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Alternating Series, Absolute and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

(1)

(2)

(3)

Series (1), called the alternating harmonic series, converges, as we will see in a moment.
Series (2) a geometric series with ratio converges to 
Series (3) diverges because the nth term does not approach zero.

We prove the convergence of the alternating harmonic series by applying the Alternating
Series Test.
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THEOREM 14 The Alternating Series Test (Leibniz’s Theorem)
The series

converges if all three of the following conditions are satisfied:

1. The are all positive.

2. for all for some integer N.

3. un : 0.

n Ú N ,un Ú un + 1

un’s

a
q

n = 1
s -1dn + 1un = u1 - u2 + u3 - u4 +

Á

Proof If n is an even integer, say then the sum of the first n terms is

The first equality shows that is the sum of m nonnegative terms, since each term
in parentheses is positive or zero. Hence and the sequence is non-
decreasing. The second equality shows that Since is nondecreasing and
bounded from above, it has a limit, say

(4)

If n is an odd integer, say then the sum of the first n terms is
Since 

and, as 

(5)

Combining the results of Equations (4) and (5) gives (Section 11.1, Exer-

cise 119).

lim
n: q

 sn = L

s2m + 1 = s2m + u2m + 1 : L + 0 = L .

m : q ,

lim
m: q
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788 Chapter 11: Infinite Sequences and Series

EXAMPLE 1 The alternating harmonic series

satisfies the three requirements of Theorem 14 with  it therefore converges.

A graphical interpretation of the partial sums (Figure 11.9) shows how an alternating
series converges to its limit L when the three conditions of Theorem 14 are satisfied with

(Exercise 63 asks you to picture the case ) Starting from the origin of the
x-axis, we lay off the positive distance To find the point corresponding to

we back up a distance equal to Since we do not back up any
farther than the origin. We continue in this seesaw fashion, backing up or going forward as
the signs in the series demand. But for each forward or backward step is shorter
than (or at most the same size as) the preceding step, because And since the
nth term approaches zero as n increases, the size of step we take forward or backward gets
smaller and smaller. We oscillate across the limit L, and the amplitude of oscillation ap-
proaches zero. The limit L lies between any two successive sums and and hence dif-
fers from by an amount less than 

Because

we can make useful estimates of the sums of convergent alternating series.
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FIGURE 11.9 The partial sums of an
alternating series that satisfies the
hypotheses of Theorem 14 for 
straddle the limit from the beginning.

N = 1

THEOREM 15 The Alternating Series Estimation Theorem
If the alternating series satisfies the three conditions of
Theorem 14, then for 

approximates the sum L of the series with an error whose absolute value is less
than the numerical value of the first unused term. Furthermore, the remain-
der, has the same sign as the first unused term.L - sn ,

un + 1 ,

sn = u1 - u2 +
Á

+ s -1dn + 1un

n Ú N ,
gq

n=1 s -1dn + 1un

We leave the verification of the sign of the remainder for Exercise 53.

EXAMPLE 2 We try Theorem 15 on a series whose sum we know:

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1 256. The sum of the first eight terms is 0.6640625. The sum
of the series is

The difference, is positive and less than
s1>256d = 0.00390625.
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11.6 Alternating Series, Absolute and Conditional Convergence 789

Absolute and Conditional Convergence

DEFINITION Absolutely Convergent
A series converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, converges.g ƒ an ƒ ,

gan

The geometric series

converges absolutely because the corresponding series of absolute values

converges. The alternating harmonic series does not converge absolutely. The corresponding
series of absolute values is the (divergent) harmonic series.
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DEFINITION Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

THEOREM 16 The Absolute Convergence Test

If converges, then converges.a
q

n = 1
ana

q

n = 1
 ƒ an ƒ

The alternating harmonic series converges conditionally.
Absolute convergence is important for two reasons. First, we have good tests for con-

vergence of series of positive terms. Second, if a series converges absolutely, then it con-
verges. That is the thrust of the next theorem.

Proof For each n,

If converges, then converges and, by the Direct Comparison Test,
the nonnegative series converges. The equality 
now lets us express as the difference of two convergent series:

Therefore, converges.gq
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n=1 ƒ an ƒ

- ƒ an ƒ … an … ƒ an ƒ, so 0 … an + ƒ an ƒ … 2 ƒ an ƒ .
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CAUTION We can rephrase Theorem 16 to say that every absolutely convergent series
converges. However, the converse statement is false: Many convergent series do not con-
verge absolutely (such as the alternating harmonic series in Example 1).

EXAMPLE 3 Applying the Absolute Convergence Test

(a) For the corresponding series of absolute

values is the convergent series

The original series converges because it converges absolutely.

(b) For the corresponding series of absolute

values is

which converges by comparison with because for every n.
The original series converges absolutely; therefore it converges.

EXAMPLE 4 Alternating p-Series

If p is a positive constant, the sequence is a decreasing sequence with limit zero.
Therefore the alternating p-series

converges.
If the series converges absolutely. If the series converges condi-

tionally.
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THEOREM 17 The Rearrangement Theorem for Absolutely
Convergent Series

If converges absolutely, and is any arrangement of the
sequence then converges absolutely and

a
q

n = 1
bn = a

q

n = 1
an .

gbn5an6 ,
b1, b2 , Á , bn , Ágq

n=1 an

(For an outline of the proof, see Exercise 60.)
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11.6 Alternating Series, Absolute and Conditional Convergence 791

EXAMPLE 5 Applying the Rearrangement Theorem

As we saw in Example 3, the series

converges absolutely. A possible rearrangement of the terms of the series might start with
a positive term, then two negative terms, then three positive terms, then four negative
terms, and so on: After k terms of one sign, take terms of the opposite sign. The first
ten terms of such a series look like this:

The Rearrangement Theorem says that both series converge to the same value. In this ex-
ample, if we had the second series to begin with, we would probably be glad to exchange it
for the first, if we knew that we could. We can do even better: The sum of either series is
also equal to

(See Exercise 61.)

If we rearrange infinitely many terms of a conditionally convergent series, we can get
results that are far different from the sum of the original series. Here is an example.

EXAMPLE 6 Rearranging the Alternating Harmonic Series

The alternating harmonic series

can be rearranged to diverge or to reach any preassigned sum.

(a) Rearranging to diverge. The series of terms di-
verges to and the series of terms diverges to No matter how far
out in the sequence of odd-numbered terms we begin, we can always add enough pos-
itive terms to get an arbitrarily large sum. Similarly, with the negative terms, no matter
how far out we start, we can add enough consecutive even-numbered terms to get a
negative sum of arbitrarily large absolute value. If we wished to do so, we could start
adding odd-numbered terms until we had a sum greater than say, and then follow
that with enough consecutive negative terms to make the new total less than We
could then add enough positive terms to make the total greater than and follow
with consecutive unused negative terms to make a new total less than and so on.
In this way, we could make the swings arbitrarily large in either direction.

(b) Rearranging to converge to 1. Another possibility is to focus on a
particular limit. Suppose we try to get sums that converge to 1. We start with the first
term, 1 1, and then subtract 1 2. Next we add 1 3 and 1 5, which brings the total
back to 1 or above. Then we add consecutive negative terms until the total is less than
1. We continue in this manner: When the sum is less than 1, add positive terms until
the total is 1 or more; then subtract (add negative) terms until the total is again less
than 1. This process can be continued indefinitely. Because both the odd-numbered
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terms and the even-numbered terms of the original series approach zero as 
the amount by which our partial sums exceed 1 or fall below it approaches zero. So the
new series converges to 1. The rearranged series starts like this:

The kind of behavior illustrated by the series in Example 6 is typical of what can hap-
pen with any conditionally convergent series. Therefore we must always add the terms of a
conditionally convergent series in the order given.

We have now developed several tests for convergence and divergence of series. In
summary:
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792 Chapter 11: Infinite Sequences and Series

1. The nth-Term Test: Unless the series diverges.

2. Geometric series: converges if  otherwise it diverges.

3. p-series: converges if otherwise it diverges.

4. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
Test. Try comparing to a known series with the Comparison Test.

5. Series with some negative terms: Does converge? If yes, so does
since absolute convergence implies convergence.

6. Alternating series: converges if the series satisfies the conditions of
the Alternating Series Test.

gan

gan ,
g  ƒ an ƒ

p 7 1;g1>np

ƒ r ƒ 6 1;garn

an : 0,

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 792



792 Chapter 11: Infinite Sequences and Series

EXERCISES 11.6

Determining Convergence or Divergence
Which of the alternating series in Exercises 1–10 converge, and which
diverge? Give reasons for your answers.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

Absolute Convergence
Which of the series in Exercises 11–44 converge absolutely, which
converge, and which diverge? Give reasons for your answers.
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11.6 Alternating Series, Absolute and Conditional Convergence 793

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42. 43.

44.

Error Estimation
In Exercises 45–48, estimate the magnitude of the error involved in
using the sum of the first four terms to approximate the sum of the en-
tire series.

45.

46.

47.

48.

Approximate the sums in Exercises 49 and 50 with an error of magni-
tude less than 

49.

50.

Theory and Examples
51. a. The series

does not meet one of the conditions of Theorem 14. Which one?

b. Find the sum of the series in part (a).
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52. The limit L of an alternating series that satisfies the conditions of
Theorem 14 lies between the values of any two consecutive par-
tial sums. This suggests using the average

to estimate L. Compute

as an approximation to the sum of the alternating harmonic series.
The exact sum is 

53. The sign of the remainder of an alternating series that satisfies
the conditions of Theorem 14 Prove the assertion in Theorem
15 that whenever an alternating series satisfying the conditions of
Theorem 14 is approximated with one of its partial sums, then the
remainder (sum of the unused terms) has the same sign as the first
unused term. (Hint: Group the remainder’s terms in consecutive
pairs.)

54. Show that the sum of the first 2n terms of the series

is the same as the sum of the first n terms of the series

Do these series converge? What is the sum of the first 
terms of the first series? If the series converge, what is their sum?

55. Show that if diverges, then diverges.

56. Show that if converges absolutely, then

57. Show that if and both converge absolutely, then
so does

a. b.

c. (k any number)

58. Show by example that may diverge even if 
and both converge.

59. In Example 6, suppose the goal is to arrange the terms to get a
new series that converges to Start the new arrangement
with the first negative term, which is Whenever you have a
sum that is less than or equal to start introducing positive
terms, taken in order, until the new total is greater than 
Then add negative terms until the total is less than or equal to

again. Continue this process until your partial sums have-1>2
-1>2.

-1>2,
-1>2.

-1>2.
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ln 2 = 0.6931. Á

s20 +

1
2

 #  
1
21

sn + sn + 1

2
= sn +

1
2

 s -1dn + 2an + 1

It can be shown that the sum is ln 2.

As you will see in Section 11.7, the
sum is ln (1.01).

As you will see in Section 11.9, the
sum is cos 1, the cosine of 1 radian.

As you will see in Section 11.9,
the sum is e-1 .

T

T

T
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been above the target at least three times and finish at or below it.
If is the sum of the first n terms of your new series, plot the
points to illustrate how the sums are behaving.

60. Outline of the proof of the Rearrangement Theorem (Theo-
rem 17)

a. Let be a positive real number, let and let
Show that for some index and for some

index 

Since all the terms appear somewhere in the
sequence there is an index such that if

then is at most a sum of terms 
with Therefore, if 

b. The argument in part (a) shows that if converges 

absolutely then converges and 

Now show that because converges, 

converges to 

61. Unzipping absolutely convergent series

a. Show that if converges and

then converges.

b. Use the results in part (a) to show likewise that if 
converges and

then converges.gq

n=1  cn
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In other words, if a series converges absolutely, its pos-
itive terms form a convergent series, and so do its negative
terms. Furthermore,

because and 

62. What is wrong here?:

Multiply both sides of the alternating harmonic series

by 2 to get

Collect terms with the same denominator, as the arrows indicate,
to arrive at

The series on the right-hand side of this equation is the series
we started with. Therefore, and dividing by S gives 
(Source: “Riemann’s Rearrangement Theorem” by Stewart
Galanor, Mathematics Teacher, Vol. 80, No. 8, 1987, pp. 675–681.)

63. Draw a figure similar to Figure 11.9 to illustrate the convergence
of the series in Theorem 14 when N 7 1.
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1
4

+

1
5

-

1
6

+

cn = san - ƒ an ƒ d>2.bn = san + ƒ an ƒ d>2
a
q

n = 1
an = a

q

n = 1
bn + a

q

n = 1
cn
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Power Series

Now that we can test infinite series for convergence we can study the infinite polynomials
mentioned at the beginning of this chapter. We call these polynomials power series be-
cause they are defined as infinite series of powers of some variable, in our case x. Like
polynomials, power series can be added, subtracted, multiplied, differentiated, and inte-
grated to give new power series.

11.7
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11.7 Power Series 795

DEFINITIONS Power Series, Center, Coefficients
A power series about is a series of the form

(1)

A power series about is a series of the form

(2)

in which the center a and the coefficients are constants.c0, c1, c2, Á , cn, Á

a
q

n = 0
cnsx - adn

= c0 + c1sx - ad + c2sx - ad2
+

Á
+ cnsx - adn

+
Á

x � a

a
q

n = 0
cn xn

= c0 + c1 x + c2 x2
+

Á
+ cn xn

+
Á .

x � 0

Power Series and Convergence

We begin with the formal definition.

Equation (1) is the special case obtained by taking in Equation (2).

EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

This is the geometric series with first term 1 and ratio x. It converges to for
We express this fact by writing

(3)

Up to now, we have used Equation (3) as a formula for the sum of the series on the right.
We now change the focus: We think of the partial sums of the series on the right as polyno-
mials that approximate the function on the left. For values of x near zero, we need
take only a few terms of the series to get a good approximation. As we move toward

or we must take more terms. Figure 11.10 shows the graphs of
and the approximating polynomials for and 8.

The function is not continuous on intervals containing where it
has a vertical asymptote. The approximations do not apply when 

EXAMPLE 2 A Geometric Series

The power series

(4)

matches Equation (2) with This

is a geometric series with first term 1 and ratio The series converges forr = -

x - 2
2

.

a = 2, c0 = 1, c1 = -1>2, c2 = 1>4, Á , cn = s -1>2dn .

1 -
1
2

sx - 2d +
1
4

sx - 2d2
+

Á
+ a- 1

2
bn

sx - 2dn
+

Á

x Ú 1.
x = 1,ƒsxd = 1>s1 - xd

n = 0, 1, 2 ,yn = Pnsxdƒsxd = 1>s1 - xd ,
-1,x = 1,

Pnsxd

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á, -1 6 x 6 1.

ƒ x ƒ 6 1.
1>s1 - xd

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á .

a = 0
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or The sum is

so

Series (4) generates useful polynomial approximations of for values of x near 2:

and so on (Figure 11.11).

EXAMPLE 3 Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

(a)

(b)

(c)

(d) a
q

n = 0
n!xn

= 1 + x + 2!x2
+ 3!x3

+
Á

a
q

n = 0
 
xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

Á

a
q

n = 1
s -1dn - 1 

x2n - 1

2n - 1
= x -

x3

3
+

x5

5 -
Á

a
q

n = 1
s -1dn - 1 

xn

n = x -

x2

2
+

x3

3
-

Á

 P2sxd = 1 -
1
2

 sx - 2d +
1
4

 sx - 2d2
= 3 -

3x
2

+

x2

4
,

 P1sxd = 1 -
1
2

 sx - 2d = 2 -

x
2

 P0sxd = 1

ƒsxd = 2>x

2
x = 1 -

sx - 2d
2

+

sx - 2d2

4
-

Á
+ a- 1

2
bn

sx - 2dn
+

Á, 0 6 x 6 4.

1
1 - r

=
1

1 +

x - 2
2

=
2
x ,

0 6 x 6 4.` x - 2
2
` 6 1
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0

1

1–1

2

3

4

5

7

8

9

y2 � 1 � x � x2

y1 � 1 � x

y0 � 1

y � 1
1 � x

y8 � 1 � x � x2 � x3 � x4 � x5 � x6
 � x7 � x8

x

y

FIGURE 11.10 The graphs of and four of
its polynomial approximations (Example 1).

ƒsxd = 1>s1 - xd

0 2

1

1

y1 � 2 �

y2 � 3 �     �

y0 � 1

(2, 1) y �

3

2 3x
2

x2

4
2
x

x
2
x

y

FIGURE 11.11 The graphs of 
and its first three polynomial approxima-
tions (Example 2).

ƒsxd = 2>x
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11.7 Power Series 797

Solution Apply the Ratio Test to the series where is the nth term of the series
in question.

(a)

The series converges absolutely for It diverges if because the nth
term does not converge to zero. At we get the alternating harmonic series

which converges. At we get 
the negative of the harmonic series; it diverges. Series (a) con-

verges for and diverges elsewhere.

(b)

The series converges absolutely for It diverges for because the nth
term does not converge to zero. At the series becomes 

which converges by the Alternating Series Theorem. It also con-
verges at because it is again an alternating series that satisfies the conditions
for convergence. The value at is the negative of the value at Series (b)
converges for and diverges elsewhere.

(c)

The series converges absolutely for all x.

(d)

The series diverges for all values of x except 

Example 3 illustrates how we usually test a power series for convergence, and the
possible results.

0
x

x = 0.

` un + 1
un
` = ` sn + 1d!xn + 1

n!xn ` = sn + 1d ƒ x ƒ : q  unless x = 0.

0
x

` un + 1
un
` = ` xn + 1

sn + 1d!
# n!
xn ` =

ƒ x ƒ

n + 1
: 0 for every x .

–1 0 1
x

-1 … x … 1
x = 1.x = -1

x = -1
1>5 - 1>7 +

Á ,
1 - 1>3 +x = 1

x2
7 1x2

6 1.

` un + 1
un
` =

2n - 1
2n + 1

 x2 : x2 .

–1 0 1
x

-1 6 x … 1
1>3 - 1>4 -

Á ,
-1 - 1>2 -x = -11 - 1>2 + 1>3 - 1>4 +

Á ,
x = 1,

ƒ x ƒ 7 1ƒ x ƒ 6 1.

` un + 1
un
` =

n
n + 1 ƒ x ƒ : ƒ x ƒ .

ung ƒ un ƒ ,

THEOREM 18 The Convergence Theorem for Power Series

If the power series converges for

then it converges absolutely for all x with If the series 
diverges for then it diverges for all x with ƒ x ƒ 7 ƒ d ƒ .x = d ,

ƒ x ƒ 6 ƒ c ƒ .x = c Z 0,

 a
q

n = 0
an xn

= a0 + a1 x + a2 x2
+

Á
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Proof Suppose the series converges. Then Hence, there is
an integer N such that for all That is,

(5)

Now take any x such that and consider

There are only a finite number of terms prior to and their sum is finite. Starting
with and beyond, the terms are less than

(6)

because of Inequality (5). But Series (6) is a geometric series with ratio which
is less than 1, since Hence Series (6) converges, so the original series converges
absolutely. This proves the first half of the theorem.

The second half of the theorem follows from the first. If the series diverges at 
and converges at a value with we may take in the first half of the the-
orem and conclude that the series converges absolutely at d. But the series cannot converge
absolutely and diverge at one and the same time. Hence, if it diverges at d, it diverges for
all x with 

To simplify the notation, Theorem 18 deals with the convergence of series of the form
For series of the form we can replace by and apply the re-

sults to the series 

The Radius of Convergence of a Power Series

The theorem we have just proved and the examples we have studied lead to the conclusion
that a power series behaves in one of three possible ways. It might converge
only at or converge everywhere, or converge on some interval of radius R centered
at We prove this as a Corollary to Theorem 18.x = a .

x = a ,
gcnsx - adn

gansx¿dn .
x¿x - agansx - adngan xn .

ƒ x ƒ 7 ƒ d ƒ .

c = x0ƒ x0 ƒ 7 ƒ d ƒ ,x0

x = d

ƒ x ƒ 6 ƒ c ƒ .
r = ƒ x>c ƒ ,

` xc `
N

+ ` xc `
N + 1

+ ` xc `
N + 2

+
Á

ƒ aN xN
ƒ

ƒ aN xN
ƒ ,

ƒ a0 ƒ + ƒ a1 x ƒ +
Á

+ ƒ aN - 1x
N - 1

ƒ + ƒ aN xN
ƒ + ƒ aN + 1xN + 1

ƒ +
Á .

ƒ x ƒ 6 ƒ c ƒ

ƒ an ƒ 6
1

ƒ c ƒ
n for n Ú N .

n Ú N .ƒ an cn
ƒ 6 1

limn:q an cn
= 0.gq

n=0 an cn

798 Chapter 11: Infinite Sequences and Series

COROLLARY TO THEOREM 18
The convergence of the series is described by one of the following
three possibilities:

1. There is a positive number R such that the series diverges for x with
but converges absolutely for x with The series

may or may not converge at either of the endpoints and

2. The series converges absolutely for every 

3. The series converges at and diverges elsewhere sR = 0d .x = a

x sR = q d .

x = a + R .
x = a - R

ƒ x - a ƒ 6 R .ƒ x - a ƒ 7 R

gcnsx - adn
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11.7 Power Series 799

Proof We assume first that so that the power series is centered at 0. If the se-
ries converges everywhere we are in Case 2. If it converges only at we are in
Case 3. Otherwise there is a nonzero number d such that diverges. The set S of
values of x for which the series converges is nonempty because it contains 0
and a positive number p as well. By Theorem 18, the series diverges for all x with

so for all and S is a bounded set. By the Completeness Prop-
erty of the real numbers (see Appendix 4) a nonempty, bounded set has a least upper
bound R. (The least upper bound is the smallest number with the property that the ele-
ments satisfy ) If then so the series diverges. If

then is not an upper bound for S (because it’s smaller than the least upper
bound) so there is a number such that Since the series 
converges and therefore the series converges by Theorem 18. This proves the
Corollary for power series centered at 

For a power series centered at we set and repeat the argument
with Since when a radius R interval of convergence for cen-
tered at is the same as a radius R interval of convergence for centered
at This establishes the Corollary for the general case.

R is called the radius of convergence of the power series and the interval of radius R
centered at is called the interval of convergence. The interval of convergence may
be open, closed, or half-open, depending on the particular series. At points x with

the series converges absolutely. If the series converges for all values of x,
we say its radius of convergence is infinite. If it converges only at we say its radius
of convergence is zero.

x = a ,
ƒ x - a ƒ 6 R ,

x = a

x = a .
gcnsx - adnx¿ = 0

gcnsx¿dnx = a ,x¿ = 0x¿ .
x¿ = sx - ada Z 0,

a = 0.
gcn ƒ x ƒ

n
gcn bnb H S ,b 7 ƒ x ƒ .b H S

ƒ x ƒƒ x ƒ 6 R ,
gcn xnx x Sƒ x ƒ 7 R Ú p ,x … R .x H S

x H S ,ƒ x ƒ … ƒ d ƒƒ x ƒ 7 ƒ d ƒ ,

gcn xn
gcn dn

x = 0
a = 0,

How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

2. If the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is the series
diverges for (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.

ƒ x - a ƒ 7 R
a - R 6 x 6 a + R ,

ƒ x - a ƒ 6 R or a - R 6 x 6 a + R .

Term-by-Term Differentiation

A theorem from advanced calculus says that a power series can be differentiated term by
term at each interior point of its interval of convergence.
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EXAMPLE 4 Applying Term-by-Term Differentiation

Find series for and if

Solution

CAUTION Term-by-term differentiation might not work for other kinds of series. For ex-
ample, the trigonometric series

converges for all x. But if we differentiate term by term we get the series

which diverges for all x. This is not a power series, since it is not a sum of positive integer
powers of x.

a
q

n = 1
 
n!cos sn!xd

n2 ,

a
q

n = 1
 
sin sn!xd

n2

 = a
q

n = 2
nsn - 1dxn - 2, -1 6 x 6 1

 ƒ–sxd =
2

s1 - xd3 = 2 + 6x + 12x2
+

Á
+ nsn - 1dxn - 2

+
Á

 = a
q

n = 1
nxn - 1, -1 6 x 6 1

 ƒ¿sxd =
1

s1 - xd2 = 1 + 2x + 3x2
+ 4x3

+
Á

+ nxn - 1
+

Á

 = a
q

n = 0
xn, -1 6 x 6 1

 ƒsxd =
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

+ xn
+

Á

ƒ–sxdƒ¿sxd
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THEOREM 19 The Term-by-Term Differentiation Theorem
If converges for for some it defines
a function ƒ:

Such a function ƒ has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.

 ƒ–sxd = a
q

n = 2
nsn - 1dcnsx - adn - 2 ,

 ƒ¿sxd = a
q

n = 1
ncnsx - adn - 1

ƒsxd = a
q

n = 0
cnsx - adn, a - R 6 x 6 a + R .

R 7 0,a - R 6 x 6 a + Rgcnsx - adn
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EXAMPLE 5 A Series for 

Identify the function

Solution We differentiate the original series term by term and get

This is a geometric series with first term 1 and ratio so

We can now integrate to get

The series for ƒ(x) is zero when so Hence

(7)

In Section 11.10, we will see that the series also converges to  at   x = ;1.tan-1 x

ƒsxd = x -

x3

3
+

x5

5 -

x7

7 +
Á

= tan-1 x, -1 6 x 6 1.

C = 0.x = 0,

Lƒ¿sxd dx = L  
dx

1 + x2 = tan-1 x + C .

ƒ¿sxd = 1>s1 + x2d

ƒ¿sxd =
1

1 - s -x2d
=

1
1 + x2 .

-x2 ,

ƒ¿sxd = 1 - x2
+ x4

- x6
+

Á, -1 6 x 6 1.

ƒsxd = x -

x3

3
+

x5

5 -
Á, -1 … x … 1.

tan-1 x, -1 … x … 1

THEOREM 20 The Term-by-Term Integration Theorem
Suppose that

converges for Then

converges for and

for a - R 6 x 6 a + R .

Lƒsxd dx = a
q

n = 0
cn 

sx - adn + 1

n + 1
+ C

a - R 6 x 6 a + R

a
q

n =0
cn 

(x - a)n+1

n + 1

a - R 6 x 6 a + R  sR 7 0d .

ƒsxd = a
q

n = 0
cnsx - adn

Term-by-Term Integration

Another advanced calculus theorem states that a power series can be integrated term by
term throughout its interval of convergence.
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USING TECHNOLOGY Study of Series

Series are in many ways analogous to integrals. Just as the number of functions with ex-
plicit antiderivatives in terms of elementary functions is small compared to the number
of integrable functions, the number of power series in x that agree with explicit elemen-
tary functions on x-intervals is small compared to the number of power series that con-
verge on some x-interval. Graphing utilities can aid in the study of such series in much
the same way that numerical integration aids in the study of definite integrals. The ability
to study power series at particular values of x is built into most Computer Algebra Sys-
tems.

If a series converges rapidly enough, CAS exploration might give us an idea of the
sum. For instance, in calculating the early partial sums of the series 
(Section 11.4, Example 2b), Maple returns for This
suggests that the sum of the series is 1.6066 95152 to 10 digits. Indeed,

The remainder after 200 terms is negligible.
However, CAS and calculator exploration cannot do much for us if the series con-

verges or diverges very slowly, and indeed can be downright misleading. For example,
try calculating the partial sums of the series The terms are tiny in
comparison to the numbers we normally work with and the partial sums, even for hun-
dreds of terms, are miniscule. We might well be fooled into thinking that the series con-
verges. In fact, it diverges, as we can see by writing it as a constant
times the harmonic series.

We will know better how to interpret numerical results after studying error estimates
in Section 11.9.

s1>1010dgq

k=1 s1>kd ,

gq

k=1 [1>s1010kd] .

a
q

k = 201
 

1
2k

- 1
= a

q

k = 201
 

1
2k - 1s2 - s1>2k - 1dd

6 a
q

k = 201
 

1
2k - 1 =

1
2199 6 1.25 * 10-60 .

31 … n … 200.Sn = 1.6066 95152
gq

k=1 [1>s2k - 1d]

Notice that the original series in Example 5 converges at both endpoints of the origi-
nal interval of convergence, but Theorem 20 can guarantee the convergence of the differ-
entiated series only inside the interval.

EXAMPLE 6 A Series for 

The series

converges on the open interval Therefore,

It can also be shown that the series converges at to the number ln 2, but that was not
guaranteed by the theorem.

x = 1

 = x -

x2

2
+

x3

3
-

x4

4
+

Á, -1 6 x 6 1.

 ln s1 + xd = L
x

0
 

1
1 + t

 dt = t -

t2

2
+

t3

3
-

t4

4
+

Á d
0

x

-1 6 t 6 1.

1
1 + t

= 1 - t + t2
- t3

+
Á

ln s1 + xd, -1 6 x … 1

Theorem 20

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 802



11.7 Power Series 803

EXAMPLE 7 Multiply the geometric series

by itself to get a power series for for 

Solution Let

and

Then, by the Series Multiplication Theorem,

is the series for The series all converge absolutely for 
Notice that Example 4 gives the same answer because

d
dx

 a 1
1 - x

b =
1

s1 - xd2 .

ƒ x ƒ 6 1.1>s1 - xd2 .

 = 1 + 2x + 3x2
+ 4x3

+
Á

+ sn + 1dxn
+

Á

 Asxd # Bsxd = a
q

n = 0
cn xn

= a
q

n = 0
sn + 1dxn

n + 1 ones
('''')''''*

 = 1 + 1 +
Á

+ 1 = n + 1.

n + 1 terms
(''''''''''')''''''''''''*

cn = a0 bn + a1 bn - 1 +
Á

+ ak bn - k +
Á

+ an b0

 Bsxd = a
q

n = 0
bn xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

 Asxd = a
q

n = 0
an xn

= 1 + x + x2
+

Á
+ xn

+
Á

= 1>s1 - xd

ƒ x ƒ 6 1.1>s1 - xd2 ,

a
q

n = 0
xn

= 1 + x + x2
+

Á
+ xn

+
Á

=
1

1 - x
 , for ƒ x ƒ 6 1,

THEOREM 21 The Series Multiplication Theorem for Power Series
If and converge absolutely for 
and

then converges absolutely to A(x)B(x) for 

aa
q

n = 0
an xnb # aa

q

n = 0
bn xnb = a

q

n = 0
cn xn .

ƒ x ƒ 6 R :gq

n=0 cn xn

cn = a0 bn + a1 bn - 1 + a2 bn - 2 +
Á

+ an - 1b1 + an b0 = a
n

k = 0
ak bn - k ,

ƒ x ƒ 6 R ,Bsxd = gq

n=0 bn xnAsxd = gq

n=0 an xn

Multiplication of Power Series

Another theorem from advanced calculus states that absolutely converging power series
can be multiplied the way we multiply polynomials. We omit the proof.
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EXERCISES 11.7

Intervals of Convergence
In Exercises 1–32, (a) find the series’ radius and interval of conver-
gence. For what values of x does the series converge (b) absolutely,
(c) conditionally?

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32. a
q

n = 0
 
Ax - 22 B2n + 1

2na
q

n = 1
 
sx + pdn2n

a
q

n = 1
 
s3x + 1dn + 1

2n + 2a
q

n = 1
 
s4x - 5d2n + 1

n3>2

a
q

n = 2
 

xn

n ln n

a
q

n = 2
 

xn

nsln nd2

a
q

n = 0
s -2dnsn + 1dsx - 1dna

q

n = 1
 
s -1dn + 1sx + 2dn

n2n

a
q

n = 0
n!sx - 4dna

q

n = 1
nnxn

a
q

n = 1
sln ndxna

q

n = 1
 a1 +

1
n b

n

 xn

a
q

n = 1
2n ns2x + 5dna

q

n = 0
 
2nxn

3n

a
q

n = 0
 

nxn

4nsn2
+ 1da

q

n = 0
 
nsx + 3dn

5n

a
q

n = 0
 

s -1dnxn2n2
+ 3

a
q

n = 0
 

xn2n2
+ 3

a
q

n = 0
 
s2x + 3d2n + 1

n!a
q

n = 0
 
x2n + 1

n!

a
q

n = 0
 
3nxn

n!a
q

n = 0
 
s -1dnxn

n!

a
q

n = 1
 
sx - 1dn2n

a
q

n = 1
 

xn

n2n 3n

a
q

n = 1
 
s -1dnsx + 2dn

na
q

n = 0
 

nxn

n + 2

a
q

n = 0
s2xdna

q

n = 0
 
sx - 2dn

10n

a
q

n = 1
 
s3x - 2dn

na
q

n = 0
s -1dns4x + 1dn

a
q

n = 0
sx + 5dna

q

n = 0
xn

In Exercises 33–38, find the series’ interval of convergence and,
within this interval, the sum of the series as a function of x.

33. 34.

35. 36.

37. 38.

Theory and Examples
39. For what values of x does the series

converge? What is its sum? What series do you get if you differ-
entiate the given series term by term? For what values of x does
the new series converge? What is its sum?

40. If you integrate the series in Exercise 39 term by term, what new
series do you get? For what values of x does the new series con-
verge, and what is another name for its sum?

41. The series

converges to sin x for all x.

a. Find the first six terms of a series for cos x. For what values
of x should the series converge?

b. By replacing x by 2x in the series for sin x, find a series that
converges to sin 2x for all x.

c. Using the result in part (a) and series multiplication, calculate
the first six terms of a series for 2 sin x cos x. Compare your
answer with the answer in part (b).

42. The series

converges to for all x.

a. Find a series for Do you get the series for 
Explain your answer.

b. Find a series for Do you get the series for 
Explain your answer.

c. Replace x by in the series for to find a series that
converges to for all x. Then multiply the series for and

to find the first six terms of a series for e-x # ex .e-x
exe-x

ex
-x

ex ?1ex dx .

ex ?sd>dxdex .

ex

ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

Á

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

x11

11!
+

Á

1 -

1
2

 sx - 3d +

1
4

 sx - 3d2
+

Á
+ a- 1

2
bn

sx - 3dn
+

Á

a
q

n = 0
 ax2

- 1
2
bn

a
q

n = 0
 ax2

+ 1
3
bn

a
q

n = 0
sln xdna

q

n = 0
 a2x

2
- 1bn

a
q

n = 0
 
sx + 1d2n

9na
q

n = 0
 
sx - 1d2n

4n

Get the information you need about
from Section 11.3, 

Exercise 39.
a1>(n(ln n)2)

Get the information you need about
from Section 11.3, 

Exercise 38.
a1>(n ln n)

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 804

tcu1107a.html
tcu1107a.html
tcu1107b.html


805

43. The series

converges to tan x for 

a. Find the first five terms of the series for For what
values of x should the series converge?

b. Find the first five terms of the series for For what
values of x should this series converge?

c. Check your result in part (b) by squaring the series given for
sec x in Exercise 44.

44. The series

converges to sec x for 

a. Find the first five terms of a power series for the function
For what values of x should the series

converge?

b. Find the first four terms of a series for sec x tan x. For what
values of x should the series converge?

ln ƒ sec x + tan x ƒ .

-p>2 6 x 6 p>2.

sec x = 1 +

x2

2
+

5
24

 x4
+

61
720

 x6
+

277
8064

 x8
+

Á

sec2 x .

ln ƒ sec x ƒ .

-p>2 6 x 6 p>2.

tan x = x +

x3

3
+

2x5

15
+

17x7

315
+

62x9

2835
+

Á

c. Check your result in part (b) by multiplying the series for sec x
by the series given for tan x in Exercise 43.

45. Uniqueness of convergent power series

a. Show that if two power series and are
convergent and equal for all values of x in an open interval

then for every n. (Hint: Let
Differentiate term by term

to show that and both equal )

b. Show that if for all x in an open interval
then for every n.

46. The sum of the series To find the sum of this se-
ries, express as a geometric series, differentiate both
sides of the resulting equation with respect to x, multiply both
sides of the result by x, differentiate again, multiply by x again,
and set x equal to 1 2. What do you get? (Source: David E.
Dobbs’ letter to the editor, Illinois Mathematics Teacher, Vol. 33,
Issue 4, 1982, p. 27.)

47. Convergence at endpoints Show by examples that the conver-
gence of a power series at an endpoint of its interval of conver-
gence may be either conditional or absolute.

48. Make up a power series whose interval of convergence is

a. b. c. (1, 5).s -2, 0ds -3, 3d

>

1>s1 - xd
gq

n=0 sn2>2nd
an = 0s -c, cd ,
gq

n=0 an xn
= 0

f snds0d>sn!d .bnan

ƒsxd = gq

n=0 an xn
= gq

n=0 bn xn .
an = bns -c, cd ,

gq

n=0 bn xngq

n=0 an xn
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11.8 Taylor and Maclaurin Series 805

Taylor and Maclaurin Series

This section shows how functions that are infinitely differentiable generate power series
called Taylor series. In many cases, these series can provide useful polynomial approxima-
tions of the generating functions.

Series Representations

We know from Theorem 19 that within its interval of convergence the sum of a power
series is a continuous function with derivatives of all orders. But what about the other way
around? If a function ƒ(x) has derivatives of all orders on an interval I, can it be expressed
as a power series on I? And if it can, what will its coefficients be?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power
series

with a positive radius of convergence. By repeated term-by-term differentiation within the
interval of convergence I we obtain

 ƒ‡sxd = 1 # 2 # 3a3 + 2 # 3 # 4a4sx - ad + 3 # 4 # 5a5sx - ad2
+

Á ,

 ƒ–sxd = 1 # 2a2 + 2 # 3a3sx - ad + 3 # 4a4sx - ad2
+

Á

 ƒ¿sxd = a1 + 2a2sx - ad + 3a3sx - ad2
+

Á
+ nansx - adn - 1

+
Á

 = a0 + a1sx - ad + a2sx - ad2
+

Á
+ ansx - adn

+
Á

 ƒsxd = a
q

n = 0
ansx - adn

11.8
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806 Chapter 11: Infinite Sequences and Series

with the nth derivative, for all n, being

Since these equations all hold at we have

and, in general,

These formulas reveal a pattern in the coefficients of any power series 
that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an
open question), then there is only one such series and its nth coefficient is

If ƒ has a series representation, then the series must be

(1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval I
centered at and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interior of I? The answer is maybe—for some functions it will
but for other functions it will not, as we will see.

Taylor and Maclaurin Series

x = a

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

an =

ƒsndsad
n!

.

gq

n=0 ansx - adn

ƒsndsad = n!an .

ƒ¿sad = a1,

ƒ–sad = 1 # 2a2,

ƒ‡sad = 1 # 2 # 3a3,

x = a ,

f sndsxd = n!an + a sum of terms with sx - ad as a factor .

DEFINITIONS Taylor Series, Maclaurin Series
Let ƒ be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by ƒ at is

The Maclaurin series generated by ƒ is

the Taylor series generated by ƒ at x = 0.

a
q

k = 0
 
ƒskds0d

k!
 xk

= ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á ,

 +
Á

+

ƒsndsad
n!

 sx - adn
+

Á .

 a
q

k = 0
 
ƒskdsad

k!
 sx - adk

= ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2

x = a

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.
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11.8 Taylor and Maclaurin Series 807

EXAMPLE 1 Finding a Taylor Series

Find the Taylor series generated by at Where, if anywhere, does the
series converge to 1 x?

Solution We need to find Taking derivatives we get

The Taylor series is

This is a geometric series with first term 1 2 and ratio It converges ab-
solutely for and its sum is

In this example the Taylor series generated by at converges to 1 x for
or 

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one
given by

In Section 3.8 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ has
derivatives of higher order at a, then it has higher-order polynomial approximations as
well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of ƒ.

P1sxd = ƒsad + ƒ¿sadsx - ad .

0 6 x 6 4.ƒ x - 2 ƒ 6 2
>a = 2ƒsxd = 1>x

1>2
1 + sx - 2d>2 =

1
2 + sx - 2d

=
1
x .

ƒ x - 2 ƒ 6 2
r = -sx - 2d>2.>

 =
1
2

-

sx - 2d
22 +

sx - 2d2

23 -
Á

+ s -1dn 
sx - 2dn

2n + 1 +
Á .

 ƒs2d + ƒ¿s2dsx - 2d +

ƒ–s2d
2!

 sx - 2d2
+

Á
+

ƒsnds2d
n!

 sx - 2dn
+

Á

 ƒsndsxd = s -1dnn!x-sn + 1d,   
ƒsnds2d

n!
=

s -1dn

2n + 1 .

 o   o

 ƒ‡sxd = -3!x-4,   
ƒ‡s2d

3!
= -

1
24 ,

 ƒ–sxd = 2!x-3,   
ƒ–s2d

2!
= 2-3

=
1
23 ,

 ƒ¿sxd = -x-2,   ƒ¿s2d = -
1
22 ,

 ƒsxd = x-1,   ƒs2d = 2-1
=

1
2

,

ƒs2d, ƒ¿s2d, ƒ–s2d, Á .

> a = 2.ƒsxd = 1>x
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We speak of a Taylor polynomial of order n rather than degree n because may
be zero. The first two Taylor polynomials of at for example, are

and The first-order Taylor polynomial has degree zero, not one.
Just as the linearization of ƒ at provides the best linear approximation of ƒ in

the neighborhood of a, the higher-order Taylor polynomials provide the best polynomial
approximations of their respective degrees. (See Exercise 32.)

EXAMPLE 2 Finding Taylor Polynomials for 

Find the Taylor series and the Taylor polynomials generated by at 

Solution Since

we have

The Taylor series generated by ƒ at is

This is also the Maclaurin series for In Section 11.9 we will see that the series con-
verges to at every x.

The Taylor polynomial of order n at is

See Figure 11.12.

EXAMPLE 3 Finding Taylor Polynomials for cos x

Find the Taylor series and Taylor polynomials generated by at x = 0.ƒsxd = cos x

Pnsxd = 1 + x +

x2

2
+

Á
+

xn

n!
 .

x = 0
ex

ex .

 = a
q

k = 0
 
xk

k!
.

 = 1 + x +

x2

2
+

Á
+

xn

n!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0

ƒs0d = e0
= 1, ƒ¿s0d = 1, Á , ƒsnds0d = 1, . Á

ƒsxd = ex, ƒ¿sxd = ex, Á , ƒsndsxd = ex, Á ,

x = 0.ƒsxd = ex

ex

x = a
P1sxd = 1.P0sxd = 1

x = 0,ƒsxd = cos x
ƒsndsad

808 Chapter 11: Infinite Sequences and Series

DEFINITION Taylor Polynomial of Order n
Let ƒ be a function with derivatives of order k for in some inter-
val containing a as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by ƒ at is the polynomial

 +

ƒskdsad
k!

 sx - adk
+

Á
+

ƒsndsad
n!

 sx - adn .

 Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

x = a

k = 1, 2, Á , N

0.5

1.0

y � e x

0 0.5

1.5

2.0

2.5

3.0
y � P3(x)

y � P2(x)

y � P1(x)

1.0

x

y

–0.5

FIGURE 11.12 The graph of 
and its Taylor polynomials

Notice the very close agreement near the
center (Example 2).x = 0

 P3sxd = 1 + x + sx2>2!d + sx3>3!d .

 P2sxd = 1 + x + sx2>2!d
 P1sxd = 1 + x

ƒsxd = ex
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11.8 Taylor and Maclaurin Serie 809

Solution The cosine and its derivatives are

At the cosines are 1 and the sines are 0, so

The Taylor series generated by ƒ at 0 is

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.

Because the Taylor polynomials of orders 2n and are identical:

Figure 11.13 shows how well these polynomials approximate near 
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis.

x = 0.ƒsxd = cos x

P2nsxd = P2n + 1sxd = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
.

2n + 1ƒs2n + 1ds0d = 0,

= a
q

k = 0
 
s -1dkx2k

s2kd!
.

= 1 + 0 # x -

x2

2!
+ 0 # x3

+

x4

4!
+

Á
+ s -1dn 

x2n

s2nd!
+

Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

ƒ‡s0d
3!

 x3
+

Á
+

ƒsnds0d
n!

 xn
+

Á

ƒs2nds0d = s -1dn, ƒs2n + 1ds0d = 0.

x = 0,

sin x . ƒs2n + 1dsxd = s -1dn + 1 cos x, ƒs2ndsxd = s -1dn 

o  o

sin x, ƒs3dsxd = -cos x, ƒ–sxd = -sin x, ƒ¿sxd = cos x, ƒsxd = 

0 1

1
y � cos x

2

–1

–2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 11.13 The polynomials

converge to cos x as We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine
and its derivatives at (Example 3).x = 0

n : q .

P2nsxd = a
n

k = 0
 
s -1dkx2k

s2kd!
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EXAMPLE 4 A Function ƒ Whose Taylor Series Converges at Every x but Con-
verges to ƒ(x) Only at 

It can be shown (though not easily) that

(Figure 11.14) has derivatives of all orders at and that for all n. This
means that the Taylor series generated by ƒ at is

The series converges for every x (its sum is 0) but converges to ƒ(x) only at   x = 0.

 = 0 + 0 +
Á

+ 0 +
Á .

 = 0 + 0 # x + 0 # x2
+

Á
+ 0 # xn

+
Á

 ƒs0d + ƒ¿s0dx +

ƒ–s0d
2!

 x2
+

Á
+

ƒsnds0d
n!

 xn
+

Á

x = 0
ƒsnds0d = 0x = 0

ƒsxd = e0, x = 0

e-1>x2

, x Z 0

x = 0

810 Chapter 11: Infinite Sequences and Series





0 1 2 3 4

1

–1–2–3–4

y �
 e–1/x2

,  x � 0

0 ,       x � 0

x

y

FIGURE 11.14 The graph of the continuous extension of
is so flat at the origin that all of its derivatives there

are zero (Example 4).
y = e-1>x2

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

The answers are provided by a theorem of Taylor in the next section.
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EXERCISES 11.8

Finding Taylor Polynomials
In Exercises 1–8, find the Taylor polynomials of orders 0, 1, 2, and 3
generated by ƒ at a.

1. 2.

3. 4.

5. 6.

7. 8. ƒsxd = 2x + 4, a = 0ƒsxd = 2x, a = 4

ƒsxd = cos x, a = p>4ƒsxd = sin x, a = p>4
ƒsxd = 1>sx + 2d, a = 0ƒsxd = 1>x, a = 2

ƒsxd = ln s1 + xd, a = 0ƒsxd = ln x, a = 1

Finding Taylor Series at 
(Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 9–20.

9. 10.

11. 12.

13. sin 3x 14. sin 
x
2

1
1 - x

1
1 + x

ex>2e-x

x = 0
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811

15. 16.

17. 18.

19. 20.

Finding Taylor Series
In Exercises 21–28, find the Taylor series generated by ƒ at 

21.

22.

23.

24.

25.

26.

27.

28.

Theory and Examples
29. Use the Taylor series generated by at to show that

30. (Continuation of Exercise 29.) Find the Taylor series generated by
at Compare your answer with the formula in Exercise 29.

31. Let ƒ(x) have derivatives through order n at Show that the
Taylor polynomial of order n and its first n derivatives have the
same values that ƒ and its first n derivatives have at x = a .

x = a .

x = 1.ex

ex
= ea c1 + sx - ad +

sx - ad2

2!
+

Á d .
x = aex

ƒsxd = 2x, a = 1

ƒsxd = ex, a = 2

ƒsxd = x>s1 - xd, a = 0

ƒsxd = 1>x2, a = 1

ƒsxd = 3x5
- x4

+ 2x3
+ x2

- 2, a = -1

ƒsxd = x4
+ x2

+ 1, a = -2

ƒsxd = 2x3
+ x2

+ 3x - 8, a = 1

ƒsxd = x3
- 2x + 4, a = 2

x = a .

sx + 1d2x4
- 2x3

- 5x + 4

sinh x =

ex
- e-x

2
cosh x =

ex
+ e-x

2

5 cos px7 cos s -xd 32. Of all polynomials of degree n, the Taylor polynomial of
order n gives the best approximation Suppose that ƒ(x) is dif-
ferentiable on an interval centered at and that 

is a polynomial of degree n
with constant coefficients Let 
Show that if we impose on g the conditions

a.

b.

then

Thus, the Taylor polynomial is the only polynomial of
degree less than or equal to n whose error is both zero at 
and negligible when compared with 

Quadratic Approximations
The Taylor polynomial of order 2 generated by a twice-differentiable
function ƒ(x) at is called the quadratic approximation of ƒ at

In Exercises 33–38, find the (a) linearization (Taylor polyno-
mial of order 1) and (b) quadratic approximation of ƒ at 

33. 34.

35. 36.

37. 38. ƒsxd = tan xƒsxd = sin x

ƒsxd = cosh xƒsxd = 1>21 - x2

ƒsxd = esin xƒsxd = ln scos xd
x = 0.

x = a .
x = a

sx - adn .
x = a

Pnsxd

 +

ƒsndsad
n!

 sx - adn .

 gsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

lim
x:a

 
Esxd

sx - adn = 0,

Esad = 0

ƒsxd - gsxd .Esxd =b0, Á , bn .
b0 + b1sx - ad +

Á
+ bnsx - adn

gsxd =x = a

◊

The approximation error is zero at x = a .

The error is negligible when
compared to sx - adn .
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11.9 Convergence of Taylor Series; Error Estimates 811

Convergence of Taylor Series; Error Estimates

This section addresses the two questions left unanswered by Section 11.8:

1. When does a Taylor series converge to its generating function?

2. How accurately do a function’s Taylor polynomials approximate the function on a
given interval?

Taylor’s Theorem

We answer these questions with the following theorem.

11.9
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Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 39). There is a
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an in-
dependent variable. Taylor’s formula is easier to use in circumstances like these if we
change b to x. Here is a version of the theorem with this change.

THEOREM 22 Taylor’s Theorem
If ƒ and its first n derivatives are continuous on the closed interval
between a and b, and is differentiable on the open interval between a and b,
then there exists a number c between a and b such that

 +

ƒsndsad
n!

 sb - adn
+

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

 ƒsbd = ƒsad + ƒ¿sadsb - ad +

ƒ–sad
2!

 sb - ad2
+

Á

ƒsnd
ƒ¿, ƒ–, Á , ƒsnd

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x in I,

(1)

where

(2)Rnsxd =

f sn + 1dscd
sn + 1d!

 sx - adn + 1 for some c between a and x .

 +

ƒsndsad
n!

 sx - adn
+ Rnsxd ,

 ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á

When we state Taylor’s theorem this way, it says that for each 

The function is determined by the value of the derivative at a point
c that depends on both a and x, and which lies somewhere between them. For any value of
n we want, the equation gives both a polynomial approximation of ƒ of that order and a
formula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function is called the remainder
of order n or the error term for the approximation of ƒ by over I. If as

for all we say that the Taylor series generated by ƒ at converges to ƒ
on I, and we write

Often we can estimate without knowing the value of c, as the following example illustrates.Rn

ƒsxd = a
q

k = 0
 
ƒskdsad

k!
 sx - adk .

x = ax H I,n : q

Rnsxd : 0Pnsxd
Rnsxd

ƒsn + 1dsn + 1dstRnsxd

ƒsxd = Pnsxd + Rnsxd .

x H I ,
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EXAMPLE 1 The Taylor Series for Revisited

Show that the Taylor series generated by at converges to ƒ(x) for every
real value of x.

Solution The function has derivatives of all orders throughout the interval 
Equations (1) and (2) with and give

and

Since is an increasing function of lies between and When x is negative,
so is c, and When x is zero, and When x is positive, so is c, and

Thus,

and

Finally, because

and the series converges to for every x. Thus,

(3)

Estimating the Remainder

It is often possible to estimate as we did in Example 1. This method of estimation is
so convenient that we state it as a theorem for future reference.

Rnsxd

ex
= a

q

k = 0
 
xk

k!
= 1 + x +

x2

2!
+

Á
+

xk

k!
+

Á .

exlim
n: q

Rnsxd = 0,

lim
n: q

 
xn + 1

sn + 1d!
= 0 for every x ,

ƒ Rnsxd ƒ 6 ex 
xn + 1

sn + 1d!
 when x 7 0.

ƒ Rnsxd ƒ …

ƒ x ƒ
n + 1

sn + 1d!
 when x … 0,

ec
6 ex .

Rnsxd = 0.ex
= 1ec

6 1.
ex .e0

= 1x, ecex

Rnsxd =

ec

sn + 1d!
 xn + 1 for some c between 0 and x .

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+ Rnsxd

a = 0ƒsxd = exs - q , q d .
I =

x = 0ƒsxd = ex

ex

Polynomial from Section
11.8, Example 2

Section 11.1

THEOREM 23 The Remainder Estimation Theorem
If there is a positive constant M such that for all t between x and
a, inclusive, then the remainder term in Taylor’s Theorem satisfies the in-
equality

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by ƒ, then the series converges to ƒ(x).

ƒ Rnsxd ƒ … M 
ƒ x - a ƒ

n + 1

sn + 1d!
.

Rnsxd
ƒ ƒsn + 1dstd ƒ … M
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We are now ready to look at some examples of how the Remainder Estimation Theo-
rem and Taylor’s Theorem can be used together to settle questions of convergence. As you
will see, they can also be used to determine the accuracy with which a function is approxi-
mated by one of its Taylor polynomials.

EXAMPLE 2 The Taylor Series for sin x at 

Show that the Taylor series for sin x at converges for all x.

Solution The function and its derivatives are

so

The series has only odd-powered terms and, for Taylor’s Theorem gives

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the
Remainder Estimation Theorem with to obtain

Since as whatever the value of x, and the
Maclaurin series for sin x converges to sin x for every x. Thus,

(4)

EXAMPLE 3 The Taylor Series for cos x at Revisited

Show that the Taylor series for cos x at converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with 

cos x = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dk 

x2k

s2kd!
+ R2ksxd .

n = 2k :

x = 0

x = 0

sin x = a
q

k = 0
 
s -1dkx2k + 1

s2k + 1d!
= x -

x3

3!
+

x5

5!
-

x7

7!
+

Á .

R2k + 1sxd : 0,k : q ,s ƒ x ƒ
2k + 2>s2k + 2d!d : 0

ƒ R2k + 1sxd ƒ … 1 #
ƒ x ƒ

2k + 2

s2k + 2d!
.

M = 1

sin x = x -

x3

3!
+

x5

5!
-

Á
+

s -1dkx2k + 1

s2k + 1d!
+ R2k + 1sxd .

n = 2k + 1,

f s2kds0d = 0 and f s2k + 1ds0d = s -1dk .

ƒ(2k)sxd = s -1dk sin x,  o  ƒ–sxd =  ƒsxd =  
x = 0

x = 0

814 Chapter 11: Infinite Sequences and Series

ƒ(2k + 1)sxd = s -1dk cos x ,

   o

ƒ‡sxd = ƒ¿sxd = 
-  sin  x, -  cos  x,

sin  x, cos  x,
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11.9 Convergence of Taylor Series; Error Estimates 815

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with gives

For every value of x, as Therefore, the series converges to cos x for every
value of x. Thus,

(5)

EXAMPLE 4 Finding a Taylor Series by Substitution

Find the Taylor series for cos 2x at 

Solution We can find the Taylor series for cos 2x by substituting 2x for x in the Taylor
series for cos x:

Equation (5) holds for implying that it holds for so
the newly created series converges for all x. Exercise 45 explains why the series is in fact
the Taylor series for cos 2x.

EXAMPLE 5 Finding a Taylor Series by Multiplication

Find the Taylor series for x sin x at 

Solution We can find the Taylor series for x sin x by multiplying the Taylor series for
sin x (Equation 4) by x:

The new series converges for all x because the series for sin x converges for all x. Exer-
cise 45 explains why the series is the Taylor series for x sin x.

Truncation Error

The Taylor series for at converges to for all x. But we still need to decide how
many terms to use to approximate to a given degree of accuracy. We get this informa-
tion from the Remainder Estimation Theorem.

ex
exx = 0ex

 = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á .

 x sin x = x ax -

x3

3!
+

x5

5!
-

x7

7!
+

Áb

x = 0.

- q 6 2x 6 q ,- q 6 x 6 q ,

 = a
q

k = 0
s -1dk 

22kx2k

s2kd!
.

 = 1 -

22x2

2!
+

24x4

4!
-

26x6

6!
+

Á

 cos 2x = a
q

k = 0
 
s -1dks2xd2k

s2kd!
= 1 -

s2xd2

2!
+

s2xd4

4!
-

s2xd6

6!
+

Á

x = 0.

cos x = a
q

k = 0
 
s -1dkx2k

s2kd!
= 1 -

x2

2!
+

x4

4!
-

x6

6!
+

Á .

k : q .R2k : 0

ƒ R2ksxd ƒ … 1 #
ƒ x ƒ

2k + 1

s2k + 1d!
.

M = 1

Equation (5)
with 2x for x
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EXAMPLE 6 Calculate e with an error of less than 

Solution We can use the result of Example 1 with to write

with

For the purposes of this example, we assume that we know that Hence, we are
certain that

because for 
By experiment we find that while Thus we should take

to be at least 10, or n to be at least 9. With an error of less than 

EXAMPLE 7 For what values of x can we replace sin x by with an error of
magnitude no greater than 

Solution Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

after is no greater than

Therefore the error will be less than or equal to if

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate for sin x is an under-
estimate when x is positive because then is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-
proximating Taylor polynomials. The graph of is almost indistin-
guishable from the sine curve when -1 … x … 1.

P3sxd = x - sx3>3!d

x5>120
x - sx3>3!d

ƒ x ƒ
5

120
6 3 * 10-4 or ƒ x ƒ 6

52360 * 10-4
L 0.514.

3 * 10-4

` x5

5!
` =

ƒ x ƒ
5

120
.

sx3>3!d

sin x = x -

x3

3!
  +

x5

5!
-

Á

3 * 10-4?
x - sx3>3!d

e = 1 + 1 +
1
2

+
1
3!

+
Á

+
1
9!

L 2.718282.

10-6 ,sn + 1d
3>10! 6 10-6 .1>9! 7 10-6 ,

0 6 c 6 1.1 6 ec
6 3

1
sn + 1d!

6 Rns1d 6

3
sn + 1d!

e 6 3.

Rns1d = ec 
1

sn + 1d!

e = 1 + 1 +
1
2!

+
Á

+
1
n!

+ Rns1d ,

x = 1

10-6 .
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for some c between 0 and 1.

Rounded down,
to be safe

--
--

--
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11.9 Convergence of Taylor Series; Error Estimates 817

You might wonder how the estimate given by the Remainder Estimation Theorem com-
pares with the one just obtained from the Alternating Series Estimation Theorem. If we
write

then the Remainder Estimation Theorem gives

which is not as good. But if we recognize that 
is the Taylor polynomial of order 4 as well as of order 3, then

and the Remainder Estimation Theorem with gives

This is what we had from the Alternating Series Estimation Theorem.

Combining Taylor Series

On the intersection of their intervals of convergence, Taylor series can be added, subtracted,
and multiplied by constants, and the results are once again Taylor series. The Taylor series
for is the sum of the Taylor series for ƒ(x) and g(x) because the nth derivative
of is and so on. Thus we obtain the Taylor series for by
adding 1 to the Taylor series for cos 2x and dividing the combined results by 2, and the
Taylor series for is the term-by-term sum of the Taylor series for sin x and
cos x.

sin x + cos x

s1 + cos 2xd>2f snd
+ g snd ,f + g

ƒsxd + gsxd

ƒ R4 ƒ … 1 #  
ƒ x ƒ

5

5!
=

ƒ x ƒ
5

120
.

M = 1

sin x = x -

x3

3!
+ 0 + R4 ,

sx3/3!d + 0x4
x - sx3>3!d = 0 + x + 0x2

-

ƒ R3 ƒ … 1 #  
ƒ x ƒ

4

4!
=

ƒ x ƒ
4

24
,

sin x = x -

x3

3!
+ R3 ,

1

y � sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

–1

–2

x

y

FIGURE 11.15 The polynomials

converge to sin x as Notice how closely 
approximates the sine curve for (Example 7).x 6 1

P3sxdn : q .

P2n + 1sxd = a
n

k = 0
 
s -1dkx2k + 1

s2k + 1d!
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Euler’s Identity

As you may recall, a complex number is a number of the form where a and b are

real numbers and If we substitute ( real) in the Taylor series for and
use the relations

and so on, to simplify the result, we obtain

This does not prove that because we have not yet defined what it
means to raise e to an imaginary power. Rather, it says how to define to be consistent
with other things we know.

eiu
eiu

= cos u + i sin u

 = a1 -

u2

2!
+

u4

4!
-

u6

6!
+

Áb + i au -

u3

3!
+

u5

5!
-

Áb = cos u + i sin u .

 eiu
= 1 +

iu
1!

+

i2u2

2!
+

i3u3

3!
+

i4u4

4!
+

i5u5

5!
+

i6u6

6!
+

Á

i2
= -1, i3

= i2i = - i, i4
= i2i2

= 1, i5
= i4i = i ,

exux = iui = 2-1.

a + bi ,
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DEFINITION

(6)For any real number u, eiu
= cos u + i sin u .

Equation (6), called Euler’s identity, enables us to define to be for any
complex number One consequence of the identity is the equation

When written in the form this equation combines five of the most important
constants in mathematics.

A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming The proof for is nearly the same.
The Taylor polynomial

and its first n derivatives match the function ƒ and its first n derivatives at We do
not disturb that matching if we add another term of the form where K is any
constant, because such a term and its first n derivatives are all equal to zero at The
new function

and its first n derivatives still agree with ƒ and its first n derivatives at 
We now choose the particular value of K that makes the curve agree with

the original curve at In symbols,

(7)ƒsbd = Pnsbd + Ksb - adn + 1, or K =

ƒsbd - Pnsbd
sb - adn + 1 .

x = b .y = ƒsxd
y = fnsxd

x = a .

fnsxd = Pnsxd + Ksx - adn + 1

x = a .
Ksx - adn + 1 ,

x = a .

Pnsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sad
2!

 sx - ad2
+

Á
+

f sndsad
n!

 sx - adn

a 7 ba 6 b .

eip
+ 1 = 0,

eip
= -1.

a + bi .
ea # ebiea + bi
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11.9 Convergence of Taylor Series; Error Estimates 819

With K defined by Equation (7), the function

measures the difference between the original function ƒ and the approximating function 
for each x in [a, b].

We now use Rolle’s Theorem (Section 4.2). First, because and both
F and are continuous on [a, b], we know that

Next, because and both and are continuous on we know
that

Rolle’s Theorem, applied successively to implies the existence of

Finally, because is continuous on and differentiable on and
Rolle’s Theorem implies that there is a number in 

such that

(8)

If we differentiate a total of times, we get

(9)

Equations (8) and (9) together give

(10)

Equations (7) and (10) give

This concludes the proof.

ƒsbd = Pnsbd +

ƒsn + 1dscd
sn + 1d!

 sb - adn + 1 .

K =

ƒsn + 1dscd
sn + 1d!
 for some number c = cn + 1 in sa, bd .

F sn + 1dsxd = ƒsn + 1dsxd - 0 - sn + 1d!K .

n + 1Fsxd = ƒsxd - Pnsxd - Ksx - adn + 1

F sn + 1dscn + 1d = 0.

sa, cndcn + 1F sndsad = F sndscnd = 0,
sa, cnd ,[a, cn]F snd

cn in sa, cn - 1d such that F sndscnd = 0.

o

c4 in sa, c3d       such that F s4dsc4d = 0,

c3 in sa, c2d        such that F‡sc3d = 0,

F–, F‡, Á , F sn - 1d

F–sc2d = 0 for some c2 in sa, c1d .

[a, c1] ,F–F¿F¿sad = F¿sc1d = 0

F¿sc1d = 0 for some c1 in sa, bd .

F¿

Fsad = Fsbd = 0

fn

Fsxd = ƒsxd - fnsxd
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11.9 Convergence of Taylor Series; Error Estimates 819

EXERCISES 11.9

Taylor Series by Substitution
Use substitution (as in Example 4) to find the Taylor series at of
the functions in Exercises 1–6.

1. 2. 3.

4. 5. 6. cos Ax3>2>22 Bcos 2x + 1sin apx
2
b

5 sin s -xde-x>2e-5x

x = 0

More Taylor Series
Find Taylor series at for the functions in Exercises 7–18.

7. 8. 9.

10. 11. 12. x2 cos sx2dx cos pxsin x - x +

x3

3!

x2

2
- 1 + cos xx2 sin xxex

x = 0
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13. (Hint: )

14. 15. 16.

17. 18.

Error Estimates
19. For approximately what values of x can you replace sin x by

with an error of magnitude no greater than
Give reasons for your answer.

20. If cos x is replaced by and what estimate
can be made of the error? Does tend to be too large,
or too small? Give reasons for your answer.

21. How close is the approximation when For
which of these values of x is 

22. The estimate is used when x is small. Esti-
mate the error when 

23. The approximation is used when x is
small. Use the Remainder Estimation Theorem to estimate the
error when 

24. (Continuation of Exercise 23.) When the series for is an
alternating series. Use the Alternating Series Estimation Theorem
to estimate the error that results from replacing by

when Compare your estimate
with the one you obtained in Exercise 23.

25. Estimate the error in the approximation 
when (Hint: Use not )

26. When show that may be replaced by 
with an error of magnitude no greater than 0.6% of h. Use

27. For what positive values of x can you replace by x with
an error of magnitude no greater than 1% of the value of x?

28. You plan to estimate by evaluating the Maclaurin series for
at Use the Alternating Series Estimation Theorem

to determine how many terms of the series you would have to add
to be sure the estimate is good to two decimal places.

29. a. Use the Taylor series for sin x and the Alternating Series Esti-
mation Theorem to show that

b. Graph together with the functions
and for Comment on

the relationships among the graphs.

30. a. Use the Taylor series for cos x and the Alternating Series Esti-
mation Theorem to show that

(This is the inequality in Section 2.2, Exercise 52.)

1
2

-

x2

24
6

1 - cos x

x2 6

1
2

, x Z 0.

-5 … x … 5.y = 1y = 1 - sx2>6d
ƒsxd = ssin xd>x

1 -

x2

6
6

sin x
x 6 1, x Z 0.

x = 1.tan-1 x
p>4

ln s1 + xd
e0.01

= 1.01 .

1 + heh0 … h … 0.01 ,

R3 .R4 ,ƒ x ƒ 6 0.5 .
sinh x = x + sx3>3!d

-0.1 6 x 6 0.1 + x + sx2>2d
ex

exx 6 0,

ƒ x ƒ 6 0.1 .

ex
= 1 + x + sx2>2d

ƒ x ƒ 6 0.01 .
21 + x = 1 + sx>2d

x 6 sin x?
ƒ x ƒ 6 10-3 ?sin x = x

1 - sx2>2d
ƒ x ƒ 6 0.5 ,1 - sx2>2d

5 * 10-4 ?
x - sx3>6d

2
s1 - xd3

1
s1 - xd2

x ln s1 + 2xdx2

1 - 2x
sin2 x

cos2 x = s1 + cos 2xd>2.cos2 x b. Graph together with
and for 

Comment on the relationships among the graphs.

Finding and Identifying Maclaurin Series
Recall that the Maclaurin series is just another name for the Taylor
series at Each of the series in Exercises 31–34 is the value of
the Maclaurin series of a function ƒ(x) at some point. What function
and what point? What is the sum of the series?

31.

32.

33.

34.

35. Multiply the Maclaurin series for and sin x together to find the
first five nonzero terms of the Maclaurin series for 

36. Multiply the Maclaurin series for and cos x together to find the
first five nonzero terms of the Maclaurin series for 

37. Use the identity to obtain the Maclaurin
series for Then differentiate this series to obtain the
Maclaurin series for 2 sin x cos x. Check that this is the series for
sin 2x.

38. (Continuation of Exercise 37.) Use the identity 
to obtain a power series for 

Theory and Examples
39. Taylor’s Theorem and the Mean Value Theorem Explain how

the Mean Value Theorem (Section 4.2, Theorem 4) is a special
case of Taylor’s Theorem.

40. Linearizations at inflection points Show that if the graph of a
twice-differentiable function ƒ(x) has an inflection point at

then the linearization of ƒ at is also the quadratic
approximation of ƒ at This explains why tangent lines fit
so well at inflection points.

41. The (second) second derivative test Use the equation

to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that Then

a. ƒ has a local maximum at a if throughout an interval
whose interior contains a;

b. ƒ has a local minimum at a if throughout an interval
whose interior contains a.

ƒ– Ú 0

ƒ– … 0

ƒ¿sad = 0.

ƒsxd = ƒsad + ƒ¿sadsx - ad +

ƒ–sc2d
2

 sx - ad2

x = a .
x = ax = a ,

cos2 x .cos 2x + sin2 x
cos2 x =

sin2 x .
sin2 x = s1 - cos 2xd>2

ex cos x .
ex

ex sin x .
ex

p -

p2

2
+

p3

3
-

Á
+ s -1dk - 1 

pk

k
+

Á

p

3
-

p3

33 # 3
+

p5

35 # 5
-

Á
+

s -1dkp2k + 1

32k + 1s2k + 1d
+

Á

1 -

p2

42 # 2!
+

p4

44 # 4!
-

Á
+

s -1dkspd2k

42k # s2k!d
+

Á

s0.1d -

s0.1d3

3!
+

s0.1d5

5!
-

Á
+

s -1dks0.1d2k + 1

s2k + 1d!
+

Á

x = 0.

-9 … x … 9.y = 1>2y = s1>2d - sx2>24d
ƒsxd = s1 - cos xd>x2
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11.9 Convergence of Taylor Series; Error Estimates 821

42. A cubic approximation Use Taylor’s formula with and
to find the standard cubic approximation of 

at Give an upper bound for the magnitude of
the error in the approximation when 

43. a. Use Taylor’s formula with to find the quadratic approxi-
mation of at (k a constant).

b. If for approximately what values of x in the interval
[0, 1] will the error in the quadratic approximation be less
than 1 100?

44. Improving approximations to 

a. Let P be an approximation of accurate to n decimals. Show
that gives an approximation correct to 3n decimals.
(Hint: Let )

b. Try it with a calculator.

45. The Taylor series generated by is
A function defined by a power series 

with a radius of convergence has a Taylor series that con-
verges to the function at every point of Show this by
showing that the Taylor series generated by is
the series itself.

An immediate consequence of this is that series like

and

obtained by multiplying Taylor series by powers of x, as well as
series obtained by integration and differentiation of convergent
power series, are themselves the Taylor series generated by the
functions they represent.

46. Taylor series for even functions and odd functions (Continua-
tion of Section 11.7, Exercise 45.) Suppose that 
converges for all x in an open interval Show that

a. If ƒ is even, then i.e., the Taylor
series for ƒ at contains only even powers of x.

b. If ƒ is odd, then i.e., the Taylor
series for ƒ at contains only odd powers of x.

47. Taylor polynomials of periodic functions

a. Show that every continuous periodic function 
is bounded in magnitude by showing that

there exists a positive constant M such that for
all x.

b. Show that the graph of every Taylor polynomial of positive
degree generated by must eventually move away
from the graph of cos x as increases. You can see this in
Figure 11.13. The Taylor polynomials of sin x behave in a
similar way (Figure 11.15).

ƒ x ƒ

ƒsxd = cos x

ƒ ƒsxd ƒ … M

- q 6 x 6 q ,
ƒsxd,

x = 0
a0 = a2 = a4 =

Á
= 0,

x = 0
a1 = a3 = a5 =

Á
= 0,

s -c, cd .
ƒsxd = gq

n=0 an xn

x2ex
= x2

+ x3
+

x4

2!
+

x5

3!
+

Á ,

x sin x = x2
-

x4

3!
+

x6

5!
-

x8

7!
+

Á

gq

n=0 an xn
ƒsxd = gq

n=0 an xn
s -c, cd .

c 7 0
gq

n=0 an xngq

n=0 an xn
ƒsxd = gq

n=0 an xn

P = p + x .
P + sin P

p

P

>
k = 3,

x = 0ƒsxd = s1 + xdk
n = 2

ƒ x ƒ … 0.1 .
x = 0.1>s1 - xd

ƒsxd =n = 3
a = 0 48. a. Graph the curves and 

together with the line 

b. Use a Taylor series to explain what you see. What is

Euler’s Identity
49. Use Equation (6) to write the following powers of e in the form

a. b. c.

50. Use Equation (6) to show that

51. Establish the equations in Exercise 50 by combining the formal
Taylor series for and 

52. Show that

a. b.

53. By multiplying the Taylor series for and sin x, find the terms
through of the Taylor series for This series is the imag-
inary part of the series for

Use this fact to check your answer. For what values of x should
the series for converge?

54. When a and b are real, we define with the equation

Differentiate the right-hand side of this equation to show that

Thus the familiar rule holds for k complex as
well as real.

55. Use the definition of to show that for any real numbers 
and 

a. b.

56. Two complex numbers and are equal if and only if
and Use this fact to evaluate

from

where is a complex constant of integration.C = C1 + iC2

Le sa + ibdx dx =

a - ib

a2
+ b2 e sa + ibdx

+ C ,

Le ax cos bx dx and Le ax sin bx dx

b = d .a = c
c + ida + ib

e-iu
= 1>eiu .eiu1eiu2

= eisu1 +u2d,

u2 ,
u, u1 ,eiu

sd>dxde kx
= ke kx

d
dx

 e sa + ibdx
= sa + ibde sa + ibdx .

e sa + ibdx
= eax # eibx

= eaxscos bx + i sin bxd .

e sa + ibdx

ex sin x

ex # eix
= e s1 + idx .

ex sin x .x5
ex

sinh iu = i sin u .cosh iu = cos u ,

e-iu .eiu

cos u =

eiu
+ e-iu

2
 and sin u =

eiu
- e-iu

2i
.

e-ip>2eip>4e-ip

a + bi .

lim
x:0

 
x - tan-1 x

x3  ?

y = 1>3.
y = sx - tan-1 xd>x3y = s1>3d - sx2d>5

T

T
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COMPUTER EXPLORATIONS
Linear, Quadratic, and Cubic Approximations
Taylor’s formula with and gives the linearization of a
function at With and we obtain the standard
quadratic and cubic approximations. In these exercises we explore the
errors associated with these approximations. We seek answers to two
questions:

a. For what values of x can the function be replaced by each
approximation with an error less than 

b. What is the maximum error we could expect if we replace the
function by each approximation over the specified interval?

Using a CAS, perform the following steps to aid in answering
questions (a) and (b) for the functions and intervals in Exercises
57–62.

Step 1: Plot the function over the specified interval.

Step 2: Find the Taylor polynomials and at

Step 3: Calculate the derivative associated
with the remainder term for each Taylor polynomial. Plot the de-
rivative as a function of c over the specified interval and estimate
its maximum absolute value, M.

ƒsn + 1dscdsn + 1dst

x = 0.
P3sxdP1sxd, P2sxd ,

10-2 ?

n = 3n = 2x = 0.
a = 0n = 1

Step 4: Calculate the remainder for each polynomial. Us-
ing the estimate M from Step 3 in place of plot 
over the specified interval. Then estimate the values of x that
answer question (a).

Step 5: Compare your estimated error with the actual error
by plotting over the specified in-

terval. This will help answer question (b).

Step 6: Graph the function and its three Taylor approximations
together. Discuss the graphs in relation to the information discov-
ered in Steps 4 and 5.

57.

58.

59.

60.

61.

62. ƒsxd = ex>3 sin 2x, ƒ x ƒ … 2

ƒsxd = e-x cos 2x, ƒ x ƒ … 1

ƒsxd = scos xdssin 2xd, ƒ x ƒ … 2

ƒsxd =

x

x2
+ 1

, ƒ x ƒ … 2

ƒsxd = s1 + xd3>2, -

1
2

… x … 2

ƒsxd =

121 + x
, ƒ x ƒ …

3
4

EnsxdEnsxd = ƒ ƒsxd - Pnsxd ƒ

Rnsxdƒsn + 1dscd ,
Rnsxd

822 Chapter 11: Infinite Sequences and Series

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 822



822 Chapter 11: Infinite Sequences and Series

Applications of Power Series

This section introduces the binomial series for estimating powers and roots and shows how
series are sometimes used to approximate the solution of an initial value problem, to eval-
uate nonelementary integrals, and to evaluate limits that lead to indeterminate forms. We
provide a self-contained derivation of the Taylor series for and conclude with a ref-
erence table of frequently used series.

The Binomial Series for Powers and Roots

The Taylor series generated by when m is constant, is

(1)

This series, called the binomial series, converges absolutely for To derive theƒ x ƒ 6 1.

+

msm - 1dsm - 2d Á sm - k + 1d
k!

 xk
+

Á .

1 + mx +

msm - 1d
2!

 x2
+

msm - 1dsm - 2d
3!

 x3
+

Á

ƒsxd = s1 + xdm ,

tan-1 x

11.10
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11.10 Applications of Power Series 823

series, we first list the function and its derivatives:

We then evaluate these at and substitute into the Taylor series formula to obtain
Series (1).

If m is an integer greater than or equal to zero, the series stops after terms
because the coefficients from on are zero.

If m is not a positive integer or zero, the series is infinite and converges for 
To see why, let be the term involving Then apply the Ratio Test for absolute conver-
gence to see that

Our derivation of the binomial series shows only that it is generated by and
converges for The derivation does not show that the series converges to 
It does, but we omit the proof.

s1 + xdm .ƒ x ƒ 6 1.
s1 + xdm

` uk + 1
uk
` = ` m - k

k + 1
 x ` : ƒ x ƒ as k : q .

xk .uk

ƒ x ƒ 6 1.
k = m + 1

sm + 1d

x = 0

 ƒskdsxd = msm - 1dsm - 2d Á sm - k + 1ds1 + xdm - k .

 o

 ƒ‡sxd = msm - 1dsm - 2ds1 + xdm - 3

 ƒ–sxd = msm - 1ds1 + xdm - 2

 ƒ¿sxd = ms1 + xdm - 1

 ƒsxd = s1 + xdm

The Binomial Series

For 

where we define

and

am
k
b =

msm - 1dsm - 2d Á sm - k + 1d
k!

 for k Ú 3.

am
1
b = m, am

2
b =

msm - 1d
2!

,

s1 + xdm
= 1 + a

q

k = 1
 am

k
b  xk ,

-1 6 x 6 1,

EXAMPLE 1 Using the Binomial Series

If 

and

a-1

k
b =

-1s -2ds -3d Á s -1 - k + 1d
k!

= s -1dk ak!
k!
b = s -1dk .

a-1

1
b = -1, a-1

2
b =

-1s -2d
2!

= 1,

m = -1,
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With these coefficient values and with x replaced by the binomial series formula gives
the familiar geometric series

EXAMPLE 2 Using the Binomial Series

We know from Section 3.8, Example 1, that for small. With
the binomial series gives quadratic and higher-order approximations as well,

along with error estimates that come from the Alternating Series Estimation Theorem:

Substitution for x gives still other approximations. For example,

Power Series Solutions of Differential Equations
and Initial Value Problems

When we cannot find a relatively simple expression for the solution of an initial value prob-
lem or differential equation, we try to get information about the solution in other ways. One
way is to try to find a power series representation for the solution. If we can do so, we im-
mediately have a source of polynomial approximations of the solution, which may be all
that we really need. The first example (Example 3) deals with a first-order linear differen-
tial equation that could be solved with the methods of Section 9.2. The example shows how,
not knowing this, we can solve the equation with power series. The second example (Exam-
ple 4) deals with an equation that cannot be solved analytically by previous methods.

EXAMPLE 3 Series Solution of an Initial Value Problem

Solve the initial value problem

Solution We assume that there is a solution of the form

(2)y = a0 + a1 x + a2 x2
+

Á
+ an - 1x

n - 1
+ an xn

+
Á .

y¿ - y = x, ys0d = 1.

A1 -
1
x L 1 -

1
2x

-
1

8x2 for ` 1x `  small, that is,  ƒ x ƒ  large.

21 - x 2
L 1 -

x 2

2
-

x4

8
 for  ƒ x 2

ƒ  small

 = 1 +

x
2

-

x2

8
+

x3

16
-

5x4

128
+

Á .

+

a1
2
b a- 1

2
b a- 3

2
b a- 5

2
b

4!
 x4

+
Á

s1 + xd1>2
= 1 +

x
2

+

a1
2
b a- 1

2
b

2!
 x2

+

a1
2
b a- 1

2
b a- 3

2
b

3!
 x3

m = 1>2,
ƒ x ƒ21 + x L 1 + sx>2d

s1 + xd-1
= 1 + a

q

k = 1
s -1dkxk

= 1 - x + x2
- x3

+
Á

+ s -1dkxk
+

Á .

-x ,
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11.10 Applications of Power Series 825

Our goal is to find values for the coefficients that make the series and its first derivative

(3)

satisfy the given differential equation and initial condition. The series is the differ-
ence of the series in Equations (2) and (3):

(4)

If y is to satisfy the equation the series in Equation (4) must equal x. Since
power series representations are unique (Exercise 45 in Section 11.7), the coefficients in
Equation (4) must satisfy the equations

We can also see from Equation (2) that when so that (this being the
initial condition). Putting it all together, we have

Substituting these coefficient values into the equation for y (Equation (2)) gives

The solution of the initial value problem is 
As a check, we see that

and

EXAMPLE 4 Solving a Differential Equation

Find a power series solution for

(5)y– + x2y = 0.

y¿ - y = s2ex
- 1d - s2ex

- 1 - xd = x .

ys0d = 2e0
- 1 - 0 = 2 - 1 = 1

y = 2ex
- 1 - x .

 = 1 + x + 2sex
- 1 - xd = 2ex

- 1 - x .

 
= 1 + x + 2 ax2

2!
+

x3

3!
+

Á
+

xn

n!
+

Áb
('''''')''''''*

the Taylor series for ex
- 1 - x

 y = 1 + x + 2 # x2

2!
+ 2 # x3

3!
+

Á
+ 2 # xn

n!
+

Á

 a3 =

a2

3
=

2
3 # 2

=
2
3!

, Á , an =

an - 1
n =

2
n!

, Á

 a0 = 1, a1 = a0 = 1,  a2 =

1 + a1

2
=

1 + 1
2

=
2
2

,

a0 = 1x = 0,y = a0

 o

 nan - an - 1 = 0

 o

 3a3 - a2 = 0

 2a2 - a1 = 1

 a1 - a0 = 0

y¿ - y = x ,

 + snan - an - 1dxn - 1
+

Á .

 y¿ - y = sa1 - a0d + s2a2 - a1dx + s3a3 - a2dx2
+

Á

y¿ - y

y¿ = a1 + 2a2 x + 3a3 x2
+

Á
+ nan xn - 1

+
Á

ak

Constant terms

Coefficients of x

Coefficients of x2

o

Coefficients of xn - 1

o
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Solution We assume that there is a solution of the form

(6)

and find what the coefficients have to be to make the series and its second derivative

(7)

satisfy Equation (5). The series for is times the right-hand side of Equation (6):

(8)

The series for is the sum of the series in Equations (7) and (8):

(9)

Notice that the coefficient of in Equation (8) is If y and its second derivative 
are to satisfy Equation (5), the coefficients of the individual powers of x on the right-hand
side of Equation (9) must all be zero:

(10)

and for all 

(11)

We can see from Equation (6) that

In other words, the first two coefficients of the series are the values of y and at 
Equations in (10) and the recursion formula in Equation (11) enable us to evaluate all the
other coefficients in terms of and 

The first two of Equations (10) give

Equation (11) shows that if then so we conclude that

and whenever or is zero. For the other coefficients we have

so that

and

 a13 =

-a9

12 # 13
=

-a1

4 # 5 # 8 # 9 # 12 # 13
.

 a5 =

-a1

5 # 4
, a9 =

-a5

9 # 8
=

a1

4 # 5 # 8 # 9

 a12 =

-a8

11 # 12
=

-a0

3 # 4 # 7 # 8 # 11 # 12

 a4 =

-a0

4 # 3
, a8 =

-a4

8 # 7
=

a0

3 # 4 # 7 # 8

an =

-an - 4

nsn - 1d

4k + 3, ann = 4k + 2

a6 = 0, a7 = 0, a10 = 0, a11 = 0,

an = 0;an - 4 = 0,

a2 = 0, a3 = 0.

a1 .a0

x = 0.y¿

a0 = ys0d, a1 = y¿s0d .

nsn - 1dan + an - 4 = 0.

n Ú 4,

2a2 = 0, 6a3 = 0, 12a4 + a0 = 0, 20a5 + a1 = 0,

y–an - 4 .xn - 2

 +
Á

+ snsn - 1dan + an - 4dxn - 2
+

Á .

 y– + x2y = 2a2 + 6a3 x + s12a4 + a0dx2
+ s20a5 + a1dx3

y– + x2y

x2y = a0 x2
+ a1 x3

+ a2 x4
+

Á
+ an xn + 2

+
Á .

x2x2y

y– = 2a2 + 3 # 2a3 x +
Á

+ nsn - 1dan xn - 2
+

Á

ak

y = a0 + a1 x + a2 x2
+

Á
+ an xn

+
Á ,
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11.10 Applications of Power Series 827

The answer is best expressed as the sum of two separate series—one multiplied by the
other by 

Both series converge absolutely for all x, as is readily seen by the Ratio Test.

Evaluating Nonelementary Integrals

Taylor series can be used to express nonelementary integrals in terms of series. Integrals
like arise in the study of the diffraction of light.

EXAMPLE 5 Express as a power series.

Solution From the series for sin x we obtain

Therefore,

EXAMPLE 6 Estimating a Definite Integral

Estimate with an error of less than 0.001.

Solution From the indefinite integral in Example 5,

The series alternates, and we find by experiment that

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

With two more terms we could estimate

with an error of less than With only one term beyond that we have

L
1

0
 sin x2 dx L

1
3

-
1
42

+
1

1320
-

1
75600

+
1

6894720
L 0.310268303,

10-6 .

L
1

0
 sin x2 dx L 0.310268

L
1

0
 sin x2 dx L

1
3

-
1
42

L 0.310.

1
11 # 5!

L 0.00076

L
1

0
 sin x2 dx =

1
3

-
1

7 # 3!
+

1
11 # 5!

-
1

15 # 7!
+

1
19 # 9!

-
Á .

11
0  sin x2 dx

L  sin x2 dx = C +

x3

3
-

x7

7 # 3!
+

x11

11 # 5!
-

x15

15 # 7!
+

x10

19 # 9!
-

Á .

sin x2
= x2

-

x6

3!
+

x10

5!
-

x14

7!
+

x18

9!
-

Á .

1  sin x2 dx

1  sin x2 dx

 + a1 ax -

x5

4 # 5
+

x9

4 # 5 # 8 # 9
-

x13

4 # 5 # 8 # 9 # 12 # 13
+

Áb .

y = a0 a1 -

x4

3 # 4
+

x8

3 # 4 # 7 # 8
-

x12

3 # 4 # 7 # 8 # 11 # 12
+

Áb
a1 :

a0 ,
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with an error of about To guarantee this accuracy with the error formula for
the Trapezoidal Rule would require using about 8000 subintervals.

Arctangents

In Section 11.7, Example 5, we found a series for by differentiating to get

and integrating to get

However, we did not prove the term-by-term integration theorem on which this conclusion
depended. We now derive the series again by integrating both sides of the finite formula

(12)

in which the last term comes from adding the remaining terms as a geometric series with
first term and ratio Integrating both sides of Equation (12)
from to gives

where

The denominator of the integrand is greater than or equal to 1; hence

If the right side of this inequality approaches zero as Therefore
if and

(13)

We take this route instead of finding the Taylor series directly because the formulas for the
higher-order derivatives of are unmanageable. When we put in Equation (13),
we get Leibniz’s formula:

Because this series converges very slowly, it is not used in approximating to many deci-
mal places. The series for converges most rapidly when x is near zero. For that rea-
son, people who use the series for to compute use various trigonometric identities.ptan-1 x

tan-1 x
p

p
4

= 1 -
1
3

+
1
5 -

1
7 +

1
9

-
Á

+

s -1dn

2n + 1
+

Á .

x = 1tan-1 x

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á , ƒ x ƒ … 1

tan-1 x = a
q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1.

ƒ x ƒ … 1limn:q Rnsxd = 0
n : q .ƒ x ƒ … 1,

ƒ Rnsxd ƒ … L
ƒ x ƒ

0
t2n + 2 dt =

ƒ x ƒ
2n + 3

2n + 3
.

Rnsxd = L
x

0
 
s -1dn + 1t2n + 2

1 + t2  dt .

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á

+ s -1dn 
x2n + 1

2n + 1
+ Rnsxd ,

t = xt = 0
r = - t2 .a = s -1dn + 1t2n + 2

1
1 + t2 = 1 - t2

+ t4
- t6

+
Á

+ s -1dnt2n
+

s -1dn + 1t2n + 2

1 + t2 ,

tan-1 x = x -

x3

3
+

x5

5 -

x7

7 +
Á .

d
dx

 tan-1 x =
1

1 + x2 = 1 - x2
+ x4

- x6
+

Á

tan-1 x

1.08 * 10-9 .
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11.10 Applications of Power Series 829

For example, if

then

and

Now Equation (13) may be used with to evaluate and with to
give The sum of these results, multiplied by 4, gives 

Evaluating Indeterminate Forms

We can sometimes evaluate indeterminate forms by expressing the functions involved as
Taylor series.

EXAMPLE 7 Limits Using Power Series

Evaluate

Solution We represent ln x as a Taylor series in powers of This can be accom-
plished by calculating the Taylor series generated by ln x at directly or by replacing
x by in the series for in Section 11.7, Example 6. Either way, we obtain

from which we find that

EXAMPLE 8 Limits Using Power Series

Evaluate

lim
x:0

 
sin x - tan x

x3 .

lim 
x:1

 
ln x

x - 1
= lim

x:1
 a1 -

1
2

 sx - 1d +
Áb = 1.

ln x = sx - 1d -
1
2

 sx - 1d2
+

Á ,

ln (1 + x)x - 1
x = 1

x - 1.

lim
x:1

 
ln x

x - 1
.

p .tan-1 (1>3).
x = 1>3tan-1 (1>2)x = 1>2

p
4

= a + b = tan-1 
1
2

+ tan-1 
1
3

.

tan sa + b d =

tan a + tan b

1 - tan a tan b
=

1
2 +

1
3

1 -
1
6

= 1 = tan 
p
4

a = tan-1 
1
2
 and b = tan-1 

1
3

,
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Solution The Taylor series for sin x and tan x, to terms in are

Hence,

and

If we apply series to calculate we not only find the limit suc-
cessfully but also discover an approximation formula for csc x.

EXAMPLE 9 Approximation Formula for csc x

Find 

Solution

Therefore,

From the quotient on the right, we can see that if is small, then

1
sin x

-
1
x L x # 1

3!
=

x
6
 or csc x L

1
x +

x
6

.

 ƒ x ƒ 

lim
x:0

 a 1
sin x

-
1
x b = lim

x:0
 §x 

1
3!

-

x2

5!
+

Á

1 -

x2

3!
+

Á

¥ = 0.

 =

x3 a 1
3!

-

x2

5!
+

Áb
x2 a1 -

x2

3!
+

Áb
= x 

1
3!

-

x2

5!
+

Á

1 -

x2

3!
+

Á

.

 
1

sin x
-

1
x =

x - sin x
x sin x

=

x - ax -

x3

3!
+

x5

5!
-

Áb
x # ax -

x3

3!
+

x5

5!
-

Áb

lim
x:0

 a 1
sin x

-
1
x b .

limx:0 ss1>sin xd - s1/xdd ,

 = -
1
2

.

 lim
x:0

 
sin x - tan x

x3 = lim
x:0

 a- 1
2

-

x2

8
-

Áb

sin x - tan x = -

x3

2
-

x5

8
-

Á
= x3 a- 1

2
-

x2

8
-

Áb

sin x = x -

x3

3!
+

x5

5!
-

Á, tan x = x +

x3

3
+

2x5

15
+

Á .

x5 ,
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11.10 Applications of Power Series 831

TABLE 11.1 Frequently used Taylor series

Binomial Series

where

Note: To write the binomial series compactly, it is customary to define to be 1 and to take (even in the usually

excluded case where ), yielding If m is a positive integer, the series terminates at and the

result converges for all x.

xms1 + xdm
= gq

k=0 am
k
bxk .x = 0

x0
= 1am

0
b

am
1
b = m, am

2
b =

msm - 1d
2!

, am
k
b =

msm - 1d Á sm - k + 1d
k!

 for k Ú 3.

 = 1 + a
q

k = 1
 am

k
bxk, ƒ x ƒ 6 1,

 s1 + xdm
= 1 + mx +

msm - 1dx2

2!
+

msm - 1dsm - 2dx3

3!
+

Á
+

msm - 1dsm - 2d Á sm - k + 1dxk

k!
+

Á

tan-1 x = x -

x3

3
+

x5

5 -
Á

+ s -1dn 
x2n + 1

2n + 1
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

2n + 1
, ƒ x ƒ … 1

ln 
1 + x
1 - x

= 2 tanh-1 x = 2 ax +

x3

3
+

x5

5 +
Á

+

x2n + 1

2n + 1
+

Áb = 2a
q

n = 0
 

x2n + 1

2n + 1
, ƒ x ƒ 6 1

ln s1 + xd = x -

x2

2
+

x3

3
-

Á
+ s -1dn - 1 

xn

n +
Á

= a
q

n = 1
 
s -1dn - 1xn

n , -1 6 x … 1

cos x = 1 -

x2

2!
+

x4

4!
-

Á
+ s -1dn 

x2n

s2nd!
+

Á
= a

q

n = 0
 
s -1dnx2n

s2nd!
, ƒ x ƒ 6 q

sin x = x -

x3

3!
+

x5

5!
-

Á
+ s -1dn 

x2n + 1

s2n + 1d!
+

Á
= a

q

n = 0
 
s -1dnx2n + 1

s2n + 1d!
, ƒ x ƒ 6 q

ex
= 1 + x +

x2

2!
+

Á
+

xn

n!
+

Á
= a

q

n = 0
 
xn

n!
, ƒ x ƒ 6 q

1
1 + x

= 1 - x + x2
-

Á
+ s -xdn

+
Á

= a
q

n = 0
s -1dnxn, ƒ x ƒ 6 1

1
1 - x

= 1 + x + x2
+

Á
+ xn

+
Á

= a
q

n = 0
xn, ƒ x ƒ 6 1
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EXERCISES 11.10

Binomial Series
Find the first four terms of the binomial series for the functions in Ex-
ercises 1–10.

1. 2. 3.

4. 5. 6. a1 -

x
2
b-2a1 +

x
2
b-2

s1 - 2xd1>2
s1 - xd-1>2s1 + xd1>3s1 + xd1>2

7. 8.

9. 10.

Find the binomial series for the functions in Exercises 11–14.

11. 12. s1 + x2d3s1 + xd4

a1 -

2
x b

1>3a1 +

1
x b

1>2
s1 + x2d-1>3s1 + x3d-1>2
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13. 14.

Initial Value Problems
Find series solutions for the initial value problems in Exercises 15–32.

15. 16.

17. 18.

19. 20.

21. 22.

23.

24.

25. and 

26. and 

27. and 

28. and 

29. and 

30. and 

31. and 

32. and 

Approximations and Nonelementary Integrals
In Exercises 33–36, use series to estimate the integrals’ values with an
error of magnitude less than (The answer section gives the inte-
grals’ values rounded to five decimal places.)

33. 34.

35. 36.

Use series to approximate the values of the integrals in Exercises
37–40 with an error of magnitude less than 

37. 38.

39. 40.

41. Estimate the error if is approximated by in the

integral 

42. Estimate the error if is approximated by 

in the integral 

In Exercises 43–46, find a polynomial that will approximate F(x)
throughout the given interval with an error of magnitude less than

43. Fsxd = L
x

0
 sin t2 dt, [0, 1]

10-3 .

11
0  cos 2t dt .

1 -

t
2

+

t2

4!
-

t3

6!
cos 2t

11
0  cos t2 dt .

1 -

t4

2
+

t8

4!
cos t2

L
1

0
 
1 - cos x

x2  dxL
0.1

0
21 + x4 dx

L
0.1

0
e-x2

 dxL
0.1

0
 
sin x

x  dx

10-8 .

L
0.25

0
23 1 + x2 dxL

0.1

0
 

121 + x4
 dx

L
0.2

0
 
e-x

- 1
x  dxL

0.2

0
 sin x2 dx

10-3 .

y s0d = 0y– - 2y¿ + y = 0, y¿s0d = 1

y s0d = ay– + x2y = x, y¿s0d = b

y s0d = ay– - x2y = 0, y¿s0d = b

y s2d = 0y– - y = -x, y¿s2d = -2

y s0d = -1y– - y = x, y¿s0d = 2

y s0d = 2y– + y = x, y¿s0d = 1

y s0d = 1y– + y = 0, y¿s0d = 0

y s0d = 0y– - y = 0, y¿s0d = 1

s1 + x2dy¿ + 2xy = 0, y s0d = 3

s1 - xdy¿ - y = 0, y s0d = 2

y¿ - x2y = 0, y s0d = 1y¿ - xy = 0, y s0d = 1

y¿ + y = 2x, y s0d = -1y¿ - y = x, y s0d = 0

y¿ + y = 1, y s0d = 2y¿ - y = 1, y s0d = 0

y¿ - 2y = 0, y s0d = 1y¿ + y = 0, y s0d = 1

a1 -

x
2
b4

s1 - 2xd3 44.

45. (a) [0, 0.5] (b) [0, 1]

46. (a) [0, 0.5] (b) [0, 1]

Indeterminate Forms
Use series to evaluate the limits in Exercises 47–56.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

Theory and Examples
57. Replace x by in the Taylor series for to obtain a se-

ries for Then subtract this from the Taylor series for
to show that for 

58. How many terms of the Taylor series for should you
add to be sure of calculating ln (1.1) with an error of magnitude
less than Give reasons for your answer.

59. According to the Alternating Series Estimation Theorem, how
many terms of the Taylor series for would you have to add
to be sure of finding with an error of magnitude less than

Give reasons for your answer.

60. Show that the Taylor series for diverges for

61. Estimating Pi About how many terms of the Taylor series for
would you have to use to evaluate each term on the right-

hand side of the equation

with an error of magnitude less than In contrast, the con-
vergence of to is so slow that even 50 terms
will not yield two-place accuracy.

62. Integrate the first three nonzero terms of the Taylor series for tan t
from 0 to x to obtain the first three nonzero terms of the Taylor
series for ln sec x.

p2>6gq

n=1s1>n2d
10-6 ?

p = 48 tan-1 
1
18

+ 32 tan-1 
1
57

- 20 tan-1 
1

239

tan-1 x

ƒ x ƒ 7 1.
ƒsxd = tan-1 x

10-3 ?
p>4

tan-1 1

10-8 ?

ln s1 + xd

ln 
1 + x
1 - x

= 2 ax +

x3

3
+

x5

5
+

Á b .

ƒ x ƒ 6 1,ln s1 + xd
ln s1 - xd .

ln s1 + xd-x

lim
x:2

 
x2

- 4
ln sx - 1d

lim
x:0

 
ln s1 + x2d
1 - cos x

lim
x: q

 sx + 1d sin 
1

x + 1
lim

x: q 
x2se-1>x2

- 1d

lim
y:0

 
tan-1 y - sin y

y3 cos y
lim
y:0

 
y - tan-1 y

y3

lim
u:0

 
sin u - u + su3>6d

u5lim
t:0

 
1 - cos t - st2>2d

t4

lim
x:0

 
ex

- e-x

xlim
x:0

 
ex

- s1 + xd
x2

Fsxd = L
x

0
 
ln s1 + td

t  dt,

Fsxd = L
x

0
 tan-1 t dt,

Fsxd = L
x

0
t2e-t2

 dt, [0, 1]
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833

63. a. Use the binomial series and the fact that

to generate the first four nonzero terms of the Taylor series
for What is the radius of convergence?

b. Series for Use your result in part (a) to find the first
five nonzero terms of the Taylor series for 

64. a. Series for Find the first four nonzero terms of the
Taylor series for

b. Use the first three terms of the series in part (a) to estimate
Give an upper bound for the magnitude of the

estimation error.

65. Obtain the Taylor series for from the series for

66. Use the Taylor series for to obtain a series for

67. Estimating Pi The English mathematician Wallis discovered
the formula

Find to two decimal places with this formula.

68. Construct a table of natural logarithms for 
by using the formula in Exercise 57, but taking advan-

tage of the relationships 
and to reduce

the job to the calculation of relatively few logarithms by series.
Start by using the following values for x in Exercise 57:

1
3

, 1
5

, 1
9

, 1
13

.

ln 10 = ln 2 + ln 5ln 8 = 3 ln 2, ln 9 = 2 ln 3 ,
ln 4 = 2 ln 2, ln 6 = ln 2 + ln 3, 

3, Á , 10
n = 1, 2, ln n

p

p

4
=

2 # 4 # 4 # 6 # 6 # 8 # Á

3 # 3 # 5 # 5 # 7 # 7 # Á
.

2x>s1 - x2d2 .
1>s1 - x2d

-1>s1 + xd .
1>s1 + xd2

sinh-1 0.25 .

sinh-1 x = L
x

0
 

dt21 + t2
.

sinh-1 x

cos-1 x .
cos-1 x

sin-1 x .

d
dx

 sin-1 x = s1 - x2d-1>2
69. Series for Integrate the binomial series for 

to show that for 

70. Series for for Derive the series

by integrating the series

in the first case from x to and in the second case from 
to x.

71. The value of

a. Use the formula for the tangent of the difference of two
angles to show that

b. Show that

c. Find the value of gq

n=1 tan-1 
2
n2 .

a
N

n = 1
 tan-1 

2
n2 = tan-1 sN + 1d + tan-1 N -

p

4
.

tan stan-1 sn + 1d - tan-1 sn - 1dd =

2
n2

gq

n=1 tan-1s2>n2d

- qq

1
1 + t2 =

1
t2 #  

1
1 + s1>t2d

=

1
t2 -

1
t4 +

1
t6 -

1
t8 +

Á

 tan-1 x = -

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 6 -1,

 tan-1 x =

p

2
-

1
x +

1
3x3 -

1
5x5 +

Á, x 7 1

ƒ x ƒ 7 1tan-1 x

sin-1 x = x + a
q

n = 1
 
1 # 3 # 5 # Á # s2n - 1d

2 # 4 # 6 # Á # s2nd
 

x2n + 1

2n + 1
.

ƒ x ƒ 6 1,
s1 - x2d-1>2sin-1 x

T

T

T
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Fourier Series

We have seen how Taylor series can be used to approximate a function ƒ by polynomials.
The Taylor polynomials give a close fit to ƒ near a particular point but the error in
the approximation can be large at points that are far away. There is another method that
often gives good approximations on wide intervals, and often works with discontinuous
functions for which Taylor polynomials fail. Introduced by Joseph Fourier, this method ap-
proximates functions with sums of sine and cosine functions. It is well suited for analyzing
periodic functions, such as radio signals and alternating currents, for solving heat transfer
problems, and for many other problems in science and engineering.

x = a ,

11.11

HISTORICAL BIOGRAPHY

Jean-Baptiste Joseph Fourier

(1766–1830)
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Suppose we wish to approximate a function ƒ on the interval by a sum of sine
and cosine functions,

or, in sigma notation,

(1)

We would like to choose values for the constants and that
make a “best possible” approximation to ƒ(x). The notion of “best possible” is
defined as follows:

1. and ƒ(x) give the same value when integrated from 0 to 

2. and ƒ(x) cos kx give the same value when integrated from 0 to

3. and ƒ(x) sin kx give the same value when integrated from 0 to

Altogether we impose conditions on 

It is possible to choose and so that all these conditions are
satisfied, by proceeding as follows. Integrating both sides of Equation (1) from 0 to 
gives

since the integral over of cos kx equals zero when as does the integral of
sin kx. Only the constant term contributes to the integral of over A similar
calculation applies with each of the other terms. If we multiply both sides of Equation (1)
by cos x and integrate from 0 to then we obtain

This follows from the fact that

and

L
2p

0
 cos px cos qx dx = L

2p

0
 cos px sin mx dx = L

2p

0
 sin px sin qx dx = 0

L
2p

0
 cos px cos px dx = p

L
2p

0
ƒnsxd cos x dx = pa1 .

2p

[0, 2p] .ƒna0

k Ú 1,[0, 2p]

L
2p

0
ƒnsxd dx = 2pa0

2p
b1, b2, Á , bna0, a1, a2, Á an

 L
2p

0
ƒnsxd sin kx dx = L

2p

0
ƒsxd sin kx dx, k = 1, Á , n .

 L
2p

0
ƒnsxd cos kx dx = L

2p

0
ƒsxd cos kx dx, k = 1, Á , n ,

 L
2p

0
ƒnsxd dx = L

2p

0
ƒsxd dx ,

ƒn :2n + 1

2p sk = 1, Á , nd .
ƒnsxd sin kx

2p sk = 1, Á , nd .
ƒnsxd cos kx

2p .ƒnsxd

ƒnsxd
b1, b2, Á , bna0, a1, a2, Á an

ƒnsxd = a0 + a
n

k = 1
sak cos kx + bk sin kxd .

 + san cos nx + bn sin nxd

ƒnsxd = a0 + sa1 cos x + b1 sin xd + sa2 cos 2x + b2 sin 2xd +
Á

[0, 2p]

834 Chapter 11: Infinite Sequences and Series

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 834



11.11 Fourier Series 835

whenever p, q and m are integers and p is not equal to q (Exercises 9–13). If we multiply
Equation (1) by sin x and integrate from 0 to we obtain

Proceeding in a similar fashion with

we obtain only one nonzero term each time, the term with a sine-squared or cosine-
squared term. To summarize,

We chose so that the integrals on the left remain the same when is replaced by ƒ, so
we can use these equations to find and from ƒ:

(2)

(3)

(4)

The only condition needed to find these coefficients is that the integrals above must exist.
If we let and use these rules to get the coefficients of an infinite series, then the re-
sulting sum is called the Fourier series for ƒ(x),

(5)

EXAMPLE 1 Finding a Fourier Series Expansion

Fourier series can be used to represent some functions that cannot be represented by Taylor
series; for example, the step function ƒ shown in Figure 11.16a.

ƒsxd = e1, if 0 … x … p

2, if p 6 x … 2p .

a0 + a
q

k = 1
sak cos kx + bk sin kxd .

n : q

bk =
1
pL

2p

0
ƒsxd sin kx dx, k = 1, Á , n

ak =
1
pL

2p

0
ƒsxd cos kx dx, k = 1, Á , n

a0 =
1

2pL
2p

0
ƒsxd dx

b1, b2, Á , bna0, a1, a2, Á an

ƒnƒn

 L
2p

0
ƒnsxd sin kx dx = pbk, k = 1, Á , n

 L
2p

0
ƒnsxd cos kx dx = pak, k = 1, Á , n

 L
2p

0
ƒnsxd dx = 2pa0

cos 2x, sin 2x, Á , cos nx, sin nx

L
2p

0
ƒnsxd sin x dx = pb1 .

2p
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The coefficients of the Fourier series of ƒ are computed using Equations (2), (3), and (4).

So

a0 =

3
2

, a1 = a2 =
Á

= 0,

 =

cos kp - 1
kp

=

s -1dk
- 1

kp
.

 =
1
p a c- cos kx

k
d

0

p

+ c- 2 cos kx
k

d
p

2pb

 =
1
p aL

p

0
 sin kx dx + L

2p

p

2 sin kx dxb

 bk =
1
pL

2p

0
ƒsxd sin kx dx

 =
1
p a csin kx

k
d

0

p

+ c2 sin kx
k
d
p

2pb = 0, k Ú 1

 =
1
p aL

p

0
 cos kx dx + L

2p

p

2 cos kx dxb

 ak =
1
pL

2p

0
ƒsxd cos kx dx

 =
1

2p
 aL

p

0
1 dx + L

2p

p

2 dxb =

3
2

 a0 =
1

2pL
2p

0
ƒsxd dx

836 Chapter 11: Infinite Sequences and Series

x

y

0 � 2�

1

2

(a)

x

y

0 �–�–2� 2� 3� 4�

1

2

(b)

FIGURE 11.16 (a) The step function

(b) The graph of the Fourier series for ƒ is periodic and has the value at each point of
discontinuity (Example 1).

3>2
ƒsxd = e1, 0 … x … p

2, p 6 x … 2p
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and

The Fourier series is

Notice that at where the function ƒ(x) jumps from 1 to 2, all the sine terms vanish,
leaving 3 2 as the value of the series. This is not the value of ƒ at since The
Fourier series also sums to 3 2 at and In fact, all terms in the Fourier se-
ries are periodic, of period and the value of the series at is the same as its
value at x. The series we obtained represents the periodic function graphed in Figure
11.16b, with domain the entire real line and a pattern that repeats over every interval of
width The function jumps discontinuously at and at
these points has value 3 2, the average value of the one-sided limits from each side. The
convergence of the Fourier series of ƒ is indicated in Figure 11.17.

> x = np, n = 0, ;1, ;2, Á2p .

x + 2p2p ,
x = 2p .x = 0> ƒspd = 1.p ,> x = p ,

3
2

-
2
p asin x +

sin 3x
3

+

sin 5x
5 +

Áb .

b1 = -
2
p, b2 = 0, b3 = -

2
3p

, b4 = 0, b5 = -
2

5p, b6 = 0, Á

1

0

1.5

2

x

y

2��

f

f1

f

f3

f

f5

(a)

0 2��

(b)

1

1.5

2

x

y

0 2��

(c)

x

y

1

1.5

2

f

f9

0
x

y

2��

(d)

1

1.5

2 f

f15

0
x

y

2��

(e)

1

1.5

2

FIGURE 11.17 The Fourier approximation functions and of the function in Example 1.ƒsxd = e1, 0 … x … p

2, p 6 x … 2p
ƒ15ƒ1, ƒ3, ƒ5, ƒ9 ,
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Convergence of Fourier Series

Taylor series are computed from the value of a function and its derivatives at a single point
and cannot reflect the behavior of a discontinuous function such as ƒ in Example 1

past a discontinuity. The reason that a Fourier series can be used to represent such functions
is that the Fourier series of a function depends on the existence of certain integrals, whereas
the Taylor series depends on derivatives of a function near a single point. A function can be
fairly “rough,” even discontinuous, and still be integrable.

The coefficients used to construct Fourier series are precisely those one should choose
to minimize the integral of the square of the error in approximating ƒ by That is,

is minimized by choosing and as we did. While Taylor series
are useful to approximate a function and its derivatives near a point, Fourier series mini-
mize an error which is distributed over an interval.

We state without proof a result concerning the convergence of Fourier series. A func-
tion is piecewise continuous over an interval I if it has finitely many discontinuities on the
interval, and at these discontinuities one-sided limits exist from each side. (See Chapter 5,
Additional Exercises 11–18.)

b1, b2, Á , bna0, a1, a2, Á an

L
2p

0
[ƒsxd - ƒnsxd]2 dx

ƒn .

x = a ,

838 Chapter 11: Infinite Sequences and Series

THEOREM 24 Let ƒ(x) be a function such that ƒ and are piecewise contin-
uous on the interval Then ƒ is equal to its Fourier series at all points
where ƒ is continuous. At a point c where ƒ has a discontinuity, the Fourier series
converges to

where and are the right- and left-hand limits of ƒ at c.ƒsc-dƒsc + d

ƒsc + d + ƒsc-d
2

[0, 2p] .
ƒ¿
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EXERCISES 11.11

Finding Fourier Series
In Exercises 1–8, find the Fourier series associated with the given
functions. Sketch each function.

1.

2.

3.

4.

5. ƒsxd = ex 0 … x … 2p .

ƒsxd = e x2, 0 … x … p

0, p 6 x … 2p

ƒsxd = e x, 0 … x … p

x - 2p, p 6 x … 2p

ƒsxd = e1, 0 … x … p

-1, p 6 x … 2p

ƒsxd = 1 0 … x … 2p .

6.

7.

8.

Theory and Examples
Establish the results in Exercises 9–13, where p and q are positive
integers.

9. L
2p

0
 cos px dx = 0 for all p .

ƒsxd = e2, 0 … x … p

-x, p 6 x … 2p

ƒsxd = e cos x, 0 … x … p

0, p 6 x … 2p

ƒsxd = e ex, 0 … x … p

0, p 6 x … 2p

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 838

tcu1111a.html
tcu1111a.html
tcu1111a.html


11.11 Fourier Series 839

10.

11.

12.

13.

sHint: sin A cos B = s1>2d[sin sA + Bd + sin sA - Bd].d
L

2p

0
 sin px cos qx dx = 0 for all p and q .

sHint: sin A sin B = s1>2d[cos sA - Bd - cos sA + Bd].d
L

2p

0
 sin px sin qx dx = e0, if p Z q

p, if p = q
.

sHint: cos A cos B = s1>2d[cossA + Bd + cossA - Bd].d
L

2p

0
 cos px cos qx dx = e0, if p Z q

p, if p = q
.

L
2p

0
 sin px dx = 0 for all p .

14. Fourier series of sums of functions If ƒ and g both satisfy the
conditions of Theorem 24, is the Fourier series of on

the sum of the Fourier series of ƒ and the Fourier series of
g? Give reasons for your answer.

15. Term-by-term differentiation

a. Use Theorem 24 to verify that the Fourier series for in
Exercise 3 converges to 

b. Although show that the series obtained by term-
by-term differentiation of the Fourier series in part (a)
diverges.

16. Use Theorem 24 to find the Value of the Fourier series determined

in Exercise 4 and show that
p

6

2

= a
q

n = 1
 
1
n2 .

ƒ¿sxd = 1,

ƒsxd for 0 6 x 6 2p .
ƒsxd

[0, 2p]
ƒ + g
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