
Non-parametric tests I

Objectives

• Mann-Whitney

• Wilcoxon Signed Rank

• Relation of Parametric to Non-parametric

tests
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the problem

Our testing procedures thus far have relied on

assumptions of independence, equal variance,

and normality of the data. Although the tests

used are robust to departures from these as-

sumptions (especially with larger sample sizes

and balanced data), we may find some assump-

tions are too badly violated to use these pro-

cedures. Here we begin studying tests that do

not require the assumption of normality.
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Non-parametric tests

• Parametric: involving an assumption about

the underlying distribution of the data

• Non-parametric: (a.k.a. “distribution-free”)

not requiring an assumption of the data’s

distribution. NOT however, assumption

free in general.
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What will we learn?

Equivalent to:

Mann-Whitney Two-sample
t-test

Wilcoxon Paired sample
Signed Rank t-test

Kruskall- One-way
Wallis ANOVA
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Two-sample tests

Recall the null and alternative hypothesis for a

two-tailed test in a two-sample case:

• H0 : µ1 = µ2

• HA : µ1 6= µ2

The two-sample t-test requires independence,

equal variance and normality. What if our data

are not normally distributed?
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Mann-Whitney test

The Mann-Whitney test (a.k.a the Wilcoxon

Rank Sum Test) requires independent data with

equal variances. To conduct this (or any other

statistical test) we need:

• test statistic

• critical value from null distribution
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M.W. test statistic

To find the M.W. test statistics U and U ′:

1. Rank data and separate into two groups

2. U = n1n2 + n1(n1+1)
2 −R1

3. U ′ = n1n2 + n2(n2+1)
2 −R2

Where: Ri =
∑

ranks in group i and n1 ≤ n2

NB: U = n1n2 − U ′ and U ′ = n1n2 − U Also:

R1 + R2 = N(N+1)
2 where N = n1 + n2 is a

useful check.
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M.W. critical value

When you’ve found U and U ′, take the larger

of the two and compare it to Uα,n1,n2 (this is

where n1 < n2 is relevant) found in many intro-

ductory statistics texts (e.g. Zar Table B.11).

If the larger value of U and U ′ is greater than

Uα,n1,n2, reject the null hypothesis at the α-

level. If not, fail to reject the null hypothesis.
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Example

Goal: determine whether the feather density

(# feathers/sq. inch) of the Adelie penguin is

the same as the Chinstrap penguin.

We have data from 7 and 8 penguins randomly

selected from each species.

Adelie Rank Chinstrap Rank
87.0 87.2
82.5 92.5
78.7 81.5
81.3 78.8
80.5 86.2
74.5 85.3
77.8 87.1

89.0

Our hypotheses are:

H0: Adelie density = Chinstrap density

HA: Adelie density 6= Chinstrap density
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Why the bizarre hypothesis language?

The hypotheses above have been framed in

words rather than in terms of parameters be-

cause we’re considering a shift in the location

of the distributions, rather than inference par-

ticularly about the means.

This does not mean we cannot say that one

population will be larger than the other more

often than not, however, which is often what

we want to know.
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Example

Adelie Rank Chinstrap Rank
87.0 5 87.2 3
82.5 8 92.5 1
78.7 13 81.5 9
81.3 10 78.8 12
80.5 11 86.2 6
74.5 15 85.3 7
77.8 14 87.1 4

89.0 2
sum 76 44

U = 7 ∗ 8 +
7(7 + 1)

2
− 76 = 8

U ′ = 7 ∗ 8 +
8(8 + 1)

2
− 44 = 48

U.05(2),7,8 = 45

R code for critical value
qwilcox(.975,7,8,lower.tail = T,log.p=F)
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Example

Because the larger of our test statistics: U ′ =
48 is larger than our critical value U.05(2),7,8 =

45 we reject the null hypothesis.

This leads to a few questions:

• Why does this work?

• How do we deal with tied ranks?

• What about one-tailed hypotheses?

• Does it matter if ranking is large to small

or small to large?
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Why does Mann-Whitney work?

If neither distribution tends to produce greater

values than the other, i.e. if the null hypoth-

esis is true, and the variances are equal, then

we would expect the rankings to be randomly

intermingled between the two samples.

If one distribution does tend to produce greater

values than the other, then one sample will

usually have higher rankings than the other, in

which case one of U or U ′ will be a large value.
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How do we deal with tied ranks?

When multiple observations have the same rank,

give them the appropriate average.

Example: The 3rd, 4th and 5th observations

are all equal. They get assigned (3+4+5)/3 =

4. The next observation gets assigned rank 6.

Example: The 7th and 8th observations are

equal. They get assigned (7 + 8)/2 = 7.5.

The next observation gets assigned rank 9.

See Zar example 8.14 (p.150) for a full exam-

ple of this.
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One-tailed hypotheses

In a two-tailed test, we need to consider both U

and U ′. In a one-tailed test, only one of these

will be relevant. Which one we pick, however,

depends on whether we rank the largest obser-

vation as 1 or the smallest as 1. Zar’s table

8.2 (p.149) gives us a helpful summary of how

to decide which one we want. (Here, G1 refers

to Group 1.)

H0: G1 ≥ G2 H0: G1 ≤ G2
HA: G1 < G2 HA: G1 > G2

Rank 1 U U ′

small
Rank 1 U ′ U
large

Note that this still assumes n1 ≤ n2!
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MW: Direction of ranking

For a two-tailed test, it doesn’t matter if rank-

ing is smallest to largest or largest to smallest,

because you consider both U and U ′.

For a one-tailed test, you need to pay attention

to which test statistic you want to consider,

which will depend on the direction of ranking.
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What about paired samples?

Recall the paired-sample t-test:

• run a 1-sample test on the differences

• requires a natural pairing of the data
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Wilcoxon Signed Rank test

The Wilcoxon signed rank test requires inde-

pendent data with equal variances. We also

have an assumption that the data are sym-

metric about the median. To conduct this we

need:

• test statistic

• critical value from null distribution

• paired sampling of the data
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WSR test statistic

1. calculate dj = xj − yj

2. rank |dj| (1=smallest, ties are handled as

in Mann-Whitney)

3. gives signs to the ranks (“+”if dj is posi-

tive, “−” if dj is negative)

4. Calculate

T+ =
∑

(+) ranks

T− =
∑

(−) ranks

NB: T− is the sum of the ranks, not the

signed ranks, so it is a positive number.
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WSR critical value

For two-tailed tests we reject H0 that the mea-

surements from the two populations are the

same if either T+ or T− is smaller than the

critical Tα(2),n value found in Zar table B.12.

As with the Mann-Whitney, only use one of T+

or T− in one-tailed tests. (NB: ranking is small

to large.):

H0: Obs in pop 1 ≤ Obs in pop 2

HA: Obs in pop 1 > Obs in pop 2

Reject H0 if T− ≤ Tα(1),n.

H0: Obs in pop 1 ≥ Obs in pop 2

HA: Obs in pop 1 < Obs in pop 2

Reject H0 if T+ ≤ Tα(1),n.
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Why does WSR work?

If the two populations are the same, we would

expect the differences to be roughly split be-

tween positive and negative, in which case T+ ≈
T− and neither one will be very small.

When one population is different from the other,

this will show up as either many positive or

many negative differences, leading to very few

of the other, and hence a small value for T+

or T−.
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Wilcoxon Signed Rank - Example Let’s revisit

the boys shoe data from homework 4 and use

the Wilcoxon Signed Rank test.

Rank
A B Diff |d| Sign

13.2 14 -0.8 9 -
8.2 8.8 -0.6 8 -
10.9 11.2 -0.3 4 -
14.3 14.2 0.1 1 +
10.7 11.8 -1.1 10 -
6.6 6.4 0.2 2 +
9.5 9.8 -0.3 4 -
10.8 11.3 -0.5 6.5 -
8.8 9.3 -0.5 6.5 -
13.3 13.6 -0.3 4 -

T+ = 1 + 2 = 3

T− = 9 + 8 + 4 + 10 + 4 + 6.5 + 6.5 + 4 = 52
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Example

For a two-tailed test, we compare the smaller

of these values to the critical Tα(2),10 value.

(Reject if smaller than the critical value in this

case!)

For a one-tailed null that thicknesses from A

are ≤B, we compare T− to Tα(1),10 and reject

if T− is smaller.

For a one-tailed null that thicknesses from A

are ≥B, we compare T+ to Tα(1),10 and reject

if T+ is smaller.

For α = .05, T.05(2),10 = 8 and T.05(1),10 = 10.

We would reject the two-tailed null, as well as

the second null given above.
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