

## Infinite SEQUENCES and Series

OVERVIEW While everyone knows how to add together two numbers, or even several, how to add together infinitely many numbers is not so clear. In this chapter we study such questions, the subject of the theory of infinite series. Infinite series sometimes have a finite sum, as in

$$
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots=1
$$

This sum is represented geometrically by the areas of the repeatedly halved unit square shown here. The areas of the small rectangles add together to give the area of the unit square, which they fill. Adding together more and more terms gets us closer and closer to the total.


Other infinite series do not have a finite sum, as with

$$
1+2+3+4+5+\cdots
$$

The sum of the first few terms gets larger and larger as we add more and more terms. Taking enough terms makes these sums larger than any prechosen constant.

With some infinite series, such as the harmonic series

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdots
$$

it is not obvious whether a finite sum exists. It is unclear whether adding more and more terms gets us closer to some sum, or gives sums that grow without bound.

As we develop the theory of infinite sequences and series, an important application gives a method of representing a differentiable function $f(x)$ as an infinite sum of powers of $x$. With this method we can extend our knowledge of how to evaluate, differentiate, and integrate polynomials to a class of functions much more general than polynomials. We also investigate a method of representing a function as an infinite sum of sine and cosine functions. This method will yield a powerful tool to study functions.

## Historical Essay

Sequences and Series


History

A sequence is a list of numbers

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

in a given order. Each of $a_{1}, a_{2}, a_{3}$ and so on represents a number. These are the terms of the sequence. For example the sequence

$$
2,4,6,8,10,12, \ldots, 2 n, \ldots
$$

has first term $a_{1}=2$, second term $a_{2}=4$ and $n$th term $a_{n}=2 n$. The integer $n$ is called the index of $a_{n}$, and indicates where $a_{n}$ occurs in the list. We can think of the sequence

$$
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots
$$

as a function that sends 1 to $a_{1}, 2$ to $a_{2}, 3$ to $a_{3}$, and in general sends the positive integer $n$ to the $n$th term $a_{n}$. This leads to the formal definition of a sequence.

## DEFINITION Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive integers.

The function associated to the sequence

$$
2,4,6,8,10,12, \ldots, 2 n, \ldots
$$

sends 1 to $a_{1}=2,2$ to $a_{2}=4$, and so on. The general behavior of this sequence is described by the formula

$$
a_{n}=2 n
$$

We can equally well make the domain the integers larger than a given number $n_{0}$, and we allow sequences of this type also.

The sequence

$$
12,14,16,18,20,22 \ldots
$$

is described by the formula $a_{n}=10+2 n$. It can also be described by the simpler formula $b_{n}=2 n$, where the index $n$ starts at 6 and increases. To allow such simpler formulas, we let the first index of the sequence be any integer. In the sequence above, $\left\{a_{n}\right\}$ starts with $a_{1}$ while $\left\{b_{n}\right\}$ starts with $b_{6}$. Order is important. The sequence $1,2,3,4 \ldots$ is not the same as the sequence $2,1,3,4 \ldots$

Sequences can be described by writing rules that specify their terms, such as

$$
\begin{aligned}
a_{n} & =\sqrt{n}, \\
b_{n} & =(-1)^{n+1} \frac{1}{n} \\
c_{n} & =\frac{n-1}{n}, \\
d_{n} & =(-1)^{n+1}
\end{aligned}
$$

or by listing terms,

$$
\begin{aligned}
& \left\{a_{n}\right\}=\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots\} \\
& \left\{b_{n}\right\}=\left\{1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots,(-1)^{n+1} \frac{1}{n}, \ldots\right\} \\
& \left\{c_{n}\right\}=\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, \frac{n-1}{n}, \ldots\right\} \\
& \left\{d_{n}\right\}=\left\{1,-1,1,-1,1,-1, \ldots,(-1)^{n+1}, \ldots\right\}
\end{aligned}
$$

We also sometimes write

$$
\left\{a_{n}\right\}=\{\sqrt{n}\}_{n=1}^{\infty} .
$$

Figure 11.1 shows two ways to represent sequences graphically. The first marks the first few points from $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ on the real axis. The second method shows the graph of the function defining the sequence. The function is defined only on integer inputs, and the graph consists of some points in the $x y$-plane, located at $\left(1, a_{1}\right)$, $\left(2, a_{2}\right), \ldots,\left(n, a_{n}\right), \ldots$.


FIGURE 11.1 Sequences can be represented as points on the real line or as points in the plane where the horizontal axis $n$ is the index number of the term and the vertical axis $a_{n}$ is its value.

## Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index $n$ increases. This happens in the sequence

$$
\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots\right\}
$$

whose terms approach 0 as $n$ gets large, and in the sequence

$$
\left\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots, 1-\frac{1}{n}, \ldots\right\}
$$



FIGURE $11.2 a_{n} \rightarrow L$ if $y=L$ is a horizontal asymptote of the sequence of points $\left\{\left(n, a_{n}\right)\right\}$. In this figure, all the $a_{n}$ 's after $a_{N}$ lie within $\epsilon$ of $L$.

## Historical Biography

## Nicole Oresme

(ca. 1320-1382)
whose terms approach 1 . On the other hand, sequences like

$$
\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots\}
$$

have terms that get larger than any number as $n$ increases, and sequences like

$$
\left\{1,-1,1,-1,1,-1, \ldots,(-1)^{n+1}, \ldots\right\}
$$

bounce back and forth between 1 and -1 , never converging to a single value. The following definition captures the meaning of having a sequence converge to a limiting value. It says that if we go far enough out in the sequence, by taking the index $n$ to be larger then some value $N$, the difference between $a_{n}$ and the limit of the sequence becomes less than any preselected number $\epsilon>0$.

## DEFINITIONS Converges, Diverges, Limit

The sequence $\left\{a_{n}\right\}$ converges to the number $L$ if to every positive number $\epsilon$ there corresponds an integer $N$ such that for all $n$,

$$
n>N \quad \Rightarrow \quad\left|a_{n}-L\right|<\epsilon
$$

If no such number $L$ exists, we say that $\left\{a_{n}\right\}$ diverges.
If $\left\{a_{n}\right\}$ converges to $L$, we write $\lim _{n \rightarrow \infty} a_{n}=L$, or simply $a_{n} \rightarrow L$, and call $L$ the limit of the sequence (Figure 11.2).

The definition is very similar to the definition of the limit of a function $f(x)$ as $x$ tends to $\infty\left(\lim _{x \rightarrow \infty} f(x)\right.$ in Section 2.4). We will exploit this connection to calculate limits of sequences.

## EXAMPLE 1 Applying the Definition

Show that
$\begin{array}{ll}\text { (a) } \lim _{n \rightarrow \infty} \frac{1}{n}=0 & \text { (b) } \lim _{n \rightarrow \infty} k=k \quad \text { (any constant } k \text { ) }\end{array}$

## Solution

(a) Let $\epsilon>0$ be given. We must show that there exists an integer $N$ such that for all $n$,

$$
n>N \quad \Rightarrow \quad\left|\frac{1}{n}-0\right|<\epsilon
$$

This implication will hold if $(1 / n)<\epsilon$ or $n>1 / \epsilon$. If $N$ is any integer greater than $1 / \epsilon$, the implication will hold for all $n>N$. This proves that $\lim _{n \rightarrow \infty}(1 / n)=0$.
(b) Let $\epsilon>0$ be given. We must show that there exists an integer $N$ such that for all $n$,

$$
n>N \quad \Rightarrow \quad|k-k|<\epsilon
$$

Since $k-k=0$, we can use any positive integer for $N$ and the implication will hold. This proves that $\lim _{n \rightarrow \infty} k=k$ for any constant $k$.

## EXAMPLE 2 A Divergent Sequence

Show that the sequence $\left\{1,-1,1,-1,1,-1, \ldots,(-1)^{n+1}, \ldots\right\}$ diverges.
Solution Suppose the sequence converges to some number $L$. By choosing $\epsilon=1 / 2$ in the definition of the limit, all terms $a_{n}$ of the sequence with index $n$ larger than some $N$ must lie within $\epsilon=1 / 2$ of $L$. Since the number 1 appears repeatedly as every other term of the sequence, we must have that the number 1 lies within the distance $\epsilon=1 / 2$ of $L$. It follows that $|L-1|<1 / 2$, or equivalently, $1 / 2<L<3 / 2$. Likewise, the number -1 appears repeatedly in the sequence with arbitrarily high index. So we must also have that $|L-(-1)|<1 / 2$, or equivalently, $-3 / 2<L<-1 / 2$. But the number $L$ cannot lie in both of the intervals $(1 / 2,3 / 2)$ and $(-3 / 2,-1 / 2)$ because they have no overlap. Therefore, no such limit $L$ exists and so the sequence diverges.

Note that the same argument works for any positive number $\epsilon$ smaller than 1 , not just $1 / 2$.

The sequence $\{\sqrt{n}\}$ also diverges, but for a different reason. As $n$ increases, its terms become larger than any fixed number. We describe the behavior of this sequence by writing

$$
\lim _{n \rightarrow \infty} \sqrt{n}=\infty .
$$

In writing infinity as the limit of a sequence, we are not saying that the differences between the terms $a_{n}$ and $\infty$ become small as $n$ increases. Nor are we asserting that there is some number infinity that the sequence approaches. We are merely using a notation that captures the idea that $a_{n}$ eventually gets and stays larger than any fixed number as $n$ gets large.

## DEFINITION Diverges to Infinity

The sequence $\left\{a_{n}\right\}$ diverges to infinity if for every number $M$ there is an integer $N$ such that for all $n$ larger than $N, a_{n}>M$. If this condition holds we write

$$
\lim _{n \rightarrow \infty} a_{n}=\infty \quad \text { or } \quad a_{n} \rightarrow \infty .
$$

Similarly if for every number $m$ there is an integer $N$ such that for all $n>N$ we have $a_{n}<m$, then we say $\left\{a_{n}\right\}$ diverges to negative infinity and write

$$
\lim _{n \rightarrow \infty} a_{n}=-\infty \quad \text { or } \quad a_{n} \rightarrow-\infty .
$$

A sequence may diverge without diverging to infinity or negative infinity. We saw this in Example 2, and the sequences $\{1,-2,3,-4,5,-6,7,-8, \ldots\}$ and $\{1,0,2,0,3,0, \ldots\}$ are also examples of such divergence.

## Calculating Limits of Sequences

If we always had to use the formal definition of the limit of a sequence, calculating with $\epsilon$ 's and $N$ 's, then computing limits of sequences would be a formidable task. Fortunately we can derive a few basic examples, and then use these to quickly analyze the limits of many more sequences. We will need to understand how to combine and compare sequences. Since sequences are functions with domain restricted to the positive integers, it is not too surprising that the theorems on limits of functions given in Chapter 2 have versions for sequences.

## THEOREM 1

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences of real numbers and let $A$ and $B$ be real numbers.
The following rules hold if $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$.

1. Sum Rule:
2. Difference Rule:
3. Product Rule:
4. Constant Multiple Rule:
5. Quotient Rule:
$\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B$
$\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=A-B$
$\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=A \cdot B$
$\lim _{n \rightarrow \infty}\left(k \cdot b_{n}\right)=k \cdot B \quad($ Any number $k)$
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B} \quad$ if $B \neq 0$

The proof is similar to that of Theorem 1 of Section 2.2, and is omitted.

## EXAMPLE 3 Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:
(a) $\lim _{n \rightarrow \infty}\left(-\frac{1}{n}\right)=-1 \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=-1 \cdot 0=0 \quad$ Constant Multiple Rule and Example 1a
(b) $\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 1-\lim _{n \rightarrow \infty} \frac{1}{n}=1-0=1 \quad \begin{aligned} & \text { Difference Rule } \\ & \text { and Example 1a }\end{aligned}$
(c) $\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=5 \cdot \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=5 \cdot 0 \cdot 0=0 \quad$ Product Rule
(d) $\lim _{n \rightarrow \infty} \frac{4-7 n^{6}}{n^{6}+3}=\lim _{n \rightarrow \infty} \frac{\left(4 / n^{6}\right)-7}{1+\left(3 / n^{6}\right)}=\frac{0-7}{1+0}=-7$. Sum and Quotient Rules

Be cautious in applying Theorem 1. It does not say, for example, that each of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ have limits if their sum $\left\{a_{n}+b_{n}\right\}$ has a limit. For instance, $\left\{a_{n}\right\}=\{1,2,3, \ldots\}$ and $\left\{b_{n}\right\}=\{-1,-2,-3, \ldots\}$ both diverge, but their sum $\left\{a_{n}+b_{n}\right\}=\{0,0,0, \ldots\}$ clearly converges to 0 .

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence $\left\{a_{n}\right\}$ diverges. For suppose, to the contrary, that $\left\{c a_{n}\right\}$ converges for some number $c \neq 0$. Then, by taking $k=1 / c$ in the Constant Multiple Rule in Theorem 1, we see that the sequence

$$
\left\{\frac{1}{c} \cdot c a_{n}\right\}=\left\{a_{n}\right\}
$$

converges. Thus, $\left\{c a_{n}\right\}$ cannot converge unless $\left\{a_{n}\right\}$ also converges. If $\left\{a_{n}\right\}$ does not converge, then $\left\{c a_{n}\right\}$ does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2. You are asked to prove the theorem in Exercise 95.

## THEOREM 2 The Sandwich Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences of real numbers. If $a_{n} \leq b_{n} \leq c_{n}$ holds for all $n$ beyond some index $N$, and if $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$ also.


FIGURE 11.3 As $n \rightarrow \infty, 1 / n \rightarrow 0$ and $2^{1 / n} \rightarrow 2^{0}$ (Example 6).

An immediate consequence of Theorem 2 is that, if $\left|b_{n}\right| \leq c_{n}$ and $c_{n} \rightarrow 0$, then $b_{n} \rightarrow 0$ because $-c_{n} \leq b_{n} \leq c_{n}$. We use this fact in the next example.

## EXAMPLE 4 Applying the Sandwich Theorem

Since $1 / n \rightarrow 0$, we know that
(a) $\frac{\cos n}{n} \rightarrow 0 \quad$ because $\quad-\frac{1}{n} \leq \frac{\cos n}{n} \leq \frac{1}{n}$;
(b) $\frac{1}{2^{n}} \rightarrow 0 \quad$ because $\quad 0 \leq \frac{1}{2^{n}} \leq \frac{1}{n} ;$
(c) $(-1)^{n} \frac{1}{n} \rightarrow 0 \quad$ because $\quad-\frac{1}{n} \leq(-1)^{n} \frac{1}{n} \leq \frac{1}{n}$.

The application of Theorems 1 and 2 is broadened by a theorem stating that applying a continuous function to a convergent sequence produces a convergent sequence. We state the theorem without proof (Exercise 96).

## THEOREM 3 The Continuous Function Theorem for Sequences

Let $\left\{a_{n}\right\}$ be a sequence of real numbers. If $a_{n} \rightarrow L$ and if $f$ is a function that is continuous at $L$ and defined at all $a_{n}$, then $f\left(a_{n}\right) \rightarrow f(L)$.

## EXAMPLE 5 Applying Theorem 3

Show that $\sqrt{(n+1) / n} \rightarrow 1$.

Solution We know that $(n+1) / n \rightarrow 1$. Taking $f(x)=\sqrt{x}$ and $L=1$ in Theorem 3 gives $\sqrt{(n+1) / n} \rightarrow \sqrt{1}=1$.

## EXAMPLE 6 The Sequence $\left\{2^{1 / n}\right\}$

The sequence $\{1 / n\}$ converges to 0 . By taking $a_{n}=1 / n, f(x)=2^{x}$, and $L=0$ in Theorem 3, we see that $2^{1 / n}=f(1 / n) \rightarrow f(L)=2^{0}=1$. The sequence $\left\{2^{1 / n}\right\}$ converges to 1 (Figure 11.3).

## Using l'Hôpital's Rule

The next theorem enables us to use l'Hôpital's Rule to find the limits of some sequences. It formalizes the connection between $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{x \rightarrow \infty} f(x)$.

## THEOREM 4

Suppose that $f(x)$ is a function defined for all $x \geq n_{0}$ and that $\left\{a_{n}\right\}$ is a sequence of real numbers such that $a_{n}=f(n)$ for $n \geq n_{0}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=L
$$

Proof Suppose that $\lim _{x \rightarrow \infty} f(x)=L$. Then for each positive number $\epsilon$ there is a number $M$ such that for all $x$,

$$
x>M \quad \Rightarrow \quad|f(x)-L|<\epsilon
$$

Let $N$ be an integer greater than $M$ and greater than or equal to $n_{0}$. Then

$$
n>N \quad \Rightarrow \quad a_{n}=f(n) \quad \text { and } \quad\left|a_{n}-L\right|=|f(n)-L|<\epsilon
$$

## EXAMPLE 7 Applying L'Hôpital's Rule

Show that

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0
$$

Solution The function $(\ln x) / x$ is defined for all $x \geq 1$ and agrees with the given sequence at positive integers. Therefore, by Theorem $5, \lim _{n \rightarrow \infty}(\ln n) / n$ will equal $\lim _{x \rightarrow \infty}(\ln x) / x$ if the latter exists. A single application of l'Hôpital's Rule shows that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=\frac{0}{1}=0
$$

We conclude that $\lim _{n \rightarrow \infty}(\ln n) / n=0$.
When we use l'Hôpital's Rule to find the limit of a sequence, we often treat $n$ as a continuous real variable and differentiate directly with respect to $n$. This saves us from having to rewrite the formula for $a_{n}$ as we did in Example 7.


## EXAMPLE 8 Applying L'Hôpital's Rule

Find

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n}
$$

Solution By l'Hôpital's Rule (differentiating with respect to $n$ ),

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2^{n}}{5 n} & =\lim _{n \rightarrow \infty} \frac{2^{n} \cdot \ln 2}{5} \\
& =\infty
\end{aligned}
$$

## EXAMPLE 9 Applying L'Hôpital's Rule to Determine Convergence

Does the sequence whose $n$th term is

$$
a_{n}=\left(\frac{n+1}{n-1}\right)^{n}
$$

converge? If so, find $\lim _{n \rightarrow \infty} a_{n}$.
Solution The limit leads to the indeterminate form $1^{\infty}$. We can apply l'Hôpital's Rule if we first change the form to $\infty \cdot 0$ by taking the natural logarithm of $a_{n}$ :

$$
\begin{aligned}
\ln a_{n} & =\ln \left(\frac{n+1}{n-1}\right)^{n} \\
& =n \ln \left(\frac{n+1}{n-1}\right)
\end{aligned}
$$

## Factorial Notation

The notation $n$ ! (" $n$ factorial") means the product $1 \cdot 2 \cdot 3 \cdots n$ of the integers from 1 to $n$. Notice that $(n+1)!=(n+1) \cdot n!$. Thus, $4!=1 \cdot 2 \cdot 3 \cdot 4=24$ and $5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=5 \cdot 4!=120$. We define 0 ! to be 1 . Factorials grow even faster than exponentials, as the table suggests.

| $\boldsymbol{n}$ | $\boldsymbol{e}^{\boldsymbol{n}}$ (rounded) | $\boldsymbol{n} \boldsymbol{!}$ |
| ---: | ---: | ---: |
| 1 | 3 | 1 |
| 5 | 148 | 120 |
| 10 | 22,026 | $3,628,800$ |
| 20 | $4.9 \times 10^{8}$ | $2.4 \times 10^{18}$ |

Then,

$$
\begin{array}{rlrl}
\lim _{n \rightarrow \infty} \ln a_{n} & =\lim _{n \rightarrow \infty} n \ln \left(\frac{n+1}{n-1}\right) & & \infty \cdot 0 \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n+1}{n-1}\right)}{1 / n} & \frac{0}{0} \\
& =\lim _{n \rightarrow \infty} \frac{-2 /\left(n^{2}-1\right)}{-1 / n^{2}} & & \text { l'Hôpital's Rule } \\
& =\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n^{2}-1}=2
\end{array}
$$

Since $\ln a_{n} \rightarrow 2$ and $f(x)=e^{x}$ is continuous, Theorem 4 tells us that

$$
a_{n}=e^{\ln a_{n}} \rightarrow e^{2} .
$$

The sequence $\left\{a_{n}\right\}$ converges to $e^{2}$.

## Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

## THEOREM 5

The following six sequences converge to the limits listed below:

1. $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$
2. $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
3. $\lim _{n \rightarrow \infty} x^{1 / n}=1 \quad(x>0)$
4. $\lim _{n \rightarrow \infty} x^{n}=0 \quad(|x|<1)$
5. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x} \quad($ any $x)$
6. $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad($ any $x)$

In Formulas (3) through (6), $x$ remains fixed as $n \rightarrow \infty$.

Proof The first limit was computed in Example 7. The next two can be proved by taking logarithms and applying Theorem 4 (Exercises 93 and 94). The remaining proofs are given in Appendix 3.

## EXAMPLE 10 Applying Theorem 5

(a) $\frac{\ln \left(n^{2}\right)}{n}=\frac{2 \ln n}{n} \rightarrow 2 \cdot 0=0$

Formula 1
(b) $\sqrt[n]{n^{2}}=n^{2 / n}=\left(n^{1 / n}\right)^{2} \rightarrow(1)^{2}=1$
(c) $\sqrt[n]{3 n}=3^{1 / n}\left(n^{1 / n}\right) \rightarrow 1 \cdot 1=1$

Formula 2

Formula 3 with $x=3$ and Formula 2

Video
(d) $\left(-\frac{1}{2}\right)^{n} \rightarrow 0$
Formula 4 with $x=-\frac{1}{2}$
(e) $\left(\frac{n-2}{n}\right)^{n}=\left(1+\frac{-2}{n}\right)^{n} \rightarrow e^{-2} \quad$ Formula 5 with $x=-2$
(f) $\frac{100^{n}}{n!} \rightarrow 0$
Formula 6 with $x=100$

## Recursive Definitions

So far, we have calculated each $a_{n}$ directly from the value of $n$. But sequences are often defined recursively by giving

1. The value(s) of the initial term or terms, and
2. A rule, called a recursion formula, for calculating any later term from terms that precede it.

## EXAMPLE 11 Sequences Constructed Recursively

(a) The statements $a_{1}=1$ and $a_{n}=a_{n-1}+1$ define the sequence $1,2,3, \ldots, n, \ldots$ of positive integers. With $a_{1}=1$, we have $a_{2}=a_{1}+1=2, a_{3}=a_{2}+1=3$, and so on.
(b) The statements $a_{1}=1$ and $a_{n}=n \cdot a_{n-1}$ define the sequence $1,2,6,24, \ldots, n!, \ldots$ of factorials. With $a_{1}=1$, we have $a_{2}=2 \cdot a_{1}=2, a_{3}=3 \cdot a_{2}=6, a_{4}=$ $4 \cdot a_{3}=24$, and so on.
(c) The statements $a_{1}=1, a_{2}=1$, and $a_{n+1}=a_{n}+a_{n-1}$ define the sequence $1,1,2,3,5, \ldots$ of Fibonacci numbers. With $a_{1}=1$ and $a_{2}=1$, we have $a_{3}=1+1=2, a_{4}=2+1=3, a_{5}=3+2=5$, and so on.
(d) As we can see by applying Newton's method, the statements $x_{0}=1$ and $x_{n+1}=x_{n}-\left[\left(\sin x_{n}-x_{n}^{2}\right) /\left(\cos x_{n}-2 x_{n}\right)\right]$ define a sequence that converges to a solution of the equation $\sin x-x^{2}=0$.

## Bounded Nondecreasing Sequences

The terms of a general sequence can bounce around, sometimes getting larger, sometimes smaller. An important special kind of sequence is one for which each term is at least as large as its predecessor.

## DEFINITION Nondecreasing Sequence

A sequence $\left\{a_{n}\right\}$ with the property that $a_{n} \leq a_{n+1}$ for all $n$ is called a nondecreasing sequence.

## EXAMPLE 12 Nondecreasing Sequences

(a) The sequence $1,2,3, \ldots, n, \ldots$ of natural numbers
(b) The sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}, \ldots$
(c) The constant sequence $\{3\}$


FIGURE 11.4 If the terms of a nondecreasing sequence have an upper bound $M$, they have a limit $L \leq M$.

There are two kinds of nondecreasing sequences-those whose terms increase beyond any finite bound and those whose terms do not.

## DEFINITIONS Bounded, Upper Bound, Least Upper Bound

A sequence $\left\{a_{n}\right\}$ is bounded from above if there exists a number $M$ such that $a_{n} \leq M$ for all $n$. The number $M$ is an upper bound for $\left\{a_{n}\right\}$. If $M$ is an upper bound for $\left\{a_{n}\right\}$ but no number less than $M$ is an upper bound for $\left\{a_{n}\right\}$, then $M$ is the least upper bound for $\left\{a_{n}\right\}$.

## EXAMPLE 13 Applying the Definition for Boundedness

(a) The sequence $1,2,3, \ldots, n, \ldots$ has no upper bound.
(b) The sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}, \ldots$ is bounded above by $M=1$.

No number less than 1 is an upper bound for the sequence, so 1 is the least upper bound (Exercise 113).

A nondecreasing sequence that is bounded from above always has a least upper bound. This is the completeness property of the real numbers, discussed in Appendix 4. We will prove that if $L$ is the least upper bound then the sequence converges to $L$.

Suppose we plot the points $\left(1, a_{1}\right),\left(2, a_{2}\right), \ldots,\left(n, a_{n}\right), \ldots$ in the $x y$-plane. If $M$ is an upper bound of the sequence, all these points will lie on or below the line $y=M$ (Figure 11.4). The line $y=L$ is the lowest such line. None of the points $\left(n, a_{n}\right)$ lies above $y=L$, but some do lie above any lower line $y=L-\epsilon$, if $\epsilon$ is a positive number. The sequence converges to $L$ because
(a) $a_{n} \leq L$ for all values of $n$ and
(b) given any $\epsilon>0$, there exists at least one integer $N$ for which $a_{N}>L-\epsilon$.

The fact that $\left\{a_{n}\right\}$ is nondecreasing tells us further that

$$
a_{n} \geq a_{N}>L-\epsilon \quad \text { for all } n \geq N .
$$

Thus, all the numbers $a_{n}$ beyond the $N$ th number lie within $\epsilon$ of $L$. This is precisely the condition for $L$ to be the limit of the sequence $\left\{a_{n}\right\}$.

The facts for nondecreasing sequences are summarized in the following theorem. A similar result holds for nonincreasing sequences (Exercise 107).

## THEOREM 6 The Nondecreasing Sequence Theorem

A nondecreasing sequence of real numbers converges if and only if it is bounded from above. If a nondecreasing sequence converges, it converges to its least upper bound.

Theorem 6 implies that a nondecreasing sequence converges when it is bounded from above. It diverges to infinity if it is not bounded from above.

## EXERCISES 11.1

## Finding Terms of a Sequence

Each of Exercises 1-6 gives a formula for the $n$th term $a_{n}$ of a sequence $\left\{a_{n}\right\}$. Find the values of $a_{1}, a_{2}, a_{3}$, and $a_{4}$.

1. $a_{n}=\frac{1-n}{n^{2}}$
2. $a_{n}=\frac{1}{n!}$
3. $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$
4. $a_{n}=2+(-1)^{n}$
5. $a_{n}=\frac{2^{n}}{2^{n+1}}$
6. $a_{n}=\frac{2^{n}-1}{2^{n}}$

Each of Exercises 7-12 gives the first term or two of a sequence along with a recursion formula for the remaining terms. Write out the first ten terms of the sequence.
7. $a_{1}=1, \quad a_{n+1}=a_{n}+\left(1 / 2^{n}\right)$
8. $a_{1}=1, \quad a_{n+1}=a_{n} /(n+1)$
9. $a_{1}=2, \quad a_{n+1}=(-1)^{n+1} a_{n} / 2$
10. $a_{1}=-2, \quad a_{n+1}=n a_{n} /(n+1)$
11. $a_{1}=a_{2}=1, \quad a_{n+2}=a_{n+1}+a_{n}$
12. $a_{1}=2, \quad a_{2}=-1, \quad a_{n+2}=a_{n+1} / a_{n}$

## Finding a Sequence's Formula

In Exercises 13-22, find a formula for the $n$th term of the sequence.
13. The sequence $1,-1,1,-1,1, \ldots$
14. The sequence $-1,1,-1,1,-1, \ldots$
15. The sequence $1,-4,9,-16,25, \ldots$
16. The sequence $1,-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \frac{1}{25}, \ldots$
17. The sequence $0,3,8,15,24, \ldots$
18. The sequence $-3,-2,-1,0,1, \ldots$
19. The sequence $1,5,9,13,17, \ldots$
20. The sequence $2,6,10,14,18, \ldots$
21. The sequence $1,0,1,0,1, \ldots$
22. The sequence $0,1,1,2,2,3,3,4, \ldots$

1's with alternating signs
1's with alternating signs
Squares of the positive integers; with alternating signs
Reciprocals of squares of the positive integers, with alternating signs

Squares of the positive integers diminished by 1 Integers beginning with -3

Every other odd positive integer

Every other even positive integer
Alternating 1's and 0's
Each positive integer repeated

## Finding Limits

Which of the sequences $\left\{a_{n}\right\}$ in Exercises 23-84 converge, and which diverge? Find the limit of each convergent sequence.
23. $a_{n}=2+(0.1)^{n}$
24. $a_{n}=\frac{n+(-1)^{n}}{n}$
25. $a_{n}=\frac{1-2 n}{1+2 n}$
26. $a_{n}=\frac{2 n+1}{1-3 \sqrt{n}}$
27. $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$
28. $a_{n}=\frac{n+3}{n^{2}+5 n+6}$
29. $a_{n}=\frac{n^{2}-2 n+1}{n-1}$
30. $a_{n}=\frac{1-n^{3}}{70-4 n^{2}}$
31. $a_{n}=1+(-1)^{n}$
32. $a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$
33. $a_{n}=\left(\frac{n+1}{2 n}\right)\left(1-\frac{1}{n}\right)$
34. $a_{n}=\left(2-\frac{1}{2^{n}}\right)\left(3+\frac{1}{2^{n}}\right)$
35. $a_{n}=\frac{(-1)^{n+1}}{2 n-1}$
36. $a_{n}=\left(-\frac{1}{2}\right)^{n}$
37. $a_{n}=\sqrt{\frac{2 n}{n+1}}$
38. $a_{n}=\frac{1}{(0.9)^{n}}$
39. $a_{n}=\sin \left(\frac{\pi}{2}+\frac{1}{n}\right)$
40. $a_{n}=n \pi \cos (n \pi)$
41. $a_{n}=\frac{\sin n}{n}$
42. $a_{n}=\frac{\sin ^{2} n}{2^{n}}$
43. $a_{n}=\frac{n}{2^{n}}$
44. $a_{n}=\frac{3^{n}}{n^{3}}$
45. $a_{n}=\frac{\ln (n+1)}{\sqrt{n}}$
46. $a_{n}=\frac{\ln n}{\ln 2 n}$
47. $a_{n}=8^{1 / n}$
48. $a_{n}=(0.03)^{1 / n}$
49. $a_{n}=\left(1+\frac{7}{n}\right)^{n}$
50. $a_{n}=\left(1-\frac{1}{n}\right)^{n}$
51. $a_{n}=\sqrt[n]{10 n}$
52. $a_{n}=\sqrt[n]{n^{2}}$
53. $a_{n}=\left(\frac{3}{n}\right)^{1 / n}$
54. $a_{n}=(n+4)^{1 /(n+4)}$
55. $a_{n}=\frac{\ln n}{n^{1 / n}}$
56. $a_{n}=\ln n-\ln (n+1)$
57. $a_{n}=\sqrt[n]{4^{n} n}$
58. $a_{n}=\sqrt[n]{3^{2 n+1}}$
59. $a_{n}=\frac{n!}{n^{n}}$ (Hint: Compare with $1 / n$.)
60. $a_{n}=\frac{(-4)^{n}}{n!}$
61. $a_{n}=\frac{n!}{10^{6 n}}$
62. $a_{n}=\frac{n!}{2^{n} \cdot 3^{n}}$
63. $a_{n}=\left(\frac{1}{n}\right)^{1 /(\ln n)}$
64. $a_{n}=\ln \left(1+\frac{1}{n}\right)^{n}$
65. $a_{n}=\left(\frac{3 n+1}{3 n-1}\right)^{n}$
66. $a_{n}=\left(\frac{n}{n+1}\right)^{n}$
67. $a_{n}=\left(\frac{x^{n}}{2 n+1}\right)^{1 / n}, x>0$
68. $a_{n}=\left(1-\frac{1}{n^{2}}\right)^{n}$
69. $a_{n}=\frac{3^{n} \cdot 6^{n}}{2^{-n} \cdot n!}$
70. $a_{n}=\frac{(10 / 11)^{n}}{(9 / 10)^{n}+(11 / 12)^{n}}$
71. $a_{n}=\tanh n$
72. $a_{n}=\sinh (\ln n)$
73. $a_{n}=\frac{n^{2}}{2 n-1} \sin \frac{1}{n}$
74. $a_{n}=n\left(1-\cos \frac{1}{n}\right)$
75. $a_{n}=\tan ^{-1} n$
76. $a_{n}=\frac{1}{\sqrt{n}} \tan ^{-1} n$
77. $a_{n}=\left(\frac{1}{3}\right)^{n}+\frac{1}{\sqrt{2^{n}}}$
78. $a_{n}=\sqrt[n]{n^{2}+n}$
79. $a_{n}=\frac{(\ln n)^{200}}{n}$
80. $a_{n}=\frac{(\ln n)^{5}}{\sqrt{n}}$
81. $a_{n}=n-\sqrt{n^{2}-n}$
82. $a_{n}=\frac{1}{\sqrt{n^{2}-1}-\sqrt{n^{2}+n}}$
83. $a_{n}=\frac{1}{n} \int_{1}^{n} \frac{1}{x} d x$
84. $a_{n}=\int_{1}^{n} \frac{1}{x^{p}} d x, \quad p>1$

## Theory and Examples

85. The first term of a sequence is $x_{1}=1$. Each succeeding term is the sum of all those that come before it:

$$
x_{n+1}=x_{1}+x_{2}+\cdots+x_{n} .
$$

Write out enough early terms of the sequence to deduce a general formula for $x_{n}$ that holds for $n \geq 2$.
86. A sequence of rational numbers is described as follows:

$$
\frac{1}{1}, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots, \frac{a}{b}, \frac{a+2 b}{a+b}, \ldots
$$

Here the numerators form one sequence, the denominators form a second sequence, and their ratios form a third sequence. Let $x_{n}$ and $y_{n}$ be, respectively, the numerator and the denominator of the $n$th fraction $r_{n}=x_{n} / y_{n}$.
a. Verify that $x_{1}^{2}-2 y_{1}^{2}=-1, x_{2}^{2}-2 y_{2}^{2}=+1$ and, more generally, that if $a^{2}-2 b^{2}=-1$ or +1 , then

$$
(a+2 b)^{2}-2(a+b)^{2}=+1 \quad \text { or } \quad-1
$$

respectively.
b. The fractions $r_{n}=x_{n} / y_{n}$ approach a limit as $n$ increases. What is that limit? (Hint: Use part (a) to show that $r_{n}{ }^{2}-2= \pm\left(1 / y_{n}\right)^{2}$ and that $y_{n}$ is not less than $n$.)
87. Newton's method The following sequences come from the recursion formula for Newton's method,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

Do the sequences converge? If so, to what value? In each case, begin by identifying the function $f$ that generates the sequence.
a. $x_{0}=1, \quad x_{n+1}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}=\frac{x_{n}}{2}+\frac{1}{x_{n}}$
b. $x_{0}=1, \quad x_{n+1}=x_{n}-\frac{\tan x_{n}-1}{\sec ^{2} x_{n}}$
c. $x_{0}=1, x_{n+1}=x_{n}-1$
88. a. Suppose that $f(x)$ is differentiable for all $x$ in $[0,1]$ and that $f(0)=0$. Define the sequence $\left\{a_{n}\right\}$ by the rule $a_{n}=$ $n f(1 / n)$. Show that $\lim _{n \rightarrow \infty} a_{n}=f^{\prime}(0)$.
Use the result in part (a) to find the limits of the following sequences $\left\{a_{n}\right\}$.
b. $a_{n}=n \tan ^{-1} \frac{1}{n}$
c. $a_{n}=n\left(e^{1 / n}-1\right)$
d. $a_{n}=n \ln \left(1+\frac{2}{n}\right)$
89. Pythagorean triples A triple of positive integers $a, b$, and $c$ is called a Pythagorean triple if $a^{2}+b^{2}=c^{2}$. Let $a$ be an odd positive integer and let

$$
b=\left\lfloor\frac{a^{2}}{2}\right\rfloor \quad \text { and } \quad c=\left\lceil\frac{a^{2}}{2}\right\rceil
$$

be, respectively, the integer floor and ceiling for $a^{2} / 2$.

a. Show that $a^{2}+b^{2}=c^{2}$. (Hint: Let $a=2 n+1$ and express $b$ and $c$ in terms of $n$.)
b. By direct calculation, or by appealing to the figure here, find

$$
\lim _{a \rightarrow \infty} \frac{\left\lfloor\frac{a^{2}}{2}\right\rfloor}{\left\lceil\frac{a^{2}}{2}\right\rceil}
$$

## 90. The $\boldsymbol{n}$ th root of $\boldsymbol{n}$ !

a. Show that $\lim _{n \rightarrow \infty}(2 n \pi)^{1 /(2 n)}=1$ and hence, using Stirling's approximation (Chapter 8, Additional Exercise 50a), that

$$
\sqrt[n]{n!} \approx \frac{n}{e} \text { for large values of } n
$$

T b. Test the approximation in part (a) for $n=40,50,60, \ldots$, as far as your calculator will allow.
91. a. Assuming that $\lim _{n \rightarrow \infty}\left(1 / n^{c}\right)=0$ if $c$ is any positive constant, show that

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n^{c}}=0
$$

if $c$ is any positive constant.
b. Prove that $\lim _{n \rightarrow \infty}\left(1 / n^{c}\right)=0$ if $c$ is any positive constant. (Hint: If $\epsilon=0.001$ and $c=0.04$, how large should $N$ be to ensure that $\left|1 / n^{c}-0\right|<\epsilon$ if $n>N$ ?)
92. The zipper theorem Prove the "zipper theorem" for sequences: If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ both converge to $L$, then the sequence

$$
a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}, \ldots
$$

converges to $L$.
93. Prove that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
94. Prove that $\lim _{n \rightarrow \infty} x^{1 / n}=1,(x>0)$.
95. Prove Theorem 2.
96. Prove Theorem 3.

In Exercises 97-100, determine if the sequence is nondecreasing and if it is bounded from above.
97. $a_{n}=\frac{3 n+1}{n+1}$
98. $a_{n}=\frac{(2 n+3)!}{(n+1)!}$
99. $a_{n}=\frac{2^{n} 3^{n}}{n!}$
100. $a_{n}=2-\frac{2}{n}-\frac{1}{2^{n}}$

Which of the sequences in Exercises 101-106 converge, and which diverge? Give reasons for your answers.
101. $a_{n}=1-\frac{1}{n}$
102. $a_{n}=n-\frac{1}{n}$
103. $a_{n}=\frac{2^{n}-1}{2^{n}}$
104. $a_{n}=\frac{2^{n}-1}{3^{n}}$
105. $a_{n}=\left((-1)^{n}+1\right)\left(\frac{n+1}{n}\right)$
106. The first term of a sequence is $x_{1}=\cos (1)$. The next terms are $x_{2}=x_{1}$ or $\cos (2)$, whichever is larger; and $x_{3}=x_{2}$ or $\cos (3)$, whichever is larger (farther to the right). In general,

$$
x_{n+1}=\max \left\{x_{n}, \cos (n+1)\right\} .
$$

107. Nonincreasing sequences A sequence of numbers $\left\{a_{n}\right\}$ in which $a_{n} \geq a_{n+1}$ for every $n$ is called a nonincreasing sequence. A sequence $\left\{a_{n}\right\}$ is bounded from below if there is a number $M$ with $M \leq a_{n}$ for every $n$. Such a number $M$ is called a lower bound for the sequence. Deduce from Theorem 6 that a nonincreasing sequence that is bounded from below converges and that a nonincreasing sequence that is not bounded from below diverges.
(Continuation of Exercise 107.) Using the conclusion of Exercise 107, determine which of the sequences in Exercises 108-112 converge and which diverge.
108. $a_{n}=\frac{n+1}{n}$
109. $a_{n}=\frac{1+\sqrt{2 n}}{\sqrt{n}}$
110. $a_{n}=\frac{1-4^{n}}{2^{n}}$
111. $a_{n}=\frac{4^{n+1}+3^{n}}{4^{n}}$
112. $a_{1}=1, \quad a_{n+1}=2 a_{n}-3$
113. The sequence $\{n /(n+1)\}$ has a least upper bound of 1 Show that if $M$ is a number less than 1 , then the terms of $\{n /(n+1)\}$ eventually exceed $M$. That is, if $M<1$ there is an integer $N$ such that $n /(n+1)>M$ whenever $n>N$. Since $n /(n+1)<1$ for every $n$, this proves that 1 is a least upper bound for $\{n /(n+1)\}$.
114. Uniqueness of least upper bounds Show that if $M_{1}$ and $M_{2}$ are least upper bounds for the sequence $\left\{a_{n}\right\}$, then $M_{1}=M_{2}$. That is, a sequence cannot have two different least upper bounds.
115. Is it true that a sequence $\left\{a_{n}\right\}$ of positive numbers must converge if it is bounded from above? Give reasons for your answer.
116. Prove that if $\left\{a_{n}\right\}$ is a convergent sequence, then to every positive number $\epsilon$ there corresponds an integer $N$ such that for all $m$ and $n$,

$$
m>N \quad \text { and } \quad n>N \Rightarrow \quad\left|a_{m}-a_{n}\right|<\epsilon
$$

117. Uniqueness of limits Prove that limits of sequences are unique. That is, show that if $L_{1}$ and $L_{2}$ are numbers such that $a_{n} \rightarrow L_{1}$ and $a_{n} \rightarrow L_{2}$, then $L_{1}=L_{2}$.
118. Limits and subsequences If the terms of one sequence appear in another sequence in their given order, we call the first sequence a subsequence of the second. Prove that if two subsequences of a sequence $\left\{a_{n}\right\}$ have different limits $L_{1} \neq L_{2}$, then $\left\{a_{n}\right\}$ diverges.
119. For a sequence $\left\{a_{n}\right\}$ the terms of even index are denoted by $a_{2 k}$ and the terms of odd index by $a_{2 k+1}$. Prove that if $a_{2 k} \rightarrow L$ and $a_{2 k+1} \rightarrow L$, then $a_{n} \rightarrow L$.
120. Prove that a sequence $\left\{a_{n}\right\}$ converges to 0 if and only if the sequence of absolute values $\left\{\left|a_{n}\right|\right\}$ converges to 0 .

## T Calculator Explorations of Limits

In Exercises 121-124, experiment with a calculator to find a value of $N$ that will make the inequality hold for all $n>N$. Assuming that the inequality is the one from the formal definition of the limit of a sequence, what sequence is being considered in each case and what is its limit?
121. $|\sqrt[n]{0.5}-1|<10^{-3}$
122. $|\sqrt[n]{n}-1|<10^{-3}$
123. $(0.9)^{n}<10^{-3}$
124. $2^{n} / n!<10^{-7}$
125. Sequences generated by Newton's method Newton's method, applied to a differentiable function $f(x)$, begins with a starting value $x_{0}$ and constructs from it a sequence of numbers $\left\{x_{n}\right\}$ that under favorable circumstances converges to a zero of $f$. The recursion formula for the sequence is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

a. Show that the recursion formula for $f(x)=x^{2}-a, a>0$, can be written as $x_{n+1}=\left(x_{n}+a / x_{n}\right) / 2$.
b. Starting with $x_{0}=1$ and $a=3$, calculate successive terms of the sequence until the display begins to repeat. What number is being approximated? Explain.
126. (Continuation of Exercise 125.) Repeat part (b) of Exercise 125 with $a=2$ in place of $a=3$.
127. A recursive definition of $\pi / 2$ If you start with $x_{1}=1$ and define the subsequent terms of $\left\{x_{n}\right\}$ by the rule $x_{n}=x_{n-1}+\cos x_{n-1}$, you generate a sequence that converges rapidly to $\pi / 2$. a. Try it. b. Use the accompanying figure to explain why the convergence is so rapid.

128. According to a front-page article in the December 15, 1992, issue of the Wall Street Journal, Ford Motor Company used about $7 \frac{1}{4}$ hours of labor to produce stampings for the average vehicle, down from an estimated 15 hours in 1980. The Japanese needed only about $3 \frac{1}{2}$ hours.

Ford's improvement since 1980 represents an average decrease of $6 \%$ per year. If that rate continues, then $n$ years from 1992 Ford will use about

$$
S_{n}=7.25(0.94)^{n}
$$

hours of labor to produce stampings for the average vehicle. Assuming that the Japanese continue to spend $3 \frac{1}{2}$ hours per vehicle,
how many more years will it take Ford to catch up? Find out two ways:
a. Find the first term of the sequence $\left\{S_{n}\right\}$ that is less than or equal to 3.5 .
$T$
b. Graph $f(x)=7.25(0.94)^{x}$ and use Trace to find where the graph crosses the line $y=3.5$.

## COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the sequences in Exercises 129-140.
a. Calculate and then plot the first 25 terms of the sequence. Does the sequence appear to be bounded from above or below? Does it appear to converge or diverge? If it does converge, what is the limit $L$ ?
b. If the sequence converges, find an integer $N$ such that $\left|a_{n}-L\right| \leq 0.01$ for $n \geq N$. How far in the sequence do you have to get for the terms to lie within 0.0001 of $L$ ?
129. $a_{n}=\sqrt[n]{n}$
130. $a_{n}=\left(1+\frac{0.5}{n}\right)^{n}$
131. $a_{1}=1, \quad a_{n+1}=a_{n}+\frac{1}{5^{n}}$
132. $a_{1}=1, \quad a_{n+1}=a_{n}+(-2)^{n}$
133. $a_{n}=\sin n$
134. $a_{n}=n \sin \frac{1}{n}$
135. $a_{n}=\frac{\sin n}{n}$
136. $a_{n}=\frac{\ln n}{n}$
137. $a_{n}=(0.9999)^{n}$
138. $a_{n}=123456^{1 / n}$
139. $a_{n}=\frac{8^{n}}{n!}$
140. $a_{n}=\frac{n^{41}}{19^{n}}$
141. Compound interest, deposits, and withdrawals If you invest an amount of money $A_{0}$ at a fixed annual interest rate $r$ compounded $m$ times per year, and if the constant amount $b$ is added to the account at the end of each compounding period (or taken from the account if $b<0$ ), then the amount you have after $n+1$ compounding periods is

$$
\begin{equation*}
A_{n+1}=\left(1+\frac{r}{m}\right) A_{n}+b \tag{1}
\end{equation*}
$$

a. If $A_{0}=1000, r=0.02015, m=12$, and $b=50$, calculate and plot the first 100 points $\left(n, A_{n}\right)$. How much money is in your account at the end of 5 years? Does $\left\{A_{n}\right\}$ converge? Is $\left\{A_{n}\right\}$ bounded?
b. Repeat part (a) with $A_{0}=5000, r=0.0589, m=12$, and $b=-50$.
c. If you invest 5000 dollars in a certificate of deposit (CD) that pays $4.5 \%$ annually, compounded quarterly, and you make no further investments in the CD, approximately how many years will it take before you have 20,000 dollars? What if the CD earns $6.25 \%$ ?
d. It can be shown that for any $k \geq 0$, the sequence defined recursively by Equation (1) satisfies the relation

$$
\begin{equation*}
A_{k}=\left(1+\frac{r}{m}\right)^{k}\left(A_{0}+\frac{m b}{r}\right)-\frac{m b}{r} \tag{2}
\end{equation*}
$$

For the values of the constants $A_{0}, r, m$, and $b$ given in part (a), validate this assertion by comparing the values of the first 50 terms of both sequences. Then show by direct substitution that the terms in Equation (2) satisfy the recursion formula in Equation (1).
142. Logistic difference equation The recursive relation

$$
a_{n+1}=r a_{n}\left(1-a_{n}\right)
$$

is called the logistic difference equation, and when the initial value $a_{0}$ is given the equation defines the logistic sequence $\left\{a_{n}\right\}$. Throughout this exercise we choose $a_{0}$ in the interval $0<a_{0}<1$, say $a_{0}=0.3$.
a. Choose $r=3 / 4$. Calculate and plot the points $\left(n, a_{n}\right)$ for the first 100 terms in the sequence. Does it appear to converge? What do you guess is the limit? Does the limit seem to depend on your choice of $a_{0}$ ?
b. Choose several values of $r$ in the interval $1<r<3$ and repeat the procedures in part (a). Be sure to choose some points near the endpoints of the interval. Describe the behavior of the sequences you observe in your plots.
c. Now examine the behavior of the sequence for values of $r$ near the endpoints of the interval $3<r<3.45$. The transition value $r=3$ is called a bifurcation value and the new behavior of the sequence in the interval is called an attracting 2-cycle. Explain why this reasonably describes the behavior.
d. Next explore the behavior for $r$ values near the endpoints of each of the intervals $3.45<r<3.54$ and $3.54<r<3.55$. Plot the first 200 terms of the sequences. Describe in your own words the behavior observed in your plots for each interval. Among how many values does the sequence appear to oscillate for each interval? The values $r=3.45$ and $r=3.54$ (rounded to two decimal places) are also called bifurcation values because the behavior of the sequence changes as $r$ crosses over those values.
e. The situation gets even more interesting. There is actually an increasing sequence of bifurcation values $3<3.45<3.54$ $<\cdots<c_{n}<c_{n+1} \cdots$ such that for $c_{n}<r<c_{n+1}$ the logistic sequence $\left\{a_{n}\right\}$ eventually oscillates steadily among $2^{n}$ values, called an attracting $2^{n}$-cycle. Moreover, the bifurcation sequence $\left\{c_{n}\right\}$ is bounded above by 3.57 (so it converges). If you choose a value of $r<3.57$ you will observe a $2^{n}$-cycle of some sort. Choose $r=3.5695$ and plot 300 points.
f. Let us see what happens when $r>3.57$. Choose $r=3.65$ and calculate and plot the first 300 terms of $\left\{a_{n}\right\}$. Observe how the terms wander around in an unpredictable, chaotic fashion. You cannot predict the value of $a_{n+1}$ from previous values of the sequence.
g. For $r=3.65$ choose two starting values of $a_{0}$ that are close together, say, $a_{0}=0.3$ and $a_{0}=0.301$. Calculate and plot the first 300 values of the sequences determined by each starting value. Compare the behaviors observed in your plots. How far out do you go before the corresponding terms of your two sequences appear to depart from each other? Repeat the exploration for $r=3.75$. Can you see how the plots look different depending on your choice of $a_{0}$ ? We say that the logistic sequence is sensitive to the initial condition $a_{0}$.

### 11.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. Since there are infinitely many terms to add in an infinite series, we cannot just keep adding to see what comes out. Instead we look at what we get by summing the first $n$ terms of the sequence and stopping. The sum of the first $n$ terms

$$
s_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

is an ordinary finite sum and can be calculated by normal addition. It is called the nth partial sum. As $n$ gets larger, we expect the partial sums to get closer and closer to a limiting value in the same sense that the terms of a sequence approach a limit, as discussed in Section 11.1.

For example, to assign meaning to an expression like

$$
1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots
$$

We add the terms one at a time from the beginning and look for a pattern in how these partial sums grow.


|  |  | Suggestive <br> expression for <br> partial sum | Value |
| :--- | :--- | :---: | :---: |
| Partial sum |  | $2-1$ | 1 |
| First: | $s_{1}=1$ | $2-\frac{1}{2}$ | $\frac{3}{2}$ |
| Second: | $s_{2}=1+\frac{1}{2}$ | $2-\frac{1}{4}$ | $\frac{7}{4}$ |
| Third: | $s_{3}=1+\frac{1}{2}+\frac{1}{4}$ | $\vdots$ | $\vdots$ |
|  |  | $2-\frac{1}{2^{n-1}}$ | $\frac{2^{n}-1}{2^{n-1}}$ |
| $n$ th: | $s_{n}=1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-1}}$ |  |  |

Indeed there is a pattern. The partial sums form a sequence whose $n$th term is

$$
s_{n}=2-\frac{1}{2^{n-1}}
$$

This sequence of partial sums converges to 2 because $\lim _{n \rightarrow \infty}\left(1 / 2^{n}\right)=0$. We say

$$
\text { "the sum of the infinite series } 1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-1}}+\cdots \text { is } 2 . "
$$

Is the sum of any finite number of terms in this series equal to 2 ? No. Can we actually add an infinite number of terms one by one? No. But we can still define their sum by defining it to be the limit of the sequence of partial sums as $n \rightarrow \infty$, in this case 2 (Figure 11.5). Our knowledge of sequences and limits enables us to break away from the confines of finite sums.


FIGURE 11.5 As the lengths $1,1 / 2,1 / 4,1 / 8, \ldots$ are added one by one, the sum approaches 2 .

## DEFINITIONS Infinite Series, $n$th Term, Partial Sum, Converges, Sum

Given a sequence of numbers $\left\{a_{n}\right\}$, an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

is an infinite series. The number $a_{n}$ is the $\boldsymbol{n} \boldsymbol{t h}$ term of the series. The sequence $\left\{s_{n}\right\}$ defined by

$$
\begin{aligned}
s_{1} & =a_{1} \\
s_{2} & =a_{1}+a_{2} \\
& \vdots \\
s_{n} & =a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

$$
\vdots
$$

is the sequence of partial sums of the series, the number $s_{n}$ being the $\boldsymbol{n}$ th partial sum. If the sequence of partial sums converges to a limit $L$, we say that the series converges and that its sum is $L$. In this case, we also write

$$
a_{1}+a_{2}+\cdots+a_{n}+\cdots=\sum_{n=1}^{\infty} a_{n}=L .
$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

When we begin to study a given series $a_{1}+a_{2}+\cdots+a_{n}+\cdots$, we might not know whether it converges or diverges. In either case, it is convenient to use sigma notation to write the series as

$$
\sum_{n=1}^{\infty} a_{n}, \quad \sum_{k=1}^{\infty} a_{k}, \quad \text { or } \quad \sum a_{n} \quad \begin{aligned}
& \text { A useful shorthand } \\
& \text { when summation } \\
& \text { from } 1 \text { to } \infty \text { is } \\
& \text { understood }
\end{aligned}
$$

## Geometric Series

Geometric series are series of the form

$$
a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}
$$

in which $a$ and $r$ are fixed real numbers and $a \neq 0$. The series can also be written as $\sum_{n=0}^{\infty} a r^{n}$. The ratio $r$ can be positive, as in

$$
1+\frac{1}{2}+\frac{1}{4}+\cdots+\left(\frac{1}{2}\right)^{n-1}+\cdots
$$

or negative, as in

$$
1-\frac{1}{3}+\frac{1}{9}-\cdots+\left(-\frac{1}{3}\right)^{n-1}+\cdots
$$

If $r=1$, the $n$th partial sum of the geometric series is

$$
s_{n}=a+a(1)+a(1)^{2}+\cdots+a(1)^{n-1}=n a,
$$

and the series diverges because $\lim _{n \rightarrow \infty} s_{n}= \pm \infty$, depending on the sign of $a$. If $r=-1$, the series diverges because the $n$th partial sums alternate between $a$ and 0 . If $|r| \neq 1$, we can determine the convergence or divergence of the series in the following way:

$$
\begin{array}{rlrl}
s_{n} & =a+a r+a r^{2}+\cdots+a r^{n-1} & & \\
r s_{n} & =a r+a r^{2}+\cdots+a r^{n-1}+a r^{n} & & \begin{array}{l}
\text { Multiply } s_{n} \text { by } r . \\
s_{n}-r s_{n}
\end{array} \\
=a-a r^{n} & & \text { Subtract } t s_{n} \text { from } \\
s_{n}(1-r) & =a\left(1-r^{n}\right) & & \text { the terms on the } r \\
\text { Factor. }
\end{array}
$$

$$
s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \quad(r \neq 1) . \quad \text { We can solve for } s_{n} \text { if } r \neq 1
$$

If $|r|<1$, then $r^{n} \rightarrow 0$ as $n \rightarrow \infty$ (as in Section 11.1) and $s_{n} \rightarrow a /(1-r)$. If $|r|>1$, then $\left|r^{n}\right| \rightarrow \infty$ and the series diverges.

If $|r|<1$, the geometric series $a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots$ converges to $a /(1-r)$ :

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}, \quad|r|<1
$$

If $|r| \geq 1$, the series diverges.

We have determined when a geometric series converges or diverges, and to what value. Often we can determine that a series converges without knowing the value to which it converges, as we will see in the next several sections. The formula $a /(1-r)$ for the sum of a geometric series applies only when the summation index begins with $n=1$ in the expression $\sum_{n=1}^{\infty} a r^{n-1}$ (or with the index $n=0$ if we write the series as $\sum_{n=0}^{\infty} a r^{n}$ ).

EXAMPLE 1 Index Starts with $n=1$
The geometric series with $a=1 / 9$ and $r=1 / 3$ is

$$
\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\cdots=\sum_{n=1}^{\infty} \frac{1}{9}\left(\frac{1}{3}\right)^{n-1}=\frac{1 / 9}{1-(1 / 3)}=\frac{1}{6}
$$



EXAMPLE 2 Index Starts with $n=0$
The series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 5}{4^{n}}=5-\frac{5}{4}+\frac{5}{16}-\frac{5}{64}+\cdots
$$

is a geometric series with $a=5$ and $r=-1 / 4$. It converges to

$$
\frac{a}{1-r}=\frac{5}{1+(1 / 4)}=4
$$

## EXAMPLE 3 A Bouncing Ball

You drop a ball from $a$ meters above a flat surface. Each time the ball hits the surface after falling a distance $h$, it rebounds a distance $r h$, where $r$ is positive but less than 1. Find the total distance the ball travels up and down (Figure 11.6).

(a)

(b)

FIGURE 11.6 (a) Example 3 shows how to use a geometric series to calculate the total vertical distance traveled by a bouncing ball if the height of each rebound is reduced by the factor $r$. (b) A stroboscopic photo of a bouncing ball.

Solution The total distance is

If $a=6 \mathrm{~m}$ and $r=2 / 3$, for instance, the distance is

$$
s=6 \frac{1+(2 / 3)}{1-(2 / 3)}=6\left(\frac{5 / 3}{1 / 3}\right)=30 \mathrm{~m}
$$

## EXAMPLE 4 Repeating Decimals

Express the repeating decimal $5.232323 \ldots$ as the ratio of two integers.

## Solution

$$
\begin{aligned}
5.232323 \ldots & =5+\frac{23}{100}+\frac{23}{(100)^{2}}+\frac{23}{(100)^{3}}+\cdots \\
& =5+\frac{23}{100} \underbrace{\left(1+\frac{1}{100}+\left(\frac{1}{100}\right)^{2}+\cdots\right)}_{1 /(1-0.01)} \quad \begin{array}{l}
a=1, \\
r=1 / 100
\end{array} \\
& =5+\frac{23}{100}\left(\frac{1}{0.99}\right)=5+\frac{23}{99}=\frac{518}{99}
\end{aligned}
$$

Unfortunately, formulas like the one for the sum of a convergent geometric series are rare and we usually have to settle for an estimate of a series' sum (more about this later). The next example, however, is another case in which we can find the sum exactly.

## EXAMPLE 5 A Nongeometric but Telescoping Series

Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Solution We look for a pattern in the sequence of partial sums that might lead to a formula for $s_{k}$. The key observation is the partial fraction decomposition

$$
\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}
$$

so

$$
\sum_{n=1}^{k} \frac{1}{n(n+1)}=\sum_{n=1}^{k}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

and

$$
s_{k}=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k+1}\right)
$$

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

$$
s_{k}=1-\frac{1}{k+1} .
$$

We now see that $s_{k} \rightarrow 1$ as $k \rightarrow \infty$. The series converges, and its sum is 1 :

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1
$$

## Divergent Series

One reason that a series may fail to converge is that its terms don't become small.

## EXAMPLE 6 Partial Sums Outgrow Any Number

(a) The series

$$
\sum_{n=1}^{\infty} n^{2}=1+4+9+\cdots+n^{2}+\cdots
$$

diverges because the partial sums grow beyond every number $L$. After $n=1$, the partial sum $s_{n}=1+4+9+\cdots+n^{2}$ is greater than $n^{2}$.
(b) The series

$$
\sum_{n=1}^{\infty} \frac{n+1}{n}=\frac{2}{1}+\frac{3}{2}+\frac{4}{3}+\cdots+\frac{n+1}{n}+\cdots
$$

diverges because the partial sums eventually outgrow every preassigned number. Each term is greater than 1 , so the sum of $n$ terms is greater than $n$.

## The $n$ th-Term Test for Divergence

Observe that $\lim _{n \rightarrow \infty} a_{n}$ must equal zero if the series $\sum_{n=1}^{\infty} a_{n}$ converges. To see why, let $S$ represent the series' sum and $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ the $n$th partial sum. When $n$ is large, both $s_{n}$ and $s_{n-1}$ are close to $S$, so their difference, $a_{n}$, is close to zero. More formally,

$$
a_{n}=s_{n}-s_{n-1} \quad \rightarrow \quad S-S=0 . \quad \begin{aligned}
& \text { Difference Rule for } \\
& \text { sequences }
\end{aligned}
$$

This establishes the following theorem.

## Caution

Theorem 7 does not say that $\sum_{n=1}^{\infty} a_{n}$ converges if $a_{n} \rightarrow 0$. It is possible for a series to diverge when $a_{n} \rightarrow 0$.

$$
\begin{aligned}
& \text { THEOREM } 7 \\
& \text { If } \sum_{n=1}^{\infty} a_{n} \text { converges, then } a_{n} \rightarrow 0 .
\end{aligned}
$$

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

## The $\boldsymbol{n}$ th-Term Test for Divergence

$\sum_{n=1}^{\infty} a_{n}$ diverges if $\lim _{n \rightarrow \infty} a_{n}$ fails to exist or is different from zero.

## EXAMPLE 7 Applying the $n$ th-Term Test

(a) $\sum_{n=1}^{\infty} n^{2}$ diverges because $n^{2} \rightarrow \infty$
(b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \rightarrow 1$
(c) $\sum_{n=1}^{\infty}(-1)^{n+1}$ diverges because $\lim _{n \rightarrow \infty}(-1)^{n+1}$ does not exist
(d) $\sum_{n=1}^{\infty} \frac{-n}{2 n+5}$ diverges because $\lim _{n \rightarrow \infty} \frac{-n}{2 n+5}=-\frac{1}{2} \neq 0$.

## EXAMPLE $8 \quad a_{n} \rightarrow 0$ but the Series Diverges

The series

$$
1+\underbrace{\frac{1}{2}+\frac{1}{2}}_{2 \text { terms }}+\underbrace{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}_{4 \text { terms }}+\cdots+\underbrace{\frac{1}{2^{n}}+\frac{1}{2^{n}}+\cdots+\frac{1}{2^{n}}}_{2^{n} \text { terms }}+\cdots
$$

diverges because the terms are grouped into clusters that add to 1 , so the partial sums increase without bound. However, the terms of the series form a sequence that converges to 0 . Example 1 of Section 11.3 shows that the harmonic series also behaves in this manner.

## Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them term by term, or multiply them by constants to make new convergent series.

## THEOREM 8

If $\sum a_{n}=A$ and $\sum b_{n}=B$ are convergent series, then

1. Sum Rule:
2. Difference Rule:

$$
\sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}=A+B
$$

$$
\sum\left(a_{n}-b_{n}\right)=\sum a_{n}-\sum b_{n}=A-B
$$

3. Constant Multiple Rule:

$$
\sum k a_{n}=k \sum a_{n}=k A \quad(\text { Any number } k) .
$$

Proof The three rules for series follow from the analogous rules for sequences in Theorem 1, Section 11.1. To prove the Sum Rule for series, let

$$
A_{n}=a_{1}+a_{2}+\cdots+a_{n}, \quad B_{n}=b_{1}+b_{2}+\cdots+b_{n} .
$$

Then the partial sums of $\sum\left(a_{n}+b_{n}\right)$ are

$$
\begin{aligned}
s_{n} & =\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right)+\cdots+\left(a_{n}+b_{n}\right) \\
& =\left(a_{1}+\cdots+a_{n}\right)+\left(b_{1}+\cdots+b_{n}\right) \\
& =A_{n}+B_{n} .
\end{aligned}
$$

Since $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, we have $s_{n} \rightarrow A+B$ by the Sum Rule for sequences. The proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of $\sum k a_{n}$ form the sequence

$$
s_{n}=k a_{1}+k a_{2}+\cdots+k a_{n}=k\left(a_{1}+a_{2}+\cdots+a_{n}\right)=k A_{n}
$$

which converges to $k A$ by the Constant Multiple Rule for sequences.
As corollaries of Theorem 8, we have

1. Every nonzero constant multiple of a divergent series diverges.
2. If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, then $\sum\left(a_{n}+b_{n}\right)$ and $\sum\left(a_{n}-b_{n}\right)$ both diverge.

We omit the proofs.
CAUTION Remember that $\sum\left(a_{n}+b_{n}\right)$ can converge when $\sum a_{n}$ and $\sum b_{n}$ both diverge. For example, $\sum a_{n}=1+1+1+\cdots$ and $\sum b_{n}=(-1)+(-1)+(-1)+\cdots$ diverge, whereas $\sum\left(a_{n}+b_{n}\right)=0+0+0+\cdots$ converges to 0 .

EXAMPLE 9 Find the sums of the following series.

$$
\text { (a) } \begin{array}{rlr}
\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}} & =\sum_{n=1}^{\infty}\left(\frac{1}{2^{n-1}}-\frac{1}{6^{n-1}}\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}-\sum_{n=1}^{\infty} \frac{1}{6^{n-1}} \quad & \text { Difference Rule } \\
& =\frac{1}{1-(1 / 2)}-\frac{1}{1-(1 / 6)} & \text { Geometric series with } a=1 \text { and } r=1 / 2,1 / 6 \\
& =2-\frac{6}{5} \\
& =\frac{4}{5}
\end{array}
$$

(b) $\quad \sum_{n=0}^{\infty} \frac{4}{2^{n}}=4 \sum_{n=0}^{\infty} \frac{1}{2^{n}} \quad$ Constant Multiple Rule

$$
\begin{aligned}
& =4\left(\frac{1}{1-(1 / 2)}\right) \quad \text { Geometric series with } a=1, r=1 / 2 \\
& =8
\end{aligned}
$$

## Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without altering the series' convergence or divergence, although in the case of convergence this will usually change the sum. If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=k}^{\infty} a_{n}$ converges for any $k>1$ and

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots+a_{k-1}+\sum_{n=k}^{\infty} a_{n}
$$

Conversely, if $\sum_{n=k}^{\infty} a_{n}$ converges for any $k>1$, then $\sum_{n=1}^{\infty} a_{n}$ converges. Thus,

$$
\sum_{n=1}^{\infty} \frac{1}{5^{n}}=\frac{1}{5}+\frac{1}{25}+\frac{1}{125}+\sum_{n=4}^{\infty} \frac{1}{5^{n}}
$$

and

$$
\sum_{n=4}^{\infty} \frac{1}{5^{n}}=\left(\sum_{n=1}^{\infty} \frac{1}{5^{n}}\right)-\frac{1}{5}-\frac{1}{25}-\frac{1}{125}
$$

## Reindexing

Historical Biography
Richard Dedekind
(1831-1916)

As long as we preserve the order of its terms, we can reindex any series without altering its convergence. To raise the starting value of the index $h$ units, replace the $n$ in the formula for $a_{n}$ by $n-h$ :

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1+h}^{\infty} a_{n-h}=a_{1}+a_{2}+a_{3}+\cdots
$$

To lower the starting value of the index $h$ units, replace the $n$ in the formula for $a_{n}$ by $n+h$ :

$$
\sum_{n=1}^{\infty} a_{n}=\sum_{n=1-h}^{\infty} a_{n+h}=a_{1}+a_{2}+a_{3}+\cdots
$$

It works like a horizontal shift. We saw this in starting a geometric series with the index $n=0$ instead of the index $n=1$, but we can use any other starting index value as well. We usually give preference to indexings that lead to simple expressions.

EXAMPLE 10 Reindexing a Geometric Series
We can write the geometric series

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}=1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

as

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}, \quad \sum_{n=5}^{\infty} \frac{1}{2^{n-5}}, \quad \text { or even } \quad \sum_{n=-4}^{\infty} \frac{1}{2^{n+4}}
$$

The partial sums remain the same no matter what indexing we choose.

## EXERCISES 11.2

## Finding nth Partial Sums

In Exercises 1-6, find a formula for the $n$th partial sum of each series and use it to find the series' sum if the series converges.

1. $2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\cdots+\frac{2}{3^{n-1}}+\cdots$
2. $\frac{9}{100}+\frac{9}{100^{2}}+\frac{9}{100^{3}}+\cdots+\frac{9}{100^{n}}+\cdots$
3. $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\cdots+(-1)^{n-1} \frac{1}{2^{n-1}}+\cdots$
4. $1-2+4-8+\cdots+(-1)^{n-1} 2^{n-1}+\cdots$
5. $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\cdots+\frac{1}{(n+1)(n+2)}+\cdots$
6. $\frac{5}{1 \cdot 2}+\frac{5}{2 \cdot 3}+\frac{5}{3 \cdot 4}+\cdots+\frac{5}{n(n+1)}+\cdots$

## Series with Geometric Terms

In Exercises 7-14, write out the first few terms of each series to show how the series starts. Then find the sum of the series.
7. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n}}$
8. $\sum_{n=2}^{\infty} \frac{1}{4^{n}}$
9. $\sum_{n=1}^{\infty} \frac{7}{4^{n}}$
10. $\sum_{n=0}^{\infty}(-1)^{n} \frac{5}{4^{n}}$
11. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)$
12. $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}-\frac{1}{3^{n}}\right)$
13. $\sum_{n=0}^{\infty}\left(\frac{1}{2^{n}}+\frac{(-1)^{n}}{5^{n}}\right)$
14. $\sum_{n=0}^{\infty}\left(\frac{2^{n+1}}{5^{n}}\right)$

## Telescoping Series

Use partial fractions to find the sum of each series in Exercises 15-22.
15. $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$
16. $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$
17. $\sum_{n=1}^{\infty} \frac{40 n}{(2 n-1)^{2}(2 n+1)^{2}}$
18. $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$
19. $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$
20. $\sum_{n=1}^{\infty}\left(\frac{1}{2^{1 / n}}-\frac{1}{2^{1 /(n+1)}}\right)$
21. $\sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)$
22. $\sum_{n=1}^{\infty}\left(\tan ^{-1}(n)-\tan ^{-1}(n+1)\right)$

## Convergence or Divergence

Which series in Exercises 23-40 converge, and which diverge? Give reasons for your answers. If a series converges, find its sum.
23. $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$
24. $\sum_{n=0}^{\infty}(\sqrt{2})^{n}$
25. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3}{2^{n}}$
26. $\sum_{n=1}^{\infty}(-1)^{n+1} n$
27. $\sum_{n=0}^{\infty} \cos n \pi$
28. $\sum_{n=0}^{\infty} \frac{\cos n \pi}{5^{n}}$
29. $\sum_{n=0}^{\infty} e^{-2 n}$
30. $\sum_{n=1}^{\infty} \ln \frac{1}{n}$
31. $\sum_{n=1}^{\infty} \frac{2}{10^{n}}$
32. $\sum_{n=0}^{\infty} \frac{1}{x^{n}},|x|>1$
33. $\sum_{n=0}^{\infty} \frac{2^{n}-1}{3^{n}}$
34. $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
35. $\sum_{n=0}^{\infty} \frac{n!}{1000^{n}}$
36. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
37. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
38. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{2 n+1}\right)$
39. $\sum_{n=0}^{\infty}\left(\frac{e}{\pi}\right)^{n}$
40. $\sum_{n=0}^{\infty} \frac{e^{n \pi}}{\pi^{n e}}$

## Geometric Series

In each of the geometric series in Exercises 41-44, write out the first few terms of the series to find $a$ and $r$, and find the sum of the series.

Then express the inequality $|r|<1$ in terms of $x$ and find the values of $x$ for which the inequality holds and the series converges.
41. $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
42. $\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$
43. $\sum_{n=0}^{\infty} 3\left(\frac{x-1}{2}\right)^{n}$
44. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2}\left(\frac{1}{3+\sin x}\right)^{n}$

In Exercises 45-50, find the values of $x$ for which the given geometric series converges. Also, find the sum of the series (as a function of $x$ ) for those values of $x$.
45. $\sum_{n=0}^{\infty} 2^{n} x^{n}$
46. $\sum_{n=0}^{\infty}(-1)^{n} x^{-2 n}$
47. $\sum_{n=0}^{\infty}(-1)^{n}(x+1)^{n}$
48. $\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n}$
49. $\sum_{n=0}^{\infty} \sin ^{n} x$
50. $\sum_{n=0}^{\infty}(\ln x)^{n}$

## Repeating Decimals

Express each of the numbers in Exercises 51-58 as the ratio of two integers.
51. $0 . \overline{23}=0.232323 \ldots$
52. $0 . \overline{234}=0.234234234 \ldots$
53. $0 . \overline{7}=0.7777 \ldots$
54. $0 . \bar{d}=0 . d d d d \ldots, \quad$ where $d$ is a digit
55. $0.0 \overline{6}=0.06666 \ldots$
56. $1 . \overline{414}=1.414414414 \ldots$
57. $1.24 \overline{123}=1.24123123123 \ldots$
58. $3 . \overline{142857}=3.142857142857 \ldots$

## Theory and Examples

59. The series in Exercise 5 can also be written as

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)} \text { and } \sum_{n=-1}^{\infty} \frac{1}{(n+3)(n+4)} .
$$

Write it as a sum beginning with (a) $n=-2$, (b) $n=0$, (c) $n=5$.
60. The series in Exercise 6 can also be written as

$$
\sum_{n=1}^{\infty} \frac{5}{n(n+1)} \text { and } \quad \sum_{n=0}^{\infty} \frac{5}{(n+1)(n+2)} .
$$

Write it as a sum beginning with (a) $n=-1$, (b) $n=3$, (c) $n=20$.
61. Make up an infinite series of nonzero terms whose sum is
a. 1
b. -3
c. 0 .
62. (Continuation of Exercise 61.) Can you make an infinite series of nonzero terms that converges to any number you want? Explain.
63. Show by example that $\sum\left(a_{n} / b_{n}\right)$ may diverge even though $\sum a_{n}$ and $\sum b_{n}$ converge and no $b_{n}$ equals 0 .

