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Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions, lengths of curves, and areas of
surfaces of revolution in polar coordinates.

Area in the Plane

The region OTS in Figure 10.48 is bounded by the rays and and the curve
We approximate the region with n nonoverlapping fan-shaped circular sectors

based on a partition P of angle TOS. The typical sector has radius and central
angle of radian measure Its area is times the area of a circle of radius or

The area of region OTS is approximately

a
n

k = 1
 Ak = a

n

k = 1
 
1
2

 Aƒsukd B2 ¢uk .

Ak =
1
2

 rk
2 ¢uk =

1
2

 Aƒsukd B2 ¢uk .

rk ,¢uk>2p¢uk .
rk = ƒsukd

r = ƒsud .
u = bu = a

10.7
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726 Chapter 10: Conic Sections and Polar Coordinates

If ƒ is continuous, we expect the approximations to improve as the norm of the partition
and we are led to the following formula for the region’s area:

 = L
b

a

 
1
2

 Aƒsud B2 du .

A = lim
‘ P ‘:0

 a
n

k = 1
 
1
2

 Aƒsukd B2 ¢uk

‘P ‘ : 0,

Area of the Fan-Shaped Region Between the Origin and the Curve

This is the integral of the area differential (Figure 10.49)

dA =
1
2

 r2 du =
1
2

 (ƒ(u))2 du .

A = L
b

a

 
1
2

 r2 du .

r = ƒsUd, A … U … B

x

y

O

S rn

rk

� � �

� � �r1

r2

�k

r � f (�)

( f (�k), �k)

��k

T

FIGURE 10.48 To derive a formula for
the area of region OTS, we approximate the
region with fan-shaped circular sectors.

EXAMPLE 1 Finding Area

Find the area of the region in the plane enclosed by the cardioid 

Solution We graph the cardioid (Figure 10.50) and determine that the radius OP
sweeps out the region exactly once as runs from 0 to The area is therefore

EXAMPLE 2 Finding Area

Find the area inside the smaller loop of the limaçon

Solution After sketching the curve (Figure 10.51), we see that the smaller loop is
traced out by the point as increases from to Since the curve
is symmetric about the x-axis (the equation is unaltered when we replace by ), we may
calculate the area of the shaded half of the inner loop by integrating from to

The area we seek will be twice the resulting integral:

A = 2L
p

2p>3
 
1
2

 r2 du = L
p

2p>3
 r2 du .

u = p .
u = 2p>3-uu

u = 4p>3.u = 2p>3usr, ud

r = 2 cos u + 1.

 = c3u + 4 sin u +

sin 2u
2
d

0

2p

= 6p - 0 = 6p .

 = L
2p

0
s3 + 4 cos u + cos 2ud du

 = L
2p

0
a2 + 4 cos u + 2 

1 + cos 2u
2

b  du

 = L
2p

0
2s1 + 2 cos u + cos2 ud du

 L
u= 2p

u= 0
 
1
2

 r 2 du = L
2p

0
 
1
2

# 4s1 + cos ud2 du

2p .u

r = 2s1 + cos ud .

x

y

2

O
4

r

r � 2(1 � cos �)

� � 0, 2�

P(r, �)

FIGURE 10.50 The cardioid in
Example 1.

O
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y

P(r, �)
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�

r

dA �    r 2d�1
2

FIGURE 10.49 The area differential dA
for the curve n = ƒ(u).
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10.7 Areas and Lengths in Polar Coordinates 727

Since

we have

To find the area of a region like the one in Figure 10.52, which lies between two polar
curves and from to we subtract the integral of

from the integral of This leads to the following formula.s1>2dr2
2 du .s1>2dr1

2 du
u = b ,u = ar2 = r2sudr1 = r1sud

 = p -

323
2

.

 = s3pd - a2p -

23
2

+ 4 #
23
2
b

 = c3u + sin 2u + 4 sin u d
2p>3
p

 A = L
p

2p>3
s3 + 2 cos 2u + 4 cos ud du

 = 3 + 2 cos 2u + 4 cos u, 
 = 2 + 2 cos 2u + 4 cos u + 1

 = 4 # 1 + cos 2u
2

+ 4 cos u + 1

 r 2
= s2 cos u + 1d2

= 4 cos2 u + 4 cos u + 1

x

y

r � 2 cos � � 1

� � 0� � �

� � 4�
3

� � 2�
3

FIGURE 10.51 The limaçon in Example 2.
Limaçon (pronounced LEE-ma-sahn) is an
old French word for snail.

y

x
0

� � �

� � �

r2

r1

FIGURE 10.52 The area of the shaded
region is calculated by subtracting the area
of the region between and the origin
from the area of the region between and
the origin.
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Area of the Region 

(1)A = L
b

a

 
1
2

 r2
2 du - L

b
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1
2

 r1
2 du = L

b
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1
2

 Ar2
2

- r1
2 B  du

0 … r1sUd … r … r2sUd, A … U … B

x

y

0

r2 � 1

r1 � 1 � cos � 

Upper limit
� � ��2

Lower limit
� � –��2

�

FIGURE 10.53 The region and limits of
integration in Example 3.

EXAMPLE 3 Finding Area Between Polar Curves

Find the area of the region that lies inside the circle and outside the cardioid

Solution We sketch the region to determine its boundaries and find the limits of inte-
gration (Figure 10.53). The outer curve is the inner curve is and 
runs from to The area, from Equation (1), is

 = c2 sin u -

u
2

-

sin 2u
4
d

0

p>2
= 2 -

p
4

.

 = L
p>2

0
s2 cos u - cos2 ud du = L

p>2
0
a2 cos u -

1 + cos 2u
2

b  du

 = L
p>2

0
s1 - s1 - 2 cos u + cos2 udd du

 = 2L
p>2

0
 
1
2

 Ar2
2

- r1
2 B  du

 A = L
p>2

-p>2
 
1
2

 Ar2
2

- r1
2 B  du

p>2.-p>2 ur1 = 1 - cos u ,r2 = 1,

r = 1 - cos u .
r = 1

Symmetry
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Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve 
by parametrizing the curve as

(2)

The parametric length formula, Equation (1) from Section 6.3, then gives the length as

This equation becomes

when Equations (2) are substituted for x and y (Exercise 33).

L = L
b

a Br2
+ adr

du
b2

 du

L = L
b

a B adx
du
b2

+ ady
du
b2

 du .

x = r cos u = ƒsud cos u, y = r sin u = ƒsud sin u, a … u … b .

r = ƒsud, a … u … b ,
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EXAMPLE 4 Finding the Length of a Cardioid

Find the length of the cardioid 

Solution We sketch the cardioid to determine the limits of integration (Figure 10.54).
The point traces the curve once, counterclockwise as runs from 0 to so these
are the values we take for and 

With

we have

and

 = L
2p

0 A4 sin 2 
u
2

 du

 L = L
b

a Br2
+ adr

du
b2

 du = L
2p

0
22 - 2 cos u du

 = 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u
('')''*

1

 r2
+ adr

du
b2

= s1 - cos ud2
+ ssin ud2

r = 1 - cos u, dr
du

= sin u ,

b .a

2p ,uPsr, ud

r = 1 - cos u .

Length of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
length of the curve is

(3)L = L
b

a Br2
+ adr

du
b2

 du .

b ,aur = ƒsudPsr, ud
a … u … br = ƒsud

0

1

2

r

x

y

�

r � 1 � cos � 

P(r, �)

FIGURE 10.54 Calculating the length 
of a cardioid (Example 4).

1 - cos u = 2 sin2 
u

2
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Area of a Surface of Revolution

To derive polar coordinate formulas for the area of a surface of revolution, we parametrize
the curve with Equations (2) and apply the surface area equations
for parametrized curves in Section 6.5.

r = ƒsud, a … u … b ,

 = c-4 cos 
u
2
d

0

2p

= 4 + 4 = 8.

 = L
2p

0
2 sin 

u
2

 du

 = L
2p

0
2 ` sin 

u
2
` du
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EXAMPLE 5 Finding Surface Area

Find the area of the surface generated by revolving the right-hand loop of the lemniscate
about the y-axis.

Solution We sketch the loop to determine the limits of integration (Figure 10.55a). The
point traces the curve once, counterclockwise as runs from to so
these are the values we take for and 

We evaluate the area integrand in Equation (5) in stages. First,

(6)

Next, so

 ar 
dr
du
b2

= sin2 2u .

 r 
dr
du

= -sin 2u

 2r 
dr
du

= -2 sin 2u

r2
= cos 2u ,

2pr cos u Br2
+ adr

du
b2

= 2p cos u Br4
+ ar 

dr
du
b2

.

b .a

p>4,-p>4uPsr, ud

r2
= cos 2u

sin 
u

2
Ú 0 for 0 … u … 2p

Area of a Surface of Revolution of a Polar Curve
If has a continuous first derivative for and if the point

traces the curve exactly once as runs from to then the
areas of the surfaces generated by revolving the curve about the x- and y-axes are
given by the following formulas:

1. Revolution about the x-axis 

(4)

2. Revolution about the y-axis 

(5)S = L
b

a

2pr cos u Br2
+ adr

du
b2

 du

sx Ú 0d :

S = L
b

a

2pr sin u Br2
+ adr

du
b2

 du

s y Ú 0d :

b ,aur = ƒsudPsr, ud
a … u … br = ƒsud

x

y

r
�

r 2 � cos 2�

P (r, �)
� �

�
4

� � –�
4

(a)

(b)

y

x

FIGURE 10.55 The right-hand half of a
lemniscate (a) is revolved about the y-axis
to generate a surface (b), whose area is
calculated in Example 5.
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Finally, so the square root on the right-hand side of Equation (6)
simplifies to

All together, we have

Equation (5)

 = 2p c22
2

+

22
2
d = 2p22.

 = 2p csin u d
-p>4
p>4

 = L
p>4

-p>4
 2p cos u # s1d du

 S = L
b

a

2pr cos u Br2
+ adr

du
b2

 du

Br4
+ ar 

dr
du
b2

= 2cos2 2u + sin2 2u = 1.

r4
= sr2d2

= cos2 2u ,
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730 Chapter 10: Conic Sections and Polar Coordinates

EXERCISES 10.7

Areas Inside Polar Curves
Find the areas of the regions in Exercises 1–6.

1. Inside the oval limaçon 

2. Inside the cardioid 

3. Inside one leaf of the four-leaved rose 

4. Inside the lemniscate 

5. Inside one loop of the lemniscate 

6. Inside the six-leaved rose 

Areas Shared by Polar Regions
Find the areas of the regions in Exercises 7–16.

7. Shared by the circles and 

8. Shared by the circles and 

9. Shared by the circle and the cardioid 

10. Shared by the cardioids and 

11. Inside the lemniscate and outside the circle 

12. Inside the circle and outside the cardioid 

13. Inside the circle and outside the circle 

14. a. Inside the outer loop of the limaçon 
(See Figure 10.51.)

r = 2 cos u + 1

r = 1r = -2 cos u

as1 + cos ud, a 7 0r =

r = 3a cos u

23r =

r2
= 6 cos 2u

r = 2s1 - cos udr = 2s1 + cos ud
r = 2s1 - cos udr = 2

r = 2 sin ur = 1

r = 2 sin ur = 2 cos u

r2
= 2 sin 3u

r2
= 4 sin 2u

r2
= 2a2 cos 2u, a 7 0

r = cos 2u

r = as1 + cos ud, a 7 0

r = 4 + 2 cos u

b. Inside the outer loop and outside the inner loop of the
limaçon 

15. Inside the circle above the line 

16. Inside the lemniscate to the right of the line

17. a. Find the area of the shaded region in the accompanying figure.

b. It looks as if the graph of 
could be asymptotic to the lines and Is it?
Give reasons for your answer.

18. The area of the region that lies inside the cardioid curve
and outside the circle is not

Why not? What is the area? Give reasons for your answers.

1
2L

2p

0
[scos u + 1d2

- cos2 u] du = p .

r = cos ur = cos u + 1

x = -1.x = 1
r = tan u, -p>2 6 u 6 p>2,

x

y

0 1–1

(1, ��4)

r � tan �

� � �
�
2

�
2

–

r � (�2�2) csc �

r = s3>2d sec u

r2
= 6 cos 2u

r = 3 csc ur = 6

r = 2 cos u + 1
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10.7 Areas and Lengths in Polar Coordinates 731

Lengths of Polar Curves
Find the lengths of the curves in Exercises 19–27.

19. The spiral 

20. The spiral 

21. The cardioid 

22. The curve 

23. The parabolic segment 

24. The parabolic segment 

25. The curve 

26. The curve 

27. The curve 

28. Circumferences of circles As usual, when faced with a new
formula, it is a good idea to try it on familiar objects to be sure it
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles 

a. b. c.

Surface Area
Find the areas of the surfaces generated by revolving the curves in Ex-
ercises 29–32 about the indicated axes.

29.

30.

31.

32.

Theory and Examples
33. The length of the curve Assuming that

the necessary derivatives are continuous, show how the substitu-
tions

(Equations 2 in the text) transform

into

34. Average value If ƒ is continuous, the average value of the polar
coordinate r over the curve with respect
to is given by the formula

rav =

1
b - a

 L
b

a

ƒsud du .

u

r = ƒsud, a … u … b ,

L = L
b

a Br2
+ adr

du
b2

 du .

L = L
b

a B adx
du
b2

+ ady

du
b2

 du

x = ƒsud cos u, y = ƒsud sin u

r = ƒsUd, A … U … B

r = 2a cos u, a 7 0, y-axis

r2
= cos 2u, x-axis

r = 22eu>2, 0 … u … p>2, x-axis

r = 2cos 2u, 0 … u … p>4, y-axis

r = a sin ur = a cos ur = a

sa 7 0d :

r = 21 + cos 2u, 0 … u … p22

r = 21 + sin 2u, 0 … u … p22

r = cos3 su>3d, 0 … u … p>4
r = 2>s1 - cos ud, p>2 … u … p

r = 6>s1 + cos ud, 0 … u … p>2
r = a sin2 su>2d, 0 … u … p, a 7 0

r = 1 + cos u

r = eu>22, 0 … u … p

r = u2, 0 … u … 25

Use this formula to find the average value of r with respect to 
over the following curves 

a. The cardioid 

b. The circle 

c. The circle 

35. Can anything be said about the relative
lengths of the curves and 

Give reasons for your answer.

36. The curves and
are revolved about the x-axis to generate

surfaces. Can anything be said about the relative areas of these
surfaces? Give reasons for your answer.

Centroids of Fan-Shaped Regions
Since the centroid of a triangle is located on each median, two-thirds
of the way from the vertex to the opposite base, the lever arm for the
moment about the x-axis of the thin triangular region in the accompa-
nying figure is about Similarly, the lever arm for the mo-
ment of the triangular region about the y-axis is about 
These approximations improve as and lead to the following
formulas for the coordinates of the centroid of region AOB:

with limits to on all integrals.

37. Find the centroid of the region enclosed by the cardioid 

38. Find the centroid of the semicircular region 
 0 … u … p .

0 … r … a, 

r = as1 + cos ud .

u = bu = a

 y =

L  
2
3

 r sin u # 1
2

 r2 du

L  
1
2

 r2 du

=

2
3Lr3 sin u du

Lr2 du

, 

 x =

L  
2
3

 r cos u # 1
2

 r2 du

L  
1
2

 r2 du

=

2
3Lr3 cos u du

Lr2 du

, 

x

y

O

� � �

� � �

A

B

�

��

P(r, �)

About    r sin �2
3

About    r cos �2
3

Centroid

r, �2
3





�

¢u: 0
s2>3dr cos u .

s2>3dr sin u .

r = 2ƒsud, a … u … b ,
r = ƒsud, a … u … b ,r = ƒsUd vs. r = 2ƒsUd

a … u … b ?
r = 2ƒsud, r = ƒsud, a … u … b ,

r = ƒsUd vs. r = 2ƒsUd
r = a cos u, -p>2 … u … p>2
r = a

r = as1 - cos ud
sa 7 0d .

u
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732 Chapter 10: Conic Sections and Polar Coordinates

Conic Sections in Polar Coordinates

Polar coordinates are important in astronomy and astronautical engineering because the
ellipses, parabolas, and hyperbolas along which satellites, moons, planets, and comets
approximately move can all be described with a single relatively simple coordinate equa-
tion. We develop that equation here.

Lines

Suppose the perpendicular from the origin to line L meets L at the point with
(Figure 10.56). Then, if is any other point on L, the points and O are

the vertices of a right triangle, from which we can read the relation

r0 = r cos su - u0d .

P, P0 ,Psr, udr0 Ú 0
P0sr0, u0d ,

10.8

The Standard Polar Equation for Lines
If the point is the foot of the perpendicular from the origin to the line
L, and then an equation for L is

(1)r cos su - u0d = r0 .

r0 Ú 0,
P0sr0, u0d

x

y

O

�0

r0

�

r

L

P(r, �)

P0(r0 , �0)

FIGURE 10.56 We can obtain a polar
equation for line L by reading the relation

from the right triangle
OP0 P .
r0 = r cos su - u0d

EXAMPLE 1 Converting a Line’s Polar Equation to Cartesian Form

Use the identity to find a Cartesian equation for
the line in Figure 10.57.

Solution

Circles

To find a polar equation for the circle of radius a centered at we let be a
point on the circle and apply the Law of Cosines to triangle (Figure 10.58). This
gives

a2
= r0

2
+ r2

- 2r0 r cos su - u0d .

OP0 P
Psr, udP0sr0, u0d ,

 x + 23 y = 4

 
1
2

 x +

23
2

 y = 2

 
1
2

 r cos u +

23
2

 r sin u = 2

 r acos u cos 
p
3

+ sin u sin 
p
3
b = 2

 r cos au -

p
3
b = 2

cos sA - Bd = cos A cos B + sin A sin B

O
x

y

�0

r0
�

r

a

P(r, �)

P0(r0 , �0)

FIGURE 10.58 We can get a polar
equation for this circle by applying the
Law of Cosines to triangle OP0 P .

0
x

y

2

2, �
3







�
3

FIGURE 10.57 The standard polar
equation of this line converts to the
Cartesian equation 
(Example 1).

x + 23 y = 4
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If the circle passes through the origin, then and this equation simplifies to

If the circle’s center lies on the positive x-axis, and we get the further simplifica-
tion

(see Figure 10.59a).
If the center lies on the positive y-axis, and the

equation becomes

(see Figure 10.59b).

r = 2a sin u

r = 2a cos su - u0d
u = p>2, cos su - p>2d = sin u ,

r = 2a cos u

u0 = 0

 r = 2a cos su - u0d .

 r2
= 2ar cos su - u0d

 a2
= a2

+ r2
- 2ar cos su - u0d

r0 = a

10.8 Conic Sections in Polar Coordinates 733

x

y

x

y

0 (a, 0)

r � 2a cos �
r � 2a sin �

0

a, �
2







(a) (b)

FIGURE 10.59 Polar equation of a circle of radius a through the
origin with center on (a) the positive x-axis, and (b) the positive
y-axis.

x

y

x

y

0

0

(–a, 0)

r � –2a cos �

r � –2a sin �

–a, �
2







(a) (b)

FIGURE 10.60 Polar equation of a circle of radius a through the
origin with center on (a) the negative x-axis, and (b) the negative
y-axis.

Equations for circles through the origin centered on the negative x- and y-axes can be
obtained by replacing r with in the above equations (Figure 10.60).-r
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EXAMPLE 2 Circles Through the Origin

Center Polar
Radius (polar coordinates) equation

3 (3, 0)

2

1 2

1

Ellipses, Parabolas, and Hyperbolas

To find polar equations for ellipses, parabolas, and hyperbolas, we place one focus at the
origin and the corresponding directrix to the right of the origin along the vertical line

(Figure 10.61). This makes

and

The conic’s focus–directrix equation then becomes

which can be solved for r to obtain

r = esk - r cos ud ,

PF = e # PD

PD = k - FB = k - r cos u .

PF = r

x = k

r = -2 sin us -1, p>2d
r = -cos us -1>2, 0d>
r = 4 sin us2, p>2d
r = 6 cos u

734 Chapter 10: Conic Sections and Polar Coordinates

This equation represents an ellipse if a parabola if and a hyperbola if
That is, ellipses, parabolas, and hyperbolas all have the same basic equation ex-

pressed in terms of eccentricity and location of the directrix.

EXAMPLE 3 Polar Equations of Some Conics

 e = 2 : hyperbola  r =

2k
1 + 2 cos u

 e = 1 : parabola  r =

k
1 + cos u

 e =
1
2

 : ellipse  r =

k
2 + cos u

e 7 1.
e = 1,0 6 e 6 1,

Conic section

P

F B

r

r cos �

Focus at
origin

D

x
k

x � k

Directrix

FIGURE 10.61 If a conic section is put in
the position with its focus placed at the
origin and a directrix perpendicular to the
initial ray and right of the origin, we can
find its polar equation from the conic’s
focus–directrix equation. Polar Equation for a Conic with Eccentricity e

(2)

where is the vertical directrix.x = k 7 0

r =

ke
1 + e cos u

,
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You may see variations of Equation (2) from time to time, depending on the location
of the directrix. If the directrix is the line to the left of the origin (the origin is still
a focus), we replace Equation (2) by

The denominator now has a instead of a If the directrix is either of the lines
or the equations have sines in them instead of cosines, as shown in

Figure 10.62.
y = -k ,y = k

s + d .s - d

r =

ke
1 - e cos u

.

x = -k

10.8 Conic Sections in Polar Coordinates 735

EXAMPLE 4 Polar Equation of a Hyperbola

Find an equation for the hyperbola with eccentricity 3 2 and directrix 

Solution We use Equation (2) with and 

EXAMPLE 5 Finding a Directrix

Find the directrix of the parabola

r =

25
10 + 10 cos u

.

r =

2s3>2d
1 + s3>2dcos u

 or r =

6
2 + 3 cos u

.

e = 3>2:k = 2

x = 2.>

Focus at origin

Directrix x � k

r � ke
1 � e cos �

x
Focus at origin

Directrix x � –k

r � ke
1 � e cos �

x

Directrix y � k

r � ke
1 � e sin �

y

Focus at
origin

Directrix y � –k

r � ke
1 � e sin �

y
Focus at origin

(a) (b)

(c) (d)

FIGURE 10.62 Equations for conic sections with
eccentricity but different locations of the
directrix. The graphs here show a parabola, so e = 1.

e 7 0,
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Notice that when Equation (3) becomes which represents a circle.
Equation (3) is the starting point for calculating planetary orbits.

EXAMPLE 6 The Planet Pluto’s Orbit

Find a polar equation for an ellipse with semimajor axis 39.44 AU (astronomical units)
and eccentricity 0.25. This is the approximate size of Pluto’s orbit around the sun.

Solution We use Equation (3) with and to find

At its point of closest approach (perihelion) where , Pluto is

from the sun. At its most distant point (aphelion) where , Pluto is

from the sun (Figure 10.64).

r =

147.9
4 - 1

= 49.3 AU

u = p

r =

147.9
4 + 1

= 29.58 AU

u = 0

r =

39.44s1 - s0.25d2d
1 + 0.25 cos u

=

147.9
4 + cos u

 .

e = 0.25a = 39.44

r = a ,e = 0,

Solution We divide the numerator and denominator by 10 to put the equation in stan-
dard form:

This is the equation

with and The equation of the directrix is  

From the ellipse diagram in Figure 10.63, we see that k is related to the eccentricity e
and the semimajor axis a by the equation

From this, we find that Replacing ke in Equation (2) by gives
the standard polar equation for an ellipse.

as1 - e2dke = as1 - e2d .

k =

a
e - ea .

x = 5>2.e = 1.k = 5>2
r =

ke
1 + e cos u

r =

5>2
1 + cos u

 .
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Center
Focus at
origin

ea

a

a
e

x

Directrix
x � k

FIGURE 10.63 In an ellipse with
semimajor axis a, the focus–directrix
distance is so
ke = as1 - e2d .

k = sa>ed - ea ,

Aphelion
position
(49.3 AU
from sun)

Perihelion
position
(29.58 AU
from sun)

Pluto

Sun

�

a � 39.44

FIGURE 10.64 The orbit of Pluto
(Example 6).

Polar Equation for the Ellipse with Eccentricity e and Semimajor Axis a

(3)r =

as1 - e2d
1 + e cos u
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EXERCISES 10.8

Lines
Find polar and Cartesian equations for the lines in Exercises 1–4.

1. 2.

3. 4.

Sketch the lines in Exercises 5–8 and find Cartesian equations for
them.

5. 6.

7. 8.

Find a polar equation in the form for each of the
lines in Exercises 9–12.

9. 10.

11. 12.

Circles
Find polar equations for the circles in Exercises 13–16.

13. 14.

x

y

0

Radius � 1

x

y

0

Radius � 4

x = -4y = -5

23 x - y = 122 x + 22 y = 6

r cos su - u0d = r0

r cos au +

p

3
b = 2r cos au -

2p
3
b = 3

r cos au +

3p
4
b = 1r cos au -

p

4
b = 22

x

y

0

4

�
4

–
x

y

0

3

4�
3

x

y

0

2
3�
4

x

y

0

5
��6

15. 16.

Sketch the circles in Exercises 17–20. Give polar coordinates for their
centers and identify their radii.

17. 18.

19. 20.

Find polar equations for the circles in Exercises 21–28. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

21. 22.

23. 24.

25. 26.

27. 28.

Conic Sections from Eccentricities
and Directrices
Exercises 29–36 give the eccentricities of conic sections with one fo-
cus at the origin, along with the directrix corresponding to that focus.
Find a polar equation for each conic section.

29. 30.

31. 32.

33. 34.

35. 36.

Parabolas and Ellipses
Sketch the parabolas and ellipses in Exercises 37–44. Include the direc-
trix that corresponds to the focus at the origin. Label the vertices with
appropriate polar coordinates. Label the centers of the ellipses as well.

37. 38.

39. 40.

41. 42.

43. 44. r =

4
2 - sin u

r =

8
2 - 2 sin u

r =

12
3 + 3 sin u

r =

400
16 + 8 sin u

r =

4
2 - 2 cos u

r =

25
10 - 5 cos u

r =

6
2 + cos u

r =

1
1 + cos u

e = 1>3, y = 6e = 1>5, y = -10

e = 1>4, x = -2e = 1>2, x = 1

e = 2, x = 4e = 5, y = -6

e = 1, y = 2e = 1, x = 2

x2
+ y2

-

4
3

 y = 0x2
+ y2

+ y = 0

x2
- 16x + y2

= 0x2
+ 2x + y2

= 0

x2
+ s y + 7d2

= 49x2
+ s y - 5d2

= 25

sx + 2d2
+ y2

= 4sx - 6d2
+ y2

= 36

r = -8 sin ur = -2 cos u

r = 6 sin ur = 4 cos u

x

y

0

Radius � 1
2

x

y

0

Radius � �2
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Graphing Inequalities
Sketch the regions defined by the inequalities in Exercises 45 and 46.

45. 46.

Grapher Explorations
Graph the lines and conic sections in Exercises 47–56.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

Theory and Examples
57. Perihelion and aphelion A planet travels about its sun in an

ellipse whose semimajor axis has length a. (See accompanying
figure.)

a. Show that when the planet is closest to the sun
and that when the planet is farthest from the sun.

b. Use the data in the table in Exercise 58 to find how close each
planet in our solar system comes to the sun and how far away
each planet gets from the sun.

58. Planetary orbits In Example 6, we found a polar equation for
the orbit of Pluto. Use the data in the table below to find polar
equations for the orbits of the other planets.

Semimajor axis
Planet (astronomical units) Eccentricity

Mercury 0.3871 0.2056

Venus 0.7233 0.0068

Earth 1.000 0.0167

Mars 1.524 0.0934

Jupiter 5.203 0.0484

Saturn 9.539 0.0543

Uranus 19.18 0.0460

Neptune 30.06 0.0082

Pluto 39.44 0.2481

Aphelion
(farthest
from sun)

Perihelion
(closest
to sun)

Planet

Sun

�
a

r = as1 + ed
r = as1 - ed

r = 1>s1 + 2 cos udr = 1>s1 + 2 sin ud
r = 1>s1 + cos udr = 1>s1 - sin ud
r = 8>s4 + sin udr = 8>s4 + cos ud
r = -2 cos ur = 4 sin u

r = 4 sec su + p>6dr = 3 sec su - p>3d

-3 cos u … r … 00 … r … 2 cos u

59. a. Find Cartesian equations for the curves and

b. Sketch the curves together and label their points of
intersection in both Cartesian and polar coordinates.

60. Repeat Exercise 59 for and 

61. Find a polar equation for the parabola with focus (0, 0) and direc-
trix 

62. Find a polar equation for the parabola with focus (0, 0) and direc-
trix 

63. a. The space engineer’s formula for eccentricity The space
engineer’s formula for the eccentricity of an elliptical orbit is

where r is the distance from the space vehicle to the attracting
focus of the ellipse along which it travels. Why does the
formula work?

b. Drawing ellipses with string You have a string with a knot
in each end that can be pinned to a drawing board. The string
is 10 in. long from the center of one knot to the center of the
other. How far apart should the pins be to use the method
illustrated in Figure 10.5 (Section 10.1) to draw an ellipse of
eccentricity 0.2? The resulting ellipse would resemble the
orbit of Mercury.

64. Halley’s comet (See Section 10.2, Example 1.)

a. Write an equation for the orbit of Halley’s comet in a
coordinate system in which the sun lies at the origin and the
other focus lies on the negative x-axis, scaled in astronomical
units.

b. How close does the comet come to the sun in astronomical
units? In kilometers?

c. What is the farthest the comet gets from the sun in
astronomical units? In kilometers?

In Exercises 65–68, find a polar equation for the given curve. In each
case, sketch a typical curve.

65. 66.

67.

68.

COMPUTER EXPLORATIONS

69. Use a CAS to plot the polar equation

for various values of k and Answer the follow-
ing questions.

a. Take Describe what happens to the plots as you take
e to be 3 4, 1, and 5 4. Repeat for k = 2.>>k = -2.

e, -p … u … p .

r =

ke
1 + e cos u

sx2
+ y2d2

+ 2axsx2
+ y2d - a2y2

= 0

x cos a + y sin a = p sa, p constantd
y2

= 4ax + 4a2x2
+ y2

- 2ay = 0

e =

rmax - rmin

rmax + rmin
,

r cos su - p>2d = 2.

r cos u = 4.

r = 2 sec u .r = 8 cos u

r = 23 sec u .
r = 4 sin u
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b. Take Describe what happens to the plots as you take
e to be 7 6, 5 4, 4 3, 3 2, 2, 3, 5, 10, and 20. Repeat for

1 3, 1 4, 1 10, and 1 20.

c. Now keep fixed and describe what happens as you take
k to be and Be sure to look at graphs
for parabolas, ellipses, and hyperbolas.

-5.-1, -2, -3, -4,
e 7 0

>>>>e = 1>2,
>>>>k = -1. 70. Use a CAS to plot the polar ellipse

for various values of and 

a. Take Describe what happens to the plots as you let
a equal 1, 3 2, 2, 3, 5, and 10. Repeat with 

b. Take Describe what happens as you take e to be 9 10,
8 10, 7 10, 1 10, 1 20, and 1 50.>>>Á ,>> >a = 2.

e = 1>4.>e = 9>10.

0 6 e 6 1, -p … u … p .a 7 0

r =

as1 - e2d
1 + e cos u

10.8 Conic Sections in Polar Coordinates 739
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739

Chapter 10 Questions to Guide Your Review

1. What is a parabola? What are the Cartesian equations for parabo-
las whose vertices lie at the origin and whose foci lie on the coor-
dinate axes? How can you find the focus and directrix of such a
parabola from its equation?

2. What is an ellipse? What are the Cartesian equations for ellipses
centered at the origin with foci on one of the coordinate axes?
How can you find the foci, vertices, and directrices of such an el-
lipse from its equation?

3. What is a hyperbola? What are the Cartesian equations for hyper-
bolas centered at the origin with foci on one of the coordinate
axes? How can you find the foci, vertices, and directrices of such
an ellipse from its equation?

4. What is the eccentricity of a conic section? How can you classify
conic sections by eccentricity? How are an ellipse’s shape and ec-
centricity related?

5. Explain the equation 

6. What is a quadratic curve in the xy-plane? Give examples of de-
generate and nondegenerate quadratic curves.

7. How can you find a Cartesian coordinate system in which the new
equation for a conic section in the plane has no xy-term? Give an
example.

8. How can you tell what kind of graph to expect from a quadratic
equation in x and y? Give examples.

PF = e # PD .

9. What are some typical parametrizations for conic sections?

10. What is a cycloid? What are typical parametric equations for cy-
cloids? What physical properties account for the importance of
cycloids?

11. What are polar coordinates? What equations relate polar coordi-
nates to Cartesian coordinates? Why might you want to change
from one coordinate system to the other?

12. What consequence does the lack of uniqueness of polar coordi-
nates have for graphing? Give an example.

13. How do you graph equations in polar coordinates? Include in
your discussion symmetry, slope, behavior at the origin, and the
use of Cartesian graphs. Give examples.

14. How do you find the area of a region 
in the polar coordinate plane? Give examples.

15. Under what conditions can you find the length of a curve
in the polar coordinate plane? Give an ex-

ample of a typical calculation.

16. Under what conditions can you find the area of the surface gener-
ated by revolving a curve about the x-
axis? The y-axis? Give examples of typical calculations.

17. What are the standard equations for lines and conic sections in
polar coordinates? Give examples.

r = ƒsud, a … u … b ,

r = ƒsud, a … u … b ,

a … u … b ,
0 … r1sud … r … r2sud, 
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Chapter 10 Practice Exercises

Graphing Conic Sections
Sketch the parabolas in Exercises 1–4. Include the focus and directrix
in each sketch.

1. 2.

3. 4. y2
= -s8>3dxy2

= 3x

x2
= 2yx2

= -4y

Find the eccentricities of the ellipses and hyperbolas in Exercises 5–8.
Sketch each conic section. Include the foci, vertices, and asymptotes
(as appropriate) in your sketch.

5. 6.

7. 8. 5y2
- 4x2

= 203x2
- y2

= 3

x2
+ 2y2

= 416x2
+ 7y2

= 112
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Shifting Conic Sections
Exercises 9–14 give equations for conic sections and tell how many
units up or down and to the right or left each curve is to be shifted. Find
an equation for the new conic section and find the new foci, vertices,
centers, and asymptotes, as appropriate. If the curve is a parabola, find
the new directrix as well.

9.

10.

11.

12.

13.

14.

Identifying Conic Sections
Identify the conic sections in Exercises 15–22 and find their foci, ver-
tices, centers, and asymptotes (as appropriate). If the curve is a parabola,
find its directrix as well.

15. 16.

17. 18.

19.

20.

21. 22.

Using the Discriminant
What conic sections or degenerate cases do the equations in Exercises
23–28 represent? Give a reason for your answer in each case.

23.

24.

25.

26.

27. 28.

Rotating Conic Sections
Identify the conic sections in Exercises 29–32. Then rotate the coordi-
nate axes to find a new equation for the conic section that has no cross
product term. (The new equations will vary with the size and direction
of the rotations used.)

29. 30.

31. 32.

Identifying Parametric Equations in the Plane
Exercises 33–36 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by

x2
- 3xy + y2

= 5x2
+ 223 xy - y2

+ 4 = 0

3x2
+ 2xy + 3y2

= 192x2
+ xy + 2y2

- 15 = 0

x2
- 3xy + 4y2

= 0x2
- 2xy + y2

= 0

x2
+ 2xy - 2y2

+ x + y + 1 = 0

x2
+ 3xy + 2y2

+ x + y + 1 = 0

x2
+ 4xy + 4y2

+ x + y + 1 = 0

x2
+ xy + y2

+ x + y + 1 = 0

x2
+ y2

+ 4x + 2y = 1x2
+ y2

- 2x - 2y = 0

25x2
+ 9y2

- 100x + 54y = 44

9x2
+ 16y2

+ 54x - 64y = -1

x2
- 2x + 8y = -17y2

- 2y + 16x = -49

4x2
- y2

+ 4y = 8x2
- 4x - 4y2

= 0

x2

36
-

y2

64
= 1, left 10, down 3

y2

8
-

x2

2
= 1, right 2, up 222

x2

169
+

y2

144
= 1, right 5, up 12

x2

9
+

y2

25
= 1, left 3, down 5

y2
= 10x, left 1>2, down 1

x2
= -12y, right 2, up 3

finding a Cartesian equation for it. Graph the Cartesian equation and
indicate the direction of motion and the portion traced by the particle.

33.

34.

35.

36.

Graphs in the Polar Plane
Sketch the regions defined by the polar coordinate inequalities in
Exercises 37 and 38.

37. 38.

Match each graph in Exercises 39–46 with the appropriate equation
(a)–(1). There are more equations than graphs, so some equations will
not be matched.

a. b.

c. d.

e. f.

g. h.

i. j.

k. l.

39. Four-leaved rose 40. Spiral

41. Limaçon 42. Lemniscate

43. Circle 44. Cardioid

x

y

x

y

x

y

x

y

x

y

x

y

r = 2 cos u + 1r = -sin u

r2
= sin 2ur =

2
1 - cos u

r = 1 - sin ur = 1 + cos u

r2
= cos 2ur = u

r = sin 2ur =

6
1 - 2 cos u

r cos u = 1r = cos 2u

-4 sin u … r … 00 … r … 6 cos u

x = 4 cos t, y = 9 sin t; 0 … t … 2p

x = -cos t, y = cos2 t; 0 … t … p

x = -2 cos t, y = 2 sin t; 0 … t … p

x = s1>2d tan t, y = s1>2d sec t; -p>2 6 t 6 p>2
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45. Parabola 46. Lemniscate

Intersections of Graphs in the Polar Plane
Find the points of intersection of the curves given by the polar coordi-
nate equations in Exercises 47–54.

47. 48.

49.

50.

51.

52.

53. 54.

Polar to Cartesian Equations
Sketch the lines in Exercises 55–60. Also, find a Cartesian equation
for each line.

55. 56.

57. 58.

59. 60.

Find Cartesian equations for the circles in Exercises 61–64. Sketch
each circle in the coordinate plane and label it with both its Cartesian
and polar equations.

61. 62.

63. 64.

Cartesian to Polar Equations
Find polar equations for the circles in Exercises 65–68. Sketch each
circle in the coordinate plane and label it with both its Cartesian and
polar equations.

65. 66.

67. 68.

Conic Sections in Polar Coordinates
Sketch the conic sections whose polar coordinate equations are given
in Exercises 69–72. Give polar coordinates for the vertices and,  in the
case of ellipses, for the centers as well.

69. 70.

71. 72. r =

12
3 + sin u

r =

6
1 - 2 cos u

r =

8
2 + cos u

r =

2
1 + cos u

x2
+ y2

+ 4x = 0x2
+ y2

- 3x = 0

x2
+ y2

- 2y = 0x2
+ y2

+ 5y = 0

r = -6 cos ur = 222 cos u

r = 323 sin ur = -4 sin u

r = A323 B  csc ur = -s3>2d csc u

r = -22 sec ur = 2 sec u

r cos au -

3p
4
b =

22
2

r cos au +

p

3
b = 223

r = -2 csc u, r = -4 cos ur = sec u, r = 2 sin u

r = 1 + cos u, r = -1 + cos u

r = 1 + sin u, r = -1 + sin u

r = 1 + sin u, r = 1 - sin u

r = 1 + cos u, r = 1 - cos u

r = cos u, r = 1 - cos ur = sin u, r = 1 + sin u

x

y

x

y

Exercises 73–76 give the eccentricities of conic sections with one fo-
cus at the origin of the polar coordinate plane, along with the directrix
for that focus. Find a polar equation for each conic section.

73. 74.

75. 76.

Area, Length, and Surface Area in the Polar Plane
Find the areas of the regions in the polar coordinate plane described in
Exercises 77–80.

77. Enclosed by the limaçon 

78. Enclosed by one leaf of the three-leaved rose 

79. Inside the “figure eight” and outside the circle

80. Inside the cardioid and outside the circle

Find the lengths of the curves given by the polar coordinate equations
in Exercises 81–84.

81.

82.

83.

84.

Find the areas of the surfaces generated by revolving the polar coordi-
nate curves in Exercises 85 and 86 about the indicated axes.

85.

86.

Theory and Examples
87. Find the volume of the solid generated by revolving the region en-

closed by the ellipse about (a) the x-axis, (b) the
y-axis.

88. The “triangular” region in the first quadrant bounded by the
x-axis, the line and the hyperbola is re-
volved about the x-axis to generate a solid. Find the volume of the
solid.

89. A ripple tank is made by bending a strip of tin around the perime-
ter of an ellipse for the wall of the tank and soldering a flat bot-
tom onto this. An inch or two of water is put in the tank and you
drop a marble into it, right at one focus of the ellipse. Ripples ra-
diate outward through the water, reflect from the strip around the
edge of the tank, and a few seconds later a drop of water spurts up
at the second focus. Why?

90. LORAN A radio signal was sent simultaneously from towers
A and B, located several hundred miles apart on the northern
California coast. A ship offshore received the signal from A 1400
microseconds before receiving the signal from B. Assuming that
the signals traveled at the rate of 980 ft microsecond, what can be
said about the location of the ship relative to the two towers?

>

9x2
- 4y2

= 36x = 4,

9x2
+ 4y2

= 36

r2
= sin 2u, y-axis

r = 2cos 2u, 0 … u … p>4, x-axis

r = 21 + cos 2u, -p>2 … u … p>2
r = 8 sin3 su>3d, 0 … u … p>4
r = 2 sin u + 2 cos u, 0 … u … p>2
r = -1 + cos u

r = 2 sin u

r = 2s1 + sin ud
r = 1

r = 1 + cos 2u

r = sin 3u

r = 2 - cos u

e = 1>3, r sin u = -6e = 1>2, r sin u = 2

e = 1, r cos u = -4e = 2, r cos u = 2
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91. On a level plane, at the same instant, you hear the sound of a rifle
and that of the bullet hitting the target. What can be said about
your location relative to the rifle and target?

92. Archimedes spirals The graph of an equation of the form
where a is a nonzero constant, is called an Archimedes

spiral. Is there anything special about the widths between the suc-
cessive turns of such a spiral?

93. a. Show that the equations transform the
polar equation

into the Cartesian equation

s1 - e2dx2
+ y2

+ 2kex - k2
= 0.

r =

k
1 + e cos u

x = r cos u, y = r sin u

r = au ,

b. Then apply the criteria of Section 10.3 to show that

94. A satellite orbit A satellite is in an orbit that passes over the
North and South Poles of the earth. When it is over the South Pole
it is at the highest point of its orbit, 1000 miles above the earth’s
surface. Above the North Pole it is at the lowest point of its orbit,
300 miles above the earth’s surface.

a. Assuming that the orbit is an ellipse with one focus at the
center of the earth, find its eccentricity. (Take the diameter of
the earth to be 8000 miles.)

b. Using the north–south axis of the earth as the x-axis and the
center of the earth as origin, find a polar equation for the orbit.

 e 7 1 Q  hyperbola .
 e = 1 Q  parabola .

 0 6 e 6 1 Q  ellipse.
 e = 0 Q  circle .
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