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The Integral Test

Given a series we have two questions:

1. Does the series converge?

2. If it converges, what is its sum?

Much of the rest of this chapter is devoted to the first question, and in this section we answer that
question by making a connection to the convergence of the improper integral How-
ever, as a practical matter the second question is also important, and we will return to it later.

In this section and the next two, we study series that do not have negative terms. The
reason for this restriction is that the partial sums of these series form nondecreasing
sequences, and nondecreasing sequences that are bounded from above always converge
(Theorem 6, Section 11.1). To show that a series of nonnegative terms converges, we need
only show that its partial sums are bounded from above.

It may at first seem to be a drawback that this approach establishes the fact of conver-
gence without producing the sum of the series in question. Surely it would be better to
compute sums of series directly from formulas for their partial sums. But in most cases
such formulas are not available, and in their absence we have to turn instead to the two-
step procedure of first establishing convergence and then approximating the sum.

Nondecreasing Partial Sums

Suppose that is an infinite series with for all n. Then each partial sum is
greater than or equal to its predecessor because 

Since the partial sums form a nondecreasing sequence, the Nondecreasing Sequence The-
orem (Theorem 6, Section 11.1) tells us that the series will converge if and only if the par-
tial sums are bounded from above.
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11.3

Corollary of Theorem 6
A series of nonnegative terms converges if and only if its partial sums
are bounded from above.

gq

n=1 an

EXAMPLE 1 The Harmonic Series

The series

is called the harmonic series. The harmonic series is divergent, but this doesn’t follow
from the nth-Term Test. The nth term 1 n does go to zero, but the series still diverges. The
reason it diverges is because there is no upper bound for its partial sums. To see why,
group the terms of the series in the following way:
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11.3 The Integral Test 773

The sum of the first two terms is 1.5. The sum of the next two terms is which
is greater than The sum of the next four terms is 

which is greater than The sum of the next
eight terms is which is
greater than The sum of the next 16 terms is greater than and
so on. In general, the sum of terms ending with is greater than 
The sequence of partial sums is not bounded from above: If the partial sum is
greater than k 2. The harmonic series diverges.

The Integral Test

We introduce the Integral Test with a series that is related to the harmonic series, but
whose nth term is instead of 1 n.

EXAMPLE 2 Does the following series converge?

Solution We determine the convergence of by comparing it with
To carry out the comparison, we think of the terms of the series as values of

the function and interpret these values as the areas of rectangles under the
curve 

As Figure 11.7 shows,

Thus the partial sums of are bounded from above (by 2) and the series
converges. The sum of the series is known to be (See Exercise 16 in
Section 11.11.)
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FIGURE 11.7 The sum of the areas of the
rectangles under the graph of 
is less than the area under the graph
(Example 2).

f (x) = 1>x2

As in Section 8.8, Example 3,

1q

1 s1>x2d dx = 1 .

THEOREM 9 The Integral Test
Let be a sequence of positive terms. Suppose that where ƒ is a
continuous, positive, decreasing function of x for all (N a positive inte-
ger). Then the series and the integral both converge or both
diverge.

1q
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x Ú N
an = ƒsnd ,5an6

Proof We establish the test for the case The proof for general N is similar.
We start with the assumption that ƒ is a decreasing function with for every

n. This leads us to observe that the rectangles in Figure 11.8a, which have areas
ƒsnd = an

N = 1.

Caution
The series and integral need not have the
same value in the convergent case. As we
noted in Example 2, 

while 1q

1 s1>x2d dx = 1.p2>6
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collectively enclose more area than that under the curve from
to That is,

In Figure 11.8b the rectangles have been faced to the left instead of to the right. If we mo-
mentarily disregard the first rectangle, of area we see that

If we include we have

Combining these results gives

These inequalities hold for each n, and continue to hold as 

If is finite, the right-hand inequality shows that is finite. If

is infinite, the left-hand inequality shows that is infinite. Hence the series

and the integral are both finite or both infinite.

EXAMPLE 3 The p-Series

Show that the p-series

( p a real constant) converges if and diverges if 

Solution If then is a positive decreasing function of x. Since

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
The series converges, but we don’t know the value it converges to.

If then and

The series diverges by the Integral Test.
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FIGURE 11.8 Subject to the conditions of
the Integral Test, the series and
the integral both converge or
both diverge.
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11.3 The Integral Test 775

If we have the (divergent) harmonic series

We have convergence for but divergence for every other value of p.

The p-series with is the harmonic series (Example 1). The p-Series Test shows
that the harmonic series is just barely divergent; if we increase p to 1.000000001, for in-
stance, the series converges!

The slowness with which the partial sums of the harmonic series approaches infinity
is impressive. For instance, it takes about 178,482,301 terms of the harmonic series to
move the partial sums beyond 20. It would take your calculator several weeks to compute a
sum with this many terms. (See also Exercise 33b.)

EXAMPLE 4 A Convergent Series

The series

converges by the Integral Test. The function is positive, continuous,
and decreasing for and

Again we emphasize that is not the sum of the series. The series converges, but we do
not know the value of its sum.

Convergence of the series in Example 4 can also be verified by comparison with the
series Comparison tests are studied in the next section.g1>n2 .
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11.3 The Integral Test 775

EXERCISES 11.3

Determining Convergence or Divergence
Which of the series in Exercises 1–30 converge, and which diverge?
Give reasons for your answers. (When you check an answer, remem-
ber that there may be more than one way to determine the series’ con-
vergence or divergence.)
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23. 24.

25. 26.

27. 28.

29. 30.

Theory and Examples
For what values of a, if any, do the series in Exercises 31 and 32
converge?

31. 32.

33. a. Draw illustrations like those in Figures 11.7 and 11.8 to show that
the partial sums of the harmonic series satisfy the inequalities

b. There is absolutely no empirical evidence for the divergence
of the harmonic series even though we know it diverges. The
partial sums just grow too slowly. To see what we mean,
suppose you had started with the day the universe was
formed, 13 billion years ago, and added a new term every
second. About how large would the partial sum be today,
assuming a 365-day year?

34. Are there any values of x for which converges?
Give reasons for your answer.

35. Is it true that if is a divergent series of positive numbers
then there is also a divergent series of positive numbers
with for every n? Is there a “smallest” divergent series of
positive numbers? Give reasons for your answers.

36. (Continuation of Exercise 35.) Is there a “largest” convergent se-
ries of positive numbers? Explain.

37. The Cauchy condensation test The Cauchy condensation test
says: Let be a nonincreasing sequence ( for all n)
of positive terms that converges to 0. Then converges if and
only if converges. For example, diverges because

diverges. Show why the test works.

38. Use the Cauchy condensation test from Exercise 37 to show that
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39. Logarithmic p-series

a. Show that

converges if and only if 

b. What implications does the fact in part (a) have for the
convergence of the series

Give reasons for your answer.

40. (Continuation of Exercise 39.) Use the result in Exercise 39 to de-
termine which of the following series converge and which di-
verge. Support your answer in each case.

a. b.

c. d.

41. Euler’s constant Graphs like those in Figure 11.8 suggest that as
n increases there is little change in the difference between the sum

and the integral

To explore this idea, carry out the following steps.

a. By taking in the proof of Theorem 9, show that
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777

Since a decreasing sequence that is bounded from below con-
verges (Exercise 107 in Section 11.1), the numbers defined in
part (a) converge:

The number whose value is is called Euler’s con-
stant. In contrast to other special numbers like and e, no otherp

0.5772 Á ,g ,

1 +

1
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+
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+

1
n - ln n : g .

an

expression with a simple law of formulation has ever been found
for 

42. Use the integral test to show that

converges.
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11.4 Comparison Tests 777

Comparison Tests

We have seen how to determine the convergence of geometric series, p-series, and a few
others. We can test the convergence of many more series by comparing their terms to those
of a series whose convergence is known.

11.4

THEOREM 10 The Comparison Test
Let be a series with no negative terms.

(a) converges if there is a convergent series with for all
for some integer N.

(b) diverges if there is a divergent series of nonnegative terms with
for all for some integer N.n 7 N ,an Ú dn

gdngan

n 7 N ,
an … cngcngan

gan

Proof In Part (a), the partial sums of are bounded above by

They therefore form a nondecreasing sequence with a limit 
In Part (b), the partial sums of are not bounded from above. If they were, the par-

tial sums for would be bounded by

and would have to converge instead of diverge.

EXAMPLE 1 Applying the Comparison Test

(a) The series

diverges because its nth term

is greater than the nth term of the divergent harmonic series.
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778 Chapter 11: Infinite Sequences and Series

(b) The series

converges because its terms are all positive and less than or equal to the correspon-
ding terms of

The geometric series on the left converges and we have

The fact that 3 is an upper bound for the partial sums of does not
mean that the series converges to 3. As we will see in Section 11.9, the series con-
verges to e.

(c) The series

converges. To see this, we ignore the first three terms and compare the remaining terms
with those of the convergent geometric series The term of
the truncated sequence is less than the corresponding term of the geometric se-
ries. We see that term by term we have the comparison,

So the truncated series and the original series converge by an application of the Com-
parison Test.

The Limit Comparison Test

We now introduce a comparison test that is particularly useful for series in which is a
rational function of n.
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THEOREM 11 Limit Comparison Test
Suppose that and for all (N an integer).

1. If then and both converge or both diverge.

2. If and converges, then converges.

3. If and diverges, then diverges.gangbnlim
n: q
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11.4 Comparison Tests 779

Proof We will prove Part 1. Parts 2 and 3 are left as Exercises 37(a) and (b).
Since there exists an integer N such that for all n

Thus, for 

If converges, then converges and converges by the Direct Compari-
son Test. If diverges, then diverges and diverges by the Direct Com-
parison Test.

EXAMPLE 2 Using the Limit Comparison Test

Which of the following series converge, and which diverge?

(a)

(b)

(c)

Solution

(a) Let For large n, we expect to behave like
since the leading terms dominate for large n, so we let Since

and
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P = c>2, L = c ,
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(b) Let For large n, we expect to behave like so we let
Since

and

converges by Part 1 of the Limit Comparison Test.

(c) Let For large n, we expect to behave like
which is greater than 1 n for so we take 

Since

and

diverges by Part 3 of the Limit Comparison Test.

EXAMPLE 3 Does converge?

Solution Because ln n grows more slowly than for any positive constant c
(Section 11.1, Exercise 91), we would expect to have

for n sufficiently large. Indeed, taking and we have

Since (a p-series with ) converges, converges by Part 2 of
the Limit Comparison Test.
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EXERCISES 11.4

Determining Convergence or Divergence
Which of the series in Exercises 1–36 converge, and which diverge?
Give reasons for your answers.

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.

25. 26.

27. 28.

29. 30. 31.

32. 33. 34.

35. 36.

Theory and Examples
37. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.
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+ 32
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Á
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a
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1
3n - 1

+ 1a
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+ 1a

q
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1

n2n2
- 1

a
q

n = 1
 

1
s1 + ln2 nda
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1
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12n3
+ 2

a
q
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n22n
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3n - 1a
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1 + cos n

n2

a
q

n = 1
 
sin2 n

2na
q

n = 1
 

3

n + 2n
a
q

n = 1
 

1
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38. If is a convergent series of nonnegative numbers, can
anything be said about Explain.

39. Suppose that and for (N an integer). If
and converges, can anything be said

about Give reasons for your answer.

40. Prove that if is a convergent series of nonnegative terms,
then converges.

COMPUTER EXPLORATION

41. It is not yet known whether the series

converges or diverges. Use a CAS to explore the behavior of the
series by performing the following steps.

a. Define the sequence of partial sums

What happens when you try to find the limit of as 
Does your CAS find a closed form answer for this limit?

b. Plot the first 100 points for the sequence of partial
sums. Do they appear to converge? What would you estimate
the limit to be?

c. Next plot the first 200 points Discuss the behavior in
your own words.

d. Plot the first 400 points What happens when
Calculate the number 355 113. Explain from your

calculation what happened at For what values of k
would you guess this behavior might occur again?

You will find an interesting discussion of this series in Chapter 72
of Mazes for the Mind by Clifford A. Pickover, St. Martin’s Press,
Inc., New York, 1992.

k = 355.
>k = 355?

sk, skd .

sk, skd .

sk, skd

k : q ?sk

sk = a
k

n = 1
 

1
n3 sin2 n

.

a
q

n = 1
 

1
n3 sin2 n

gan
2
gan

g bn ?
ganlim n:q san>bnd = q

n Ú Nbn 7 0an 7 0

gq

n=1san>nd?
gq

n=1 an
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The Ratio and Root Tests

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio
For a geometric series this rate is a constant and the

series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a
powerful rule extending that result. We prove it on the next page using the Comparison Test.

ssarn + 1d>sarnd = rd ,garn ,an + 1>an .

11.5
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Proof

(a) Let r be a number between and 1. Then the number is positive.
Since

must lie within of when n is large enough, say for all In particular

That is,

These inequalities show that the terms of our series, after the Nth term, approach zero
more rapidly than the terms in a geometric series with ratio More precisely,
consider the series where for and 

Now for all n, and

The geometric series converges because so con-
verges. Since also converges.

(b) From some index M on,

The terms of the series do not approach zero as n becomes infinite, and the series
diverges by the nth-Term Test.

an + 1
an

7 1  and  aM 6 aM + 1 6 aM + 2 6
Á .

1<R ◊ ˆ .

an … cn, gan

gcnƒ r ƒ 6 1,1 + r + r2
+

Á

 = a1 + a2 +
Á

+ aN - 1 + aN s1 + r + r2
+

Ád .

 a
q

n = 1
cn = a1 + a2 +

Á
+ aN - 1 + aN + raN + r2aN +

Á

an … cnr2aN, Á , cN + m = rmaN, Á .
cN + 1 = raN, cN + 2 =n = 1, 2, Á , Ncn = angcn ,

r 6 1.

 aN + m 6 raN + m - 1 6 r maN .

 o

 aN + 3 6 raN + 2 6 r 3aN ,

 aN + 2 6 raN + 1 6 r 2aN ,

 aN + 1 6 raN ,

an + 1
an

6 r + P = r, when n Ú N .

n Ú N .rPan + 1>an

an + 1
an

: r ,

P = r - rrR<1.

782 Chapter 11: Infinite Sequences and Series

THEOREM 12 The Ratio Test
Let be a series with positive terms and suppose that

Then

(a) the series converges if ,

(b) the series diverges if or is infinite,

(c) the test is inconclusive if r = 1.

rr 7 1

r 6 1

lim
n: q

 
an + 1
an

= r .

gan
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11.5 The Ratio and Root Tests 783

(c) The two series

show that some other test for convergence must be used when 

In both cases, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of ex-
pressions involving n or expressions raised to a power involving n.

EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

(a) (b) (c)

Solution

(a) For the series 

The series converges because is less than 1. This does not mean that 2 3 is
the sum of the series. In fact,

(b) If then and

The series diverges because is greater than 1.

(c) If then

 =

4sn + 1dsn + 1d
s2n + 2ds2n + 1d

=

2sn + 1d
2n + 1

: 1.

 
an + 1
an

=

4n + 1sn + 1d!sn + 1d!
s2n + 2ds2n + 1ds2nd!

#
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4nn!n!
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r = 4
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n + 1

: 4.
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,

a
q

n = 0
 
2n

+ 5
3n = a

q
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 a2

3
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q
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5
3n =

1
1 - s2>3d

+

5
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=
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.

>r = 2>3
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+ 5d>3n + 1
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1
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 #  
2n + 1

+ 5
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1
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1 + 5 # 2-n b : 1
3

# 2
1

=
2
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.

gq

n=0 s2n
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a
q
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n!n!a

q
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2n

+ 5
3n

r = 1,
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q

n = 1
 
1
n2: an + 1

an
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1>sn + 1d2

1>n2 = a n
n + 1

b2

: 12
= 1.

For a
q

n = 1
 
1
n:  

an + 1
an

=

1>sn + 1d
1>n =

n
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1
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Because the limit is we cannot decide from the Ratio Test whether the series
converges. When we notice that we conclude that

is always greater than because is always greater than 1.
Therefore, all terms are greater than or equal to and the nth term does not ap-
proach zero as The series diverges.

The Root Test

The convergence tests we have so far for work best when the formula for is rela-
tively simple. But consider the following.

EXAMPLE 2 Let Does converge?

Solution We write out several terms of the series:

Clearly, this is not a geometric series. The nth term approaches zero as so we do
not know if the series diverges. The Integral Test does not look promising. The Ratio Test
produces

As the ratio is alternately small and large and has no limit.
A test that will answer the question (the series converges) is the Root Test.

n : q ,

an + 1
an

= d 1
2n

, n odd  

n + 1
2

, n even.

n : q ,

 =
1
2

+
1
4

+

3
8

+
1
16

+

5
32

+
1

64
+

7
128

+
Á .

 a
q

n = 1
an =

1
21 +

1
22 +

3
23 +

1
24 +

5
25 +

1
26 +

7
27 +

Á

ganan = en>2n, n odd

1>2n, n even.

angan

n : q .
a1 = 2,

s2n + 2d>s2n + 1danan + 1

an + 1>an = s2n + 2d>s2n + 1d ,
r = 1,

784 Chapter 11: Infinite Sequences and Series

THEOREM 13 The Root Test
Let be a series with for and suppose that

Then

(a) the series converges if 

(b) the series diverges if or is infinite,

(c) the test is inconclusive if r = 1.

rr 7 1

r 6 1,

lim
n: q

2n an = r .

n Ú N ,an Ú 0gan

Proof

(a) Choose an so small that Since the terms 
eventually get closer than to In other words, there exists an index such
that 2n an 6 r + P when n Ú M .

M Ú Nr .P

2n an2n an : r ,r + P 6 1.P 7 0R<1.

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 784



11.5 The Ratio and Root Tests 785

Then it is also true that

Now, a geometric series with ratio converges. By
comparison, converges, from which it follows that

converges.

(b) For all indices beyond some integer M, we have so that
for The terms of the series do not converge to zero. The series di-

verges by the nth-Term Test.

(c) The series and show that the test is not conclusive
when The first series diverges and the second converges, but in both cases

EXAMPLE 3 Applying the Root Test

Which of the following series converges, and which diverges?

(a) (b) (c)

Solution

(a) converges because 

(b) diverges because 

(c) converges because 

EXAMPLE 2 Revisited

Let Does converge?

Solution We apply the Root Test, finding that

Therefore,

Since (Section 11.1, Theorem 5), we have by the Sandwich
Theorem. The limit is less than 1, so the series converges by the Root Test.

limn:q2n an = 1>22n n : 1

1
2

… 2n an …

2n n
2

.

2n an = e2n n>2, n odd 
1>2, n even.

ganan = en>2n, n odd

1>2n, n even.

Bn a 1
1 + n

bn

=
1

1 + n
 :  0 6 1.a

q

n = 1
 a 1

1 + n
bn

An 2n

n2 =
2

A2n n B2 :  
2
1

7 1.a
q

n = 1
 
2n

n2

Bn n2

2n =

2n n22n 2n
=

A2n n B2
2

 :  
1
2

6 1.a
q

n = 1
 
n2

2n

a
q

n = 1
 a 1

1 + n
bn

a
q

n = 1
 
2n

n2a
q

n = 1
 
n2

2n

2n an : 1.
r = 1.

gq

n=1 s1>n2dgq

n=1 s1>ndR = 1.

n 7 M .an 7 1
2n an 7 1,1<R ◊ ˆ .

a
q

n = 1
an = a1 +

Á
+ aM - 1 + a

q

n = M
an

gq

n=M an

sr + Pd 6 1,gq

n=M sr + Pdn ,

an 6 sr + Pdn for n Ú M .

4100 AWL/Thomas_ch11p746-847  8/25/04  2:41 PM  Page 785



786 Chapter 11: Infinite Sequences and Series

EXERCISES 11.5

Determining Convergence or Divergence
Which of the series in Exercises 1–26 converge, and which diverge?
Give reasons for your answers. (When checking your answers, remem-
ber there may be more than one way to determine a series’ conver-
gence or divergence.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Which of the series defined by the formulas in Exercises
27–38 converge, and which diverge? Give reasons for your answers.

27.

28.

29.

30.
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n an
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32.

33.

34.

35.

36.

37.

38.

Which of the series in Exercises 39–44 converge, and which diverge?
Give reasons for your answers.

39. 40.

41. 42.

43.

44.

Theory and Examples
45. Neither the Ratio nor the Root Test helps with p-series. Try them

on

and show that both tests fail to provide information about conver-
gence.

46. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

47. Let 

Does converge? Give reasons for your answer.gan

an = en>2n, if n is a prime number

1>2n, otherwise.
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