speed is in excess of c because it is not the speed of
any material object. (b) According to B, A moves ‘to the right’ with speed u. (c)
Now to determine the speed of C according to an observer in B we do need to use
the addition of velocities formula since we only know the speed of C in A and the
speed of A relative to B. In classical theory, the result would be 1.4c, but this will
clearly be modified to a value smaller than c in Special Relativity. The correct value
is found using Eq. (6.33):

u + u

1 + u2/c2
= 1.4c

1.49
= 0.94c.

u

C

B

A
u

Figure 6.11 Relative motion of three galaxies viewed from an observer in A.
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Figure 6.12 A particle moves in S at an angle θ to the x-axis at speed v.

Example 6.3.2 A particle moves with speed v at an angle θ to the positive x-axis
in the frame S. What is the direction of the particle in the frame S ′ given that S and
S ′ move with relative speed U along their common x direction?

Solution 6.3.2 Figure 6.12 illustrates what is going on. Using the velocity addition
formulae we can write down the components of the velocity of the particle in S ′:

v′
x = vx + U

1 + Uvx/c2
,

v′
y = vy

γ (U) · (1 + Uvx/c2)
.

Using tan θ ′ = v′
y/v

′
x , vx = v cos θ and vy = v sin θ gives

tan θ ′ = (1 − U 2/c2)1/2v sin θ

U + v cos θ
.

This is an interesting result: if U → c then tan θ ′ → 0 regardless of θ . This effect
would only happen in classical theory as U → ∞.

PROBLEMS 6

6.1 A spaceship moves relative to the Earth at a speed of 0.93c. If a person on
Earth spends 30 minutes reading the newspaper, how long have they been
reading according to someone on the spaceship?

6.2 Pions are elementary particles, which decay with a half-life of 1.8 × 10−8 s as
measured in a frame in which the pions are at rest. In a laboratory experiment,
a beam of pions has a speed of 0.95c. According to an observer in the lab,
how long does it take for half of the pions to decay? Through what distance
will they travel in that time?

6.3 An alien spacecraft is flying overhead at a great distance. You see its search-
light blink on for 0.190 s. Meanwhile, on board the spacecraft, the pilot
observes that the searchlight was on for 12.0 ms. What is the speed of the
spacecraft relative to the Earth?

6.4 In the previous question, why was it necessary to state that the spacecraft
was at a great distance overhead? Suppose that the same spacecraft is flying
at 0.998c but this time at ground level and directly away from you. If the
pilot once again turns the searchlight on for 12.0 ms, how long now does the
searchlight appear to stay on according to your watch?
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6.5 How long is a 1m rod according to an observer moving at speed 0.95c in a
direction parallel to the rod?

6.6 What is the distance to the surface of the Earth as determined in the rest
frame of a cosmic ray proton which is at an altitude of 12 km and which is
travelling directly towards the Earth’s surface at a speed of 0.97c?

6.7 The distance to the farthest star in our galaxy is of the order of 105 light
years. Explain why it is possible, in principle, for a human being to travel to
this star within the course of a lifetime and estimate the required velocity.

6.8 As measured by an observer on Earth, a spacecraft runway has a length of
3.60 km.

(a) What is the length of the runway as measured by the pilot of a spacecraft
flying directly over the runway at a speed 4.00 × 107 ms−1 relative to the
Earth?

(b) An observer on Earth measures the time interval from when the spacecraft
is directly over one end of the runway until it is directly over the other
end. What result does she get?

(c) According to the pilot of the spacecraft, how long does the spacecraft
take to travel the length of the runway?

6.9 A pole 10 m long lies on the ground next to a barn 8 m long. An athlete picks
up the pole, carries it far away, and then runs with it toward the barn at speed
0.8c. The athlete’s friend remains at rest, standing by the open door of the
barn.

(a) How long does the friend measure the pole to be as it approaches the
barn?

(b) Immediately after the pole is entirely inside the barn, the friend shuts the
barn door. How long after the door is shut does it take for the front of
the pole to strike the back end of the barn, as measured by the friend?

(c) In the reference frame of the athlete what is the length of the pole and
the barn?

(d) How do you reconcile the closing of the barn door with the experience
of the athlete?

6.10 Sodium light of wavelength 589 nm is emitted by a source that is moving
toward the Earth with speed v. The wavelength measured by an observer on
Earth is 550 nm. Find v/c.

6.11 In a frame S, event B occurs 1.3 µs after event A. Also in S the events are
separated by a distance of 1.5 km along the x-axis, i.e. xB − xA = 1500 m.
At what fraction of the speed of light must an observer be moving along the
x-axis in order to conclude that the two events occur at the same time?

6.12 Two events occur at the same place in a certain inertial frame and are separated
by a time interval of 4 s. What is the spatial separation between these two
events in an inertial frame in which the events are separated by a time interval
of 5 s?

6.13 Two events occur at the same time in inertial frame S and are separated by a
distance of 1 km along the x-axis. What is the time difference between these
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two events as measured in frame S ′ moving with constant velocity parallel
to the x-axis and in which their spatial separation is measured to be 2 km?

6.14 In a particular inertial frame, two pulses of light are emitted at a distance
4 km apart and are separated by 5 µs in time. An observer travelling at speed
v along the line joining the emission points of the two pulses notes that the
pulses are emitted simultaneously. Find v.

6.15 In 1994, a rather eccentric group of astronomy students wanted to celebrate
the impact of the Shoemaker-Levy comet on Jupiter by holding a party of
sufficiently long duration that their celebrations were simultaneous with the
impact of the comet in all possible inertial frames. For how long did they
need to party? How might the party end?
[The distance from the Earth to Jupiter is 8 × 1011 m and you may neglect
their relative motion.]

6.16 Two particles are created in a particle physics experiment. They move apart
in opposite directions, with one particle travelling at a speed of 0.70c and the
other at a speed of 0.850c as measured in the laboratory. What is the speed
of one particle relative to the other? Compare your answer to that which you
would expect using classical ideas.

6.17 A rocket moves away from the Earth at a speed of 0.5c and at a later time
sends out a second rocket which travels back towards the Earth at a speed
of 0.8c relative to the parent rocket. What is the speed of the second rocket
relative to the Earth?

6.18 The passage of light through a medium is characterised by a refractive index
n and the velocity of light relative to the medium is c/n. Suppose that such
a medium is moving with speed v parallel to the direction of propagation
of the light. Derive an expression for the speed of light, V , as observed by
a stationary observer. Show that your result can be used to explain Fizeau’s
experimental findings of 1851 which used light passing through flowing water
to demonstrate that

V ≈ c

n
+ v

(
1 − 1

n2

)
.

6.19 Two rockets, A and B, start from a common point C and travel with constant
speeds u in directions perpendicular to each other as observed in the rest
frame of C. An observer in A measures the angle BAC to be 30◦. What is
the value of u/c?



7
Relativistic Energy and
Momentum

7.1 MOMENTUM AND ENERGY

In classical theory, energy and momentum are conserved quantities, and are
therefore of particular significance. From a practical viewpoint, we can exploit
the conservation of energy and/or momentum in order to simplify calculations.
At this stage in our development of Einstein’s theory we are led to contemplate
just how energy and momentum are to be defined if they are to be compat-
ible with Einstein’s two postulates. A priori it might be that the concepts of
energy and momentum are only useful in the classical regime, where speeds
are small compared to light speed, in which case any attempt to extrapolate
into the relativistic regime would be doomed to fail. Fortunately, this is not the
case. Transcending relativity theory, it is now known that conservation laws often
have their origin in symmetry. Technically speaking, the law of conservation of
energy arises because physical phenomena are invariant under time translations,
which means that energy is conserved because, all other things being equal, it
does not matter whether one conducts an experiment today, tomorrow or at some
other time in history. Similarly, momentum is conserved because physical phe-
nomena are invariant under spatial translations. Again, in more down to earth
language, momentum conservation is a consequence of the fact that, all other
things being equal, it does not matter whether one conducts an experiment here
or over there. That said, and since we expect the same underlying symmetries
of space and time in Einstein’s theory, we press on with our attempt to intro-
duce definitions of energy and momentum that do not conflict with Einstein’s
postulates.
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 2009 John Wiley & Sons, Ltd
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Our first guess might be to assume the familiar expressions, i.e.

p = mv (7.1)

for the momentum and

K = 1

2
mv2 (7.2)

for the kinetic energy. However these will not do. To see why, we need to notice that
if the total momentum or energy is conserved in one inertial frame then it cannot
also be conserved in all other inertial frames, and this is a violation of the prin-
ciple of relativity (Einstein’s 1st postulate). To prove that the quantities defined in
Eqs. (7.1) and (7.2) cannot be conserved in all inertial frames one only has to look at
the velocity transformation formulae we derived earlier, i.e. Eqs. (6.33) and (6.34).

As an example consider an inertial frame S in which two particles, of mass m1

and m2, scatter elastically off each other. For simplicity we’ll consider that the
particles always move in the x-direction. Before they scatter, the particles have
speeds u1 and u2 and afterwards v1 and v2. The same collision is recorded by an
observer in S ′ which, once again, is moving with speed U along the positive x-axis.
In this case the particles have speeds u′

1 and u′
2 before the collision and v′

1 and v′
2

after it. In classical theory, the total momentum before and after the collision as
recorded in S is

m1u1 + m2u2 = m1v1 + m2v2. (7.3)

Using the classical law of addition of velocities, i.e. u1 = u′
1 − U etc., this can be

rewritten as

m1u
′
1 + m2u

′
2 − (m1 + m2)U = m1v

′
1 + m2v

′
2 − (m1 + m2)U

i.e.

m1u
′
1 + m2u

′
2 = m1v

′
1 + m2v

′
2. (7.4)

Therefore we see that so long as momentum is conserved in S so it is also conserved
in S ′. The same can be said for kinetic energy since in S we have

1

2
m1u

2
1 + 1

2
m2u

2
2 = 1

2
m1v

2
1 + 1

2
m2v

2
2, (7.5)

which can be rewritten as

1

2
m1u

′2
1 + 1

2
m2u

′2
2 − (m1u

′
1 + m2u

′
2)U + 1

2
(m1 + m2)U

2

= 1

2
m1v

′2
1 + 1

2
m2v

′2
2 − (m1v

′
1 + m2v

′
2)U + 1

2
(m1 + m2)U

2
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and using the fact that momentum is conserved (i.e. m1u
′
1 + m2u

′
2 = m1v

′
1 + m2v

′
2)

this can be written as

1

2
m1u

′2
1 + 1

2
m2u

′2
2 = 1

2
m1v

′2
1 + 1

2
m2v

′2
2 . (7.6)

Crucial to this argument is the fact that the law of addition of velocities is linear.
However, we know that the relationship in Special Relativity is non-linear. For
example,

u1 = u′
1 − U

1 − u′
1U/c2

(7.7)

and the factor of u′
1 in the denominator spoils the linearity. We are therefore forced

to seek out alternatives to Eq. (7.1) and Eq. (7.2) which do satisfy the 1st postulate.
Let us aim first for a new definition of momentum. Insisting that it remain a

vector quantity that lies parallel to the velocity and which is equal to the classical
result in the limit v � c dictates that the most general form available to us is

p = f (v/c)mv (7.8)

and our task is to determine the dimensionless function1 f (v/c) which we know
must satisfy f (v/c) � 1 for v � c. The mass of the particle is labelled m and we
take it to be an intrinsic property of the particle, not depending upon its state of
motion, i.e. all observers will agree upon its value. To determine f (v/c) we are
going to focus our attention upon the very specific scattering process illustrated
in Figure 7.1. Our strategy is to view this process in two different inertial frames
with the momentum carefully defined so that it is conserved in both frames. Any

2

1

x

u

aa

S
y

u

Figure 7.1 Particle 1 scatters through a vanishingly small angle α, whilst particle 2 bounces
off at right angles.

1 We write the argument explicitly as v/c to remind us that this is the only way to form a dimensionless
function of the speed.
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scattering process would in principle suffice to determine f (v/c), it is only that
this process provides a particularly elegant path to the answer. Having said that,
the derivation we shall now present is still rather tricky and any readers wishing to
avoid the details might note the key results presented in Eq. (7.15) and Eq. (7.25)
and skip to the next subsection. We shall return to the topic of energy and momen-
tum in Part IV where we shall see that there is a much more elegant way to obtain
the results which we shall here work rather hard to establish.

Returning to Figure 7.1, we consider the special case where particle 1 travels
in to and out of the scattering at the same angle α to the x axis, and particle 2
travels always parallel to the y axis with speed v. We shall also assume that the
particles have the same mass m. Momentum conservation in the x direction then
implies that if the speed of particle 1 is u before the scatter then it should remain
unchanged after the scatter. This is a very symmetrical scattering and it is this
symmetry which will help us arrive at a form for f (v/c) without too much hard
work. In order to simplify matters still further, we focus our attention upon the
limit that α → 0. In this limit the speed v → 0 too since otherwise the process
would not conserve momentum in the y direction. This limit will help us a great
deal since it will allow us to use the non-relativistic form for the momentum of
particle 2, i.e. we shall make use of f (0) = 1. We have now completely specified
the scattering process in inertial frame S and it clearly conserves momentum in the
x and y directions independent of the actual form of f (v/c).

Now let us view the same scattering from a second inertial frame, S ′. In particular
we choose a frame which travels along the positive x axis at a speed u cos α. In
this frame, particle 1 travels only in the y direction, whilst particle 2 travels in
the negative x direction as illustrated in Figure 7.2. The velocity addition formulae
allow us to write down the x and y components of velocity of each particle in S ′:

v1x = 0,

v1y = − 1

(1 − (u/c)2 cos2 α)−1/2

u sin α

1 − (u/c)2 cos2 α

= − u sin α√
1 − (u/c)2 cos2 α

, (7.9)

− u cos a

x'

S'y'

2

1
u cos a

u1y = −u

u2y = u sin a

u2x =

aa

Figure 7.2 Particle 2 scatters through a vanishingly small angle α, whilst particle 1 bounces
off at right angles.
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and
v2x = −u cos α,

v2y = 1

(1 − (u/c)2 cos2 α)−1/2
v

= v
√

1 − (u/c)2 cos2 α. (7.10)

It is now that we can appreciate the advantage of picking such a symmetric scat-
tering process. Viewed in S ′, the scattering looks just like that in S except that it
is ‘turned upside down’. This symmetry allows us to conclude that

v1y = −v and

v2y = u sin α. (7.11)

Either of these two equations used in conjunction with Eq. (7.9) or Eq. (7.10)
implies that

v = u sin α√
1 − (u/c)2 cos2 α

. (7.12)

Now we require momentum conservation in S ′, i.e.

2mf (u/c)v2y = 2mf (v/c)v.

But in the limit of α → 0 we can safely take f (v/c) → 1, i.e.

f (u/c)u sin α = v. (7.13)

Subsituting in for v using Eq. (7.12) gives

f (u/c)u sin α = u sin α√
1 − (u/c)2 cos2 α

,

which in the limit α → 0 reduces to

f (u/c) = 1√
1 − u2/c2

= γ (u). (7.14)

Thus we have a new candidate for momentum in Einstein’s theory. For a particle
of mass m and velocity u the momentum is

p = γ (u)mu. (7.15)

Although we have a candidate for momentum, we ought to be clear that we
derived it by considering one very particular scattering process. If this definition is
to be useful then it ought to have the property that if momentum is conserved in one
inertial frame then it is also conserved in all other inertial frames and this should
be true for any process. To convince ourselves that this is the case, let’s consider
the much more general scattering process illustrated in Figure 7.3. In inertial frame
S, particles A (mass mA) and B (mass mB) are incident with velocities uA and
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A

x

Sy

B

C

D

Figure 7.3 A general two-to-two scattering process: AB → CD.

uB . These particles subsequently scatter into particles C (mass mC) and D (mass
mD) travelling with velocities uC and uD . We say that the scattering process is
a two-to-two process and we denote it AB → CD. It should be clear that the
discussion which now follows can be generalised to include more incoming and/or
outgoing particles without too much trouble.

We want to check that if momentum is conserved in S, i.e.

pA + pB = pC + pD (7.16)

then

p′
A + p′

B = p′
C + p′

D (7.17)

also holds, where the primes indicate the momenta are appropriate to the S ′ frame
of reference, which moves along the positive x axis with a speed U . Apart from
providing us with the confidence that Eq. (7.15) is not an accident of choosing
the symmetric scattering process discussed above, this check has the bonus that it
will also indicate the way in which we should modify the law of conservation of
energy. In order to proceed, we are going to resolve the momenta into their x and
y components. Let us start with the y components first (they are a little easier to
deal with). Our strategy is to check directly Eq. (7.17). To do this we need to know
how each of the momenta in S ′ can be expressed in terms of their components in
S. For particle A we have2,

p′
Ay = γ (v′

A)mAv′
Ay

= γ (v′
A)mA · 1

γ (U)

vAy

1 − UvAx/c2
(7.18)

and to get the second line we used the velocity addition formula to relate the y

component of the velocity in S ′ to that in S. We need to relate γ (v′
A) to quantities

defined in S. This is where the hard work resides, if you are prepared to trust our

2 The same methods can be used for each of the other particles.
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algebra then you might skip to the end result, Eq. (7.19), otherwise we write

γ (v′
A) = 1√

1 − v′2
A/c2

= (
1 − v′2

Ax/c
2 − v′2

Ay/c
2)−1/2

=
(

1 − (vAx − U)2/c2

(1 − UvAx/c2)2
− 1

γ (U)2

v2
Ay/c

2

(1 − UvAx/c2)2

)−1/2

= 1 − UvAx/c
2√

1 + U2v2
A/c4 − v2

A/c2 − U 2/c2

= 1 − UvAx/c
2√

1 − v2
A/c2 − U 2(1 − v2

A/c2)/c2

= 1 − UvAx/c
2√

(1 − v2
A/c2)(1 − U 2/c2)

= γ (vA)γ (U)(1 − UvAx/c
2). (7.19)

Eq. (7.18) then becomes

p′
Ay = γ (v′

A)mAv′
Ay

= mAγ (vA)vAy = pAy. (7.20)

This is an interesting result. It tells us that the y-component of momentum does
not change as we move from S to S ′ and because of this property it is evident that
if the y component of momentum is conserved in S then it must also be conserved
in S ′. Now we turn our attention to the x component of the momentum. Again we
focus (rather arbitrarily) on particle A:

p′
Ax = γ (v′

A)mAv′
Ax

= γ (v′
A)mA · vAx − U

1 − UvAx/c2
. (7.21)

Now we can once again use Eq. (7.19) to write

p′
Ax = mAγ (U)γ (vA)(vAx − U) = γ (U)(pAx − γ (vA)mAU). (7.22)

Substituting this (and the corresponding expressions for the other particles) into
the x component part of Eq. (7.17) gives

γ (U)(pAx + pBx − pCx − pDx) −
γ (U)U [γ (vA)mA + γ (vB)mB − γ (vC)mC − γ (vD)mD] = 0. (7.23)
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This is a very interesting result indeed. The first term in parentheses vanishes
automatically since momentum is conserved in S. However the second term, in
square brackets is not a priori zero. Therefore, if we are to have any chance of
salvaging momentum conservation in Special Relativity we need also to insist that
the term in square brackets also vanishes. This is equivalent to saying that the
quantity γ (v)m should also be conserved, i.e. we require

γ (vA)mA + γ (vB)mB = γ (vC)mC + γ (vD)mD. (7.24)

Remarkably, this apparently new conservation law is nothing other than the
relativistic manifestation of the law of conservation of energy. To make this more
explicit, for a particle of mass m and speed u let us define the quantity

E = γ (u)mc2. (7.25)

Eq. (7.24) then takes the form

EA + EB = EC + ED.

This quantity has the units of energy, and it is conserved, but apart from that it
is far from clear at this stage that this has anything at all to do with the kinetic
energy of a classical non-relativistic particle.

7.1.1 The equivalence of mass and energy

In order the gain more insight, it makes sense for us to explore Eq. (7.25) in
the limit that u � c. In this limit, we can express γ (u) as a Taylor series about
u = 0, i.e.

γ (u) �
u�c

1 + u2

2c2
. (7.26)

Substituting this into Eq. (7.25) yields the much more revealing

E �
u�c

mc2 + 1

2
mu2. (7.27)

This is simply the sum of the non-relativistic kinetic energy and a static term, i.e.
mc2 is the energy associated with a particle at rest. If we were to make the addi-
tional assumption that mass is conserved then the conservation of E is equivalent
to the conservation of kinetic energy. This is what we usually do in non-relativistic
mechanics, although the conservation of mass is often assumed to be self evident
and is rarely explicitly stated. For example, if we go back to our process AB →
CD then the conservation of E implies, in the non-relativistic limit, that

mAc2 + mBc2 + 1

2
mAv2

A + 1

2
mBv2

B = mCc2 + mDc2 + 1

2
mCv2

C + 1

2
mDv2

D,

(7.28)
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which reduces to the familiar

1

2
mAv2

A + 1

2
mBv2

B = 1

2
mCv2

C + 1

2
mDv2

D (7.29)

if we assume mA + mB = mC + mD . It is very important to remember that this
formula is only a good approximation if all speeds are small enough compared to
the speed of light.

In contrast, Einstein’s theory does not require the conservation of mass: it only
requires that the sum of kinetic and static energy be conserved. We subsequently
refer to the static energy as the ‘rest mass energy’, it is the energy possessed by a
particle at rest:

Erest = mc2. (7.30)

The kinetic energy is then defined to be the difference between the total energy
and the rest mass energy:

Ekinetic = K = (γ (u) − 1)mc2. (7.31)

Example 7.1.1 What is the rest mass energy of an electron?

Solution 7.1.1 The mass of an electron is 9.11 × 10−31 kg and so using Eq. (7.30)
it possess an energy equal to

Erest = mc2 = 8.19 × 10−14J.

It is almost always the case that it is more sensible and more convenient to express
energies in electronvolt (eV) units rather than in joules. One electronvolt is the
kinetic energy acquired by an electron that has been accelerated through a potential
difference of 1 volt, i.e.

1 eV = 1.60 × 10−16 J.

The rest mass energy of an electron in these units is then given by

Erest = 8.19 × 10−14

1.60 × 10−16
eV = 0.511 MeV.

Thus an electron has a mass energy equivalent to just above one half million electron
volts.

Also worth noting is that particle and nuclear physicists quite often quote particle
masses in eV-based units, mainly because it is irksome to keep explicitly dividing
by the speed of light squared. For example, one might say that an electron has a
mass of 0.511 MeV/c2. Similarly momenta might typically be expressed in units
of MeV/c.
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As we have just seen, only in the limit of small u/c is the kinetic energy given
by 1

2 mu2. Since only the total energy is conserved we have the intriguing possibility
that mass is essentially just another form of energy and that kinetic energy might
be traded for mass (and vice versa) in physical processes.

Remarkably this is just what happens in Nature. The most striking examples
are to be found in particle and nuclear physics. For example, a nucleus at rest
can spontaneously transform into a system of lighter particles travelling with some
kinetic energy, leaving no trace of the original nucleus. In this case the total mass
of the lighter particles is less than the mass of the initial nucleus by an amount
that is exactly equal to the total kinetic energy of the particles (divided by c2). Of
course this phenomenon lies behind the operation of nuclear fission reactors, where
an atomic nucleus breaks into two with the liberation of a significant amount of
energy. In particle physics, the LEP collider at CERN (the European Centre for
Particle Physics in Geneva) manufactured head-on collisions between electrons
and positrons. In a single collision, all of the kinetic energy and all of the mass
energy of the incoming particles was used to manufacture a single Z particle at
rest. In that way, the incoming kinetic energy was converted entirely into the mass
energy of a Z particle. In fact, one of the main motivations for building LEP
was to produce millions of Z particles this way in order to study the detailed
properties of the weak interactions and their unification with electromagnetism in
the so-called ‘electroweak theory’. Apart from such striking examples of the way
Nature utilises the possibility to trade off mass and kinetic energy, the idea is
applicable in more everyday phenomena. For example, if one would burn a mass
of coal in a container sealed so that no material can enter or leave it then the mass
of the container after the coal has burnt (i.e. the mass of the remaining ash plus
gases) would be less than the initial mass of coal. The difference in mass being
equal exactly to the total energy radiated by the container divided by c2. This is
clearly a very new idea, deviating essentially from the classical idea that there exists
some immutable atomic substructure. For chemical processes, the reduction in mass
is typically very small indeed3 due to the largeness of the speed of light. That is
why the mass-energy equivalence was not demonstrated in a laboratory experiment
until long after Einstein’s original conjecture using nuclear processes in which
the energies involved are much larger and changes in mass correspondingly much
more significant. Cockcroft and Walton are credited with providing the first direct
evidence in their work of 1932 wherein they studied the reaction p + Li → α + α

and showed that the reduction in mass was balanced by an increase in kinetic
energy in accord with Einstein’s expectations.

Before moving on, we pause to reflect upon an interesting symmetry which we
have accidentally uncovered.

7.1.2 The hint of an underlying symmetry

Take a look at Eq. (7.20) and Eq. (7.22). They tell us that a particle travelling
in S with energy E and momentum components (px, py) has momenta (p′

x, p′
y) in

3 When expressed as a fraction of the total mass.
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S ′ where4

p′
y = py (7.32)

and

p′
x = γ (U)(px − UE/c2). (7.33)

Now take a closer look at these equations. They are very similar to the Lorentz
transformation equations we introduced in Eq. (6.28). In fact the correspondence is
exact if we were to start from the Lorentz transformations and make the replacement
x → px , y → py and ct → E/c. The similarity is all the more striking when we
write down the transformation equation for the energy E:

E′ = γ (U)(E − Ucpx). (7.34)

The fact that energy and momentum transform between inertial frames in exactly
the same way as do the time and space co-ordinates is suggestive of an underlying
symmetry. Indeed such a symmetry exists, and we shall return to study it in much
more detail in Part IV.

7.2 APPLICATIONS IN PARTICLE PHYSICS

In order to explore the consequences of our new formulae for energy (Eq. (7.25))
and momentum (Eq. (7.15)) we shall use some examples taken from particle
physics. This choice is mainly motivated by the fact that, along with nuclear
physics, this is the area of physics where the new dynamics is particularly impor-
tant.

Example 7.2.1 Find the speed of an electron that has been accelerated from rest
by an electric field through a potential difference of (a) 20.0 kV (typical of a cathode
ray tube in a television set); (b) 5.00 MV (typical of an X-ray machine).

Solution 7.2.1 The total energy of the electron after being accelerated through the
potential difference V is

E = mc2 + eV

= γ mc2,

where e = 1.60 × 10−19C. Hence

γ = 1 + eV

mc2
.

4 We have focussed on motion in two dimensions but it should be pretty clear that pz = p′
z if we had

considered a third spatial dimension.
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Using γ = 1/
√

1 − v2/c2 gives us an expression for the speed:

v2

c2
= 1 − 1

γ 2
.

(a) For the TV set,

1 + eV

mc2
= 1 + 20.0 × 103

511 × 103
= 1.039.

Hence the speed is given by

v

c
=

√
1 − 1

1.0392
= 0.272.

It is usually most convenient to express speeds as a fraction of the speed of
light.

(b) For the X-ray machine,

1 + eV

mc2
= 1 + 5.00 × 106

511 × 103
= 10.8

and the speed is therefore

v

c
=

√
1 − 1

10.82
= 0.996.

7.2.1 When is relativity important?

We know that when γ � 1 it follows that v � c and the formulae of
non-relativistic mechanics provide a good approximation. Usually it makes sense
to use the non-relativistic approach if one can be confident that it provides
sufficient accuracy since it is usually easier than computing using the full
apparatus of Special Relativity. For example, one really can safely neglect
relativistic corrections when building a car (except for the satellite navigation
system which uses the Global Positioning System (GPS)). It would certainly be an
advantage if we could spot whether or not a system needs relativistic corrections
before performing the necessary calculations. Clearly if we know that a particle
is travelling with speed much smaller than the speed of light then we can press
ahead using Newton’s mechanics. But what if we are given the kinetic energy or
the total energy of a particle, is there a quick way to tell if it is relativistic or not?

The answer is of course in the affirmative: if a particle has a kinetic energy
which is much smaller than its rest mass energy then the particle is moving
non-relativistically whereas if the kinetic energy is comparable to or greater than
the rest mass energy the particle is moving relativistically. To see this we need to
realise that the non-relativistic limit corresponds to γ � 1 in which case the kinetic
energy (γ − 1)mc2 is much smaller than the total energy γ mc2. Another way of
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stating the same result is to say that the total energy is almost entirely made up of
rest mass energy for a non-relativistic system.

Example 7.2.2 For the electron in the TV set of the previous example, estimate its
speed using non-relativistic mechanics.

Solution 7.2.2 Since the electron has a kinetic energy of 20.0 keV we might expect
to be able to use non-relativistic mechanics since 20.0 keV is much smaller than
the electron rest mass energy of 511 keV. Let us see how good an approximation it
actually is. In the non-relativistic limit, energy conservation dictates that

1

2
mv2 � eV

⇒ v �
√

2eV

m

�
√

40.0

511
c = 0.280c.

This agrees with the full relativistic result to an accuracy of � 4%.

One final remark is in order. If you do decide to simplify a problem by working
with the formulae of non-relativistic mechanics and the result is a speed which is
comparable to the speed of light, or an energy which is comparable to a rest mass
energy, then you were wrong to employ the non-relativistic approximation and need
to start over but this time with the correct relativistic expressions. Conversely, if the
speeds you obtain are small compared to the speed of light then the non-relativistic
approximation was good and you can be sure of your results.

Example 7.2.3 In particle physics experiments, physicists routinely accelerate sub-
atomic particles through enormous voltages before making them collide with each
other. The particle kinetic energies are often much larger than their rest mass ener-
gies which means that the situation is extremely relativistic. It also means that very
many new particles can be created out of a single collision.

For example, the Large Hadron Collider at CERN will make head-on collisions
between pairs of protons. Each proton will have an energy of 7000 GeV (1 GeV
= 1000 MeV).5 The main goal of the LHC is to convert this kinetic energy into the
mass of new, hitherto undiscovered, particles such as Higgs bosons or supersym-
metric particles.

(a) What is the rest energy in MeV of a proton given that each proton has a mass
of 1.67 × 10−27 kg?

(b) What speed are the LHC protons travelling at?
(c) What is the momentum of an LHC proton?
(d) How many new protons can in principle be produced in a single collision?

5 You might like to convince yourself that this is the roughly equal to the kinetic energy of a tennis ball
travelling at ∼5 mm/s.
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Solution 7.2.3 sfasfd(a) We can compute the rest energy using Erest = mc2, i.e.

Erest = (1.67 × 10−27) · (3 × 108)2 � 1.5 × 10−10J

� 940 MeV.

(b) To get the speed we use

γ mc2 = 7000 GeV

⇒ γ � 7 × 1012

940 × 106
� 7400.

This is vastly greater than unity so we are certainly in the highly relativistic
limit. We could have seen that right away since the proton mass is several
thousand times smaller than its kinetic energy. Using

v

c
=

√
1 − 1

γ 2
� 1 − 1

2γ 2
.

In order to avoid having to evaluate the square root on a calculator (which
might be a problem on some calculators) we instead have performed a Taylor
expansion, which should be a good approximation since 1/γ 2 � 1. Putting in
the numbers gives

v

c
� 1 − 9.0 × 10−9.

(c) We can determine the proton momentum using p = γmv. Since v/c is so close
to unity (from part (b)) we can approximate p � E/c where

E = Erest + 7000 GeV � 7001 GeV.

Hence the momentum is approximately equal to 7000 GeV/c. If we did want to
re-express this result in SI units then we would need to evaluate

p = (7 × 1012) · (1.6 × 10−19)

3 × 108
Ns � 3.7 × 10−15 Ns.

(d) The LHC protons collide head on with equal and opposite momentum, i.e. the
total momentum for any given collision is zero. This means that all of the incom-
ing energy can be used to create new particles, with all of them at rest. (If the
total momentum were not zero then momentum conservation would force some
of the outgoing particles to have some motion.) The total energy before the
collision is 2 × 7000 GeV and each proton has a mass of 940 MeV, therefore
the collision is capable of producing some � 14000/0.94 � 15000 new pro-
tons. This number of protons is energetically possible but in reality there are
other laws of physics which prevent 15000 protons being produced (not least
the conservation of electric charge). Nevertheless, it is the case that thousands
of new particles can easily be produced in any given proton-proton collision at
the LHC.
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7.2.2 Two useful relations and massless particles

A pair of particularly useful relations can be derived using E = γ mc2 and
p = γ mv. The first of them is obtained simply by taking the ratio:

cp

E
= v

c
. (7.35)

The usefulness of this equation lies in the fact that if we are given the energy and
momentum then it is possible to compute the speed without first computing γ . The
second equation takes a little more effort to derive but will turn out to be very
useful indeed. Let us consider the combination E2 − c2p2:

E2 − c2p2 = (γmc2)2 − (γmv)2c2

= m2c4 − m2v2c2

1 − v2/c2

E2 − c2p2 = m2c4. (7.36)

Why is this so interesting? Well the main value arises because the right-hand-side
is the same in all inertial frames. We say that the combination E2 − c2p2 is Lorentz
invariant. Quantities such as this, whose values all inertial observers agree upon,
arise most naturally in the Part IV of this book where we explore more fully the
symmetry alluded to at the end of the previous section. For now we note the result,
its utility in helping us solve problems will be apparent when we come to tackle
some of the later examples.

The formula for the total energy of a particle E = γ mc2 tells us that a massive
particle has an energy which approaches infinity as the particle’s speed approaches
c. Practically, this means that it is impossible to accelerate a massive particle in
such a way that its speed exceeds c, for to do so would require an infinite amount of
work. This is a much celebrated prediction of Einstein’s theory and it is certainly in
accord with experiments. For example, to accelerate the protons which will circulate
at CERN’s LHC to within a few metres per second of light speed requires a power
input comparable to that of the whole of the city of Geneva. The power costs
are in fact so prohibitive that CERN has to shut down over the winter months.
Interestingly, Einstein’s theory does not however exclude the possible existence of
particles which travel at exactly the speed of light. According to Eq. (7.35) such
particles would have an energy and momentum related by

E = cp. (7.37)

You may be worrying that for these particles γ → ∞ and therefore they have
infinite energy and momentum. This problem can be avoided but only if the particles
carry zero mass. In which case E = γ mc2 and p = γ mv are simply no longer
well defined equations. The very existence of massless particles may sound like
a contradiction but in Special Relativity the counter intuitive equivalence of mass
and energy provides the loophole which allows for their being, providing that
they travel at light speed. In fact, we now know that the wave-particle duality of
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quantum theory permits us to view light as being made up of particles (the study of
the photoelectric effect famously providing the first direct evidence) and since these
particles must necessarily travel at the speed of light then Special Relativity predicts
that they should also be massless. Such massless particles are called ‘photons’.

Example 7.2.4 A neutral π meson (pion) is an elementary particle which can decay
into two photons, i.e. π → γ γ .6 If the pion is moving with a kinetic energy equal
to 1 GeV what angle is formed between the two photons if they are emitted at equal
angles relative to the original direction of the pion? [The neutral pion has a mass
of 135 MeV/c2.]

Solution 7.2.4 It is usually a very good idea to draw a sketch in problems like this;
something like that illustrated in Figure 7.4. Our goal is to compute the angle α. We
have the equations for energy and momentum at our disposal, along with the laws
of conservation of energy and momentum, and we must use them carefully. Let us
first collect together what we know before the decay:

Before: E = mπc2 + K,

px = (E2 − m2
πc4)1/2/c,

py = 0

and we have made use of Eq. (7.36) to fix the momentum of the pion given its total
energy. After the decay we have that

After: E1 = cp1, E2 = cp2,

p1x = p1 cos α, p2x = p2 cos α,

p1y = p1 sin α, p2y = −p2 sin α

and we have used E = cp for the massless photons. We can obtain the angle α using
momentum conservation in the x direction. However before that we need to figure

Before

p1

After

mp = 135 MeV/c2
K = 1 GeV p2

a

a

g

g

p

Figure 7.4 Neutral pion decay to two photons

6 The symbol γ is often used to denote a photon.
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out the photon momenta p1 and p2. This is a two step process, firstly momentum
conservation in the y direction tells us that7

p1y + p2y = 0 ⇒ p1 = p2.

We choose subsequently to define p = p1 = p2 and our next task is to figure out p.
We can obtain this using the conservation of energy since this implies that

mπc2 + K = 2cp,

⇒ p = mπc2 + K

2c
.

All that remains is for us to use conservation of momentum in the x direction:

2p cos α = (E2 − m2
πc4)1/2/c,

which leads directly to (substituting for E)

cos α = ((mπc2 + K)2 − m2
πc4)1/2

mπc2 + K
.

This is our final answer and we can substitute for the pion mass and its kinetic
energy to get a numerical answer, i.e.

cos α = ((135 + 1000)2 − 1352)1/2

135 + 1000
= 0.993

⇒ α = 6.8◦.

As a final aside to this exercise, the decay π → γ γ provides a very nice and direct
test of Special Relativity. Alväger et al (1962) showed that pions travelling at a
speed of 0.99975c decayed to produce forward going photons of speed (2.9977
± 0.0004) × 108 ms−1.

Notice that the strategy for solving the last example is very similar to the one
we would use in classical mechanics. The only difference is that we should use the
relativistic forms for energy and momentum rather than the classical ones. It is well
worth stressing that we managed to get a numerical answer without ever needing to
multiply or divide by the speed of light. That happy circumstance arose because we
expressed all momenta and energies in MeV based units. In fact, particle physicists
often work in units where c = 1. It’s not a bad idea to re-do the previous exercise
but putting c = 1 everywhere, although it is a pretty trivial exercise it should help
convince you that there is little point in forever writing factors of c all over the
place.

7 Strictly we can only conclude p1 = p2 if α 	= 0.
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7.2.3 Compton Scattering

As our final example, we shall take a close look at the theory behind an experi-
ment performed in 1923 by Arthur Compton which provided very direct evidence
that photons exist as massless particles behaving according to the ideas of Special
Relativity. Compton shone short wavelength light (X-rays) onto a target and looked
at the angular distribution of the scattered radiation. He was particularly interested
in measuring the difference in wavelength between the incident and scattered light
as a function of scattering angle. It is one of the triumphs of modern physics that
Compton’s results can be explained in terms of the simple process illustrated in
Figure 7.5. The incoming light constitutes a source of photons and the shift in
wavelength detected by Compton arose as a direct result of scattering individual
photons in the source elastically off individual atomic electrons in the target.

e

Before

E', p'

Ee, pe

e

After

E

q
g

g

f

Figure 7.5 Compton scattering.

Referring to Figure 7.5, we shall aim to compute the energy of the scattered
photon in terms of the energy of the incoming photon and the photon’s scattering
angle θ . The photon energies and the scattering angle were measured in Comp-
ton’s experiment, whereas the energy and scattering angle of the recoiling electron
were not, so we must eliminate them from our theoretical analysis. Applying the
conservation of momentum we can write

E

c
= E′

c
cos θ + pe cos φ (7.38)

and
E′

c
sin θ = pe sin φ. (7.39)

We have used E = cp to write the photon momenta in terms of the incoming and
outgoing photon energies. The conservation of energy tells us that

E + mec
2 = E′ + Ee (7.40)

and we have been careful not to forget that the initial electron, although it is
assumed to be at rest8, still has its rest mass energy. Given these equations our
challenge is to express E′ in terms of E and θ , i.e. we must eliminate all dependence
upon the scattered electron momentum. It is quite easy to go around in circles in

8 We do not need to worry about the fact that the electron is not actually at rest since its kinetic energy
when bound in an atom (∼1 eV) is much less than its rest mass (∼106 eV).



Problems 153

this type of calculation, the key is to realise that we can make very good use of
Eq. (7.36) to make progress, i.e. we know that

E2
e − p2

e c
2 = m2

ec
4. (7.41)

If we can evaluate the left hand side of this expression in terms of photon variables
only then we will have succeeded in our task. This we can do since Eq. (7.38) and
Eq. (7.39) together imply that

c2p2
e = (E − E′ cos θ)2 + E′2 sin2 θ (7.42)

(using cos2 φ + sin2 φ = 1) and Eq. (7.40) implies that

E2
e = (E − E′ + mec

2)2. (7.43)

Subtracting these last two equations and using Eq. (7.41) gives

(E − E′ + mec
2)2 − (E − E′ cos θ)2 − E′2 sin2 θ = m2

ec
4,

which can be re-arranged to give

2EE′(1 − cos θ) = 2mec
2(E − E′).

This equation can be easily solved for E′ but we prefer to re-write it as

1

E′ = 1

E
+ (1 − cos θ)

mec2
. (7.44)

In actual fact Compton measured the wavelength of the incoming and outgoing
light and used the de Broglie relationship to relate the energy of a photon to its
wavelength, i.e. E = hc/λ, where h is Planck’s constant. Consequently, Eq. (7.44)
becomes

λ′ = λ + hc(1 − cos θ)

mec2
. (7.45)

This is our final answer: Special Relativity and Quantum Mechanics together lead
to a very definite prediction for the shift in wavelength of the scattered light as a
function of the angle θ and this prediction is strikingly confirmed by Compton’s
original data, which we show in Figure 7.6. We plot the shift in wavelength �λ =
λ′ − λ as a function of 1 − cos θ . The data are to be compared to the prediction of
Eq. (7.45) which is also shown as the straight line.

PROBLEMS 7

7.1 A proton has mass equal to 1.673 × 10−27 kg. Use this to determine the mass
of the proton in units of MeV/c2.
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Figure 7.6 Comparison of Compton’s original data with the theoretical expectations. From
A.H. Compton, Phys. Rev. 21 (1923) 483.

7.2 What is the speed of a particle whose kinetic energy is equal to (a) its rest
energy; (b) five times its rest energy?

7.3 The Sun produces energy at a rate of 3.8 × 1026 W. How much mass does
the Sun lose each second?

7.4 Calculate the speed of an electron of kinetic energy equal to 0.1 MeV accord-
ing to both classical and relativistic mechanics. [The mass of an electron is
0.511 MeV/c2.]

7.5 A particle with momentum 6.0 GeV/c has a total energy of 11.2 GeV. Deter-
mine the mass of the particle and its speed.

7.6 What is the total energy of a particle of mass 80 GeV/c2 which has momentum
65 GeV/c? What is its kinetic energy? Is the particle relativistic or not?

7.7 Two deuterium nuclei can fuse together to form one helium nucleus. The mass
of a deuterium nucleus is 2.0136u and that of a helium nucleus is 4.0015u

(u is the atomic mass unit).

(a) How much energy is released when 1 kg of deuterium undergoes fusion?
(b) The annual consumption of electrical energy in the USA is of order 1020 J.

How much deuterium must react to produce this much energy?

7.8 A (fictitious) particle of mass 1 MeV/c2 and kinetic energy 2 MeV collides
with a stationary particle of mass 2 MeV/c2. After the collision, the particles
form a new particle. Find

(a) the speed of the first particle before the collision;
(b) the total energy of the first particle before the collision;
(c) the initial total momentum of the system;
(d) the mass of the system after the collision;
(e) the total kinetic energy after the collision.
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7.9 An antiproton of kinetic energy 0.667 GeV strikes a proton which is at rest
in the laboratory. They annihilate to produce two photons which emerge
from the reaction travelling forward or backward on the line along which the
antiproton entered.

(a) What energies do the photons have?
(b) In which direction is each photon heading?
(c) As measured in a frame attached to the incoming antiproton, what is the

energy of each photon?
[The mass of an antiproton is equal to that of a proton, i.e. 938 MeV/c2.]

7.10 Two particles, each of mass m, are moving perpendicular to each other with
speeds u1 and u2. The particles collide and coalesce to form a single particle
of mass M . Show that

M2 = 2m2(1 + γ (u1)γ (u2))





Part III
Advanced Dynamics





8
Non-inertial Frames

To this point, our attention has focused mainly on physics as viewed from inertial
frames of reference. Inertial frames have the substantial advantage that Newton’s
laws hold within them and that Einstein’s Special Relativity is formulated using
them. For example, bodies not acted upon by some external force travel in straight
lines (or remain at rest) and acceleration arises as a result of the action of a force.
However, it is not always advantageous to work in an inertial frame. For example,
a natural frame to choose when describing physics on the surface of the Earth
would be a frame at rest relative to the Earth. Any such frame is not inertial
because the Earth is spinning on its axis (and rotating in orbit about the Sun). In
this chapter, our goal is to understand the implications of working in non-inertial
frames of reference. As we shall see, Newton’s laws can be rescued provided we
are prepared to introduce the idea of fictitious forces. In order not to complicate
matters too much we shall assume that all speeds are sufficiently small so that we
can ignore the effects of relativity. We will in fact return to consider relativistic
effects in accelerating frames of reference towards the end of the book.

8.1 LINEARLY ACCELERATING FRAMES

Let us start with the simplest type of acceleration, namely acceleration in a
straight line. In Figure 8.1 we show two frames of reference. It looks rather similar
to the pictures in the last chapter on Special Relativity except that now the frame S ′
is accelerating uniformly relative to S. Ignoring the relativistic effects, if a particle
is located at position x(t) in S then its co-ordinates in S ′ are given by

x′(t) = x(t) − X(t), (8.1)

where X(t) is the position of the origin O ′ relative to the origin O. Differentiating
twice gives us a relationship between the acceleration of the particle as it would
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 2009 John Wiley & Sons, Ltd
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non-inertial frame

O O'

A

x x'

z'z S S'

inertial frame

Figure 8.1 Two frames of reference S and S ′ which are accelerating relative to each other.

be determined in the two frames of reference, i.e.

a′(t) = a(t) − A(t), (8.2)

where A(t) is the acceleration of S ′ relative to S (the double arrow in the figure is
intended to denote acceleration).

Now we know that Newton’s Second Law holds in the inertial frame and hence
the acceleration of the particle in S is related to an applied force F via

F = ma (8.3)

(assuming a particle of fixed mass m). We can use Eq. (8.2) to re-write this
equation as

F = m(a′ + A). (8.4)

This can obviously be re-cast into the form

F′ = ma′ (8.5)

provided F′ = F − mA. Thus from the point of view of an observer at rest in S ′
the particle moves around as though it is acted upon not only by the real force F
but also by a fictitious force

Ffict = −mA. (8.6)

A very simple and familiar illustration of such a fictitious force occurs if one
considers a ball on the floor of an accelerating car. As the car accelerates forwards
so the ball rolls towards the back of the car. From the viewpoint of someone
sitting in the car it is as if the ball is being pushed along. Of course there is no
physical force acting upon the ball: viewed from the point of view of a person
standing watching the car accelerate past, in the absence of any friction the ball
would remain at rest whilst the car accelerates. The very same fictitious force
is responsible for pressing the driver of the car back into their seat as the car
accelerates.

Another example is provided if we consider the case of a freely falling lift (or
elevator). As the lift accelerates downwards it can be used to define a non-inertial
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frame of reference. Any objects within the lift will experience not only their own
weight but also an upwards fictitious force of magnitude mg where g is the accel-
eration of the lift (i.e. the acceleration due to gravity). But this is none other than
the weight of the object. Hence an unfortunate passenger within the lift will feel
weightless as they plummet towards the ground. We invoked the lift for dramatic
effect but it should be clear that a person falling freely towards the ground will
feel weightless (in the absence of any air resistance). This is a very interesting
and intriguing result and in fact provides us with our first hint towards Einstein’s
theory of gravitation, also known as his General Theory of Relativity. It is worth
our spending a moment or two to consider just why the weightlessness of free fall
is a such remarkable phenomenon.

Take a look at Eq. (8.6). The mass which appears in this equation and which
determines the magnitude of the fictitious force is just the mass which appears in
Newton’s Second Law. Now, the exact cancellation of the weight of a body in
free fall only occurs if this mass is identically equal to the mass which appears in
the law of gravitation and which defines the weight mg of the body. This may not
at first strike us as a remarkable result but we really ought to be very impressed
that the inertial mass which appears in Newton’s Second Law is, as far as we can
tell, identical to the mass which appears in the law of gravity. After all, these are
two totally independent laws of physics. The significance of this equivalence of
inertial and gravitational mass can be glimpsed if we return to the example of a
lift in free fall within a uniform gravitational field and realise that physics within
the lift is totally indistinguishable from physics in a lift floating in the zero gravity
environment of outer space. The suggestion is that uniform gravitational fields can
be eliminated if we work in freely falling frames of reference. As we shall see
in Chapter 14.2, Einstein took this idea to its logical conclusion and succeeded
in eliminating the force of gravity altogether in exchange for a description of the
world in terms of an infinity of carefully chosen freely falling frames of reference
which, as we shall later show, is equivalent to a curved spacetime.

8.2 ROTATING FRAMES

Sitting on a merry-go-round, one is in a rotating frame of reference. In order to
remain at rest in that frame we feel a fictitious force called the centrifugal force
which pushes outwards and balances the real centripetal force pulling us towards
the centre. The centrifugal force is not the only fictitious force associated with
a rotating frame. You may even have noticed the other force if you have ever
attempted to play a game of ‘catch’ whilst riding on a merry-go-round: it is called
the Coriolis force and it arises when objects are in motion in a rotating frame of
reference. In this section we shall derive mathematical expressions to quantify the
role of the centrifugal and Coriolis forces.

Let us consider a set of co-ordinate axes which rotate with an angular velocity ω

about some axis1 and we shall place the origin somewhere on the axis of rotation.
For definiteness, you might think of such a set of axes fixed to the Earth, with the
origin located at the centre of the Earth. We denote the basis unit vectors in the

1 See Section 4.3 for the definition of ω.
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rotating frame as e′
i where i ∈ {1, 2, 3}. In this basis, the position of some point is

given by

r =
∑

i

x ′
ie

′
i = x ′

ie
′
i . (8.7)

Notice that we have introduced a new and important piece of notation: we have
dropped the summation sign in the final expression. This ought never to cause
confusion since the summation sign really was redundant: the repeated index signals
the need for a summation. We shall use this convention wherever appropriate in
the remainder of the book. In an inertial frame, with basis vectors ei , this same
vector is given by

r = xiei . (8.8)

Our task is as follows. We might imagine the point to represent the position of a
particle and then we should be interested to know the velocity and acceleration of
the particle. In the inertial frame the result is easy:

v = dxi

dt
ei (8.9)

and

a = d2xi

dt2
ei . (8.10)

However, the result is not so simple in the case of the rotating frame because the
basis vectors are time dependent. Thus we need to figure out how the e′

i change
with time. Figure 8.2 illustrates what is going on and from it we can see that in a
small interval of time, the unit vector e′

i changes its position from e′
i to e′

i + �e′
i

where the modulus of �e′
i is given by

|�e′
i | = sin φ �θ. (8.11)

The figure also makes it clear in which direction this little vector points: it is
perpendicular to both e′

i and ω. As a consequence of the basic properties of the
vector product, it is therefore parallel to the vector ω × e′

i , i.e.

�e′
i = �θ ω̂ × e′

i , (8.12)

where we use the conventional notation of putting a hat above vectors that are
made into unit vectors, i.e. ω̂ ≡ ω/ω. We can now take the limit of infinitesimal
displacements, and deduce that

de′
i

dt
= dθ

dt
ω̂ × e′

i

= ω × e′
i (8.13)

since ω = dθ/dt . Armed with this quantity, we can go ahead and compute the
velocity and acceleration of our particle at position r. In fact we can be even
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Figure 8.2 Illustrating the change in direction of a basis vector e′
i .

more general and compute the time rate of change of any vector in terms of its
components in the rotating frame. If we consider a general vector:

W = Wiei = W ′
i e

′
i (8.14)

then it follows that

dW
dt

= dWi

dt
ei

= dW ′
i

dt
e′
i + W ′

i

de′
i

dt

= dW ′
i

dt
e′
i + W ′

i ω × e′
i . (8.15)

The second term on the right hand side is equal to ω × W and hence we write

dW
dt

=
(

dW
dt

)
rot

+ ω × W. (8.16)

It should be clear why we chose to write the first term on the right hand side as we
have done for it is the time rate of change of the vector W as determined in the
rotating frame. The second term on the right hand side determines how the vector
W is carried around by the rotation. We can now use this expression to determine
the velocity and acceleration of our particle. For the velocity we get

dr
dt

=
(

dr
dt

)
rot

+ ω × r, (8.17)



164 Non-inertial Frames

i.e.
v = v′ + ω × r, (8.18)

where v′ is the velocity of the particle as determined in the rotating frame. To get
the acceleration we can use Eq. (8.16) again to determine the time rate of change
of v, i.e.

dv
dt

=
(

d(v′ + ω × r)
dt

)
rot

+ ω × (v′ + ω × r). (8.19)

The acceleration in the rotating frame is a′ = dv′/dt and using the product rule in
the case of a vector product allows us to write

a = a′ + 2ω × v′ + ω × (ω × r). (8.20)

Equations (8.18) and (8.20) are our final expressions relating the velocity and
acceleration in a rotating frame to the same quantities in an inertial frame. Notice
that if the point is at rest in the rotating frame then v′ = 0 and these equations
reduce to the familiar expressions which relate the velocity and acceleration to the
angular velocity and position vector for a particle undergoing circular motion, i.e.

v = ω × r (8.21)

and
a = ω × (ω × r). (8.22)

The second of these is none other than the equation for the centripetal acceleration
of a particle undergoing circular motion which we derived in Section 1.3.4. You
should certainly convince yourself that Eq. (8.22) describes a radial acceleration
of magnitude equal to ω2R, where R is the distance from the axis of rotation.
However, the expressions we have just derived are more general and allow also
for the case where the particle is moving in the rotating frame.

Just as we did in the case of linear acceleration, we can substitute for the accel-
eration a in Newton’s Second Law in order to derive the fictitious force which acts
in the non-inertial frame, i.e.

Ffict = −2mω × v′ − mω × (ω × r). (8.23)

The second term on the right hand side is the centrifugal force whilst the first term
is something new. It is called the Coriolis force and it acts upon objects which are
moving within a rotating frame of reference.

Example 8.2.1 Consider the rotating turntable illustrated in Figure 8.3. Show that
(a) a particle rolled radially outwards from the centre will be deflected as illustrated
and (b) that a particle rolled radially inwards from a point on the edge of the
turntable will be deflected in the opposite direction.
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Figure 8.3 Trajectory of a ball rolled on a rotating disk.

Solution 8.2.1 The first thing to realise is that the centrifugal force always acts
radially outwards and hence it does not affect the general argument. Our attention
therefore is focused upon the Coriolis force. In case (a), for the anti-clockwise
rotation illustrated in the figure, ω points out of the plane of the page. The velocity in
the rotating frame points radially outwards and hence the vector −ω × v′ pushes the
particle as illustrated. In case (b), the velocity vector points in the opposite direction
and so the particle is pushed in the opposite direction. This result might at first seem
counter intuitive, especially the result of part (b). There is however a simple way
to understand what is happening. Viewed from an inertial frame, when the ball is
released from the rim of the turntable it has both a radial and tangential component
to its velocity. The tangential component is equal to ωR where R is the radius of the
turntable. Now, after it has moved inwards slightly it is at a distance smaller than
R from the centre but its tangential component of velocity is still (approximately)
equal to ωR and this speed is faster than is needed to keep the particle travelling on
a radius vector. Hence the particle moves in the direction of the rotation. Crudely
stated, it is as if the particle has been thrown in the direction of motion with a speed
equal to the speed of the rim of the turntable. The opposite is true for the case
where the particle is rolled from the centre: it never has enough tangential speed to
keep up with the rotating disk and hence it moves in the opposite direction to the
rotation.

8.2.1 Motion on the Earth

Motion in the vicinity of some region on the Earth’s surface is most conveniently
described by employing a system of co-ordinates fixed to the Earth. Such a system
is illustrated in Figure 8.4 and this choice of basis vectors is most convenient for
describing physics in the vicinity of a point at latitude λ on the Earth’s surface (in
principle they can of course be used to describe any physics anywhere else in the
Universe). Looking at Figure 8.4, it should be clear that (for −π/2 < λ < π/2)
the basis vector e2 points to the North, e1 points East (i.e. into the plane of the
page) and e3 points upwards (i.e. radially outwards from the centre of the Earth).
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Figure 8.4 A non-inertial system of co-ordinates defined at rest relative to the Earth.

Although we have drawn the basis vectors on the surface of the Earth we should
remember that the basis vectors define only directions in space. To complete our
specification of the co-ordinate system we need also to specify the location of the
origin and it is convenient to choose the origin to be located at the centre of the
Earth. In this case the point on the surface of the Earth at which we have drawn
the basis vectors is located at position

x = R e3 (8.24)

and the angular velocity of the Earth is

ω = ω(cos λ e2 + sin λ e3). (8.25)

We are now ready to explore the influence of the Earth’s spin upon physics
occurring in the vicinity of x, which is a general point on the Earth’s surface.
We start by computing the centrifugal force acting upon a particle located at x.
Of course we already know the answer from our prior understanding of circular
motion: it should be a force of magnitude mω2R cos λ pointing in the er direction
(see Figure 8.4). To warm up, let us compute it using Eq. (8.23). First we compute
the vector ω × x:

ω × x = ωR cos λ e1 (8.26)

and since ω × e1 = −ωer it follows that the centrifugal force is

−mω × (ω × r) = mω2R cos λ er , (8.27)
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as we anticipated. Phenomenologically, the centrifugal force has the effect of
slightly reducing the weight of objects on the surface of the Earth, the effect being
greatest at the equator where cos λ = 1. Note also that the centrifugal force does
not acts downwards, rather it acts radially outwards from the axis of the Earth’s
rotation. This means that a pendulum suspended above the Earth’s surface will not
point exactly towards the centre of the Earth.

Example 8.2.2 Compute the maximum deflection of a pendulum suspended close
to the surface of the Earth.

Solution 8.2.2 The net force on a particle suspended close to the Earth’s surface
at a latitude λ is given by the sum of the gravitational force (i.e. the weight) and
the centrifugal force:

F′ = m g − m ω × (ω × r).

We already deduced the centrifugal force, but to determine the deflection of a pen-
dulum we should express the vector er in terms of our basis vectors, i.e.

er = − sin λ e2 + cos λ e3 (8.28)

so that
F′ = −ω2R cos λ sin λ e2 + (ω2R cos2 λ − g) e3

since g = −g e3.
Now for a pendulum at rest this net force is balanced by the tension in the pen-

dulum, and so the pendulum aligns itself with this force and it is thus deflected at
an angle α to the vertical. This deflection is illustration in Figure 8.5 in the case of
a pendulum hanging in the northern hemisphere and is given by

tan α = ω2R cos λ sin λ

g − ω2R cos2 λ
.

The maximum deflection occurs at λ = 45◦ (you should convince yourself that this
is indeed the case: note there is no deflection at the poles or on the equator). Since

geff

Northern
hemispherea

N

Figure 8.5 The deflection α of a pendulum suspended close to the surface of the Earth.
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the deflection is very small, we can use the small angle approximation to write

αmax ≈ ω2R

2g
≈ 0.1◦

and we have substituted for the angular velocity of the Earth: ω = 2π/(1 day)

≈7.3 × 10−5s−1.

Let us now turn our attention to the case of an object moving with velocity v
on the Earth’s surface. The Coriolis acceleration is given by

1

m
FCor = −2 ω × v

= −2

∣∣∣∣∣∣
e1 e2 e3

0 ω cos λ ω sin λ

v1 v2 v3

∣∣∣∣∣∣
= 2ω (v2 sin λ − v3 cos λ) e1

−2ω v1 sin λ e2 + 2ω v1 cos λ e3. (8.29)

From now on we shall ignore the e3 component since it is negligible compared to
the acceleration due to gravity, which acts also in this direction. Let us now use
Eq. (8.29) to consider two different types of motion close to the surface of the
Earth.

First we take a look at the case of an object dropped downwards. Initially, the
object has velocity v = 0. Our goal is to deduce its velocity sometime later. The
precise motion is rather complicated because it is non-linear, i.e. once the particle
starts to move the size of the Coriolis and centrifugal forces changes with time, but
if we are happy to neglect terms in ω2 (and higher powers of ω) then the situation
is much simpler. For a start, we can therefore neglect the centrifugal acceleration.
Moreover, the motion in the e3 direction is dominated by the force of gravity, i.e.

v3 ≈ −g t.

All that remains is to consider the v1 and v2 components of the velocity. We obtain
these by integrating the accelerations, i.e.

v1 ≈
∫ t

0

(FCor)1

m
dt = 2ω

∫ t

0
(v2 sin λ + gt cos λ) dt

v2 =
∫ t

0

(FCor)2

m
dt = −2ω

∫ t

0
(v1 sin λ) dt. (8.30)

These are coupled equations and as such we cannot go ahead and solve them for v1

and v2. However, we have not made full use of the assumption that we can neglect
terms which are proportional to ω2. Immediately we see that in this approximation
v2 = 0 for all t , since the first of the two equations (8.30) tells us that v1 ∝ ω and
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this implies, using the second equation, that v2 ∝ ω2. This is of course a major
simplification and we get

v1 ≈ ωgt2 cos λ. (8.31)

The bottom line is therefore that a particle dropped from rest relative to the Earth
will not fall directly towards the centre of the Earth but instead will be deflected
slightly to the East. Like the motion of the ball on the turntable, this is not too hard
to understand. The easterly direction is special because it points in the direction
of the Earth’s rotation, as can be seen in Figure 8.4. A ball dropped from a height
above the ground must move this direction because, at the instant of release, its
speed in the easterly direction (as viewed in an inertial frame) is too great for it to
fall only along a radius vector. As a parting remark, you might like to see if you can
convince yourself that the neglect of terms quadratic in ω is a good approximation
if ω2R � g and if the total time of the motion is much less than 1 day.

Secondly, we shall consider the case of an object moving horizontally on the
Earth’s surface. In this case, we know that v3 = 0 for all times and the motion is
in a plane. The Coriolis acceleration is just

1

m
FCor = 2ω sin λ (v2e1 − v1e2). (8.32)

The general situation for motion in the northern hemisphere is illustrated in
Figure 8.6 and it shows the Coriolis force acting in the direction of the vector
−ω × v. In the northern hemisphere sin λ > 0 and the object is always pushed to
the right. In the southern hemisphere sin λ < 0 and the object is pushed to the
left. At the equator sin λ = 0 and there is no Coriolis force. It is a consequence of
the Coriolis force that large bodies of air do not move in straight lines around the
Earth. In the northern hemisphere the air swirls in a clockwise direction as viewed
from above whilst in the southern hemisphere it swirls in an anti-clockwise
direction. Cyclones are regions of low pressure and as such the air around the
cyclone moves towards the centre. As it moves it is deflected as a result of the

(E)

(N)

Northern hemisphere

v

x2

x1

FCor

Figure 8.6 The Coriolis force acting on a body moving in the northern hemisphere.
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Coriolis force2. The result is the menacing spiralling motion familiar from satellite
pictures; the rotation always occurring in opposite directions in the northern and
southern hemispheres.

Example 8.2.3 The effect of the Coriolis force on smaller bodies moving at every-
day speeds is usually negligible. In this example we are asked to compute the size of
the Coriolis force on a car of mass 1500 kg travelling due North across Manchester
at a speed of 100 km h−1.

Solution 8.2.3 Let us first convert the speed into SI units, i.e.

v = 100 × 103

60 × 60
ms−1 = 28 ms−1.

In addition we need to know that Manchester is at a latitude λ = 53◦. Now, since
the car is travelling due North, the Coriolis force is simply given by

1

m
FCor = 2ωv sin λ

= 2 × 7.3 × 10−5 × 28 × sin 53◦ ms−1

= 4.9 N. (8.33)

PROBLEMS 8

8.1 The centrifugal force acting on a particle of mass m at position r in a frame
that is rotating with angular velocity ω is

−mω × (ω × r)

and it appears at first sight to depend upon the position of the origin. Convince
yourself that this is not the case provided the origin lies somewhere on the
rotation axis.

8.2 A bucket of water rotates about its symmetry axis in the Earth’s gravitational
field (the symmetry axis is vertical). In a frame which rotates with the bucket,
determine the direction of the net force that acts on a small mass of water
(which lies a distance r from the rotation axis) due to its weight and the
centrifugal force which acts on it. You may assume that all elements rotate
with the same angular velocity ω. Convince yourself that the tangent to the
surface of the water at radius r should be orthogonal to this force and hence
prove that the surface of the water forms a paraboloid of revolution.

8.3 A particle is released from rest at the top of a tall building of height 150m.
If the building is at a latitude of 53◦N, determine that the particle strikes the
ground with a small easterly deflection and compute the size of the deflection.
You may neglect air resistance.

2 Anti-cyclones are regions of high pressure and the air is correspondingly pushed away from the centre.
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8.4 A small bead of mass m is constrained to move on a hoop of radius R.
The hoop rotates with a constant angular speed ω about a vertical axis which
coincides with a diameter of the hoop. Find the angular speed � above which
a bead located originally at the bottom of the hoop begins to slide upwards
and determine the position to which it will rise.





9
Gravitation

Throughout Part I of this book, we focused our attention on the basic principles
of motion as articulated by Newton. On occasion we invoked the force of grav-
ity in order that we might consider interesting physical applications of Newton’s
laws. However in most cases we assumed that the motion was taking place in
a sufficiently small region of space that the gravitational field could be assumed
constant. However, thanks again to Newton, we now understand that gravity is a
force that acts between all bodies such that the force between any two bodies is
directly proportional to the product of their masses and inversely proportional to
the square of the distance between them. Of course we know that gravity is not
the only force at work in the natural world. Electricity and magnetism, unified
by Faraday, Ampère and Maxwell into the theory of electromagnetism are also
abundantly evident and are ultimately responsible for light itself. In addition, we
now know that the atomic nucleus is prevented from exploding under the repulsive
influence of the Coulomb force which acts between its proton constituents by a
further force, the strong nuclear force, which acts only over very tiny distances.
Finally, the burning of the Sun can only be understood once we recognise the
existence of a fourth fundamental force: the weak force, responsible also for the
process of nuclear beta decay. So it seems that physical phenomena throughout the
Universe can be thought of as arising out of the interactions of matter which occur
as a result of these four fundamental forces. All other forces, such as the tension
in a spring or the force which drives forwards a sailing boat, are none other than
complicated consequences of one or more of these fundamental forces.

Of all the forces in nature, Newton’s Law of Gravity sits alongside Coulomb’s
Law of electrostatics (which is also described by an inverse square law and is a
part of the electromagnetic theory) in being simple enough that we can make very
significant progress in understanding its consequences without too much hard work.
It is for that reason that we focus our attention in this chapter on gravity and over
the next few pages we shall use Newton’s theory of gravity in order to understand
fully gravitational systems containing two bodies. That will be sufficient for us to
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precisely understand the elliptical orbits of planets within our solar system and the
hyperbolic trajectories of comets.

Before launching into Newton’s theory of gravity, it is perhaps worth recapping
that, following Einstein’s work on the General Theory of Relativity, we now under-
stand that Newton’s theory is only an approximation to Einstein’s more accurate
theory. Nevertheless, it is an excellent approximation in almost all circumstances in
everyday life. For example, NASA’s Apollo missions to the Moon were conducted
entirely using calculations based upon Newton’s theory. That said, there is one
area of life where Newton’s theory of gravity is inadequate. The GPS system uses
a network of satellites orbiting the Earth every 12 hours (or so). Accurate position
measurements require very accurate time keeping on the orbiting satellites and as
a result it is necessary to account not only for Special Relativistic corrections due
to the motion of the satellites but also the General Relativistic corrections which
correct Newton’s theory of gravity. Without these corrections, the GPS system
would fail within minutes. At the end of this book we shall discuss how Einstein’s
General Relativity comes about and illustrate how it corrects Newton’s theory, but
for now we satisfy ourselves with a detailed account of Newtonian gravity.

9.1 NEWTON’S LAW OF GRAVITY

Let us start by writing down Newton’s Law of Gravity. Illustrated in Figure 9.1
are two point masses, m and M , separated by a distance, r . Newton’s Law tells us
that a force F acts on the mass m such that

F = −GMm

r2
er , (9.1)

where er is a unit vector pointing from the mass M towards the mass m, as
illustrated. Moreover, a force of equal magnitude but opposite direction also acts
upon the mass M . In short, the two masses attract each other with a strength
described by an inverse square law. Although we have taken care to specify the
law for point masses (i.e. idealized pointlike masses) we shall show in the next
section that the law also applies to extended spherical bodies provided that r is the
distance between the centres of the two masses.

As we shall very soon discover, the fact that the gravitational force acts along
the line joining the two bodies and depends only on the distance between them

M

m
F

er

Figure 9.1 The gravitational force on a mass m due to a second mass, M .
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provides us with the opportunity to solve for the motion of two gravitating bodies
without too much hard work. The general motion for more than two bodies is rather
more complicated and we won’t address any problems of that nature, although of
course no new physics is involved.

In Section 3.2, we showed that a uniform gravitational field of force is ‘con-
servative’ and hence that it can be described using a potential energy function.
Specifically, we showed that the work done against gravity in moving a body
around in a uniform gravitational field does not depend upon the details of the
body’s journey, rather it just depends on the difference in height between its start-
ing and finishing points. Consequently, we can define a potential energy function
such that for a particle moving around under the action of a conservative force the
sum of the kinetic and potential energies of the particle is a constant. The fact that
the law of conservation of energy can be expressed so simply is often very helpful
when it comes to solving problems.

According to Newton’s Law, Eq. (9.1), the gravitational field in the vicinity of
a point on the Earth’s surface is not exactly uniform: it decreases slightly as the
distance from the centre of the Earth increases and it always points towards the
centre of the Earth. Of course it is often a good approximation to assume the field is
uniform but we should keep in mind that really it varies in strength and direction
from point to point. Let us now show that the gravitational force described by
Newton’s Law is also conservative and hence that we can go ahead and define a
potential energy function.

To be specific let us consider the gravitational force on the mass m due to the
mass M . Let us compute the work done by this force as the particle of mass m

moves from a point A to a point B in the field of the other mass M which we
consider as being at some fixed point in space. Let us start by assuming that the
gravitational force acting on m is conservative. It means that the work done on the
particle can be written

∫ B

A

F · dx = −U(xB) + U(xA), (9.2)

where U(x) is the potential energy of the particle when it is at position x. Notice
that the sign of U(x) is purely a matter of convention and that for any U(x) we
can also add or subtract an overall constant without changing Eq. (9.2). It is our
job to introduce a potential energy function and we must be careful to interpret it
correctly. The minus sign in Eq. (9.2) was chosen so that the increase in the kinetic
energy of the mass m as it moves in the gravitational field (no other forces are
present) from A to B is given by

T (xB) − T (xA) = −U(xB) + U(xB) (9.3)

i.e.
T (xA) + U(xA) = T (xB) + U(xB) (9.4)

and so the sum of the kinetic and potential energies is a constant, which we usually
call the total energy. Applied locally, to infinitesimal displacements, Eq. (9.2) can
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be written as

F · dx = −dU. (9.5)

Using the chain rule, we can therefore write

F · dx = −
(

∂U

∂x1
dx1 + ∂U

∂x2
dx2 + ∂U

∂x3
dx3

)

= −∂U

∂xi

dxi. (9.6)

In the second line we have again made use of the summation convention
introduced in Eq. (8.7). Since the left hand side is equal to Fi dxi and the equality
is true for any infinitesimal line element it follows that we must be able to write
the components of the force as

Fi = −∂U

∂xi

(9.7)

which in vector notion is usually written as

F = −∇U(r), (9.8)

where ∇ is known as the gradient operator defined by

∇ ≡ ei

∂

∂xi

. (9.9)

Thus, if the gravitational field is to be conservative then it follows that it must be
possible to express it as the gradient of a scalar field, as in Eq. (9.8). Put another way,
if we can find a scalar field U(r) whose gradient gives the force acting upon the mass
m then we will have succeeded in showing that the gravitational field is conservative.

It is not too hard to come up with the correct potential energy function. If we
consider

U = −GMm

r
(9.10)

then we can go ahead and compute the corresponding components of the force
using Eq. (9.7). Thus we just need to compute

∂U

∂xi

= dU

dr

∂r

∂xi

. (9.11)

If we put the mass M at the origin then r2 = x2
1 + x2

2 + x2
3 and so

∂r

∂xi

= xi

r
. (9.12)
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Thus

Fi = −GMm

r2

xi

r
. (9.13)

Since r = xiei we can write this equation as

F = −GMm

r2

r
r
, (9.14)

which is none other than Newton’s Law since r/r = er . Eq. (9.10) therefore
provides us with a potential energy function which we can use to compute the
work done on our particle of mass m as it moves in the field of the mass M .
The existence of this function implies that the gravitational force is conser-
vative.

In choosing Eq. (9.10) to define the gravitational potential energy of our mass m

we have also specified that the zero of potential energy is at r = ∞. This choice
has a nice physical interpretation. Let us consider the case where the mass m starts
from rest infinitely far away from the mass M , then the conservation of energy
tells us that

U(∞) + 0 = U(r) + 1

2
mv2. (9.15)

The zero on the left hand side expresses the fact that the particle starts out at rest.
Thus we see that −U(r) is equal to the kinetic energy that a particle of mass m

would have after falling to a distance r from the mass M starting from an initial
speed of zero at infinity. Equivalently, −U(r) is the work done by gravity on the
particle as it falls from infinity to r .

9.2 THE GRAVITATIONAL POTENTIAL

So far we have talked about the force due to gravity acting on and the gravita-
tional potential energy of a particle of mass m due to the field associated with a
mass M . There is nothing wrong with such an approach however the idea that the
mass M produces a gravitational field independent of whether there is another mass
present or not is a very intuitive one and one that is conveniently expressed when
we think in terms of the gravitational field strength and the gravitational potential,
which are defined as follows.

The gravitational field strength, g, is simply defined to be the force which would
act on a unit mass placed in the field whilst the gravitational potential, �, is the
gravitational potential energy of a unit mass placed in the field, i.e.

g ≡ F
m

,

� ≡ U

m
(9.16)
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and hence

g = −∇�. (9.17)

Being a scalar function, the gravitational potential is usually much easier to
deal with than the field strength, which is a vector quantity. Moreover, all of
the information we need is contained in the potential for all we need to do is
differentiate it in order the compute the field strength. Thus, the conservative nature
of the gravitational force has led to a big calculational simplification. Our general
task will therefore be to compute the gravitational potential for whichever problem
we are faced with. Given this we can compute the other interesting quantities.

Let us next show how to compute the gravitational potential for a general dis-
tribution of mass which is described by a density ρ(x) (this is the mass per unit
volume at position x). Figure 9.2 illustrates the general situation and our goal is
to determine the potential at a general point P. To do this we must compute and
sum up the potential at P arising from each and every tiny element of mass, like
the one illustrated in the figure. The potential at P arising from a volume element
dV located at position x′ which has a mass equal to ρ(x′) dV is given by

d�(x) = −Gρ(x′) dV

r
. (9.18)

Hence the potential at P arising from a general distribution of mass is the sum over
all such volume elements, i.e. it is the triple integral

�(x) = −G

∫
V

ρ(x′)
r

dV. (9.19)

r

P

dV

O

x′ x

Figure 9.2 To compute the potential at P due to a general distribution of matter we sum
over the infinity of volume elements dV .
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x

P

y

dV

q

Figure 9.3 A spherical distribution of matter.

The use of this formula is perhaps best illustrated in an example. Let us use it
to determine the potential arising due to a uniform sphere of radius R and of total
mass M . Figure 9.3 defines the various quantities of interest. Consider breaking
the sphere into lots of tiny volume elements. In spherical polar co-ordinates, the
volume of a general element is

dV = r2 sin θ dr dθ dφ (9.20)

and the mass of this element is just equal to

dM = dV
M

4πR3/3
. (9.21)

Thus the potential at P arising from this element is equal to

d� = −G dM

y
(9.22)

and the potential is obtained after summing over all the elements which make up
the sphere, i.e.

� = −G
3M

4πR3

∫ R

0
dr

∫ 2π

0
dφ

∫ π

0
dθ r2 sin θ

y
. (9.23)

The azimuthal φ integral is easy enough and just gives a factor of 2π but the other
integrals are harder since the distance y varies as θ and r change. We need to
express y in terms of r and θ , and we can do this using the cosine rule:

y2 = r2 + x2 − 2xr cos θ. (9.24)

We have to choose whether to do the r or the θ integral first. Let us choose the θ

integral, in which case we must evaluate
∫ π

0
dθ

sin θ

(x2 + r2 − 2xr cos θ)1/2
(9.25)
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for a fixed value of r . It is actually simpler if we change variables and use y instead
of θ as the integration variable. In this case Eq. (9.24) gives that

y dy = xr sin θ dθ (9.26)

and hence
∫ π

0
dθ

sin θ

(x2 + r2 − 2xr cos θ)1/2
=

∫ x+r

x−r

dy

xr
= 2

x
. (9.27)

We can now substitute this back into Eq. (9.23), in which case

� = −G
3M

2R3

∫ R

0
dr

2r2

x

= −GM

x
, (9.28)

which is exactly equal to the potential of a point mass M located at the origin,
a result that we quoted without proof in the previous section. You might like to
convince yourself that this result holds generally for any spherically symmetric
distribution of matter, i.e. one for which the mass density depends only upon r and
not upon θ or φ. The case of uniform mass density which we considered here is
one example of such a distribution.

Example 9.2.1 Show that the speed of a star orbiting in an arm of a spiral galaxy
at a radius r far from the centre of the galaxy should vary as 1/

√
r if we assume

that the mass of the galaxy is located in the spherical bulge at the centre of the
galaxy.

Solution 9.2.1 Figure 9.4 illustrates the situation. We shall approximate the central
bulge of stars by a spherically symmetric distribution of matter of total mass M and

u(r)

M(r)

Figure 9.4 A star orbiting the centre of a galaxy. The shading denotes the presence of dark
matter.
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assume that the mass outside this region is negligible. In which case, a star at radius
r sits in a gravitational field which, by virtue of the result we have just proven, is
equivalent to that of a point mass M located at r = 0. Since the star is orbiting
the centre of the galaxy, the gravitational attraction to the centre must provide the
necessary centripetal acceleration, i.e.

mv2

r
= GMm

r2
,

where m is the mass of the star. Thus the speed of the star is

v =
√

GM

r
.

Remarkably, this behaviour is not what is seen in astronomical observations.
Figure 9.5 shows the astronomical data for a typical galaxy and we can clearly
see that the large r behaviour is approximately constant and certainly not falling
as 1/

√
r . One way to explain the data is to assume that a substantial component

of the mass of the galaxy is invisible to the astronomers and that this component
extends out to large distances from the centre of the galaxy (compared to the size
of the central bulge). Other types of observation indicate that this mass cannot be
comprised solely of large planets which are too dark to be visible and so the nature
of this unseen mass is as yet unknown. Perhaps it is made up from a new type of
elementary particle which is invisible to ordinary detection methods. Certainly the
origin of this ‘Dark Matter’ is one of the big mysteries in modern physics.
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Figure 9.5 The rotation curve for stars orbiting the centre of the galaxy NGC3198 (data
from K.G. Begeman, Astron. Astrophys. 223 (1989) 47).
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9.3 REDUCED MASS

The remainder of this chapter will focus upon solving problems involving the
motion of two bodies under their mutual gravitational interaction. There being two
bodies, we need two vectors (and hence six numbers) to specify their co-ordinates
at some instant in time and the motion of each particle is determined by solving
the corresponding equation of motion, i.e.

ẍ1 = − 1

m1
F(r),

ẍ2 = + 1

m2
F(r), (9.29)

where r = x2 − x1 is the relative position vector and m1 and m2 are the masses of
the two bodies1. We assume that the system is isolated and that the force acting
upon the particles depends only upon their relative positions (this is of course true
for gravitational interactions). The general configuration is illustrated in Figure 9.6.
At first sight, these are two coupled second order differential equations (they are
coupled since the relative position depends upon x1 and x2) and as such they
might require some effort to solve. However the situation can be simplified very
substantially once we appreciate that the centre of mass of the system moves with
a constant velocity since no external forces are acting. As a result, we can trade
off the six numbers which specify the co-ordinates of the two particles for three
numbers specifying the co-ordinates of the centre of mass, R, and three more
numbers specifying the relative positions of the particles, r. The motion of the
centre of mass is easy and all of the interesting dynamics resides in the behaviour
of the vector r. Let us put this intuition into mathematical language. What we
have described is a change of variables, i.e. we aim to recast Eq. (9.29) in terms

m1

O

x1

x2

r

m2

Figure 9.6 Two masses moving under the influence of their mutual gravitational interaction.

1 In this equation we have introduced a shorthand notation that is very common in dynamics. We
represent the derivatives with respect to time by placing ‘dots’ above the object being differentiated.

e.g. ẋ ≡ dx
dt

and ẍ ≡ d2x

dt2
.
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of uncoupled equations involving R and r. This is similar to the approach used
to study two-body collisions in Section 3.3. The non-acceleration of the centre of
mass is a consequence of momentum conservation for an isolated system, i.e.

m1ẍ1 + m2ẍ2 = 0 (9.30)

and we look for a point R which does not accelerate, i.e. the centre of mass satisfies
the equation

(m1 + m2)R̈ = 0. (9.31)

Equations (9.30) and (9.31) have the solution

R = m1x1 + m2x2

m1 + m2
. (9.32)

Subtracting the two equation in Eq. (9.29) yields

r̈ =
(

1

m1
+ 1

m2

)
F(r). (9.33)

Notice that equations (9.32) and (9.33) are entirely equivalent to the pair of
equations (9.29) but have the virtue that they are decoupled from each other. Our
attention is now focussed upon Eq. (9.33) and once we have solved it we will have
solved the general motion of our two particles since

x1 = R − m2

m1 + m2
r,

x2 = R + m1

m1 + m2
r. (9.34)

We shall conclude this section by noting that Eq. (9.33) can be written in the form

F(r) = µr̈, (9.35)

where

µ = m1m2

m1 + m2
(9.36)

is none other than the ‘reduced mass’ of the system that we encountered in Section
3.3.1. This way of writing the equation of motion makes explicit the fact that the
motion of this two body system is mathematically equivalent to the motion of a
single particle of mass µ under the action of the force F. That is, the problem
in hand reduces to a problem whose mathematical analysis is exactly the same
as the analysis of the motion of a single particle. Of course we should always
remember that there are really two particles and that we are solving for their
relative position.
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9.4 MOTION IN A CENTRAL FORCE

Equation (9.35) certainly constitutes progress in solving for the general motion of
two isolated bodies. We shall now make two further assumptions which will allow
us to solve the problem completely. Firstly, we assume that the force is ‘central’,
which means that it acts along the line joining the particles, i.e. F ∝ er . Secondly,
we assume that the force is conservative which, for a central force, means that it
depends only on the distance between the particles and not on their orientation, i.e.
F ∝ f (r)er where f (r) is related to the corresponding potential via

dU

dr
= f (r).

These are not very restrictive assumptions and the gravitational interaction between
two particles satisfies them both.

Our task is to solve

µr̈ = −dU

dr
er (9.37)

which is still a system of three coupled second order differential equations. Now,
since the force is conservative we know that the sum of the kinetic and potential
energies must be conserved. In addition, the central nature of the force leads also
to the conservation of angular momentum, as we shall now show.

The total angular momentum of the system about some origin is

L = m1x1 × ẋ1 + m2x2 × ẋ2. (9.38)

Substituting using Eq. (9.34) and choosing to work in the centre-of-mass frame
(i.e. Ṙ = 0) implies that

L = µr × ṙ. (9.39)

This is easily seen to be a constant vector since

dL
dt

= µṙ × ṙ + µr × r̈ = 0 (9.40)

and we used the fact that r̈ is parallel to r for a central force. Outside of the
centre-of-mass frame, angular momentum is of course still conserved (this is just a
result of the central nature of the force) but it is only in that frame that the angular
momentum takes on the form written in Eq. (9.39). The existence of these two
conserved quantities will help us greatly.

Indeed, the conservation of angular momentum implies immediately that the
motion must be planar. Generally speaking the position vector r is constrained
always to lie in the plane which is perpendicular to the angular momentum vector.
This follows immediately from Eq. (9.39) since the nature of the vector product
implies that L is always perpendicular to the position vector r. Now since the
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angular momentum vector is constant, it follows that the the position vector lies
always in the same plane and hence the motion is planar.

For motion in a plane, we can use polar co-ordinates to write (see Section 1.3.42)

ṙ = ṙer + rθ̇eθ (9.41)

thus, using Eq. (9.39),

L = µr2θ̇ er × eθ . (9.42)

Example 9.4.1 Show that the radius vector r sweeps out area at a constant rate.

Solution 9.4.1 Figure 9.7 illustrates how the radius vector sweeps out area in a
plane. For an infinitesimal displacement dr = r dθ , the area swept out is

dA = 1

2
r2 dθ

and hence

dA

dt
= 1

2
r2θ̇ .

Since |L| = L = µr2θ̇ it follows that

dA

dt
= L

2µ
(9.43)

which is a constant of the motion. This result is often known as Kepler’s Second
Law.

r

dr

Figure 9.7 Kepler’s Second Law informs us that the radius vector r sweeps out area at a
constant rate.

2 Note that we have changed to the notation more commonly used for basis vectors in advanced dynam-
ics, i.e. er ≡ r̂ and eθ ≡ θ̂ .
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Armed with the conservation of energy we can write that

E = 1

2
µṙ2 + U(r)

= 1

2
µṙ2 + 1

2
µr2θ̇2 + U(r) (9.44)

and we have used Eq. (9.41). Furthermore, we can eliminate the dependence upon
θ by introducing the angular momentum L, i.e.

E = 1

2
µṙ2 + L2

2µr2
+ U(r). (9.45)

This is a very powerful equation for it depends only upon the variables r and t ,
all other quantities being constants. Re-arranging we have

dr

dt
=

√
2

µ

(
E − U(r) − L2

2µr2

)
(9.46)

and thus once we are given a particular potential U(r) we can go ahead and
integrate to obtain r(t). Notice also that the motion looks exactly like the motion
in one-dimension of a particle of mass µ in a potential

Ueff = U(r) + L

2µr2
. (9.47)

That is as far as we shall take the general development. Let us now consider the
particular case of a gravitational field.

9.5 ORBITS

Equation (9.46) already allows us to make some very general statements about
the types of solution we expect. Figure 9.8 shows a plot of the effective potential
Ueff. At large r the Newtonian 1/r term dominates whereas at small r the 1/r2 term
dominates, we shall call this term the centrifugal barrier term. Now E = K + Ueff

where K = 1
2µṙ2 > 0 and it follows that E > Ueff. Thus for motion occurring

with total energy E, only those values of r for which Ueff < E are accessible.
Figure 9.8 shows the three possible scenarios. In scenario (a) E > 0 and only

the region r < r0 is inaccessible, i.e. there is insufficient energy for the system
to access this region. This corresponds to a motion where there is a distance of
closest approach to the point r = 0 but no maximum distance. This type of motion
is illustrated in Figure 9.9(a). It helps to have a particular system in mind, so we
might consider the case where one of the bodies is much lighter than the other, e.g.
a comet moving under the influence of the Sun’s gravity. In this case the centre
of mass of the two body system is virtually co-incident with the centre of the Sun
and the reduced mass is equal to the comet’s mass to a very good approximation.
Scenario (a) then corresponds to an unbound orbit where the comet is deflected by
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r2r1

r3r0

r

 ∼1/r

∼1/r2

Ueff

Figure 9.8 The effective potential Ueff.

the Sun. Scenario (b) occurs when the energy E < 0. In this case, the trajectory
is bound to lie in the region r1 < r < r2. In the comet example, this corresponds
to a bound orbit with the comet orbiting the Sun in an ellipse, as illustrated in
Figure 9.9(b). The orbits of the planets around the Sun also correspond to this
type of E < 0 bound orbit. Finally, scenario (c) occurs when the total energy is
equal to the value of the effective potential at its minimum. In this case the orbit
is constrained to a single value of r = r3 which corresponds to circular motion, as
illustrated in Figure 9.9(c). We see now why the 1/r2 contribution to the effective
potential was called the centrifugal barrier term. In the case of circular motion it
is the term which exactly balances the gravitational pull towards the centre. These

(b) ellipse

(c) circle

(a) hyperbola

Figure 9.9 The three types of orbit allowed for general two-body motion in a conservative
and central field of force.
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remarks provide us with a good qualitative insight into the solutions. However it
is now time to compute the precise form of the solutions mathematically.

Let us begin by re-writing Eq. (9.46) in the case that the force acting is gravi-
tational:

ṙ =
√√√√2

(
η + GM̃

r

)
− λ2

r2
(9.48)

and we have introduced the more convenient energy per unit mass η ≡ E/µ and
angular momentum per unit mass λ ≡ L/µ. We have also introduced the mass
M̃ ≡ Mm/µ. In the case that M � m, which is often the case, we can assume
M̃ = M without introducing any significant error. Integrating this equation gives
us r(t), however we would rather have r as a function of the polar angle θ since
such a functional dependence will directly describe the spatial trajectory. The
dependence upon t can easily be traded for a dependence upon θ since we know
that θ̇ = λ/r2 and hence

ṙ = θ̇
dr

dθ

= λ

r2

dr

dθ
. (9.49)

Thus we can write

dr

dθ
= r2

λ

√√√√2

(
η + GM̃

r

)
− λ2

r2
(9.50)

and hence

θ =
∫

dr

r2

[
2

λ2

(
η + GM̃

r

)
− 1

r2

]−1/2

. (9.51)

Although this integral looks rather foreboding it is in fact one that we can perform.
Let us first change variables to u ≡ 1/r , in which case

θ = −
∫

du

[
2

λ2

(
η + GM̃u

)
− u2

]−1/2

. (9.52)

By completing the square, this integral can be manipulated into the form∫
dw/

√
c2 − w2 and this is a standard integral. Thus we write

2

λ2

(
η + GM̃u

)
− u2 = −

(
u − GM̃

λ2

)2

+
[

G2M̃2

λ4
+ 2η

λ2

]
. (9.53)
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Putting

w ≡ u − GM̃

λ2

and

c2 ≡ G2M̃2

λ4
+ 2η

λ2

we have

θ = −
∫

dw√
c2 − w2

= cos−1
(w

c

)
+ θ0, (9.54)

where θ0 is a constant of integration which we are free to choose equal to zero
(because it corresponds only to a shift in what we call the zero on the polar angle
scale). Thus we have the solution that w = c cos θ and it is time to change back
to more familiar variables, i.e.

1

r
− GM̃

λ2
= GM̃

λ2

√(
1 + 2ηλ2

G2M̃2

)
cos θ. (9.55)

This is our final answer, for it tells us how r varies with θ . However, it is somewhat
cluttered with symbols and for that reason let us introduce two more quantities

α ≡ λ2

GM̃
(9.56)

and

ε ≡
√(

1 + 2ηλ2

G2M̃2

)
. (9.57)

Notice that these are both constants of the motion. Thus the polar equation
describing the spatial trajectory r(θ) is simply

1

r
− 1

α
= 1

α
ε cos θ (9.58)

which can be re-arranged to read

r = α

1 + ε cos θ
. (9.59)



190 Gravitation

This equation is familiar to mathematicians, for it is none other than the polar
equation for what are called the ‘conic sections’. Although we shall not prove it,
these are so named because they are the curves that are generated upon slicing
through a right circular cone in the various possible ways. The parameter ε

determines which type of curve we are dealing with. For ε > 1 the curve is
a hyperbola, for ε < 1 it is an ellipse, for ε = 0 it is a circle and for ε = 1 a
parabola. These are the curves which were plotted in Figure 9.9.

We can connect the results we have just derived to the qualitative statements
we made above. In particular, notice that ε > 1 corresponds to E > 0 and so the
unbound orbit we described earlier can now be seen to correspond to motion along
a hyperbola. Similarly, ε < 1 corresponds to E < 0 and we have an ellipse whilst
ε = 1 corresponds to E = 0 and a circle. Notice that we have traded off the energy
and angular momentum of the orbit for the parameters ε and α respectively.

To conclude this section we shall spend a little time exploring the content of
Eq. (9.59) in the case of elliptical orbits, i.e. ε < 1. Figure 9.10 shows an elliptical
orbit with the semi-major axis a and semi-minor axis b marked. One of the masses
is located at r = 0 whilst the other follows the elliptical orbit, sweeping out area
at a constant rate in accord with Kepler’s Second Law. Note how the mass at the
origin is not at the centre of the ellipse. In fact, the point r = 0 is known as the
focus of the ellipse and it is displaced by a distance � from the centre of the ellipse.
The fact that all of the planets in the solar system orbit around the Sun in ellipses
with the Sun at one focus was first established by Johannes Kepler (1571-1630)
and it is known as Kepler’s First Law.

Let us compute the semi-major axis a. It is defined such that

2a = r(0) + r(π) = α

1 + ε
+ α

1 − ε

∴ a = α

1 − ε2
. (9.60)

a ∆

q
b r

Figure 9.10 The various parameters that define an elliptical orbit.
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The focus is a distance � from the centre, where

� = a − r(0)

= a − α

1 + ε

= a − (1 − ε)a

= εa. (9.61)

Thus the energy variable ε also tells us how squashed the ellipse is. For example,
� = 0 corresponds to a circular orbit whilst � = a corresponds to an ellipse with
one focus at a point on the orbit and an infinite semi-major axis, i.e. it is an ellipse
which closes at infinity. This special type of ellipse is more commonly known as a
parabola. For obvious reasons, the parameter ε = �/a is called the ‘eccentricity’
of the ellipse. From a geometrical point of view it makes more sense to describe
an elliptical orbit in terms of the eccentricity and the length of the semi-major axis
and we might like to think of these as the two independent variables which specify
the orbit (rather than the energy and angular momentum).

The semi-minor axis can also be computed upon realising that

cos θ = −�

r
(9.62)

at the point on the orbit which lies a distance b from the centre of the ellipse. We
can substitute this value of cos θ into Eq. (9.59) in order to determine the value of
r at this point and then use Pythagoras’ Theorem to determine b, i.e.

r = α

1 − ε�/r
. (9.63)

Substituting for � and α in terms of ε and a and re-arranging gives r = a and
Pythagoras’ Theorem then gives

b2 = a2 − �2,

∴ b = a(1 − ε2)1/2. (9.64)

The total energy of the orbit is E = ηm. Let us express it in terms of the
parameters that define the geometry of the ellipse, a and ε. Using Eq. (9.57) we
can write

η = −(1 − ε2)
GM̃

2α
(9.65)

but α = a(1 − ε2) and M̃µ = Mm hence

E = −GMm

2a
. (9.66)

This is a somewhat surprising result for it tells us that the total energy in an
elliptical orbit depends only upon the length of the semi-major axis and not upon
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the eccentricity of the orbit. For example, we can compute the total energy of an
elliptical orbit by computing instead the energy in a circular orbit whose radius
is equal to a.

Example 9.5.1 Prove that the velocity of a particle in an orbit described by
Eq. (9.59) is purely tangential at the pericentre and the apocentre of the orbit.

Solution 9.5.1 The pericentre of the orbit is the point of closest approach and the
apocentre is the point of farthest approach. From Figure 9.10 we can see that these
occur at θ = 0 and θ = π respectively. The motion is tangential when dr/dt = 0.
Differentiating Eq. (9.59) gives

dr

dt
= αε

(1 + ε cos θ)2 sin θ
dθ

dt

and this vanishes whenever sin θ = 0, i.e. when θ = 0 or π .

Finally we shall derive Kepler’s Third Law by computing the period of the orbit,
T . We already know from Kepler’s Second Law, Eq. (9.43), that area is swept out
at a constant rate equal to L/(2µ). Integrating over one cycle (and remembering
that the area of an ellipse is equal to πab) we have

πab = L

2µ
T . (9.67)

Re-arranging and substituting for L/µ and b gives

T = 2πa2

λ
(1 − ε2)1/2,

= 2πa2

λ

(−2ηλ2

G2M̃2

)1/2

. (9.68)

We now substitute for the total energy η = −GM̃/(2a) to get

T = 2πa3/2√
GM̃

. (9.69)

This result, namely that the period T ∝ a3/2 was also discovered by Kepler and
it constitutes his Third Law. Kepler thought that the constant of proportionality
was the same for all planets but as we have derived it, it is not the same since
the mass M̃ is not exactly equal to the mass of the Sun. Nevertheless, M̃ = M is
a good approximation in practice, leading to deviations from a single constant of
proportionality of no more than 0.05% for all the planets.

Note that if time is measured in years and distances in astronomical units (AU)
then Eq. (9.69) becomes3

T 2 = a3. (9.70)

3 Neglecting the reduced mass correction.
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This is clear since the Earth is defined to orbit the Sun such that T = 1 year when
a = 1 AU and hence the constant of proportionality 4π2/(GM̃) = 1 year2/AU3.

Example 9.5.2 The comet Hale-Bopp is (just about) in orbit around the Sun. The
orbit is very eccentric, with ε = 0.99511 and the distance of closest approach to
the Sun (the perihelion distance) is 0.9141 AU (it was last at perihelion in 1997).
Determine the period of the comet’s orbit and its farthest distance from the Sun (the
aphelion distance).

Solution 9.5.2 To compute the period of the orbit is a straightforward application
of Kepler’s Third Law once we have the distance of the semi-major axis, a. The
perihelion distance is given by

0.9141 AU = a(1 − ε)

which can be solved to give a = 187 AU. Since the distance is provided in AU we
need not work too hard, i.e. we can use Eq. (9.70) to get the period:

T = a3/2 = 2560 years.

The distance of farthest approach is given by

a(1 + ε) = 373 AU.

Example 9.5.3 The day before the 1969 moonlanding, the Apollo 11 spacecraft
was put into orbit around the Moon. The spacecraft had a mass of 9970 kg and the
period of the orbit was 119 minutes. In addition, the pericentre and apocentre of
the orbit were 1838 km and 1861 km. Use these data to determine the mass of the
Moon. Also determine the maximum and minimum speeds of Apollo 11 when it was
in lunar orbit.

Solution 9.5.3 Using Eq. (9.69), we can determine the mass of the Moon if we have
the period of the orbit and the length of the semi-major axis a. Since we anticipate
that the mass of Apollo 11 is much smaller than the mass of the Moon we do not need
to worry about the reduced mass. Our task is therefore to deduce a. We know that

a(1 − ε) = 1838 km

a(1 + ε) = 1861 km

and adding these two equation together gives

a = 1849.5 km.

Re-arranging Eq. (9.69) yields the mass of the Moon:

M = 4π2a3

GT2 = 4π2 (1849.5 × 103)3

6.67 × 10−11 × (119 × 60)2
= 7.35 × 1022 kg.

To determine the maximum and minimum speeds we need to compute the speeds
at the pericentre and apocentre of the orbit. We can do this using the conservation
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of energy since we know the total energy of the orbit and, from Example 9.5.1, that
the velocity is tangential to the orbit at the extrema of the orbit. Thus

−GM

2a
= 1

2
u2 − GM

r
,

where r is 1861 km at the apocentre or 1838 km at the pericentre. Re-arranging
allows us to determine that

u2 = GM

a

(
2a

r
− 1

)
.

Substituting for a = 1849.5 km, the maximum and minimum speeds are 1.64 km/s
and 1.62 km/s.

PROBLEMS 9

9.1 Prove that the gravitational potential inside a hollow spherical shell is a con-
stant.

9.2 Suppose a hole were drilled straight through the Earth along a diameter. Show
that a body dropped into the hole would execute simple harmonic motion.

9.3 The gravitational self-energy of an object is the total work done against grav-
ity in order to assemble its constituent parts from infinity. Show that the
self-energy of a uniform sphere of mass M is

E = −3

5

GM2

R
.

If the sphere rotates about a diameter such that the sum of its rotational and
gravitational energies is zero what is its angular velocity?

9.4 A comet orbits the Sun such that the perihelion distance is 7.48 × 1010 m and
its speed at perihelion is 5.96 × 104 ms−1. (i) Determine the magnitude of
the angular momentum of the comet divided by its mass; (ii) Determine the
kinetic energy and gravitational potential energy of the comet (both divided
by the comet’s mass) at the point of closest approach. Is the orbit bound or
unbound? (iii) Using the conservation of energy, in conjunction with fact that
the angular momentum is always proportional to the tangential component of
the comet’s velocity, determine the radial and tangential components of the
velocity of the comet, and hence its speed, when it is a distance 1.50 × 1011 m
from the Sun.

9.5 A star of mass M is located at the centre of a spherical dust cloud of uniform
density ρ. A planet of mass m orbits around the star in a circular orbit of radius
r within the cloud. Show that the period of the planet’s orbit is given by

T = 2π

(
r3

G
(
M + 4

3πρr3
)
)1/2

.
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If the star emits a short burst of radiation which drives away the dust cloud
but leaves the planet’s position and velocity unchanged show that the planet
remains bound to the star if the initial radius is smaller than (3M/(4πρ))1/3.
Determine the semi-major axis, eccentricity and period of the new orbit.

9.6 In Example 9.5.3, we investigated the motion of the Apollo 11 spacecraft as
it orbited the Moon. The astronauts boarded the Eagle lunar module in order
to descend to the Moon’s surface. The Eagle detached from the command
module when the spacecraft was at a height of 110 km above the Moon’s sur-
face and immediately fired its rockets to reduce its speed so that it transferred
into an elliptical orbit with a perigee of 15 km above the Moon’s surface. By
how much did the lunar module need to reduce its speed in order to shift to
this orbit? [The radius of the Moon is 1740 km.]

9.7 The Earth’s orbit about the Sun has an eccentricity of 0.017 and mid-winter
in the northern hemisphere occurs when the Earth is close to perihelion. Use
this information in conjunction with Kepler’s Second Law to estimate by how
many days summer is longer than winter in the northern hemisphere. Compare
your answer to that which you would get by counting the days between the
relevant equinoxes.





10
Rigid Body Motion

In Chapter 4, when we considered the motion of rigid bodies we always made the
assumption that the axis of rotation was fixed. This simplification allowed us to
deal only with the components of the angular momentum and the angular velocity
along the rotation axis. Now we will treat the more general situation in which
the axis of rotation may not have a fixed direction in space; this will generally
bring into play all three components of L and ω. To motivate the discussion let
us first look at a simple example: a light rigid rod with a mass m at either end,
rotating with the midpoint fixed and with the rod making a fixed angle θ with the
x3 axis of a Cartesian coordinate system (see Figure 10.1). The two masses each
describe circular motion of the same frequency about the x3 axis, hence the masses
have an equal angular velocity ω, which is parallel to the x3 axis. Recall that ω is
defined always to be parallel to the axis of rotation, as discussed in Section 4.3.
Now let us compute the total angular momentum. We ignore the contribution of
the rod, assuming its mass to be negligible, and sum the angular momenta of the
two masses to obtain

L = m r × v + m(−r) × (−v) = 2m r × v. (10.1)

L is perpendicular to both r and v and is composed of a component

L3 = 2mr2ω sin2 θ, (10.2)

which is parallel to ω and a component

L⊥ = 2mr2ω sin θ cos θ, (10.3)

which rotates about the x3 axis with angular speed ω. We have used the relationship
v = ωrsin θ to write Eq. (10.2) and Eq. (10.3) in terms of ω. Note that the very

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd



198 Rigid Body Motion

x3

O

r

−r

m

r × v

m
⊗ v

q

−r × −v

w

Figure 10.1 A light rod with a mass at either end rotating about the centre of the rod.

fact that L⊥ is non-zero implies that the angular momentum vector about O is
not parallel to the angular velocity ω. In our previous discussion of the angular
momentum of rigid bodies in Chapter 4 we only needed the component L3 in the
direction of ω and ignored terms like L⊥. Since torque is equal to the time rate
of change of angular momentum, we can spot straight away that the rotating L⊥
component implies that an external torque has to be acting on the masses in order
for them to perform the uniform circular motion about the x3 axis. Notice that we
have just discussed the physics in two stages. We first talked about the connection
between ω and L and then we linked the rate of change of L with a torque. This
chapter mirrors that procedure and so first we shall concentrate on how L and ω

are connected for a general rigid body. Then we will turn our attention to relating
the rate of change of the angular momentum to the applied torque, i.e. we will
solve for the motion of the body.

10.1 THE ANGULAR MOMENTUM OF A RIGID BODY

A body is considered rigid if we can think of it as being composed of particles
whose relative positions do not change with time. Even if we are considering a
body with an apparently smooth matter distribution, the ‘particles’ may be thought
of as being infinitesimal volume elements each containing a tiny bit of matter, the
position of which we can track precisely (see Figure 10.2). If these bits of matter
do not move relative to each other the body is rigid. For such a body we can always
find a frame of reference in which the particles are always stationary. This is a
frame which therefore moves with the body and it is known as a body-fixed frame.
It immediately follows that the position vectors of all the particles are constants in
a body-fixed frame. When the body is rotating in an inertial frame of reference,
the body-fixed frame is clearly non-inertial. To construct equations of motion we
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dV

r

Figure 10.2 A continuous body with a small element of volume dV .

will find it convenient to make a transformation to a non-rotating inertial frame,
which we shall call the lab frame. Our previous discussion, in Section 8.2, of
transformations between rotating and non-rotating frames led to the result

dr
dt

=
(

dr
dt

)
rot

+ ω × r, (10.4)

where r is the position vector of a particle relative to an origin chosen to lie
somewhere on the axis of rotation.

Let us now obtain the angular momentum of the body by adding together the
contributions from its constituent particles, in a similar way to that used for the
previous example of two masses on a rod. Applying Eq. (10.4) when the rotating
frame is a body-fixed frame gives

v = dr
dt

= ω × r (10.5)

since, by definition,

(
dr
dt

)
rot

= 0 for any particle in the body-fixed frame. We now

construct the total angular momentum by summing over particles:

L = mαrα × vα = mαrα × (ω × rα) , (10.6)

where we have used the summation convention on repeated indices (see Section 8.2)
and α labels the particles. Rewriting the triple vector product using the identity

a × (b × c) = (a · c)b − (a · b)c

gives
L = mα[r2

α ω − (rα · ω) rα]. (10.7)

Alternatively, we can write the ith component of L in a Cartesian co-ordinate
system as

Li = mα

(
r2
α ωi − rαj ωj rαi

)
, (10.8)

where there is also an implicit summation on the index j that comes from the scalar
product (see Eq. (8.7)). If you are uncomfortable with the summation convention,
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we can make things more transparent by putting the summations back in:

Li =
∑

α

mα


r2

α ωi − rαi

3∑
j=1

rαj ωj


 . (10.9)

Notice that L depends linearly on the rotational frequency, i.e. if we multiply ω by
a scalar factor then L increases by the same factor. However, L is not generally
parallel to ω. We can make the connection between the two vectors clearer by
rewriting Eq. (10.9) as

Li =
∑

j

∑
α

mα

(
r2
α δij − rαi rαj

)
ωj , (10.10)

where we have introduced the Kronecker delta symbol, δij , which is defined to be

δij = 0 (i �= j),

= 1 (i = j). (10.11)

One way to make sense of Eq. (10.10) is to view it as the multiplication of the
column vector ω, (whose elements are ωj ) by a matrix with elements

Iij =
∑
α

mα

(
r2
α δij − rαi rαj

)
, (10.12)

i.e. we can write Eq. (10.10) as

Li = Iij ωj . (10.13)

To see that this equation really represents the multiplication of a vector by a matrix
you should remember that there is an implicit summation on the index j and that
this summation runs over the columns of the matrix (whose components are Iij ),
e.g. L2 = I21ω1 + I22ω2 + I23ω3 is the component of L in the e2 direction. Notice
also that Iij has the dimensions of a moment of inertia, i.e. mass times the square
of a length. It links the angular velocity and the angular momentum, but crucially,
unlike the scalar moment of inertia used in Chapter 4, Iij possesses directional
information. It is the co-ordinate representation of a geometric object known as the
moment of inertia tensor.

10.2 THE MOMENT OF INERTIA TENSOR

In the previous section we obtained the result

Li = Iij ωj ,

which expresses the fact that the components of the vectors L and ω are linked by
a 3 × 3 matrix with elements Iij . We can associate the matrix elements Iij with the
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moment of inertia tensor I and write

L = Iω, (10.14)

which is now an expression completely independent of our choice of co-ordinate
system. The tensor I may be thought of as a geometrical object that is able to map
the vector ω on to the vector L. The operation that I performs generally changes
both the length and the direction of the vector ω on which it is operating. That I
can change the direction of ω means that I itself has directional properties, e.g. it
tells us how the e1 component of L depends upon the e2 component of ω, through
I12. The moment of inertia tensor has two spatial indices and it is accordingly
known as a rank 2 tensor. Incidentally, scalars and vectors may also be thought
of as tensors: a vector has one spatial index and is a rank 1 tensor; a scalar has
no directional dependence and is a rank 0 tensor. Tensors of higher rank also exist
(and are used in General Relativity) but in this chapter we will need nothing higher
than rank 2. Note that we do not use any special typesetting to distinguish I as a
rank 2 tensor, but that should not cause any confusion. It is important to realize that
both the angular momentum and the moment of inertia tensor are defined relative
to an origin and so we should always speak of “the moment of inertia about a
point”. This is in contrast to the simpler treatment in Chapter 4, where we were
only ever interested in the moment of inertia for rotations about some axis, and the
component of the angular momentum about the same axis. As we shall very soon
see, the moment of inertia about an axis is something that lives within the moment
of inertia tensor – the latter being the more general object.

As soon as we choose a co-ordinate system with associated basis vectors we can
express the tensor I as a matrix. Thus the moment of inertia tensor I is represented
in the basis (e1, e2, e3) as the matrix

I =

 I11 I12 I13

I21 I22 I23

I31 I32 I33


 . (10.15)

In the same basis you might like to check that we can express Eq. (10.13) as
multiplication of the column vector ω by the matrix I to give the column vector L:


 L1

L2

L3


 =


 I11 I12 I13

I21 I22 I23

I31 I32 I33





 ω1

ω2

ω3


 . (10.16)

Let us for a moment consider the diagonal elements of the moment of inertia
tensor. The first of these is

I11 =
∑

α

mα

(
r2
αδ11 − r2

α1

)
. (10.17)

By Pythagoras’ Theorem, r2
α = r2

α1 + r2
α2 + r2

α3, also δ11 = 1, and we can write

I11 =
∑

α

mα

(
r2
α2 + r2

α3

)
. (10.18)
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Notice that r2
α2 + r2

α3 is the square of the distance of particle α from the x1 axis.
Thus I11 is the moment of inertia for rotation about the x1 axis. Similarly, the other
diagonal elements represent the moments of inertia for rotation about the x2 and
x3 axes, respectively:

I22 =
∑
α

mα

(
r2
α1 + r2

α3

)
,

I33 =
∑
α

mα

(
r2
α1 + r2

α2

)
. (10.19)

These are none other than the moments of inertia for rotation about the three
co-ordinate axes, i.e. the objects that we already met in Chapter 4. Notice also that
I forms a symmetric real matrix, i.e. Iij = Iji and I ∗

ij = Iij , so there are only three
independent off-diagonal elements. These are known as the products of inertia and
they have the form:

I12 = I21 = −
∑
α

mα rα1 rα2,

I23 = I32 = −
∑
α

mα rα2 rα3, (10.20)

I13 = I31 = −
∑
α

mα rα1 rα3.

Thus far we have expressed the elements of the moment of inertia tensor as discrete
sums over all the particles in the body, but as usual the body may be better described
by a continuous density function ρ(r), where an element of mass dm at position
r is contained within a volume dV such that dm = ρ(r)dV (see Figure 10.2). In
which case the sums in Eq. (10.12) are replaced by integrals over the continuous
mass distribution and Eq. (10.12) should be written

Iij =
∫

V

dm [r2δij − rirj ] =
∫

V

dV ρ(r)[r2δij − rirj ]. (10.21)

In this way, our picture of a body as being made up of particles is replaced by a
picture in which the body is made up of infinitesimal elements of volume dV and
mass dm.

We are certainly free to use whatever co-ordinate system we choose for the
evaluation of the matrix elements Iij . However, using a co-ordinate system in the
lab frame of reference will immediately introduce the problem that the matrix
elements Iij will, in general, change as the body rotates. Alternatively we can
choose a co-ordinate system in the body-fixed frame and this has the virtue that
Iij are constants in time. This provides an important simplification and we will
therefore tend to calculate the moment of inertia matrix in the body-fixed frame.
The price that we will pay for using the body-fixed frame is that we will have be
careful with the dynamical equations of motion, since this frame of reference is
rotating and is therefore non-inertial.
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10.2.1 Calculating the moment of inertia tensor

The components of the moment of inertia tensor are calculated using Eq. (10.12)
or Eq. (10.21) and they depend on the co-ordinate system used. In this section we
look at some cases where the rigid body possesses a degree of symmetry that aids
in the calculation. In particular, where there is an axis of rotational symmetry there
is no change in the moment of inertia in the lab as long the body rotates only about
that axis. In which case it does not matter whether we calculate the moment of
inertia in the body-fixed frame or the lab frame, the result will be the same.

x1

x2

x3

Figure 10.3 A cylinder with its axis of symmetry along the x3 axis.

For example, consider a solid cylinder with its symmetry axis along the x3 axis
as shown in Figure 10.3. If the cylinder rotates about the symmetry axis then the
angular velocity vector is (0, 0, ω) and the angular momentum is


 L1

L2

L3


 =


 I11 I12 I13

I21 I22 I23

I31 I32 I33





 0

0
ω


 = ω


 I13

I23

I33


 . (10.22)

Also, since there is rotational symmetry about the x3 axis, the products of inertia
I13 = I31 and I23 = I32 are identically zero. To see why this is so let us consider
the product of inertia I23. Notice that for each term proportional to x2 in the
sum I23 in Eq. (10.20), the symmetry of the mass distribution ensures that there
is a term of equal magnitude, but opposite sign, corresponding to position −x2

(see Figure 10.4). These matching terms always cancel giving rise to I23 = 0.
Thus Eq. (10.22) becomes


 L1

L2

L3


 = ω


 I13

I23

I33


 = ω


 0

0
I33


 (10.23)

or L3 = I33 ω and L1 = L2 = 0. So in this case the moment of inertia about the
x3 axis is the only element of the moment of inertia matrix that matters. We could
therefore dispense with the fancy notation and write the equation L = Iω just as
we did in Chapter 4.

Now let us now consider another special case. Namely, that of a planar object,
i.e. something thin and flat that we can approximate as being two dimensional.
As such it can be described by an area mass density distribution σ(r). For such a
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x2

x3

−a a

dm

Figure 10.4 Cross-section of a cylinder showing the symmetry with respect to a change of
sign of the x2 co-ordinate.

planar object an element of mass dm = σ(r) dA, where dA is an element of area.
The components of the moment of inertia are given by

Iij =
∫

A

dA σ(r)[r2δij − rirj ]. (10.24)

Since the object is flat and thin we can choose its position and orientation such that
it lies in the plane where x3 = 0, as indicated in Figure 10.5. This simplifies the
calculation of the moment of inertia tensor because two of the products of inertia,
I13 and I23, are automatically zero. Calculation of the diagonal elements is also
simplified by choosing x3 = 0:

I11 =
∫

A

dA σ(r)r2
2 ,

I22 =
∫

A

dA σ(r)r2
1 ,

I33 =
∫

A

dA σ(r)(r2
1 + r2

2 ) = I11 + I22. (10.25)

x1

x2

r

dm

Figure 10.5 Moment of inertia of a planar object. The x3 axis is out of the page.
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The moment of inertia for a planar object can therefore always be written in the
form

I =

 I11 I12 0

I21 I22 0
0 0 I11 + I22


 . (10.26)

Provided we choose the axis of rotation so that it is parallel to x3, i.e. ω = (0, 0, ω),
we can use Eq. (10.26) to show that once again we are in a situation where the
motion is governed by a single moment of inertia, I33 = I11 + I22, since L =
Iω = I33 ω e3. Incidentally, we have also shown that the moment of inertia about
an axis perpendicular to the plane of a planar object can be expressed as the sum
of the moments of inertia about two perpendicular axes lying in the plane. This
result is known as the Perpendicular Axis Theorem.

Let us now take a look at another example in which symmetry helps in the
calculation of the moment of inertia tensor, and which gives us some results that
we will use later in the chapter. We will consider the rotation of a solid cube.
We will be interested in rotations about an axis through the centre of the cube and
about an axis along an edge of the cube. Remember that we must always choose the
origin of our co-ordinate system to lie on the rotation axis since our derivation of
Eq. (10.12) starts with Eq. (10.4), which is valid only for rotations about the origin.
However, once we have chosen an origin somewhere on the rotation axis, we are
then free to choose the directions of our co-ordinate axes to make the calculation
of I as simple as possible.

Example 10.2.1 Calculate the moment of inertia tensor for a uniform cube of mass
M and side b that is suitable for rotations about any axis through: (a) its centre;
(b) a corner.

Solution 10.2.1 (a) To make the calculation easier, it makes sense to use the sym-
metry of the cube and to choose a body-fixed Cartesian co-ordinate system with
axes parallel to the edges of the cube, and the origin at the centre of the cube
(Figure 10.6). Recall that the moment of inertia tensor is defined relative to an ori-
gin and that, to be useful, the origin ought to lie on the intended axis of rotation.
With these choices, all of the products of inertia vanish and we have

I11 = I22 = I33.

Now

I11 =
∫

V

dV
M

b3
(x2

2 + x2
3) = 2

∫
V

dV
M

b3
x2

3

since the density ρ = M/b3 is uniform. Putting dV = dx1 dx2 dx3 and integrating
over x3 we obtain

I11 = 2
M

b3

∫ b
2

− b
2

∫ b
2

− b
2

[
x3

3

3

]+ b
2

− b
2

dx1 dx2

= 1

6
Mb2.
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x1

x2

x3

w

b

Figure 10.6 A cube rotating about an axis through its centre.

Hence

I = 1

6
Mb2


 1 0 0

0 1 0
0 0 1


 . (10.27)

(b) When the moment of inertia tensor is calculated about a corner the products
of inertia do not vanish. However the symmetry of the problem with respect to
the interchange of the coordinate axes still helps us, giving I11 = I22 = I33 and
I12 = I23 = I31. Then

I11 =
∫ b

0

∫ b

0

∫ b

0

dx1dx2dx3

b3
M(x2

2 + x2
3) = 2

3
Mb2 and

I12 = −
∫ b

0

∫ b

0

∫ b

0

dx1dx2dx3

b3
Mx1x2 = −1

4
Mb2.

So that

I = Mb2




2
3 − 1

4 − 1
4

− 1
4

2
3 − 1

4

− 1
4 − 1

4
2
3


 = 1

12
Mb2


 8 −3 −3

−3 8 −3
−3 −3 8


 .

Example 10.2.2 Calculate the angular momentum relative to the origin when the
cube of the previous example rotates about an edge parallel to the x3 axis with an
angular speed ω.

Solution 10.2.2 Since the cube rotates about an edge we can use the moment of
inertia tensor from part (b) of the previous example to obtain

L = Mb2




2
3 − 1

4 − 1
4

− 1
4

2
3 − 1

4

− 1
4 − 1

4
2
3





 0

0
ω


 = Mb2ω




− 1
4

− 1
4

2
3


 .
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Note that the angular momentum and the rotational velocity are not parallel in this
case (see Figure 10.7). Also note that the direction of L is fixed in the body-fixed
frame in which we computed I but that in the lab frame it rotates with the cube, i.e.
about the x3 axis with angular frequency ω.

x1

x2

x3

L

O

w

Figure 10.7 A cube rotating about an axis along one edge.

10.3 PRINCIPAL AXES

We have looked at some situations where an obvious symmetry helps us to
simplify the moment of inertia tensor. In the general case it is still possible to
simplify things through a good choice of the coordinate axes. Although we do
not prove it here, it is a theorem of linear algebra that as long as the inverse of
I, written I−1, exists (i.e. II−1 is the identity) then there must also exist a set of
orthogonal basis vectors in which I takes on the diagonal form

I =

 I1 0 0

0 I2 0
0 0 I3


 . (10.28)

The axes defined by this choice of basis are known as principal axes. Since there
is no ambiguity, we use only one index for the principal axis elements of I,
i.e. I1 ≡ I11 etc. The diagonal elements I1, I2 and I3 are known as the principal
moments of inertia.

For the special case of rotation about a principal axis, e.g. the x1 axis, we have

L =

 I1 0 0

0 I2 0
0 0 I3





 ω

0
0


 =


 I1ω

0
0


 (10.29)

or L = I1ω, which means that L and ω are parallel. In general, when ω has com-
ponents along more than one principal axis, L will not be parallel to ω.

The task of determining the principal axes and the principal moments of inertia is
an exercise in linear algebra. If α̂ represents a principal axis, and Iα is the principal
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moment of inertia about that axis, then

L = Iω = ω Iα̂ = Iαω α̂, (10.30)

i.e.
Iα̂ = Iαα̂. (10.31)

So, the vector α̂ is special in that operation on it by I multiplies α̂ by a constant
but doesn’t alter its direction. Eq. (10.31) is known as an eigenvalue equation and
α̂ is said to be an eigenvector of I. Iα is the principal moment of inertia about
the axis α̂, and it is the corresponding eigenvalue. In matrix form Eq. (10.31) is
written


 I11 I12 I13

I21 I22 I23

I31 I32 I33





 α1

α2

α3


 = Iα


 α1

α2

α3


 , (10.32)

where (α1, α2, α3) are the components of the α. Rearranging Eq. (10.32) gives us


 I11 − Iα I12 I13

I21 I22 − Iα I23

I31 I32 I33 − Iα





 α1

α2

α3


 = 0. (10.33)

A non-trivial1 solution to this equation exists only if the matrix multiplying the
column vector has no inverse, that is if

∣∣∣∣∣∣
I11 − Iα I12 I13

I21 I22 − Iα I23

I31 I32 I33 − Iα

∣∣∣∣∣∣ = 0. (10.34)

Equating the determinant to zero2 generally gives rise to a cubic equation in Iα ,
known as the characteristic equation, which can be solved to obtain three possible
values of Iα . The solutions to the characteristic equation are the principal moments
of inertia. Then, each solution for Iα may be substituted in turn into Eq. (10.33)
to obtain simultaneous linear equations that can be solved to give the eigenvector
components α1, α2, α3. Let us now look at an example of this procedure.

Example 10.3.1 Determine the principal axes of a solid cube of side b and mass
M for rotations about a corner.

1 We can get what is called a trivial solution by setting α̂ = 0 but this does not determine a direction
for a principal axis.
2 We are assuming a certain familiarity with linear algebra and refer to any number of mathematics
textbooks for further details.
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Solution 10.3.1 We have already calculated the moment of inertia tensor for a cube
about a corner. It is

1

12
Mb2


 8 −3 −3

−3 8 −3
−3 −3 8


 .

So that the characteristic equation for the eigenvalues may be written
∣∣∣∣∣∣

8 − I ′ −3 −3
−3 8 − I ′ −3
−3 −3 8 − I ′

∣∣∣∣∣∣ = 0. (10.35)

We have simplified notation with the substitution I ′ = I
1

12 Mb2 , where I denotes an

eigenvalue of I. Expansion of the determinant in Eq. (10.35) gives

(8 − I ′)[(8 − I ′)2 − 9] + 3[−3(8 − I ′) − 9] − 3[9 + 3(8 − I ′)] = 0.

This cubic equation can be put into the form

(2 − I ′)(11 − I ′)(11 − I ′) = 0

from which we have I ′ = 2 or 11 (twice). The principal moments of inertia are
I = 1

6 Mb2 and 11
12 Mb2. Our next task is to figure out the corresponding eigenvectors.

We start with the eigenvalue equation for I ′ = 2:

 8 − 2 −3 −3

−3 8 − 2 −3
−3 −3 8 − 2





 α1

α2

α3


 = 0

from which we obtain two independent equations:

6α1 − 3α2 − 3α3 = 0,

−3α1 + 6α2 − 3α3 = 0. (10.36)

Note that we need three equations to completely determine the eigenvector and
we have only two. That, however, is not surprising since any eigenvector can be
multiplied by an arbitrary constant and it will remain a solution to the eigenvalue
equation. Thus we are free to fix the overall normalization of the eigenvectors. It is
not difficult to show that the solution to Eq. (10.36) must satisfy α1 = α2 = α3. Now
if we insist that α̂ is a unit vector then α2

1 + α2
2 + α2

3 = 1 and we can determine the
direction of one of the principal axes, i.e.

α̂ = 1√
3


 1

1
1


 ; Iα = 1

6
Mb2.

We must now address the solutions corresponding to I ′ = 11. The fact that this
solution occurs twice results in only one independent linear equation upon
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substituting the eigenvalue back into the eigenvalue equation. So, if we denote an
eigenvector by β̂ then


 −3 −3 −3

−3 −3 −3
−3 −3 −3





 β1

β2

β3


 = 0,

which yields the equation

β1 + β2 + β3 = 0. (10.37)

This is the equation of a plane that lies perpendicular to the direction of the first prin-
cipal axis. To see this notice that we can write Eq. (10.37) as β · α̂ = 0. Eq. (10.37)
admits an infinity of solutions, all corresponding to vectors that lie in the plane
perpendicular to α̂. However, only two vectors are needed in order to form a basis
in the plane (i.e. any other vector can be written as a linear combination of the
original two). We are free to choose any such pair of vectors and, rather arbitrarily,
we pick the first to be

β̂ = 1√
2


 1

−1
0


 ; Iβ = 11

12
Mb2.

This vector clearly has components that satisfy Eq. (10.37) and we have set the
length to unity through the choice of the factor of 1√

2
. The third principal axis is

now fixed (up to an overall sign) by the requirement that it is perpendicular to the
other two (in order that the principal axes should form an orthonormal basis). You
should be able to show that

γ̂ = 1√
6


 1

1
−2


 ; Iγ = 11

12
Mb2.

To finish off we can write the moment of inertia tensor in the basis (α̂, β̂, γ̂ ) as

I = 1

12
Mb2


 2 0 0

0 11 0
0 0 11


 .

The directions of the principal axis vectors are shown in Figure 10.8.

Notice that when we considered the moment of inertia of the cube about its
centre, we showed that the moment of inertia tensor, Eq. (10.27), was diagonal in
a co-ordinate system aligned with the edges of the cube. Thus the basis vectors e1,
e2 and e3 already defined a set of principal axes and we left the matter there. On
the other hand, when we considered rotation about a corner, one principal axis lay
along the diagonal and the other two lay anywhere in the plane perpendicular to
the diagonal. But one ought really to recognize that for the cube rotating about its
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x3

x2

x1

a

b

g

ˆ

ˆ

ˆ

Figure 10.8 The principal axes of a solid cube for rotations about a corner.

centre, the three eigenvalues are degenerate. In such a case, any linear sum of the
principal axis basis vectors is also an eigenvector of I, i.e. given the eigenvectors
α̂, β̂, γ̂ we can always construct a new vector, aα̂ + bβ̂ + cγ̂ , that also satisfies
the eigenvalue equation:

I(aα̂ + bβ̂ + cγ̂ ) = I0(aα̂ + bβ̂ + cγ̂ ), (10.38)

where I0 = Mb2/6 is the degenerate eigenvalue. Thus we were really free to choose
any set of mutually perpendicular axes as principal axes for rotations of the uniform
cube about its centre.

Fortunately, it is not always necessary to solve a cubic equation in order to figure
out the principal axes of rotation of a rigid body. There are two circumstances under
which the process simplifies quite considerably. Namely, when the object is flat (i.e.
planar) and when the object possesses an axis of symmetry. If a body is both flat
and symmetric then no calculation is needed and one can write down the principal
axes directly, as we shall see in the following example.

Example 10.3.2 Determine a set of principal axes for a square plate that rotates
about a corner.

Solution 10.3.2 Well we already worked out the moment of inertia tensor of a gen-
eral planar object, see Eq. (10.26) and the first thing to notice is that it is already
partially diagonal after picking the e3 axis to lie perpendicular to the plane of
the body and through the point of rotation. That means that e3 is a principal axis
because it satisfies the eigenvalue equation

Ie3 = (I11 + I22)e3.

We therefore need only find the other two principal axes. Generally, that would mean
we would need to find the eigenvectors of the 2 × 2 submatrix

(
I11 I12

I21 I22

)
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and that leads to a quadratic rather than cubic characteristic equation that is
easier to solve. However, for the square we do not need to do even that because the
diagonal of the square is an axis of reflection symmetry. We have seen that, if we
choose a basis such that one of the basis vectors lies along the symmetry axis then
the corresponding products of inertia vanish (e.g. see Example 10.2.2) and that fact
alone is sufficient to guarantee that the axis is also a principal axis. In the case
of the square plate it therefore follows that the diagonal is a principal axis, call it
e1. The third axis now comes for free, because it must be orthogonal to the other
two axes. In a right-handed co-ordinate system the three principal axes of a square
plate are thus as shown in Figure 10.9.

e1

e2

e3

Figure 10.9 The principal axes of a square plate for rotations about a corner. The e3 vector
points out of the page.

10.4 FIXED-AXIS ROTATION IN THE LAB FRAME

All that was rather technical but now we are ready to start analysing the general
motion of rotating bodies. By the end of this chapter, we shall have succeeded in
understanding what happens to an object thrown through the air (it wobbles and
spins), how a gyroscope works and why some rotations of a tennis racquet are safer
than others! In this section we “warm up” by re-examining the simpler instance of
fixed-axis rotation.

First we shall consider the case where the fixed axis just happens to also be a
principal axis, e3 say. In this case we can write

L = I3 ω e3, (10.39)

and crucially L is also parallel to the x3 axis and the problem maps onto the more
familiar one-dimensional one we met in Chapter 4, i.e.

L = I3 ω, (10.40)

where
I3 =

∫
V

dV ρ(r) (x2
1 + x2

2 ). (10.41)

Note that in order to maintain rotation only in the e3 direction any torque τ that
acts must be parallel to the x3 axis, then we can write

τ = τ e3 (10.42)
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L12

x2

x1

Figure 10.10 Rotation of a solid cube about an edge results in a rotating angular momentum
vector in the lab frame. The component of L in the x1 − x2 plane, L12, describes a circle
about the x3 axis.

and the vector equation Eq. (4.9) reduces to

dL

dt
= I3

dω

dt
= τ. (10.43)

There is a subtlety here that is well worthy of a mention. Eq. (4.9) is derived only
in the case that the centre-of-mass does not accelerate but we may be interested in
cases other than that. However, in this special case e3 is a fixed direction in space
and so Eq. (10.43) is still valid. If e3 were not fixed in an inertial frame then we
would need to remember to include the term I3ω de3/dt when we compute dL/dt .
Notice also that for fixed ω, it is possible to have rotations about a principal
axis without the need for a torque. This is a special feature of rotations about a
principal axis.

The other type of fixed-axis rotation occurs when a body rotates about an axis
other than a principal axis. In this case, a torque is needed in order to sustain
the rotation and this might ordinarily be provided by a fixed axle. We already
investigated an example of rotation about an axis other than a principal axis when
we considered a cube rotating about one side, in Example 10.2.2. In the following
example we will return to that scenario and determine now the torque required to
sustain the rotation.

Example 10.4.1 A solid uniform cube rotates at constant angular speed ω about a
fixed axle attached to one edge of the cube. Calculate the magnitude of the torque
provided by the fixed axle.

Solution 10.4.1 To calculate the torque we need to work out the rate of change of
L. In Example 10.2.2 we showed that

L = Mb2ω




− 1
4

− 1
4

2
3


 . (10.44)
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This equation gives L in the body-fixed frame. In this frame L does not change
with time, but this does not mean that there will be no torque since the frame is
non-inertial. In the lab frame, which is inertial, the body rotates about the x3 axis
and L will rotate with the body, giving rise to a torque (see Figure 10.10). While the
L3 component clearly doesn’t change with time, the components of L in the x1 − x2

plane form a time-dependent vector L12 with magnitude L12:

L2
12 = L2

1 + L2
2 = (Mb2ω)2

((
1

4

)2

+
(

1

4

)2
)

= 1

8
(Mb2ω)2.

Since L12 sweeps out a circle in the x1 − x2 plane with constant angular speed ω

we can write

dL12

dt
= −L12 ω r̂12,

where r̂12 is a radial unit vector in the x1 − x2 plane. Now that we have gone to the
effort of shifting to an inertial frame, we are in a position to calculate the torque:

τ = dL
dt

= dL12

dt
= − 1√

8
Mb2ω2 r̂12. (10.45)

Although we managed to solve the last example, we had to figure out that L12

precesses in a circle in the lab frame. It would be useful if we had a more general,
algebraic, way of solving this problem and the formalism that we shall develop in
the next section will allow us to do just that. Moreoever, it will permit us to finally
move away from the special case of rotation about a fixed axis.

10.5 EULER’S EQUATIONS

To depart from the special case of fixed-axis rotation and deal with the general
rotational motion of a rigid body our starting point is Eq. (4.9), used in conjunction
with Eq. (10.14):

dL
dt

= d

dt
(I ω) = τ . (10.46)

This equation is valid in the lab frame (i.e. our generic inertial frame) or in a
non-rotating, accelerating frame provided we work relative to the centre of mass.
But it is not generally valid in the body fixed frame, which is a rotating frame.
Thus to solve for the motion of the body we might consider starting with a set of
axes that are fixed in the lab frame. However, as we have previously stressed, to do
that necessitates the use of a time-dependent moment of inertia matrix. As a result,
it is usually more convenient to work within a body-fixed frame of reference and
modify the equations of motion accordingly, i.e. we can no longer use Eq. (10.46)
directly but must transform it into the body-fixed frame.

Using the general rule for transforming the time-derivative of a vector between
the lab and a rotating frame (Eq. (8.16)), we have
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dL
dt

=
(

dL
dt

)
body

+ ω × L = τ (10.47)

and also
(

dL
dt

)
body

=
(

d(I ω)

dt

)
body

= I
(

dω

dt

)
body

, (10.48)

since in this frame any matrix representation of I is time-independent. The
time-derivative of the angular velocity is actually the same vector in both frames,
because

dω

dt
=

(
dω

dt

)
body

+ ω × ω =
(

dω

dt

)
body

= ω̇. (10.49)

We now have all the elements we need to write the equations of motion in the
body-fixed frame. Using Eq. (10.46)–(10.49) we arrive at

τ = I ω̇ + ω × (I ω) = I ω̇ + ω × L. (10.50)

Even though we have dropped our explicit denotation of the frame of reference,
it is crucial to remember that this equation is generally valid only in a body-fixed
frame since I must be independent of time.

Note that for the special case of rotation at constant angular velocity, i.e. ω̇ = 0,
Eq. (10.50) gives

τ = ω × L. (10.51)

If the body is also rotating about a principal axis then we have seen that L and ω

will be parallel, in which case τ = 0 and so no torque is required (which confirms
the result from the last section). With Eq. (10.51) we now have a more direct
method to address problems like the one posed in Example 10.4.1. You might like
to check that you can obtain Eq. (10.45) by computing ω × L.

At this point we are still free to choose a set of coordinate axes in the body-fixed
frame. Taking the basis vectors to be along the principal axes we have

ω × L =
∣∣∣∣∣∣

e1 e2 e3

ω1 ω2 ω3

I1ω1 I2ω2 I3ω3

∣∣∣∣∣∣ . (10.52)

Expanding the determinant and taking components of Eq. (10.50) gives us the three
equations:

I1ω̇1 + (I3 − I2)ω2ω3 = τ1,

I2ω̇2 + (I1 − I3)ω3ω1 = τ2,

I3ω̇3 + (I2 − I1)ω1ω2 = τ3. (10.53)
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These are known as Euler’s equations3. Notice that they are coupled, non-linear,
differential equations of motion, which give the time dependence of ω under the
influence of a net external torque τ . By coupled, we mean that each equation
contains variables that appear in the other two equations and by non-linear we
mean that the equations involve products of the components of ω. You should
compare this structure with that of Newton’s Second Law, which yields three linear,
uncoupled differential equations in a Cartesian basis. This additional complexity
means that we cannot hope to provide a general solution to Euler’s equations, rather
we shall use them to examine some interesting special cases.

10.6 THE FREE ROTATION OF A SYMMETRIC TOP

10.6.1 The body-fixed frame

Consider a rigid body tossed into the air: the body experiences a net external
force due to gravity, but if the gravitational field is uniform there will be no net
torque about the centre of mass and the gravitational field will not induce any
rotation of the body. In this section we investigate this kind of torque-free rotation.
We simplify matters by focussing on an object that is a solid of revolution about
one axis (often called a symmetric top). To be entitled to use Euler’s equations
(Eq. (10.53)), we must be certain that Eq. (10.46) is valid and since we would like
to consider the possibility that the centre of mass is accelerating (e.g. as it is for
an object tossed through the air) that means we must always compute the angular
momentum and torque about the centre of mass.

e3

e2

e1

Figure 10.11 A free symmetric top with body-fixed axes.

We need first to identify the principal axes and here the symmetry of the top
helps us since the axis of symmetry is automatically a principal axis; we will label
this as e3. The other two principal axes are labelled e1 and e2 (see Figure 10.11)
and symmetry with respect to rotations about e3 means that any pair of orthogonal
unit vectors lying in the plane perpendicular to e3 will suffice. The symmetry also
dictates that the corresponding principal moments of inertia are the same, i.e.

I1 = I2 = I. (10.54)

3 After Leonhard Paul Euler (1707–1783).
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These are in general different from the principal moment of inertia I3. Thus the
third Euler equation gives

I3ω̇3 = 0 (10.55)

from which we immediately conclude that

ω3 = constant ≡ ωt . (10.56)

We call ωt the top (or spin) frequency; it is the angular speed at which the top
spins about its symmetry axis. We now have the task of solving for ω1 and ω2 from
the first two of the Euler equations, which are now linear since ωt is constant:

I ω̇1 + (I3 − I )ω2ωt = 0, (10.57)

I ω̇2 + (I − I3)ω1ωt = 0. (10.58)

Introducing the frequency


 = I3 − I

I
ωt (10.59)

these equations can be rewritten as

ω̇1 + 
ω2 = 0, (10.60)

ω̇2 − 
ω1 = 0. (10.61)

Differentiating Eq. (10.60) and substituting for ω̇2 using Eq. (10.61) leaves us with
a second-order ordinary differential equation:

ω̈1 + 
2ω1 = 0. (10.62)

In a similar fashion we can obtain the corresponding equation for ω2:

ω̈2 + 
2ω2 = 0. (10.63)

Eq. (10.62) and Eq. (10.63) should be immediately recognisable as equations for
simple harmonic motion of frequency 
 in each of the variables ω1 and ω2. Hence,
the general solution for ω1 is

ω1 = A cos(
t + φ). (10.64)

ω2 is governed by a similar equation, except that the amplitude and phase of this
second equation are not independent of the constants A and φ. Rather, Eq. (10.60)
implies that

ω2 = − ω̇1



= A sin(
t + φ). (10.65)
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Figure 10.12 The angular velocity of the free symmetric top as observed in the body-fixed
frame. The vector ω precesses about the e3 direction.

We are thus led to a solution in which the ω vector sweeps out a circle in the plane
defined by the body-fixed vectors e1 and e2 as shown in Figure 10.12. The total
angular velocity ω in the body-fixed frame is thus

ω = A cos(
t + φ) e1 + A sin(
t + φ) e2 + ωt e3. (10.66)

Note that the magnitude of ω is a constant since

ω2 = ω2
1 + ω2

2 + ω2
3 = A2 + ω2

t . (10.67)

In the body-fixed frame ω precesses about the symmetry axis with frequency 
. It
is important to keep in mind that although we are working in the frame of reference
of the body, ω describes the rotation of the body as seen in the lab frame. However,
because the lab and body-fixed basis vectors do not coincide, the components of
ω are different in the two frames.

10.6.2 The lab frame

The motion of the free symmetric top is described by Eq. (10.64) in the
body-fixed frame. In this frame ω, which gives the instantaneous angular velocity
of the body in the lab, precesses about the body-fixed symmetry axis. Admittedly
this is a bit of a mind bender! Can we understand what the motion looks like in
the lab? To do so we will identify some conserved quantities that will turn out
to simplify the job of making the transformation between the body-fixed and the
lab frames. In order to discuss this transformation mathematically we must first
specify the co-ordinate system to be used in the lab frame. We choose Cartesian
co-ordinates defined by the basis vectors i, j, k. Since there is no external torque,
L is a constant vector when viewed from the lab frame and so it is convenient
to fix our co-ordinate system to be aligned with the direction of L. We therefore
define k such that

L = Lk, (10.68)

where L is constant. However, in the body-fixed frame the components of L are
not constant, since the body, and hence the vectors e1, e2, e3, rotate with respect
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to the lab axes. Using Eq. (10.66) and Eq. (10.14) we obtain

L = Iω,

= IA cos(
t + φ) e1 + IA sin(
t + φ) e2 + I3ωt e3. (10.69)

Now L · ω is also a constant since, using Eq. (10.66) and Eq. (10.69), we
have that

L · ω = IA2 + I3ω
2
t (10.70)

and the right-hand side is manifestly constant. Since Eq. (10.70) involves the scalar
product of two vectors it is independent of the co-ordinate system, and so must
also be true in the lab, even though we have calculated it in the body-fixed frame.

As an aside, we can show that L · ω is also constant for free rigid bodies
even when they do not have an axis of symmetry. To prove this, we work in
the centre-of-mass frame and write the rotational kinetic energy of the particles
making up the rigid body as

T =
∑

α

1

2
mαv2

α,

=
∑

α

1

2
mα(ω × rα) · vα. (10.71)

Rearranging the triple scalar product we obtain

T =
∑
α

1

2
mα ω · (rα × vα),

= 1

2
ω ·

∑
α

mα(rα × vα),

= 1

2
ω · L. (10.72)

If there is no net torque, there is no work done to rotate the body about its centre of
mass and the rotational kinetic energy must therefore be conserved. Hence, L · ω

is constant.
Returning to the free symmetric top, we have already shown that the magnitudes

of ω and L are both constant. Constant T implies that there must be a fixed angle
between ω and L. Since L is a constant vector in the lab frame the most ω can do
in the lab is rotate about L maintaining a constant angle to it.

The result that there is a constant angle between L and ω is not quite enough
to tell us exactly what the body is doing. What we really need to figure out is
what happens to the vector e3 (the symmetry axis of the body) in the lab frame.
Fortunately, we can show that e3 also lies in the plane defined by L and ω by
constructing the vector
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L − Iω = Iω1e1 + Iω2e2 + I3ωte3 − Iω,

= (I3 − I )ωte3. (10.73)

Since ωt is a constant, Eq. (10.73) describes a constant relationship between the
three vectors L, ω and e3 such that the three vectors lie in a plane. This certainly
does not mean that the plane formed by the three vectors is itself fixed in space;
although we do know that the direction of L is constant it is still possible for
ω and e3 to rotate at the same rate about L. This is what happens, as we will
now show by examining the time dependence of e3. To do this we transform the
time-derivative of e3 from the body-fixed frame to the lab. We have

de3

dt
=

(
de3

dt

)
body

+ ω × e3 = ω × e3, (10.74)

since e3 is a constant vector in the body-fixed frame. Quite generally, we can
express e3 in terms of the basis vectors i, j, k in the lab as

e3 = cos � k + sin �(cos  i + sin  j), (10.75)

where � represents the fixed angle between e3 and L, and  is the angle between
the projection of e3 into the i-j plane, and the i axis (see Figure 10.13). Now
Eq. (10.73) can be rearranged to give ω:

ω = L

I
k − I3 − I

I
ωt e3 (10.76)

i

j

L

k
e3

Θ

Φ

Figure 10.13 The e3 vector relative to the lab coordinate axes.

and we can use this in Eq. (10.74) to obtain

de3

dt
=

(
L

I
k − I3 − I

I
ωt e3

)
× e3 = L

I
k × e3. (10.77)
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Combining this with Eq. (10.75) gives

de3

dt
= L

I
sin � (cos  j − sin  i). (10.78)

This can be compared with the time derivative of Eq. (10.75):

de3

dt
= d

dt
sin � (cos  j − sin  i) (10.79)

to give
d

dt
= L

I
, (10.80)

provided that � �= 0. Thus we have shown that ω and e3 both precess about L in
the lab frame at a constant frequency

ωp ≡ d

dt
= L

I
. (10.81)

If � = 0, then we are back to the situation of fixed-axis rotation about a principal
axis (the symmetry axis), and e3, L, and ω are all parallel. For � �= 0, Eq. (10.81)
takes on a more revealing form when we write it in terms of the top frequency
ωt . Using Eq. (10.69) we have

L · e3 = ωtI3 = L cos �, (10.82)

which together with Eq. (10.81) implies that

ωp = I3

I cos �
ωt . (10.83)

Thus, in the lab frame, a free symmetric top spins about the symmetry axis (with
angular speed ωt ) while the symmetry axis precesses (with angular speed ωp)
about the fixed L vector. This mode of motion is often referred to as ‘wobbling’
because of the rotating orientation of the symmetry axis. The relationship between
the co-planar vectors L, ω and e3 is presented in Figure 10.14 for the case that
the top is prolate, i.e I3 < I . The precession of ω around e3 in the body-fixed
frame describes what is labelled as the body cone. In the lab frame ω precesses
about L to produce the space cone. The space and body cones intersect along
a line defined by the vector ω and as the motion progresses the body cone rolls
around the space cone. For an oblate top (I3 > I ), the diagram is similar, except
that ω lies on the other side of L and the space cone sits inside of the body cone4.

We now have all the bits and pieces that we need to fully describe the translational
and rotational motion of a free symmetric top. Remember that in this context ‘free’
means free of a net external torque, but there may well be external forces that
produce no net torque. Let us examine an example of free rotation that caught

4 You should be able to prove this.
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Figure 10.14 Space and body cones for a symmetric top.

the attention of Richard Feynman5 while he was sitting the cafeteria of Cornell
University6. Feynman told his biographer, Jagdish Mehra that he was watching a
student playing with a plate, tossing it into the air and catching it. If you have
ever tried this you will know that it is important to give the plate some angular
momentum in order to keep its orientation stable and thereby make it easier to
catch. The plate would have been spinning about its symmetry axis, and as we
have shown, the symmetry axis would have been simultaneously precessing about
the angular momentum vector, making the plate wobble in flight. Feynman noticed
that an emblem printed on the plate rotated at about half the frequency of the
wobble, i.e. ωp ≈ 2ωt . We will obtain this result in the following example.

Example 10.6.1 Show that the precession frequency of Feynman’s plate is twice
the top frequency, provided the plate doesn’t wobble too much.

Solution 10.6.1 By saying that the plate does not wobble too much it is meant that
there is only a small angle between the e3 axis and the L vector. In fact, you might
like to use Figure 10.14 to help picture the wobbling motion by noting that the
shaded area directly specifies the spatial orientation of the plate. For small angles,
we can set cos � ≈ 1 in Eq. (10.83) and obtain

ωp ≈ I3

I
ωt .

To make the calculation of the ratio of moments of inertia easier we treat the plate
as a perfectly flat disc. Since this is a planar object we can use the perpendicular
axis theorem to write

I3 ≡ I33 = I11 + I22 = 2I

hence, ωp ≈ 2ωt .

5 Richard Phillips Feynman (1918–1988).
6 Jagdish Mehra, The Beat of a Different Drum: The Life and Science of Richard Feynman, Clarendon
Press.
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e3

L

Figure 10.15 A thrown plate describes a parabolic path while wobbling. The small circle
indicates the position of a mark on the rim of the plate. The direction of the e3 axis is
indicated. The underside of the plate is shaded and each image represents the orientation of
the plate at successive time intervals of π/(2ωp). Note that when the e3 axis has precessed
by 2π radians the mark has rotated by π radians.

We are finally at the point where we can give a complete description of the
combined rotational and translational motion of a plate in flight7. Suppose that the
plate is thrown like a Frisbee, then L will be approximately vertical as shown in
Figure 10.15. The centre of mass of the plate will obey Newton’s Second Law
(Eq. (2.28)) and so will follow a parabolic path typical of motion of a particle in
a uniform gravitational field. The wobbling motion that we have described in this
section then takes place in a frame of reference with its origin at the position of
the centre of mass. This separation of the motion into that of the centre of mass,
and rotation about the centre of mass is valid even though the centre of mass is
uniformly accelerating, as we discussed in relation to the derivation of Eq. (4.13).

10.6.3 The wobbling Earth

Does the Earth wobble as it travels spinning through space? Provided that we
ignore the variation in the gravitational field of the Sun and Moon over the volume
of the Earth, then there is no gravitational torque and we might well consider the
Earth to be a free symmetric top. The shape of the Earth is oblate (squashed at the
poles) so that I3 is a little larger than I . The numerical values are such that

I3 − I

I
≈ 0.0033,

which we can substitute into Eq. (10.59) to obtain the precession frequency of ω

about e3 in the body-fixed frame of an Earth-bound observer:


 = I3 − I

I
ωt = 3.3 × 10−3 × 2π/day. (10.84)

This gives a period of about 300 days. We therefore expect that the axis of rotation
of the Earth, as observed from a frame of reference fixed to the Earth, should
precess about the North Pole with a period of about 10 months. This motion

7 We ignore air resistance.
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would be expected give rise to a periodic change in the apparent latitude (the
latitude deduced from observations of the stars) of any given point on the Earth’s
surface. Detailed observations of the apparent latitude at many locations around
the globe over the last century or so have produced data which suggest that the
situation is more complicated than the above analysis suggests. The data show many
irregularities, but have an underlying periodicity of one year which is thought to be
due to seasonal atmospheric effects. However, in addition to the annual periodicity,
there is a component with a period of 420 days known as the ‘Chandler wobble’.
It is this component that is thought to be the effect of the precession of ω around
the polar axis. That the observed period is longer than the predicted value may
be a result of the Earth not being a perfectly rigid body. In particular, the Earth’s
mantle is thought to be a viscous fluid, the flow of which effectively reduces the
moment of inertia difference I3 − I and extends the period of the wobble. You
can demonstrate an effect that a fluid interior has on the rotational properties of
a body with an experiment with two eggs; simply compare the effort it takes to
spin a raw egg on a flat surface as opposed to that required for a hardboiled egg.
You will observe that it is more difficult to get the raw egg to spin at a given
rate. This is because the fluid interior drags on the shell and dissipates energy
through non-conservative viscous forces. A raw egg can not be usefully described
by a moment of inertia tensor since different parts of the egg generally rotate
with different angular velocities. A proper representation of the rotational motion
therefore requires the use of a function of space to define the local velocity of an
element of matter at any point within the egg, as well as the forces acting on it.
In this chapter we shall not delve any deeper into the physics of rotating fluids,
which is really the domain of fluid dynamics, but shall instead continue to explore
the rich physics of rigid bodies as governed by Euler’s equations.

10.7 THE STABILITY OF FREE ROTATION

We determined in Section 10.4 and Section 10.5 that it is theoretically possible to
obtain fixed-axis rotation about any of the three principal axes of a free rigid body.
However, we did not ask a somewhat more advanced question as to whether such
rotation could be maintained for a finite time in a realistic system. Surprisingly,
as we shall discover in this section, the answer is that sustained fixed-axis rotation
about only two of the principal axes is achievable in practice.

For rotation about a principal axis to be stable we require that small deviations
in the alignment of the angular velocity with the principal axis do not produce large
effects with time. Such deviations will inevitably occur no matter how carefully
we try to set a body spinning about a principal axis, but if the effects remain small
we can consider them as perturbations to the motion and we will be able to ignore
them at some level. However, if the perturbations come to dominate the motion
we consider it to be unstable.

To see the effect that perturbations have on a body rotating about a principal
axis, we look directly at the solutions to Euler’s equations. Suppose that the body
is rotating with angular velocity ω, which is nearly parallel to e3. We can then
make the approximation

ω1 , ω2 � ω3,
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which allows us to write Euler’s equations, Eq. (10.53) with τ = 0 as:

I1ω̇1 = (I2 − I3)ω2 ω3, (10.85)

I2ω̇2 = (I3 − I1)ω1 ω3, (10.86)

I3ω̇3 = (I1 − I2)ω1 ω2 ≈ 0. (10.87)

Since Eq. (10.87) implies that ω3 is approximately constant we can set ω3 = ωt

where ωt is a constant, and write

I1ω̇1 = (I2 − I3)ω2 ωt, (10.88)

I2ω̇2 = (I3 − I1)ω1 ωt . (10.89)

Differentiating Eq. (10.88) with respect to time and substituting for ω̇2 from
Eq. (10.89) gives us

ω̈1 = − (I2 − I3)(I3 − I1)

I1I2
ω2

t ω1. (10.90)

Eq. (10.90) is an equation describing a harmonic oscillation in ω1 with frequency

, where


2 = (I2 − I3)(I3 − I1)

I1I2
ω2

t . (10.91)

Provided that 
2 > 0, we can obtain a real frequency and the solution will be of
the form

ω1 = A cos(
t + δ), (10.92)

where A and δ are constants that are fixed by the orientation of the body at t = 0.
The oscillation will remain of small amplitude if it begins with small amplitude.
However if 
2 < 0, then 
 is imaginary and there is no oscillation of ω1 about
zero. Rather, the general solution to Eq. (10.90) becomes

ω1 = A eκt + B e−κt , (10.93)

where κ = i
 is real and A and B are constants. This solution is unstable: even a
tiny ω1 at t = 0 will blow up as t increases. We conclude that for a stable rotation
we must therefore have


2 = (I2 − I3)(I3 − I1)

I1I2
ω2

t > 0, (10.94)

which occurs if I3 is the largest, or the smallest, of the three principal moments.
However, if I3 is the intermediate moment of inertia, i.e.

I1 < I3 < I2 or I2 < I3 < I1 (10.95)

then 
2 < 0 and the rotation is unstable.
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You can easily demonstrate the relative stability of rotations about the principal
axes of a rigid body yourself. Choose an object with some clear symmetries so
that the principal axes are easily identifiable: a tennis racquet makes a good choice
if you can manage to spin it and catch it without injuring yourself, otherwise use
a book that is secured with an elastic band so that it doesn’t open. Figure 10.16
shows the principal axes of a tennis racquet. The matter distribution in a tennis
racquet is such that I3 < I1 < I2. When the racquet is spun about the long (x3) axis
stable rotation is clearly possible, as is the case when the racquet is spun in the air
in a direction perpendicular to the plane of the strings. However if you attempt to
spin the racquet about the x1 axis you will see a much more erratic behaviour that
makes it very difficult to catch.

x3

x1

COM

Figure 10.16 A tennis racquet with the x1 and x3 principal axes illustrated. The x2 axis
is through the centre-of-mass (COM) and into the page. Stable rotations are possible about
the x2 and x3 axes but rotation about x1 is unstable.

10.8 GYROSCOPES

10.8.1 Gyroscopic precession

We have worked hard to gain a thorough understanding of the motion of free
rigid bodies through the use of Euler’s equations with the torque set to zero. In this
section we will ‘raise the bar’ just a little and explore the effect of a torque on a
rapidly spinning body. This is the physics of gyroscopes. Before we get to this, let
us just say a few words on the physical characteristics of the system. A gyroscope
(see Figure 10.17) typically consists of a flywheel on an axle which is fixed to a
supporting cage. Most of the mass of the gyroscope is contained within the flywheel
which is free to rotate on the axle. There is always some mechanism for setting
the flywheel spinning at high angular speed. This is typically a string wound about
the axle that can be tugged sharply, or there may be an electric motor that drives
the flywheel. The motion of the gyroscope is fascinating. It almost seems to defy
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Figure 10.17 The parts of a simple gyroscope.

gravity. Instead of toppling over on the pivot when released, it precesses serenely
about the vertical direction. In more sophisticated incarnations, a gyroscope may
be mounted on a gimbal within a frame that allows it to take up any orientation to
the frame. In such a configuration the gyroscope’s axle maintains its direction as
the frame tilts, and may be used to measure the orientation of the frame, a feature
that leads to applications in the navigation systems for aircraft and ships. We will
explore the simple gyroscope, treating it as an axially symmetric top, pivoted at its
base, and subject to a gravitational torque.

To gain a preliminary understanding of gyroscopic motion it is not necessary
to work in the body-fixed frame, so we will use the lab frame to start with, but
will switch to a rotating frame when we look at a more complex type of motion
called nutation. Furthermore, in the first instance only, we will make things easy for
ourselves by making the approximation that ω lies parallel to the symmetry axis.
This is a good approximation as long as the flywheel rotates much more rapidly
on the axle than the whole gyroscope precesses about the vertical direction. In this
case, almost all of the angular momentum of the gyroscope comes from the rotation
of the flywheel about the axle. Figure 10.18 shows the gyroscope at an angle θ to

e3

O

Flywheel

R mg
q

Figure 10.18 A gyroscope at angle θ to the vertical.
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the vertical in a co-ordinate system that has its origin at the pivot and in which e3

is parallel to the instantaneous direction of the axle. If we consider only the angular
momentum of the flywheel then L is parallel to e3. R represents the position vector
of the centre-of-mass, and so the gyroscope experiences a gravitational torque about
the pivot given by:

τ = R × mg. (10.96)

The torque is directed into the page in Figure 10.18. In the inertial lab frame this
torque must produce an instantaneous change in the angular momentum which is
also into the page. This is achieved by rotating the direction of the e3 axis and
hence also the direction of L. The instantaneous change in L is represented in the
horizontal plane in Figure 10.19. Using Eq. (4.18) we have

τ δt ≈ δL (10.97)

L sin q

df
dL

Figure 10.19 The changing horizontal component of L induced by the gravitational torque
on the gyroscope.

and
L sin θ δφ ≈ δL, (10.98)

from which we obtain

ωp ≡ φ̇ = τ

L sin θ
. (10.99)

As long as θ doesn’t change, τ is constant and we obtain a solution in the lab frame
with ωp also constant, which represents the uniform precession of the gyroscope
axle about the vertical.

The above treatment is straightforward and gets us quickly to a result that tells
us how the gyroscope is able to precess, i.e. L rotates at exactly the correct rate so
as to compensate for the gravitational torque about the pivot, so there is no torque
‘left over’ to cause the gyroscope to topple. However, the simple approach is
unsatisfying in a couple of ways. Firstly it assumes that all the angular momentum
of the system is generated by the rotation of the flywheel about the e3 axis, and
ignores the angular momentum associated with the rotation of the whole system
about the vertical direction. Secondly, it assumes that the gyroscope executes its
precession at a fixed angle to the vertical and therefore says nothing about the
possibility of θ changing with time, as would happen if we were not able to release
the gyroscope at the correct angle. We will address these deficiencies in turn: the
first in the lab frame by including the angular momentum associated with the
precession; the second by using Euler’s equations in a rotating frame of reference.
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Let us now get rid of the approximation that ω is parallel to the body-fixed
e3 axis. As the gyroscope precesses with angular velocity ωp about the vertical
it gives rise to another contribution to the rotation about e3, as measured in the
lab frame. At any time we can project the total ω on to the symmetry axis of the
gyroscope to obtain

ω3 = ωt + ωp cos θ, (10.100)

where, as before, θ is the angle between the e3 axis and the vertical direction.
Previously, we made the approximation that ω3 ≈ ωt which is valid only as long
as the top frequency is much higher than the precession frequency. Gyroscopes
are constructed so that there is very little friction in the rotation of the flywheel
so we shall treat ωt as a constant. The fact that the torque is always perpendicular
to the e3 direction implies that the projection of the angular momentum onto the
symmetry axis of the gyroscope is a conserved quantity, i.e.

dL3

dt
= τ3 = 0, (10.101)

where
L3 = I3 ω3. (10.102)

The angular momentum will also have a contribution from the precession in a
direction perpendicular to e3 which we denote as L⊥(see Figure 10.20). Assuming
the gyroscope to be a symmetric top we have I1 = I2 = I and can write

L⊥ = Iωp sin θ. (10.103)

The various contributions to L are shown in Figure 10.20 in the plane instanta-
neously containing the vertical and e3. All of the vectors in Figure 10.20 are in a
common plane that is precessing about the vertical direction. As such, the compo-
nent of L in the horizontal plane describes a circle in the lab. Changes in direction
of this component are a result of the action of the gravitational torque. We can now
write an equation analogous to Eq. (10.98) that now includes the contribution of
the precession to L:

(L3 sin θ − L⊥ cos θ) δφ = τ δt.

L3

Vertical

L3 sin q − L⊥ cos q

q

⊗τ
L⊥

Figure 10.20 Components of L for a gyroscope. The torque is directed into the page.
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Setting ωp = φ̇ and using Eq. (10.103) gives us

ωp(L3 sin θ − Iωp sin θ cos θ) = τ. (10.104)

Eq. (10.104) is a quadratic equation in ωp with the solution

ωp =
L3 ±

√
L2

3 − 4Iτ/ tan θ

2I cos θ
. (10.105)

Eq. (10.96) gives us the magnitude of the torque

τ = mgR sin θ, (10.106)

which we can use together with Eq. (10.102) to rewrite Eq. (10.105) as

ωp =
I3 ω3 ±

√
L2

3 − 4ImgR cos θ

2I cos θ
. (10.107)

What is the meaning of the two solutions given by Eq. (10.107)? The higher value of
ωp corresponds to taking the plus sign in the numerator and will give us a frequency
ωp ∼ ω3, which is fast precession, given that ωt is large. The second solution
corresponds to taking the minus sign in the numerator. We shall soon show that
this ‘slow’ solution corresponds to the ωp we found previously, i.e. in Eq. (10.99).

That there are two solutions to the equation of motion is a feature of gyroscopic
motion that we missed with our simple analysis. To gain a deeper insight, let us
look at both solutions in the limit that the torque is very small, as would be the
case for a gyroscope of low mass. In this case

4Iτ

tan θ
� L2

3 (10.108)

and the high frequency solution to Eq. (10.105) is

ωp ≈ I3ω3

I cos θ
, (10.109)

which is independent of the torque and represents the precession of a free symmetric
top (cf. Eq. (10.83)). The slow solution may be examined, in the limit of small
torque, by a binomial expansion to first order of the form:

(1 + x)1/2 
 1 + 1

2
x,

giving, (to first order in τ )

√
L2

3 − 4Iτ/ tan θ ≈ L3

(
1 − 4Iτ

2L2
3 tan θ

)
. (10.110)
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Using this expansion in Eq. (10.105), we finally obtain:

ωp ≈ τ

L3 sin θ
. (10.111)

As anticipated, this the result that we obtained in our simple approach (Eq. (10.99)),
in which we ignored the angular momentum due to the precession.

Note that in order for the precession to be stable we require that the solution to
ωp from Eq. (10.107) is a real number. This gives us the condition that

I 2
3 ω2

3 ≥ 4ImgR cos θ (10.112)

or
ω2

3 ≥ 4ImgR cos θ

I 2
3

. (10.113)

This something new that has come out of our more detailed analysis. There is a
minimum spin needed to produce gyroscopic motion.

Example 10.8.1 A pencil spinning on its tip will not fall over if ω3 is large enough.
Determine the minimum value of ω3.

Solution 10.8.1 To solve this problem we will need the moment of inertia tensor
for rotations about the tip of the pencil. This requires the calculation of both the
principal moment of inertia about the symmetry axis (I3), as well as that about an
axis perpendicular to the symmetry axis (I ). To determine these we will assume
that the pencil is cylindrical with uniform density. We have already shown that the
moment of inertia of a cylinder is

I3 = 1

2
mr2,

where r is the radius of the cylinder and m the mass of the pencil. The other prin-
cipal moment of inertia is worked out by representing the pencil as a thin rod (see
Eq. (4.28)), i.e.

I = mh2

3
,

where h is the length of the pencil. Putting the moments of inertia into Eq. (10.113),
with R = h/2 and cos θ ≈ 1 gives

ω2
3 ≥ 8

3

h3g

r4
∼ 8 × (0.15)3 × 10

3 × (0.5 × 10−2)4
,

where we have taken the pencil to have a length of 15 cm and a radius of 5 mm,

which gives

ω3 � 12000 rad s−1.

This is a large rotational frequency, of about 2000 revolutions per second.

As the previous example shows, while it is theoretically possible to make a pencil
behave like a gyroscope, it is extremely difficult in practice due to the very high
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minimum spin needed. This is a result of the pencil having I � I3. Gyroscopes
are constructed so that I3 > I in order that the minimum value of ω3 is not too
large. To achieve this the flywheel is made to be more massive than the frame that
supports it, and has most of its mass close to its outer radius.

10.8.2 Nutation of a gyroscope

We have seen that if the gyroscope is spinning at the correct frequency for
the angle of tilt then one observes uniform precession. In practice we do not
usually know the correct angle and tend to release at too high or low a value of θ .
Moreover, we release the gyroscope from rest, rather than at the correct precession
frequency. The result of these starting conditions is that the gyroscope bounces a
little before settling down into a precession at constant θ . To understand this aspect
of a gyroscope’s behaviour it is most convenient to look at the motion in a rotating
frame of reference and to use Euler’s equations. There is a subtlety here; the rotating
frame that we will use is one that precesses uniformly with angular velocity ωpk,
where k represents the vertical direction in the lab frame. We will call this frame
the precessing frame. It is clearly non-inertial, but it is not a body-fixed frame
since the flywheel still spins in it. Essentially, we will use the precessing frame as
a temporary replacement for the lab frame, which we are allowed to do as long as
we introduce the correct fictitious forces. The beauty of using the precessing frame
is that the torque is necessarily zero since the vector L stands still in this frame.
It is the cancellation of the real torque and the torque due to the ficticious forces
that ensures that this is just so. Thus, precession at constant angle θ to k in the
lab is represented by the gyroscope simply spinning about the e3 axis with angular
speed ωt in the precessing frame, just like a free body spinning about a principal
axis. However, if we assume that the gyroscope is released with its centre-of-mass
at rest in the lab frame, the initial angular velocity in the precessing frame will be
−ωpk + ωte3. This has small8 components in the plane perpendicular to e3 and so
the gyroscope does not start off with a simple precession about k in the lab frame.
Since in the precessing frame there is no torque, we can use our solution for the
free symmetric top, i.e. Eq. (10.83). This gives us the frequency at which the e3

axis revolves about L:


′ ≈ I3ω3

I
, (10.114)

where we have made the approximation that cos � ≈ 1.
So, in the precessing frame the symmetry axis revolves around L. To understand

how things appear in the lab we have to superimpose this motion of the symmetry
axis upon the precession of L about the vertical direction in the lab, which occurs
at a frequency given by Eq. (10.99):

ωp = τ

I3ω3 sin θ
� ωt .

8 Since ωt is much larger than ωp .
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The net result is a type of motion known as nutation (which means ‘nodding’)
in which the gyroscope precesses slowly about the lab k axis, but not at fixed
θ . Instead, the axle of the gyroscope weaves an oscillatory pattern (with period
2π/
′) about an average angle of tilt while precessing about the vertical direction
(see Figure 10.21). With a simple gyroscope nutation is often heavily damped due
to friction in the pivot and is then observed as a quickly-decaying, fast oscillation
in the angle of the gyroscope.

wp

A B

Figure 10.21 An example of a nutation pattern of a gyroscope as observed in the lab frame.
The time for the gyroscope to travel from A to B is 2π/
′.

PROBLEMS 10

10.1 A child’s hoop of mass m and radius r rolls without slipping in a straight
line with speed v. To change the direction of the hoop, the child taps it with
a stick, applying an impulse �p that is perpendicular to the plane of the
hoop. Where on the hoop should the child apply the blow?
Show that the hoop is deflected by an angle

θ ≈ �p

mv
.

You should assume that the plane of the hoop remains vertical throughout.
10.2 A coin may be rolled without slipping in a circular path on a horizontal

surface, as long as it leans slightly towards the centre of the circle. Show
that the angle of tilt φ of the coin is given by

tan φ ≈ 3v2

2gR
,

where v is the constant speed of the coin, R is the radius of the circle and
g is the gravitational acceleration. What happens if v decreases slowly with
time due to rolling friction?

10.3 A spinning ball of diameter 15 cm may be balanced on a fingertip if the
rotational speed is sufficient. Estimate the spin required for: (a) a uniform
solid ball; (b) a uniform hollow thin-walled ball.
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10.4 A rectangular plate of mass M has length 2a and width a. Determine the
moment of inertia tensor for rotations about a corner. Use a Cartesian
co-ordinate system in which the x1 axis is aligned with the long axis of
the plate, the x3 axis is perpendicular to the plane of the plate and the x2

axis is parallel to the edge that has length a.
In the same co-ordinate system the plate rotates at constant angular velocity

ω = ω√
2
(1, 1, 0).

Determine the magnitude of the angular momentum of the plate, and hence
the torque needed to maintain the rotation. Calculate the rotational kinetic
energy.

10.5 Determine the principal axes and principal moments of inertia for rotations
about a corner of the solid rectangular plate in the previous problem.

10.6 A solid uniform cylinder of density ρ has radius R and height h. Use sym-
metry to deduce the principal axes for rotations about the centre-of-mass.
Calculate the corresponding principal moments of inertia.
A cylindrical artillery shell of radius 0.1 m and length 0.4 m is fired from
a gun into the air. Estimate the rate of precession of the symmetry axis if
the barrel of the gun imparts a spin of 50 revolutions per second about the
symmetry axis of the shell.

10.7 A rotating thin circular disc, moving through a fluid, is subject to a damping
torque about its centre of mass that is given by

τ1 = −κω1,

τ2 = −κω2,

τ3 = 0,

where e1 and e2 are the principal axes that lie in the plane of the disc, e3 is
the symmetry axis and ω is the angular velocity. Use Euler’s equations with
the substitution η = ω1 + iω2 to determine the time-dependence of ω2

1 + ω2
2.

Describe the motion of the disc in the lab frame.
10.8 Show that for a general rigid body the rate of change of rotational kinetic

energy can be expressed as

dT

dt
= ω · τ .

10.9 Show that the total angular momentum L of a system of particles may be
written as

L = MR × Ṙ + Lc,

where R is the position vector of the centre-of-mass, M is the total mass of
the system and Lc is the angular momentum of the system relative to the
centre-of-mass.
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10.10 sfasfd(a) Show that the moment of inertia tensor of a uniform solid right circular
cone about its apex is given by

I =




3
5m

[
R2

4 + h2
]

0 0

0 3
5m

[
R2

4 + h2
]

0

0 0 3
10mR2




where m is the mass of the cone, R is the radius of the base, h is the
height and the symmetry axis lies along e3.

(b) A solid right circular cone rolls on its side without slipping on a hori-
zontal surface. The cone returns periodically to its starting position with
constant angular speed ω. Show that the kinetic energy of the cone is
given by

T = 3mω2h2

40

(
6h2 + R2

h2 + R2

)
.





Part IV
Advanced Special

Relativity





11
The Symmetries of Space
and Time

11.1 SYMMETRY IN PHYSICS

Although Part II of this book succeeded in presenting all of the key ideas in
Special Relativity it was weak in one crucial respect. Namely, it did not place
proper emphasis on an underlying symmetry of Nature which, once appreciated,
throws a whole new light on the subject and on the very way we think of space and
time. It is the purpose of this part of the book to remedy that deficiency and in so
doing provide the grounding for a much deep understanding of the subject which
ultimately paves the way for Einstein’s Theory of Gravitation: General Relativity.

Symmetry is abundant in Nature, is often intuitive and frequently perceived
as beautiful, for example a snowflake or a sphere. There is a whole mathematical
apparatus, called Group Theory, which exists in order to handle the mathematics of
symmetry. Fortunately, we don’t need to learn Group Theory to make a good deal
of progress, instead we shall develop the maths as and when we need it. Generally
speaking, a system possesses a symmetry if it can be transformed in some way
such that the result of the transformation is to leave the system unchanged. The
most trivial type of symmetry arises if we take a system and do nothing to it.
The act of ‘doing nothing’ is a symmetry, but not a very interesting one. More
interesting would be to take a circle and rotate it by any angle about an axis
through its centre and perpendicular to its plane. We say that the circle is invariant
under such rotations. It is also invariant under reflections about any diameter.
Similarly, a square is invariant under reflections about either diagonal, or about the
perpendicular bisectors of its sides.1 The word ‘invariant’ is used to indicate that
the object in question remains unchanged.

1 There are more symmetries of a square which you may like to try and figure out.

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd
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Before we press ahead and begin to present some specific examples of symmetry
in action it is perhaps worth re-emphasising that symmetries play a very fundamen-
tal role in modern physics. Time translational invariance is the symmetry which
says that the laws of physics do not change over time and it embodies the idea that
an experiment performed today should yield the same result as the same experi-
ment performed tomorrow, all other things being equal. Remarkably, the law of
conservation of energy arises as a direct consequence of this symmetry.2 Similarly,
the law of conservation of momentum can be derived if we insist that the laws of
physics should be invariant under translations in space (loosely speaking we might
say that it does not matter where an experiment is performed) and the law of con-
servation of angular momentum can be derived by insisting on invariance under
rotations in space (i.e. it does not matter what the orientation of an experiment
is). These three symmetries are very intuitive symmetries of space and time. They
embody the idea that there is no fundamentally special place, time or direction in
the Universe. We have seen in Part II that Einstein added a new symmetry of space
and time to this list, namely Lorentz invariance, and it is the purpose of this part
of the book to emphasise the central role of that symmetry in his theory.

11.1.1 Rotations and translations

Vectors and scalars: a recap

Laws of physics, such as Coulomb’s Law or Newton’s laws, are built using only
scalar (such as mass and electric charge), vector (such as force and acceleration)
and occasionally tensor (such as the moment of inertia) quantities. By their very
definition, these objects do not change if we decide to use a different system of
co-ordinates. Of course the components of a vector (or tensor) do depend upon the
choice of co-ordinates but the vector is still the same old vector. Objects which do
depend upon the details of our co-ordinate system are not of interest to physicists,
since the way we choose to parameterise points in space and time should not be
important.

In this and the next subsection we explore this idea in a little more detail. Let
us begin by considering two frames of reference T and T ′, which differ in some
way that does not depend upon time. A general vector V does not care about the
change of co-ordinates, although its components do generally change:

V =
∑

i

Viei =
∑

i

V ′
i e′

i . (11.1)

The summation is over the three spatial components and the ei are the unit basis
vectors in T whilst the e′

i are the unit basis vectors in T ′. So although the com-
ponents of the vector do change (Vi �= V ′

i ) the vector remains the same. We say
that the two frames of reference lead to different representations of the same vec-
tor. Scalars are even simpler, for their numerical value is independent of reference
frame.

2 It is outside of our remit to provide the proof of the link between symmetry and conservation laws in
this book.
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V

x'

y'

xO
q

y

Figure 11.1 Two different frames of reference, T and T ′, which differ by a rotation through
an angle θ .

Rotations

Let us be even more specific and consider two frames of reference that differ by
a rotation through an angle θ about the z-axis, as illustrated in Figure 11.1. The
components of a general vector V in the two frames are related to each other by

V ′
1 = V1 cos θ + V2 sin θ, (11.2)

V ′
2 = −V1 sin θ + V2 cos θ, (11.3)

V ′
3 = V3. (11.4)

Equivalently we may write (using the summation convention introduced in
Eq. (8.7))

V ′
i = RijVj , (11.5)

where the entries Rij can be expressed via the matrix

R =

 cos θ sin θ 0

− sin θ cos θ 0
0 0 1


 . (11.6)

As we shall soon see, a particularly important property of this matrix is that it is
orthogonal, which means that

RT R = 1 (11.7)

or, in component form,

RjiRjk = δik. (11.8)

It is therefore a trivial exercise to obtain the inverse of an orthogonal matrix:
one just takes the transpose: R−1 = RT , i.e. (R−1)ij = Rji. As an aside it is very
common to see Eq. (11.5) written as

V′ = RV. (11.9)
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This is fine so long as one is clear on the distinction between the column vector
V and the actual physical vector V . The former is merely an ordered list of three
numbers which tell us the components of V in a particular frame of reference. As
such it is not equal to V′ which is a different ordered list of numbers. This is of
course not in conflict with the statement that the vector V is identical in the two
frames, i.e. V ′ = V . Notice the subtle notation: we use upright boldface to denote
column vectors and italic boldface to denote actual physical vectors.

Let us see the utility of vectors in action by considering a particular example.
The gravitational attraction between two massive particles of mass m1 and m2

located at position vectors x1 and x2 relative to an origin O leads to the following
equation of motion for particle 1:

m1
d2x1

dt2
= Gm1m2

x2 − x1

|x2 − x1|3
. (11.10)

Under rotations of the co-ordinate system, none of the quantities in this equation
change since they are vector or scalar quantities and so the equation holds true in
all frames related to each other by a rotation. Put another way, since we built the
equation using vector and scalar quantities it follows that the equation does not
change its form even if we change reference frame. We say that the laws of physics
are invariant under a (global) change of co-ordinates.

Example 11.1.1 When written in component form, Eq. (11.10) can be written

m1
d2x1i

dt2
= Gm1m2

x2i − x1i

[(x2j − x1j )(x2j − x1j )]3/2
, (11.11)

where x1i are the components of x1 in T etc. We have again used the convention
(introduced first in Section 8.2) which says that repeated indices are summed over,
i.e. there is a sum over j implied in the denominator. Prove that this equation does
not change its form when expressed in terms of components in T ′ given that T and
T ′ are related by the rotation specified by Eq. (11.6).

Solution 11.1.1 We can substitute for x1i = Rjix
′
1j etc. in the numerator of each

side of Eq. (11.11). The denominator on the right hand side needs special consid-
eration. Clearly it represents the distance between the two particles (raised to the
third power) and this ought to be a scalar quantity. Let us check this. If we define
rj ≡ x2j − x1j and

d2 ≡ rj rj

then we can write

d2 = Rkj r
′
kRlj r

′
l

= RkjRlj r
′
kr

′
l

= Rkj (R
−1)jlr

′
kr

′
l

= δklr
′
kr

′
l

= d ′2. (11.12)
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Thus the distance is indeed the same in both frames and we can write Eq. (11.11) as

m1Rji

d2x ′
1j

dt2
= Gm1m2

Rji(x
′
2j − x ′

1j )

[(x ′
2k − x ′

1k)(x
′
2k − x ′

1k)]
3/2

.

We are almost done, all that remains is to multiply either side by Rli with the
implied summation over i whereupon we can use the fact that RliRji = δjl , i.e.

m1
d2x ′

1l

dt2
= Gm1m2

(x ′
2l − x ′

1l )

[(x ′
2k − x ′

1k)(x
′
2k − x ′

1k)]
3/2

.

And we have proven that the equation does not change its form under a rotation
of the co-ordinate system. We chose to perform this calculation explicitly in
component notation and hopefully you managed to thread your way through the
maze of indices. We could have worked in terms of matrices and column vectors,
in which case we write

d2 = (R−1r′)T (R−1r′)

= r′T (R−1)T (R−1)r′

= r′T RRT r′

= r′T r′

= d ′2

and Eq. (11.11) becomes

m1R−1 d2x ′
1

dt2
= Gm1m2

R−1(x ′
2 − x ′

1)

[(x ′
2 − x ′

1)
T (x′

2 − x ′
1)]

3/2
,

which reduces to the required form after multiplying both sides by R.

The previous example illustrates the usefulness of the scalar product between
two vectors since the proof of Eq. (11.12) can easily be broadened to show that

aibi = a′
ib

′
i (11.13)

for any two vectors a and b. It should be stressed that this is not inevitable. There
are an infinity of ways in which two vectors can be combined to give a pure number
but only one way yields a pure number that is also scalar. For example, given our
two vectors we might combine them as a1b1 − a2b2 + a3b3. The resultant number
is not a scalar quantity for its value does depend upon whether we are in frame
T or T ′. So the scalar product is the only possible way to combine two vectors
in order to produce a scalar. There is likewise only one way to produce a vector
quantity from two vectors and that is the vector product. Specifically this means
that under the rotation R the vector product must necessarily satisfy

(RV ) × (RW ) = R(V × W ), (11.14)

where V and W are any two vectors.
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In this subsection we have been investigating how vectors make manifest the
necessary invariance in the form of the equations of physics as we move between
frames of reference which differ by a rotation. In the language of many text-
books, we have been considering ‘passive’ rotations of the co-ordinate axes. We
have not however made any statement as to whether or not the physical world
possesses a rotational symmetry. To explore this question requires a somewhat
different approach: we need to ask what happens if we rotate the actual position
vectors corresponding to all parts of our experiment? If we want to insist that the
physical world is rotationally symmetric then performing such a rotation should not
alter the form of the equations of motion for this is the mathematical expression
of the statement that the results of an experiment do not depend upon the orienta-
tion of the experiment. Again things should become clearer if we pick a specific
example.

Let us consider a particular experiment in which a charged particle is moving in
a magnetic field. The particle moves according to

mẍ = qẋ × B. (11.15)

Now suppose that the magnetic field is generated by the apparatus of our experiment
(for example by a solenoid). We can ask what happens if we rotate all elements of
our experiment, including the solenoid, by the same amount? The new vectors can
all be obtained from the old vectors through the action of some rotation matrix R,
and in particular

x ′ = Rx, (11.16)

B ′ = RB. (11.17)

Using Eq. (11.15) we thus have

mR−1ẍ ′ = q(R−1ẋ ′
) × (R−1B ′) (11.18)

= qR−1(ẋ
′ × B ′) (11.19)

where the second line is necessary if the vector product is to be a vector quantity.
We can pre-multiply each side by R to get

mẍ
′ = qẋ

′ × B ′. (11.20)

Thus, we see that the Lorentz force law is invariant under ‘active’ rotations of all
parts of the system. Now we change the situation somewhat and move to a ficti-
tious universe in which there exists a universal uniform magnetic field B which
permeates the whole of space. Clearly this universe is not rotationally symmet-
ric since the magnetic field picks out a very special direction. Charged particles
travelling parallel to this direction would feel no force whereas those travelling
in any other direction would be deflected. Clearly, the results of experiments will
now depend upon orientation. We expect that this feature should express itself in
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a non-invariance of the form of the laws of physics and this is indeed the case as
we can easily see. Eq. (11.18) is now replaced by

mR−1ẍ
′ = q(R−1ẋ

′
) × B ′ (11.21)

since in this universe we cannot actively rotate the background magnetic field and
so B ′ = B. This equation can be simplified to

mẍ ′ = qẋ ′ × (RB ′). (11.22)

Thus we see that the equation of motion for a charged particle varies depending
upon the orientation of our apparatus. In physical terms, the effective magnetic
field which appears in the Lorentz force law varies with orientation.

11.1.2 Translational symmetry

Having dealt with pure rotations, let us now focus upon the consequences of
shifting origin. Again we shall speak of two frames of reference, T and T ′, but
this time T ′ differs from T in that the origin in T ′ lies at position R relative to the
origin in T , as illustrated in Figure 11.2. Clearly all vectors are once again blind
to this change of frame. In fact, as we move from T to T ′ not only does a general
vector V remain unchanged its components are also unchanged:

V ′
i = Vi. (11.23)

There is however a subtlety we ought to be sensitive to. When we speak of position
vectors we are stating a position relative to some origin. Thus when we change
frames, we should remember that we have also changed the point of reference for
position vectors.

Let us return again to the example of two massive particles acting under gravity
and in particular let us recast Eq. (11.10) in terms of position vectors measured

x'

y

y'

O

O'
x'

x

R x

Figure 11.2 Two different frames of reference, T and T ′, which differ by a translation.
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relative to the origin in T ′, i.e. we must write x ′ = x − R. This may look odd,
for we have previously been stressing that vectors remain unchanged as we move
from frame to frame. However, a position vector relative to one origin is not the
same as the position vector representing the same point but relative to a different
origin, that is why x ′ �= x. The equation of motion for particle 1 now becomes

m1
d2(x ′

1 − R)

dt2
= Gm1m2

(x ′
2 − R) − (x ′

1 − R)∣∣(x ′
2 − R) − (x ′

1 − R)
∣∣3 (11.24)

and since R is constant this reduces to

m1
d2x ′

1

dt2
= Gm1m2

x ′
2 − x ′

1∣∣x ′
2 − x ′

1

∣∣3 . (11.25)

Thus the form of the equation is once again unchanged. It was not automatic
that this form invariance should occur, in particular it was important that we had
the opportunity to differentiate the vector R on the left hand side. If translational
symmetry is a good symmetry of Nature then we should require all the laws of
physics to possess the same form invariance as we have just discovered for the
law of gravitation.

11.1.3 Galilean symmetry

In the previous subsection we showed how vectors and scalars are the building
blocks which ensure that the mathematical expression of the laws of physics accord
with the fact that Nature does not care how we choose to set up our system of
co-ordinates. It is very natural to ask if there are any other symmetries of Nature
which constrain the form of physical laws in analogy to the way that co-ordinate
invariance constrains us to build the laws of physics using vectors and scalars. Of
course we immediately know of one such symmetry from Part II: the principle of
special relativity which states that physics looks the same in all inertial frames.
It was Einstein who elevated Galileo’s observation that there appears to be no
experiment able to ascertain whether an object is at rest or moving with uniform
velocity into a fundamental symmetry of Nature. In its Galilean form the principle
of relativity would say that the laws of physics should take the same form in inertial
frames S and S ′ where

x′ = x − V t. (11.26)

We might think of the situation as a translation (Figure 11.2) but where the trans-
lational vector R depends linearly on time, i.e. R = V t . Clearly it is a significant
additional restriction on any physical law that it should be in accord with the
relativity principle.

As a specific example, let us return once again to the two masses interacting
gravitationally. Eq. (11.24) still holds true but now R is not a constant vector.
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Fortunately, this does not prevent Eq. (11.25) from remaining true since the depen-
dence upon R always cancels in the right hand side, regardless of the dependence of
R upon the time, whilst it also disappears from the left hand side after differentating
twice with respect to time. Thus the law of gravity is invariant under Galilean trans-
formations. Notice that it would not be invariant if R were to depend upon some
higher power of t .

11.2 LORENTZ SYMMETRY

At the end of the last section we discussed invariance under Galilean transfor-
mations. However we know from Part II that although Galilean transformations
are a good approximation at low velocities they ought really to be replaced by the
Lorentz transformations if physics is to accord with both of Einstein’s postulates.
Since it is our intention that all laws of physics should be consistent with Einstein’s
theory it would be to our advantage to find a way of representing physical objects
such that Lorentz invariance is explicit from the outset, in much the same way
that the use of vectors makes explicit invariance under co-ordinate transformations
(rotations and translations).

Let us state our intention. We would like to build all of the equations in physics
using only mathematical objects which do not change as one alters the inertial frame
of reference. Ordinary vectors and scalars provide the paradigm since equations
built out of them do not change under a change of co-ordinates. Ordinary scalars
and vectors will not suffice however, since transformations between inertial frames
mix up the spatial and temporal co-ordinates of an event. Now physics is concerned
entirely with the relationships between events in space and time. For every event
we can represent it, in any given inertial frame, by a list of four numbers (t, x, y, z).
Now these numbers may change as we move from inertial frame to inertial frame
but the event remains the same. The invariant idea of ‘an event’ suggests immedi-
ately that we might try to represent events by vectors in a four-dimensional space.
At this stage in our development this is little more than an idea but it is an idea
that will soon gain in stature.

Let us begin by recapping the Lorentz transformations. As in Part II, when it is
useful to focus on two particular inertial frames we shall always pick the frames
S and S ′ related in the usual way, i.e. the axes are aligned, the origins coincide
at t = t ′ = 0 and S ′ moves in the positive x direction with speed u. Accordingly
we can write the Lorentz transformations written in Eq. (6.28) in a particularly
suggestive manner:

ct ′ = ct cosh θ − x sinh θ, (11.27a)

x′ = −ct sinh θ + x cosh θ, (11.27b)

y ′ = y, (11.27c)

z′ = z, (11.27d)
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where

cosh θ = γ (u) = 1√
1 − u2/c2

,

sinh θ = γ (u)
u

c
, (11.28)

i.e. tanh θ = u/c. In matrix form we can equivalently write



ct ′
x ′
y ′
z′


 =




cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1







ct

x

y

z


 . (11.29)

We have done nothing except to write the Lorentz transformations of Part II in
a different way, however the similarity to the formalism for rotations, embodied
in Eq. (11.5) and Eq. (11.6), is clearly striking. Roughly speaking, it seems
that the Lorentz transformations are something akin to rotating a vector in a
four-dimensional space through an imaginary angle. Furthermore, we also know
from Eqs. (7.33) and (7.34) in Part II that the energy and momentum of a particle
transform in precisely the same way:




E′/c
p′

x

p′
y

p′
z


 =




cosh θ − sinh θ 0 0
− sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1







E/c

px

py

pz


 . (11.30)

Having seen these results, we are encouraged to follow Minkowski3 in supposing
that we really should think of space and time not as seperate entities but rather as
forming a unified four dimensional ‘space-time’ (often called ‘Minkowski space’)
and that the equations in physics should be built using vectors and scalars in this
space-time for they are the objects which do not vary as we move from one inertial
frame to another. Actually we should pause for a moment and admit that there may
be other types of object available to us, such as four-tensors or perhaps even more
exotic objects4 but to admit such a possibility does not undermine the potential
value of four-vectors and four-scalars.

For example, an event in space-time would then have a position ‘four-vector’
X = (ct, x, y, z), and instead of seperately speaking of the energy and momentum
of a particle we should speak of its momentum four-vector P = (E/c, px, py, pz).
Other directional quantities should likewise be described by an appropriate
four-vector5. We are laying claim to the idea that space and time form a four
dimensional space which supports the existence of scalars and vectors. However
if this space is to be useful to us it should possess a well defined scalar product.

3 Hermann Minkowski (1864-1909).
4 Such objects do actually exist. For example, to describe the relativistic motion of electrons we should
use objects known as ‘spinors’.
5 From this point onwards we use upper case boldface characters to represent four-vectors.



Lorentz Symmetry 249

Let us take two four-vectors, A = (A0, Ax, Ay, Az) and B = (B0, Bx, By, Bz).
The question is ‘can we combine these two four-vectors to produce a pure number
in such a way that the result does not depend upon the choice of inertial frame?’.
The answer is in the affirmative for we can define the scalar product as follows:

A · B = A0B0 − AxBx − AyBy − AzBz. (11.31)

This is very similar to the way we multiply vectors in three dimensional space
except for the fact that one of the terms has opposite sign to all of the others (it is
the term multiplying the components of the two vectors in the time direction).6 We
can easily check that this definition does indeed yield a result which is the same
in S and S ′ since

A′·B′ = A′
0B

′
0 − A′

xB
′
x − A′

yB
′
y − A′

zB
′
z

= (A0 cosh θ − Ax sinh θ)(B0 cosh θ − Bx sinh θ)

− (Ax cosh θ − A0 sinh θ)(Bx cosh θ − B0 sinh θ)

− AyBy − AzBz

= A0B0 − AxBx − AyBy − AzBz

= A · B (11.32)

and we have made use of cosh2 θ − sinh2 θ = 1. Thus we have a recipe for com-
bining two four-vectors into a four-scalar. If we take the scalar product of the
position four-vector of an event with itself we obtain

X · X = c2t2 − x2 − y2 − z2. (11.33)

In space-time language, this is the squared distance of the event from the origin.
Similarly, the squared length of the momentum four-vector in space-time is
given by

P · P = E2/c2 − p2
x − p2

y − p2
z . (11.34)

Since all inertial observers must agree upon the value of this quantity, we can
evaluate it in the inertial frame where the momentum of the particle is zero in
which case E = mc2 and thus we know that P · P = m2c2, i.e.

m2c2 = E2/c2 − p2

⇒ E2 − c2p2 = m2c4. (11.35)

This is none other than the result we presented first in Eq. (7.36). Viewed this
way, the mass of a particle is simply the length of the particle’s momentum
four-vector (divided by c).

6 The overall sign is a matter of convention, as in fact it is when we define the scalar product in three
dimensions.
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Let us close this section by reflecting upon the necessity of space-time. Clearly
we can always represent events by a string of four numbers whose values depend
upon the inertial frame of reference and clearly an event is independent of inertial
frame. What does not follow however is that the string of four numbers should
constitute a vector in a space which possesses a well defined scalar product. To
illustrate the point, we could have attempted to seek a way to write down the laws
of physics such that they are invariant under Galilean transformations. However
our attempt to introduce vectors in four dimensional space-time would be plagued
by the fact that we cannot define a scalar product. This failure implies that the
invariant distance between any two points in Galilean space-time is not defined.
Thus Galilean four-vectors are not particularly useful objects in drawing up the
laws of physics. It is perhaps worth going into a little more detail. In Galilean
relativity the space-time four-vector of an event transforms according to




ct ′
x ′
y ′
z′


 =




1 0 0 0
−u/c 1 0 0

0 0 1 0
0 0 0 1







ct

x

y

z


 (11.36)

as one moves between S and S′. The time t of an event is a four-scalar but the
spatial interval between two points is not and there is no way to combine both
intervals into an invariant distance in space-time. However, we can still proceed,
even without the existence of a distance measure. The four-vector corresponding
to the velocity of a particle can be written

U = dX
dt

= (c, ẋ). (11.37)

This is a four-vector since X is a four-vector and t is a four-scalar, so the ratio
in the difference of two such quantites must itself be a four-vector. Similarly the
four-acceleration can be written

A = dU
dt

= (0, ẍ). (11.38)

Clearly there is little advantage in using the four-vector formalism since the time
component of these four vectors is either constant or zero. For example, Eq. (11.10)
gains nothing from being rewritten in terms of four-vectors. Even so, there is one
interesting insight we can gain using Galilean four-vectors. The conservation of
four-momentum implies that

∑
i

mi(c, ẋi ) =
∑
f

mf (c, ẋf ), (11.39)

where the indices i and f label the particles in a closed system at two different
times. Apart from informing us that the momentum in three dimensions is conserved
this equation also informs us that the total mass of the system is conserved, i.e.

∑
i

mi =
∑
f

mf . (11.40)
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PROBLEMS 11

11.1 If a particle moves with speed u along the x-axis, show that if cosh η = γ (u)

and tanh η = u/c then

η = 1

2
ln

(
E + cp

E − cp

)
.

The variable η is known as the ‘rapidity’ of the particle.
11.2 Represent the Galilean transformation

t ′ = t

x ′ = x − ut (11.41)

as a 2 × 2 matrix equation, i.e. x ′ = G(u) x. Now consider a second transfor-
mation represented by G(v). Compute the matrix G(u) G(v) and show that
it is also a Galilean transformation.
In the same co-ordinate basis, Lorentz transformations can be generated by
the 2 × 2 matrix (see Eq. (11.29)):

L(η) =
(

cosh η − sinh η

− sinh η cosh η

)
.

Show that L(η1)L(η2) = L(η1 + η2).
11.3 Prove Eq. (11.14). You may find the following identity useful:

εijk = RiaRjbRkcεabc.





12
Four-vectors and Lorentz
Invariants

In the last chapter we arrived at the conclusion that physical laws should utilise
vectors in the four dimensional space-time of Minkowski. In this chapter we explore
more fully the four-vector formalism and in so doing it should become clear that
this is indeed the language of Special Relativity.

The prototype four-vector is the one which specifies the displacement between
two events located at positions X1 and X2, namely

�X = X2 − X1 (12.1)

and the square of the invariant distance between the two events is

�X·�X = c2(�t)2 − (�x)2 − (�y)2 − (�z)2,

= c2(�τ)2. (12.2)

The second line defines what is called the ‘proper time’ interval between the two
events �τ . We will usually speak of the proper time rather than the ‘invariant
distance’ although the two are the same thing up to a factor of c. If it is possible
to find a frame in which the two events occur at the same point then the proper
time is simply the time interval between the two events in that inertial frame. For
example, in a frame of reference attached to your body the proper time interval
between any two events in your life is simply the time difference measured by
the watch on your wrist. Notice that (�τ)2 can in principle take on the value of
any real number; positive, negative or zero. This is quite different from distances
in ordinary Euclidean space, and we shall explore the consequences in the next
chapter. Suffice to say here that if (�τ)2 < 0 then the proper time interval is

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd
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imaginary, which means that it is not possible for an observer in any inertial frame
to be present at both events. Starting from this displacement four-vector we can
construct a number of other very useful four-vectors without too much hard work.

12.1 THE VELOCITY FOUR-VECTOR

The velocity four-vector is defined by

U = dX
dτ

, (12.3)

=
(

c
dt

dτ
,

dx

dτ

)
. (12.4)

It is a four-vector since the derivative is defined as �X/�τ in the limit of vanish-
ingly small �τ . The numerator is our prototypical four-vector and the denominator
is our prototypical four-scalar so the ratio must be a four-vector1. We can rewrite
the differential element of proper time using

(dτ )2 = (dt)2

(
1 − 1

c2

(
dx

dt

)2
)

(12.5)

which implies that

dτ

dt
= 1

γ (u)
(12.6)

and therefore that

U = dt

dτ

(
c,

dx

dt

)
,

= γ (u)(c, u). (12.7)

Thus the velocity four-vector can be simply related to the velocity three-vector u.
Notice that the magnitude of the four-velocity is given by

U · U = c2 (12.8)

and so everything moves through space-time with the same four-speed.
We can use the four-velocity to re-derive the formulae which relate the velocity

of a particle in one inertial frame of reference to that in another. As usual we focus
upon the particular case of inertial frames S and S ′. This is a very straightforward
task, for if we suppose that we know a four-velocity in S we can obtain the
corresponding four-velocity in S ′ by applying the transformation specified by the
matrix in Eq. (11.29). In order to make precise contact with the results in Part II
we shall suppose that we are given a velocity four-vector in S ′ and asked for its

1 This is a particular example of what is sometimes called the quotient theorem.
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components in S. In this case we must use the inverse transformation matrix, which
you can easily check is equal to

�−1 =




cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1


 . (12.9)

Thus we can write

γ (u)




c

ux

uy

uz


 = γ (u′)




cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1







c

u′
x

u′
y

u′
z


 , (12.10)

where tanh θ = V/c and V is the relative speed between S and S′. These are the
equations which explain how to transform velocities from S ′ to S but to make the
link with Eqs. (6.33) and (6.34) explicit we would like to write down formulae for
ux , uy and uz in terms of V and the velocity in S ′. The factor of γ (u) on the left
hand side prevents us from writing the result immediately however the first of the
four equations encoded in Eq. (12.10) tells us that

γ (u) = γ (u′)(cosh θ + sinh θ u′
x/c) (12.11)

and we can use this in the remaining three equations. Doing so gives

ux = 1

(cosh θ + sinh θu′
x/c)

(c sinh θ + u′
x cosh θ), (12.12)

uy = 1

(cosh θ + sinh θu′
x/c)

u′
y, (12.13)

and a similar equation for the z component. Using tanh θ = V/c and cosh θ = γ (V )

gives the final answer:

ux = 1

(1 + V u′
x/c

2)
(V + u′

x) and (12.14)

uy = 1

γ (V )

1

(1 + V u′
x/c)

u′
y, (12.15)

which are identical to Eqs. (6.33) and (6.34).

12.2 THE WAVE FOUR-VECTOR

Let us now consider a travelling wave whose equation in S is written

f (x, t) = A cos(k · x − ωt). (12.16)

It might correspond to a disturbance in some medium or it might describe the
propagation of a plane polarised light wave. Before asking how such a wave looks
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Figure 12.1 The plane wave f (x, t) at two different times. The lighter shaded wave is at
the earlier time and the wave travels in the (1,1) direction.

from the viewpoint of an observer in S ′ let us first be clear on what kind of wave
Eq. (12.16) describes. Figure 12.1 shows a plot of f (x, t) at two different times
for a particular choice of wavevector k. So that we could draw the picture in the
page we picked a two-dimensional wave. The figure illustrates that Eq. (12.16)
describes a wave travelling in the direction indicated by k (to produce the figure
we picked k = (1, 1)). In addition, the displacement of the wave is constant along
lines in the xy-plane which lie perpendicular to the direction of propagation k. In
three-dimensions the situation is much the same except that the displacement of
the wave is now constant on planes that lie perpendicular to the wavevector k.

For this reason such waves are often referred to as ‘plane waves’. The speed of
propagation in S is given by v = ω/k (where k = |k|).

Now we return to the task in hand. What does this wave look like from the
viewpoint of an observer in S ′? This question is explored in detail in one of the
problems at the end of this chapter but for now we need only the result that the
phase of the wave must be a four-scalar, i.e.

φ = k · x − ωt (12.17)

must be the same in all inertial frames. This follows since a particular value of φ

corresponds to a particular state of the wave and this cannot depend upon inertial
frame. For example, the phase difference between a maximum of displacement and
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the adjacent minima should equal ±π/2 in all inertial frames. Now we notice that
the phase can be written as a Minkowski scalar product:

φ = −K · X, (12.18)

where X is a position four-vector and K = (ω/c, k). Now since φ is a four-scalar
and X a four-vector it follows that K must also be a four-vector.

We are now in a position to re-derive the Doppler effect for light. Consider the
situation illustrated in Figure 6.4, i.e. a light source is at rest in S ′ such that it
radiates plane waves in the direction of an observer in S. If in S ′ the light wave
has a wave four-vector given by

K′ = (k′, −k′, 0, 0) (12.19)

then it will describe plane light waves travelling in the negative x ′ direction and
we have used the fact that the speed of the wave is c hence ω′ = ck′. As an
aside we ought to comment on our notation, which is rather standard but also
potentially rather confusing. We have used a prime on the four-vector itself (K′)
but four-vectors are frame independent objects so strictly speaking K′ = K. What
the prime really indicates is that the explicit representation of K on the right hand
side is understood to be in S ′. Perhaps a better notation would be to write something
like K = (k′, −k′, 0, 0)S′ but one rarely sees this in the literature and so we stick to
the slightly imprecise notation of Eq. (12.19). Returning to the task in hand, given
Eq. (12.19) we can immediately determine the corresponding wave four-vector in
S. It is




ω/c

kx

ky

kz


 =




cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1







k′
−k′

0
0


 . (12.20)

Three of these equations imply that ky = kz = 0 and kx = −ω/c = −k, as it indeed
should be for a light wave, whilst the fourth implies that

k = k′(cosh θ − sinh θ)

= γ (v)k′(1 − v/c). (12.21)

Putting f = ω/2π and k = ω/c:

f = γ (v)f ′(1 − v/c)

= f ′
√

1 − v/c

1 + v/c
(12.22)

which is Eq. (6.9).
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12.3 THE ENERGY-MOMENTUM FOUR-VECTOR

Now we turn our attention to energy and momentum. In Part II we had to
work rather hard in order to motivate the relativistic equations for momentum and
energy. Recall that we considered a particular scattering process and viewed it in
two different inertial frames with the goal of finding a definition of momentum
which was consistent with a universal law for the conservation of momentum.
Energy conservation then arose almost as if by accident. Finally we can present a
much more transparent account of the underlying physics.

Given the velocity four-vector presented in Eq. (12.7) we can define what we
shall call the momentum four-vector:

P = mU

= γ (u)m(c, u). (12.23)

This is evidently a four-vector since U is a four-vector and m is a four-scalar. If
we should seek to generalise the law of conservation of momentum so that it holds
in all inertial frames then we need look no further than Eq. (12.23) and invoke the
law of conservation of four-momentum. The new conservation law states that for
an isolated system of particles the quantity

∑
i Pi is fixed where the summation is

over all particles in the system. Given Eq. (12.23) it follows that
∑

i

γ (ui)mic (12.24)

and
∑

i

γ (ui)miu (12.25)

are seperately conserved. These are none other than the new laws for energy and
momentum conservation which we worked so hard to determine in Part II (see
Eq. (7.15) and Eq. (7.25)). Defining the energy and momentum of a particle of
mass m moving with velocity u to be

E = γ (u)mc2 and (12.26)

p = γ (u)mu (12.27)

it follows that the momentum four-vector can be written

P = (E/c, p). (12.28)

Now since P is a four-vector the quantity P · P is a four-scalar. As such it can be
evaluated in any inertial frame. If we evaluate it in the inertial frame in which the
particle is a rest we find

P · P = m2c2 (12.29)
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and thus in a general inertial frame

E2/c2 − p2 = m2c2, (12.30)

which is none other than Eq. (7.36). Also, since P is a four-vector we now
understand why it transforms just like the position four-vector under Lorentz trans-
formations, as we noted in Eq. (11.30).

12.3.1 Further examples in relativistic kinematics

The conservation of four-momentum is of great utility in studying relativistic
particle collisions, as is illustrated in the following examples.

Example 12.3.1 In Section 7.2.3 we explored the Compton scattering process γ +
e− → γ + e−. Re-derive Eq. (7.44) making use of the four-vector formalism.

Solution 12.3.1 It is a good idea in problems like this to first write down the
four-momenta of the various particles before and after the collision, i.e.

Pγ = 1

c
(E, E, 0, 0),

Pe = (mec, 0, 0, 0),

P′
γ = 1

c
(E′, E′ cos θ, E′ sin θ, 0).

We would rather not write down the explicit representation for the four-momentum
of the scattered electron since we are aiming to express the scattered photon energy
purely in terms of the incoming photon energy and the photon scattering angle θ .
Four-momentum conservation informs us that

Pγ + Pe = P′
γ + P′

e.

It is now clear how we should proceed if we would like to find a relationship between
E, E′ and θ : we should exploit the fact that P′

e · P′
e is Lorentz invariant and equal

to m2
ec

2. Thus we write

Pγ + Pe − P′
γ = P′

e

and then ‘square’ each side (i.e. take the scalar product of each side with itself):

(Pγ + Pe − P′
γ )2 = m2

ec
2.

The problem is essentially solved now and all that remains is for us to expand out
the left hand side. We could combine the three four-vectors into one big four-vector
and square that or we could stay in four-vector formalism for as long as possi-
ble. The latter has the advantage that we can make direct use of such results as
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Pe · Pe = m2
ec

2 and Pγ · Pγ = 0, i.e.

P2
γ + P2

e + P′2
γ + 2Pγ · Pe − 2P′

γ · (Pγ + Pe)

= m2
ec

2.

Now is a good time to expand out the four-vectors:

m2
ec

2 + 2Eme − 2E′me − 2E′E(1 − cos θ)/c2 = m2
ec

2,

which can be rearranged to give

1

E′ = 1

E
+ 1 − cos θ

mec2

and this is Eq. (7.44). Clearly the four-vector formalism allows us to see our way to
the answer in a much more elegant manner. Note also that the elegance would be lost
if we had rushed into component form at too early a stage. As in the manipulations
of ordinary vectors in three dimensions it is usually wise to try and stay in vector
notation for as long as possible.

Example 12.3.2 Consider the particle physics process γ + p → π0 + p in which a
photon (γ ) collides with a proton (p) to produce a neutral pion (π0) and a proton.
If the initial proton is at rest what is the minimum energy (called the ‘threshold
energy’) that the photon must have in order for the process to occur? [The proton
has mass 938 MeV/c2 and the pion has mass 135 MeV/c2.]

Solution 12.3.2 As usual it is a good idea to start with a sketch illustrating the
process, like that shown in Figure 12.2. Since the sum of the rest masses in the final
state is greater than that in the initial state it is clear that the photon must deliver

p

Zero momentum
frame

After

p

Laboratory
framep

p0

p0

g

g

p

Before

Figure 12.2 The reaction γ + p → π0 + p viewed in two different inertial frames.



The Energy-momentum Four-vector 261

some kinetic energy which can be traded off for the additional mass. However it
would be a grave error to suppose that the photon needs a kinetic energy which
exactly compensates the mass difference between the initial and final state. This
is wrong because momentum conservation must hold. Therefore, since the initial
state has non-zero momentum so too must the final state. As a result, the final state
particles must always be produced in motion and therefore they will carry some
kinetic energy. How then shall we proceed?

We can neatly circumvent the problem of momentum conservation by thinking
not in the laboratory frame but in an inertial frame where the total momentum of
the system is zero, i.e. the incoming photon and proton have equal and opposite
momentum as illustrated in the lower pane in Figure 12.2. In this ‘zero momentum
frame’ it is possible to produce the final state pion and proton at rest and clearly
this is the configuration which corresponds to the smallest possible photon energy
since none of its energy is wasted on giving the final state particles some motion.
The challenge is to relate quantities in the zero momentum frame to those in the
laboratory frame. Jumping between frames can be a time consuming affair but not
if we restrict our attention to Lorentz invariant quantities. The relevant invariant
in this problem is the four-scalar associated with the total four-momentum of the
system, i.e.

M2c2 = (Pγ + Pp)2,

= (Pπ + P′
p)2.

The quantity M is called the ‘invariant mass’ of the system and the second line
follows from the first by the conservation of four-momentum, i.e.

(Pγ + Pp)2 = (Pπ + P′
p)2. (12.31)

The left hand side of this equation involves the photon energy, which we seek to
find, i.e. using

Pγ = 1

c
(E, E, 0, 0) and

Pp = (mpc, 0, 0, 0)

the left hand side is simply equal to

(Pγ + Pp)2 = P2
γ + P2

p + 2Pγ · Pp

= m2
pc2 + 2Emp. (12.32)

We are permitted to calculate the right hand side of Eq. (12.31) in any convenient
frame of reference since it is a four-scalar. At threshold it makes sense to compute
it in the zero momentum frame since in this frame we know that

Pπ = (mπc, 0, 0, 0) and

P′
p = (mpc, 0, 0, 0).
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The right hand side of Eq. (12.31) can thus be evaluated to

(Pπ + P′
p)2 = P2

π + P′2
p + 2Pπ · P′

p

= m2
πc2 + m2

pc2 + 2mπmpc2. (12.33)

Equating Eq. (12.32) and Eq. (12.33) gives

m2
pc2 + 2Emp = m2

πc2 + m2
pc2 + 2mπmpc2,

which can be re-arranged in order to determine the threshold energy for the incom-
ing photon:

E = m2
πc2 + 2mπmpc2

2mp

= 1352 + 2 × 135 × 938

2 × 938
MeV

= 145 MeV.

12.4 ELECTRIC AND MAGNETIC FIELDS

As a final example we turn our attention to the subject of electromagnetism
wherein lies perhaps the most important application of relativity theory in
everyday life.

We start with a puzzle. Consider a wire carrying a current along its length. At
some instant in time a positively charged particle travels parallel to the wire and
in the direction of the current. Viewed from a frame in which the wire is at rest,
the charged particle is subsequently drawn towards the wire by the Lorentz force
which arises as a result of the magnetic field around the wire. Now let us consider
the same circumstance from the viewpoint of a frame of reference in which the
charged particle is at rest. In this frame, the Lorentz force is zero since the particle’s
velocity is zero2. It therefore seems that the charged particle will remain at rest
and we have a contradiction.

The resolution to this apparent paradox lies in Einstein’s theory of relativity. In
the rest frame of the charged particle, the electrons which carry the current in the
wire are closer together as a result of Lorentz contraction and hence their charge
density is greater than if they were at rest by a factor of γ (u) where u is the
speed of the electrons in the rest frame of the charged particle. The ionic lattice
against which the electrons move is also Lorentz contracted but by a lesser amount
(since the ions are at rest relative to the wire). Consequently, there is not a perfect
cancellation of the electric field due to the ions with that due to the electrons and
the positively charged particle is compelled to accelerate. Since, from the viewpoint
of the charged particle, the electron density is greater than the ionic charge density,
the postively charged particle is drawn towards the wire. We thus see that what
is a magnetic field in one frame of reference is an electric field in another frame.

2 The Lorentz force is given by F = qv × B.
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This really is quite remarkable: even the most basic of phenomena in the study of
electricity and magnetism requires relativity theory for a consistent interpretation.
It is all the more remarkable given that the effect is sensitive to the drift speed
of the electrons in a wire, which is no more than a few millimetres per second.
Strictly speaking this ought not to have come as too great a surprise since we
already stated that Einstein was impressed by the fact that Maxwell’s equations of
electromagnetism were inconsistent with Galilean relativity and that he built his
theory so as to respect Maxwell’s theory. Nevertheless, this is our first concrete
illustration of the fact.

That one can view the occurrence of magnetic phenomena as a purely relativistic
effect is further illustrated by the following example. This time let us consider a
current I which flows as a result of the linear motion of an ensemble of charged
particles. Using Ampère’s Law we can deduce the magnetic field which arises at
a distance r from the wire:

B = µ0I

2πr
.

In a real wire the charged particles are electrons and they are accompanied by
positively charged ions such that the wire as a whole is electrically neutral but now
we shall consider a current of free charges. In which case there is also an electric
field at a distance r from the wire that is equal to

E = ρ

2πrε0
= I

2πε0vr
,

where ρ is the net charge per unit length of the charged particles and we have
used I = vρ to rewrite this in terms of the current. Now we notice that the ratio
of electric and magnetic fields is given by

cB

E
= v

c

and we have used the fact that ε0µ0 = 1/c2. Viewed this way, it is clear that the
magnetic field is a small relativistic correction to the electric field. Even so, it is
an effect which has huge technological and commercial relevance.

PROBLEMS 12

12.1 A rocket of initial mass mi starts from rest and propels itself forwards by
emitting photons backwards. The final mass of the rocket, after its engine
has finished firing, is mf . By considering the four-momenta of the rocket
before and after it emitted the photons, and the net four-momentum of the
photons, show that the final speed of the rocket, u, must satisfy

mi

mf

= γ (u)
(

1 + u

c

)
.

Hence deduce the final speed of the rocket.
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12.2 An electron and a positron can collide and produce a proton and an antipro-
ton, i.e. e− + e+ → p + p. Find the minimum kinetic energy of the positron
in (a) a frame of reference in which the total momentum of the particles is
zero; (b) a frame of reference in which the positron collides with a stationary
electron.
[The masses of the electron and the positron are identical, and equal to
0.51 MeV/c2. The masses of the proton and the antiproton are also identical,
and equal to 938.3 MeV/c2.]

12.3 Prove that the minimum invariant mass of an arbitrary system of particles
is greater than or equal to the sum of the masses of the individual particles.

12.4 A photon with energy above 1.02 MeV has an energy greater than the rest
energy of an electron-positron pair. Nevertheless the process

γ → e− + e+

cannot occur in the absence of other matter or radiation. Why not?
12.5 This question is about the so-called transverse Doppler effect. Consider a

frame S in which a transverse wave

y(x, t) = sin(kx − ωt)

propagates. As seen by an observer at rest in S, this wave is travelling along
the +x direction with wavelength 2π/k and angular frequency ω. The speed
of propagation is u = ω/k.
Now consider a frame S′ which is moving at speed V in the +y direction.
The origins of S and S ′ coincide at t = t ′ = 0. Show that an observer in S ′
sees the following transverse wave:

y ′ = −Vt′ + 1

γ
sin(k′ · x′ − ω′t ′).

Deduce k′ and ω′, and hence show that K = (ω/c, k) transforms as a
four-vector.
What is the speed of propagation in S ′? Show that it reduces to the correct
values in the limits u → c and u � c.

12.6 A pion of momentum 32 MeV/c decays into a muon and a neutrino. Using
the conservation of four-momentum, and the fact that the neutrino is (to a
good approximation) massless, show that

Pπ · Pµ = (m2
π + m2

µ)c2

2
,

where Pπ and Pµ are the momentum four-vectors of the pion and muon.
If the outgoing muon travels at 90◦ relative to the direction of the incoming
pion, use the above expression to determine the kinetic energy of the muon.
At what angle does the neutrino travel relative to the incoming pion?
[The mass of the pion is 140 MeV/c2 and that of the muon is 106 MeV/c2.]
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12.7 A photon of frequency 2.0 × 1015 Hz travels at an angle of 20◦ relative
to the positive x-axis. What angle does the photon make with the positive
x-axis according to an observer who travels along the positive x-axis at
a speed of 0.87c? What is the frequency of the photon according to this
observer?

12.8 In the laboratory frame, a φ particle (mass 1020 MeV/c2) travels in the
direction of the unit vector n̂ with a momentum of 3000 MeV/c. After a
time it decays into two kaons, each of mass 494 MeV/c2 and each also
travelling in the n̂ direction.

(a) What are the energy and momentum of each kaon in the rest frame of
the φ particle?

(b) The laboratory frame is moving with velocity v relative to the rest frame
of the φ particle. In which direction is v and what is its magnitude?

(c) Perform a Lorentz transformation on the kaon momenta obtained in part
(a) in order to deduce the momentum of each kaon in the laboratory
frame.

12.9 A π+ meson (mass 140 MeV/c2) collides with a neutron (mass 940 MeV/c2)
to produce a K+ meson (mass 494 MeV/c2) and a � hyperon (mass
1115 MeV/c2).
What is the minimum energy of the π+ meson for the reaction to proceed
in the frame in which the neutron is at rest?

12.10 A K meson (mass 498 MeV/c2) is travelling through the laboratory when it
decays into two π mesons (each of mass 140 MeV/c2). One of the π mesons
is produced at rest. What is the energy of the other?

12.11 In its rest frame, a π0 meson decays isotropically into two photons. If one
such meson is moving in the laboratory frame with a speed u show that the
probability of a photon being emitted into the solid angle d� is given by

dP

d�
= 1

4π

1 −
(u

c

)2

(
1 − u

c
cos θ

)2 ,

where θ is the photon angle relative to the meson’s direction of travel as
measured in the laboratory frame.





13
Space-time Diagrams
and Causality

Right back in Section 6.1.3 we stated that it is sometimes possible for two observers
to disagree on the time ordering of a pair of events. As promised then, we shall now
take a closer look at this extraordinary statement. Our journey will eventually lead
us, at the end of this chapter, to a new way to think about Einstein’s theory which
places the emphasis much more on space-time and the notions of past, present and
future than on the constancy of the speed of light.

We shall find it very helpful to draw ‘space-time diagrams’ and Figure 13.1
illustrates a particularly simple space-time diagram: an event is represented by a
point in the x − t plane. Of course actual events in space-time are represented
by points in a four-dimensional space but the diagrams are easier to draw if we
imagine there is only one spatial dimension. A slightly more interesting space-time
diagram is illustrated in the left pane of Figure 13.2 which shows the history of a
light-front which originates at the origin at time t = 0. As time progresses the light
spreads out such that at some time t the light-front is located at x = ±ct . This
particular example is perhaps better visualised by going to two spatial dimensions,
in which case the light spreads out such that at some time t the light-front is a
circle of radius ct. In this case the history of the light-front is a cone1, as illustrated
in the right pane of Figure 13.2.

Our third example of a space-time diagram is shown in Figure 13.3. This dia-
gram shows the curve in space-time which corresponds to the entire lifetime of a
hypothetical person. The person was born at A and will die at B, and when they are
at O their future lies in the upper half-plane whilst their past lies in the lower half
plane. Such a curve through space-time corresponding to the history of some object

1 The equation of the cone is x2 + y2 = c2t2.

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd



268 Space-time Diagrams and Causality

An event in spacetime

x

t

Figure 13.1 Space-time diagram illustrating the location of a single event.
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t

x = ctx = −ct
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x

Figure 13.2 Space-time diagram illustrating the history of a light-front emanating from the
origin in one spatial dimension (left) and two spatial dimensions (right).

O
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x
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y

Figure 13.3 Space-time diagram illustrating the world line of a hypothetical person.
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or other has a special name: it is called a ‘world line’. Also shown in Figure 13.3
are the light cones x2 + y2 = c2t2. When our hypothetical person is at O, their
entire future must lie inside the light cone with t > 0, since to escape from that
region would require the person to travel faster than the speed of light. If this is not
immediately clear then it might help to note that since the speed must always be
smaller than c it follows that the gradient of the wordline must always be steeper
than the slope of the light cone. This region of the space-time diagram, marked
‘future’ in Figure 13.3, is called the future light cone of the person at O. Similarly,
their entire past must lie inside the cone with t < 0 (their past light cone) otherwise
the person would have travelled faster than light speed at some time in their past.

We are now ready to explain what is meant by causality. Let’s start with a
definition. Two events A and B are said to be causally connected if event B lies
in either the future or past light cone of event A. Stated slightly more succinctly,
events A and B must lie within each-other’s light cones. Conversely, if two events
lie outside of each-other’s light cones then they are said to be causally disconnected.
Figure 13.4 illustrates what is going on with an example. Three events, A, B and C,
are represented on a space-time diagram. B lies in the future light cone of A and is
therefore causally connected to A. Another way of saying this is to say that A lies
in the past light cone of B, which is illustrated by the dotted lines in Figure 13.4. C
is just outside of A’s future light cone and is therefore causally disconnected from
A. However, C does lie within the past light cone of B and so events B and C are
causally connected. All of this may sound rather academic but it is far from that.
Let us see why. In principle event A can influence event B but it cannot influence
event C. Indeed, event A might be the birth of our hypothetical person whilst event
B could be their graduation from university. Event C however knows nothing of
the person’s birth since it occurs too far away from A for even a pulse of light to
travel in the time available. The event at C is however causally connected to B.
For example it might correspond to the launch of an extra terrestial spaceship from
some distant part of the Universe such that the spaceship finally arrives on Earth
just in time for graduation. If Einstein’s Special Theory of Relativity is to satisfy the
demands of causality then we must insist that the time order of causally connected
events is agreed upon by all inertial observers, i.e. everyone agrees that birth
precedes death. It is very hard to imagine a universe without causality, never mind

C

x

t

A

B

Figure 13.4 Three events A, B and C along with the future light cone of A and the past
light cone of B.
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to write down the laws of physics in such a universe. Notice however that there is no
a priori reason for everyone to agree upon the time order of causally disconnected
events since such events are by definition unable to influence each other.

Having introduced space-time diagrams, light cones and the definition of causal-
ity we are now ready to show that, in Einstein’s theory, only causally disconnected
events can have their time ordering changed.

13.1 RELATIVITY PRESERVES CAUSALITY

We are going to present two different explanations for why Special Relativity
respects causality. The first of our explanations is based upon the methods utilised in
Part II whilst the second makes use of space-time diagrams and Lorentz invariance.

Starting from the Lorentz transformations, we can write the time interval between
any two events in S ′ (�t ′) in terms of the corresponding time interval in S (�t),
i.e. using Eq. (6.28b) we get

�t ′ = γ (�t − v�x/c2). (13.1)

Immediately we can see that the sign of �t ′ need not be the same as that for �t .
This means that the time ordering of the two events could be different in the two
inertial frames. However, Eq. (13.1) also tells us that the time intervals can only
be of opposite sign if, for �t > 0,

v�x

c2
> �t,

i.e. �x >
c2�t

v
. (13.2)

If v > 0 and since |v| < c it follows therefore that the ordering of events can be
switched only if

�x > c�t. (13.3)

If v < 0 then you should be able to confirm that this inequality changes to
�x < −c�t . In words, we have found that the spatial separation between the two
events is too great for even light to travel between the events in the time available
(�t). This is just one way of saying that the events are causally disconnected. In
the language of light-cones, we have proved that it is only possible to reverse the
time ordering of a pair of events if the events do not lie within their respective
light-cones.

Let us now think more in terms of space-time. We start by considering three
events, one located at O in S, one at a point A in S and the third event at a point B
in S. Figure 13.5 illustrates the respective positions of the three events. Notice
that we have chosen events A and B to lie inside and outside of the future and
past light cones of the event at O. We should like to know what the co-ordinates
of these three events are when viewed in some other inertial frame S ′. Of course
the Lorentz transformations will give us the answer, but we can make interesting
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ct
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A′ B′

B

O x

Future
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Figure 13.5 Space-time diagram illustrating lines of constant proper time. Two events are
labelled by the points A and B in a particular inertial frame. In a different inertial frame the
same two events have the co-ordinates labelled by the points A′ and B′.

progress without them. We know that the proper time interval2 between any pair
of events is independent of inertial frame, i.e.

(�τ)2 = (�t)2 −
(

1

c
�x

)2

= (
�t ′

)2 −
(

1

c
�x ′

)2

. (13.4)

Let us now imagine we are measuring the events in S ′. Graphically, we’ll still
represent the events using Figure 13.5 but we should re-interpret the x axis as the
x ′ axis and the t axis as the t ′ axis. The event at O stays at the origin, since as
always we’re assuming that S and S′ have their origins coincident at t = t ′ = 0.
But what happens to the events located at A and B in S? Figure 13.5 contains the
answer. Two curves are drawn on the figure, they are such that all of the points
on a given curve are the same space-time distance away from the origin, i.e. they
are at a fixed value of (�τ)2. In fact such curves are necessarily hyperbolae since
(�τ)2 = (�t)2 − ( 1

c
�x)2 is none other than the equation of a hyperbola. Now it

follows that in moving from S to S ′ the event at A can only move to another point
on the hyperbola passing through A. It might for example move from A to A′.
Similarly the event at B must remain on the hyperbola passing though B and in the
figure we have shown it moving to the point B′. We can now immediately see why
Einstein’s theory does not violate causality. Events which lie in the future (or past)
light cone of O can only ever be transformed to another point which is also in the
future (or past) light cone of O under a Lorentz transformation. There is simply no
possibility for an event which lies in the future of O in one inertial frame to lie in

2 Or equivalently the distance in space-time.
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the past of O in some other frame. The picture is however strikingly different for
events which lie outside of O’s light cones, such as the event at B. The hyperbolae
of constant proper time cross the t = 0 axis and hence it is perfectly possible for
events which lie in O’s past in one frame (such as the event at B) to appear in O’s
future in another frame (the event is at B′ in this frame). In two or three spatial
dimensions none of the conclusions we have just drawn change but the hyperbolic
curves of constant proper time become hyperbolic surfaces of constant proper time.

Before we finish this section we shall introduce some common terminology.
Notice that all events that lie in either the future or the past light cone of the event
at O necessarily satisfy (�τ)2 > 0 whereas all events that lie outside of these light
cones always satisfy (�τ)2 < 0. If (�τ)2 > 0 for a pair of events we say that
the events are separated by a ‘timelike’ interval and if (�τ)2 < 0 we say they are
separated by a ‘spacelike’ interval. In the special case that (�τ)2 = 0 the interval
is said to be ‘lightlike’. Events that are timelike separated (such as the events
at O and at A) are always causally connected whereas events that are spacelike
seperated (such as the events at O and at B) are always causally disconnected. Only
something travelling at the speed of light can be present at both events if they are
separated by a lightlike interval.

13.2 AN ALTERNATIVE APPROACH

We have established that Einstein’s theory of Special Relativity can be under-
stood in terms of an underlying four dimensional space-time continuum and that
physical laws are built out of objects such as vectors and scalars in this four dimen-
sional space. Equations built in such a way will automatically satisfy Einstein’s
postulates, just as equations built out of three dimensional vectors and scalars are
automatically independent of any particular choice of co-ordinate system. Almost
as if by magic, we found that Special Relativity is also a causal theory although the
idea of causality was never mentioned when we originally formulated the theory in
Part II. In this section we would like to promote causality to a much more central
concept within the theory and at the same time we shall develop a new way of
viewing the special role played by the speed of light.

Our main aim is to reformulate the theory of Special Relativity. Rather than
start with Einstein’s two postulates we shall start by boldly assuming that space
and time form a four dimensional continuum which we shall, of course, refer
to as space-time. What properties of space-time shall we assume? In the first
case we shall insist that it supports the notion of distance between two points.
More specifically, if we consider two neighbouring points in space-time located
at co-ordinates (ct, x, y, z) and (ct + cdt, x + dx, y + dy, z + dz) then the squared
distance between these two points (ds)2 is defined by

(ds)2 = (cdt, dx, dy, dz)




g00 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







cdt

dx

dy

dz




= g00(cdt)2 − (dx)2 − (dy)2 − (dz)2 . (13.5)
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The speed c has entered into the way we define the co-ordinates in space-time
but at this stage we stress that it is simply an entirely arbitrary constant speed
introduced purely to make g00 dimensionless, i.e. it is needed because we choose
to measure one of the space-time co-ordinates in different units to the others. At
this stage in our considerations, g00 is to be viewed simply as a dimensionless
constant characteristic of the space-time.

What have we assumed? Certainly the matrix we have written down looks very
special with all of its entries along the diagonal and it is true that the most general
distance measure for what is called in mathematics a Riemannian space3 would
allow much more general 4 × 4 matrices. Clearly the choice of matrix is very
intimately connected with the geometry of the space for it tells us how to compute
the distance between neighbouring points. Since this matrix is so important, it
has a name: it is called the ‘metric’ of the space. Perhaps before we answer the
question posed at the start of this paragraph we should get better acquainted with
the idea of a metric.

Example 13.2.1 What is the metric that determines distances on the surface of a
sphere of radius R? You should work in spherical polar co-ordinates.

Solution 13.2.1 The surface of a sphere is a two dimensional space. As illustrated
in Figure 13.6, neighbouring points A and B are separated by a distance ds which
satisfies

(ds)2 = (R dθ)2 + (R sin θ dϕ)2. (13.6)

This result is valid in the limit of vanishing distance since in that limit the relevant
portion of the sphere looks flat (i.e. Euclidean) and we can use Pythagoras’ Theorem.

dj

dq
A

B

Rdq

R sinq dj

Figure 13.6 The distance between two points on the surface of a sphere of radius R.

3 A space is Riemannian if the squared distance between two neighbouring points is of the form
(ds)2 = gij dxidxj .
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It is now easy enough to read off the metric for this space:

g =
(

R2 0
0 R2 sin2 θ

)
(13.7)

in the (θ, ϕ) basis. As an aside, notice that we compute distances on the surface of a
sphere by integrating the distance measure, e.g. the circumference can be obtained
by integrating ds along the curve ϕ =constant, 0 < θ < 2π :

circumference =
∫

ds =
2π∫

0

R dθ

√
1 + sin2 θ

(
dϕ

dθ

)
(13.8)

=
2π∫

0

Rdθ = 2πR. (13.9)

The metric of ordinary three dimensional Euclidean space when expressed in
Cartesian co-ordinates is just the unit matix, whilst in spherical polar co-ordinates
it is given by

g =

 1 0 0

0 R2 0
0 0 R2 sin2 θ


 (13.10)

in the (r, θ, ϕ) basis. The metric is an inherent geometrical feature of the space and
it is therefore a tensor4, so although for any given space the matrix representation
of the metric depends upon the chosen co-ordinate basis the metric itself remains
unchanged. Notice that whilst the metric of Euclidean space written in Eq. (13.10)
describes a flat space (i.e. a space in which Pythagoras’ Theorem always works) the
same cannot be said of the metric written in Eq. (13.7) which describes a curved
space, e.g. right-angled triangles drawn on the surface of a sphere do not satisfy
Pythagoras’ Theorem. Equivalently, it is not possible to identify a two-dimensional
co-ordinate basis in which the metric of Eq. (13.7) is represented by the unit matrix.

We’re now ready to return to space-time and the metric of Eq. (13.5). If we
assume that the metric is constant, i.e. that space-time has the same geometry at
all points, then its diagonal form follows rather generally since any non-singular
matrix can be diagonalised by an appropriate change of basis. The presence of the
diagonal entries equal to −1 arises if we insist that the space should be Euclidean
if we take slices through it of constant time. That we chose −1 rather than +1
(or any other number) is a matter of convention. For example if in Euclidean
space we chose a metric equal to minus the unit matrix then all distances would
be multiplied by the square root of minus one, which is not very economical but
otherwise wholly acceptable. In summary, we have established that Eq. (13.5) is
in fact the most general metric which satisfies the constraint that slices of constant

4 See Section 10.2 for a discussion of the moment of inertia tensor.
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time be Euclidean. All that remains is to specify the top left hand entry, g00. Since
it is a dimensionless constant, we can always choose the constant c in Eq. (13.5)
such that g00 = ±1 without altering the value of the distance ds. We have now
almost completely specified the metric of space-time. All that remains is for us to
settle on the sign of g00. It is at this point that causality enters.

We state the result first and then prove it: the metric must have g00 = +1 if
it is to be the metric of a space-time that satisfies the demands of causality. We
already know that space-time with g00 = +1 is causal, because that space-time is
the Minkowski space-time of Special Relativity and, following the discussion in the
previous section, we know that to be a causal space-time. The core of the argument
involved showing that lines of constant proper time are hyperbolae and that any
hyperbola lying in either the future or the past light cone of some point O always
remains inside that light cone5. In contrast a hyperbola that lies outside of either
light cone will span times which lie both in the future and in the past of O. Since
a shift from one inertial frame to another corresponds to sliding events around on
their corresponding hyperbolae it follows that all observers always agree upon the
time ordering of causally connected events. Notice also that this argument only
works if all matter is constrained to move on timelike trajectories (which means
they must always travel with speed c or less) otherwise a particle could start at
O and follow a wordline outside of O’s future light cone whereupon an observer
in a second inertial frame could conclude that an event on the particle’s trajectory
which lies outside of O’s future light cone could have occured in O’s past; so
causality is also acting to constrain the laws of dynamics as well as the structure of
space-time. Our task is now to explain why g00 = −1 does not lead to a space-time
that respects causality. The invariant distance between two neighbouring events in
this space-time is given by

(ds)2 = −(c dt)2 − (dx)2 − (dy)2 − (dz)2 , (13.11)

which is just the metric of a four dimensional Euclidean space (recall the overall
sign is unimportant). The locus of all points in this space-time that lie a fixed
distance from the origin O is therefore, in one spatial dimension, simply a circle of
radius

√
−(�s)2. In two spatial dimensions we have the surface of a sphere and in

three spatial dimensions it is the three dimensional generalisation of a spherical sur-
face, often called a ‘three-sphere’. Now we know that the equations of physics must
be the same for all co-ordinate systems that preserve the invariant distance between
any two events. However, as illustrated in Figure 13.7, if in a frame S an event is
located at A, which lies in the future of an event at O, then there always exists a
second frame of reference S ′ in which that very same event occurs in O’s past. The
figure shows the location B in S ′ of the event located at A in S. The equivalent of
Lorentz transformations in this Euclidean space are simple rotations, i.e.

(
ct ′
x ′

)
=

(
cos θ − sin θ

sin θ cos θ

) (
ct

x

)
. (13.12)

5 Moreover, the hyperbolae never intersect each other.
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Figure 13.7 Transformations in Euclidean space-time.

In Figure 13.7, the two frames are clearly related to each by a rotation through
θ = π radians. There is therefore no frame-independent notion of past, future or
present in this space-time, which means that it does not support the idea of cause
and effect in the laws of physics. We must therefore reject this space-time and are
left with only one possibility: space-time must be Minkowski space-time with a
metric

g =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (13.13)

Under only a few rather natural assumptions we have arrived at the conclusion
that Minkowski space-time is the only possible space-time. The constant c was
originally introduced only to calibrate distances in the time direction, with the
causal structure of the theory elevating it to the status of a limiting speed. Actually
we should mention that it is still possible that c could be infinite and this would
lead us to Galilean relativity. There is no purely theoretical argument to reject
this possibility and it is experiment that informs us that c is in fact finite. Armed
with the metric we can now go ahead and re-derive all of the familiar results we
have encountered so far in Special Relativity. For example, the space-time we have
introduced supports the existence of four-vectors. The displacement four-vector

�X = (c�t, �x, �y, �z) (13.14)

is our prototypical four-vector and the metric tensor tells us how to form the scalar
product, i.e.

(�X)T g(�X) = (c�t)2 − (�x)2 − (�y)2 − (�z)2. (13.15)
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We know from Section 11.2 that the Lorentz transformations preserve the scalar
product defined in Eq. (13.15). Thus we recognise that the Minkowski space-time
equivalent of Euclidean rotations involving the time dimension are the Lorentz
transformations and that these correspond physically to a change of inertial frame.
We are free to introduce other vectors in space-time. They may be useful in drawing
up the laws of physics provided that they transform according to the Lorentz trans-
formations and that the scalar product between any two four-vectors is determined
by the metric, i.e. for four-vectors A and B

A · B = (A)T g(B) = A0B0 − A1B1 − A2B2 − A3B3. (13.16)

Defined this way, the scalar product is guaranteed to be the same in all frames
and is thus a four-scalar. Armed with Minkowski space-time, four-vectors and
four-scalars we can make progress in physics. In fact our logical development has
brought us all the way to the start of Chapter 12. Still, since we have not made use
of Einstein’s postulate that the speed of light is a universal constant, c (which has
by now also appeared in the Lorentz transformation equations) remains nothing
other than the constant that calibrates space-time distances in the time direction.
The causal structure of the theory dictates that c must be a limiting speed, i.e.
we require that particles always follow timelike trajectories through space-time.
Only after we have introduced the energy-momentum four-vector does the more
familiar interpretation of c emerge: for there can exist particles for which m = 0
and E = cp but only if such particles travel at a speed equal to c in all inertial
frames. Thus massless particles may exist in a Minkowski space-time provided
they always travel with speed c. Since light is made of massless photons, we may
go ahead and refer to c as the speed of light. From the space-time view there is
clearly nothing very special about light. Indeed, the four-speed (defined as

√
U · U )

of any particle (including those with mass) is, from Eq. (12.8), always equal to
c, which means that everything travels through space-time with the same speed.
In our three dimensional world, massless particles appear special since only they
travel with the same speed in all inertial frames.

It is fair to say that one of the main goals of this section of the book is to present
the reader with a new way of viewing Einstein’s statement that the speed of light
is the same in all inertial frames. In particular, we have traced the roots of this
statement all the way back to space-time and causality. Incidentally, Einstein’s first
postulate, that the laws of physics are the same in all inertial frames follows auto-
matically once we have specified that we should work in Minkowski space-time,
for we know that moving between inertial frames is just a co-ordinate change in
space-time and the laws of physics should be trivially independent of co-ordinates.





14
Acceleration and General
Relativity

14.1 ACCELERATION IN SPECIAL RELATIVITY

There is nothing to stop us from describing accelerated motion in Special Rela-
tivity. Perhaps the most natural question to ask is: what are the components of an
acceleration in S given the corresponding components in S ′ (where S and S ′ are the
usual two inertial frames)? Starting from the velocity addition formula, Eq. (6.33),
we have that

dvx = dv′
x

(
1

1 + uv′
x/c

2
− (u + v′

x)u/c2

(1 + uv′
x/c

2)2

)
. (14.1)

In conjunction with dt = γ (u)(1 + uv′
x/c

2) dt ′ this equation implies that

ax = a′
x

(
1 − u2/c2

(1 + uv′
x/c

2)2

)
1

γ (u)

1

1 + uv′
x/c

2
,

i.e. ax =
(

1

γ (u)(1 + uv′
x/c

2)

)3

a′
x, (14.2)

where ax = dvx/dt and a′
x = dv′

x/dt ′ are the accelerations in the x-direction in S

and S ′. Simlarly we can use Eq. (6.34) to establish that

ay =
(

1

γ (u)(1 + uv′
x/c

2)

)2 (
a′

y − a′
x

uv′
y

c2 + uv′
x

)
. (14.3)
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These are not particularly elegant formulae. Not surprisingly, unlike Galilean
relativity, the components of an acceleration are not the same in all inertial
frames. In particular, a constant acceleration in one inertial frame is not a constant
acceleration in a different inertial frame.

We can however define an acceleration four-vector as simply the rate of change
of the velocity four-vector with respect to the proper time, i.e.

A ≡ dV
dτ

. (14.4)

Starting from Eq. (12.7) we can write A in terms of its components in some inertial
frame, i.e.

A = γ (γ̇ c, γ̇ u + γ a), (14.5)

where the dot indicates differentiation with respect to time as measured in the
inertial frame and a = u̇. The length of this four-vector will turn out to be of some
use to us and the quickest way to figure it out is to compute it in the inertial frame
in which u = 0. It does not matter that this frame is useful only for an instant in
time (after which the particle may have developed a non-zero velocity); an instant
in time is long enough. In this instantaneous rest frame, A = (0, a) and hence

A · A = −a2. (14.6)

Since A is a four-vector, this result is valid in all other frames. Note that a is the
magnitude of the three-acceleration in the inertial frame in which the particle is
instantaneously at rest: it is often called the ‘proper acceleration’ of the particle.

14.1.1 Twins paradox

As an example, let us consider the so-called twins paradox. Suppose that one
twin accelerates away from the Earth at a constant proper acceleration equal to g,
leaving the other twin behind. This rate of acceleration will lead the astronaut twin
to feel their weight inside the spaceship. After 10 years they switch the rockets
on their spaceship such that for the next 10 years they decelerate also at a rate
g. At which time they again reverse the rockets and accelerate (again at g) back
towards the Earth for 10 further years before finally reversing the rockets one last
time for their arrival back on Earth some 10 years later. According to the twin who
travelled in the spaceship they were absent for a total of 40 years. The question
is, how much time has elapsed on Earth between the departure and return of the
astronaut twin?

Let us consider the first 10 years of the journey. When the astronaut is travelling
at speed u relative to an observer on Earth we imagine that they are instantaneously
at rest in an inertial frame S ′ moving at speed u relative to Earth. We know that
the acceleration is constant and that v′ = 0 in S ′. Hence, using Eq. (14.2) gives

g = γ (u)3a = d(γ (u)u)

dt
(14.7)
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and we have dropped the subscripts since the motion is all taking place in one
dimension. We want to compute the time elapsed in the Earth frame given that 10
years have elapsed on the spaceship. We can exploit the fact that the astronaut is
instantaneously at rest in S ′ to give

dt ′ = dt

√√√√1 − 1

c2

[(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2
]

i.e. dt = γ (u) dt ′, (14.8)

where t ′ is the time measured by an observer on the spaceship. Integrating this
equation will deliver the result provided we know how u changes with time, which
we do know from Eq. (14.7), i.e.

γ (u)u = gt (14.9)

which, after squaring both sides and re-arranging, gives that

u = gt√
1 + g2t2/c2

. (14.10)

Substituting for γ (u) in Eq. (14.8) gives that

∫
dt√

1 + g2t2/c2
= t ′ (14.11)

which leads to

sinh−1
(

gt

c

)
= gt ′

c
,

i.e.
gt

c
= sinh

(
gt ′

c

)
. (14.12)

Putting t ′ = 10 years and g = 9.81 ms−2 into this equation gives t � 14700 years.
Since the sign of g is unimportant in Eq. (14.11) it follows that the total time
that the spaceship is away from the Earth is 4 × 14700 � 59000 years (recall the
astronaut twin has only aged 40 years).

Before leaving the twins paradox we should point out that the fact that the
twin who travels (and hence undergoes an acceleration) always ages more slowly
regardless of the details of their journey. To see this we only need note that the time
elapsed according to the travelling twin (�t ′) is obtained by integrating Eq. (14.8):

�t ′ =
t2∫

t1

dt

√
1 − u(t)2

c2
< t2 − t1 (14.13)
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and since u(t)2 is always positive, the integrand is always less than unity and the
time registered on the clock of the twin who underwent an acceleration is less
than the time interval registered on the clock of the twin who did not. Indeed we
see that inertial observers present at any pair of events necessarily experience the
maximum possible time interval between those events.

Example 14.1.1 Show that for small enough speeds the accelerating spaceship in
our discussion of the twins paradox follows the trajectory x ≈ 1

2gt2.

Solution 14.1.1 Eq. (14.10) tells us that, for gt/c � 1

dx

dt
≈ gt (14.14)

and hence x ≈ 1
2gt2 for x = 0 at t = 0.

14.1.2 Accelerating frames of reference

In the last subsection we considered an accelerating observer but from the point
of view of an infinite set of inertial frames and we did not invoke the idea of an
accelerating frame of reference. Sometimes we may wish to investigate a piece of
physics directly in an accelerating frame of reference, just as we did in Chapter 8
when we discussed non-inertial frames in classical physics. Of course we expect
that in so doing we should encounter non-inertial forces.

However, the construction of an accelerating reference frame is not as straight-
forward in Einstein’s theory as it is in classical physics. The most natural way
to think would be to suppose we erect a rigid system of rulers and clocks and
use these to locate the position of events in the accelerating frame. However, as
we shall shortly see, the rods will tend to be bent or buckled and it will not be
possible to synchronize the clocks so that they always read the same time. The
lack of synchronicity of the clocks need not be a problem; we could accept that
time might tick at different rates throughout an accelerating frame. However the
buckling of the rulers would make life difficult since we’d need to know all about
the physical properties of the rulers in order to compare theoretical predictions for
the relationships between events in the accelerating frame and the corresponding
observations.

To illustrate these points we’ll focus our attention on a very special accelerating
frame of reference. Namely one in which the acceleration is time independent and
the distance between points in the frame do not vary with time. Clearly this is an
appealing frame of reference however, as we shall soon see, it is not a very practical
frame. Our goal will be to figure out the equivalent of the Lorentz transformation
formulae that relate the co-ordinates of an event in the accelerating frame, S ′, to
the co-ordinates of the same event in our typical inertial frame S. To visualize the
accelerating frame let us consider Figure 14.1, which shows a fleet of tiny rocket
ships located at different points in S ′. The little rockets define the locations of
events, i.e. the rocket ship located closest to an event can be used to label the
position of that event. The rockets are arranged so that they all accelerate in the
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Figure 14.1 A fleet of tiny rocket ships defines a uniformly accelerating frame of reference.
The formation of the ships remains the same for all time as measured by an observer on
any one of the ships. However, this does not imply that observers on two different ships
feel the same acceleration.

x ′-direction in such a way that the distance between any two of them does not vary
according to an observer on any other rocket in the fleet (i.e. any observer in S ′).
This is how we define our uniformly accelerating frame of reference.

We already know how the co-ordinates of the rocket that defines the origin in
S ′ relate to the corresponding co-ordinates in the inertial frame since this might be
the rocket occupied by the astronaut twin of the previous section:

t = c

g
sinh

(
gt ′

c

)

and x = c2

g
cosh

(
gt ′

c

)
. (14.15)

The second of these equations is obtained by integrating Eq. (14.10), i.e.

x∫
0

dx =
t∫

0

gtdt√
1 + g2t2/c2

. (14.16)

Using Eq. (14.12) we can re-express the right-hand-side as an integral over t ′. Thus

x = c

t ′∫
0

sinh
(
gt ′/c

)
cosh

(
gt ′/c

)
dt ′

cosh (gt ′/c)

= c2

g
cosh

(
gt ′

c

)
(14.17)

as claimed. We can say that the origin in S ′ is located at the space-time point
O = c2

g

(
sinh

(
gt ′/c

)
, cosh

(
gt ′/c

)
, 0, 0

)
in the basis of an inertial observer in S.
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What we’d really like is the location of a general rocket ship. For simplicity, let us
confine our attention to a rocket lying at position x ′ on the x ′-axis. This rocket is
displaced from the origin in S ′ by a distance x ′. But what are its co-ordinates in S?
To obtain this we use a neat trick, we make use of the fact that the four-velocity of
the rocket at the origin in S ′ points in the time direction of space-time according
to an observer on the rocket. Hence a four-vector that is orthogonal to this must
point along the x ′ axis and we can therefore locate the four-vector position of the
rocket at x ′. Let us follow this train of thinking. The four-velocity of the origin in
S ′ is

U = c
(
cosh

(
gt ′c/c

)
, sinh(gt ′/c

)
, 0, 0) (14.18)

and hence the four-vector

D = (
sinh

(
gt ′/c

)
, cosh

(
gt ′/c

)
, 0, 0

)
(14.19)

is a unit four-vector pointing in the x ′ direction since U · D = 0. Thus an event
occurring on the little rocket at x ′, which occurs at a time t ′, is located at space-time
position

(ct, x, 0, 0) = O + x ′D (14.20)

and we now have the general relationship we desire:

ct =
(

c2

g
+ x ′

)
sinh

(
gt ′

c

)

and x =
(

c2

g
+ x ′

)
cosh

(
gt ′

c

)
. (14.21)

It is important to realise that the time t ′ appearing in these two equations is the
time according to an observer at the origin in S ′. It is called the co-ordinate time,
for it is the time co-ordinate we choose to define the location of space-time events
in S ′. We are not entitled to claim that this is also equal to the time measured on
a clock located on the little rocket at x ′ and indeed we shall soon see that it is not
possible for the two to be equal at all times.

The set of co-ordinates defined by the fleet of rockets constitutes a uniformly
accelerating frame of reference. We shall now demonstrate that only the little rocket
at the origin accelerates at rate g in its own rest frame. All other rockets at x ′ �= 0
accelerate at a different rate in their respective rest frames. Consider the little rocket
located at a particular value of x ′. We know that this point must have a four-velocity
of magnitude equal to c (see Eq. (12.8)), i.e.

c2 = V · V (14.22)

where

V = d

dτ

((
c2

g
+ x ′

)
sinh

(
gt ′

c

)
,

(
c2

g
+ x ′

)
cosh

(
gt ′

c

)
, 0, 0

)
(14.23)
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and τ is the proper time measured by a clock located at x ′. Hence, keeping x ′ fixed
so dx ′/dτ = 0, gives

(
c2

g
+ x ′

)2
g2

c2

(
dt ′

dτ

)2

= c2,

i.e.
dt ′

dτ
= 1(

1 + gx ′/c2
) . (14.24)

This equation relates the co-ordinate time in S ′, which is the proper time recorded
on a clock at the origin in S ′, to the proper time on a clock at any other x ′. Since
they are not equal we see that it is impossible to synchronize the clocks in S ′ for
all time. The acceleration of the little rocket at x ′ can now be determined once
we appreciate that the four-acceleration of a particle moving through Minkowski
space satisfies Eq. (14.6), i.e.

A · A = −α2, (14.25)

where α is the acceleration as determined in the rest frame of the particle. For the
rocket at x ′, its four-acceleration is

A =
(
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dτ

) (g

c

) d
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(14.26)

and hence

−g(x ′)2 = −
(

dt ′

dτ

)4 (g

c

)4
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c2
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,

i.e. g(x ′) =
(

dt ′

dτ

)2

g

(
1 + gx ′

c2

)
. (14.27)

Using Eq. (14.24) then gives our final answer:

g(x ′) = g

1 + gx ′/c2
. (14.28)

It is simply not possible to build S ′ out of a fleet of rockets such that they all
accelerate at the same rate in their own rest frame and preserve the distance between
each rocket. To do that, as we shall discuss in the next section, means going beyond
Minkowski space-time.

We can determine the form of the metric for the accelerating frame. The fleet of
rockets is moving through Minkowski space-time hence the interval between any
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two events satisfies (see Eq. (14.21))

(ds)2 = (c dt)2 − (dx)2 − (dy)2 − (dz)2
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1 + gx ′

c2

)2

(c dt ′)2 − (dx ′)2 − (dy ′)2 − (dz′)2. (14.29)

Thus there is some warping of time in the accelerating frame but space is Euclidean
(which is not surprising since we constructed it that way).

Let us now turn to another accelerating frame of reference. This time our goal
will be to make contact with Chapter 8. Let us consider a non-inertial frame rotating
with angular speed ω about the z-axis. It is convenient first to work in cylindrical
polar co-ordinates. The space-time interval between two neighbouring events in an
inertial frame (i.e. one for which ω = 0) is

(ds)2 = (c dt)2 − (rdφ)2 − (dr)2 − (dz)2. (14.30)

A most important property of space-time physics is that this interval must be the
same in any other system of co-ordinates, even an accelerating system. This is
nothing more than the statement that the distance between any two points on a
general manifold should be independent of the way we choose to parameterize the
manifold. Hence we can choose to work in a non-inertial frame with φ′ = φ − ωt ,
t ′ = t , r ′ = r and z′ = z such that

(ds)2 = (cdt ′)2 − r ′2(dφ′ + ωdt ′)2 − (dr ′)2 − (dz′)2. (14.31)

From now on we will only be interested in the rotating co-ordinates and will
subsequently drop the primes. Moreover, we shall find it more convenient to now
switch back to Cartesian co-ordinates, i.e.

x = r cos φ,

y = r sin φ. (14.32)

In which case and after a little algebra it follows that

(ds)2 = (c dt)2(1 − ω2(x2 + y2)/c2) + 2(ω/c)(y dx − x dy)(c dt) − (dx)2

−(dy)2 − (dz)2. (14.33)
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In the (ct, x, y, z) basis the metric for this system of co-ordinates is

g =




1 − ω2(x2 + y2)/c2 ωy/c −ωx/c 0
ωy/c −1 0 0

−ωx/c 0 −1 0
0 0 0 −1


 . (14.34)

Now the motion of a free particle through space-time is some unique trajectory,
which cannot depend upon how we choose our co-ordinates, and that means even if
we choose a non-inertial co-ordinate system. There must therefore be a genuinely
co-ordinate independent way to write the equations of motion of this free particle.
Here we quote the answer and defer the proof to Appendix A. The co-ordinate
independent way to write the equation of motion of a particle not acted upon by
any force is given by

gij
duj

dτ
+ 1

2

(
∂gik

∂xl

+ ∂gil

∂xk

− ∂gkl

∂xi

)
ukul = 0, (14.35)

where ui = dxi/dτ is the four-velocity of the particle. This is an equation that treats
all frames (inertial and non-inertial) on an equal footing. Notice that for inertial
co-ordinates all of the derivatives of the metric vanish and we are left with the
expected statement that all components of the four-acceleration are constant for a
free particle (i.e. du/dτ = 0).

Given Eq. (14.35) we can go ahead and check to see that it gives the expected
answer for the motion of a non-relativistic free particle in the rotating frame. We
will assume that

du

dτ
= (0, ẍ, ÿ, z̈), (14.36)

where the dots indicate differentiation with respect to t , which will be fine in the
non-relativistic limit. Setting i = 2 will then give us the equation of motion in x.
We need to evaluate

g2j

duj

dτ
= −ẍ, (14.37)

∂g2k

∂xl

ukul = ∂g2l

∂xk

ukul = ωẏ (14.38)

and
∂gkl

∂x2
ukul = −2ω2x − 2ωẏ. (14.39)

Hence Eq. (14.35) reduces to

ẍ = 2ωẏ + ω2x. (14.40)

Similarly with i = 3 we obtain

ÿ = −2ωẋ + ω2y. (14.41)
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Eqs. (14.40) and (14.41) are none other than the equations for the Coriolis and
centrifugal forces embodied in the equation we derived in Chapter 8, i.e.

ẍ = −2ω × ẋ − ω × (ω × x). (14.42)

Eq. (14.35) has a very interesting interpretation in the mathematics of curved
spaces. It is the equation that describes the curved space generalisation of a straight
line and it is often referred to as the ‘geodesic equation’. The idea of a straight line
in a curved space may not be immediately intuitive but the notion is well defined
mathematically. One can imagine sliding a tangent vector on the surface along its
length. For example, great circles are straight lines on the surface of a sphere. Eq.
(14.35) is also our replacement for Newton’s First Law. It says that free particles
always follow geodesics through space-time and only in inertial frames do these
correspond to Euclidean straight lines in space.

This sets the standard: our goal should always be to write all of the laws of
physics in a manifestly co-ordinate independent way. It is very important to realise
that the space-time about which we have been speaking so far in this book is in all
cases Minkowski space-time. Changing co-ordinates to an accelerating frame does
not change space-time, it merely makes the geodesic equation more complicated.
The mathematics of curved spaces is however also the mathematics of General
Relativity: Einstein’s theory of gravitation. As we shall shortly discover, in this
case the space-time need no longer be Minkowskian.

14.2 A GLIMPSE OF GENERAL RELATIVITY

Newton’s Law of Gravitation states that a body of mass m has an acceleration
a which is directed towards a body of mass M , i.e.

ma = −GMm
r̂

r2
. (14.43)

At first glance this equation seems fairly unremarkable. However it really is quite
astonishing that the mass m on the left hand side is the same as that on the right
hand side. It means that all bodies fall with the same acceleration in a gravitational
field. This is surprising; what has the mass in Newton’s Second Law got to do
with the mass appearing in the law of gravitation? There are certainly no other
forces in Nature that act upon particles but which induce an acceleration that does
not depend upon any intrinsic property of the particle. For example, accelerations
in electrodynamics depend upon the ratio q/m. That all bodies fall with the same
acceleration in a gravitational field is known as the Equivalence Principle and its
consequences are, as we shall very soon see, profound.

Now if at some point in space-time a body experiences a particular acceleration
then it is always possible to change co-ordinates so that, at that particular point,
the acceleration disappears and, in the infinitesimal neighbourhood of the point,
space-time is Minkowskian. If the acceleration is due to gravity then since all bodies
experience the same acceleration it follows that we can eliminate the gravitational
force at a point by suitably changing co-ordinates.
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Generally speaking since the acceleration due to gravity varies over space-time
we can’t eliminate it everywhere by a single change of co-ordinates but we can
eliminate it everywhere if we change co-ordinates differently at different space-time
points. This leads to the fascinating possibility that all effects of gravity can
be entirely eliminated by a suitable change of co-ordinates. The effect of grav-
ity can therefore be converted entirely into a specification of the geometry of
space-time. That the geometry is no longer Minkowskian, but some more general
curved space-time follows from the fact that the transformation from a particular
co-ordinate basis to a locally inertial (i.e. Minkowski) co-ordinate basis is different
at different points in space-time. Put another way, there exists no single co-ordinate
transformation that is able to convert the metric tensor into Minkowski form.

Thus gravitation dictates that space-time is locally Minkowskian but glob-
ally curved. To illustrate the geometrical ideas involved let us consider the
two-dimensional surface of a sphere. We can imagine chopping the surface up
into a very large number of small patches. Each patch is approximately flat, with
the approximation becoming better the smaller the size of the patch. Physics
in the vicinity of any one patch can be described using Euclidean geometry.
However, physics that extends over more than one patch is clearly not Euclidean.
The curved nature of the sphere is manifest by the fact that it is not possible to
represent it by a single Euclidean patch. Free particles will follow straight lines on
the surface of the sphere, or more precisely they follow geodesics. Over any patch
the path of a free particle is a Euclidean straight line but Eq. (14.35) is needed in
order to determine the path of a free particle over a larger portion of the sphere.

The same can be said of gravitation and so Eq. (14.35) tells us how particles
move not only in the absence of any external forces but also in the presence of
gravity. Conveniently, the geodesic equation is an equation expressed in terms of
a single co-ordinate system (i.e. not in terms of one co-ordinate system for each
point in space-time). It is the space-time dependence of the metric that tells us
how, at any particular space-time point, we can transform co-ordinates so that we
are in a locally inertial frame.

To summarize, we have explained how the Equivalence Principle can be used
to express the influence of all gravitational fields in terms of the geometry of
space-time. Mathematically this information is encoded in the metric tensor g. What
we have not yet explained is how one should compute g. Clearly the distribution
of matter must play an important role in fixing the space-time geometry. To say
more than that takes us beyond the scope of this book but we do hope to have
whetted the reader’s appetite to study further Einstein’s theory of gravitation.

14.2.1 Gravitational fields

As we discussed in the previous section, it is possible to express the invariant
distance between a pair of neighbouring events in terms of co-ordinates corre-
sponding to a rigid frame of reference which is accelerating uniformly. The result
is given in Eq. (14.29), i.e.

(ds)2 =
(

1 + gx

c2

)2
(c dt)2 − (dx)2 − (dy)2 − (dz)2, (14.44)
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where g is the acceleration felt at the origin (recall it is not possible to build
a rigidly accelerating frame such that all points within it accelerate at the same
rate). Using the Equivalence Principle this must also be the invariant distance in
a particular static gravitational field1. Armed only with this information we can
go ahead and deduce that clocks run faster higher up in a gravitational field. As
illustrated in Figure 14.2, let us consider a clock at rest in the gravitational field
at a height h above the observer. Then for an observer A adjacent to the clock the
space-time interval between two ticks of the clock is given by

(�s)2 = (c�tA)2. (14.45)

hg

B

A

Figure 14.2 A clock in a static gravitational field. The double arrow indicates the direction
of the acceleration due to gravity.

Now consider a second observer B for whom the clock is located at x = h. For
them the same space-time interval is

(�s)2 = (c�tB)2
(

1 + gh

c2

)2

, (14.46)

where g is the acceleration at B. Equating these two intervals gives

�tA =
(

1 + gh

c2

)
�tB (14.47)

which means that according to the observer at B the clock runs faster than it
does according to the observer at A. One might worry that this is not a very
realistic situation because the metric presented in Eq. (14.44) corresponds to a
rather artificial field in which the acceleration varies with height according to
Eq. (14.28). There is in fact no cause for concern since, provided we assume that
gh/c2 � 1, it is sufficient to take g as a constant in Eq. (14.47). In any case, we
now aim to improve things and describe a truly uniform gravitational field.

1 Although not one in which the field is uniform.
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As we have already stated, a uniform field is one in which a particle released
anywhere in it feels an acceleration which is the same regardless of when or where
the particle was released. The last section revealed that there is no way to arrange
this using a single co-ordinate system in Minkowski space. However it can be
arranged if we distort space-time accordingly. We start by assuming that the metric
yields the following invariant distance:

(ds)2 = f (x)2(c dt)2 − (dx)2 − (dy)2 − (dz)2. (14.48)

This metric has the virtue that the corresponding co-ordinates are rigid in the sense
that the distance between any two points is independent of t . All that we demand is
that f (x) be chosen such that any particle released from rest accelerates at the same
rate throughout the frame. We can make use of the geodesic equation, Eq. (14.35),
to solve the problem for us for it describes the trajectory of a free particle released
from rest. The metric is quite simple and, setting i = 1 yields the equation

−d2x

dτ 2
− 1

2

∂g00

∂x

(
c

dt

dτ

)2

= 0, (14.49)

where g00 = f (x)2 and τ is the proper time measured on the particle. Now an
analysis identical to that leading up to Eq. (14.24) tells us that

dt

dτ
= 1

f (x)
(14.50)

for a particle at rest (i.e. dx/dτ = 0). Thus the acceleration felt by a particle at rest
in a uniform gravitational field is given by

d2x

dτ 2
= −c2 1

f

df

dx
. (14.51)

We want this to be a constant over the whole space and hence

c2 1

f

df

dx
= g,

i.e. f (x) = exp(gx/c2) (14.52)

and we have arbitrarily chosen f (0) = 1. To recap, we have succeeded in identify-
ing a space-time that is not Minkowskian but which does respresent a uniform grav-
itational field in which particles released at rest remain equidistant. The invariant
distance in this space is

(ds)2 = exp(2gx/c2)(c dt)2 − (dx)2 − (dy)2 − (dz)2. (14.53)

The first thing to notice is that this space-time interval is approximately equal to
that of the uniformly accelerating frame which we presented in Eq. (14.29) for
sufficiently small values of gx/c2. This is not too surprising on reflection since we
would expect that for a sufficiently weak uniform gravitational field there should
be an approximation in which the space-time is Minkowski flat.
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Example 14.2.1 The rate at which a clock ticks in the Earth’s gravitational field
can be approximated by the formula

�t(h) =
(

1 + �(h)

c2

)
�t(0),

where �t(h) is the time interval between two ticks of a clock at height h as deter-
mined by an observer at height h and �t(0) is the time interval between the same
two events measured by an observer on the ground (h = 0). �(h) is the Newtonian
gravitational potential, defined such that �(0) = 0.

(i) Show that this expression gives Eq. (14.47) in the case that h � R where R is
the radius of the Earth.

(ii) Now consider a clock on a GPS satellite which orbits the Earth at a speed
of 3.9 km/s at an altitude of 20.2 × 103 km. Use the result quoted above to
determine by how much the GPS clock speeds up every day compared to an
identical clock located on the Earth’s surface due to the fact that it is in a
weaker gravitational field. Now compute the amount by which the clock slows
down as a result of time dilation. Which effect wins? [You may neglect the
rotation of the Earth.]

Solution 14.2.1 (i) The Newtonian potential at a height h above the Earth’s sur-
face is just

�(h) = − GM

R + h
+ GM

R

= GM

R

(
1 − R

R + h

)

= GM

R

h

h + R
,

where M is the mass of the Earth and R is its radius. In the limit h � R this
reduces to

�(h) ≈ GM

R2
h,

which is equal to gh once we identify g = GM /R2 and hence we have Eq. (14.47).
(ii) The gravitational speeding of the clock is determined, relative to an observer

on the Earth’s surface, by the factor

1 + �(h)

c2
= 1 + gh

c2

R

h + R

= 1 + 9.81 × 20.2 × 106

9 × 1016

1

1 + 20.2/6.4
= 1 + 5.3 × 10−10
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and we have put R = 6400 km. Thus the GPS clock gains

5.3 × 10−10 × 24 × 602 = 46 µs per day.

In contrast, time dilation slows down time on the satellite by a factor

γ ≈ 1 + 1

2

(
3.9 × 103

3 × 108

)2

. (14.54)

Thus since γ − 1 ≈ 8.5 × 10−11 the GPS clock loses about 7 µs every day. The two
effects are similar in magnitude with the gravitational effect the larger of the two.
The net effect is a 39 µs per day speeding up.

As a final remark, we shall discuss one direct manifestation of the speeding up
of time which occurs as one increases altitude in a uniform gravitational field. The
time intervals we have been discussing could be the inverse of the frequency of a
light wave. Thus Eq. (14.47) becomes

1

fA

=
(

1 + gh

c2

)
1

fB

. (14.55)

The upshot is that light emitted from B (which is at the lower altitude) is observed
at A to have a lower frequency, i.e. it is red-shifted.

PROBLEMS 14

14.1 The three-force is defined to satisfy

f = dp
dt

.

Show that, for the motion of a particle of mass m in one dimension, this
equation can be re-written as

f = γ (u)3m
du

dt
.

14.2 A particle of mass m is moving in the laboratory with a speed u(t) and
it is subjected to a retarding force of magnitude γ (u)κm where γ (u) =
(1 − u2/c2)−1/2 and κ is a constant. Given that u(0) = c/2 determine the
time at which the particle is at rest.

14.3 A particle of mass m moves along the x-axis under an attractive force to the
origin of magnitude mc2L/x2 where L is constant. Initially it is at rest at
x = L. Show that its motion is simple harmonic with a period 2πL/c.

14.4 At the CERN Large Electron-Positron Collider (LEP), electrons travelled
around a circular particle accelerator of circumference 27 km. Assuming that
the electrons had total energy of 45 GeV, determine their proper accelera-
tion as they travel around the accelerator and compare it with non-relativistic
expectations.
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14.5 In 1959, Pound and Rebka studied 14.4 keV photons (emitted as a result of
the radioactive decay of 57Fe) as they travelled the 22.6 m from the roof
of their laboratory down to the basement. They observed a frequency in the
basement of (1 + z)f0 where z = (2.57 ± 0.26) × 10−15 and f0 is the emitted
frequency. Confirm that this blue shift is consistent with relativity theory.

14.6 (a) Consider a clock moving (not too fast) at an altitude h in the vicinity of
the Earth’s surface. If a time �τ elapses on the clock, convince yourself that

�τ ≈
∫ (

1 + gh

c2
− v(t)2

2c2

)
dt,

where v(t) is the speed of the clock at a time t as measured in an inertial
frame at rest relative to the centre of the Earth.
(b) An airplane departs from an airport and travels eastwards above the equa-
tor with a constant ground-speed of 1000 km/h and at an altitude of 10 km.
After completing one lap of the Earth it returns to the same airport. How does
the time registered on a clock on the airplane differ from that registered on
a clock in the airport at the end of the journey given that they were initially
synchronized? Note that you cannot neglect the rotation of the Earth.

14.7 Two pointlike spacecraft are at rest in an inertial frame S and they are attached
by a length of rope which is just taut. Simultaneously in S the spacecraft turn
on their identical engines whence they being to accelerate away in the same
direction, parallel to the length of rope. What happens to the rope?



Appendix A
Deriving the Geodesic
Equation

In this appendix we shall present a derivation of the geodesic equation. We take the
approach that a geodesic is the curve through a curved space which corresponds to an
extremum of the distance between two points. For example, geodesics on the surface
of a sphere are also the curves of shortest length. We shall not prove that these curves
correspond to the curves which are generated by sewing together straight lines on
locally flat patches, as discussed in the text, but it should not come as too great a
surprise that the two are equivalent. The method we shall use is an example of what
is called the calculus of variations and it is useful in a number of areas in theoretical
physics, perhaps the most notable being the principal of least action from which one
can derive the classical equations of motion without resorting to Newton’s laws or
the notion of force. By eliminating the concept of force, the path to quantum theory
is cleared. Here we shall focus only on obtaining the geodesic equation.

Generally the length of a curve between two points A and B is

L =
B∫

A

ds. (A.1)

This is the sum of many line elements each of length ds. Any curve between A and
B can be expressed in terms of a set of co-ordinates, i.e. xi(s) defines a general
curve such that

(ds)2 = gij dxi dxj . (A.2)

Consider a general curve between A and B. We can obtain a second curve from
this by varying the line elements at each and every point along its path. In this
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way we can express the variation in the length L of a curve:

δL =
B∫

A

δ(ds). (A.3)

The variation in the element ds is given by

δ((ds)2) = dxidxj δgij + 2gij dxiδ(dxj )

δ(ds) = 1

2
ẋidxj δgij + gij ẋid(δxj ) (A.4)

and we use the dot notation to indicate differentiation with respect to s. Writing
δgij = δxk(∂gij /∂xk) = δxkgij,k (this comma notation is a common shorthand for
differentiation with respect to x) gives

δ(ds) =
(

1

2
ẋi ẋj δxkgij,k + gij ẋi

d(δxj )

ds

)
ds. (A.5)

Under the integration we can re-arrange the second term on the RHS of this equation
using integration by parts, i.e.

B∫
A

gijẋi

d(δxj )

ds
ds = [

δxjgijẋi

]B

A
−

B∫
A

d(gijẋi)

ds
δxj ds. (A.6)

The first term on the RHS vanishes since we require the variation to vanish at the
end points (i.e. the curve must pass through these two points and hence δxi = 0
there). Thus the variation in the length is

δL =
B∫

A

(
1

2
ẋi ẋj gij,k − d(gikẋi )

ds

)
δxkds. (A.7)

Now since each element δxi can be varied independently it follows that the term
in parenthesis must vanish identically for the extremal path, i.e.

1

2
ẋi ẋj gij,k − d(gikẋi )

ds
= 0. (A.8)

We are almost done now. Differentiating the product gives

1

2
ẋi ẋj gij,k − gik,l ẋl ẋi − gikẍi = 0 (A.9)

which can be re-arranged (utilizing the symmetry of the metric to give the final
result a more symmetric appearance and re-naming some of the indices) to give
the final answer:

gijẍj + 1

2

(
gij,k + gik,j − gjk,i

)
ẋj ẋk = 0. (A.10)



Appendix B
Solutions to Problems

PROBLEMS 1

1.1 sfasfd(a) c = 4i − k; d = −2i + 2j − 3k.
(b) |a| = √

12 + 12 + 22 = √
6; |b| = √

11; |c| = √
17.

(c) â = a
|a| = 1√

6
i + 1√

6
j −

√
2
3 k.

1.2 Choose x−axis East and y−axis North.
For the first leg: l1 = 100(sin 45◦, cos 45◦) m ≈ (70.7, 70.7) m and similar
calculations for the second and third legs l2 and l3.
The sum of all three legs is l = l1 + l2 + l3 ≈ (95.7, −59.2) m. Then you
should obtain |l| = 112 m and the direction to North θ = 122◦.

1.3 Construct displacement vectors rAB = rB − rA etc. The sum of these gives
the null vector.

1.4 Consider an observer in galaxy G. Using Hubble’s Law for galaxy G and
galaxy i and subtracting we get

vi − vG = H0(ri − rG).

This is the velocity of galaxy i as seen from galaxy G. Since the right-
hand-side is just the displacement of i from G we see that the observer in G
also “discovers” Hubble’s Law.

1.5 |A| = √
3; |B| = 2

√
3; |C| = √

26; |D| = √
3.

A · B = −2; A · C = 0; A · D = 1; B · D = −6.
cos θAB = A·B

|A||B| = − 1
3 so θAB = 1.91 rad; θAC = π

2 rad; θAD = 1.23 rad;
θBD = π rad;
A × B = 4j − 4k; A × D = −2j + 2k; B × D = 0.

1.6 2 × 1013 ms−2.

Dynamics and Relativity Jeffrey R. Forshaw and A. Gavin Smith
 2009 John Wiley & Sons, Ltd



298 Solutions to Problems

1.7 The height of the building is 216 m. The flight time is 6.63 s.
1.8 The velocity is obtained by differentiation, which is straightforward since the

basis vectors are constant in time:

v = ds
dt

= 0.3 i + 0.5 j − 0.01t k km s−1.

With t = 0, |v| = √
0.32 + 0.52 = 0.58 km s−1. The velocity at this

time lies in the xy plane. At t = 30 s, |v| = √
0.32 + 0.52 + 0.32

= 0.66 km s−1. To work out the angle to the vertical use

cos θ = vz

|v|
which will give θ = 117◦.

1.9 Running with the travelator, velocities add so v = 11 ms−1, against v =
9 ms−1 so the total time for both legs is

t = 50

(
1

11
+ 1

9

)
= 10.1 s.

Since time is inversly proportional to speed the contribution of the motion of
the travelator does not cancel over the two legs in the way that the athelete
expected it would.

1.10 To cross the river she must have a net velocity v′ that lies on the line joining
the two stations. She must therefore sail with a velocity v relative to the
river, such that

v′ = v + u

where u is the velocity of the river. Since the three vectors form a right-angled
triangle the time taken to cross is

t = d√
v2 − u2

.

There is no real solution if u>v making the crossing impossible in this case.

PROBLEMS 2

2.1 sfasfd(a) The equation for the position vector r for a general point on the line
through r1 and r2 can be written

r − r1 = λ(r2 − r1)

where λ is real. When 0 ≤ λ ≤ 1 r lies between r1and r2. From the
definition of the centre-of-mass of two particles you can obtain

R − r1 = m1

m1 + m2
(r2 − r1)
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which proves that the centre-of-mass lies on a line joining the two
masses.

(b) The position of the centre-of-mass is given by:

R = 1

3
(a + b + c).

Now the median from a that intersects the side between b and c has the
vector equation

r = a + λ

(
1

2
(b + c) − a

)
= a + λ

2
(b + c − 2a) .

We can write

R = a + 1

3
(b + c − 2a)

showing that R lies on this median. Repeat for the other two medians.

2.2 The total mass of the system is 80 g so

R = 1

80
(130i + 250j) =

(
13

8
i + 25

8
j
)

m.

It doesn’t matter to which particle the force is applied, the resulting acceler-
ation of the centre-of-mass is the same

R̈ = 3

0.08
i = 37.5 i ms2.

2.3 Calculate the rate of change of momentum to obtain F = 20 N.
2.4 The friction between the prisoner’s hands and the rope acts as a brake pro-

viding an upwards force on the prisoner. For the rope to remain in static
equilibrium the tension must balance the frictional force. The maximum ten-
sion is Tmax = 600 N. So the acceleration a is obtained from

ma = mg − Tmax.

Once you have the acceleration it is a simple problem to find the speed at
impact:

v =
√

2h

(
g − Tmax

m

)
= 35 km hr−1 = 9.6m s−1.

2.5 Draw a free-body diagram and resolve components of the forces parallel and
perpendicular to the slope. The force applied by the Egyptians parallel to the
slope is

F = ma + mg sin 20◦ = 18.3 kN.
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The normal force must balance the component of the block’s weight normal
to the surface, i.e.

N = mg cos 20◦ = 46.0 kN.

2.6 Newton’s Second Law, and the expression for centripetal acceleration, gives
the normal force on the skier to be

N = m

(
g − v2

r

)
= 214 N.

This is directed upwards, but must be equal in magnitude, and opposite in
direction to the force that the skier exerts on the snow, which is 214 N
downwards.

2.7 The acceleration of both blocks is given by

a = F

m1 + m2
.

The second block accelerates due to the normal reaction force between the
blocks. This has the value

F = m2F

m1 + m2
= 3

4
N.

2.8 sfasfd(a) The only horizontal force on the upper block (m1) is friction. This has
a maximum value given by µsm1g resulting in an acceleration µsg. In
this case both blocks have the same acceleration and the force on the
whole system is 17.7 N.

(b) Both blocks have the same acceleration, a = 1.47 ms−2. Since the upper
block accelerates due to the force of friction we calculate the frictional
force to be 2 kg × 1.47 ms−2 = 2.94 N.

(c) In this case the top blocks slips and we have kinetic friction that causes
the top block to accelerate. Thus the acceleration of the top block is
µkg = 1.96 ms−2. The bottom block accelerates due to the resultant of
the applied force and the opposing friction due to the top block. Its
acceleration is therefore 7.87 ms−2.

2.9 Obtain an equation for the net force F on the system as a whole by con-
sidering the change in momentum of the “rocket plus exhaust” system. If
a mass �m is ejected you should find that the change in momentum is
�p = m�v + (�m)u, from which the rocket equation follows after divid-
ing by �t and taking the limit that �t goes to zero. Note that there is a sign
change because �m ≈ − dm

dt
dt, i.e. the mass of the rocket is decreasing with

time. For F = 0 we can write

∫ tf

ti

dv
dt

dt = u
∫ tf

ti

1

m

dm

dt
dt = −u ln

mi

mf

.
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In a gravitational field the force is no longer zero, instead F = mg. If the
field is uniform this simply introduces a constant g into the above integration.
Rockets burn their fuel quickly so as to minimise t and hence achieve the
largest possible final speed.

PROBLEMS 3

3.1 Calculate the change in kinetic energy to be 5 × 105 J. This is equal to the
work done. Divide by the time for which the brakes are applied to obtain the
average power and you should get 167 kW.

3.2 F.�r = (3 i − 2 j) · (−5 i − 1 j) × 10−2 J = −0.13 J.
3.3 sfasfd(a) The centre of mass is at position

mx1 + mx2

2m
= x1 + x2

2
,

i.e. midway between the two masses.
(b) The force on the car at x1 is −k(x1 − x2 − l). The force on the car at x2

is k(x1 − x2 − l).
(c) We have

ma1 = −k(x1 − x2 − l), and

ma2 = k(x2 − x2 − l).

Adding these shows that m(a1 + a2) = 0. The acceleration of the centre
of mass is (a1 + a2)/2, which is therefore zero. Hence the centre of mass
moves with constant velocity as must be the case for a system with no
net external force.

(d) Use the state of the system at t = 0 to obtain the centre of mass velocity:

VC = mv0

m + m
= v0

2
.

(e) Subtract the two equations of motion to show that

m(a1 − a2) = −2k(x1 − x2 − l) = 2ku.

Then note that
du

dt
= a1 − a2

to get the required equation.
(f) Direct substitution of the trial solution into the differential equation for

u proves that ω =
√

2k
m

. We first show that du/dt = Aω cos(ωt). Then
at t = 0 we get Aω = 0 − v0 = −v0.
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(g) The motion is a combination of simple harmonic motion and linear
motion of the centre of mass at constant speed. It is possible to show
from the above solutions that there are times when one of the cars is
instantaneously at rest in the lab frame. To an observer in the lab one
car moves forward, stops then appears to pull the other car after it.

(h) The kinetic energy due to the simple harmonic motion is 1
2kA2, i.e. the

potential energy in the spring at maximum extension. This is added to
the energy due to motion of the centre of mass: 1

2 (m + m)v2
0/4 to obtain

the mechanical energy of the system. Substitution for A and k using the
results from (f) proves that the total mechanical energy is mv2

0/2 as it
must be since this is a conservative system.

3.4 The momentum of the rope at any instant is λyv. Differentiating with respect
to time gives the rate of change of the momentum of the rope to be λv2. By
Newton’s Second Law, this must be equal to the sum of the gravitational
and applied forces acting on the rope. The gravitational force is gλy from
which we deduce that the applied force is λv2 + gλy. We can integrate this
to obtain the work done in raising the rope: λv2y + gλy2/2. The product
of the applied force and the speed gives the power used to raise the rope:
λv3 + gλyv. If we compute the rate of change of mechanical energy, directly
from the potential energy (gλy2/2) and the kinetic energy (λyv2/2) we obtain
λv3/2 + gλyv. This is not equal to the power. The discrepancy comes from
not including the energy that must be lost through friction in the coil of rope,
in order that the coil does not rotate.

3.5 Calculate the reduced mass directly to obtain (10/3) kg. The centre of mass
velocity is (11/3) j ms−1. The momentum of particle with mass m1, relative
to the centre of mass, is

µ(v1 − v2) = (10 i − 10

3
j) kg ms−1.

The momentum of the other particle relative to the centre of mass has equal
magnitude but opposite direction to the first, i.e. −µvr .

3.6 Use F = −dU/dr to find the point at which F = 0. This gives the solution
r = r0, which when substituted into the expression for the potential gives the
depth to be −U(r0) = ε. The range of r is obtained upon realising that the
total energy is equal to Kmax − ε and that r must be such that the kinetic
energy is always positive, i.e. U(r) < −ε + Kmax.

3.7 The proton has initial velocity v and recoils at a speed of 2v/3. Conservation
of momentum gives

5

3
mpv = muvu,

where mp the mass of the proton, mu is the mass of the unknown particle
and vu is its final velocity. Conservation of kinetic energy gives

5

9
mpv2 = muv

2
u,

from which we get mu = 5mp.
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PROBLEMS 4

4.1 The moment of inertia of the turntable about the rotation axis is I = 1
2 MR2.

Assuming constant angular acceleration we have

τ = Iω0

�t
,

where ω0 = 3.49 s−1 is the operating angular speed of the turntable and �t

is the time taken to accelerate from rest. This gives τ = 1.48 × 10−2 Nm.

The added mass changes the moment of inertia to

I ′ = I + mr2,

where the mass m is dropped at radius r . Conservation of angular momentum
gives the new angular speed

ω′ = I

I ′ ω0 = 3.41 s−1.

4.2 The normal forces on the feet are N1 and N2 and the frictional forces are
F1 and F2. Friction provides centripital acceleration and the normal forces
must sum to be equal but opposite to the weight. Thus: N1 + N2 = mg and
F1 + F2 = mv2

r
. The centre of mass is accelerating but there is no rotation

of the body about it, so sum of all torques must be zero, i.e.

hmv2

ar
= N1 − N2

and, using the weight equation, N1 = 1
2

(
mg + mv2h

ar

)
and N2 = 1

2(
mg − mv2h

ar

)
.

4.3 Solve this problem using angular momentum conservation. The ring has mass
m radius R so that the moment of inertia about the pivot is 2mR2 using the
Parallel Axis Theorem. When the bug is opposite the axis, we can write
its speed relative to the lab as vb = v − 2Rω so that angular momentum
conservation gives:

0 = 2Rmb(v − 2Rω) − 2mR2ω,

from which
ω = mbv

R(m + 2mb)
.

4.4 The disc has moment of inertia 1
2mr2 and rolls without slipping with speed

v so that ω = v/r. Hence, the total kinetic energy is

K = 1

2
mv2 + 1

2
Iω2 = 1

2
mv2 + 1

4
mv2 = 3

4
mv2.
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4.5 sfasfd(a) Initially there is no rotation about the centre of mass, so the pivot and the
support provide equal normal forces N vertically, which must balance
the weight so mg = 2N.

(b) When the support is removed the torque about the pivot due to the
weight is τ = mg l/2. Since the moment of inertia about an axis through
the pivot is I = 1

3ml2 we can write the linear acceleration of the centre
of mass a = mg l2/(4I ) = 3g/4. The acceleration of the centre of mass
is related to the normal force and the weight through Newton’s Second
Law, so we obtain N = mg/4.

(c) Equating the increase in kinetic energy to the decrease in gravitational

potential energy gives us 1
2Iω2 = l

2 mg sin θ so ω =
√

3g sin θ

l
.

4.6 The forces acting on the disc are friction (F ) and gravity (mg). Taking
components parallel to the slope we write Newton’s Second Law as:

mA = mg sin θ − F.

The torque about the centre of mass of the disc comes only from friction so:

Iα = 1

2
mb2α = Fb.

Together with A = bα, the above equations give

A = 2

3
g sin θ.

The total kinetic energy of a rolling disc is 3
4 mv2, which we can equate

to the change in gravitational potential energy after falling through a height
x sin θ , where x is the distance travelled down the slope. Thus,

v =
√

4

3
gx sin θ.

This is exactly the result obtained using the linear acceleration, i.e. v =√
2Ax.

4.7 The moment of inertia of a solid sphere, calculated from a sum of thin
circular discs, is obtained from the integral

I =
∫ R

−R

1

2

(
R2 − z2) dm = πρ

2

∫ R

−R

(
R2 − z2)2

dz,

where ρ = 3m/4πR3 is the density of the sphere. Integrating gives

I = 2

5
mR2.

For the cricket ball:

ω = τ�t

I
= 5FR�t

2mR2
= 416 s−1.
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4.8 It will help if you draw a diagram. The speed of the ball before the collision
with the cushion is vi , after it is vf . The collision causes a change in linear
momentum

�p = m(vi + vf ),

and an angular impulse �p(h − R). If the ball is not to skid or hop, then we
must have rolling without slipping both before and after the collision, so

�p(h − R) = I

R
(vi + vf ).

Now substitute for �p and I = 2
5mR2 and solve to obtain h = 7R/5.

PROBLEMS 5

5.1 Need to figure out the speed relative to the ground. In (a) this is 2 ms−1

whilst in (b) it is 0.6 ms−1. Hence the time taken is (a) 20.0/2.0 = 10.0 s
and (b) 20.0/0.6 = 33.3 s.

5.2 We can prove this by considering the light to move along the x-axis accord-
ing to x1 = ct whilst the observer in S ′ moves according to x2 = X0 − ct

where X0 is just the position at t = 0. The distance between the two is just
x2 − x1 = X0 − vt − ct and the relative speed is the rate of change of this
distance, i.e.

d(x2 − x1)

dt
= −(v + c).

The sign just tells us the distance is decreasing. Notice that no particles
of matter are travelling at this speed (in S): it is the relative speed of two
different things.

PROBLEMS 6

6.1 �t = γ�t0 with �t0 = 30 mins. Since γ = 2.72 the elapsed time is 81.2
mins.

6.2 γ = 3.20 and hence in the lab frame the half-life is extended to 5.76 ×
10−8 s. Distance travelled is thus 16.4 m.

6.3 γ = 190/12. Solve for v = 0.998c.
6.4 If the spacecraft was not sufficiently high we would need to account for the

fact that it moves a significant distance over the time the searchlight is turned
on. At ground level, we need to add on the time taken for light to travel the
extra distance, i.e. total time is (0.190 + 0.190 × 0.998)s = 0.380 s. Note
that the key word in the previous question is ‘see’. It implies an observation
using your eyes and hence the need to make this correction. Usually we speak
of the intervals between events defined using a network of clocks stationary
in some frame: those intervals do not depend upon where the observer is nor
whether they have eyes or not.
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6.5 γ = 3.20 and hence length is 31 cm.
6.6 γ = 4.11 and hence distance is 2.9 km.
6.7 In a spaceship, the 105 light years becomes length contracted. Equivalently,

a journey time of order 105 Earth years can be reduced by time dilation.
Suppose we want the journey to take just 20 years. Then we require that the
speed relative to Earth, u, should satisfy

20u = 105c
√

1 − u2/c2.

Solving gives u = 0.99999998c. Note you can avoid solving a quadratic by
realising that γ is very large and hence u is very close to c so it is a good
approximation to solve γ = 105/20 for u giving u/c ≈ 1 − 2 × 10−8.

6.8 (a) γ = 1.009 hence length is 3.57 km. (b) 3600/(4.00 × 107) = 9.00 ×
10−5 s. (c) 3570/(4.00 × 107) = 8.92 × 10−5 s.

6.9 (a) Length measured by friend is 10/γ = 6 m. (b) Since pole is 2 m short
of the barn length the time delay is 2 m/(0.8c) = 8.33 × 10−9 s. (c) Now
the barn is contracted to a length of 4.8 m whilst the pole remains at 10 m.
(d) From the athlete’s viewpoint, the rear of the pole cannot know that the
front has struck the wall until at least 10 m/c = 3.33 × 10−8 s after it has
done so (since no signal can travel faster than the speed of light). In this
time interval, the barn door can travel “for free” a distance of 10 m/c × 0.8
c = 8 m which is plenty long enough for the pole to fit within the barn. Thus
the apparent paradox is resolved.

6.10 Use

λ =
(

1 − v/c

1 + v/c

)1/2

λ0

with λ0 = 589 nm and λ = 550 nm to give v/c = 0.0684.
6.11 tB − tA = 1.3 µs and xB − xA = 1.5 km. We are also told that t ′A − t ′B = 0,

where the primes indicate times measured in the observer’s rest frame. Need
to identify the relevant Lorentz transformation formula and the most useful
one is the one involving the given quantities, i.e. we use “t ′ = γ (t − vx/c2)”.
Subtracting the equation pertaining to event A from that pertaining to event
B gives

0 = γ
(

1.3 µs − v

c2
1500 m

)

and hence v = 0.26c.
6.12 Given xB − xA = 0, tB − tA = 4 s and t ′B − t ′A = 5 s we are asked to deduce

x ′
B − x ′

A. The relevant Lorentz transformation formula states that �t ′ = γ(
�t − v�x/c2

)
where �x = xB − xA etc. Putting the numbers in gives

γ = 5/4 hence v/c = 0.6. Note that you could get this directly from the
time dilation formula since the events occur at the same place in one of the
frames. The spatial separation is 5 s ×0.6c = 9.0 × 108 m.

6.13 tB − tA = 0, xB − xA = 1 km and x ′
B − x ′

A = 2 km we are asked to deduce
t ′B − t ′A. The relevant Lorentz transformation formula states that �x ′ = γ
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(�x − c�t) where �x = xB − xA etc. Putting the numbers in gives γ =
2 and hence v/c = 0.866. Note that you could get this directly from the
length contraction formula since the events occur at the same time in one
of the frames. We can make use of “t ′ = γ (t − vx/c2)” to determine the
corresponding time interval, i.e.

�t ′ = 2

(
0 − 0.866 × 1000

3 × 108

)
= −5.77 × 10−6s.

The minus sign means that the event at larger x is observed first in the primed
frame.

6.14 The emission of the two pulses corresponds to two events with �x = 4 km
and �t = 5 µs. Given �t ′ = 0 we need to use �t ′ = γ (�t − v�x/c2) to
determine the speed, i.e. v/c = c�t/�x = 0.375.

6.15 Key here is to identify the relevant events. Let event A be the impact of
the comet and event B be the event in the party that is simultaneous with
event A according to an observer whizzing past the Earth. Then �t ′ = 0
by definition (primes indicate the arbitrary inertial frame) and we want
to know the corresponding time interval in the Earth frame (�t). Since
we know �t ′ and �x the relevant equation is �t ′ = γ (�t − v�x/c2).
The extreme values of �t occur when v = ±c whence �t = ±�x/c. Thus
the party must last a time 2 × 8 × 1011/(3 × 108) s = 89 minutes. The
impact of the comet occurs (in the Earth frame) at the midpoint of the
party whilst the party ends with the students observing the impact using
their telescopes.

6.16 A diagram will help to clarify the way in which you must use the velocity
addition formula. The speed is (0.70 + 0.85)c/(1 + 0.7 × 0.85) = 0.97c.

6.17 As in the last question, a diagram will help. Required speed is (0.5 −
0.8)c/(1 − 0.5 × 0.8) = −0.5c. The minus sign implies the rocket moves
towards the Earth.

6.18 Velocity addition gives V = (v + c/n)/(1 + v/(nc)). Note if n = 1 then
V = c. Fizeau would have worked with v � nc hence the denominator can
be simplified using (1 + v/(nc))−1 ≈ 1 − v/(nc). This yields the result after
neglecting terms suppressed in v/c.

6.19 Work in A’s rest frame and determine the velocity of B in that frame, then
use tan 30◦ = vBy/vBx to determine u. In more detail: use velocity addition
to obtain vBx = u and vBy = u/γ (u) and hence γ (u) = √

3 which implies
u/c = √

2/3.

PROBLEMS 7

7.1 Use E=1.673 × 10−27 × (2.9979 × 108)2/(1.6022 × 10−13) MeV = 938
MeV = mc2. Hence m = 938 MeV/c2.

7.2 (a) γ − 1 = 1 hence v = 0.866c. (b) γ − 1 = 5 hence v = 0.986c.
7.3 Power output = c2dm/dt . Hence rate of mass loss is 4.2 million tonnes per

second.



308 Solutions to Problems

7.4 Classically use 1
2 mv2 = 0.1 MeV hence v/c = 0.63. Relativistically we need

(γ − 1)mc2 = 0.1 MeV which gives v/c = 0.55.
7.5 Mass is given by

√
11.22 − 62 = 9.5 GeV/c2. The speed can be found from

v/c = cp/E = 6/11.2 = 0.54.
7.6 Total energy is

√
652 + 802 = 103 GeV. Kinetic energy is 23 GeV. The

total energy is not dominated by the rest mass energy and so the particle is
relativistic.

7.7 (a) The energy liberated in each fusion event is (2 × 2.0136u − 4.0015u)c2 =
3.84 × 10−12 J. 1 kg of deuterium can therefore produce 1/(2 × 2.0136u) ×
3.84 × 10−12 = 5.74 × 1014 J. (b) 17 tonnes.

7.8 (a) (γ − 1)mc2 = 2 MeV gives v/c = 0.943. (b) 3 MeV. (c) Total
momentum before is γmv = 2.83 MeV/c. (d) It is not 3 MeV/c2!
Instead use E2 = c2p2 + m2c4 where E = 3 MeV + 2 MeV is the total
energy, i.e. mc2 = √

52 − 2.832 = 4.12 MeV. (e) Total kinetic energy is
(5 − 4.12) = 0.88 MeV.

7.9 (a) Need to use energy and momentum conservation. If p1 and p2 are the pho-
ton momenta then we have γmc2 + mc2 = cp1 + cp2 and γmv = p1 − p2.
Can solve these for p1 and p2 once we know the speed of the antiproton, v.
Given (γ − 1)mc2 = 0.667 GeV we deduce that γ = 1.711 and v = 0.811c.
Thus p1 = 1.92 GeV/c and p2 = 0.62 GeV/c. (b) The 0.62 GeV photon
travels in the opposite direction to the incoming antiproton. (c) By sym-
metry, the momenta are of the same magnitude as before but the signs are
reversed.

7.10 Conservation of energy: (γ (u1) + γ (u2))m = γ (u)M. Conservation
of momentum gives two equations: γ (u2)mu2 = γ (u)Mu sin α and
γ (u1)mu1 = γ (u)Mu cos α where α determines the direction of the
outgoing particle of speed u. The two momentum equations imply that
(γ (u1)

2u2
1 + γ (u2)

2u2
2)m

2 = γ (u)2M2u2. We would like to use this last
equation together with the energy conservation equation to obtain an expres-
sion for the mass M which depends only upon the γ factors. To do that we
need to use the fact that (u/c)2 = (γ 2 − 1)/γ 2 (and similarly for u1 and
u2). Hence (γ (u1)

2 + γ (u2)
2 − 2)m2 = (γ (u)2 − 1)M2. Subtracting this

from the square of the energy conservation equation gives the desired result.

PROBLEMS 8

8.1 The length of ω × r is the perpendicular distance from the axis which lies
parallel to ω and runs through the origin.

8.2 In its rest frame, a small mass m of water experiences a horizontal force
of mω2r and a downward force of mg . The net force is an angle α below
the horizontal, where tan α = g/(ω2r). If h(r) is the water height a distance
r from the rotation axis then dh/dr = tan(π/2 − α) = 1/ tan α. Integrating
gives h = (ωr)2/(2g) + h(0) which is a parabola.

8.3 Coriolis force induces an easterly displacement x such that ẍ ≈ 2ωgt cos λ.
Integrate twice to obtain x = ωg(t3/3) cos λ. Time to hit ground is
≈ (2h/g)1/2 and so the deflection is ≈ ωg cos λ(2h/g)3/2/3. Put numbers
in to find a deflection of 2.4 cm.
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8.4 Work in a frame that rotates with the hoop. First obtain the equation of
motion for the bead, i.e. consider the torque about the centre of the hoop.
Coriolis force is cancelled by reaction from hoop (fixed ω) so net torque is
just −mgR sin θ + mω2R2 sin θ cos θ = mR2θ̈ where θ = 0 corresponds to
the bead at the bottom of the hoop. The bottom of the hoop corresponds
to θ̈ = 0 but to be a stable equilibrium we require θ̈ < 0 for small (θ > 0)
displacements. Thus �2R2 = gR hence � = √

g/R. If ω > � the bead will
rise until θ̈ = 0, i.e. g/R = ω2 cos θ and so cos θ = �2/ω2.

PROBLEMS 9

9.1 Consider an element of the shell of mass dM = M
4π

sin θ dθ dφ. After inte-
grating over azimuth, the potential at a point a distance x from the centre of
the shell is

 = −GM

2

∫ π

0

sin θ

y
dθ,

where y2 = R2 + x2 − 2xR cos θ . Now change variables to obtain an inte-
gral over y subject to R − x < y < R + x. After integration  = −GM/R,
which is constant.

9.2 When the body is at a distance x from the centre of the Earth, it feels a
force due only to the mass at smaller radii (the previous question proves that
there is no force from the mass at larger radii). Hence ẍ = −G(x/R)3M/x2

which corresponds to simple harmonic motion with angular frequency equal
to (GM/R3)1/2.

9.3 Consider building up the sphere by adding successive shells brought in from
infinity. The total work done in adding a shell of thickness dr to a pre-existing
sphere of radius r and mass Mr3/R3 is −GM(r3/R3) dm/r where dm =
M (4πr2dr)/(4πR3/3) is the mass of the shell. Integrating over 0 < r < R

gives the result. Equating to 1
2Iω2 with I = 2

5MR2 gives ω = (3GM/R3)1/2.
9.4 (i) L/m = v0R = 4.46 × 1015 m2s−1 since velocity is tangential at perihe-

lion. (ii) Kinetic energy divided by the mass is v2
0/2 = 1.78 × 109 J kg−1

and the gravitational potential energy divided by the mass is −GM�/R =
−1.78 × 109 J kg−1. These are equal within errors and so we cannot tell if
the orbit is bound or unbound. (iii) Total energy is zero, i.e.

0 = 1

2
v2

r +
(

L

m

)2 1

2r2
− GM�

r
,

where vr is the radial component of the velocity when the comet is a dis-
tance r from the Sun. Putting the numbers in gives vr = 29.8 km s−1. To get
the speed we need also the tangential component which is, by the conserva-
tion of angular momentum, (7.48/15) v0 = 29.7 km s−1. Speed is therefore
42.1 km s−1.
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9.5 First part is obtained by equating the gravitational attraction to the centripetal
force. After the dust cloud has been driven away, the total energy of the
planet is

1

2

G(M + 4
3πρr3)m

r
− GMm

r

and the orbit is bound if this is negative, hence the result. Determine
semi-major axis by equating the total energy to −GMm/(2a). The answer
can be re-arranged to read a = r(1 − Mdust/M)−1 where Mdust = 4

3πρr3.
At distance r the velocity is tangential and so the planet is at pericentre
(r < a so cannot be apocentre). Thus a(1 − ε) = r and so ε = Mdust/M .

9.6 Use u2 = (2a/r − 1)GM/a to obtain the speed immediately after the firing
of the rockets (apocentre of the Eagle’s orbit). We have that r = 1850 km
but need a. Solve for a using a(1 − ε) = 1755 km and a(1 + ε) = 1850
km. Hence speed is 1.61 km s−1 which implies a slowing down of around
20 m s−1.

9.7 The difference is due to the fact that the Sun is offset from the centre of
the Earth’s elliptical orbit by a distance εR. The summertime orbit therefore
sweeps out an area ≈ 4εR2 more than the wintertime orbit. Since the area
swept out over the whole year is ≈ πR2 and since area is swept out at a
constant rate this translates into a time difference of 4ε/π years ≈ 8 days.
This compares well with the 7 days difference between the period 21 March
to 22 September and the period 23 September to 20 March.

PROBLEMS 10

10.1 The hoop receives an impulse �p on the rim which implies an angular
impulse �L = r × �p about the centre of the hoop. The angular momentum
before impact is

L = Iω = mr2ωn̂,

where n̂ is horizontal. To only deflect the hoop �L must also lie in the
horizontal plane, i.e. r must point up and the blow should be applied to the
highest point of the hoop. A blow anywhere else will induce a wobble. The
change in direction θ is

θ ≈ tan θ = r�p

mr2ω
= �p

mv
,

where we have used v = rω.
10.2 Compute the torque about the centre of mass because the coin accelerates

(otherwise we would have to include the effect of fictitious forces). The
torque is a result of the normal force and friction at the base of the coin.
The normal force is equal in magnitude to the weight and friction provides
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the centripetal acceleration of the centre of mass. Therefore, the torque has
magnitude

mgr sin φ − mv2r

R
cos φ

and it causes the angular momentum to precess about the vertical. Thus
the component of L in the horizontal plane, Lh, rotates with angular speed
� = v/R. Using

Lh = 1

2
mr2 v cos φ

r
,

gives ∣∣∣∣dL
dt

∣∣∣∣ = Lh� = mrv2 cos φ

2R
.

Equating this to the torque gives the required result.
10.3 Similar to the example with the pencil but with different moments of inertia.

Remember that the sphere is pivoted on the finger. For the solid sphere
I3 = 2

5mr2 and I = 2
5mr2 + mr2 = 7

5mr2 (by the Parallel Axis Theorem).
This will give a minimum spin of 48 rad s−1. For the spherical shell we have
I3 = 2

3mr2 and I = 5
3mr2 giving a minimum spin of 31 rad s−1.

10.4 With x3 = 0 for the whole plate we calculate:

I11 = M

2a2

∫ a

0

∫ 2a

0
x2

2 dx1 dx2 = 1

3
Ma2,

I22 = M

2a2

∫ a

0

∫ 2a

0
x2

1 dx1 dx2 = 4

3
Ma2,

I33 = M

2a2

∫ a

0

∫ 2a

0
(x2

1 + x2
2 ) dx1 dx2 = 5

3
Ma2,

I12 = M

2a2

∫ a

0

∫ 2a

0
(−x1x2) dx1 dx2 = −1

2
Ma2.

So

I = Ma2

6


 2 −3 0

−3 8 0
0 0 10


 .

The angular momentum, L = Iω = Ma2ω

6
√

2
(−1, 5, 0). We have constant ω

so we can compute the torque: τ = ω × L = Ma2ω2

2 (0, 0, 1). The kinetic
energy is

T = 1

2
ω · L = 1

6
Ma2ω2.
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10.5 The moment of inertia tensor is already diagonal in x3 so we have the first
eigenvector γ = e3 with eigenvalue Iγ = 5

3Ma2. The other two eigenvectors
satisfy

(
2 − I −3
−3 8 − I

) (
a1

a2

)
= 0.

Hence

α = (1,
√

2 − 1, 0) Iα = Ma2

6
(5 − 3

√
2)

and

β = (1, −
√

2 − 1, 0) Iβ = Ma2

6
(5 + 3

√
2).

10.6 Use cylindrical co-ordinates (r, θ, z) with the z-axis as the symmetry axis.
Then any pair of axes x and y perpendicular to the z axis will serve as
principal axes. Calculate

Iz = ρ

∫ h/2

−h/2

∫ 2π

0

∫ R

0
r3dr dθ dz = πρR4h

2

and

Ix = Iy = ρ

∫ h/2

−h/2

∫ 2π

0

∫ R

0
(r2 sin2 θ + z2)r dr dθ dz = πρR4h

4

(
1+ h2

3R2

)
.

The barrel of the gun ensures that the angle between the symmetry axis and
the angular momentum is small. From the geometry, I3/I = 6/19 so the
symmetry axis precesses about 15.8 times per second.

10.7 As with Feynman’s plate we can take the e3 principal axis to be normal to
the plate, and I1 = I2 = I, so that I3 = 2I. Euler’s equations then give us

I ω̇1 + Iω2ω3 = −kω1,

I ω̇2 + Iω3ω1 = −kω2,

ω̇3 = 0.

As with the free top, ω3 is constant. Multiply the second equation by i and
add to the first equation, then write in terms of η to obtain:

I η̇ − iIω3η + kη = 0,

which has a general solution:

η = A exp[−kt/I + i(ω3t + φ)].
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Thus ηη∗ = ω2
1 + ω2

2 = A2 exp(−2kt/I ) decays exponentially. In the lab any
initial wobble dies away and the disc then spins only about the symmetry
axis.

10.8 To show this use

T = 1

2
ω · L = 1

2
ω · Iω

and differentiate the product with respect to time in the principal-axis,
body-fixed frame where I is constant and diagonal and hence in which

ω̇ · Iω = ω · Iω̇ = ω · τ .

10.9 Write the angular momentum relative to the origin as

L =
∑

i

mi(ri + R) × (ṙi + Ṙi ),

expand the brackets and use the definition of R

R =
∑

i miri∑
i mi

.

10.10 sfasfd(a) Use cylindrical polar co-ordinates (r, θ, z) for the integrals with z along
the symmetry axis:

Iz = ρ

∫ h

0
dz

∫ zR/h

0
dr

∫ 2π

0
dθ r3,

and the density of the cone ρ = 3m

πR2h
. For the other two principal

moments of inertia evaluate

Ix = Iy = ρ

∫ h

0
dz

∫ zR/h

0
dr

∫ 2π

0
dθ (r3 cos2 θ + rz2).

(b) We shall compute the components of ω in the direction of the principal
axes and then use

T = 1

2
Ix(ω

2
x + ω2

y) + 1

2
Izω

2
z .

There are two sources of rotation contributing to ω: the precessional
rotation of the cone about its apex (which points vertically) and the spin
of the cone about its symmetry axis. If α = tan−1(R/h) is the half-angle
of the cone, then the precession gives rise to a contribution to ωz of
ω sin α and ω2

x + ω2
y = ω2 cos2 α. The spin contributes only to ωz and is

equal to −ω/ sin α. To see this note that the base of the cone must travel
a distance l = 2πR/ sin α for each complete precession of the cone, i.e.
the cone must spin about its symmetry axis at a rate of ωl/(2πR). Hence
ωz = ω sin α − ω/ sin α. Express sin α and cos α in terms of R and h to
get the result.
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PROBLEMS 11

11.1 We can write E = mc2 cosh η and cp/E = tanh η, i.e. cp = mc2 sinh η. Thus

E + cp

E − cp
= exp(2η)

and the result follows.
11.2

G(u) =
(

1 0
−u 1

)
.

Matrix multiplication gives G(u)G(v) = G(u + v). Two Lorentz
transformations lead to the quoted result upon using the identities:
cosh η1 cosh η2 + sinh η1 sinh η2 = cosh(η1 + η2) and cosh η1 sinh η2 +
sinh η1 cosh η2 = sinh(η1 + η2).

11.3 The left hand side can be written as εijkRjαVαRkβWβ which can be fur-
ther written as εabcRiaRjbRkcRjαRkβVαWβ . Now R is an orthogonal matrix
which means that RT = R−1 and so Rij = (R−1)ji . We can therefore write
RjbRjα = δbα and RkcRkβ = δcβ which allows us to simplify the left hand
side to εaαβRiaVαWβ and this is equal to the right hand side.

PROBLEMS 12

12.1 We write the initial four-momentum of the rocket as mi(c, 0), the final
four-momentum as γmf (c, u) and the total four-momentum of the photons
is γmf (u, −u). The latter holds by virtue of the conservation of momen-
tum and the fact that each photon is massless. Equating the energy com-
ponents gives mic = γmf (c + u), as required. Solving for u gives u/c =
(m2

i − m2
f )/(m2

i + m2
f ).

12.2 (a) In the zero momentum frame, the electron and positron must carry the
same energy, Ee. Similarly the proton and anti-proton carry the same energy,
Ep. Energy conservation dictates that Ee = Ep. The minimum of this energy
occurs when the proton and anti-proton are produced at rest, i.e. the min-
imum kinetic energy is mpc2 − mec

2 = 937.8 MeV. (b) In the stationary
electron frame we exploit the fact that (Pe+ + Pe−)2 = (Pp + Pp)2 is Lorentz
invariant. Thus we can compute it in the zero momentum frame where, at
threshold, the proton and anti-proton are produced at rest, i.e. (Pe+ + Pe−)2 =
4m2

pc2. We now work out the same quantity in the electron rest frame where
Pe+ = (E/c, p) and Pe− = (mec, 0), i.e. (E/c + mec)

2 − p2 = 4m2
pc2. This

can be re-arranged to give E = (2m2
p − m2

e)c
2/me = 3.45 TeV.

12.3 Invariant mass satisfies M2c4 = (∑
i Ei

)2 − (∑
i cpi

)2
. We can compute it

in a frame of reference of our choice and, as so often, the zero momentum
frame is convenient. In that case Mc2 = ∑

i ECM
i and this is minimized when

the particles are at rest, i.e. M = ∑
i mi . Note that this proof assumes the

existence of the zero momentum frame, i.e. it assumes that the particles are
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not all massless and moving in the same direction. In that case Ei = c|pi |
and since all the momenta are parallel M ≥ 0 so the result still holds.

12.4 It is not possible simultaneously to conserve both energy and momentum. A
quick way to see it is to note that the momentum four-vector of the photon
has zero length whilst that of the electron-positron pair cannot be less than
2mc (see previous question) where mc2 is the mass of the electron/positron.

12.5 Substitute y = γ (y ′ + V t ′), x = x ′, t = γ (t ′ + Vy ′/c2) and re-arrange to
obtain the answer provided k′

x = k, k′
y = −ωγV/c2 = −uV γ k/c2 and

ω′ = γω. For K to be a four-vector it must transform accordingly, i.e. we
require that k′

x = kx , k′
y = γ (ky − V ω/c2) and ω′ = γ (ω − V ky/c

2). These
equations are satisfied since kx = k and ky = 0. Speed of propagation in S ′ is

u′ = ω′

k′ = γ u

(1 + γ 2u2V 2/c4)1/2
.

For u = c we obtain u′ = c and for u → 0 we obtain u′ → u.
12.6 Conservation of four-momentum states that Pπ = Pµ + Pν . This can be writ-

ten as Pν = Pπ − Pµ and squaring both sides gives 0 = P2
π + P2

µ − 2Pπ ·
Pµ. This leads to the result since P2

π = m2
πc2 and P2

µ = m2
µc2. Since the

muon travels at right angles to the pion we can write Pπ · Pµ = EπEµ/c2.
Hence Eµ = (m2

π + m2
µ)c4/(2Eπ). Substituting for Eπ = 143.6 MeV gives

a muon kinetic energy equal to 1.4 MeV. The neutrino emerges at an angle
θ = arctan(pµ/pπ). Substituting for pµ = 17.0 MeV/c gives θ = 29.6◦.

12.7 Use p′
x = γ (px − vE/c2) and p′

y = py with cpx = E cos θ and cpy = E

sin θ . Thus

tan θ ′ = p′
y

p′
x

= sin θ

γ (cos θ − v/c)

which gives θ = 68◦. The frequency is obtained from E′ = γ (E − vpx) and
since E = hf , f ′ = γf (1 − (v/c) cos θ), i.e. f ′ = 7.4 × 1014 Hz.

12.8 (a) In the phi rest frame, momentum conservation dictates that the kaons
must be emitted in opposite directions with equal energies. Energy conser-
vation fixes the value, i.e. EK = mφc2/2 = 510 MeV. The momenta are
obtained using (cpK)2 = E2

K − (mKc2)2 and are ±127 MeV/c. (b) v must
point in the opposite direction to n̂. Its magnitude can be determined using
E2

φ = c2p2
φ + m2

φc4 = (γmφc2)2 which can be solved to give |v| = 0.947c.
(c) Use plab

K = γ (pK + EK/c) for each kaon in turn and with γ = 3.107 to
obtain momenta of +1106 MeV/c and +1895 MeV/c.

12.9 At threshold, the particles are produced at rest in the zero momentum
frame, i.e. the invariant mass is (Pπ + Pn)

2 = (mK + m�)2c2. Since this
is invariant we can also compute it in the neutron’s rest frame where
Pπ + Pn = (Eπ/c + mnc, pπ ), i.e. (Eπ/c + mnc)

2 − p2
π = (mK + m�)2c2.

Substituting for p2
π = E2

π/c2 − m2
πc2 gives Eπ = ((mK + m�)2c2 − (m2

π +
m2

n)c
2)/(2mn) = 897 MeV.

12.10 In the kaon rest frame the pions are produced back-to-back. Suppose the
pion that moves in the lab frame has a speed u in the kaon rest frame. Then
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it follows that the kaon rest frame must also move with a speed u relative
to the lab (in the same direction as the pion) in order that the other pion
should be at rest in the lab frame. Drawing a diagram might help you see
this. Thus the speed of the moving pion in the lab frame is 2u/(1 + u2/c2)

and u can be deduced using energy conservation in the kaon rest frame,
i.e. Eπ = mKc2/2 so γ = mK/(2mπ) and u = 0.982c which corresponds to
an energy of 746 MeV. Alternatively you could determine the energy and
momentum in the kaon rest frame and then make a Lorentz transformation
to the lab.

12.11 Isotropic decay means that dP/d�′ = 1/(4π) where d�′ = d(cos θ ′)dφ′
is an element of solid angle in the pion rest frame. The normalization
is fixed since integration over all solid angles must give a unit prob-
ability to find the photon. We need to understand the transformation
from (θ ′, φ′) to (θ, φ). Consider a photon with four-momentum equal
to (E, E cos θ, E sin θ cos φ, E sin θ sin φ). The Lorentz transformation
equations tell us that

E′ = γ (E − βE cos θ),

E′ cos θ ′ = γ (E cos θ − βE),

E′ sin θ ′ cos φ′ = E sin θ cos φ,

E′ sin θ ′ sin φ′ = E sin θ sin φ,

where β = u/c. The last two equations tell us φ = φ′ whilst the first two
can be used to eliminate the energies, i.e. dividing them gives

cos θ ′ = cos θ − β

1 − β cos θ
.

Thus d(cos θ ′) = d(cos θ) × (1 − β2)/(1 − β cos θ)2 and the result follows.

PROBLEMS 14

14.1 Write p = γ (u)mu and differentiate.
14.2 Equation of motion is γ 3mu̇ = −γ κm, i.e. the required time t satisfies

∫ 0

c
2

du

1 − u2/c2
= −κt

which can be integrated to give t = (c ln 3)/(2κ).
14.3 Equation of motion is γ 3mu̇ = −mc2L/x2 which is solved by

x = A cos(ωt + φ) provided Aω/c = 1 (in which case γ = A/x).
The angular frequency is ω2 = c2L/A3 and the required solution is obtained
upon setting A = L.
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14.4 Eq. (14.6) relates the proper acceleration to the magnitude of the acceleration
four-vector, i.e. A · A = −a2. Working in CERN’s rest frame, the position
four-vector of an orbiting electron is X = (ct, R cos ωt, R sin ωt, 0)

where 2πR = 27 km. Differentiating twice with respect to the proper
time and using dt/dτ = γ gives an acceleration four-vector equal to
A = −Rω2γ 2(0, cos ωt, sin ωt, 0). Thus the proper acceleration has a
magnitude of γ 2ω2R (as one might have anticipated on the grounds
of time dilation). Finally we need ω = v/R where v is the electron’s
speed. Can deduce v from γ = E/(mc2) = 88 × 103, i.e. v = c to a good
approximation and a = 1.6 × 1023 ms−2.

14.5 Expect z = gh/c2 = 2.46 × 10−15.
14.6 (a) �τ is a proper time interval, i.e. c�τ is the invariant spacetime distance

between the events A and B where A is specified by providing the position
of the clock and its time initially and B is specified by providing the position
of the clock and its time at the end of the interval. In the vicinity of the
Earth’s surface we might therefore venture to make use of Eq. (14.53) for a
uniform gravitational field, i.e.

�τ ≈
∫ (

(1 + gh

c2
)2(dt)2 − 1

c2
(dx)2

)1/2

≈
∫ (

1 + 2gh

c2
− 1

c2

(
dx
dt

)2
)1/2

dt,

where h is the height above the Earth’s surface (it is in general a function of
t). It is to be understood that the time t refers to the time in an inertial frame
that is approximately at rest relative to the centre of the Earth (approximately
since we only need to be able to neglect length contraction effects in the spec-
ification of h), e.g. when g = 0 we regain the Minkowski interval expressed
in inertial co-ordinates. The above equation leads directly to the quoted result
upon expanding the square root. (b) Let v be the speed of a clock relative
to the ground, and let V be the speed of a point fixed on the Earth’s surface
relative to the inertial frame from part (a), i.e. V = 2πRearth/(1 day). Now
work out the proper time elapsed on (i) the clock at rest in the airplane; (ii)
the clock at rest in the airport. For the clock on the airplane we have

�τplane ≈ �t

(
1 + gh

c2
− (V + v)2

2c2

)

(ignoring the variation of h as the airplane ascends and descends) and for
the clock on the ground

�τground ≈ �t

(
1 − V 2

2c2

)
.

Strictly speaking we should account for the fact that the clock on the
plane must actually travel slightly faster than V + v (by an amount
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δv = 2πh/(1 day)) but that leads to a negligible correction. We can
eliminate the dependence upon the time measured in the inertial frame by
constructing the ratio:

�τplane

�τground
≈ 1 + gh

c2
− 1

2

(V + v)2

c2
+ 1

2

V 2

c2
≈ 1 + gh

c2
− 1

2

v2

c2
− V v

c2
.

Thus the clock on the airplane speeds up by a fractional amount gh/c2 due
to the fact it is in a weaker gravitational field but it slows down in part due to
time dilation (by a factor v2/(2c2)) and in part due to the fact that the Earth
is rotating (the V v/c2 factor). Putting in the numbers: gh/c2 ≈ 1.1 × 10−12

which corresponds to a speeding up of 3.9 ns/h; −v2/(2c2) ≈ −4.3 × 10−13

which corresponds to a slowing down of -1.5 ns/h; −V v/c2 ≈ −1.4 × 10−12

which corresponds to a slowing down of -5.2 ns/h. The total journey time
for one circuit of the equator is just over 40 hours and thus the net effect is
that the clock on the airplane slows down by 0.11µs which is an effect large
enough to have been measured.

14.7 The tension in the rope would increase until it snaps. This is easiest to see
in the inertial frame in which the rockets are initially at rest. If the rockets
are initially a distance L0 apart then they must remain a distance L0 apart
in this frame since they undergo identical accelerations (they are identical
rockets). However the rope should suffer a length contraction (it is of length
L0 only in its rest frame) but it is prevented from so doing since it is attached
to the rockets. Hence it snaps. Alternatively, we can looking at things from
the point of view of an observer on the rocket at the rear. Eq.(14.28) is
useful for it informs us that in order to keep the distance between the rockets
fixed, the rocket at the front must experience a reduced proper acceleration,
but since both rockets are identical this is not the case (observers on each
rocket experience the same acceleration) and so the rocket at the front has too
great an acceleration and the distance between the rockets increases, again
eventually causing the rope to snap.
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