
Other infinite series do not have a finite sum, as with

The sum of the first few terms gets larger and larger as we add more and more terms. Tak-
ing enough terms makes these sums larger than any prechosen constant.

With some infinite series, such as the harmonic series

it is not obvious whether a finite sum exists. It is unclear whether adding more and more
terms gets us closer to some sum, or gives sums that grow without bound.

As we develop the theory of infinite sequences and series, an important application
gives a method of representing a differentiable function ƒ(x) as an infinite sum of powers
of x. With this method we can extend our knowledge of how to evaluate, differentiate, and
integrate polynomials to a class of functions much more general than polynomials. We
also investigate a method of representing a function as an infinite sum of sine and cosine
functions. This method will yield a powerful tool to study functions.

1 +
1
2

+
1
3

+
1
4

+
1
5 +

1
6

+
Á

1 + 2 + 3 + 4 + 5 +
Á .

INFINITE SEQUENCES

AND SERIES

OVERVIEW While everyone knows how to add together two numbers, or even several,
how to add together infinitely many numbers is not so clear. In this chapter we study such
questions, the subject of the theory of infinite series. Infinite series sometimes have a finite
sum, as in

This sum is represented geometrically by the areas of the repeatedly halved unit square
shown here. The areas of the small rectangles add together to give the area of the unit square,
which they fill. Adding together more and more terms gets us closer and closer to the total.

1
2

+
1
4

+
1
8

+
1
16

+
Á

= 1.
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DEFINITION Infinite Sequence
An infinite sequence of numbers is a function whose domain is the set of positive
integers.

The function associated to the sequence

sends 1 to 2 to and so on. The general behavior of this sequence is de-
scribed by the formula

We can equally well make the domain the integers larger than a given number and
we allow sequences of this type also.

The sequence

is described by the formula It can also be described by the simpler formula
where the index n starts at 6 and increases. To allow such simpler formulas, we

let the first index of the sequence be any integer. In the sequence above, starts with 
while starts with Order is important. The sequence is not the same as
the sequence 

Sequences can be described by writing rules that specify their terms, such as

 dn = s -1dn + 1

 cn =

n - 1
n ,

 bn = s -1dn + 1 
1
n ,

 an = 2n ,

2, 1, 3, 4 Á .
1, 2, 3, 4 Áb6 .5bn6

a15an6
bn = 2n ,

an = 10 + 2n .

12, 14, 16, 18, 20, 22 Á

n0 ,

an = 2n .

a2 = 4,a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

Sequences

A sequence is a list of numbers

in a given order. Each of and so on represents a number. These are the terms of
the sequence. For example the sequence

has first term second term and nth term The integer n is called
the index of and indicates where occurs in the list. We can think of the sequence

as a function that sends 1 to 2 to 3 to and in general sends the positive integer n
to the nth term This leads to the formal definition of a sequence.an .

a3 ,a2 ,a1 ,

a1, a2, a3, Á , an, Á

anan ,
an = 2n .a2 = 4a1 = 2,

2, 4, 6, 8, 10, 12, Á , 2n, Á

a1, a2, a3

a1, a2, a3, Á , an, Á

11.1

HISTORICAL ESSAY

Sequences and Series
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or by listing terms,

We also sometimes write

Figure 11.1 shows two ways to represent sequences graphically. The first marks the
first few points from on the real axis. The second method shows the
graph of the function defining the sequence. The function is defined only on integer
inputs, and the graph consists of some points in the xy-plane, located at 
s2, a2d, Á , sn, and, Á .

s1, a1d,

a1, a2, a3, Á , an, Á

5an6 = E2n Fn = 1

q

 . .

 5dn6 = 51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6 .

 5cn6 = e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 

n - 1
n , Á f

 5bn6 = e1, -
1
2

, 
1
3

, -
1
4

, Á , s -1dn + 1 
1
n, Á f

 5an6 = E21, 22, 23, Á , 2n, Á F
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0

an � �n

1 2

0

Diverges

1 32 4 5

1

3

2

1

Converges to 0

0 1 32 4 5

0

an �

1

0

1

Converges to 0

0

a2 a4 a5 a3 a1

1

1
n

n

an

n

an

n

an

a1 a2 a3 a4 a5

a3 a2 a1

an � (�1)n�1 1
n

FIGURE 11.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis n is the index number of the
term and the vertical axis is its value.an

Convergence and Divergence

Sometimes the numbers in a sequence approach a single value as the index n increases.
This happens in the sequence

whose terms approach 0 as n gets large, and in the sequence

e0, 
1
2

, 
2
3

, 
3
4

, 
4
5, Á , 1 -

1
n, Á f

e1, 
1
2

, 
1
3

, 
1
4

, Á , 
1
n, Á f
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11.1 Sequences 749

The definition is very similar to the definition of the limit of a function ƒ(x) as x tends
to ( in Section 2.4). We will exploit this connection to calculate limits of
sequences.

EXAMPLE 1 Applying the Definition

Show that

(a) (b)

Solution

(a) Let be given. We must show that there exists an integer N such that for all n,

This implication will hold if or If N is any integer greater than
the implication will hold for all This proves that 

(b) Let be given. We must show that there exists an integer N such that for all n,

Since we can use any positive integer for N and the implication will hold.
This proves that for any constant k.limn:q k = k

k - k = 0,

n 7 N Q ƒ k - k ƒ 6 P .

P 7 0

limn:q s1>nd = 0.n 7 N .1>P ,
n 7 1>P .s1>nd 6 P

n 7 N Q ` 1n - 0 ` 6 P .

P 7 0

lim
n: q

 k = k sany constant kdlim
n: q

 
1
n = 0

limx:q ƒsxdq

whose terms approach 1. On the other hand, sequences like

have terms that get larger than any number as n increases, and sequences like

bounce back and forth between 1 and never converging to a single value. The follow-
ing definition captures the meaning of having a sequence converge to a limiting value. It
says that if we go far enough out in the sequence, by taking the index n to be larger then
some value N, the difference between and the limit of the sequence becomes less than
any preselected number P 7 0.

an

-1,

51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

E21, 22, 23, Á , 2n, Á F

DEFINITIONS Converges, Diverges, Limit
The sequence converges to the number L if to every positive number there
corresponds an integer N such that for all n,

If no such number L exists, we say that diverges.
If converges to L, we write or simply and call

L the limit of the sequence (Figure 11.2).
an : L ,limn:q an = L ,5an6

5an6
n 7 N Q ƒ an - L ƒ 6 P .

P5an6

aN

(N, aN)

0 1 32 N n

L

L � �

L � � L � �L

L � �

(n, an)

0 a2 a3 a1 an

n

an

FIGURE 11.2 if is a
horizontal asymptote of the sequence of
points In this figure, all the 
after lie within of L.PaN

an’s5sn, and6 .

y = Lan : L

HISTORICAL BIOGRAPHY

Nicole Oresme
(ca. 1320–1382)
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EXAMPLE 2 A Divergent Sequence

Show that the sequence diverges.

Solution Suppose the sequence converges to some number L. By choosing in
the definition of the limit, all terms of the sequence with index n larger than some N
must lie within of L. Since the number 1 appears repeatedly as every other term
of the sequence, we must have that the number 1 lies within the distance of L. It
follows that or equivalently, Likewise, the number 
appears repeatedly in the sequence with arbitrarily high index. So we must also have that

or equivalently, But the number L cannot lie in
both of the intervals (1 2, 3 2) and because they have no overlap. There-
fore, no such limit L exists and so the sequence diverges.

Note that the same argument works for any positive number smaller than 1, not
just 1 2.

The sequence also diverges, but for a different reason. As n increases, its
terms become larger than any fixed number. We describe the behavior of this sequence
by writing

In writing infinity as the limit of a sequence, we are not saying that the differences between
the terms and become small as n increases. Nor are we asserting that there is some
number infinity that the sequence approaches. We are merely using a notation that captures
the idea that eventually gets and stays larger than any fixed number as n gets large.an

qan

lim
n: q

2n = q .

{1n}

> P

s -3>2, -1>2d>> -3>2 6 L 6 -1>2.ƒ L - s -1d ƒ 6 1>2,

-11>2 6 L 6 3>2.ƒ L - 1 ƒ 6 1>2,
P = 1>2P = 1>2 an

P = 1>2
51, -1, 1, -1, 1, -1, Á , s -1dn + 1, Á 6

750 Chapter 11: Infinite Sequences and Series

DEFINITION Diverges to Infinity
The sequence diverges to infinity if for every number M there is an integer
N such that for all n larger than If this condition holds we write

Similarly if for every number m there is an integer N such that for all we
have then we say diverges to negative infinity and write

lim
n: q

 an = - q or an : - q .

5an6an 6 m ,
n 7 N

lim
n: q

 an = q or an : q .

N, an 7 M .
5an6

A sequence may diverge without diverging to infinity or negative infinity. We saw
this in Example 2, and the sequences and

are also examples of such divergence.

Calculating Limits of Sequences

If we always had to use the formal definition of the limit of a sequence, calculating with 
and N’s, then computing limits of sequences would be a formidable task. Fortunately we can
derive a few basic examples, and then use these to quickly analyze the limits of many more
sequences. We will need to understand how to combine and compare sequences. Since se-
quences are functions with domain restricted to the positive integers, it is not too surprising
that the theorems on limits of functions given in Chapter 2 have versions for sequences.

P’s

51, 0, 2, 0, 3, 0, Á 6 51, -2, 3, -4, 5, -6, 7, -8, Á 6
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11.1 Sequences 751

The proof is similar to that of Theorem 1 of Section 2.2, and is omitted.

EXAMPLE 3 Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a)

(b)

(c)

(d)

Be cautious in applying Theorem 1. It does not say, for example, that each of the
sequences and have limits if their sum has a limit. For instance,

and both diverge, but their sum
clearly converges to 0.

One consequence of Theorem 1 is that every nonzero multiple of a divergent sequence
diverges. For suppose, to the contrary, that converges for some number 

Then, by taking in the Constant Multiple Rule in Theorem 1, we see that the
sequence

converges. Thus, cannot converge unless also converges. If does not con-
verge, then does not converge.

The next theorem is the sequence version of the Sandwich Theorem in Section 2.2.
You are asked to prove the theorem in Exercise 95.

5can6
5an65an65can6

e 1
c

# can f = 5an6

k = 1>c c Z 0.5can65an6
5an + bn6 = 50, 0, 0, Á 6 5bn6 = 5-1, -2, -3, Á 65an6 = 51, 2, 3, Á 6 5an + bn65bn65an6

lim
n: q

 
4 - 7n6

n6
+ 3

= lim
n: q

 
s4>n6d - 7

1 + s3>n6d
=

0 - 7
1 + 0

= -7.

lim
n: q

 
5
n2 = 5 # lim

n: q

 
1
n

# lim
n: q

 
1
n = 5 # 0 # 0 = 0

lim
n: q

 an - 1
n b = lim

n: q

 a1 -
1
n b = lim

n: q

1 - lim
n: q

 
1
n = 1 - 0 = 1

lim
n: q

 a- 1
n b = -1 # lim

n: q

 
1
n = -1 # 0 = 0

THEOREM 1
Let and be sequences of real numbers and let A and B be real numbers.
The following rules hold if and 

1. Sum Rule:

2. Difference Rule:

3. Product Rule:

4. Constant Multiple Rule:

5. Quotient Rule: limn:q  
an

bn
=

A
B
 if B Z 0

limn:q sk # bnd = k # B sAny number kd
limn:q san

# bnd = A # B

limn:q san - bnd = A - B

limn:q san + bnd = A + B

limn:q bn = B .limn:q an = A
5bn65an6

Constant Multiple Rule and Example 1a

Difference Rule
and Example 1a

Product Rule

Sum and Quotient Rules

THEOREM 2 The Sandwich Theorem for Sequences
Let and be sequences of real numbers. If holds
for all n beyond some index N, and if then

also.limn:q  bn = L
limn:q  an = limn:q  cn = L ,

an … bn … cn5cn65an6, 5bn6 ,
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An immediate consequence of Theorem 2 is that, if and then
because We use this fact in the next example.

EXAMPLE 4 Applying the Sandwich Theorem

Since we know that

(a)

(b)

(c)

The application of Theorems 1 and 2 is broadened by a theorem stating that applying
a continuous function to a convergent sequence produces a convergent sequence. We state
the theorem without proof (Exercise 96).

-
1
n … s -1dn 

1
n …

1
n .because s -1dn 

1
n : 0 

0 …
1
2n …

1
n ;because 1

2n : 0 
-

1
n …

cos n
n …

1
n ;because cos n

n : 0 
1>n : 0,

-cn … bn … cn .bn : 0
cn : 0,ƒ bn ƒ … cn

752 Chapter 11: Infinite Sequences and Series

THEOREM 3 The Continuous Function Theorem for Sequences
Let be a sequence of real numbers. If and if ƒ is a function that is
continuous at L and defined at all then ƒsand : ƒsLd .an ,

an : L5an6

EXAMPLE 5 Applying Theorem 3

Show that 

Solution We know that Taking and in Theorem 3
gives 

EXAMPLE 6 The Sequence 

The sequence converges to 0. By taking and in
Theorem 3, we see that The sequence converges
to 1 (Figure 11.3).

Using l’Hôpital’s Rule

The next theorem enables us to use l’Hôpital’s Rule to find the limits of some sequences.
It formalizes the connection between and limx:q ƒsxd .limn:q an

521>n621>n
= ƒs1>nd : ƒsLd = 20

= 1.
L = 0an = 1>n, ƒsxd = 2x ,51>n6

521>n6
1sn + 1d>n : 11 = 1.

L = 1ƒsxd = 1xsn + 1d>n : 1.

2sn + 1d>n : 1.

1
3

0

1

(1, 2)

y � 2x

1

2

, 21/3





, 21/2





1
3

1
2

1
2

x

y

FIGURE 11.3 As and
(Example 6).21>n : 20

n : q , 1>n : 0

THEOREM 4
Suppose that ƒ(x) is a function defined for all and that is a sequence
of real numbers such that for Then

lim
x: q

 ƒsxd = L Q lim
n: q

 an = L .

n Ú n0 .an = ƒsnd
5an6x Ú n0

Proof Suppose that Then for each positive number there is a num-
ber M such that for all x,

x 7 M Q ƒ ƒsxd - L ƒ 6 P .

Plimx:q ƒsxd = L .
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11.1 Sequences 753

Let N be an integer greater than M and greater than or equal to Then

EXAMPLE 7 Applying L’Hôpital’s Rule

Show that

Solution The function is defined for all and agrees with the given
sequence at positive integers. Therefore, by Theorem 5, will equal

if the latter exists. A single application of l’Hôpital’s Rule shows that

We conclude that 

When we use l’Hôpital’s Rule to find the limit of a sequence, we often treat n as a
continuous real variable and differentiate directly with respect to n. This saves us from
having to rewrite the formula for as we did in Example 7.

EXAMPLE 8 Applying L’Hôpital’s Rule

Find

Solution By l’Hôpital’s Rule (differentiating with respect to n),

EXAMPLE 9 Applying L’Hôpital’s Rule to Determine Convergence

Does the sequence whose nth term is

converge? If so, find 

Solution The limit leads to the indeterminate form We can apply l’Hôpital’s Rule if
we first change the form to by taking the natural logarithm of 

 = n ln an + 1
n - 1

b .

 ln an = ln an + 1
n - 1

bn

an :q # 0
1q .

limn:q an .

an = an + 1
n - 1

bn

 = q .

 lim
n: q

 
2n

5n
= lim

n: q

 
2n # ln 2

5

lim
n: q

 
2n

5n
.

an

limn:q sln nd>n = 0.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

=

0
1

= 0.

limx:q sln xd>x limn:q sln nd>nx Ú 1sln xd>x

lim
n: q

 
ln n
n = 0.

n 7 N Q an = ƒsnd and ƒ an - L ƒ = ƒ ƒsnd - L ƒ 6 P .

n0 .
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Then,

Since and is continuous, Theorem 4 tells us that

The sequence converges to  

Commonly Occurring Limits

The next theorem gives some limits that arise frequently.

e2 .5an6
an = e ln an : e2 .

ƒsxd = exln an : 2

 = lim
n: q

 
2n2

n2
- 1

= 2 .

 = lim
n: q

 
-2>sn2

- 1d

-1>n2

 = lim
n: q

 

ln an + 1
n - 1

b
1>n

 lim
n: q

 ln an = lim
n: q

 n ln an + 1
n - 1

b

754 Chapter 11: Infinite Sequences and Series

l’Hôpital’s Rule

q # 0

0
0

THEOREM 5
The following six sequences converge to the limits listed below:

1.

2.

3.

4.

5.

6.

In Formulas (3) through (6), x remains fixed as n : q .

lim
n: q

 
xn

n!
= 0 sany xd

lim
n: q

 a1 +

x
n b

n

= ex sany xd

lim
n: q

 xn
= 0 s ƒ x ƒ 6 1d

lim
n: q

 x1>n
= 1 sx 7 0d

lim
n: q

2n n = 1

lim
n: q

 
ln n
n = 0

Proof The first limit was computed in Example 7. The next two can be proved by taking
logarithms and applying Theorem 4 (Exercises 93 and 94). The remaining proofs are given
in Appendix 3.

EXAMPLE 10 Applying Theorem 5

(a) Formula 1

(b) Formula 2

(c) Formula 3 with and Formula 2x = 32n 3n = 31>nsn1/nd : 1 # 1 = 1

2n n2
= n2>n

= sn1/nd2 : s1d2
= 1

ln sn2d
n =

2 ln n
n : 2 # 0 = 0

Factorial Notation
The notation n! (“n factorial”) means 
the product of the integers
from 1 to n. Notice that

Thus,
and

We
define 0! to be 1. Factorials grow even
faster than exponentials, as the table
suggests.

5! = 1 # 2 # 3 # 4 # 5 = 5 # 4! = 120.
4! = 1 # 2 # 3 # 4 = 24
sn + 1d! = sn + 1d # n! .

1 # 2 # 3 Á n

n (rounded) n!

1 3 1

5 148 120

10 22,026 3,628,800

20 2.4 * 10184.9 * 108

en
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11.1 Sequences 755

(d) Formula 4 with

(e) Formula 5 with

(f) Formula 6 with

Recursive Definitions

So far, we have calculated each directly from the value of n. But sequences are often
defined recursively by giving

1. The value(s) of the initial term or terms, and

2. A rule, called a recursion formula, for calculating any later term from terms that pre-
cede it.

EXAMPLE 11 Sequences Constructed Recursively

(a) The statements and define the sequence of
positive integers. With we have and
so on.

(b) The statements and define the sequence 
of factorials. With we have 

and so on.

(c) The statements and define the sequence
of Fibonacci numbers. With and we have

and so on.

(d) As we can see by applying Newton’s method, the statements and
define a sequence that converges to a

solution of the equation 

Bounded Nondecreasing Sequences

The terms of a general sequence can bounce around, sometimes getting larger, sometimes
smaller. An important special kind of sequence is one for which each term is at least as
large as its predecessor.

sin x - x2
= 0.

xn + 1 = xn - [ssin xn - xn
2d>scos xn - 2xnd]

x0 = 1

a3 = 1 + 1 = 2, a4 = 2 + 1 = 3, a5 = 3 + 2 = 5,
a2 = 1,a1 = 11, 1, 2, 3, 5, Á

an + 1 = an + an - 1a1 = 1, a2 = 1,

4 # a3 = 24,
a2 = 2 # a1 = 2, a3 = 3 # a2 = 6, a4 =a1 = 1,

1, 2, 6, 24, Á , n!, Áan = n # an - 1a1 = 1

a2 = a1 + 1 = 2, a3 = a2 + 1 = 3,a1 = 1,
1, 2, 3, Á , n, Áan = an - 1 + 1a1 = 1

an

x = 100
100n

n!
: 0

x = -2an - 2
n bn

= a1 +
-2
n b

n

: e-2

x = -

1
2

a- 1
2
bn

: 0

DEFINITION Nondecreasing Sequence
A sequence with the property that for all n is called a
nondecreasing sequence.

an … an + 15an6

EXAMPLE 12 Nondecreasing Sequences

(a) The sequence of natural numbers

(b) The sequence 

(c) The constant sequence 536
1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

1, 2, 3, Á , n, Á
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There are two kinds of nondecreasing sequences—those whose terms increase beyond any
finite bound and those whose terms do not.

756 Chapter 11: Infinite Sequences and Series

DEFINITIONS Bounded, Upper Bound, Least Upper Bound
A sequence is bounded from above if there exists a number M such that

for all n. The number M is an upper bound for If M is an upper
bound for but no number less than M is an upper bound for then M is
the least upper bound for 5an6 .

5an6 ,5an6
5an6 .an … M

5an6

EXAMPLE 13 Applying the Definition for Boundedness

(a) The sequence has no upper bound.

(b) The sequence is bounded above by 

No number less than 1 is an upper bound for the sequence, so 1 is the least upper
bound (Exercise 113).

A nondecreasing sequence that is bounded from above always has a least upper
bound. This is the completeness property of the real numbers, discussed in Appendix 4.
We will prove that if L is the least upper bound then the sequence converges to L.

Suppose we plot the points in the xy-plane. If M is an up-
per bound of the sequence, all these points will lie on or below the line (Figure 11.4).
The line is the lowest such line. None of the points lies above but some
do lie above any lower line if is a positive number. The sequence converges to
L because

(a) for all values of n and

(b) given any there exists at least one integer N for which 

The fact that is nondecreasing tells us further that

Thus, all the numbers beyond the Nth number lie within of L. This is precisely the
condition for L to be the limit of the sequence 

The facts for nondecreasing sequences are summarized in the following theorem. A
similar result holds for nonincreasing sequences (Exercise 107).

{an}.
Pan

an Ú aN 7 L - P for all n Ú N .

5an6
aN 7 L - P .P 7 0,

an … L

Py = L - P ,
y = L ,sn, andy = L

y = M
s1, a1d, s2, a2d, Á , sn, and, Á

M = 1.
1
2

, 
2
3

, 
3
4

, Á , 
n

n + 1
, Á

1, 2, 3, Á , n, Á

0 1 2 3 4

L

M

5

y � L

(8, a8)

6 7 8

y � M

(5, a5)

(1, a1)

x

y

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L … M .

THEOREM 6 The Nondecreasing Sequence Theorem
A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.

Theorem 6 implies that a nondecreasing sequence converges when it is bounded from
above. It diverges to infinity if it is not bounded from above.
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EXERCISES 11.1

Finding Terms of a Sequence
Each of Exercises 1–6 gives a formula for the nth term of a se-
quence Find the values of and 

1. 2.

3. 4.

5. 6.

Each of Exercises 7–12 gives the first term or two of a sequence along
with a recursion formula for the remaining terms. Write out the first
ten terms of the sequence.

7.

8.

9.

10.

11.

12.

Finding a Sequence’s Formula
In Exercises 13–22, find a formula for the nth term of the sequence.

13. The sequence 

14. The sequence 

15. The sequence 

16. The sequence 

17. The sequence 

18. The sequence 

19. The sequence 

20. The sequence 

21. The sequence 

22. The sequence 

Finding Limits
Which of the sequences in Exercises 23–84 converge, and which
diverge? Find the limit of each convergent sequence.

5an6

0, 1, 1, 2, 2, 3, 3, 4, Á

1, 0, 1, 0, 1, Á

2, 6, 10, 14, 18, Á

1, 5, 9, 13, 17, Á

-3, -2, -1, 0, 1, Á

0, 3, 8, 15, 24, Á

1, -
1
4

, 
1
9

, -
1

16
, 

1
25

, Á

1, -4, 9, -16, 25, Á

-1, 1, -1, 1, -1, Á

1, -1, 1, -1, 1, Á

a1 = 2, a2 = -1, an + 2 = an + 1>an

a1 = a2 = 1, an + 2 = an + 1 + an

a1 = -2, an + 1 = nan>sn + 1d
a1 = 2, an + 1 = s -1dn + 1an>2
a1 = 1, an + 1 = an>sn + 1d
a1 = 1, an + 1 = an + s1>2nd

an =

2n
- 1

2nan =

2n

2n + 1

an = 2 + s -1dnan =

s -1dn + 1

2n - 1

an =

1
n!

an =

1 - n

n2

a4 .a1, a2, a3 ,5an6 .
an

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. (Hint: Compare with 1 n.)>an =

n!
nn

an = 2n 32n + 1an = 2n 4nn

an = ln n - ln sn + 1dan =

ln n

n1>n

an = sn + 4d1>sn + 4dan = a3n b
1>n

an = 2n n2an = 2n 10n

an = a1 -

1
n b

n

an = a1 +

7
n b

n

an = s0.03d1>nan = 81>n

an =

ln n
ln 2n

an =

ln sn + 1d2n

an =

3n

n3an =

n
2n

an =

sin2 n
2nan =

sin n
n

an = np cos snpdan = sin ap
2

+

1
n b

an =

1
s0.9dnan = A 2n

n + 1

an = a- 1
2
bn

an =

s -1dn + 1

2n - 1

an = a2 -

1
2n b a3 +

1
2n ban = an + 1

2n
b a1 -

1
n b

an = s -1dn a1 -

1
n ban = 1 + s -1dn

an =

1 - n3

70 - 4n2an =

n2
- 2n + 1
n - 1

an =

n + 3
n2

+ 5n + 6
an =

1 - 5n4

n4
+ 8n3

an =

2n + 1

1 - 32n
an =

1 - 2n
1 + 2n

an =

n + s -1dn

nan = 2 + s0.1dn

Reciprocals of squares
of the positive integers,
with alternating signs

1’s with alternating signs

1’s with alternating signs

Squares of the positive
integers; with
alternating signs

Squares of the positive
integers diminished by 1

Integers beginning with
-3

Every other odd positive
integer

Every other even positive
integer

Alternating 1’s and 0’s

Each positive integer
repeated
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60. 61.

62. 63.

64. 65.

66. 67.

68. 69.

70. 71.

72. 73.

74. 75.

76. 77.

78. 79.

80. 81.

82.

83. 84.

Theory and Examples
85. The first term of a sequence is Each succeeding term is

the sum of all those that come before it:

Write out enough early terms of the sequence to deduce a general
formula for that holds for 

86. A sequence of rational numbers is described as follows:

.

Here the numerators form one sequence, the denominators form a
second sequence, and their ratios form a third sequence. Let 
and be, respectively, the numerator and the denominator of the
nth fraction 

a. Verify that and, more
generally, that if or then

respectively.

sa + 2bd2
- 2sa + bd2

= +1 or -1,

+1,a2
- 2b2

= -1
x1

2
- 2y1

2
= -1, x2

2
- 2y2

2
= +1

rn = xn>yn .
yn

xn

1
1

, 
3
2

, 
7
5

, 
17
12

, Á , 
a
b

, 
a + 2b
a + b

, Á

n Ú 2.xn

xn + 1 = x1 + x2 +
Á

+ xn .

x1 = 1.

an = L
n

1
 
1
xp dx, p 7 1an =

1
nL

n

1
 
1
x  dx

an =

12n2
- 1 - 2n2

+ n

an = n - 2n2
- nan =

sln nd52n

an =

sln nd200

nan = 2n n2
+ n

an = a1
3
bn

+

122n
an =

12n
 tan-1 n

an = tan-1 nan = n a1 - cos 
1
n b

an =

n2

2n - 1
 sin 

1
nan = sinh sln nd

an = tanh nan =

s10>11dn

s9/10dn
+ s11/12dn

an =

3n # 6n

2-n # n!
an = a1 -

1
n2 b

n

an = a xn

2n + 1
b1>n

, x 7 0an = a n
n + 1

bn

an = a3n + 1
3n - 1

bn

an = ln a1 +

1
n b

n

an = a1n b
1>sln nd

an =

n!
2n # 3n

an =

n!
106n

an =

s -4dn

n!
b. The fractions approach a limit as n increases.

What is that limit? (Hint: Use part (a) to show that
and that is not less than n.)

87. Newton’s method The following sequences come from the re-
cursion formula for Newton’s method,

Do the sequences converge? If so, to what value? In each case,
begin by identifying the function ƒ that generates the sequence.

a.

b.

c.

88. a. Suppose that ƒ(x) is differentiable for all x in [0, 1] and that
Define the sequence by the rule 

Show that 

Use the result in part (a) to find the limits of the following
sequences 

b. c.

d.

89. Pythagorean triples A triple of positive integers a, b, and c is
called a Pythagorean triple if Let a be an odd
positive integer and let

be, respectively, the integer floor and ceiling for 

a. Show that (Hint: Let and express
b and c in terms of n.)

a = 2n + 1a2
+ b2

= c2 .

a

 a2

2





a2

2

�

a2>2.

b = j a2

2
k and c = l a2

2
m

a2
+ b2

= c2 .

an = n ln a1 +

2
n b

an = nse1>n
- 1dan = n tan-1 

1
n

5an6 .

lim n:q an = ƒ¿s0d .nƒs1>nd .
an =5an6ƒs0d = 0.

x0 = 1, xn + 1 = xn - 1

x0 = 1, xn + 1 = xn -

tan xn - 1

sec2 xn

x0 = 1, xn + 1 = xn -

xn
2

- 2
2xn

=

xn

2
+

1
xn

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

ynrn
2

- 2 = ;s1>ynd2

rn = xn>yn
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11.1 Sequences 759

b. By direct calculation, or by appealing to the figure here, find

90. The nth root of n!

a. Show that and hence, using Stirling’s
approximation (Chapter 8, Additional Exercise 50a), that

b. Test the approximation in part (a) for as
far as your calculator will allow.

91. a. Assuming that if c is any positive con-
stant, show that

if c is any positive constant.

b. Prove that if c is any positive constant.
(Hint: If and how large should N be to
ensure that if )

92. The zipper theorem Prove the “zipper theorem” for se-
quences: If and both converge to L, then the sequence

converges to L.

93. Prove that 

94. Prove that 

95. Prove Theorem 2. 96. Prove Theorem 3.

In Exercises 97–100, determine if the sequence is nondecreasing and
if it is bounded from above.

97. 98.

99. 100.

Which of the sequences in Exercises 101–106 converge, and which di-
verge? Give reasons for your answers.

101. 102.

103. 104.

105. an = ss -1dn
+ 1d an + 1

n b
an =

2n
- 1

3nan =

2n
- 1

2n

an = n -

1
nan = 1 -

1
n

an = 2 -

2
n -

1
2nan =

2n3n

n!

an =

s2n + 3d!
sn + 1d!

an =

3n + 1
n + 1

limn:q x1>n
= 1, sx 7 0d .

limn:q2n n = 1.

a1, b1, a2 , b2 , Á , an , bn , Á

5bn65an6
n 7 N?ƒ 1>nc

- 0 ƒ 6 P

c = 0.04 ,P = 0.001
limn:q s1>ncd = 0

lim
n: q

 
ln n
nc = 0

limn:q s1>ncd = 0

n = 40, 50, 60, Á ,

2n n! L

n
e for large values of n .

limn:q s2npd1>s2nd
= 1

lim
a: q

 

j a2

2
k

l a2

2
m
.

106. The first term of a sequence is The next terms are
or cos (2), whichever is larger; and or cos (3),

whichever is larger (farther to the right). In general,

107. Nonincreasing sequences A sequence of numbers in
which for every n is called a nonincreasing sequence.
A sequence is bounded from below if there is a number M
with for every n. Such a number M is called a lower
bound for the sequence. Deduce from Theorem 6 that a nonin-
creasing sequence that is bounded from below converges and that
a nonincreasing sequence that is not bounded from below di-
verges.

(Continuation of Exercise 107.) Using the conclusion of Exercise 107,
determine which of the sequences in Exercises 108–112 converge and
which diverge.

108. 109.

110. 111.

112.

113. The sequence has a least upper bound of 1
Show that if M is a number less than 1, then the terms of

eventually exceed M. That is, if there is an
integer N such that whenever Since

for every n, this proves that 1 is a least upper
bound for 

114. Uniqueness of least upper bounds Show that if and 
are least upper bounds for the sequence then 
That is, a sequence cannot have two different least upper bounds.

115. Is it true that a sequence of positive numbers must con-
verge if it is bounded from above? Give reasons for your answer.

116. Prove that if is a convergent sequence, then to every pos-
itive number there corresponds an integer N such that for all
m and n,

117. Uniqueness of limits Prove that limits of sequences are
unique. That is, show that if and are numbers such that

and then 

118. Limits and subsequences If the terms of one sequence ap-
pear in another sequence in their given order, we call the first
sequence a subsequence of the second. Prove that if two sub-
sequences of a sequence have different limits 
then diverges.

119. For a sequence the terms of even index are denoted by 
and the terms of odd index by Prove that if and

then 

120. Prove that a sequence converges to 0 if and only if the se-
quence of absolute values converges to 0.5ƒ an ƒ6

5an6
an : L .a2k + 1 : L ,

a2k : La2k + 1 .
a2k5an6

5an6
L1 Z L2 ,5an6

L1 = L2 .an : L2 ,an : L1

L2L1

m 7 N and n 7 N Q  ƒ am - an ƒ 6 P .

P

5an6
5an6

M1 = M2 .5an6 ,
M2M1

5n>sn + 1d6 .
n>sn + 1d 6 1

n 7 N .n>sn + 1d 7 M
M 6 15n>sn + 1d6

5n>sn + 1d6
a1 = 1, an + 1 = 2an - 3

an =

4n + 1
+ 3n

4nan =

1 - 4n

2n

an =

1 + 22n2n
an =

n + 1
n

M … an

5an6
an Ú an + 1

5an6
xn + 1 = max 5xn , cos sn + 1d6 .

x3 = x2x2 = x1

x1 = cos s1d .

T
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Calculator Explorations of Limits
In Exercises 121–124, experiment with a calculator to find a value of
N that will make the inequality hold for all Assuming that the
inequality is the one from the formal definition of the limit of a se-
quence, what sequence is being considered in each case and what is its
limit?

121. 122.

123. 124.

125. Sequences generated by Newton’s method Newton’s
method, applied to a differentiable function ƒ(x), begins with a
starting value and constructs from it a sequence of numbers

that under favorable circumstances converges to a zero of
ƒ. The recursion formula for the sequence is

a. Show that the recursion formula for 
can be written as 

b. Starting with and calculate successive terms
of the sequence until the display begins to repeat. What num-
ber is being approximated? Explain.

126. (Continuation of Exercise 125.) Repeat part (b) of Exercise 125
with in place of 

127. A recursive definition of If you start with and
define the subsequent terms of by the rule

you generate a sequence that converges
rapidly to a. Try it. b. Use the accompanying figure to ex-
plain why the convergence is so rapid.

128. According to a front-page article in the December 15, 1992, is-
sue of the Wall Street Journal, Ford Motor Company used about

hours of labor to produce stampings for the average vehicle,
down from an estimated 15 hours in 1980. The Japanese needed
only about hours.

Ford’s improvement since 1980 represents an average de-
crease of 6% per year. If that rate continues, then n years from
1992 Ford will use about

hours of labor to produce stampings for the average vehicle. As-
suming that the Japanese continue to spend hours per vehicle,3 12

Sn = 7.25s0.94dn

3 12

7 14

10

cos xn � 11

xn � 1

xn � 1
x

y

p>2.
xn = xn - 1 + cos xn - 1 ,

5xn6
x1 = 1P/2

a = 3.a = 2

a = 3,x0 = 1

xn + 1 = sxn + a>xnd>2.
ƒsxd = x2

- a, a 7 0,

xn + 1 = xn -

ƒsxnd
ƒ¿sxnd

.

5xn6
x0

2n>n! 6 10-7s0.9dn
6 10-3

ƒ2n n - 1 ƒ 6 10-3
ƒ2n 0.5 - 1 ƒ 6 10-3

n 7 N .

how many more years will it take Ford to catch up? Find out two
ways:

a. Find the first term of the sequence that is less than or
equal to 3.5.

b. Graph and use Trace to find where the
graph crosses the line 

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for the sequences in Exer-
cises 129–140.

a. Calculate and then plot the first 25 terms of the sequence. Does
the sequence appear to be bounded from above or below? Does it
appear to converge or diverge? If it does converge, what is the
limit L?

b. If the sequence converges, find an integer N such that
for How far in the sequence do you

have to get for the terms to lie within 0.0001 of L?

129. 130.

131.

132.

133. 134.

135. 136.

137. 138.

139. 140.

141. Compound interest, deposits, and withdrawals If you invest
an amount of money at a fixed annual interest rate r com-
pounded m times per year, and if the constant amount b is added
to the account at the end of each compounding period (or taken
from the account if ), then the amount you have after

compounding periods is

(1)

a. If and calculate
and plot the first 100 points How much money is in
your account at the end of 5 years? Does converge? Is

bounded?

b. Repeat part (a) with and

c. If you invest 5000 dollars in a certificate of deposit (CD) that
pays 4.5% annually, compounded quarterly, and you make no
further investments in the CD, approximately how many
years will it take before you have 20,000 dollars? What if the
CD earns 6.25%?

b = -50.
A0 = 5000, r = 0.0589, m = 12,

5An6
5An6

sn, And .
b = 50,A0 = 1000, r = 0.02015, m = 12,

An + 1 = a1 +

r
m bAn + b .

n + 1
b 6 0

A0

an =

n41

19nan =

8n

n!

an = 1234561>nan = s0.9999dn

an =

ln n
nan =

sin n
n

an = n sin 
1
nan = sin n

a1 = 1, an + 1 = an + s -2dn

a1 = 1, an + 1 = an +

1
5n

an = a1 +

0.5
n b

n

an = 2n n

n Ú N .ƒ an - L ƒ … 0.01

y = 3.5 .
ƒsxd = 7.25s0.94dx

5Sn6
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d. It can be shown that for any the sequence defined re-
cursively by Equation (1) satisfies the relation

(2)

For the values of the constants r, m, and b given in part
(a), validate this assertion by comparing the values of the
first 50 terms of both sequences. Then show by direct substi-
tution that the terms in Equation (2) satisfy the recursion for-
mula in Equation (1).

142. Logistic difference equation The recursive relation

is called the logistic difference equation, and when the initial
value is given the equation defines the logistic sequence

Throughout this exercise we choose in the interval
say 

a. Choose Calculate and plot the points for the
first 100 terms in the sequence. Does it appear to converge?
What do you guess is the limit? Does the limit seem to de-
pend on your choice of 

b. Choose several values of r in the interval and re-
peat the procedures in part (a). Be sure to choose some points
near the endpoints of the interval. Describe the behavior of
the sequences you observe in your plots.

c. Now examine the behavior of the sequence for values of r
near the endpoints of the interval The transi-
tion value is called a bifurcation value and the new
behavior of the sequence in the interval is called an
attracting 2-cycle. Explain why this reasonably describes the
behavior.

r = 3
3 6 r 6 3.45 .

1 6 r 6 3

a0 ?

sn, andr = 3>4.

a0 = 0.3 .0 6 a0 6 1,
a05an6 .

a0

an + 1 = rans1 - and

A0 ,

Ak = a1 +

r
m b

k

 aA0 +

mb
r b -

mb
r .

k Ú 0, d. Next explore the behavior for r values near the endpoints
of each of the intervals and

Plot the first 200 terms of the sequences.
Describe in your own words the behavior observed in your
plots for each interval. Among how many values does the se-
quence appear to oscillate for each interval? The values

and (rounded to two decimal places) are
also called bifurcation values because the behavior of the se-
quence changes as r crosses over those values.

e. The situation gets even more interesting. There is actually an
increasing sequence of bifurcation values 

such that for the
logistic sequence eventually oscillates steadily among

values, called an attracting Moreover, the bifur-
cation sequence is bounded above by 3.57 (so it con-
verges). If you choose a value of you will observe a

of some sort. Choose and plot 300
points.

f. Let us see what happens when Choose 
and calculate and plot the first 300 terms of Observe
how the terms wander around in an unpredictable, chaotic
fashion. You cannot predict the value of from previous
values of the sequence.

g. For choose two starting values of that are close
together, say, and Calculate and plot
the first 300 values of the sequences determined by each
starting value. Compare the behaviors observed in your
plots. How far out do you go before the corresponding
terms of your two sequences appear to depart from each
other? Repeat the exploration for Can you see
how the plots look different depending on your choice of

We say that the logistic sequence is sensitive to the ini-
tial condition a0 .
a0 ?

r = 3.75 .

a0 = 0.301 .a0 = 0.3
a0r = 3.65

an + 1

5an6 .
r = 3.65r 7 3.57 .

r = 3.56952n-cycle
r 6 3.57

5cn6
2n-cycle.2n

5an6
cn 6 r 6 cn + 16

Á
6 cn 6 cn + 1

Á

3 6 3.45 6 3.54

r = 3.54r = 3.45

3.54 6 r 6 3.55 .
3.45 6 r 6 3.54
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11.2 Infinite Series 761

Infinite Series

An infinite series is the sum of an infinite sequence of numbers

The goal of this section is to understand the meaning of such an infinite sum and to de-
velop methods to calculate it. Since there are infinitely many terms to add in an infinite se-
ries, we cannot just keep adding to see what comes out. Instead we look at what we get by
summing the first n terms of the sequence and stopping. The sum of the first n terms

sn = a1 + a2 + a3 +
Á

+ an

a1 + a2 + a3 +
Á

+ an +
Á

11.2
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762 Chapter 11: Infinite Sequences and Series

is an ordinary finite sum and can be calculated by normal addition. It is called the nth par-
tial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting
value in the same sense that the terms of a sequence approach a limit, as discussed in
Section 11.1.

For example, to assign meaning to an expression like

We add the terms one at a time from the beginning and look for a pattern in how these par-
tial sums grow.

Suggestive
expression for

Partial sum partial sum Value

First: 1

Second:

Third:

nth: 

Indeed there is a pattern. The partial sums form a sequence whose nth term is

This sequence of partial sums converges to 2 because We say

Is the sum of any finite number of terms in this series equal to 2? No. Can we actually add
an infinite number of terms one by one? No. But we can still define their sum by defining
it to be the limit of the sequence of partial sums as in this case 2 (Figure 11.5).
Our knowledge of sequences and limits enables us to break away from the confines of
finite sums.

n : q ,

“the sum of the infinite series 1 +
1
2

+
1
4

+
Á

+
1

2n - 1 +
Á is 2.”

limn:q s1>2nd = 0.

sn = 2 -
1

2n - 1 .

2n
- 1

2n - 12 -
1

2n - 1 sn = 1 +
1
2

+
1
4

+
Á

+
1

2n - 1

ooo     o

7
4

2 -
1
4

 s3 = 1 +
1
2

+
1
4

3
2

2 -
1
2

 s2 = 1 +
1
2

2 - 1 s1 = 1

1 +
1
2

+
1
4

+
1
8

+
1
16

+
Á



0

1






1 21/2 1/8

1/4

FIGURE 11.5 As the lengths are added one by one, the sum
approaches 2.

1, 1�2, 1�4, 1�8, Á
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11.2 Infinite Series 763

When we begin to study a given series we might not know
whether it converges or diverges. In either case, it is convenient to use sigma notation to
write the series as

Geometric Series

Geometric series are series of the form

in which a and r are fixed real numbers and The series can also be written as
The ratio r can be positive, as in

or negative, as in

If the nth partial sum of the geometric series is

sn = a + as1d + as1d2
+

Á
+ as1dn - 1

= na ,

r = 1,

1 -
1
3

+
1
9

-
Á

+ a- 1
3
bn - 1

+
Á .

1 +
1
2

+
1
4

+
Á

+ a1
2
bn - 1

+
Á ,

gq

n=0 arn .
a Z 0.

a + ar + ar2
+

Á
+ arn - 1

+
Á

= a
q

n = 1
 arn - 1

a
q

n = 1
 an, a

q

k = 1
 ak, or a  an

a1 + a2 +
Á

+ an +
Á ,

DEFINITIONS Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers an expression of the form

is an infinite series. The number is the nth term of the series. The sequence
defined by

is the sequence of partial sums of the series, the number being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

a1 + a2 +
Á

+ an +
Á

= a
q

n = 1
 an = L .

sn

 o

sn = a1 + a2 +
Á

+ an = a
n

k = 1
 ak

 o

  s2 = a1 + a2

  s1 = a1

5sn6
an

a1 + a2 + a3 +
Á

+ an +
Á

5an6 ,

HISTORICAL BIOGRAPHY

Blaise Pascal
(1623–1662)

A useful shorthand
when summation
from 1 to is
understood

q
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If the geometric series converges
to 

If the series diverges.ƒ r ƒ Ú 1,

a
q

n = 1
 arn - 1

=

a
1 - r

, ƒ r ƒ 6 1.

a>s1 - rd :
a + ar + ar2

+
Á

+ arn - 1
+

Á
ƒ r ƒ 6 1,

and the series diverges because depending on the sign of a. If 
the series diverges because the nth partial sums alternate between a and 0. If we
can determine the convergence or divergence of the series in the following way:

If then as (as in Section 11.1) and If 
then and the series diverges.ƒ rn

ƒ : q

ƒ r ƒ 7 1,sn : a>s1 - rd .n : qrn : 0ƒ r ƒ 6 1,

 sn =

as1 - rnd
1 - r

, sr Z 1d .

 sns1 - rd = as1 - rnd
 sn - rsn = a - arn

 rsn = ar + ar2
+

Á
+ arn - 1

+ arn

 sn = a + ar + ar2
+

Á
+ arn - 1

ƒ r ƒ Z 1,
r = -1,limn:q sn = ; q ,
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Subtract from Most of
the terms on the right cancel.

sn .rsn

Factor.

We can solve for sn if r Z 1 .

Multiply by r.sn

We have determined when a geometric series converges or diverges, and to what
value. Often we can determine that a series converges without knowing the value to which
it converges, as we will see in the next several sections. The formula for the sum
of a geometric series applies only when the summation index begins with in the ex-
pression (or with the index if we write the series as ).

EXAMPLE 1 Index Starts with 

The geometric series with and is

EXAMPLE 2 Index Starts with 

The series

is a geometric series with and It converges to

EXAMPLE 3 A Bouncing Ball

You drop a ball from a meters above a flat surface. Each time the ball hits the surface after
falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the
total distance the ball travels up and down (Figure 11.6).

a
1 - r

=

5
1 + s1>4d

= 4.

r = -1>4.a = 5

a
q

n = 0
 
s -1dn5

4n = 5 -

5
4

+

5
16

-

5
64

+
Á

n = 0

1
9

+
1
27

+
1
81

+
Á

= a
q

n = 1
 
1
9

 a1
3
bn - 1

=

1>9
1 - s1>3d

=
1
6

.

r = 1>3a = 1>9
n = 1

gq

n=0 arnn = 0gq

n=1 arn - 1
n = 1

a>s1 - rd
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11.2 Infinite Series 765

Solution The total distance is

If and for instance, the distance is

EXAMPLE 4 Repeating Decimals

Express the repeating decimal as the ratio of two integers.

Solution

Unfortunately, formulas like the one for the sum of a convergent geometric series are rare
and we usually have to settle for an estimate of a series’ sum (more about this later). The
next example, however, is another case in which we can find the sum exactly.

EXAMPLE 5 A Nongeometric but Telescoping Series

Find the sum of the series 

Solution We look for a pattern in the sequence of partial sums that might lead to a for-
mula for The key observation is the partial fraction decomposition

so

and

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

sk = 1 -
1

k + 1
.

sk = a1
1

-
1
2
b + a1

2
-

1
3
b + a1

3
-

1
4
b +

Á
+ a1

k
-

1
k + 1

b .

a
k

n = 1
 

1
nsn + 1d

= a
k

n = 1
 a1n -

1
n + 1

b

1
nsn + 1d

=
1
n -

1
n + 1

,

sk .

a
q

n = 1
 

1
nsn + 1d

.

 = 5 +

23
100

 a 1
0.99
b = 5 +

23
99

=

518
99

1>s1 - 0.01d
('''''''')''''''''*

 = 5 +

23
100

 a1 +
1

100
+ a 1

100
b2

+
Á b

 5.232323 Á = 5 +

23
100

+

23
s100d2 +

23
s100d3 +

Á

5.232323 Á

s = 6 
1 + s2>3d
1 - s2>3d

= 6 a5>3
1>3 b = 30 m.

r = 2>3,a = 6 m

This sum is 2ar>s1 - rd.
(''''''')'''''''*

s = a + 2ar + 2ar2
+ 2ar3

+
Á

= a +

2ar
1 - r

= a 
1 + r
1 - r

.

r = 1>100
a = 1 ,

ar

ar2

ar3

(a)

a

FIGURE 11.6 (a) Example 3 shows how
to use a geometric series to calculate the
total vertical distance traveled by a
bouncing ball if the height of each rebound
is reduced by the factor r. (b) A
stroboscopic photo of a bouncing ball.

(b)
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We now see that as The series converges, and its sum is 1:

Divergent Series

One reason that a series may fail to converge is that its terms don’t become small.

EXAMPLE 6 Partial Sums Outgrow Any Number

(a) The series

diverges because the partial sums grow beyond every number L. After the par-
tial sum is greater than 

(b) The series

diverges because the partial sums eventually outgrow every preassigned number. Each
term is greater than 1, so the sum of n terms is greater than n. 

The nth-Term Test for Divergence

Observe that must equal zero if the series converges. To see why, let S
represent the series’ sum and the nth partial sum. When n is
large, both and are close to S, so their difference, is close to zero. More formally,

This establishes the following theorem.

an = sn - sn - 1 :  S - S = 0.

an ,sn - 1sn

sn = a1 + a2 +
Á

+ an

gq

n=1 anlimn:q an

a
q

n = 1
 
n + 1

n =
2
1

+

3
2

+
4
3

+
Á

+

n + 1
n +

Á

n2 .sn = 1 + 4 + 9 +
Á

+ n2
n = 1,

a
q

n = 1
 n2

= 1 + 4 + 9 +
Á

+ n2
+

Á

a
q

n = 1
 

1
nsn + 1d

= 1.

k : q .sk : 1
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Difference Rule for
sequences

THEOREM 7

If converges, then an : 0.a
q

n = 1
 an

Theorem 7 leads to a test for detecting the kind of divergence that occurred in Example 6.

Caution
Theorem 7 does not say that 
converges if It is possible for a
series to diverge when an : 0.

an : 0.
gq

n=1 an

The nth-Term Test for Divergence

diverges if fails to exist or is different from zero.lim
n: q

 ana
q

n = 1
 an
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EXAMPLE 7 Applying the nth-Term Test

(a) diverges because 

(b) diverges because 

(c) diverges because does not exist

(d) diverges because 

EXAMPLE 8 but the Series Diverges

The series

2 terms 4 terms

diverges because the terms are grouped into clusters that add to 1, so the partial sums
increase without bound. However, the terms of the series form a sequence that con-
verges to 0. Example 1 of Section 11.3 shows that the harmonic series also behaves in
this manner.

Combining Series

Whenever we have two convergent series, we can add them term by term, subtract them
term by term, or multiply them by constants to make new convergent series.

2n terms
(''''')'''''*('''')''''*(')'*

1 +
1
2

+
1
2

+
1
4

+
1
4

+
1
4

+
1
4

+
Á

+
1
2n +

1
2n +

Á
+

1
2n +

Á

an : 0

limn:q 
-n

2n + 5
= -

1
2

Z 0.a
q

n = 1
 

-n
2n + 5

limn:qs -1dn + 1a
q

n = 1
 s -1dn + 1

n + 1
n : 1a

q

n = 1
 
n + 1

n

n2 : qa
q

n = 1
 n2

THEOREM 8
If and are convergent series, then

1. Sum Rule:

2. Difference Rule:

3. Constant Multiple Rule: gkan = kgan = kA sAny number kd .

gsan - bnd = gan - gbn = A - B

gsan + bnd = gan + gbn = A + B

gbn = Bgan = A

Proof The three rules for series follow from the analogous rules for sequences in
Theorem 1, Section 11.1. To prove the Sum Rule for series, let

Then the partial sums of are

 = An + Bn .

 = sa1 +
Á

+ and + sb1 +
Á

+ bnd
 sn = sa1 + b1d + sa2 + b2d +

Á
+ san + bnd

gsan + bnd

An = a1 + a2 +
Á

+ an, Bn = b1 + b2 +
Á

+ bn .
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Since and we have by the Sum Rule for sequences. The
proof of the Difference Rule is similar.

To prove the Constant Multiple Rule for series, observe that the partial sums of 
form the sequence

which converges to kA by the Constant Multiple Rule for sequences.
As corollaries of Theorem 8, we have

1. Every nonzero constant multiple of a divergent series diverges.

2. If converges and diverges, then and both diverge.

We omit the proofs.

CAUTION Remember that can converge when and both diverge.
For example, and diverge,
whereas converges to 0.

EXAMPLE 9 Find the sums of the following series.

(a)

(b)

Adding or Deleting Terms

We can add a finite number of terms to a series or delete a finite number of terms without
altering the series’ convergence or divergence, although in the case of convergence this will
usually change the sum. If converges, then converges for any and

Conversely, if converges for any then converges. Thus,

a
q

n = 1
 
1
5n =

1
5 +

1
25

+
1

125
+ a

q

n = 4
 
1
5n

gq

n=1 ank 7 1,gq

n=k an

a
q

n = 1
 an = a1 + a2 +

Á
+ ak - 1 + a

q

n = k
 an .

k 7 1gq

n=k angq

n=1 an

 = 8

 = 4 a 1
1 - s1>2d

b

 a
q

n = 0
 
4
2n = 4a

q

n = 0
 
1
2n

 =
4
5

 = 2 -

6
5

 =
1

1 - s1>2d
-

1
1 - s1>6d

 = a
q

n = 1
 

1
2n - 1 - a

q

n = 1
 

1
6n - 1

 a
q

n = 1
 
3n - 1

- 1
6n - 1 = a

q

n = 1
 a 1

2n - 1 -
1

6n - 1 b

gsan + bnd = 0 + 0 + 0 +
Á

gbn = s -1d + s -1d + s -1d +
Ágan = 1 + 1 + 1 +

Á

gbngangsan + bnd

gsan - bndgsan + bndgbngan

sn = ka1 + ka2 +
Á

+ kan = ksa1 + a2 +
Á

+ and = kAn ,

gkan

sn : A + BBn : B ,An : A
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Difference Rule

Geometric series with a = 1 and r = 1>2, 1>6

Constant Multiple Rule

Geometric series with a = 1, r = 1>2
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11.2 Infinite Series 769

and

Reindexing

As long as we preserve the order of its terms, we can reindex any series without altering its
convergence. To raise the starting value of the index h units, replace the n in the formula
for by 

To lower the starting value of the index h units, replace the n in the formula for by

It works like a horizontal shift. We saw this in starting a geometric series with the index
instead of the index but we can use any other starting index value as well.

We usually give preference to indexings that lead to simple expressions.

EXAMPLE 10 Reindexing a Geometric Series

We can write the geometric series

as

The partial sums remain the same no matter what indexing we choose.

a
q

n = 0
 
1
2n, a

q

n = 5
 

1
2n - 5, or even a

q

n = -4
 

1
2n + 4 .

a
q

n = 1
 

1
2n - 1 = 1 +

1
2

+
1
4

+
Á

n = 1,n = 0

a
q

n = 1
 an = a

q

n = 1 - h
 an + h = a1 + a2 + a3 +

Á .

n + h :
an

a
q

n = 1
 an = a

q

n = 1 + h
 an - h = a1 + a2 + a3 +

Á .

n - h :an

a
q

n = 4
 
1
5n = aa

q

n = 1
 
1
5n b -

1
5 -

1
25

-
1

125
.

HISTORICAL BIOGRAPHY

Richard Dedekind
(1831–1916)
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11.2 Infinite Series 769

EXERCISES 11.2

Finding nth Partial Sums
In Exercises 1–6, find a formula for the nth partial sum of each series
and use it to find the series’ sum if the series converges.

1.

2.

3.

4. 1 - 2 + 4 - 8 +
Á

+ s -1dn - 1 2n - 1
+

Á

1 -

1
2

+

1
4

-

1
8

+
Á

+ s -1dn - 1 
1

2n - 1 +
Á

9
100

+

9
1002 +

9
1003 +

Á
+

9
100n +

Á

2 +

2
3

+

2
9

+

2
27

+
Á

+

2
3n - 1 +

Á

5.

6.

Series with Geometric Terms
In Exercises 7–14, write out the first few terms of each series to show
how the series starts. Then find the sum of the series.

7. 8. a
q

n = 2
 
1
4na

q

n = 0
 
s -1dn

4n

5
1 # 2

+

5
2 # 3

+

5
3 # 4

+
Á

+

5
nsn + 1d

+
Á

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+
Á

+

1
sn + 1dsn + 2d

+
Á
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9. 10.

11. 12.

13. 14.

Telescoping Series
Use partial fractions to find the sum of each series in Exercises 15–22.

15. 16.

17. 18.

19. 20.

21.

22.

Convergence or Divergence
Which series in Exercises 23–40 converge, and which diverge? Give
reasons for your answers. If a series converges, find its sum.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

Geometric Series
In each of the geometric series in Exercises 41–44, write out the first
few terms of the series to find a and r, and find the sum of the series.

a
q

n = 0
 
enp

pnea
q

n = 0
 a e
p b

n

a
q

n = 1
 ln a n

2n + 1
ba

q

n = 1
 ln a n

n + 1
b

a
q

n = 1
 
nn

n!a
q

n = 0
 

n!
1000n

a
q

n = 1
 a1 -

1
n b

n

a
q

n = 0
 
2n

- 1
3n

a
q

n = 0
 
1
xn , ƒ x ƒ 7 1a

q

n = 1
 

2
10n

a
q

n = 1
 ln 

1
na

q

n = 0
 e-2n

a
q

n = 0
 
cos np

5na
q

n = 0
 cos np

a
q

n = 1
s -1dn + 1na

q

n = 1
s -1dn + 1 

3
2n

a
q

n = 0
A22 Bna

q

n = 0
 a 122

bn

a
q

n = 1
stan-1 snd - tan-1 sn + 1dd

a
q

n = 1
 a 1

ln sn + 2d
-

1
ln sn + 1d

b
a
q

n = 1
 a 1

21>n -

1

21>sn + 1d
ba

q

n = 1
 a 12n

-

12n + 1
b

a
q

n = 1
 

2n + 1
n2sn + 1d2a

q

n = 1
 

40n

s2n - 1d2s2n + 1d2

a
q

n = 1
 

6
s2n - 1ds2n + 1da

q

n = 1
 

4
s4n - 3ds4n + 1d

a
q

n = 0
 a2n + 1

5n ba
q

n = 0
 a 1

2n +

s -1dn

5n b
a
q

n = 0
 a 5

2n -

1
3n ba

q

n = 0
 a 5

2n +

1
3n b

a
q

n = 0
s -1dn 

5
4na

q

n = 1
 
7
4n

Then express the inequality in terms of x and find the values
of x for which the inequality holds and the series converges.

41. 42.

43. 44.

In Exercises 45–50, find the values of x for which the given geometric
series converges. Also, find the sum of the series (as a function of x)
for those values of x.

45. 46.

47. 48.

49. 50.

Repeating Decimals
Express each of the numbers in Exercises 51–58 as the ratio of two
integers.

51.

52.

53.

54. d is a digit

55.

56.

57.

58.

Theory and Examples
59. The series in Exercise 5 can also be written as

Write it as a sum beginning with (a) (b)
(c)

60. The series in Exercise 6 can also be written as

Write it as a sum beginning with (a) (b)
(c)

61. Make up an infinite series of nonzero terms whose sum is

a. 1 b. c. 0.

62. (Continuation of Exercise 61.) Can you make an infinite series of
nonzero terms that converges to any number you want? Explain.

63. Show by example that may diverge even though 
and converge and no equals 0.bngbn

gangsan>bnd

-3

n = 20.
n = 3,n = -1,

a
q

n = 1
 

5
nsn + 1d

 and a
q

n = 0
 

5
sn + 1dsn + 2d

.

n = 5.
n = 0,n = -2,

a
q

n = 1
 

1
sn + 1dsn + 2d

 and a
q

n = -1
 

1
sn + 3dsn + 4d

.

3.142857 = 3.142857 142857 Á

1.24123 = 1.24 123 123 123 Á

1.414 = 1.414 414 414 Á

0.06 = 0.06666 Á

0.d = 0.dddd Á , where

0.7 = 0.7777 Á

0.234 = 0.234 234 234 Á

0.23 = 0.23 23 23 Á

a
q

n = 0
sln xdna

q

n = 0
 sinn x

a
q

n = 0
 a- 1

2
bn

sx - 3dna
q

n = 0
s -1dnsx + 1dn

a
q

n = 0
s -1dnx-2na

q

n = 0
2nxn

a
q

n = 0
 
s -1dn

2
 a 1

3 + sin x
bn

a
q

n = 0
3 ax - 1

2
bn

a
q

n = 0
s -1dnx2na

q

n = 0
s -1dnxn

ƒ r ƒ 6 1
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