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The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or
covariance) stationary if the mean and autocovariances of the series do not depend on time. Any series
that is not stationary is said to be nonstationary.

A common example of a nonstationary series is the random walk:
W = Y;_ 1+ & (41.1)

where € is a stationary random disturbance term. The series ¥ has a constant forecast value,
conditional on t, and the variance is increasing over time. The random walk is a difference stationary

series since the first difference of U is stationary:
Y=g = (1-L)y; = ¢, (41.2)

A difference stationary series is said to be integrated and is denoted as I( -!f-) where d is the order of

integration. The order of integration is the number of unit roots contained in the series, or the number
of differencing operations it takes to make the series stationary. For the random walk above, there is
one unit root, so it is an I(1) series. Similarly, a stationary series is I(0).

Standard inference procedures do not apply to regressions which contain an integrated dependent
variable or integrated regressors. Therefore, it is important to check whether a series is stationary or
not before using it in a regression. The formal method to test the stationarity of a series is the unit root
test.

EViews provides you with a variety of powerful tools for testing a series (or the first or second difference
of the series) for the presence of a unit root. In addition to Augmented Dickey-Fuller (1979) and
Phillips-Perron (1988) tests, EViews allows you to compute the GLS-detrended Dickey-Fuller (Elliot,
Rothenberg, and Stock, 1996), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992), Elliott,
Rothenberg, and Stock Point Optimal (ERS, 1996), and Ng and Perron (NP, 2001) unit root tests. All of
these tests are available as a view of a series.
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Performing Unit Root Tests In EViews

Unit Root Test
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The following discussion assumes that you are familiar with the basic forms of the unit root tests and
the associated options. We provide theoretical background for these tests in “Basic Unit Root Theory”,
and document the settings used when performing these tests.

To begin, double click on the series name to open the series window, and choose View/Unit Root
Test...

You must specify four sets of options to carry out a unit root test. The first three settings (on the left-
hand side of the dialog) determine the basic form of the unit root test. The fourth set of options (on the
right-hand side of the dialog) consist of test-specific advanced settings. You only need concern yourself
with these settings if you wish to customize the calculation of your unit root test.

First, you should use the topmost dropdown menu to select the type of unit root test that you wish to
perform. You may choose one of six tests: ADF, DFGLS, PP, KPSS, ERS, and NP.

Next, specify whether you wish to test for a unit root in the level, first difference, or second difference
of the series.

Lastly, choose your exogenous regressors. You can choose to include a constant, a constant and linear
trend, or neither (there are limitations on these choices for some of the tests).

You can click on OK to compute the test using the specified settings, or you can customize your test
using the advanced settings portion of the dialog.

The advanced settings for both the ADF and DFGLS tests allow you to specify how lagged difference
terms P are to be included in the ADF test equation. You may choose to let EViews automatically select

B, or you may specify a fixed positive integer value (if you choose automatic selection, you are given

the additional option of selecting both the information criterion and maximum number of lags to be
used in the selection procedure).

In this case, we have chosen to estimate an ADF test that includes a constant in the test regression and
employs automatic lag length selection using a Schwarz Information Criterion (BIC) and a maximum lag
length of 14. Applying these settings to data on the U.S. one-month Treasury bill rate for the period
from March 1953 to July 1971 ("Hayashi_92.WF1"), we can replicate Example 9.2 of Hayashi (2000, p.
596). The results are described below.
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The first part of the unit root output provides information about the form of the test (the type of test,
the exogenous variables, and lag length used), and contains the test output, associated critical values,
and in this case, the p-value:

Null Hypothesis: TBILL has a unit root
Exogenous: Constant
Lag Length: 1 {Automatic based on SIC. MAXLAG=14)}

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -1.417410 0.5734
Test critical values: 1% level -3.459898

5% level -2.874435

10% level -2.573719

*MacKinnon (1996) one-sided p-values.

The ADF statistic value is -1.417 and the associated one-sided p-value (for a test with 221
observations) is .573. In addition, EViews reports the critical values at the 1%, 5% and 10% levels.

Notice here that the statistic t,-f value is greater than the critical values so that we do not reject the null

at conventional test sizes.

The second part of the output shows the intermediate test equation that EViews used to calculate the
ADF statistic:

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(TBILL)

Method: Least Squares

Date: 08/08/06 Time: 13:55

Sample: 1953M03 1971 M0O7

Included observations: 221

Coefficient Std. Error t-Statistic Prob.

TBILL(-1) 0.022951 0.016182 -1.417410 0.1578

D(TBILL{-1}) 0.203330 0.067007 -3.034470 0.0027

C 0.088398 0.056934 1.652626 0.1220

R-squared 0.053856  Mean dependent var 0.013826

Adjusted R-squared 0.045175 S.D. dependent var 0.379758

S.E. of regression 0.371081  Akaike info criterion 0.868688

Sum squared resid 30.01882  Schwarz criterion 0.914817

Log likelihood -92.99005  Hannan-Quinn criter. 0.887314

F-statistic 6.204410  Durbin-Watson stat 1.976361
Prob{F-statistic) 0.002395

If you had chosen to perform any of the other unit root tests (PP, KPSS, ERS, NP), the right side of the
dialog would show the different options associated with the specified test. The options are associated

with the method used to estimate the zero frequency spectrum term, f;] , that is used in constructing

the particular test statistic. As before, you only need pay attention to these settings if you wish to
change from the EViews defaults.
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Here, we have selected the PP test in the dropdown menu. Note that the right-hand side of the dialog
has changed, and now features a dropdown menu for selecting the spectral estimation method. You
may use this dropdown menu to choose between various kernel or AR regression based estimators for

»ﬁ] . The entry labeled “Default” will show you the default estimator for the specific unit root test—in this

example, we see that the PP default uses a kernel sum-of-covariances estimator with Bartlett weights.
Alternately, if you had selected a NP test, the default entry would be “AR spectral-GLS".

Lastly, you can control the lag length or bandwidth used for your spectral estimator. If you select one of
the kernel estimation methods (Bartlett, Parzen, Quadratic Spectral), the dialog will give you a choice
between using Newey-West or Andrews automatic bandwidth selection methods, or providing a user
specified bandwidth. If you choose one of the AR spectral density estimation methods (AR Spectral -
OLS, AR Spectral - OLS detrended, AR Spectral - GLS detrended), the dialog will prompt you to choose
from various automatic lag length selection methods (using information criteria) or to provide a user-
specified lag length. See "Automatic Bandwidth and Lag_Length Selection”.

Once you have chosen the appropriate settings for your test, click on the OK button. EViews reports the
test statistic along with output from the corresponding test regression. For these tests, EViews reports

the uncorrected estimate of the residual variance and the estimate of the frequency zero spectrum nﬁj

(labeled as the “HAC corrected variance”) in addition to the basic output. Running a PP test using the
TBILL series using the Andrews bandwidth yields:

Mull Hypothesis: TBILL has a unit root
Exogenous: Constant

Bandwidth: 3.82 {(Andrews using Bartlett kernel)

Adj. t-Stat Prob.*

Phillips-Pemron test statistic -1.519035 0.5223
Test critical values: 1% level -3.459898

5% level -2.874435

10% level -2.573719

*MacKinnon (1996) one-sided p-values.

Residual variance (no correction) 0.141569
HAC corrected variance (Bartlett kernel) 0.107615

www.eviews.com/help/helpintro.html#page/content%2Fadvtimeser-Unit_Root_Testing.html|%23ww184636 4/13



4/19/2020

EViews Help: Unit Root Testing
As with the ADF test, we fail to reject the null hypothesis of a unit root in the TBILL series at
conventional significance levels.

Note that your test output will differ somewhat for alternative test specifications. For example, the KPSS
output only provides the asymptotic critical values tabulated by KPSS:

Null Hypothesis: TBILL is stationary
Exogenous: Constant

Bandwidth: 11 (Newey-West automatic) using Bartlett kemel
LM-Stat.
Kwiatkowski-Phillips-Schmidt-Shin test statistic 1.637310
Asymptotic critical values®: 1% level 0.739000
5% level 0.463000
10% level 0.347000
*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)
Residual variance (no correction) 2.415060
HAC corrected variance (Bartlett kernel) 26.11028

Similarly, the NP test output will contain results for all four test statistics, along with the NP tabulated
critical values.

A word of caution. You should note that the critical values reported by EViews are valid only for unit root
tests of a data series, and will be invalid if the series is based on estimated values. For example, Engle
and Granger (1987) proposed a two-step method of testing for cointegration which looks for a unit root
in the residuals of a first-stage regression. Since these residuals are estimates of the disturbance term,
the asymptotic distribution of the test statistic differs from the one for ordinary series. See
“Cointegration Testing” for EViews routines to perform testing in this setting.

Basic Unit Root Theory

The following discussion outlines the basics features of unit root tests. By necessity, the discussion will
be brief. Users who require detail should consult the original sources and standard references (see, for
example, Davidson and MacKinnon, 1993, Chapter 20, Hamilton, 1994, Chapter 17, and Hayashi, 2000,
Chapter 9).

Consider a simple AR(1) process:

Y = PY:_4 +rr;a+é;r (41.3)

where ¥; are optional exogenous regressors which may consist of constant, or a constant and trend, g
and & are parameters to be estimated, and the €; are assumed to be white noise. If |p| =z1,visa

nonstationary series and the variance of ¥ increases with time and approaches infinity. If |p| <1, uis

a (trend-)stationary series. Thus, the hypothesis of (trend-)stationarity can be evaluated by testing
whether the absolute value of g is strictly less than one.

The unit root tests that EViews provides generally test the null hypothesis Hui p =1 against the one-
sided alternative H13 p <1, 1n some cases, the null is tested against a point alternative. In contrast,

the KPSS Lagrange Multiplier test evaluates the null of Hui p<l against the alternative H13 p =1,

The Augmented Dickey-Fuller (ADF) Test
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The standard DF test is carried out by estimating Equation (41.3) after subtracting ¥: —1 from both

sides of the equation:

Ay, = ay, ;+z/d+¢, (41.4)

where @ = p — 1. The null and alternative hypotheses may be written as,

Hya=20
H e (41.5)
and evaluated using the conventional t -ratio for ¢ :
!fa = EE/{SC(&}} (41.6)

where @ is the estimate of &, and se(a) is the coefficient standard error.

Dickey and Fuller (1979) show that under the null hypothesis of a unit root, this statistic does not follow
the conventional Student’s t-distribution, and they derive asymptotic results and simulate critical values
for various test and sample sizes. More recently, MacKinnon (1991, 1996) implements a much larger set
of simulations than those tabulated by Dickey and Fuller. In addition, MacKinnon estimates response

surfaces for the simulation results, permitting the calculation of Dickey-Fuller critical values and P -

values for arbitrary sample sizes. The more recent MacKinnon critical value calculations are used by
EViews in constructing test output.

The simple Dickey-Fuller unit root test described above is valid only if the series is an AR(1) process. If
the series is correlated at higher order lags, the assumption of white noise disturbances ; is violated.

The Augmented Dickey-Fuller (ADF) test constructs a parametric correction for higher-order correlation
by assuming that the I series follows an AR( ¥ ) process and adding P lagged difference terms of the

dependent variable ¥ to the right-hand side of the test regression:

Ay, = ay, (+ta/d+ B, Ay, +BAY ,+ .. + B,y ,+ v, (41.7)

This augmented specification is then used to test (41.5) using the t-ratio (41.6). An important result
obtained by Fuller is that the asymptotic distribution of the t -ratio for & is independent of the number

of lagged first differences included in the ADF regression. Moreover, while the assumption that ¥ follows

an autoregressive (AR) process may seem restrictive, Said and Dickey (1984) demonstrate that the ADF
test is asymptotically valid in the presence of a moving average (MA) component, provided that
sufficient lagged difference terms are included in the test regression.

You will face two practical issues in performing an ADF test. First, you must choose whether to include
exogenous variables in the test regression. You have the choice of including a constant, a constant and
a linear time trend, or neither in the test regression. One approach would be to run the test with both a
constant and a linear trend since the other two cases are just special cases of this more general
specification. However, including irrelevant regressors in the regression will reduce the power of the test
to reject the null of a unit root. The standard recommendation is to choose a specification that is a
plausible description of the data under both the null and alternative hypotheses. See Hamilton (1994, p.
501) for discussion.

Second, you will have to specify the number of lagged difference terms (which we will term the “lag
length”) to be added to the test regression (0 yields the standard DF test; integers greater than 0
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correspond to ADF tests). The usual (though not particularly useful) advice is to include a number of
lags sufficient to remove serial correlation in the residuals. EViews provides both automatic and manual
lag length selection options. For details, see "Automatic Bandwidth and Lag_Length Selection”.

Dickey-Fuller Test With GLS Detrending (DFGLS)

As noted above, you may elect to include a constant, or a constant and a linear time trend, in your ADF
test regression. For these two cases, ERS (1996) propose a simple modification of the ADF tests in
which the data are detrended so that explanatory variables are “taken out” of the data prior to running
the test regression.

ERS define a quasi-difference of ¥: that depends on the value @ representing the specific point
alternative against which we wish to test the null:

[y, ift=1

dly,
) lyi—a.yr_1 if t>1

a) =

(41.8)

Next, consider an OLS regression of the quasi-differenced data d 5"f| @) on the quasi-differenced
d(z,|a) .

d(y,| a) = d(z,|a)’s(a)+xn, (41.9)

where ¥ contains either a constant, or a constant and trend, and let d{ @} be the OLS estimates from
this regression.

All that we need now is a value for @. ERS recommend the use of @ = @, where:

. 7 G if 2, = {1}
iy =
1-136/T if @, = {1,1} (41.10)
We now define the GLS detrended data, yf using the estimates associated with the @ :
d A
U Ry D) (41.11)

Then the DFGLS test involves estimating the standard ADF test equation, (41.7), after substituting the
d
GLS detrended ¥, for the original ¥; :

d d d d
Ay, = ayr_1+ﬁ1.-iyr_1_+._.+ﬁpﬂyr_p+ U (41.12)

d
Note that since the ¥; are detrended, we do not include the ¥ in the DFGLS test equation. As with the

ADF test, we consider the 1 -ratio for a from this test equation.

While the DFGLS t -ratio follows a Dickey-Fuller distribution in the constant only case, the asymptotic
distribution differs when you include both a constant and trend. ERS (1996, Table 1, p. 825) simulate
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the critical values of the test statistic in this latter setting for 1" = {580, 100, 200, ==} . Thus, the

EViews lower tail critical values use the MacKinnon simulations for the no constant case, but are
interpolated from the ERS simulated values for the constant and trend case. The null hypothesis is
rejected for values that fall below these critical values.

The Phillips-Perron (PP) Test

The

Phillips and Perron (1988) propose an alternative (nonparametric) method of controlling for serial
correlation when testing for a unit root. The PP method estimates the non-augmented DF test equation

(41.4), and modifies the t-ratio of the @ coefficient so that serial correlation does not affect the
asymptotic distribution of the test statistic. The PP test is based on the statistic:

e t(’ﬁﬂ)”_ T(fy — vo) (s€(@))
o A\ ?fﬂug_s (41.13)

where « is the estimate, and t.y the t-ratio of sc{fx} is coefficient standard error, and # is the

standard error of the test regression. In addition, ¥ is a consistent estimate of the error variance in

(41.4) (calculated as { T'— k}sgz’ T, where k is the number of regressors). The remaining term, -ﬁ] , is

an estimator of the residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First, you must choose whether
to include a constant, a constant and a linear time trend, or neither, in the test regression. Second, you

will have to choose a method for estimating -ﬂ] . EViews supports estimators for -ﬁ] based on kernel-

based sum-of-covariances, or on autoregressive spectral density estimation. See “Frequency Zero
Spectrum Estimation” for details.

The asymptotic distribution of the PP modified t -ratio is the same as that of the ADF statistic. EViews
reports MacKinnon lower-tail critical and p-values for this test.

Kwiatkowski, Phillips, Schmidt, And Shin (KPSS) Test

The KPSS (1992) test differs from the other unit root tests described here in that the series ¥; is

assumed to be (trend-) stationary under the null. The KPSS statistic is based on the residuals from the
OLS regression of ¥ on the exogenous variables ¥; :

Uy = I, 6+ u, (41.14)

The LM statistic is be defined as:

LM = S 8()°/(T f) (41.15)

where Jﬁ] , is an estimator of the residual spectrum at frequency zero and where S(t) is a cumulative

residual function:

(41.16)
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I
S(t) = E U,
rm]
based on the residuals %, = ¥;— z,/8(0)  we point out that the estimator of & used in this calculation

differs from the estimator for & used by GLS detrending since it is based on a regression involving the
original data and not on the quasi-differenced data.

To specify the KPSS test, you must specify the set of exogenous regressors ¥+ and a method for

estimating f;J . See “Frequency Zero Spectrum Estimation” for discussion.

The reported critical values for the LM test statistic are based upon the asymptotic results presented in
KPSS (Table 1, p. 166).

Elliot, Rothenberg, And Stock Point Optimal (ERS) Test

The ERS Point Optimal test is based on the quasi-differencing regression defined in Equations (41.9).

3 ; "D
Define the residuals from (41.9) as N @) = d( £I'1| a) — d(z,| a)'d(a) , and let *CR(a) = > ne(a)

be the sum-of-squared residuals function. The ERS (feasible) point optimal test statistic of the null that
a = 1 against the alternative that & = @, is then defined as:

P, = (28R(a) - al2R(1)) /[, (41.17)

where f;: , is an estimator of the residual spectrum at frequency zero.

To compute the ERS test, you must specify the set of exogenous regressors ¥; and a method for

estimating .ﬁ] (see “Frequency Zero Spectrum Estimation”).

Critical values for the ERS test statistic are computed by interpolating the simulation results provided by
ERS (1996, Table 1, p. 825) for I’ = {b0, 100, 200, e} .

Ng And Perron (NP) Tests

Ng and Perron (2001) construct four test statistics that are based upon the GLS detrended data yd

These test statistics are modified forms of Phillips and Perron zﬁ, and 2-'1 statistics, the Bhargava

(1986) R1 statistic, and the ERS Point Optimal statistic. First, define the term:

7
d .2, 2
k= ¥ (9_1) /T (41.18)
{m?2
The modified statistics may then be written as,

(41.19)
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MZ = (T - )/ (20
MZ = MZ x MSB
MSB* = (k/f)'"”

(Fk-2 T (4p)) /1 if 7, = {1}
MP:, = [ q Bk s
1{E'x+(l—E}T1fy§-}_}z’fu 6=
where:
. 7 if &, = {1}
~ 1-135 if 2, = {1,1} (41.20)

The NP tests require a specification for ¥; and a choice of method for estimating .ﬁ] (see “Frequency

Zero Spectrum Estimation”).

Frequency Zero Spectrum Estimation

Many of the unit root tests described above require a consistent estimate of the residual spectrum at
frequency zero. EViews supports two classes of estimators for .ﬁ] : kernel-based sum-of-covariances

estimators, and autoregressive spectral density estimators.

Kernel Sum-0Of-Covariances Estimation

The kernel-based estimator of the frequency zero spectrum is based on a weighted sum of the
autocovariances, with the weights are defined by a kernel function. The estimator takes the form,

T-1
h= 3 0 K/ (41.21)
i=—(T-1)
where [ is a bandwidth parameter (which acts as a truncation lag in the covariance weighting), K is a
kernel function, and where %(Jj) , the j-th sample autocovariance of the residuals ¥, is defined as:
T
Y = Y (mu,_p)/T (41.22)

I=g+1

Note that the residuals %: that EViews uses in estimating the autocovariance functions in (41.22) will

differ depending on the specified unit root test:

Unit root test Source of %; residuals for kernel estimator
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ADF, DFGLS not applicable.

PP, ERS Point residuals from the Dickey-Fuller test equation,
Optimal, NP (41.4).

KPSS residuals from the OLS test equation, (41.14).

EViews supports the following kernel functions:

Bartlett: i [1 _ |z if ] <1.0
otherwise
Parzen: 1—62°(1— |z if00<|z| <056k
K(z) = y2(1-|2)* if 0.6<|z|<1.0

0 otherwise

Quadratic . 2 o :

Spectral Kz = E q( mé ﬁwjgﬁ} i coc{ﬁ::rI/En})
127"z L

The properties of these kernels are described in Andrews (1991).

As with most kernel estimators, the choice of the bandwidth parameter [ is of considerable importance.

EViews allows you to specify a fixed parameter or to have EViews select one using a data-dependent

method. Automatic bandwidth parameter selection is discussed in "Automatic Bandwidth and Lag Length
Selection”.

Autoregressive Spectral Density Estimator

The autoregressive spectral density estimator at frequency zero is based upon the residual variance and
estimated coefficients from the auxiliary regression:

Agy = ag,_ (te -2/ +BAY, ;+...+ BAY,_,+t, (41.23)

EViews provides three autoregressive spectral methods: OLS, OLS detrending, and GLS detrending,
corresponding to difference choices for the data ¥;. The following table summarizes the auxiliary

equation estimated by the various AR spectral density estimators:

AR spectral Auxiliary AR regression specification
method

oLS Uy =U,ande = 1,3 = I,

OLS detrended Y = ¢,—2,/8(0) ,and ¢ = 0.

GLS detrended
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, = y,—2/8(8) = yi.and ¢ = 0.

where &( @) are the coefficient estimates from the regression defined in (41.9).

The AR spectral estimator of the frequency zero spectrum is defined as:

= E'ifﬁl—ﬁ]—ﬁg—---—ﬁp} (41.24)

i 2
where @, = 2 ﬂ,/ T is the residual variance, and ﬁ' are the estimates from (41.23). We note here

that EViews uses the non-degree of freedom estimator of the residual variance. As a result, spectral
estimates computed in EViews may differ slightly from those obtained from other sources.

Not surprisingly, the spectrum estimator is sensitive to the number of lagged difference terms in the
auxiliary equation. You may either specify a fixed parameter or have EViews automatically select one
based on an information criterion. Automatic lag length selection is examined in "Automatic Bandwidth
and Lag_Length Selection”.

Default Settings

By default, EViews will choose the estimator of .ﬁ] used by the authors of a given test specification. You

may, of course, override the default settings and choose from either family of estimation methods. The
default settings are listed below:

Unit root test Frequency zero spectrum
default method

ADF, DFGLS not applicable

PP, KPSS Kernel (Bartlett) sum-of-covariances

ERS Point Optimal AR spectral regression (OLS)

NP AR spectral regression (GLS-
detrended)

Automatic Bandwidth And Lag Length Selection

There are three distinct situations in which EViews can automatically compute a bandwidth or a lag
length parameter.

The first situation occurs when you are selecting the bandwidth parameter [ for the kernel-based

estimators of »ﬂ] . For the kernel estimators, EViews provides you with the option of using the Newey-

West (1994) or the Andrews (1991) data-based automatic bandwidth parameter methods. See the
original sources for details. For those familiar with the Newey-West procedure, we note that EViews
uses the lag selection parameter formulae given in the corresponding first lines of Table II-C. The
Andrews method is based on an AR(1) specification. (See “Automatic Bandwidth Selection” for
discussion.)
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The latter two situations occur when the unit root test requires estimation of a regression with a
parametric correction for serial correlation as in the ADF and DFGLS test equation regressions, and in

the AR spectral estimator for -Jﬂ] . In all of these cases, P lagged difference terms are added to a

regression equation. The automatic selection methods choose ¥ (less than the specified maximum) to
minimize one of the following criteria:

Information criterion Definition

Akaike (AIC) — N/ TY+2k/ T

Schwarz (SIC) -/ T+ kKlog(T)/ T
Hannan-Quinn (HQ) —2(1/T) + 2klog(log (1))/ T
Modified AIC (MAIC) — 2/ DY+ Hk+7)/ T

Modified SIC (MSIC) —2/ Ty +(k+7)log(T)/ T
Modified Hannan-Quinn (MHQ) — 21/ T) + 2(k+ 7)log(log (T))/ T

where the modification factor 7 is computed as:
! 2 -2
T=a /0 (41.25)

for ¥y = ¥;, when computing the ADF test equation, and for ¥; as defined in “Autoregressive Spectral

Density Estimator”, when estimating j] . Ng and Perron (2001) propose and examine the modified

criteria, concluding with a recommendation of the MAIC.

For the information criterion selection methods, you must also specify an upper bound to the lag length.
By default, EViews chooses a maximum lag of:

k= int(min(T/3,12) - (T/100)""% (41.26)

A

See Hayashi (2000, p. 594) for a discussion of the selection of this upper bound.
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