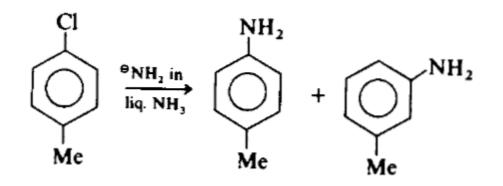

1. Nature of Products

- All major and minor products must be identified correctly
- A mechanism must account for all major and minor products of the reaction
- Any mechanism that failed to account for all products would be incorrect.


Example 1: Halogenation of Methane

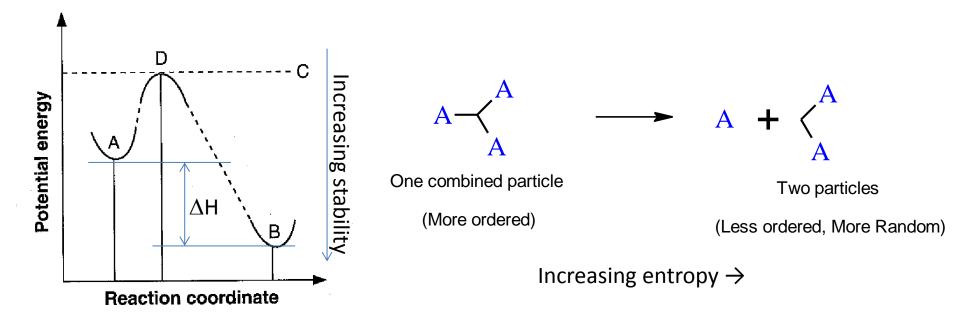
- Small amount of ethane is also produced as minor product.
- A mechanism must account for the formation of ethane.

Example 2: Dimerization of triphenyl methyl free radical

Example 3:

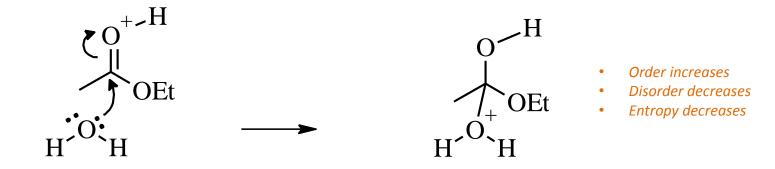
2 (i) Thermodynamic Requirements

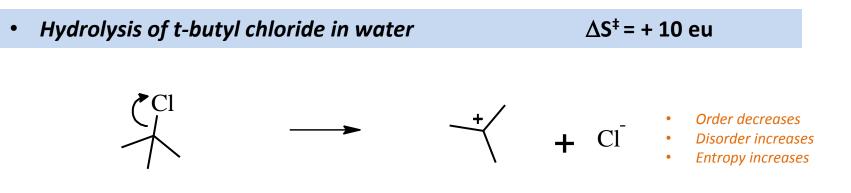
ENTHALPY (H), ENTROPY (S) ,


GIBBS FREE ENERGY (G)

ENTHALPY CHANGE (Δ H):

It is the difference in stability (bond strength) of the reactants and products


ENTROPY CHANGE (Δ S):


It is the difference between the disorder of the reactants and that of the products

Examples:

Energy Diagram

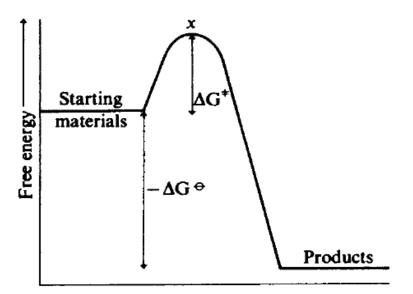
GIBBS FREE ENERGY (G):

The **energy** associated with a chemical reaction that can be used to do work

The **free energy** of a system is the enthalpy (H) minus the product of the temperature (Kelvin) and the entropy (S) of the system

i.e. G = H - TS

For a change in system at constant temperature it can be written as

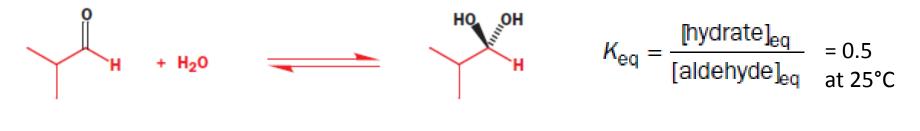

 $\Lambda G = \Lambda H - T \Lambda S$

where

 ΔG = Gibb's Free Energy Change ΔH = Enthalpy Change

 ΔS = Entropy Change

Free Energy of Activation (ΔG^*) Enthalpy of Activation (ΔH^*) Entropy of Activation (ΔS^*)

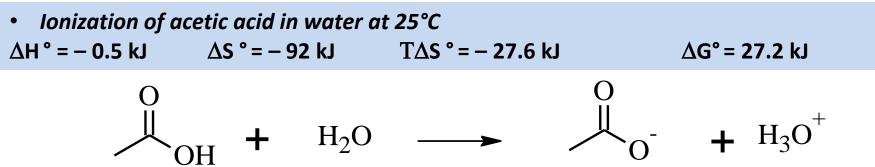


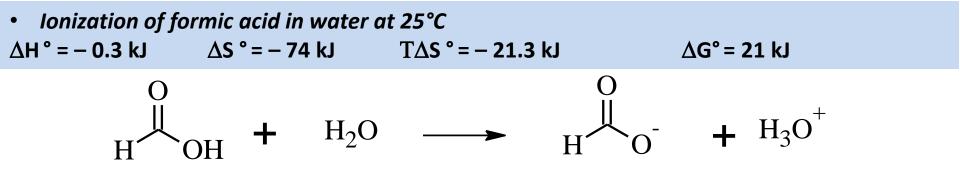
Reaction coordinate

Free Energy and Equilibrium

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $\Delta G^{\circ} = -RT \ln K_{eq}$

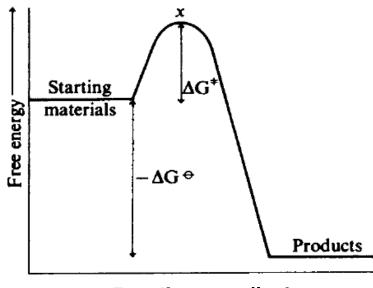
The sign of ΔG° tells us whether products or reactants are favoured at equilibrium




 $\Delta G^{\circ} = -RT \ln K_{eq} = -8.315 \times 298 \times \ln(0.5) = +1.7 \text{ kJ mol}^{-1}$

ΔG° tells us about the position of equilibrium

- If ΔG° for a reaction is *negative*, the *products* will be favoured at equilibrium
- If ΔG° for a reaction is *positive*, the *reactants* will be favoured at equilibrium
- If ΔG° for a reaction is *zero*, the equilibrium constant for the reaction will be 1


∆G°, kJ mol ^{_1}	K _{eq}	% of more stable state at equilibrium
0	1.0	50
1	1.5	60
2	2.2	69
3	3.5	77
4	5.0	83
5	7.5	88
10	57	98
15	430	99.8
20	3 200	99.97

Thermodynamics for the organic chemist

- The free energy change ΔG° in a reaction is proportional to $\ln K$ (that is, $\Delta G^{\circ} = -RT \ln K$)
- ΔG° and *K* are made up of enthalpy and entropy terms (that is, $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$)
- The enthalpy change ΔH° is the difference in stability (bond strength) of the reagents and products
- The entropy change ΔS° is the difference between the disorder of the reagents and that of the products

Free Energy of Reaction (Δ G) Enthalpy of Reaction (Δ H) Entropy of Reaction (Δ S)

Free Energy of Activation (ΔG^*) or ΔG^{\ddagger} Enthalpy of Activation (ΔH^*) or ΔH^{\ddagger} Entropy of Activation (ΔS^*) or or ΔS^{\ddagger}

Reaction coordinate