Physiological Response to Aerobic Exercise

- The rapid increase in energy requirements during exercise requires equally rapid circulatory adjustments to meet the increased need for oxygen and nutrients to remove the end-products of metabolism, such as carbon dioxide and lactic acid, and to dissipate excess heat.
- The shift in body metabolism occurs through a coordinated activity of all the systems of the body: neuromuscular, respiratory, cardiovascular, metabolic, and hormonal
- Oxygen transport and its utilization by the mitochondria of the contracting muscle are dependent on adequate blood flow in conjunction with cellular respiration.

Cardiovascular Response to Exercise

Cardiovascular Response to Exercise

Exercise Pressor Response

- Stimulation of small myelinated and unmyelinated fibers in skeletal muscle involves a sympathetic nervous system (SNS) response
- The SNS response includes generalized peripheral vasoconstriction in nonexercising muscles and increased myocardial contractility, an increased heart rate, and an increased systolic blood pressure. This results in a marked increase and redistribution of the cardiac output.
- The degree of the response equals the muscle mass involved and the intensity of the exercise.

Cardiac Effects

- The frequency of sinoatrial node depolarization increases, as does the heart rate.
- There is a decrease in vagal stimuli as well as an increase in SNS stimulation.
- There is an increase in the force development of the cardiac myofibers. A direct inotropic response of the SNS increases myocardial contractility.

Peripheral Effects

- Net reduction in total peripheral resistance.
- Generalized vasoconstriction occurs that allows blood to be shunted from the nonworking muscles, kidneys, liver, spleen, and splanchnic area to the working muscles.
- A locally mediated reduction in resistance in the working muscle arterial vascular bed, independent of the autonomic nervous system, is produced by metabolites such as Mg2+, Ca2+, ADP, and PCO 2
- .The veins of the working and nonworking muscles remain constricted.

Increased cardiac output

- The cardiac output increases because of the increase in myocardial contractility, with a resultant increase in stroke volume, heart rate, blood flow through the working muscle,
- and an increase in the constriction of the capacitance vessels on the venous side of the circulation in both the working and nonworking muscles, raising the peripheral venous pressure.
- Increase in systolic blood pressure. The increase in systolic blood pressure is the result of the augmented cardiac output

Respiratory Response to Exercise

- Respiratory changes occur rapidly, even before the initiation of exercise.
- Gas exchange (O2, CO2) increases across the alveolar-capillary membrane by the first or second breath.
- Increased muscle metabolism during exercise results in more O2 extracted from arterial blood, an increase in body temperature, increased epinephrine, and increased stimulation of receptors of the joints and muscles.
- Any of these factors alone or in combination may stimulate the respiratory system.
- Baroreceptor reflexes, protective reflexes, pain, emotion, and voluntary control of respiration may also contribute to the increase in respiration.
- Minute ventilation increases as respiratory frequency and tidal volume increase.
- Alveolar ventilation, occurring with the diffusion of gases across the capillary-alveolar membrane, increases 10- to 20-fold during heavy exercise to supply the additional oxygen needed and excrete the excess CO2 produced.

QUESTIONS