The T-Test

- Independent Sample T-Test
- Paired Sample T-Test
- One Sample T-Test
- Test of Significance

The One-Way ANOVA

- Post Hoc Comparisons
- Contrasts

Descriptive Statistics

What is a T-Test

T-Test is a procedure used for comparing Sample Means to see if there is sufficient evidence to infer that the means of the corresponding population distributions also differ. The important things are;

Two (t-test always compare two different means)
 Some variable of interest

SPSS PROVIDES THREE DIFFERENT TYPES OF T-TESTS

INDEPENDENT SAMPLE T-TEST

PAIRED SAMPLE T-TEST

ONE SAMPLE T-TEST

SPSS PRODUCES TWO-TAILED SIGNIFICANCE VALUE BY DEFAULT

ONE TAIL TESTS

TWO TAIL TESTS

Difference Between Independent Sample T-Test and Paired Sample T-Test

Independent Sample T-Test	Paired Sample T-Test
 The two samples share some variable of interest in common, but there is no overlap between 	 Usually based on the group of individuals who experience both conditions of the variable of interest.
 membership of two groups. Compare the running speeds 	 Also called a Repeated Measure Design or a Paired Design.
of horses and zebra would be an independent design as there is no sensible way to pair off each horse with each zebra.	 Compare the running speed of horses for a week of eating one type of feed with the same horses for a week on a different type of feed would be a paired design as you can pair off measurements from the same horse

Paired Sample T-Test

One Sample T-Test

It is designed to test whether the mean of a distribution differs significantly from some present value e.g.

Can You identify a T-Test

Independent Sampl

			Levene's Test for Equality of Variances							
			F	Sig.		t	df	Sig. (2-tailed)		
total E a:	qual varianc ssumed	es	2.01	9	.158	1.224	103	.224		
E	qual varianc ssumed	es not				1.169 72.421		1.169 72.421		.246
	A Typical T-Table									
a (1 tail)	0.05	0.025	0.01	0.005	0.	0025	0.001	0.0005		
α (2 tail)	0.1	0.05	0.02	0.01	0	.005	0.002	0.001		
df										
1	6.3138	12.7065	31.8193	63.6551	127.34	147	318.4930	636.0450		
2	2.9200	4.3026	6.9646	9.9247	14.088	37	22.3276	31.5989		
103	1.6598	1.9833	2.3631	2.6244	2.8687	7	3.1712	3.3875		

Test of Significance

Test of Significance can be one-tailed or two tailed test;

Two tailed test examines whether the mean of one distribution differs significantly from the mean of other distribution. (Regardless of the direction +ve or -ve)

The one tailed test measures only whether the second distribution differs in a particular direction from the first.

Ref: Statistics- A first course by John E Freund and Benjamin M.Perler, 7th Edition

One Tailed OR Two Tailed

If you have stated your experimental hypothesis with care, it will tell you which type of effect you are looking for.

For example, the hypothesis that "*Coffee improves memory*" is _____tailed test.

The hypothesis, "*Men weigh a different amount from women*" suggests a ______tailed test.

So remember, don't be vague with your hypothesis if you are looking for a specific effect! Be careful with the null hypothesis too - avoid "A *does not effect B*" if you really mean "A *does not improve B*".

Group Statistics

	gender	N	Mean	Std. Deviation	Std. Error Mean
total	Female	le 64 102.03 41 98.29		13.896	1.737
	Male			17.196	2.686
How c the me the sar	lose a sample l can of the popunple came.	mean might ılation from	These are standard error mean separate $SE_M = SD/\sqrt{M}$	ors of each ly; N	

Ref: Student Edition Statistics (Tutorial and Softare) for Behavioral Sciences by Joseph D.Allen and David .J. Pittenger, 2nd Edition

Levene's Test determines whether the variability from two groups is significantly different. If this were significant, one might consider using the t-test for un-equal variances The "t", "df" and "Sig" columns provide the results of the statistical significance test. First the 't' provides standardized statistic for the mean difference;

$t_{observed} = M_1 - M_2 \div SED$

The degrees of freedom (df) of an

The t-statistic follows a non-normal (studentized or t) distribution that depends on degrees of freedom. Here

Ref: Student Edition Statistics (Tutorial and Softare) for Behavioral Sciences by Joseph D.Allen and David .J. Pittenger, 2nd Edition

So far we have learned the following things about a t-test;

1. The t-test produces a single value, *t*, which grows larger as the difference between the means of two samples grows larger;

2. t does not cover a fixed range such as 0 to 1 like probabilities do;

3. You can convert a t-value into a probability, called a p-value;

4. The p-value is always between 0 and 1 and it tells you the probability of the difference in your data being due to sampling error;

5. The p-value should be lower than a chosen significance level (0.05 for example) before you can reject your null hypothesis.

This value is called the critical value. The final thing to do is compare this value with your value of t;

If your t-value is greater than or equal to this value, then t is significant and you have found a difference

If your t-value is less than this value, then t is not significant.

Ref: http://www.socialresearchmethods.net/kb/stat_t.php

T-Test

Ref: http://www.socialresearchmethods.net/kb/stat_t.php

Paired Sample T-Test

Paired Samples Statistics

		Mean	Ν	Std. Deviation	Std. Error Mean
Pair 1	quiz1	7.47	105	2.481	.242
-	quiz2	7.98	105	1.623	.158

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	quiz1 & quiz2	105	.673	.000

Though the statistic is not shown, t provides the standardized statistic for testing whether the correlation differs from zero;

 $\sqrt{(1-r^2)}$

Ref: Student Edition Statistics (Tutorial and Softare) for Behavioral Sciences by Joseph D.Allen and David .J. Pittenger, 2nd Edition

Paired Sample T-Test

Paired Sa

Ref: Student Edition Statistics (Tutorial and Softare) for Behavioral Sciences by Joseph D.Allen and David .J. Pittenger, 2nd Edition

One Sample T-Test

One-Sample Statistics

ONE WAY ANALYSIS OF VARIANCE (ONE WAY ANOVA)

ANOVA

- Analysis of variance is a procedure used for comparing sample means to see if there is sufficient evidence to infer that the means of the corresponding population distributions also differ.
- Where t-test compare only two distributions, analysis of variance is able to compare many.
- What does the one-way part mean? It is one dependent variable (always continuous) and exactly one independent variable (always categorical). A single independent variable can have many levels

Ref: Business Research Methods by Alan Bryman \$ Emma Bell

ANOVA

One-way ANOVA will generate a significance value indicating whether there are significant differences within the comparisons being made. This significance value does not indicate where the difference is or what the differences are; but a 'Test' can identify which groups differ significantly from each other.

quiz4

					95% Confidence Interval for Mean			
	Ν	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Asian	20	8.35	1.531	.342	7.63	9.07	6	10
Black	24	7.75	2.132	.435	6.85	8.65	4	10
White	45	8.04	2.256	.336	7.37	8.72	2	10
Hispanic	11	6.27	3.319	1.001	4.04	8.50	2	10
Total	100	7.84	2.286	.229	7.39	8.29	2	10

Test of Homogeneity of Variances

quiz4

Levene Statistic	df1	df2	Sig.
5.517	3	96	.002

Figure F.6 A visualisation of six samples, each sample has 5 observations. An illustration of different variation components. Within subgroup variation is the variation in each sample. Between subgroups variation is the variation between the samples, i.e. the variation in the mean values of the subgroups. The total variation is the total long range variation in the process. From Bergman and Klefsjö, 2003, 'Quality, from Customer Needs to Customer Satisfaction'.

ANOVA

quiz4

	Sum of Squares	df	Mea	n Square	F	Sig.
Between Groups	34.297	3	^	11.432	2.272	.085
Within Groups	483.143	96		5.033	^	
Total	517.440	99				
		MS	5 = 5	SS _/ df	F = MSI	B _/ MSW

When "F" ratio is close to "1", the estimates will be said to be similar (no indication of detectable differences between subgroup means). When F-ratio is large, the estimates are dissimilar (indication of differences between subgroup means).

Ref: Student Edition Statistics (Tutorial and Softare) for Behavioral Sciences by Joseph D.Allen and David .J. Pittenger, 2nd Edition

One Way ANOVA – Post Hoc Tests

quiz4 LSD

					95% Confidence Interval	
		Mean Difference (l-				
(I) ethnicity	(J) ethnicity	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Asian	Black	.600	.679	.379	75	1.95
	White	.306	.603	.613	89	1.50
	Hispanic	2.077*	.842	.015	.41	3.75
Black	Asian	600	.679	.379	-1.95	.75
	White	294	.567	.605	-1.42	.83
	Hispanic	1.477	.817	.074	14	3.10
White	Asian	306	.603	.613	-1.50	.89
	Black	.294	.567	.605	83	1.42
	Hispanic	1.772*	.755	.021	.27	3.27
Hispanic	Asian	-2.077*	.842	.015	-3.75	41
	Black	-1.477	.817	.074	-3.10	.14
	White	-1.772 [*]	.755	.021	-3.27	27

Ref: SPSS Software