
Exercises 35–38 give foci and corresponding directrices of hyperbolas
centered at the origin of the xy-plane. In each case, find the hyper-
bola’s eccentricity. Then find the hyperbola’s standard-form equation.

35. Focus: (4, 0) 36. Focus:

Directrix: Directrix:

37. Focus: 38. Focus:

Directrix: Directrix:

39. A hyperbola of eccentricity 3 2 has one focus at The
corresponding directrix is the line Find an equation for
the hyperbola.

40. The effect of eccentricity on a hyperbola’s shape What hap-
pens to the graph of a hyperbola as its eccentricity increases? To
find out, rewrite the equation in terms of
a and e instead of a and b. Graph the hyperbola for various values
of e and describe what you find.

41. The reflective property of hyperbolas Show that a ray of light
directed toward one focus of a hyperbolic mirror, as in the accom-
panying figure, is reflected toward the other focus. (Hint: Show
that the tangent to the hyperbola at P bisects the angle made by
segments and )PF2 .PF1

sx2>a2d - sy2>b2d = 1

y = 2.
s1, -3d .>

x = -2x = -

1
2

s -6, 0ds -2, 0d
x = 22x = 2

A210, 0 B

42. A confocal ellipse and hyperbola Show that an ellipse and a
hyperbola that have the same foci A and B, as in the accompa-
nying figure, cross at right angles at their point of intersection.
(Hint: A ray of light from focus A that met the hyperbola at P
would be reflected from the hyperbola as if it came directly
from B (Exercise 41). The same ray would be reflected off the el-
lipse to pass through B (Exercise 22).)

A B

P

C

x

y

0

P(x, y)

F1(–c, 0) F2(c, 0)
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702 Chapter 10: Conic Sections and Polar Coordinates

Quadratic Equations and Rotations

In this section, we examine the Cartesian graph of any equation

(1)

in which A, B, and C are not all zero, and show that it is nearly always a conic section. The
exceptions are the cases in which there is no graph at all or the graph consists of two parallel
lines. It is conventional to call all graphs of Equation (1), curved or not, quadratic curves.

The Cross Product Term

You may have noticed that the term Bxy did not appear in the equations for the conic sec-
tions in Section 10.1. This happened because the axes of the conic sections ran parallel to
(in fact, coincided with) the coordinate axes.

To see what happens when the parallelism is absent, let us write an equation for a hy-
perbola with and foci at and (Figure 10.22). The equation

becomes and

When we transpose one radical, square, solve for the radical that still appears, and square
again, the equation reduces to

(2)

a case of Equation (1) in which the cross product term is present. The asymptotes of the
hyperbola in Equation (2) are the x- and y-axes, and the focal axis makes an angle of p>4

2xy = 9,

2sx + 3d2
+ s y + 3d2

- 2sx - 3d2
+ s y - 3d2

= ;6.

ƒ PF1 - PF2 ƒ = 2s3d = 6ƒ PF1 - PF2 ƒ = 2a
F2s3, 3dF1s -3, -3da = 3

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0,

10.3

x

y

Foc
al

Axis
2xy � 9

P(x, y)

F2(3, 3)

F1(–3, –3)

0

��4

FIGURE 10.22 The focal axis of the
hyperbola makes an angle of 
radians with the positive x-axis.

p>42xy = 9
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radians with the positive x-axis. As in this example, the cross product term is present in
Equation (1) only when the axes of the conic are tilted.

To eliminate the xy-term from the equation of a conic, we rotate the coordinate axes to
eliminate the “tilt” in the axes of the conic. The equations for the rotations we use are de-
rived in the following way. In the notation of Figure 10.23, which shows a counterclock-
wise rotation about the origin through an angle 

(3)

Since

and

Equations (3) reduce to the following.

OP sin u = M¿P = y¿ ,

OP cos u = OM¿ = x¿

 y = MP = OP sin su + ad = OP cos u sin a + OP sin u cos a .

 x = OM = OP cos su + ad = OP cos u cos a - OP sin u sin a

a ,

10.3 Quadratic Equations and Rotations 703

O
x

y

M

M'

y'

x'

�
�

P(x, y) � (x', y' )

FIGURE 10.23 A counterclockwise
rotation through angle about the origin.a

Equations for Rotating Coordinate Axes

(4)
 y = x¿ sin a + y¿ cos a

 x = x¿ cos a - y¿ sin a

EXAMPLE 1 Finding an Equation for a Hyperbola

The x- and y-axes are rotated through an angle of radians about the origin. Find an
equation for the hyperbola in the new coordinates.

Solution Since we substitute

from Equations (4) into the equation and obtain

See Figure 10.24.

If we apply Equations (4) to the quadratic equation (1), we obtain a new quadratic
equation

(5)A¿x¿
2

+ B¿x¿y¿ + C¿y¿
2

+ D¿x¿ + E¿y¿ + F¿ = 0.

 
x¿

2

9
-

y¿
2

9
= 1.

 x¿
2

- y¿
2

= 9

 2 ax¿ - y¿22
b ax¿ + y¿22

b = 9

2xy = 9

x =

x¿ - y¿22
, y =

x¿ + y¿22

cos p>4 = sin p>4 = 1>22,

2xy = 9
p>4

x

y

y' x'

–3

3
2xy � 9

x'
2

9

y'
2

9
�

   
   

�
 1

��4

FIGURE 10.24 The hyperbola in
Example 1 ( and are the coordinates).y¿x¿
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The new and old coefficients are related by the equations

(6)

These equations show, among other things, that if we start with an equation for a
curve in which the cross product term is present we can find a rotation angle 
that produces an equation in which no cross product term appears To find we
set in the second equation in (6) and solve the resulting equation,

for In practice, this means determining from one of the two equationsaa .

B cos 2a + sC - Ad sin 2a = 0,

B¿ = 0
a ,sB¿ = 0d .
asB Z 0d ,

 F¿ = F .

 E¿ = -D sin a + E cos a

 D¿ = D cos a + E sin a

 C¿ = A sin2 a - B sin a cos a + C cos2 a

 B¿ = B cos 2a + sC - Ad sin 2a

 A¿ = A cos2 a + B cos a sin a + C sin2 a

704 Chapter 10: Conic Sections and Polar Coordinates

Angle of Rotation

(7)cot 2a =

A - C
B
 or tan 2a =

B
A - C

.

EXAMPLE 2 Finding the Angle of Rotation

The coordinate axes are to be rotated through an angle to produce an equation for the
curve

that has no cross product term. Find and the new equation. Identify the curve.

Solution The equation has and
We substitute these values into Equation (7) to find 

From the right triangle in Figure 10.25, we see that one appropriate choice of angle is
so we take Substituting 
and into Equations (6) gives

Equation (5) then gives

The curve is an ellipse with foci on the new (Figure 10.26).y¿-axis

5
2

 x¿
2

+
1
2

 y¿
2

- 10 = 0, or x¿
2

4
+

y¿
2

20
= 1.

A¿ =

5
2

, B¿ = 0, C¿ =
1
2

, D¿ = E¿ = 0, F¿ = -10.

F = -10D = E = 0,
C = 1, B = 23,A = 2,a = p>6,a = p>6.2a = p>3,

cot 2a =

A - C
B

=
2 - 123

=
123

.

a :C = 1.
A = 2, B = 23,2x2

+ 23 xy + y2
- 10 = 0

a

2x2
+ 23 xy + y2

- 10 = 0

a

�3
2

1
2�

FIGURE 10.25 This triangle identifies
as (Example 2).p>32a = cot-1(1>13)

x

y

� �
�
6

2

–2
–�5

–2�5

�5

�10

–�10

2x2 � �3 xy � y2 � 10 � 02�5
y'2

20
x'2

4
�    

   �
 1

y'

x'

FIGURE 10.26 The conic section in
Example 2.
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Possible Graphs of Quadratic Equations

We now return to the graph of the general quadratic equation.
Since axes can always be rotated to eliminate the cross product term, there is no loss

of generality in assuming that this has been done and that our equation has the form

(8)

Equation (8) represents

(a) a circle if (special cases: the graph is a point or there is no graph at all);

(b) a parabola if Equation (8) is quadratic in one variable and linear in the other;

(c) an ellipse if A and C are both positive or both negative (special cases: circles, a single
point, or no graph at all);

(d) a hyperbola if A and C have opposite signs (special case: a pair of intersecting lines);

(e) a straight line if A and C are zero and at least one of D and E is different from zero;

(f) one or two straight lines if the left-hand side of Equation (8) can be factored into the
product of two linear factors.

See Table 10.3 for examples.

A = C Z 0

Ax2
+ Cy2

+ Dx + Ey + F = 0.

10.3 Quadratic Equations and Rotations 705

TABLE 10.3 Examples of quadratic curves 

A B C D E F Equation Remarks

Circle 1 1

Parabola 1 Quadratic in y,
linear in x

Ellipse 4 9 A, C have same
sign, 

Hyperbola 1 A, C have opposite
signs

One line (still a 1 y-axis
conic section)

Intersecting lines 1 1 Factors to
(still a conic
section) so 

Parallel lines 1 2 Factors to
(not a conic
section) so 

Point 1 1 The origin

No graph 1 1 No graphx2
= -1

x2
+ y2

= 0

x = 1, x = 2
sx - 1dsx - 2d = 0,

x2
- 3x + 2 = 0-3

x = 1, y = -1
sx - 1ds y + 1d = 0,

xy + x - y - 1 = 0-1-1

x2
= 0

x2
- y2

= 1-1-1

A Z C; F 6 0
4x2

+ 9y2
= 36-36

y2
= 9x-9

A = C; F 6 0x2
+ y2

= 4-4

Ax2
+ Bxy + Cy 2

+ Dx + Ey + F = 0

The Discriminant Test

We do not need to eliminate the xy-term from the equation

(9)Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0
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to tell what kind of conic section the equation represents. If this is the only information we
want, we can apply the following test instead.

As we have seen, if then rotating the coordinate axes through an angle that
satisfies the equation

(10)

will change Equation (9) into an equivalent form

(11)

without a cross product term.
Now, the graph of Equation (11) is a (real or degenerate)

(a) parabola if or that is, if 

(b) ellipse if and have the same sign; that is, if 

(c) hyperbola if and have opposite signs; that is, if 

It can also be verified from Equations (6) that for any rotation of axes,

(12)

This means that the quantity is not changed by a rotation. But when we rotate
through the angle given by Equation (10), becomes zero, so

Since the curve is a parabola if an ellipse if and a hyperbola if
the curve must be a parabola if an ellipse if 

and a hyperbola if The number is called the discriminant of
Equation (9).

B2
- 4ACB2

- 4AC 7 0.
B2

- 4AC 6 0,B2
- 4AC = 0,A¿C¿ 6 0,

A¿C¿ 7 0,A¿C¿ = 0,

B2
- 4AC = -4A¿C¿ .

B¿a

B2
- 4AC

B2
- 4AC = B¿

2
- 4A¿C¿ .

A¿C¿ 6 0.C¿A¿

A¿C¿ 7 0;C¿A¿

A¿C¿ = 0;C¿ = 0;A¿

A¿x¿
2

+ C¿y¿
2

+ D¿x¿ + E¿y¿ + F¿ = 0

cot 2a =

A - C
B

aB Z 0,

706 Chapter 10: Conic Sections and Polar Coordinates

The Discriminant Test
With the understanding that occasional degenerate cases may arise, the quadratic
curve is

(a) a parabola if 
(b) an ellipse if 
(c) a hyperbola if B2

- 4AC 7 0.
B2

- 4AC 6 0,
B2

- 4AC = 0,

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

EXAMPLE 3 Applying the Discriminant Test

(a) represents a parabola because

(b) represents an ellipse because

(c) represents a hyperbola because

B2
- 4AC = s1d2

- 4s0ds -1d = 1 7 0.

xy - y2
- 5y + 1 = 0

B2
- 4AC = s1d2

- 4 # 1 # 1 =  -3 6 0.

x2
+ xy + y2

- 1 = 0

B2
- 4AC = s -6d2

- 4 # 3 # 3 = 36 - 36 = 0.

3x2
- 6xy + 3y2

+ 2x - 7 = 0
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10.3 Quadratic Equations and Rotations 707

USING TECHNOLOGY How Calculators Use Rotations to Evaluate Sines
and Cosines

Some calculators use rotations to calculate sines and cosines of arbitrary angles. The pro-
cedure goes something like this: The calculator has, stored,

1. ten angles or so, say

and

2. twenty numbers, the sines and cosines of the angles 

To calculate the sine and cosine of an arbitrary angle we enter (in radians) into the
calculator. The calculator subtracts or adds multiples of to to replace by the angle
between 0 and that has the same sine and cosine as (we continue to call the angle ).
The calculator then “writes” as a sum of multiples of (as many as possible without
overshooting) plus multiples of (again, as many as possible), and so on, working its
way to This gives

The calculator then rotates the point (1, 0) through copies of (through times
in succession), plus copies of and so on, finishing off with copies of 
(Figure 10.27). The coordinates of the final position of (1, 0) on the unit circle are the
values the calculator gives for scos u, sin ud .

a10m10a2 ,m2

a1, m1a1m1

u L m1a1 + m2a2 +
Á

+ m10a10 .

a10 .
a2

a1u

uu2p
uu2p

uu ,

a1, a2 , Á , a10 .

a1 = sin-1s10-1d, a2 = sin-1s10-2d, Á , a10 = sin-1s10-10d ,

NOT TO SCALE

x

1

10

(cos �, sin �)

�

(1, 0)

m3�3's

m2�2's

m1�1's

FIGURE 10.27 To calculate the sine and
cosine of an angle between 0 and the
calculator rotates the point (1, 0) to an
appropriate location on the unit circle and
displays the resulting coordinates.

2p ,u
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10.3 Quadratic Equations and Rotations 707

EXERCISES 10.3

Using the Discriminant
Use the discriminant to decide whether the equations in
Exercises 1–16 represent parabolas, ellipses, or hyperbolas.

1.

2.

3.

4.

5.

6.

7.

8. 9.

10.

11.

12.

13.

14.

15.

16. 3x2
+ 12xy + 12y2

+ 435x - 9y + 72 = 0

6x2
+ 3xy + 2y2

+ 17y + 2 = 0

25x2
+ 21xy + 4y2

- 350x = 0

x2
- 3xy + 3y2

+ 6y = 7

2x2
- 4.9xy + 3y2

- 4x = 7

3x2
- 5xy + 2y2

- 7x - 14y = -1

3x2
+ 6xy + 3y2

- 4x + 5y = 12

xy + y2
- 3x = 5x2

+ y2
+ 3x - 2y = 10

x2
+ 4xy + 4y2

- 3x = 6

2x2
- y2

+ 4xy - 2x + 3y = 6

x2
+ 2xy + y2

+ 2x - y + 2 = 0

2x2
- 215 xy + 2y2

+ x + y = 0

3x2
- 7xy + 217 y2

= 1

3x2
- 18xy + 27y2

- 5x + 7y = -4

x2
- 3xy + y2

- x = 0

B2
- 4AC

Rotating Coordinate Axes
In Exercises 17–26, rotate the coordinate axes to change the given
equation into an equation that has no cross product (xy) term. Then
identify the graph of the equation. (The new equations will vary with
the size and direction of the rotation you use.)

17. 18.

19.

20. 21.

22.

23.

24.

25.

26.

27. Find the sine and cosine of an angle in Quadrant I through which
the coordinate axes can be rotated to eliminate the cross product
term from the equation

Do not carry out the rotation.

14x2
+ 16xy + 2y2

- 10x + 26,370y - 17 = 0.

3x2
+ 423 xy - y2

= 7

3x2
+ 2xy + 3y2

= 19

xy - y - x + 1 = 0

22 x2
+ 222 xy + 22 y2

- 8x + 8y = 0

3x2
- 223 xy + y2

= 1

x2
- 2xy + y2

= 2x2
- 23 xy + 2y2

= 1

3x2
+ 223 xy + y2

- 8x + 823 y = 0

x2
+ xy + y2

= 1xy = 2
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28. Find the sine and cosine of an angle in Quadrant II through which
the coordinate axes can be rotated to eliminate the cross product
term from the equation

Do not carry out the rotation.

The conic sections in Exercises 17–26 were chosen to have rotation
angles that were “nice” in the sense that once we knew or

we could identify and find and from familiar tri-
angles.

In Exercises 29–34, use a calculator to find an angle through
which the coordinate axes can be rotated to change the given equation
into a quadratic equation that has no cross product term. Then find

and to two decimal places and use Equations (6) to find the
coefficients of the new equation to the nearest decimal place. In each
case, say whether the conic section is an ellipse, a hyperbola, or a
parabola.

29.

30.

31.

32.

33.

34.

Theory and Examples
35. What effect does a 90° rotation about the origin have on the equa-

tions of the following conic sections? Give the new equation in
each case.

a. The ellipse 

b. The hyperbola 

c. The circle 

d. The line e. The line 

36. What effect does a 180° rotation about the origin have on the
equations of the following conic sections? Give the new equation
in each case.

a. The ellipse 

b. The hyperbola 

c. The circle 

d. The line e. The line 

37. The hyperbola is one of many
hyperbolas of the form that appear in science and mathe-
matics.

a. Rotate the coordinate axes through an angle of 45° to change
the equation into an equation with no xy-term. What
is the new equation?

b. Do the same for the equation 

38. Find the eccentricity of the hyperbola xy = 2.

xy = a .

xy = 1

xy = a
xy = 1The Hyperbola xy = a

y = mx + by = mx

x2
+ y2

= a2

sx2>a2d = s y2>b2d = 1

sx2>a2d + s y2>b2d = 1 sa 7 bd

y = mx + by = mx

x2
+ y2

= a2

sx2>a2d = s y2>b2d = 1

sx2>a2d + s y2>b2d = 1 sa 7 bd

2x2
+ 7xy + 9y2

+ 20x - 86 = 0

3x2
+ 5xy + 2y2

- 8y - 1 = 0

2x2
- 12xy + 18y2

- 49 = 0

x2
- 4xy + 4y2

- 5 = 0

2x2
+ xy - 3y2

+ 3x - 7 = 0

x2
- xy + 3y2

+ x - y - 3 = 0

cos asin a

a

cos asin a2atan 2a
cot 2a

4x2
- 4xy + y2

- 825 x - 1625 y = 0.

39. Can anything be said about the graph of the equation 
if Give reasons for your

answer.

40. Degenerate conics Does any nondegenerate conic section
have all of the follow-

ing properties?

a. It is symmetric with respect to the origin.

b. It passes through the point (1, 0).

c. It is tangent to the line at the point 

Give reasons for your answer.

41. Show that the equation becomes 
for every choice of the angle in the rotation equations (4).

42. Show that rotating the axes through an angle of radians will
eliminate the xy-term from Equation (1) whenever 

43. a. Decide whether the equation

represents an ellipse, a parabola, or a hyperbola.

b. Show that the graph of the equation in part (a) is the line

44. a. Decide whether the conic section with equation

represents a parabola, an ellipse, or a hyperbola.

b. Show that the graph of the equation in part (a) is the line

45. a. What kind of conic section is the curve 

b. Solve the equation for y and sketch the
curve as the graph of a rational function of x.

c. Find equations for the lines parallel to the line that
are normal to the curve. Add the lines to your sketch.

46. Prove or find counterexamples to the following statements about
the graph of 

a. If the graph is an ellipse.

b. If the graph is a hyperbola.

c. If the graph is a hyperbola.

47. A nice area formula for ellipses When is negative,
the equation

represents an ellipse. If the ellipse’s semi-axes are a and b, its area
is (a standard formula). Show that the area is also given by
the formula (Hint: Rotate the coordinate axes
to eliminate the xy-term and apply Equation (12) to the new equa-
tion.)

48. Other invariants We describe the fact that equals
after a rotation about the origin by saying that the dis-

criminant of a quadratic equation is an invariant of the equation.
B2

- 4AC
B¿

2
- 4A¿C¿

2p>24AC - B2 .
pab

Ax2
+ Bxy + Cy2

= 1

B2
- 4AC

AC 6 0,

AC 7 0,

AC 7 0,

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0.

y = -2x

xy + 2x - y = 0

xy + 2x - y = 0?

y = -3x + 2.

9x2
+ 6xy + y2

- 12x - 4y + 4 = 0

2y = -x - 3.

x2
+ 4xy + 4y2

+ 6x + 12y + 9 = 0

A = C .
p>4

a

x¿
2

+ y¿
2

= a2x2
+ y2

= a2

s -2, 1d .y = 1

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

AC 6 0?Cy2
+ Dx + Ey + F = 0

Ax2
+ Bxy +
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Use Equations (6) to show that the numbers (a) and (b)
are also invariants, in the sense that

We can use these equalities to check against numerical errors
when we rotate axes.

A¿ + C¿ = A + C and D¿
2

+ E¿
2

= D2
+ E2 .

D2
+ E2

A + C

709

49. Use Equations (6) to
show that for any rotation of axes
about the origin.

B¿
2

- 4A¿C¿ = B2
- 4AC

A proof that B¿
2

- 4A¿C¿ = B2
- 4AC
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10.4 Conics and Parametric Equations; The Cycloid 709

Conics and Parametric Equations; The Cycloid

Curves in the Cartesian plane defined by parametric equations, and the calculation of their
derivatives, were introduced in Section 3.5. There we studied parametrizations of lines,
circles, and ellipses. In this section we discuss parametrization of parabolas, hyperbolas,
cycloids, brachistocrones, and tautocrones.

Parabolas and Hyperbolas

In Section 3.5 we used the parametrization

to describe the motion of a particle moving along the right branch of the parabola 
In the following example we obtain a parametrization of the entire parabola, not just its
right branch.

EXAMPLE 1 An Entire Parabola

The position P(x, y) of a particle moving in the xy-plane is given by the equations and pa-
rameter interval

Identify the particle’s path and describe the motion.

Solution We identify the path by eliminating t between the equations and
obtaining

The particle’s position coordinates satisfy the equation so the particle moves
along this curve.

In contrast to Example 10 in Section 3.5, the particle now traverses the entire
parabola. As t increases from to the particle comes down the left-hand side,
passes through the origin, and moves up the right-hand side (Figure 10.28).

As Example 1 illustrates, any curve has the parametrization 
This is so simple we usually do not use it, but the point of view is occasionally

helpful.

EXAMPLE 2 A Parametrization of the Right-hand Branch of the Hyperbola

Describe the motion of the particle whose position P(x, y) at time t is given by

x = sec t, y = tan t, -
p
2

6 t 6
p
2

.

x2
- y2

= 1

y = ƒstd .
x = t ,y = ƒsxd

q ,- q

y = x2 ,

y = std2
= x2 .

y = t2 ,
x = t

x = t, y = t2, - q 6 t 6 q .

y = x2 .

x = 2t, y = t, t 7 0

10.4

x

y

0

y � x2

(–2, 4)

(1, 1)

t � –2

t � 1

P(t, t 2)

FIGURE 10.28 The path defined by
is the

entire parabola (Example 1).y = x2
x = t, y = t2, - q 6 t 6 q
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Solution We find a Cartesian equation for the coordinates of P by eliminating t be-
tween the equations

We accomplish this with the identity which yields

Since the particle’s coordinates (x, y) satisfy the equation the motion takes
place somewhere on this hyperbola. As t runs between and remains
positive and runs between and so P traverses the hyperbola’s right-hand
branch. It comes in along the branch’s lower half as reaches (1, 0) at and
moves out into the first quadrant as t increases toward  (Figure 10.29).

Cycloids

The problem with a pendulum clock whose bob swings in a circular arc is that the fre-
quency of the swing depends on the amplitude of the swing. The wider the swing, the
longer it takes the bob to return to center (its lowest position).

This does not happen if the bob can be made to swing in a cycloid. In 1673, Christiaan
Huygens designed a pendulum clock whose bob would swing in a cycloid, a curve we de-
fine in Example 3. He hung the bob from a fine wire constrained by guards that caused it
to draw up as it swung away from center (Figure 10.30).

EXAMPLE 3 Parametrizing a Cycloid

A wheel of radius a rolls along a horizontal straight line. Find parametric equations for the
path traced by a point P on the wheel’s circumference. The path is called a cycloid.

Solution We take the line to be the x-axis, mark a point P on the wheel, start the wheel
with P at the origin, and roll the wheel to the right. As parameter, we use the angle t
through which the wheel turns, measured in radians. Figure 10.31 shows the wheel a short
while later, when its base lies at units from the origin. The wheel’s center C lies at (at, a)
and the coordinates of P are

To express in terms of t, we observe that in the figure, so that

This makes

The equations we seek are

These are usually written with the a factored out:

(1)

Figure 10.32 shows the first arch of the cycloid and part of the next.

x = ast - sin td, y = as1 - cos td .

x = at - a sin t, y = a - a cos t .

cos u = cos a3p
2

- tb = -sin t, sin u = sin a3p
2

- tb = -cos t .

u =

3p
2

- t .

t + u = 3p>2u

x = at + a cos u, y = a + a sin u .

p>2 t = 0,t : 0- ,
q ,- qy = tan t

p>2, x = sec t-p>2x2
- y2

= 1,

x2
- y2

= 1.

sec2 t - tan2 t = 1,

sec t = x, tan t = y .
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Branch not
traced

x

y
x2 � y2 � 1

P(sec t, tan t)

0 1

1
t � 0

–    � t � 0�
2

0 � t � 
�
2

FIGURE 10.29 The equations
and interval

describe the right-hand
branch of the hyperbola 
(Example 2).

x2
- y2

= 1
-p>2 6 t 6 p>2
x = sec t, y = tan t

HISTORICAL BIOGRAPHY

Christiaan Huygens
(1629–1695)

Cycloid

Guard
cycloid

Guard
cycloid

FIGURE 10.30 In Huygens’ pendulum
clock, the bob swings in a cycloid, so the
frequency is independent of the amplitude.

x

y

t
a
�

C(at, a)

M0 at

P(x, y) � (at � a cos �, a � a sin �)

FIGURE 10.31 The position of P(x, y) on
the rolling wheel at angle t (Example 3).
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Brachistochrones and Tautochrones

If we turn Figure 10.32 upside down, Equations (1) still apply and the resulting curve
(Figure 10.33) has two interesting physical properties. The first relates to the origin O and
the point B at the bottom of the first arch. Among all smooth curves joining these points,
the cycloid is the curve along which a frictionless bead, subject only to the force of
gravity, will slide from O to B the fastest. This makes the cycloid a brachistochrone
(“brah-kiss-toe-krone”), or shortest time curve for these points. The second property is
that even if you start the bead partway down the curve toward B, it will still take the bead
the same amount of time to reach B. This makes the cycloid a tautochrone (“taw-toe-
krone”), or same-time curve for O and B.

Are there any other brachistochrones joining O and B, or is the cycloid the only one?
We can formulate this as a mathematical question in the following way. At the start, the ki-
netic energy of the bead is zero, since its velocity is zero. The work done by gravity in
moving the bead from (0, 0) to any other point (x, y) in the plane is mgy, and this must
equal the change in kinetic energy. That is,

Thus, the velocity of the bead when it reaches (x, y) has to be

That is,

or

The time it takes the bead to slide along a particular path from O to 
is

(2)

What curves if any, minimize the value of this integral?
At first sight, we might guess that the straight line joining O and B would give the

shortest time, but perhaps not. There might be some advantage in having the bead fall ver-
tically at first to build up its velocity faster. With a higher velocity, the bead could travel a
longer path and still reach B first. Indeed, this is the right idea. The solution, from a branch
of mathematics known as the calculus of variations, is that the original cycloid from O to
B is the one and only brachistochrone for O and B.

While the solution of the brachistrochrone problem is beyond our present reach, we
can still show why the cycloid is a tautochrone. For the cycloid, Equation (2) takes the form

 = L
p

0 Aa
g dt = pAa

g .

 = L
t =p

t = 0 Ba2s2 - 2 cos td
2gas1 - cos td

 dt

 Tcycloid = L
x = ap

x = 0 Bdx2
+ dy2

2gy

y = ƒsxd ,

Tf = L
x = ap

x = 0 B1 + sdy>dxd2

2gy
 dx .

Bsap, 2ady = ƒsxdTf

dt =

ds22gy
=

21 + sdy>dxd2 dx22gy
.

ds
dt

= 22gy

y = 22gy .

mgy =
1
2

 my2
-

1
2

 ms0d2 .
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O
x

y

(x, y)

2�a

t
a

FIGURE 10.32 The cycloid
for

t Ú 0.
x = ast - sin td, y = as1 - cos td,

x

y

O a

a

2a

2a

2�a�a

P(at � a sin t, a � a cos t)

B(a�, 2a)

FIGURE 10.33 To study motion along an
upside-down cycloid under the influence
of gravity, we turn Figure 10.32 upside
down. This points the y-axis in the
direction of the gravitational force and
makes the downward y-coordinates
positive. The equations and parameter
interval for the cycloid are still

The arrow shows the direction of
increasing t.

 y = as1 - cos td, t Ú 0.
 x = ast - sin td, 

From Equations (1),

y = a s1 - cos td
dy = a sin t dt, and
dx = as1 - cos td dt ,

ds is the arc length differential
along the bead’s path.
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Thus, the amount of time it takes the frictionless bead to slide down the cycloid to B after
it is released from rest at O is 

Suppose that instead of starting the bead at O we start it at some lower point on the cy-
cloid, a point corresponding to the parameter value The bead’s velocity at
any later point (x, y) on the cycloid is

Accordingly, the time required for the bead to slide from down to B is

This is precisely the time it takes the bead to slide to B from O. It takes the bead the same
amount of time to reach B no matter where it starts. Beads starting simultaneously from O,
A, and C in Figure 10.34, for instance, will all reach B at the same time. This is the reason
that Huygens’ pendulum clock is independent of the amplitude of the swing.

 = 2Aa
g s -sin-1 0 + sin-1 1d = pAa

g .

 = 2Aa
g c-sin-1 

cos st>2d
cos st0>2d

d
t0

p

 = 2Aa
g c-sin-1 

u
c d

t = t0

t =p

 = Aa
gL

t =p

t = t0

 
-2 du2a2

- u2

 = Aa
gL

p

t0

 
sin st>2d dt2cos2 st0>2d - cos2 st>2d

 = Aa
gL

p

t0 B 2 sin2 st>2d

s2 cos2 st0>2d - 1d - s2 cos2 st>2d - 1d
  dt

 T = L
p

t0 B a2s2 - 2 cos td
2gascos t0 - cos td

 dt = Aa
gL

p

t0 A 1 - cos t
cos t0 - cos t  dt

sx0 , y0d

y = a s1 - cos tdy = 22g s y - y0d = 22ga scos t0 - cos td .

t0 7 0.sx0 , y0d

p2a>g .
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 c = cos st0>2d
-2 du = sin st>2d dt

 u = cos st>2d

O
x

y

A

B
C

FIGURE 10.34 Beads released
simultaneously on the cycloid at O, A, and
C will reach B at the same time.
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EXERCISES 10.4

Parametric Equations for Conics
Exercises 1–12 give parametric equations and parameter intervals for
the motion of a particle in the xy-plane. Identify the particle’s path by
finding a Cartesian equation for it. Graph the Cartesian equation. (The
graphs will vary with the equation used.) Indicate the portion of the
graph traced by the particle and the direction of motion.

1.

2.

3.

4.

5.

6. x = sec2 t - 1, y = tan t; -p>2 6 t 6 p>2
x = t, y = 2t; t Ú 0

x = 4 sin t, y = 5 cos t; 0 … t … 2p

x = 4 cos t, y = 5 sin t; 0 … t … p

x = sin s2p s1 - tdd, y = cos s2p s1 - tdd; 0 … t … 1

x = cos t, y = sin t, 0 … t … p

7.

8.

9.

10.

11.

12.

13. Hypocycloids When a circle rolls on the inside of a fixed cir-
cle, any point P on the circumference of the rolling circle de-
scribes a hypocycloid. Let the fixed circle be let
the radius of the rolling circle be b, and let the initial position of
the tracing point P be A(a, 0). Find parametric equations for the
hypocycloid, using as the parameter the angle from the positive
x-axis to the line joining the circles’ centers. In particular, if

u

x2
+ y2

= a2 ,

x = 2 sinh t, y = 2 cosh t; - q 6 t 6 q

x = -cosh t, y = sinh t; - q 6 t 6 q

x = t2, y = 2t4
+ 1; t Ú 0

x = t, y = 24 - t2; 0 … t … 2

x = csc t, y = cot t; 0 6 t 6 p

x = -sec t, y = tan t; -p>2 6 t 6 p>2
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as in the accompanying figure, show that the hypocy-
cloid is the astroid

14. More about hypocycloids The accompanying figure shows a
circle of radius a tangent to the inside of a circle of radius 2a. The
point P, shown as the point of tangency in the figure, is attached
to the smaller circle. What path does P trace as the smaller circle
rolls around the inside of the larger circle?

15. As the point N moves along the line in the accompanying
figure, P moves in such a way that Find parametric
equations for the coordinates of P as functions of the angle t that
the line ON makes with the positive y-axis.

16. Trochoids A wheel of radius a rolls along a horizontal straight
line without slipping. Find parametric equations for the curve
traced out by a point P on a spoke of the wheel b units from its
center. As parameter, use the angle through which the wheel
turns. The curve is called a trochoid, which is a cycloid when

Distance Using Parametric Equations
17. Find the point on the parabola 

closest to the point (2, 1 2). (Hint: Minimize the square of the
distance as a function of t.)

> x = t, y = t2, - q 6 t 6 q ,

b = a .

u

x

y

N

M

A(0, a)

t

P

O

OP = MN .
y = a

a a
P

x

y

C

O
�

b

P
A(a, 0)

x = a cos3 u, y = a sin3 u .

b = a>4, 18. Find the point on the ellipse 
closest to the point (3 4, 0). (Hint: Minimize the square of the
distance as a function of t.)

GRAPHER EXPLORATIONS

If you have a parametric equation grapher, graph the following equa-
tions over the given intervals.

19. Ellipse

a. b.

c.

20. Hyperbola branch (enter as 1 cos (t)), (en-
ter as sin (t) cos (t)), over

a. b.

c.

21. Parabola

22. Cycloid

a. b.

c.

23. A nice curve (a deltoid)

What happens if you replace 2 with in the equations for x and
y? Graph the new equations and find out.

24. An even nicer curve

What happens if you replace 3 with in the equations for x and
y? Graph the new equations and find out.

25. Three beautiful curves

a. Epicycloid:

b. Hypocycloid:

c. Hypotrochoid:

26. More beautiful curves

a.

b.

c.

d.
0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 4t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin 2t - 5 sin 3t;

0 … t … p

x = 6 cos 2t + 5 cos 6t, y = 6 sin 2t - 5 sin 6t;

0 … t … 2p
x = 6 cos t + 5 cos 3t, y = 6 sin t - 5 sin 3t; 

x = cos t + 5 cos 3t, y = 6 cos t - 5 sin 3t; 0 … t … 2p

x = 8 cos t + 2 cos 4t, y = 8 sin t - 2 sin 4t; 0 … t … 2p

x = 9 cos t - cos 9t, y = 9 sin t - sin 9t; 0 … t … 2p

-3

x = 3 cos t + cos 3t, y = 3 sin t - sin 3t; 0 … t … 2p

-2

x = 2 cos t + cos 2t, y = 2 sin t - sin 2t; 0 … t … 2p

p … t … 3p .

0 … t … 4p0 … t … 2p

x = t - sin t, y = 1 - cos t, over

x = 2t + 3, y = t2
- 1, -2 … t … 2

-0.1 … t … 0.1 .

-0.5 … t … 0.5-1.5 … t … 1.5

> y = tan t>x = sec t

-p>2 … t … p>2.

0 … t … p0 … t … 2p

x = 4 cos t, y = 2 sin t, over

> x = 2 cos t, y = sin t, 0 … t … 2p
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