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Integral Tables and Computer Algebra Systems

As we have studied, the basic techniques of integration are substitution and integration by
parts. We apply these techniques to transform unfamiliar integrals into integrals whose forms
we recognize or can find in a table. But where do the integrals in the tables come from? They
come from applying substitutions and integration by parts, or by differentiating important
functions that arise in practice or applications and tabling the results (as we did in creating
Table 8.1). When an integral matches an integral in the table or can be changed into one of
the tabulated integrals with some appropriate combination of algebra, trigonometry, substitu-
tion, and calculus, the matched result can be used to solve the integration problem at hand.

Computer Algebra Systems (CAS) can also be used to evaluate an integral, if such a
system is available. However, beware that there are many relatively simple functions, like

or 1 ln x for which even the most powerful computer algebra systems cannot find
explicit antiderivative formulas because no such formulas exist.

In this section we discuss how to use tables and computer algebra systems to evaluate
integrals.

Integral Tables

A Brief Table of Integrals is provided at the back of the book, after the index. (More extensive
tables appear in compilations such as CRC Mathematical Tables, which contain thousands of
integrals.) The integration formulas are stated in terms of constants a, b, c, m, n, and so on.
These constants can usually assume any real value and need not be integers. Occasional
limitations on their values are stated with the formulas. Formula 5 requires for
example, and Formula 11 requires 

The formulas also assume that the constants do not take on values that require dividing
by zero or taking even roots of negative numbers. For example, Formula 8 assumes that

and Formulas 13(a) and (b) cannot be used unless b is positive.
The integrals in Examples 1–5 of this section can be evaluated using algebraic

manipulation, substitution, or integration by parts. Here we illustrate how the integrals
are found using the Brief Table of Integrals.

EXAMPLE 1 Find

Solution We use Formula 8 (not 7, which requires ):

With and we have

EXAMPLE 2 Find

L  
dx

x22x + 4
.

L  xs2x + 5d-1 dx =

x
2

-

5
4

 ln ƒ 2x + 5 ƒ + C .

b = 5,a = 2

L  xsax + bd-1 dx =

x
a -

b
a2 ln ƒ ax + b ƒ + C .

n Z -1

L  xs2x + 5d-1 dx .

a Z 0,

n Z 2.
n Z -1,

>sin sx2d
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Solution We use Formula 13(b):

With and we have

Formula 13(a), which would require here, is not appropriate in Example 2. It is
appropriate, however, in the next example.

EXAMPLE 3 Find

Solution We use Formula 13(a):

With and we have

EXAMPLE 4 Find

Solution We begin with Formula 15:

With and we have

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

EXAMPLE 5 Find

L  x sin-1 x dx .

L  
dx

x222x - 4
=

22x - 4
4x

+
1
4

 tan-1 Ax - 2
2

+ C .

L  
dx

x222x - 4
= -

22x - 4
-4x

+
2

2 # 4L  
dx

x22x - 4
+ C .

b = -4,a = 2

L  
dx

x22ax + b
= -

2ax + b
bx

-

a
2bL  

dx

x2ax + b
+ C .

L  
dx

x222x - 4
.

L  
dx

x22x - 4
=

224
 tan-1 A2x - 4

4
+ C = tan-1 Ax - 2

2
+ C .

b = 4,a = 2

L  
dx

x2ax - b
=

21b
 tan-1 Aax - b

b
+ C .

L  
dx

x22x - 4
.

b 6 0

 =
1
2

 ln ` 22x + 4 - 222x + 4 + 2
` + C .

 L  
dx

x22x + 4
=

124
 ln ` 22x + 4 - 2422x + 4 + 24

` + C

b = 4,a = 2

L  
dx

x2ax + b
=

11b
 ln ` 2ax + b - 1b2ax + b + 1b

` + C, if b 7 0.
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Solution We use Formula 99:

With and we have

The integral on the right is found in the table as Formula 33:

With 

The combined result is

Reduction Formulas

The time required for repeated integrations by parts can sometimes be shortened by applying
formulas like

(1)

(2)

(3)

Formulas like these are called reduction formulas because they replace an integral con-
taining some power of a function with an integral of the same form with the power
reduced. By applying such a formula repeatedly, we can eventually express the original
integral in terms of a power low enough to be evaluated directly.

EXAMPLE 6 Using a Reduction Formula

Find 

L  tan5 x dx .

L  sinn x cosm x dx = -

sinn - 1 x cosm + 1 x
m + n +

n - 1
m + nL  sinn - 2 x cosm x dx sn Z -md .

L  sln xdn dx = xsln xdn
- nL  sln xdn - 1 dx

L  tann x dx =
1

n - 1
 tann - 1 x - L  tann - 2 x dx

 = ax2

2
-

1
4
bsin-1 x +

1
4

 x21 - x2
+ C¿ .

 L  x sin-1 x dx =

x2

2
 sin-1 x -

1
2

 a1
2

 sin-1 x -
1
2

 x21 - x2
+ Cb

L  
x2 dx21 - x2

=
1
2

 sin-1 x -
1
2

 x21 - x2
+ C .

a = 1,

L  
x22a2

- x2
 dx =

a2

2
 sin-1 ax

a b -
1
2

 x2a2
- x2

+ C .

L  x sin-1 x dx =

x2

2
 sin-1 x -

1
2L  

x2 dx21 - x2
.

a = 1,n = 1

L  xn sin-1 ax dx =

xn + 1

n + 1
 sin-1 ax -

a
n + 1L  

xn + 1 dx21 - a2x2
, n Z -1.
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Solution We apply Equation (1) with to get

We then apply Equation (1) again, with to evaluate the remaining integral:

The combined result is

As their form suggests, reduction formulas are derived by integration by parts.

EXAMPLE 7 Deriving a Reduction Formula

Show that for any positive integer n,

Solution We use the integration by parts formula

with

to obtain

Sometimes two reduction formulas come into play.

EXAMPLE 8 Find

Solution 1 We apply Equation (3) with and to get

We can evaluate the remaining integral with Formula 61 (another reduction formula):

L  cosnax dx =

cosn - 1ax sin ax
na +

n - 1
n L  cosn - 2ax dx .

 = -

sin x cos4 x
5 +

1
5L  cos3 x dx .

 L  sin2 x cos3 x dx = -

sin x cos4 x
2 + 3

+
1

2 + 3L  sin0 x cos3 x dx

m = 3n = 2

L  sin2 x cos3 x dx .

L  sln xdn dx = xsln xdn
- nL  sln xdn - 1 dx .

u = sln xdn, du = nsln xdn - 1 
dx
x , dy = dx, y = x ,

L  u dy = uy - L  y du

L  sln xdn dx = xsln xdn
- nL  sln xdn - 1 dx .

L  tan5 x dx =
1
4

 tan4 x -
1
2

 tan2 x - ln ƒ cos x ƒ + C¿ .

L  tan3 x dx =
1
2

 tan2 x - L  tan x dx =
1
2

 tan2 x + ln ƒ cos x ƒ + C .

n = 3,

L  tan5 x dx =
1
4

 tan4 x - L  tan3 x dx .

n = 5

596 Chapter 8: Techniques of Integration

4100 AWL/Thomas_ch08p553-641  8/20/04  10:08 AM  Page 596



With and we have

The combined result is

Solution 2 Equation (3) corresponds to Formula 68 in the table, but there is another
formula we might use, namely Formula 69. With Formula 69 gives

In our case, and so that

As you can see, it is faster to use Formula 69, but we often cannot tell beforehand how
things will work out. Do not spend a lot of time looking for the “best” formula. Just find
one that will work and forge ahead.

Notice also that Formulas 68 (Solution 1) and 69 (Solution 2) lead to different-
looking answers. That is often the case with trigonometric integrals and is no cause for
concern. The results are equivalent, and we may use whichever one we please.

Nonelementary Integrals

The development of computers and calculators that find antiderivatives by symbolic manip-
ulation has led to a renewed interest in determining which antiderivatives can be expressed
as finite combinations of elementary functions (the functions we have been studying) and
which cannot. Integrals of functions that do not have elementary antiderivatives are called
nonelementary integrals. They require infinite series (Chapter 11) or numerical methods
for their evaluation. Examples of the latter include the error function (which measures the
probability of random errors)

and integrals such as

L  sin x2 dx and L  21 + x4 dx

erf sxd =
22p L

x

0
 e-t 2

 dt

 =

sin3 x cos2 x
5 +

2
15

 sin3 x + C .

 =

sin3 x cos2 x
5 +

2
5 asin3 x

3
b + C

 L  sin2 x cos3 x dx =

sin3 x cos2 x
5 +

2
5L  sin2 x cos x dx

m = 3,n = 2

L  sinn x cosmx dx =

sinn + 1 x cosm - 1x
m + n +

m - 1
m + nL  sinn x cosm - 2 x dx .

a = 1,

 = -

sin x cos4 x
5 +

cos2 x sin x
15

+
2
15

 sin x + C¿ .

 L  sin2 x cos3 x dx = -

sin x cos4 x
5 +

1
5 acos2 x sin x

3
+

2
3

 sin x + Cb

 =

cos2 x sin x
3

+
2
3

 sin x + C .

 L  cos3 x dx =

cos2 x sin x
3

+
2
3L  cos x dx

a = 1,n = 3
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that arise in engineering and physics. These and a number of others, such as

look so easy they tempt us to try them just to see how they turn out. It can be proved, however,
that there is no way to express these integrals as finite combinations of elementary functions.
The same applies to integrals that can be changed into these by substitution. The integrands all
have antiderivatives, as a consequence of the Fundamental Theorem of the Calculus, Part 1,
because they are continuous. However, none of the antiderivatives is elementary.

None of the integrals you are asked to evaluate in the present chapter falls into this
category, but you may encounter nonelementary integrals in your other work.

Integration with a CAS

A powerful capability of computer algebra systems is their ability to integrate symboli-
cally. This is performed with the integrate command specified by the particular system
(for example, int in Maple, Integrate in Mathematica).

EXAMPLE 9 Using a CAS with a Named Function

Suppose that you want to evaluate the indefinite integral of the function

Using Maple, you first define or name the function:

Then you use the integrate command on ƒ, identifying the variable of integration:

Maple returns the answer

If you want to see if the answer can be simplified, enter

Maple returns

If you want the definite integral for you can use the format

Maple (Version 5.1) will return the expression

-
1
8

 a4 ln Ap + 24a2
+ p2 B +

1
16

 a4 ln sa2d .

1
64

 ps4a2
+ p2ds3>2d

-
1

32
 a2p24a2

+ p2
+

1
8

 a4 ln s2d

7 intsƒ, x = 0..Pi>2d ;

0 … x … p>2,

1
8

 a2x2a2
+ x2

+
1
4

 x32a2
+ x2

-
1
8

 a4 ln Ax + 2a2
+ x2 B .

7 simplifys%d ;

1
4

 xsa2
+ x2d3>2

-
1
8

 a2x2a2
+ x2

-
1
8

 a4 ln sx + 2a2
+ x2d .

7 intsƒ, xd ;

7 ƒ:= x¿2 * sqrt sa¿2 + x¿2d ;

ƒsxd = x22a2
+ x2 .

L  21 - k 2 sin2 x dx, 0 6 k 6 1,

 L  
sin x

x  dx, L  
1

ln x
 dx, L  ln sln xd dx,L  

e x

x  dx, L  e se xd dx,

598 Chapter 8: Techniques of Integration

4100 AWL/Thomas_ch08p553-641  8/20/04  10:08 AM  Page 598



You can also find the definite integral for a particular value of the constant a:

Maple returns the numerical answer

EXAMPLE 10 Using a CAS Without Naming the Function

Use a CAS to find

Solution With Maple, we have the entry

with the immediate return

EXAMPLE 11 A CAS May Not Return a Closed Form Solution

Use a CAS to find

Solution Using Maple, we enter

and Maple returns the expression

indicating that it does not have a closed form solution known by Maple. In Chapter 11, you
will see how series expansion may help to evaluate such an integral.

Computer algebra systems vary in how they process integrations. We used Maple 5.1
in Examples 9–11. Mathematica 4 would have returned somewhat different results:

1. In Example 9, given

Mathematica returns

without having to simplify an intermediate result. The answer is close to Formula 22
in the integral tables.

Out [1]= 2a2
+ x2 aa2 x

8
+

x3

4
b -

1
8

 a4 Log Cx + 2a2
+ x2 D

In [1]:= Integrate [x¿2 * Sqrt [a¿2 + x¿2], x]

L  arccossaxd2 dx ,

7 intssarccossa * xdd¿2, xd ;

L  scos-1 axd2 dx .

-
1
5 sinsxd cossxd4

+
1
15

  cossxd2 sinsxd +
2
15

  sinsxd .

7 int sssin¿2dsxd * scos¿3dsxd, xd ;

L  sin2 x cos3 x dx .

3
8
22 +

1
8

 ln A22 - 1 B .

7 intsƒ, x = 0..1d ;

7 a:= 1;
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2. The Mathematica answer to the integral

in Example 10 is

differing from both the Maple answer and the answers in Example 8.

3. Mathematica does give a result for the integration

in Example 11, provided 

Although a CAS is very powerful and can aid us in solving difficult problems, each CAS
has its own limitations. There are even situations where a CAS may further complicate a
problem (in the sense of producing an answer that is extremely difficult to use or inter-
pret). Note, too, that neither Maple nor Mathematica return an arbitrary constant On
the other hand, a little mathematical thinking on your part may reduce the problem to one
that is quite easy to handle. We provide an example in Exercise 111.

+C .

Out [3]= -2x -

221 - a2 x2 ArcCos [a x]
a + x ArcCos [a x]2

a Z 0:

In [3]:= Integrate [ArcCos [a * x]¿2, x]

Out [2]=

Sin [x]
8

-
1

48
 Sin [3 x] -

1
80

 Sin [5 x]

In [2]:= Integrate [Sin [x]¿2 * Cos [x]¿3, x]
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EXERCISES 8.6

Using Integral Tables
Use the table of integrals at the back of the book to evaluate the inte-
grals in Exercises 1–38.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. L  q2225 - q2 dqL  225 - p2 dp

L  
2x2

- 4
x  dxL  

24 - x2

x  dx

L  
dx

x27 - x2L  
dx

x27 + x2

L  
2x - x2

x  dxL  x24x - x2 dx

L  
dx

x224x - 9L  
29 - 4x

x2  dx

L  xs7x + 5d3>2 dxL  x22x - 3 dx

L  
x dx

s2x + 3d3>2L  
x dx2x - 2

L  
dx

x2x + 4L  
dx

x2x - 3

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34. L  sin 2x cos 3x dxL  sin 3x cos 2x dx

L  
tan-1 x

x2  dxL  x2 tan-1 x dx

L  
23t + 9

t  dtL  
23t - 4

t  dt

L  
29x - 4

x2  dxL  
24x + 9

x2  dx

L  
du

s2 - u2d2L  
ds

s9 - s2d2

L  x tan-1 x dxL  x cos-1 x dx

L  e-3t sin 4t dtL  e2t cos 3t dt

L  
du

4 + 5 sin 2uL  
du

5 + 4 sin 2u

L  
ds2s2

- 2L  
r224 - r2

 dr
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8.6 Integral Tables and Computer Algebra Systems 601

35. 36.

37. 38.

Substitution and Integral Tables
In Exercises 39–52, use a substitution to change the integral into one
you can find in the table. Then evaluate the integral.

39. 40.

41. 42.

43. 44.

45.

46. 47.

48. 49.

50. 51.

52.

Using Reduction Formulas
Use reduction formulas to evaluate the integrals in Exercises 53–72.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68. L  csc4 
u

3
 duL  3 sec4 3x dx

L  
1
2

 csc3 
x
2

 dxL  2 sec3 px dx

L  4 cot3 2t dtL  8 cot4 t dt

L  tan4 ax
2
b  dxL  4 tan3 2x dx

L  csc2 y cos5 y dyL  2 sin2 t sec4 t dt

L  9 sin3 u cos3>2 u duL  sin2 2u cos3 2u du

L  3 cos5 3y dyL  8 cos4 2pt dt

L  sin5 
u

2
 duL  sin5 2x dx

L  tan-1 1y dy

L  cos-1 1x dxL  
3 dy21 + 9y2

L  
3 dr29r2

- 1L  
cos u du25 + sin2 u

L  
dy

y23 + sln yd2L  
dt

tan t24 - sin2 t

L  cot t21 - sin2 t dt,  0 6 t 6 p>2
L  
22 - x1x

 dxL  
1x21 - x

 dx

L  
cos-1 1x1x

 dxL  sin-1 1x dx

L  
x2

+ 6x

sx2
+ 3d2 dxL  

x3
+ x + 1

sx2
+ 1d2  dx

L  cos 
u

2
 cos 7u duL  cos 

u

3
 cos 
u

4
 du

L  sin 
t
3

 sin 
t
6

 dtL  8 sin 4t sin 
t
2

 dt 69. 70.

71. 72.

Powers of x Times Exponentials
Evaluate the integrals in Exercises 73–80 using table Formulas
103–106. These integrals can also be evaluated using tabular integra-
tion (Section 8.2).

73. 74.

75. 76.

77. 78.

79. 80.

Substitutions with Reduction Formulas
Evaluate the integrals in Exercises 81–86 by making a substitution
(possibly trigonometric) and then applying a reduction formula.

81. 82.

83. 84.

85. 86.

Hyperbolic Functions
Use the integral tables to evaluate the integrals in Exercises 87–92.

87. 88.

89. 90.

91. 92.

Theory and Examples
Exercises 93–100 refer to formulas in the table of integrals at the back
of the book.

93. Derive Formula 9 by using the substitution to evaluate

94. Derive Formula 17 by using a trigonometric substitution to evaluate

L  
dx

sa2
+ x2d2 .

L  
x

sax + bd2 dx .

u = ax + b

L  csch3 2x coth 2x dxL  sech7 x tanh x dx

L  x sinh 5x dxL  x2 cosh 3x dx

L  
cosh4 1x1x

 dxL  
1
8

 sinh5 3x dx

L
1>23

0
 

dt

st2 + 1d7>2L
2

1
 
sr2

- 1d3>2
r  dr

L
23>2

0
 

dy

s1 - y2d5>2L
1

0
 22x2

+ 1 dx

L  
csc3 2u2u  duL  et sec3 set

- 1d dt

L  x222x dxL  xpx dx

L  x2 2-x dxL  x2 2x dx

L  x2epx dxL  x3e x>2 dx

L  xe-2x dxL  xe3x dx

L  sln xd3 dxL  16x3sln xd2 dx

L  sec5 x dxL  csc5 x dx
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95. Derive Formula 29 by using a trigonometric substitution to evaluate

96. Derive Formula 46 by using a trigonometric substitution to
evaluate

97. Derive Formula 80 by evaluating

by integration by parts.

98. Derive Formula 110 by evaluating

by integration by parts.

99. Derive Formula 99 by evaluating

by integration by parts.

100. Derive Formula 101 by evaluating

by integration by parts.

101. Surface area Find the area of the surface generated by revolv-
ing the curve about the x-axis.

102. Arc length Find the length of the curve 

103. Centroid Find the centroid of the region cut from the first
quadrant by the curve and the line 

104. Moment about y-axis A thin plate of constant density 
occupies the region enclosed by the curve and
the line in the first quadrant. Find the moment of the plate
about the y-axis.

105. Use the integral table and a calculator to find to two decimal
places the area of the surface generated by revolving the curve

about the x-axis.

106. Volume The head of your firm’s accounting department has
asked you to find a formula she can use in a computer program
to calculate the year-end inventory of gasoline in the company’s
tanks. A typical tank is shaped like a right circular cylinder of ra-
dius r and length L, mounted horizontally, as shown here. The
data come to the accounting office as depth measurements taken
with a vertical measuring stick marked in centimeters.

a. Show, in the notation of the figure here, that the volume of
gasoline that fills the tank to a depth d is

V = 2LL
-r + d

-r
 2r2

- y2 dy .

y = x2, -1 … x … 1,

x = 3
y = 36>s2x + 3d

d = 1

x = 3.y = 1>2x + 1

23>2. 0 … x …

y = x2, 

y = 2x2
+ 2, 0 … x … 22,

L  xn tan-1 ax dx

L  xn sin-1 ax dx

L  xn sln axdm dx

L  xn sin ax dx

L  
dx

x2 2x2
- a2

.

L  2a2
- x2 dx .
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b. Evaluate the integral.

107. What is the largest value

can have for any a and b? Give reasons for your answer.

108. What is the largest value

can have for any a and b? Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 109 and 110, use a CAS to perform the integrations.

109. Evaluate the integrals

a. b. c.

d. What pattern do you see? Predict the formula for 
and then see if you are correct by evaluating it with a CAS.

e. What is the formula for Check your an-
swer using a CAS.

110. Evaluate the integrals

a. b. c.

d. What pattern do you see? Predict the formula for

and then see if you are correct by evaluating it with a CAS.

e. What is the formula for

Check your answer using a CAS.

L  
ln x
xn  dx, n Ú 2?

L  
ln x
x5  dx

L  
ln x

x4  dx .L  
ln x

x3  dxL  
ln x

x2  dx

1  xn ln x dx, n Ú 1?

1  x4 ln x dx

L  x3 ln x dx .L  x2 ln x dxL  x ln x dx

L
b

a
 x22x - x2 dx

L
b

a
 2x - x2 dx

y

r

–r
L

d � Depth of
gasoline

Measuring stick

0

T
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111. a. Use a CAS to evaluate

where n is an arbitrary positive integer. Does your CAS find
the result?

b. In succession, find the integral when Com-
ment on the complexity of the results.

n = 1, 2, 3, 5, 7 .

L
p>2

0
 

sinn x
sinn x + cosnx

 dx

c. Now substitute and add the new and old inte-
grals. What is the value of

This exercise illustrates how a little mathematical ingenuity
solves a problem not immediately amenable to solution by a
CAS.

L
p>2

0
 

sinn x
sinn x + cosnx

 dx?

x = sp>2d - u
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8.7 Numerical Integration 603

Numerical Integration

As we have seen, the ideal way to evaluate a definite integral is to find a for-
mula F(x) for one of the antiderivatives of ƒ(x) and calculate the number 
But some antiderivatives require considerable work to find, and still others, like the anti-
derivatives of and have no elementary formulas.

Another situation arises when a function is defined by a table whose entries were ob-
tained experimentally through instrument readings. In this case a formula for the function
may not even exist.

Whatever the reason, when we cannot evaluate a definite integral with an antideriva-
tive, we turn to numerical methods such as the Trapezoidal Rule and Simpson’s Rule devel-
oped in this section. These rules usually require far fewer subdivisions of the integration
interval to get accurate results compared to the various rectangle rules presented in
Sections 5.1 and 5.2. We also estimate the error obtained when using these approximation
methods.

Trapezoidal Approximations

When we cannot find a workable antiderivative for a function ƒ that we have to integrate,
we partition the interval of integration, replace ƒ by a closely fitting polynomial on each
subinterval, integrate the polynomials, and add the results to approximate the integral of ƒ.
In our presentation we assume that ƒ is positive, but the only requirement is for ƒ to be
continuous over the interval of integration [a, b].

The Trapezoidal Rule for the value of a definite integral is based on approximating
the region between a curve and the x-axis with trapezoids instead of rectangles, as in
Figure 8.10. It is not necessary for the subdivision points in the figure to
be evenly spaced, but the resulting formula is simpler if they are. We therefore assume that
the length of each subinterval is

The length is called the step size or mesh size. The area of the trapezoid
that lies above the ith subinterval is

¢x ayi - 1 + yi

2
b =

¢x
2

 syi - 1 + yid ,

¢x = sb - ad>n
¢x =

b - a
n .

x0, x1, x2, Á , xn

21 + x4 ,sin sx2d, 1>ln x ,

Fsbd - Fsad .
1b

a  ƒsxd dx

8.7
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where and This area is the length of the trapezoid’s horizontal
“altitude” times the average of its two vertical “bases.” (See Figure 8.10.) The area below the
curve and above the x-axis is then approximated by adding the areas of all the
trapezoids:

where

The Trapezoidal Rule says: Use T to estimate the integral of ƒ from a to b.

y0 = ƒsad,  y1 = ƒsx1d,  . . . ,  yn - 1 = ƒsxn - 1d,  yn = ƒsbd .

 =

¢x
2

 s y0 + 2y1 + 2y2 +
Á

+ 2yn - 1 + ynd, 

 = ¢x a1
2

 y0 + y1 + y2 +
Á

+ yn - 1 +
1
2

 ynb
 +

1
2

 s yn - 2 + yn - 1d¢x +
1
2

 s yn - 1 + ynd¢x

 T =
1
2

 s y0 + y1d¢x +
1
2

 s y1 + y2d¢x +
Á

y = ƒsxd

¢xyi = ƒsxid .yi - 1 = ƒsxi - 1d
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x

y � f (x)

Trapezoid area
   (y1 � y2)�x1
2

x0 � a x1

y1 y2 yn�1

xn�1 xn � b

yn

x2
�x

FIGURE 8.10 The Trapezoidal Rule approximates short
stretches of the curve with line segments. To
approximate the integral of ƒ from a to b, we add the areas
of the trapezoids made by joining the ends of the segments
to the x-axis.

y = ƒsxd

The Trapezoidal Rule

To approximate use

The y’s are the values of ƒ at the partition points

where ¢x = sb - ad>n .
a + sn - 1d¢x, xn = b ,xn - 1 =Á , x0 = a, x1 = a + ¢x, x2 = a + 2¢x,

T =

¢x
2

 ay0 + 2y1 + 2y2 +
Á

+ 2yn - 1 + ynb .

1b
a  ƒsxd dx ,
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EXAMPLE 1 Applying the Trapezoidal Rule

Use the Trapezoidal Rule with to estimate Compare the estimate with the
exact value.

Solution Partition [1, 2] into four subintervals of equal length (Figure 8.11). Then eval-
uate at each partition point (Table 8.3).

Using these y values, and in the Trapezoidal Rule, we
have

The exact value of the integral is

The T approximation overestimates the integral by about half a percent of its true value of
7 3. The percentage error is or 0.446%.

We could have predicted that the Trapezoidal Rule would overestimate the integral in
Example 1 by considering the geometry of the graph in Figure 8.11. Since the parabola is
concave up, the approximating segments lie above the curve, giving each trapezoid slightly
more area than the corresponding strip under the curve. In Figure 8.10, we see that the
straight segments lie under the curve on those intervals where the curve is concave down,
causing the Trapezoidal Rule to underestimate the integral on those intervals.

EXAMPLE 2 Averaging Temperatures

An observer measures the outside temperature every hour from noon until midnight,
recording the temperatures in the following table.

Time N 1 2 3 4 5 6 7 8 9 10 11 M

Temp 63 65 66 68 70 69 68 68 65 64 62 58 55

What was the average temperature for the 12-hour period?

Solution We are looking for the average value of a continuous function (temperature)
for which we know values at discrete times that are one unit apart. We need to find

without having a formula for ƒ(x). The integral, however, can be approximated by the
Trapezoidal Rule, using the temperatures in the table as function values at the points of a
12-subinterval partition of the 12-hour interval (making ).

 = 782

 =
1
2

 a63 + 2 # 65 + 2 # 66 +
Á

+ 2 # 58 + 55b
 T =

¢x
2

 ay0 + 2y1 + 2y2 +
Á

+ 2y11 + y12b
¢x = 1

avsƒd =
1

b - aL
b

a
 ƒsxd dx ,

s2.34375 - 7>3d>s7>3d L 0.00446,>
L

2

1
 x2 dx =

x3

3
d

1

2

=

8
3

-
1
3

=

7
3

.

 =

75
32

= 2.34375.

 =
1
8

 a1 + 2 a25
16
b + 2 a36

16
b + 2 a49

16
b + 4b

 T =

¢x
2

 ay0 + 2y1 + 2y2 + 2y3 + y4b

¢x = s2 - 1d>4 = 1>4n = 4,
y = x2

12
1  x2 dx .n = 4
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x

y

20 1

1

4

5
4

6
4

7
4

y � x2

25
16

36
16

49
16

FIGURE 8.11 The trapezoidal
approximation of the area under the graph
of from to is a slight
overestimate (Example 1).

x = 2x = 1y = x2

TABLE 8.3

x

1 1

2 4

49
16

7
4

36
16

6
4

25
16

5
4

y = x2
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Using T to approximate we have

Rounding to the accuracy of the given data, we estimate the average temperature as
65 degrees.

Error Estimates for the Trapezoidal Rule

As n increases and the step size approaches zero, T approaches the exact

value of To see why, write

As and 

Therefore,

This means that in theory we can make the difference between T and the integral as small
as we want by taking n large enough, assuming only that f is integrable. In practice,
though, how do we tell how large n should be for a given tolerance?

We answer this question with a result from advanced calculus, which says that if is
continuous on [a, b], then

for some number c between a and b. Thus, as approaches zero, the error defined by

approaches zero as the square of 
The inequality

where max refers to the interval [a, b], gives an upper bound for the magnitude of the error.
In practice, we usually cannot find the exact value of and have to estimate an
upper bound or “worst case” value for it instead. If M is any upper bound for the values of

on [a, b], so that on [a, b], then

ƒ ET ƒ …

b - a
12

 Ms¢xd2 .

ƒ ƒ–sxd ƒ … Mƒ ƒ–sxd ƒ

max ƒ ƒ–sxd ƒ

ƒ ET ƒ …

b - a
12

 max ƒ ƒ–sxd ƒ s¢xd2 ,

¢x .

ET = -

b - a
12

# ƒ–scds¢xd2

¢x

L
b

a
 ƒsxd dx = T -

b - a
12

# ƒ–scds¢xd2

ƒ–

lim
n: q

T = L
b

a
 ƒsxd dx + 0 = L

b

a
 ƒsxd dx .

a
n

k = 1
ƒsxkd¢x :L

b

a
 ƒsxd dx and 1

2
 [ƒsad - ƒsbd]¢x : 0.

¢x : 0,n : q

 = a
n

k = 1
ƒsxkd¢x +

1
2

 [ƒsad - ƒsbd] ¢x .

 = s y1 + y2 +
Á

+ ynd¢x +
1
2

 s y0 - ynd ¢x

 T = ¢x a1
2

 y0 + y1 + y2 +
Á

+ yn - 1 +
1
2

 ynb
1b

a  ƒsxd dx .

¢x = sb - ad>n

avsƒd L
1

b - a
# T =

1
12

# 782 L 65.17.

1b
a  ƒsxd dx ,
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If we substitute for we get

This is the inequality we normally use in estimating We find the best M we can and
go on to estimate from there. This may sound careless, but it works. To make 
small for a given M, we just make n large.

ƒ ET ƒƒ ET ƒ

ƒ ET ƒ .

ƒ ET ƒ …

Msb - ad3

12n2 .

¢x ,sb - ad>n
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The Error Estimate for the Trapezoidal Rule
If is continuous and M is any upper bound for the values of on [a, b],
then the error in the trapezoidal approximation of the integral of ƒ from a to b
for n steps satisfies the inequality

ƒ ET ƒ …

Msb - ad3

12n2 .

ET

ƒ ƒ– ƒƒ–

EXAMPLE 3 Bounding the Trapezoidal Rule Error

Find an upper bound for the error incurred in estimating

with the Trapezoidal Rule with steps (Figure 8.12).

Solution With and the error estimate gives

The number M can be any upper bound for the magnitude of the second derivative of
on A routine calculation gives

so

We can safely take Therefore,

The absolute error is no greater than 0.133.
For greater accuracy, we would not try to improve M but would take more steps. With

steps, for example, we get

ƒ ET ƒ …

s2 + pdp3

120,000
6 0.00133 = 1.33 * 10-3 .

n = 100

ƒ ET ƒ …

p3

1200
 M =

p3s2 + pd
1200

6 0.133.

M = 2 + p .

 … 2 # 1 + p # 1 = 2 + p .

 … 2 ƒ cos x ƒ + ƒ x ƒ ƒ sin x ƒ

 ƒ ƒ–sxd ƒ = ƒ 2 cos x - x sin x ƒ

ƒ–sxd = 2 cos x - x sin x ,

[0, p] .ƒsxd = x sin x

ƒ ET ƒ …

Msb - ad3

12n2 =

p3

1200
 M .

n = 10,a = 0, b = p ,

n = 10

L
p

0
 x sin x dx

x

y

0 1 2 �

1

2

y � x sin x

FIGURE 8.12 Graph of the integrand in
Example 3.

and 
never exceed 1, and
0 … x … p .

ƒ sin x ƒƒ cos x ƒ

Rounded up to be safe
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EXAMPLE 4 Finding How Many Steps Are Needed for a Specific Accuracy

How many subdivisions should be used in the Trapezoidal Rule to approximate

with an error whose absolute value is less than 

Solution With and the error estimate is

This is one of the rare cases in which we actually can find rather than having
to settle for an upper bound M. With we find

On [1, 2], decreases steadily from a maximum of to a minimum of
(Figure 8.13). Therefore, and

The error’s absolute value will therefore be less than if

The first integer beyond 40.83 is With subdivisions we can guarantee
calculating ln 2 with an error of magnitude less than Any larger n will work, too.

Simpson’s Rule: Approximations Using Parabolas

Riemann sums and the Trapezoidal Rule both give reasonable approximations to the
integral of a continuous function over a closed interval. The Trapezoidal Rule is more
efficient, giving a better approximation for small values of n, which makes it a faster
algorithm for numerical integration.

Another rule for approximating the definite integral of a continuous function results
from using parabolas instead of the straight line segments which produced trapezoids. As
before, we partition the interval [a, b] into n subintervals of equal length 

but this time we require that n be an even number. On each consecutive pair of
intervals we approximate the curve by a parabola, as shown in Figure 8.14.
A typical parabola passes through three consecutive points and

on the curve.
Let’s calculate the shaded area beneath a parabola passing through three consecu-

tive points. To simplify our calculations, we first take the case where 
and (Figure 8.15), where The area under the parabola
will be the same if we shift the y-axis to the left or right. The parabola has an equation
of the form

y = Ax2
+ Bx + C ,

h = ¢x = sb - ad>n .x2 = h
x0 = -h, x1 = 0,

sxi + 1, yi + 1d
sxi - 1, yi - 1d, sxi, yid ,

y = ƒsxd Ú 0
sb - ad>n ,

h = ¢x =

10-4 .
n = 41n = 41.

1
6n2 6 10-4, 104

6
6 n2, 10026

6 n, or 40.83 6 n .

10-4

ƒ ET ƒ …
2

12n2 =
1

6n2 .

M = 2y = 1>4 y = 2y = 2>x3

ƒ–sxd =

d2

dx2 sx-1d = 2x-3
=

2
x3 .

ƒsxd = 1>x ,
max ƒ ƒ– ƒ

ƒ ET ƒ …

Ms2 - 1d3

12n2 =
M

12n2 .

b = 2,a = 1

10-4?

ln 2 = L
2

1
 
1
x  dx
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10 2

1

2

x

y

y � 2
x3

(1, 2)





1, 1

4

FIGURE 8.13 The continuous function
has its maximum value on [1, 2]

at x = 1.
y = 2>x3

x

y

Parabola

h h

y0 yn�1 yn

xn�1 xn� b

y1 y2

y � f (x)

0 a � x0 x1 x2 h

FIGURE 8.14 Simpson’s Rule
approximates short stretches of the curve
with parabolas.

0 h–h

y � Ax2 � Bx � C

y0 y1 y2

(–h, y0)
(0, y1)

(h, y2)

x

y

FIGURE 8.15 By integrating from to
h, we find the shaded area to be

h
3

 s y0 + 4y1 + y2d .

-h
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so the area under it from to is

Since the curve passes through the three points and we also have

from which we obtain

Hence, expressing the area in terms of the ordinates and we have

Now shifting the parabola horizontally to its shaded position in Figure 8.14 does not
change the area under it. Thus the area under the parabola through and

in Figure 8.14 is still

Similarly, the area under the parabola through the points and is

Computing the areas under all the parabolas and adding the results gives the approximation

The result is known as Simpson’s Rule, and it is again valid for any continuous function
(Exercise 38). The function need not be positive, as in our derivation. The

number n of subintervals must be even to apply the rule because each parabolic arc uses
two subintervals.

y = ƒsxd

=

h
3

 s y0 + 4y1 + 2y2 + 4y3 + 2y4 +
Á

+ 2yn - 2 + 4yn - 1 + ynd .

+

h
3

 s yn - 2 + 4yn - 1 + ynd

L
b

a
 ƒsxd dx L

h
3

 s y0 + 4y1 + y2d +

h
3

 s y2 + 4y3 + y4d +
Á

h
3

 s y2 + 4y3 + y4d .

sx4 , y4dsx2 , y2d, sx3 , y3d ,

h
3

 s y0 + 4y1 + y2d .

sx2 , y2d
sx0 , y0d, sx1, y1d ,

Ap =

h
3

 s2Ah2
+ 6Cd =

h
3

 ss y0 + y2 - 2y1d + 6y1d =

h
3

 s y0 + 4y1 + y2d .

y2 ,y0, y1 ,Ap

 2Ah2
= y0 + y2 - 2y1 .

 Ah2
+ Bh = y2 - y1, 

 Ah2
- Bh = y0 - y1, 

 C = y1, 

y0 = Ah2
- Bh + C, y1 = C, y2 = Ah2

+ Bh + C ,

sh, y2d ,s -h, y0d, s0, y1d ,

 =

2Ah3

3
+ 2Ch =

h
3

 s2Ah2
+ 6Cd .

 =

Ax3

3
+

Bx2

2
+ Cx d

-h

h

 Ap = L
h

-h
 sAx2

+ Bx + Cd dx

x = hx = -h
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Note the pattern of the coefficients in the above rule: 

EXAMPLE 5 Applying Simpson’s Rule

Use Simpson’s Rule with to approximate 

Solution Partition [0, 2] into four subintervals and evaluate at the partition
points (Table 8.4). Then apply Simpson’s Rule with and 

This estimate differs from the exact value (32) by only 1 12, a percentage error of less
than three-tenths of one percent, and this was with just four subintervals.

Error Estimates for Simpson’s Rule

To estimate the error in Simpson’s rule, we start with a result from advanced calculus that
says that if the fourth derivative is continuous, then

for some point c between a and b. Thus, as approaches zero, the error,

approaches zero as the fourth power of (This helps to explain why Simpson’s Rule is
likely to give better results than the Trapezoidal Rule.)

The inequality

where max refers to the interval [a, b], gives an upper bound for the magnitude of the
error. As with in the error formula for the Trapezoidal Rule, we usually cannotmax ƒ ƒ– ƒ

ƒ ES ƒ …

b - a
180

 max ƒ ƒs4dsxd ƒ  s¢xd4

¢x

ES = -

b - a
180

# ƒs4dscds¢xd4 ,

¢x

L
b

a
 ƒsxd dx = S -

b - a
180

# ƒs4dscds¢xd4

ƒs4d

>
 = 32 

1
12

.

 =
1
6

 a0 + 4 a 5
16
b + 2s5d + 4 a405

16
b + 80b

 S =

¢x
3

 ay0 + 4y1 + 2y2 + 4y3 + y4b
¢x = 1>2:n = 4

y = 5x4

12
0  5x4 dx .n = 4

1, 4, 2, 4, 2, 4, 2, Á , 4, 2, 1 .
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Simpson’s Rule

To approximate use

The y’s are the values of ƒ at the partition points

The number n is even, and ¢x = sb - ad>n .
xn - 1 = a + sn - 1d¢x, xn = b .x0 = a, x1 = a + ¢x, x2 = a + 2¢x, Á ,

S =

¢x
3

 s y0 + 4y1 + 2y2 + 4y3 +
Á

+ 2yn - 2 + 4yn - 1 + ynd .

1b
a  ƒsxd dx ,

TABLE 8.4

x

0 0

1 5

2 80

405
16

3
2

5
16

1
2

y = 5x4
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find the exact value of and have to replace it with an upper bound. If M is
any upper bound for the values of on [a, b], then

Substituting for in this last expression gives

This is the formula we usually use in estimating the error in Simpson’s Rule. We find a
reasonable value for M and go on to estimate from there.ƒ ES ƒ

ƒ ES ƒ …

Msb - ad5

180n4 .

¢xsb - ad>n
ƒ ES ƒ …

b - a
180

 Ms¢xd4 .

ƒ ƒs4d
ƒ

max ƒ ƒs4dsxd ƒ
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The Error Estimate for Simpson’s Rule
If is continuous and M is any upper bound for the values of on [a, b],
then the error in the Simpson’s Rule approximation of the integral of ƒ from a
to b for n steps satisfies the inequality

ƒ ES ƒ …

Msb - ad5

180n4 .

ES

ƒ ƒs4d
ƒƒs4d

As with the Trapezoidal Rule, we often cannot find the smallest possible value of M.
We just find the best value we can and go on from there.

EXAMPLE 6 Bounding the Error in Simpson’s Rule

Find an upper bound for the error in estimating using Simpson’s Rule with
(Example 5).

Solution To estimate the error, we first find an upper bound M for the magnitude of the
fourth derivative of on the interval Since the fourth derivative has
the constant value we take With and the
error estimate for Simpson’s Rule gives

EXAMPLE 7 Comparing the Trapezoidal Rule and Simpson’s Rule Approximations

As we saw in Chapter 7, the value of ln 2 can be calculated from the integral

Table 8.5 shows T and S values for approximations of using various values
of n. Notice how Simpson’s Rule dramatically improves over the Trapezoidal Rule. In
particular, notice that when we double the value of n (thereby halving the value of ),
the T error is divided by 2 squared, whereas the S error is divided by 2 to the fourth.

h = ¢x

12
1  s1>xd dx

ln 2 = L
2

1
 
1
x  dx .

ƒ ES ƒ …

Msb - ad5

180n4 =

120s2d5

180 # 44 =
1
12

.

n = 4,b - a = 2M = 120.ƒs4dsxd = 120,
0 … x … 2.ƒsxd = 5x4

n = 4
12

0  5x4 dx
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This has a dramatic effect as gets very small. The Simpson approxi-
mation for rounds accurately to seven places and for agrees to nine deci-
mal places (billionths)!

If ƒ(x) is a polynomial of degree less than four, then its fourth derivative is zero, and

Thus, there will be no error in the Simpson approximation of any integral of ƒ. In other
words, if ƒ is a constant, a linear function, or a quadratic or cubic polynomial, Simp-
son’s Rule will give the value of any integral of ƒ exactly, whatever the number of
subdivisions. Similarly, if ƒ is a constant or a linear function, then its second derivative is
zero and

The Trapezoidal Rule will therefore give the exact value of any integral of ƒ. This is no
surprise, for the trapezoids fit the graph perfectly. Although decreasing the step size 
reduces the error in the Simpson and Trapezoidal approximations in theory, it may fail to
do so in practice.

When is very small, say computer or calculator round-off errors in
the arithmetic required to evaluate S and T may accumulate to such an extent that the error
formulas no longer describe what is going on. Shrinking below a certain size can actu-
ally make things worse. Although this is not an issue in this book, you should consult a text
on numerical analysis for alternative methods if you are having problems with round-off.

EXAMPLE 8 Estimate

with Simpson’s Rule.

L
2

0
 x3 dx

¢x

¢x = 10-5 ,¢x

¢x

ET = -

b - a
12

 ƒ–scds¢xd2
= -

b - a
12

 s0ds¢xd2
= 0.

ES = -

b - a
180

 f (4)scds¢xd4
= -

b - a
180

 s0ds¢xd4
= 0.

n = 100n = 50
¢x = s2 - 1d>n
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TABLE 8.5 Trapezoidal Rule approximations and Simpson’s Rule
approximations of 

n

10 0.6937714032 0.0006242227 0.6931502307 0.0000030502

20 0.6933033818 0.0001562013 0.6931473747 0.0000001942

30 0.6932166154 0.0000694349 0.6931472190 0.0000000385

40 0.6931862400 0.0000390595 0.6931471927 0.0000000122

50 0.6931721793 0.0000249988 0.6931471856 0.0000000050

100 0.6931534305 0.0000062500 0.6931471809 0.0000000004

less than ÁSnless than ÁTn

ƒ Error ƒƒ Error ƒ

ln 2 = 12
1  s1>xd dxsSnd

sTnd
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Solution The fourth derivative of is zero, so we expect Simpson’s Rule to
give the integral’s exact value with any (even) number of steps. Indeed, with and

while

EXAMPLE 9 Draining a Swamp

A town wants to drain and fill a small polluted swamp (Figure 8.16). The swamp averages
5 ft deep. About how many cubic yards of dirt will it take to fill the area after the swamp is
drained?

Solution To calculate the volume of the swamp, we estimate the surface area and multi-
ply by 5. To estimate the area, we use Simpson’s Rule with and the y’s equal to
the distances measured across the swamp, as shown in Figure 8.16.

The volume is about or 1500 yd3 .s8100ds5d = 40,500 ft3

 =

20
3

 s146 + 488 + 152 + 216 + 80 + 120 + 13d = 8100

 S =

¢x
3

 s y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6d

¢x = 20 ft

L
2

0
 x3 dx =

x4

4
d

0

2

=

16
4

- 0 = 4.

 =
1
3

 ss0d3
+ 4s1d3

+ s2d3d =
12
3

= 4, 

 S =

¢x
3

 s y0 + 4y1 + y2d

¢x = s2 - 0d>2 = 1,
n = 2

ƒsxd = x3
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FIGURE 8.16 The dimensions of the
swamp in Example 9.
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8.7 Numerical Integration 613

EXERCISES 8.7

Estimating Integrals
The instructions for the integrals in Exercises 1–10 have two parts,
one for the Trapezoidal Rule and one for Simpson’s Rule.

I. Using the Trapezoidal Rule

a. Estimate the integral with steps and find an upper
bound for 

b. Evaluate the integral directly and find 

c. Use the formula to express 
as a percentage of the integral’s true value.

II. Using Simpson’s Rule

a. Estimate the integral with steps and find an upper
bound for 

b. Evaluate the integral directly and find ƒ ES ƒ .

ƒ ES ƒ .
n = 4

ƒ ET ƒs ƒ ET ƒ >strue valuedd * 100

ƒ ET ƒ .

ƒ ET ƒ .
n = 4

c. Use the formula to express 
as a percentage of the integral’s true value.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. L
1

0
 sin pt dtL

p

0
 sin t dt

L
4

2
 

1
ss - 1d2 dsL

2

1
 
1
s2 ds

L
1

-1
 st3

+ 1d dtL
2

0
 st3

+ td dt

L
0

-2
 sx2

- 1d dxL
1

-1
 sx2

+ 1d dx

L
3

1
 s2x - 1d dxL

2

1
 x dx

ƒ ES ƒs ƒ ES ƒ >strue valuedd * 100
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In Exercises 11–14, use the tabulated values of the integrand to esti-
mate the integral with (a) the Trapezoidal Rule and (b) Simpson’s
Rule with steps. Round your answers to five decimal places.
Then (c) find the integral’s exact value and the approximation error 
or as appropriate.

11.

x

0 0.0
0.125 0.12402
0.25 0.24206
0.375 0.34763
0.5 0.43301
0.625 0.48789
0.75 0.49608
0.875 0.42361
1.0 0

12.

0 0.0
0.375 0.09334
0.75 0.18429
1.125 0.27075
1.5 0.35112
1.875 0.42443
2.25 0.49026
2.625 0.58466
3.0 0.6

13.

t

0.0
0.99138
1.26906
1.05961

0 0.75
0.39270 0.48821
0.78540 0.28946
1.17810 0.13429
1.57080 0

-0.39270
-0.78540
-1.17810
-1.57080

s3 cos td>s2 + sin td2

L
p>2

-p>2  
3 cos t

s2 + sin td2 dt

U>216 + U2U

L
3

0
 

u216 + u2
 du

x21 - x2

L
1

0
 x21 - x2 dx

ES ,
ET

n = 8

14.

y

0.78540 2.0
0.88357 1.51606
0.98175 1.18237
1.07992 0.93998
1.17810 0.75402
1.27627 0.60145
1.37445 0.46364
1.47262 0.31688
1.57080 0

The Minimum Number of Subintervals
In Exercises 15–26, estimate the minimum number of subintervals
needed to approximate the integrals with an error of magnitude less
than by (a) the Trapezoidal Rule and (b) Simpson’s Rule. (The
integrals in Exercises 15–22 are the integrals from Exercises 1–8.)

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

Applications
27. Volume of water in a swimming pool A rectangular swimming

pool is 30 ft wide and 50 ft long. The table shows the depth h(x)
of the water at 5-ft intervals from one end of the pool to the other.
Estimate the volume of water in the pool using the Trapezoidal
Rule with applied to the integral

Position (ft) Depth (ft) Position (ft) Depth (ft)
x h(x) x h(x) 

0 6.0 30 11.5
5 8.2 35 11.9
10 9.1 40 12.3
15 9.9 45 12.7
20 10.5 50 13.0
25 11.0

V = L
50

0
 30 # hsxd dx .

n = 10,

L
1

-1
 cos sx + pd dxL

2

0
 sin sx + 1d dx

L
3

0
 

12x + 1
 dxL

3

0
 2x + 1 dx

L
4

2
 

1
ss - 1d2 dsL

2

1
 
1
s2 ds

L
1

-1
 st3

+ 1d dtL
2

0
 st3

+ td dt

L
0

-2
 sx2

- 1d dxL
1

-1
 sx2

+ 1d dx

L
3

1
 s2x - 1d dxL

2

1
 x dx

10-4

scsc2 yd2cot y

L
p>2
p>4  scsc2 yd2cot y dy
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8.7 Numerical Integration 615

28. Stocking a fish pond As the fish and game warden of your
township, you are responsible for stocking the town pond with
fish before the fishing season. The average depth of the pond is
20 ft. Using a scaled map, you measure distances across the
pond at 200-ft intervals, as shown in the accompanying
diagram.

a. Use the Trapezoidal Rule to estimate the volume of the pond.

b. You plan to start the season with one fish per 1000 cubic feet.
You intend to have at least 25% of the opening day’s fish
population left at the end of the season. What is the maximum
number of licenses the town can sell if the average seasonal
catch is 20 fish per license?

29. Ford® Mustang Cobra™ The accompanying table shows
time-to-speed data for a 1994 Ford Mustang Cobra accelerating
from rest to 130 mph. How far had the Mustang traveled by the
time it reached this speed? (Use trapezoids to estimate the area
under the velocity curve, but be careful: The time intervals vary
in length.)

Speed change Time (sec)

Zero to 30 mph 2.2
40 mph 3.2
50 mph 4.5
60 mph 5.9
70 mph 7.8
80 mph 10.2
90 mph 12.7

100 mph 16.0
110 mph 20.6
120 mph 26.2
130 mph 37.1

Source: Car and Driver, April 1994.

1000 ft

1140 ft

1160 ft

1110 ft

860 ft

0 ft

800 ft

520 ft

Vertical spacing � 200 ft

0 ft

30. Aerodynamic drag A vehicle’s aerodynamic drag is deter-
mined in part by its cross-sectional area, so, all other things being
equal, engineers try to make this area as small as possible. Use
Simpson’s Rule to estimate the cross-sectional area of the body of
James Worden’s solar-powered Solectria® automobile at MIT
from the diagram.

31. Wing design The design of a new airplane requires a gasoline
tank of constant cross-sectional area in each wing. A scale draw-
ing of a cross-section is shown here. The tank must hold 5000 lb
of gasoline, which has a density of Estimate the length
of the tank.

32. Oil consumption on Pathfinder Island A diesel generator
runs continuously, consuming oil at a gradually increasing rate
until it must be temporarily shut down to have the filters replaced.

y1y0
y2 y3 y4 y5 y6

y0 � 1.5 ft, y1 � 1.6 ft, y2 � 1.8 ft, y3 � 1.9 ft,
y4 � 2.0 ft, y5 � y6 � 2.1 ft Horizontal spacing � 1 ft

42 lb>ft3 .

26"

20"

3"

18
.7

5"
24

"
26

"
24

"
18

.7
5"

24"
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Use the Trapezoidal Rule to estimate the amount of oil consumed
by the generator during that week.

Oil consumption rate
Day (liters h)

Sun 0.019
Mon 0.020
Tue 0.021
Wed 0.023
Thu 0.025
Fri 0.028
Sat 0.031
Sun 0.035

Theory and Examples
33. Usable values of the sine-integral function The sine-integral

function,

is one of the many functions in engineering whose formulas cannot
be simplified. There is no elementary formula for the antiderivative
of (sin t) t. The values of Si(x), however, are readily estimated by
numerical integration.

Although the notation does not show it explicitly, the func-
tion being integrated is

the continuous extension of (sin t) t to the interval [0, x]. The
function has derivatives of all orders at every point of its
domain. Its graph is smooth, and you can expect good results
from Simpson’s Rule.

a. Use the fact that on to give an upper
bound for the error that will occur if

is estimated by Simpson’s Rule with 

b. Estimate by Simpson’s Rule with n = 4.Sisp>2d
n = 4.

Si ap
2
b = L

p>2
0

 
sin t

t  dt

[0, p>2]ƒ ƒ s4d
ƒ … 1

t

y

0 x 2�

1
dtSi (x) �

x

0L
sin t

t
y �

sin t
t

�� �

>

ƒstd = •
sin t

t , t Z 0

1, t = 0,

>

Sisxd = L
x

0
 
sin t

t  dt ,

>
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c. Express the error bound you found in part (a) as a percentage
of the value you found in part (b).

34. The error function The error function,

important in probability and in the theories of heat flow and sig-
nal transmission, must be evaluated numerically because there is
no elementary expression for the antiderivative of 

a. Use Simpson’s Rule with to estimate erf (1).

b. In [0, 1],

Give an upper bound for the magnitude of the error of the
estimate in part (a).

35. (Continuation of Example 3.) The error bounds for and are
“worst case” estimates, and the Trapezoidal and Simpson Rules
are often more accurate than the bounds suggest. The Trapezoidal
Rule estimate of

in Example 3 is a case in
point.

a. Use the Trapezoidal
Rule with to
approximate the value
of the integral. The
table to the right gives
the necessary y-values.

b. Find the magnitude of the difference between the integral’s
value, and your approximation in part (a). You will find the
difference to be considerably less than the upper bound of
0.133 calculated with in Example 3.

c. The upper bound of 0.133 for in Example 3 could have
been improved somewhat by having a better bound for

on The upper bound we used was Graph over
and use Trace or Zoom to improve this upper bound.

Use the improved upper bound as M to make an
improved estimate of Notice that the Trapezoidal Rule
approximation in part (a) is also better than this improved
estimate would suggest.

36. (Continuation of Exercise 35.)

a. Show that the fourth derivative of is

ƒs4dsxd = -4 cos x + x sin x .

ƒsxd = x sin x

ƒ ET ƒ .

[0, p]
ƒ–2 + p .[0, p] .

ƒ ƒ–sxd ƒ = ƒ 2 cos x - x sin x ƒ

ƒ ET ƒ

n = 10

p ,

n = 10

L
p

0
 x sin x dx

ESET

` d 4

dt 4 ae-t 2b ` … 12.

n = 10

e-t 2

.

erf sxd =

22p L
x

0
 e-t 2

 dt ,

“Sine integral of x”

x x sin x

0 0
0.09708
0.36932
0.76248
1.19513
1.57080
1.79270
1.77912
1.47727
0.87372
0p

s0.9dp
s0.8dp
s0.7dp
s0.6dp
s0.5dp
s0.4dp
s0.3dp
s0.2dp
s0.1dp

T

T
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Use Trace or Zoom to find an upper bound M for the values
of on 

b. Use the value of M from part (a) to obtain an upper bound for
the magnitude of the error in estimating the value of

with Simpson’s Rule with steps.

c. Use the data in the table in Exercise 35 to estimate
with Simpson’s Rule with steps.

d. To six decimal places, find the magnitude of the difference
between your estimate in part (c) and the integral’s true value,

You will find the error estimate obtained in part (b) to be
quite good.

37. Prove that the sum T in the Trapezoidal Rule for is a
Riemann sum for ƒ continuous on [a, b]. (Hint: Use the Interme-
diate Value Theorem to show the existence of in the subinterval

satisfying )

38. Prove that the sum S in Simpson’s Rule for is a
Riemann sum for ƒ continuous on [a, b]. (See Exercise 37.)

Numerical Integration
As we mentioned at the beginning of the section, the definite integrals of
many continuous functions cannot be evaluated with the Fundamental
Theorem of Calculus because their antiderivatives lack elementary
formulas. Numerical integration offers a practical way to estimate the
values of these so-called nonelementary integrals. If your calculator or
computer has a numerical integration routine, try it on the integrals in
Exercises 39–42.

39.

40.

41.

42.

43. Consider the integral 

a. Find the Trapezoidal Rule approximations for 
and 1000.

b. Record the errors with as many decimal places of accuracy as
you can.

c. What pattern do you see?

d. Explain how the error bound for accounts for the pattern.

44. (Continuation of Exercise 43.) Repeat Exercise 43 with Simp-
son’s Rule and 

45. Consider the integral 

a. Find for ƒsxd = sin sx2d .ƒ–

11
-1 sin sx2d dx .

ES .

ET

n = 10, 100 ,
1p0  sin x dx .

L
p>2

0
 4021 - 0.64 cos2 t dt

L
p>2

0
 sin sx2d dx

L
p>2

0
 
sin x

x  dx

L
1

0
 21 + x4 dx

1b
a  ƒsxd dx

ƒsckd =  sƒsxk - 1d + ƒsxkdd>2.[xk - 1, xk]
ck

1b
a  ƒsxd dx

p .

n = 101p0  x sin x dx

n = 10

L
p

0
 x sin x dx

[0, p] .ƒ ƒs4d
ƒ
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b. Graph in the viewing window by 

c. Explain why the graph in part (b) suggests that 
for 

d. Show that the error estimate for the Trapezoidal Rule in this
case becomes

e. Show that the Trapezoidal Rule error will be less than or
equal to 0.01 in magnitude if 

f. How large must n be for 

46. Consider the integral 

a. Find for (You may want to check your
work with a CAS if you have one available.)

b. Graph in the viewing window by

c. Explain why the graph in part (b) suggests that
for 

d. Show that the error estimate for Simpson’s Rule in this case
becomes

e. Show that the Simpson’s Rule error will be less than or equal
to 0.01 in magnitude if 

f. How large must n be for 

47. A vase We wish to estimate the volume of a flower vase using
only a calculator, a string, and a ruler. We measure the height of
the vase to be 6 in. We then use the string and the ruler to find cir-
cumferences of the vase (in inches) at half-inch intervals. (We list
them from the top down to correspond with the picture of the
vase.)

a. Find the areas of the cross-sections that correspond to the
given circumferences.

b. Express the volume of the vase as an integral with respect to y
over the interval [0, 6].

c. Approximate the integral using the Trapezoidal Rule with

d. Approximate the integral using Simpson’s Rule with 
Which result do you think is more accurate? Give reasons for
your answer.

n = 12.

n = 12.

Circumferences

5.4 10.8
4.5 11.6
4.4 11.6
5.1 10.8
6.3 9.0
7.8 6.3
9.4

6

0

¢x … 0.4?

¢x … 0.4 .

ƒ ES ƒ …

s¢xd4

3
.

-1 … x … 1.ƒ ƒs4dsxd ƒ … 30

[-30, 10] .
[-1, 1]y = ƒs4dsxd

ƒsxd = sin sx2d .ƒs4d
11

-1 sin sx2d dx .

¢x … 0.1?

¢x … 0.1 .

ƒ ET ƒ …

s¢xd2

2
.

-1 … x … 1.
ƒ ƒ–sxd ƒ … 3

[-3, 3] .[-1, 1]y = ƒ–sxd

T

A nonelementary integral that
came up in Newton’s research

The integral from Exercise 33. To avoid
division by zero, you may have to start
the integration at a small positive
number like instead of 0.10-6

The length of the ellipse
sx2>25d + sy2>9d = 1

T

T

T

An integral associated with the
diffraction of light
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48. A sailboat’s displacement To find the volume of water displaced
by a sailboat, the common practice is to partition the waterline
into 10 subintervals of equal length, measure the cross-sectional
area A(x) of the submerged portion of the hull at each partition
point, and then use Simpson’s Rule to estimate the integral of A(x)
from one end of the waterline to the other. The table here lists the
area measurements at “Stations” 0 through 10, as the partition
points are called, for the cruising sloop Pipedream, shown here.
The common subinterval length (distance between consecutive
stations) is (about 2 ft 6-1 2 in., chosen for the
convenience of the builder).

a. Estimate Pipedream’s displacement volume to the nearest
cubic foot.

Station Submerged area 

0 0
1 1.07
2 3.84
3 7.82
4 12.20
5 15.18
6 16.14
7 14.00
8 9.21
9 3.24

10 0

b. The figures in the table are for seawater, which weighs
How many pounds of water does Pipedream

displace? (Displacement is given in pounds for small craft
and in long tons for larger vessels.)
(Data from Skene’s Elements of Yacht Design by Francis S.
Kinney (Dodd, Mead, 1962.)

c. Prismatic coefficients A boat’s prismatic coefficient is the
ratio of the displacement volume to the volume of a prism
whose height equals the boat’s waterline length and whose
base equals the area of the boat’s largest submerged cross-
section. The best sailboats have prismatic coefficients
between 0.51 and 0.54. Find Pipedream’s prismatic
coefficient, given a waterline length of 25.4 ft and a largest
submerged cross-sectional area of (at Station 6).

49. Elliptic integrals The length of the ellipse

x = a cos t, y = b sin t, 0 … t … 2p

16.14 ft2

s1 long ton = 2240 lbd

64 lb>ft3 .

sft2d

–1 0 1 2 3 4 5 6 7 8 9 10 11 12

>¢x = 2.54 ft
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turns out to be

where e is the ellipse’s eccentricity. The integral in this formula,
called an elliptic integral, is nonelementary except when or 1.

a. Use the Trapezoidal Rule with to estimate the length
of the ellipse when and 

b. Use the fact that the absolute value of the second derivative of
is less than 1 to find an upper bound

for the error in the estimate you obtained in part (a).

50. The length of one arch of the curve is given by

Estimate L by Simpson’s Rule with 

51. Your metal fabrication company is bidding for a contract to make
sheets of corrugated iron roofing like the one shown here. The
cross-sections of the corrugated sheets are to conform to the curve

If the roofing is to be stamped from flat sheets by a process that
does not stretch the material, how wide should the original material
be? To find out, use numerical integration to approximate the
length of the sine curve to two decimal places.

52. Your engineering firm is bidding for the contract to construct the
tunnel shown here. The tunnel is 300 ft long and 50 ft wide at the
base. The cross-section is shaped like one arch of the curve

Upon completion, the tunnel’s inside
surface (excluding the roadway) will be treated with a waterproof
sealer that costs $1.75 per square foot to apply. How much will it
cost to apply the sealer? (Hint: Use numerical integration to find
the length of the cosine curve.)

x (ft)

y

0
–25

25

y � 25 cos (�x/50)

300 ft

NOT TO SCALE

y = 25 cos spx>50d .

Corrugated sheet

20
y � sin      x

20 in.

x (in.)

y

3�
20

Original sheet

0

y = sin 
3p
20

 x, 0 … x … 20 in .

n = 8.

L = L
p

0
 21 + cos2 x dx .

y = sin x

ƒstd = 21 - e2 cos2 t

e = 1>2.a = 1
n = 10

e = 0

Length = 4aL
p>2

0
 21 - e2 cos2 t dt ,

T

T

T

T

T
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Surface Area
Find, to two decimal places, the areas of the surfaces generated by
revolving the curves in Exercises 53–56 about the x-axis.

53.

54.

55. (the curve in Section
4.4, Exercise 5)

56. (the surface of the plumb bob in

Section 6.1, Exercise 56)

y =

x
12
236 - x2, 0 … x … 6

y = x + sin 2x, -2p>3 … x … 2p>3 
y = x2>4, 0 … x … 2

y = sin x, 0 … x … p

619

Estimating Function Values
57. Use numerical integration to estimate the value of

For reference, to five decimal places.

58. Use numerical integration to estimate the value of

p = 4L
1

0
 

1
1 + x2 dx .

sin-1 0.6 = 0.64350

sin-1 0.6 = L
0.6

0
 

dx21 - x2
.

4100 AWL/Thomas_ch08p553-641  8/20/04  10:08 AM  Page 619

8.7 Numerical Integration



8.8 Improper Integrals 619

Improper Integrals

Up to now, definite integrals have been required to have two properties. First, that the do-
main of integration [a, b] be finite. Second, that the range of the integrand be finite on this
domain. In practice, we may encounter problems that fail to meet one or both of these con-
ditions. The integral for the area under the curve from to is
an example for which the domain is infinite (Figure 8.17a). The integral for the area under
the curve of between and is an example for which the range of
the integrand is infinite (Figure 8.17b). In either case, the integrals are said to be improper
and are calculated as limits. We will see that improper integrals play an important role
when investigating the convergence of certain infinite series in Chapter 11.

x = 1x = 0y = 1>1x

x = qx = 1y = sln xd>x2

8.8

(b)

x

y

0

0.1

1 2 3 4 5 6

0.2

(a)

x

y

0

1

1

y � ln x
x2 �x

1y �

FIGURE 8.17 Are the areas under these infinite curves finite?

Infinite Limits of Integration

Consider the infinite region that lies under the curve in the first quadrant
(Figure 8.18a). You might think this region has infinite area, but we will see that the
natural value to assign is finite. Here is how to assign a value to the area. First find the area
A(b) of the portion of the region that is bounded on the right by (Figure 8.18b).

Then find the limit of A(b) as 

.lim
b: q

 Asbd = lim
b: q

 s -2e-b>2
+ 2d = 2

b : q

Asbd = L
b

0
 e-x>2 dx = -2e-x>2 d

0

b

= -2e-b>2
+ 2

x = b

y = e-x>2

x

x

y

(a)

y

(b)

b

Area � 2

Area � �2e–b/2 � 2

FIGURE 8.18 (a) The area in the first
quadrant under the curve is
(b) an improper integral of the first type.

y = e-x>2
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The value we assign to the area under the curve from 0 to is

L
q

0
 e-x>2 dx = lim

b: qL
b

0
 e-x>2 dx = 2.

q
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DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type I.

1. If ƒ(x) is continuous on then

2. If ƒ(x) is continuous on then

3. If ƒ(x) is continuous on then

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.

L
q

-q

 ƒsxd dx = L
c

-q

 ƒsxd dx + L
q

c
 ƒsxd dx ,

s - q , q d ,

L
b

-q

 ƒsxd dx = lim
a: - qL

b

a
 ƒsxd dx .

s - q , b] ,

L
q

a
 ƒsxd dx = lim

b: qL
b

a
 ƒsxd dx .

[a, q d ,

It can be shown that the choice of c in Part 3 of the definition is unimportant. We can
evaluate or determine the convergence or divergence of with any convenient
choice.

Any of the integrals in the above definition can be interpreted as an area if on
the interval of integration. For instance, we interpreted the improper integral in Figure 8.18
as an area. In that case, the area has the finite value 2. If and the improper integral
diverges, we say the area under the curve is infinite.

EXAMPLE 1 Evaluating an Improper Integral on 

Is the area under the curve from to finite? If so, what is it?

Solution We find the area under the curve from to and examine the limit
as If the limit is finite, we take it to be the area under the curve (Figure 8.19). The
area from 1 to b is

 = -

ln b
b

-
1
b

+ 1.

 = -

ln b
b

- c1x d
1

b

 L
b

1
 
ln x
x2  dx = csln xd a- 1

x b d
1

b

- L
b

1
 a- 1

x b a1x b  dx

b : q .
x = bx = 1

x = qx = 1y = sln xd>x2

[1, q d

ƒ Ú 0

ƒ Ú 0

1q

-q
 ƒsxd dx

Integration by parts with

du = dx>x, y = -1>x.
u = ln x, dy = dx>x2,

x

y

0

0.1

1 b

0.2 y � ln x
x2

FIGURE 8.19 The area under this curve
is an improper integral (Example 1).
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The limit of the area as is

Thus, the improper integral converges and the area has finite value 1.

EXAMPLE 2 Evaluating an Integral on 

Evaluate

Solution According to the definition (Part 3), we can write

Next we evaluate each improper integral on the right side of the equation above.

Thus,

Since the improper integral can be interpreted as the (finite) area
beneath the curve and above the x-axis (Figure 8.20).

1>s1 + x2d 7 0,

L
q

-q

 
dx

1 + x2 =
p
2

+
p
2

= p .

 = lim
b: q

stan-1 b - tan-1 0d =
p
2

- 0 =
p
2

 = lim
b: q

 tan-1 x d
0

b

 L
q

0
 

dx
1 + x2 = lim

b: qL
b

0
 

dx
1 + x2

 = lim
a: - q

 stan-1 0 - tan-1 ad = 0 - a- p
2
b =

p
2

 = lim
a: - q

 tan-1 x d
a

0

 L
0

-q

 
dx

1 + x2 = lim
a: - qL

0

a
 

dx
1 + x2

L
q

-q

 
dx

1 + x2 = L
0

-q

 
dx

1 + x2 + L
q

0
 

dx
1 + x2 .

L
q

-q

 
dx

1 + x2 .

s - q , q d

 = - c lim
b: q

 
1>b
1
d + 1 = 0 + 1 = 1.

 = - c lim
b: q

 
ln b
b
d - 0 + 1

 = lim
b: q

 c- ln b
b

-
1
b

+ 1 d

 L
q

1
 
ln x
x2  dx = lim

b: q

 L
b

1
 
ln x
x2  dx

b : q

l’Hôpital’s Rule

HISTORICAL BIOGRAPHY

Lejeune Dirichlet
(1805–1859)

x

y

0

y � 1
1 � x2 Area � �

NOT TO SCALE

FIGURE 8.20 The area under this curve
is finite (Example 2).

4100 AWL/Thomas_ch08p553-641  8/20/04  10:08 AM  Page 621

bounce08.html?3_9_a


The Integral 

The function is the boundary between the convergent and divergent improper
integrals with integrands of the form As the next example shows, the improper
integral converges if and diverges if 

EXAMPLE 3 Determining Convergence

For what values of p does the integral converge? When the integral does con-
verge, what is its value?

Solution If 

Thus,

because

Therefore, the integral converges to the value if and it diverges if

If the integral also diverges:

Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an
infinite discontinuity—at a limit of integration or at some point between the limits of
integration. If the integrand ƒ is positive over the interval of integration, we can again
interpret the improper integral as the area under the graph of ƒ and above the x-axis
between the limits of integration.

 = lim
b: q

sln b - ln 1d = q .

 = lim
b: q

 ln x D1b
 = lim

b: qL
b

1
 
dx
x

 L
q

1
 
dx
xp = L

q

1
 
dx
x

p = 1,
p 6 1.

p 7 11>sp - 1d

lim
b: q

  
1

bp - 1 = e0,   p 7 1
q , p 6 1.

 = lim
b: q

 c 1
1 - p

 a 1
bp - 1 - 1b d = •

1
p - 1

, p 7 1

q , p 6 1

 L
q

1
 
dx
xp = lim

b: qL
b

1
 
dx
xp

L
b

1
 
dx
xp =

x-p + 1

-p + 1
d

1

b

=
1

1 - p
 sb -p + 1

- 1d =
1

1 - p
 a 1

bp - 1 - 1b .

p Z 1,

1q

1  dx>x p

p … 1.p 7 1
y = 1>x p .

y = 1>x
L

q

1
 
dx
xp
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Consider the region in the first quadrant that lies under the curve from
to (Figure 8.17b). First we find the area of the portion from a to 1

(Figure 8.21).

Then we find the limit of this area as 

The area under the curve from 0 to 1 is finite and equals

L
1

0
 

dx1x
= lim

a:0+

 L
1

a
 

dx1x
= 2.

lim
a:0+

 L
1

a
 

dx1x
= lim

a:0+

 A2 - 21a B = 2.

a : 0+:

L
1

a
 

dx1x
= 21x d

a

1

= 2 - 21a

x = 1x = 0
y = 1>1x

8.8 Improper Integrals 623

DEFINITION Type II Improper Integrals
Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type II.

1. If ƒ(x) is continuous on (a, b] and is discontinuous at a then

2. If ƒ(x) is continuous on [a, b) and is discontinuous at b, then

3. If ƒ(x) is discontinuous at c, where and continuous on
then

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.

L
b

a
 ƒsxd dx = L

c

a
 ƒsxd dx + L

b

c
 ƒsxd dx .

[a, cd ´ sc, b] ,
a 6 c 6 b ,

L
b

a
 ƒsxd dx = lim

c:b-L
c

a
 ƒsxd dx .

L
b

a
 ƒsxd dx = lim

c:a+L
b

c
 ƒsxd dx .

In Part 3 of the definition, the integral on the left side of the equation converges if both in-
tegrals on the right side converge; otherwise it diverges.

EXAMPLE 4 A Divergent Improper Integral

Investigate the convergence of

L
1

0
 

1
1 - x

 dx .

x

y

0

1

1a

�x
1y �

Area � 2 � 2�a

FIGURE 8.21 The area under this curve
is

an improper integral of the second kind.

lim
a:0+

 L
1

a
a 12x

b  dx = 2,
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Solution The integrand is continuous on [0, 1) but is discontinuous
at and becomes infinite as (Figure 8.22). We evaluate the integral as

The limit is infinite, so the integral diverges.

EXAMPLE 5 Vertical Asympote at an Interior Point

Evaluate

Solution The integrand has a vertical asymptote at and is continuous on [0, 1)
and (1, 3] (Figure 8.23). Thus, by Part 3 of the definition above,

Next, we evaluate each improper integral on the right-hand side of this equation.

We conclude that

EXAMPLE 6 A Convergent Improper Integral

Evaluate

L
q

2
 

x + 3
sx - 1dsx2

+ 1d
 dx .

L
3

0
 

dx

sx - 1d2>3 = 3 + 323 2 .

 = lim
c:1+

 C3s3 - 1d1>3
- 3sc - 1d1>3 D = 323 2

 = lim
c:1+

 3sx - 1d1>3 D c3
 L

3

1
 

dx

sx - 1d2>3 = lim
c:1+L

3

c
 

dx

sx - 1d2>3

 = lim
b:1-

 [3sb - 1d1>3
+ 3] = 3

 = lim
b:1-

 3sx - 1d1>3 D0b
 L

1

0
 

dx

sx - 1d2>3 = lim
b:1-L

b

0
 

dx

sx - 1d2>3

L
3

0
 

dx

sx - 1d2>3 = L
1

0
 

dx

sx - 1d2>3 + L
3

1
 

dx

sx - 1d2>3 .

x = 1

L
3

0
 

dx

sx - 1d2>3 .

 = lim
b:1-

 [- ln s1 - bd + 0] = q .

 lim
b:1-

 L
b

0
 

1
1 - x

 dx = lim
b:1-

 C - ln ƒ 1 - x ƒ D0b
x : 1-x = 1

ƒsxd = 1>s1 - xd
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x

y

0

1

1b

y � 1
1 � x

FIGURE 8.22 The limit does not exist:

The area beneath the curve and above the
x-axis for [0, 1) is not a real number
(Example 4).

L
1

0
a 1

1 - x
b  dx = lim

b:1-

 L
b

0
 

1
1 - x

 dx = q .

x

y

0 3b

1

 

1
c

y � 1
(x � 1)2/3

FIGURE 8.23 Example 5 shows the
convergence of

so the area under the curve exists (so it is a
real number).

L
3

0
 

1

sx - 1d2>3 dx = 3 + 3 23 2,
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Solution

Notice that we combined the logarithms in the antiderivative before we calculated the
limit as Had we not done so, we would have encountered the indeterminate form

The way to evaluate the indeterminate form, of course, is to combine the logarithms, so we
would have arrived at the same answer in the end.

Computer algebra systems can evaluate many convergent improper integrals. To eval-
uate the integral in Example 6 using Maple, enter

Then use the integration command

Maple returns the answer

To obtain a numerical result, use the evaluation command evalf and specify the number of
digits, as follows:

The symbol % instructs the computer to evaluate the last expression on the screen, in this
case Maple returns 1.14579.

Using Mathematica, entering

returns

To obtain a numerical result with six digits, use the command “N[%, 6]”; it also yields
1.14579.

Out [1]=
-Pi
2

+ ArcTan [2] + Log [5] .

In [1]:= Integrate [sx + 3d>ssx - 1dsx¿2 + 1dd, 5x, 2, Infinity6]
s -1>2dp + ln s5d + arctan s2d .

7 evalfs%, 6d ;

-
1
2

 p + ln s5d + arctan s2d .

7 intsƒ, x = 2..infinityd ;

7 ƒ:= sx + 3d>ssx - 1d * sx¿2 + 1dd ;

lim
b: q

 s2 ln sb - 1d - ln sb2
+ 1dd = q - q .

b : q .

 = 0 -

p
2

+ ln 5 + tan-1 2 L 1.1458

 = lim
b: q

 cln asb - 1d2

b2
+ 1

b - tan-1 b d - ln a15 b + tan-1 2

 = lim
b: q

cln 
sx - 1d2

x2
+ 1

- tan-1 x d
2

b

 = lim
b: q

 C2 ln sx - 1d - ln sx2
+ 1d - tan-1 x D2b

 = lim
b: qL

b

2
 a 2

x - 1
-

2x + 1
x2

+ 1
b  dx

 L
q

2
 

x + 3
sx - 1dsx2

+ 1d
 dx = lim

b: qL
b

2
 

x + 3
sx - 1dsx2

+ 1d
 dx

8.8 Improper Integrals 625

Partial fractions

Combine the logarithms.
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EXAMPLE 7 Finding the Volume of an Infinite Solid

The cross-sections of the solid horn in Figure 8.24 perpendicular to the x-axis are circular
disks with diameters reaching from the x-axis to the curve 
Find the volume of the horn.

Solution The area of a typical cross-section is

We define the volume of the horn to be the limit as of the volume of the portion
from b to ln 2. As in Section 6.1 (the method of slicing), the volume of this portion is

As and The volume of the horn is  

EXAMPLE 8 An Incorrect Calculation

Evaluate

Solution Suppose we fail to notice the discontinuity of the integrand at inte-
rior to the interval of integration. If we evaluate the integral as an ordinary integral we
get

This result is wrong because the integral is improper. The correct evaluation uses limits:

where

Since is divergent, the original integral is divergent.

Example 8 illustrates what can go wrong if you mistake an improper integral for an
ordinary integral. Whenever you encounter an integral you must examine the
function ƒ on [a, b] and then decide if the integral is improper. If ƒ is continuous on [a, b],
it will be proper, an ordinary integral.

1b
a  ƒsxd dx

13
0  dx>sx - 1d11

0  dx>sx - 1d

1 - b : 0+ as b : 1- = lim
b:1-

 ln s1 - bd = - q .

 = lim
b:1-

 sln ƒ b - 1 ƒ - ln ƒ -1 ƒ d

 L
1

0
 

dx
x - 1

= lim
b:1-

 L
b

0
 

dx
x - 1

= lim
b:1-

 ln ƒ x - 1 ƒ D0b
L

3

0
 

dx
x - 1

= L
1

0
 

dx
x - 1

+ L
3

1
 

dx
x - 1

L
3

0
 

dx
x - 1

= ln ƒ x - 1 ƒ d
0

3

= ln 2 - ln 1 = ln 2 .

x = 1,

L
3

0
 

dx
x - 1

.

p>2.V : sp>8ds4 - 0d = p>2.b : - q , e2b : 0

 =

p
8

 se ln 4
- e2bd =

p
8

 s4 - e2bd .

 V = L
 ln 2

b
 Asxd dx = L

 ln 2

b
 
p
4

 e2x dx =
p
8

 e2x d
b

ln 2

b : - q

Asxd = psradiusd2
= p a1

2
 yb2

=
p
4

 e2x .

y = ex, - q 6 x …  ln 2 .
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x

y

y � ex

2

0
ln 2

b

1

FIGURE 8.24 The calculation in
Example 7 shows that this infinite horn
has a finite volume.
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Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it
converges or diverges. If the integral diverges, that’s the end of the story. If it converges,
we can use numerical methods to approximate its value. The principal tests for conver-
gence or divergence are the Direct Comparison Test and the Limit Comparison Test.

EXAMPLE 9 Investigating Convergence

Does the integral converge?

Solution By definition,

We cannot evaluate the latter integral directly because it is nonelementary. But we can
show that its limit as is finite. We know that is an increasing function of
b. Therefore either it becomes infinite as or it has a finite limit as It does
not become infinite: For every value of we have (Figure 8.25), so that

Hence

converges to some definite finite value. We do not know exactly what the value is except
that it is something positive and less than 0.37. Here we are relying on the completeness
property of the real numbers, discussed in Appendix 4.

The comparison of and in Example 9 is a special case of the following test.e-xe-x2

L
q

1
 e-x2

 dx = lim
b: qL

b

1
 e-x2

 dx

L
b

1
 e-x2

 dx … L
b

1
 e-x dx = -e-b

+ e-1
6 e-1

L 0.36788.

e-x2

… e-xx Ú 1
b : q .b : q

1b
1  e-x2

 dxb : q

L
q

1
 e-x2

 dx = lim
b: qL

b

1
 e-x2

 dx .

1q

1  e-x2

 dx
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x

y

0 b1

1

y � e –x

y � e –x2

(1, e–1)

FIGURE 8.25 The graph of lies
below the graph of for 
(Example 9).

x 7 1e-x
e-x2

THEOREM 1 Direct Comparison Test
Let ƒ and g be continuous on with for all Then

1.

2. L
q

a
 gsxd dx diverges if L

q

a
 ƒsxd dx diverges.

L
q

a
 ƒsxd dx converges if L

q

a
 gsxd dx converges

x Ú a .0 … ƒsxd … gsxd[a, q d

The reasoning behind the argument establishing Theorem 1 is similar to that in
Example 9.

If for then

L
b

a
 ƒsxd dx … L

b

a
 gsxd dx, b 7 a .

x Ú a ,0 … ƒsxd … gsxd

HISTORICAL BIOGRAPHY

Karl Weierstrass
(1815–1897)
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From this it can be argued, as in Example 9, that

Turning this around says that

EXAMPLE 10 Using the Direct Comparison Test

(a)

Example 3

(b)

Example 3
12x2
- 0.1

Ú
1
x on [1, q d and L

q

1
 
1
x  dx diverges .

L
q

1
 

12x2
- 0.1

 dx diverges because

0 …

sin2 x
x2 …

1
x2 on [1, q d and L

q

1
 
1
x2 dx converges.

L
q

1
 
sin2 x

x2  dx converges because

L
q

a
 gsxd dx diverges if L

q

a
 fsxd dx diverges .

L
q

a
 fsxd dx converges if L

q

a
 gsxd dx converges.

628 Chapter 8: Techniques of Integration

THEOREM 2 Limit Comparison Test
If the positive functions ƒ and g are continuous on and if

then

both converge or both diverge.

L
q

a
 ƒsxd dx and L

q

a
 gsxd dx

lim
x: q 

 
ƒsxd
gsxd

= L, 0 6 L 6 q ,

[a, q d

A proof of Theorem 2 is given in advanced calculus.
Although the improper integrals of two functions from a to may both converge,

this does not mean that their integrals necessarily have the same value, as the next example
shows.

q
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EXAMPLE 11 Using the Limit Comparison Test

Show that

converges by comparison with Find and compare the two integral values.

Solution The functions and are positive and continu-
ous on Also,

a positive finite limit (Figure 8.26). Therefore, converges because 

converges.
The integrals converge to different values, however.

Example 3

and

EXAMPLE 12 Using the Limit Comparison Test

Show that

converges.

Solution From Example 9, it is easy to see that converges.
Moreover, we have

a positive finite limit. As far as the convergence of the improper integral is concerned,
behaves like 1>ex .3>sex

+ 5d

lim
x: q 

 
1>ex

3>sex
+ 5d

= lim
x: q

 
ex

+ 5
3ex = lim

x: q

 a1
3

+

5
3ex b =

1
3

,

1q

1  e-x dx = 1q

1  s1>exd dx

L
q

1
 

3
ex

+ 5
 dx

 = lim
b: q

 [tan-1 b - tan-1 1] =

p
2

-

p
4

=

p
4

 L
q

1
 

dx
1 + x2 = lim

b: qL
b

1
 

dx
1 + x2

L
q

1
 
dx
x2 =

1
2 - 1

= 1

L
q

1
 
dx
x2L

q

1
 

dx
1 + x2

 = lim
x: q

 a 1
x2 + 1b = 0 + 1 = 1, 

 lim
x: q 

 
ƒsxd
gsxd

= lim
x: q

 
1>x2

1>s1 + x2d
= lim

x: q

 
1 + x2

x2

[1, q d .
gsxd = 1>s1 + x2dƒsxd = 1>x2

1q

1  s1>x2d dx .

L
q

1
 

dx
1 + x2
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x

y

0

1

321

y � 1
1 � x2

y � 1
x2

FIGURE 8.26 The functions in
Example 11.
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Types of Improper Integrals Discussed in This Section

INFINITE LIMITS OF INTEGRATION: TYPE I

1. Upper limit

2. Lower limit

3. Both limits

x

y

1
y � 1

1 � x2

0

L
q

-q

 
dx

1 + x2 = lim
b: - qL

0

b
 

dx
1 + x2 + lim

c: qL
c

0
 

dx
1 + x2

x

y

1
y � 1

1 � x2

0

L
0

-q

 
dx

1 + x2 = lim
a: - qL

0

a
 

dx
1 + x2

x

y

0 1

y � ln x
x2

L
q

1
 
ln x
x2  dx = lim

b: qL
b

1
 
ln x
x2  dx

INTEGRAND BECOMES INFINITE: TYPE II

4. Upper endpoint

5. Lower endpoint

6. Interior point

x

y

0 3

1

1

y � 1
(x � 1)2/3

L
3

0
 

dx

sx - 1d2>3 = L
1

0
 

dx

sx - 1d2>3 + L
3

1
 

dx

sx - 1d2>3

x

y

0 3

1

1

y � 1
(x � 1)2/3

L
3

1
 

dx

sx - 1d2>3 = lim
d:1+L

3

d
 

dx

sx - 1d2>3

x

y

0 3

1

1

y � 1
(x � 1)2/3

L
1

0
 

dx

sx - 1d2>3 = lim
b:1-L

b

0
 

dx

sx - 1d2>3
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8.8 Improper Integrals 631

EXERCISES 8.8

Evaluating Improper Integrals
Evaluate the integrals in Exercises 1–34 without using tables.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

Testing for Convergence
In Exercises 35–64, use integration, the Direct Comparison Test, or
the Limit Comparison Test to test the integrals for convergence. If
more than one method applies, use whatever method you prefer.

35. 36. L
p>2

0
 cot u duL

p>2
0

 tan u du

L
q

0
 

dx

sx + 1dsx2
+ 1dL

q

-1
 

du

u2
+ 5u + 6

L
2

0
 

dx2 ƒ x - 1 ƒL
4

-1
 

dx2 ƒ x ƒ

L
4

2
 

dt

t2t2
- 4L

2

1
 

ds

s2s2
- 1

L
1

0
 

4r dr21 - r4L
2

0
 

ds24 - s2

L
1

0
 s - ln xd dxL

1

0
 x ln x dx

L
q

-q

 2xe-x2

 dxL
0

-q

 e-ƒx ƒ dx

L
q

0
 2e-u sin u duL

0

-q

 ueu du

L
q

0
 
16 tan-1 x

1 + x2  dxL
q

0
 

dy

s1 + y2ds1 + tan-1 yd

L
q

1
 

1

x2x2
- 1

 dxL
q

0
 

dx
s1 + xd1x

L
2

0
 

s + 124 - s2
 dsL

1

0
 
u + 12u2

+ 2u
 du

L
q

-q

 
x dx

sx2
+ 4d3>2L

q

-q

 
2x dx

sx2
+ 1d2

L
q

2
 

2 dt

t2
- 1L

q

2
 

2
y2

- y
 dy

L
2

-q

  
2 dx

x2
+ 4L

-2

-q

 
2 dx

x2
- 1

L
1

0
 

dr

r0.999L
1

0
 

dx21 - x2

L
1

-8
  

dx

x1>3L
1

-1
  

dx

x2>3

L
4

0
 

dx24 - xL
1

0
 

dx1x

L
q

1
 

dx

x1.001L
q

0
 

dx

x2
+ 1

37. 38.

39. 40.

41.

42. (Hint: for )

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

Theory and Examples
65. Find the values of p for which each integral converges.

a. b.

66. may not equal Show that

diverges and hence that

L
q

-q

  
2x dx

x2
+ 1

L
q

0
 

2x dx

x2
+ 1

lim
b: q

 1b
-b ƒsxd dx1q

-q
 ƒsxd dx

L
q

2
 

dx
xsln xdpL

2

1
 

dx
xsln xdp

L
q

-q

  
dx

ex
+ e-xL

q

-q

 
dx2x4

+ 1

L
q

1
 

1
ex

- 2x dxL
q

1
 

12ex
- x

 dx

L
q

ee
 ln sln xd dxL

q

1
 
ex

x  dx

L
q

2
 

1
ln x

 dxL
q

4
 

2 dt

t3>2
- 1

L
q

p
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