FACTORS AFFECTING SUBSTITUTION REACTION

- 1. Effect of Substrate Structure
- 2. Effect of Nucelophile
- 3. Effect of Solvent
- 4. Effect of Leaving Group

1. EFFECT OF SUBSTRATE STRUCTURE

(i) Steric Factor

structure	Me—X	R X	R X	R X
type	methyl	primary	secondary	tertlary
S _N 1 reaction?	no	no	yes	good
S _N 2 reaction?	good	good	yes	no

$$\begin{bmatrix} R & R \\ Nu & X \\ R \end{bmatrix}^{\ddagger}$$

Least stable due to crowding/repulsions

(ii) Electronic Factor

- More branching at α -carbon, more chances of $S_N 1$ reaction and vice versa More branching at β -carbon, more chances of $S_N 1$ reaction also, although effect is less.
- More stability of carbocation, more chances of $S_N 1$ reaction and vice versa

Type of electrophilic carbon atom	S _N 1 reaction	S _N 2 reaction
methyl (CH ₃ –X)	no	very bood
primary alkyl (RCH ₂ –X)	no	good
secondary alkyl (R ₂ CH ⁻ X)	yes	yes
tertiary alkyl (R ₃ C–X)	very good	no
allylic (CH ₂ =CH–CH ₂ –X)	yes	good
benzylic (ArCH ₂ –X)	yes	good
α -carbonyl (RCO·CH ₂ –X)	no	excellent
α-alkoxy (RO·CH ₂ –X)	excellent	good
α-amino (R ₂ N·CH ₂ –X)	excellent	good

2. EFFECT OF NUCLEOPHILE

- $S_N 1 \rightarrow$ Independent of Nucleophile (Rate= k[Substrate])
- $S_N 2 \rightarrow$ Depends upon both conc. and nature of nucleophile Rate= k [Nu][Substrate] Rate α Nucleophilicity or Reactivity of nucelophile
- A negatively charged nucleophile is stronger than its conjugate acid HO⁻ > H₂O
- When nucleophilic atom is same, nucleophilicity parallels basicity RO⁻ > HO⁻ > H₂O
- When nucleophilic atom is in same row of periodic table, nucleophilicity parallels basicity $R_3C^2 > R_2N^2 > RO^2 > F^2$
- When nucleophilic atom is in same group of periodic table, nucleophilicity is inverse of basicity

 $I^{-} > Br^{-} > CI^{-} > F^{-}$

3. EFFECT OF LEAVING GROUP

- $S_N 1 \rightarrow$ Requires a good leaving group to generate a carbocation
- $S_N 2 \rightarrow$ Good leaving group increases the rate of reaction

Properties of good leaving groups

- Capable of independent existence after leaving e.g. $H_2O > OH$
- Capable of better accomate negative charge after leaving e.g. PhO⁻ > RO⁻
- Leaving group ability is generally inverse of its basicity e.g I⁻ > Cl⁻
- Best leaving groups are generally weakest bases e.g. I⁻

Poor Leaving Groups: ⁻OH, ⁻NH₂ Good Leaving Groups: H₂O, NH₃, TsO⁻, PhO⁻, I⁻ etc

4. EFFECT OF SLOVENT

The greater the polarity of solvent, the greater its ability to stabilize charged species.

 $S_N 1 \rightarrow$ Reactions which produce ions from neutral species are accelerated by polar solvent.

 $S_N 2 \rightarrow$ Effect of solvent depends on whether the initial charge is dispersed or decreased or increased in the rate-determining step.

Type I	R—I	+	OH_	\longrightarrow	R-OH	+	I^-
Type II	R—I	+	NMe ₃	>	⊕ R−NMe ₃	+	I^-
Type III	$R-Me_3$	+	OH^-	>	R-OH	+	NMe ₃
Type IV	⊕ R−NMe ₃	+	H ₂ S		$R-SH_2$	+	NMe ₃

- Aprotic solvents like DMSO decreases the nueclophilicity of a nucelophile through solvation.
- Solvation in aprotic solvent (DMSO) is less than in protic solvent (H₂O)

NEIGHBOURING GROUP PARTICIPATION

Neighbouring group participation is occasionally called anchimeric assistance (Greek anchi =neighbouring; mer = part).

Example-2: Stereochemistry is changed

membered rings are usually faster than intermolecular reactions.