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Inverse Trigonometric Functions

Inverse trigonometric functions arise when we want to calculate angles from side measure-
ments in triangles. They also provide useful antiderivatives and appear frequently in the
solutions of differential equations. This section shows how these functions are defined,
graphed, and evaluated, how their derivatives are computed, and why they appear as im-
portant antiderivatives.

Defining the Inverses

The six basic trigonometric functions are not one-to-one (their values repeat periodically).
However we can restrict their domains to intervals on which they are one-to-one. The sine
function increases from at to at By restricting its domain to
the interval we make it one-to-one, so that it has an inverse 
(Figure 7.16). Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

Function Domain Range

sin x

cos x

0 � �
2

cos x

x

y[-1, 1][0, p]

x

y

0 �
2

�
2

–

sin x[-1, 1][-p>2, p>2]

sin-1 x[-p>2, p>2]
x = p>2.+1x = -p>2-1

7.7 

Domain:
Range:

x

y

1–1

x � sin y

�
2

�
2

–

y � sin–1x
–1 � x � 1

–�/2 � y � �/2

FIGURE 7.16 The graph of .y = sin-1 x
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518 Chapter 7: Transcendental Functions

tan x

cot x

sec x

csc x

Since these restricted functions are now one-to-one, they have inverses, which we de-
note by

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

 y = csc-1 x or y = arccsc x

 y = sec-1 x or y = arcsec x

 y = cot-1 x or y = arccot x

 y = tan-1 x or y = arctan x

 y = cos-1 x or y = arccos x

 y = sin-1 x or y = arcsin x

0

1

�
2

– �
2

csc x

x

ys - q , -1] ´ [1, q d[-p>2, 0d ´ s0, p>2]

0

1

��
2

sec x

x

ys - q , -1] ´ [1, q d[0, p>2d ´ sp>2, p]

0 � �
2

cot x

x

ys - q , q ds0, pd

tan x

x

y

0 �
2

�
2

–

s - q , q ds -p>2, p>2d
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7.7 Inverse Trigonometric Functions 519

CAUTION The in the expressions for the inverse means “inverse.” It does not mean
reciprocal. For example, the reciprocal of sin x is 

The graphs of the six inverse trigonometric functions are shown in Figure 7.17. We
can obtain these graphs by reflecting the graphs of the restricted trigonometric functions
through the line as in Section 7.1. We now take a closer look at these functions and
their derivatives.

y = x ,

ssin xd-1
= 1>sin x = csc x .

-1

x

y

x

y

x

y

x

y

x

y

x

y

�
2

�

�

2

�
2

–

1–1

1–1

(a)

(c) (d)

Domain:
Range:

–1 � x � 1
0 � y � �

(b)

Domain:
Range:

–1 � x � 1
� y ��

2
– �

2

Domain:
Range:

x � –1 or x � 1
0 � y � �, y �

Domain:
Range:

–∞ � x � ∞
� y ��

2
– �

2

Domain:
Range: 0 � y � �

Domain:
Range:

x � –1 or x � 1
� y � , y � 0�

2
– �

2

y � sin–1x y � cos–1x

(e) (f)

1–1–2 2

1–1–2 2

�
2

�
2

–

y � tan–1x y � sec–1x

�

�
2

�

�
21–1–2 2

1–1–2 2

�
2

�
2

–

y � csc–1x
y � cot–1x

–∞ � x � ∞

�
2

FIGURE 7.17 Graphs of the six basic inverse trigonometric
functions.

The Arcsine and Arccosine Functions

The arcsine of x is the angle in whose sine is x. The arccosine is an angle in
whose cosine is x.[0, p]

[-p>2, p>2]
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Arc whose sine is x

Arc whose
cosine is x

x2 � y2 � 1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1

DEFINITION Arcsine and Arccosine Functions

 y � cos�1 x is the number in [0, p]  for which cos y = x .

 y � sin�1 x is the number in [-p>2, p>2]  for which  sin y = x .

x

y

1

–1
0

(a)

�
2

�
2

–

y � sin x, �
2

�
2

– � x �

Domain:
Range:

[–�/2, �/2]
[–1, 1] 

FIGURE 7.18 The graphs of (a) and (b) its inverse,
The graph of obtained by reflection across the line is a

portion of the curve x = sin y .
y = x ,sin-1 x ,y = sin-1 x .

y = sin x, -p>2 … x … p>2,

x

y

0 1–1

(b)

�
2

�
2

–

x � sin y

y � sin–1x
Domain:
Range:

[–1, 1] 
[–�/2, �/2]

x

y

0 � �
2

y � cos x, 0 � x � �

Domain:
Range:

[0, �]
[–1, 1] 1

–1

(a)

FIGURE 7.19 The graphs of (a) and (b) its
inverse, The graph of obtained by reflection across
the line is a portion of the curve x = cos y .y = x ,

cos-1 x ,y = cos-1 x .
y = cos x, 0 … x … p ,

x

y

y � cos–1x
Domain:
Range:

[–1, 1] 
[0, �]

(b)

�

�

2

0–1 1

x � cos y

Known values of sin x and cos x can be inverted to find values of and cos-1 x .sin-1 x

520 Chapter 7: Transcendental Functions

The graph of (Figure 7.18) is symmetric about the origin (it lies along the
graph of ). The arcsine is therefore an odd function:

(1)

The graph of (Figure 7.19) has no such symmetry.y = cos-1 x

sin-1s -xd = -sin-1 x .

x = sin y
y = sin-1 x

The “Arc” in Arc Sine and
Arc Cosine
The accompanying figure gives a
geometric interpretation of 
and for radian angles in the
first quadrant. For a unit circle, the
equation becomes so
central angles and the arcs they subtend
have the same measure. If 
then, in addition to being the angle
whose sine is x, y is also the length of arc
on the unit circle that subtends an angle
whose sine is x. So we call y “the arc
whose sine is x.”

x = sin y ,

s = u ,s = ru

y = cos-1 x
y = sin-1 x
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7.7 Inverse Trigonometric Functions 521

x

1 2

-p>3-23>2
-p>4-22>2
-p>6-1>2
p>6>
p>422>2
p>323>2

sin-1 x

x

1 2

5p>6-23>2
3p>4-22>2
2p>3-1>2
p>3>
p>422>2
p>623>2

cos-1 x

x

y

x

y

�
3

0 1 0

2 �3

�2

�
3

sin �
�3
2

�
4

–
–1

1

–

�
4

–sin � – 1
�2













�
3

sin–1 �
�3
2

�
4

sin–1 1
�2

–

2

�2� sin–1 � –

The angles come from the first and fourth quadrants because the range of is

EXAMPLE 2 Common Values of cos-1 x

[-p>2, p>2].
sin-1 x

0 1 0–1
x

y

x

y

�
4

2�2
�3

�
4

cos �
�2
1

1

�2
�
4

cos–1 � cos–11 �2
2 �

2
�

3
2

�
3
2–





cos–1 1
2

�

�
3
2cos � –1

2






The angles come from the first and second quadrants because the range of is

Identities Involving Arcsine and Arccosine

As we can see from Figure 7.20, the arccosine of x satisfies the identity

(2)

or

(3)

Also, we can see from the triangle in Figure 7.21 that for 

(4)

Equation (4) holds for the other values of x in as well, but we cannot conclude this
from the triangle in Figure 7.21. It is, however, a consequence of Equations (1) and (3)
(Exercise 131).

Inverses of tan x, cot x, sec x, and csc x

The arctangent of x is an angle whose tangent is x. The arccotangent of x is an angle whose
cotangent is x.

[-1, 1]

sin-1 x + cos-1 x = p>2.

x 7 0,

cos-1 s -xd = p - cos-1 x .

cos-1 x + cos-1s -xd = p ,

[0, p] .
cos-1 x

x

y

0–x x–1 1

cos–1x

cos–1(–x)

FIGURE 7.20 and are
supplementary angles (so their sum is ).p

cos-1s -xdcos-1 x

1
x

cos–1x

sin–1x

FIGURE 7.21 and are
complementary angles (so their sum is ).p>2

cos-1 xsin-1 x

EXAMPLE 1 Common Values of sin-1 x
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We use open intervals to avoid values where the tangent and cotangent are undefined.
The graph of is symmetric about the origin because it is a branch of the

graph that is symmetric about the origin (Figure 7.22). Algebraically this means
that

the arctangent is an odd function. The graph of has no such symmetry
(Figure 7.23).

The inverses of the restricted forms of sec x and csc x are chosen to be the functions
graphed in Figures 7.24 and 7.25.

CAUTION There is no general agreement about how to define for negative values
of x. We chose angles in the second quadrant between and This choice makes

It also makes an increasing function on each interval of its
domain. Some tables choose to lie in for and some texts
choose it to lie in (Figure 7.26). These choices simplify the formula for the de-
rivative (our formula needs absolute value signs) but fail to satisfy the computational
equation From this, we can derive the identity

(5)

by applying Equation (4).

sec-1 x = cos-1 a1x b =

p
2

 -  sin-1 a1x b
sec-1 x = cos-1 s1>xd .

[p, 3p>2d
x 6 0[-p, -p>2dsec-1 x

sec-1 xsec-1 x = cos-1 s1>xd .
p .p>2 sec-1 x

y = cot-1 x

tan-1 s -xd = - tan-1 x ;

x = tan y
y = tan-1 x

522 Chapter 7: Transcendental Functions

DEFINITION Arctangent and Arccotangent Functions

 y � cot�1 x is the number in s0, pd for which cot y = x .

 y � tan�1 x is the number in s -p>2, p>2d for which  tan y = x .

y � tan–1x
Domain:
Range:

(–∞, ∞) 
(–�/2, �/2)

x

y

�
2

�
2

–

0

FIGURE 7.22 The graph of y = tan-1 x .

0

y � cot–1x
Domain:
Range:

(–∞, ∞)
(0, �)

�

�

2

x

y

FIGURE 7.23 The graph of y = cot-1 x .

x

y

�x� � 1Domain:
Range: [–�/2, 0) � (0, �/2] 

y � csc–1x

0–1 1

�
2

�
2

–

FIGURE 7.25 The graph of
y = csc-1 x .

3�
2

y � sec–1x

–1 10

�
2

3�
2

�
2

–

–

x

y

�

–�

Domain: �x� � 1
Range: 0 � y � �, y � �

2

B

A

C

FIGURE 7.26 There are several logical
choices for the left-hand branch of

With choice A,
a useful identity

employed by many calculators.
sec-1 x = cos-1 s1>xd ,
y = sec-1 x .

x

y

0 1–1

�

�x� � 1Domain:
Range: [0, �/2) � (�/2, �] 

y � sec–1x

�
2

FIGURE 7.24 The graph of y = sec-1 x .
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x

1

-p>3-23

-p>4-1

-p>6-23>3
p>623>3
p>4
p>323

tan-1 x

x

y

0
x

y

0
1

2

3
�3tan–1 1

�3
�
6

tan–1   –�3   �
3

2
1

�3
–�3

�
6

tan     ��
6

1
�3





tan           � –�3�

3
–

�
3

–

� tan–1 � � –





The angles come from the first and fourth quadrants because the range of is

EXAMPLE 4 Find and if

Solution This equation says that We picture as an angle in a right trian-
gle with opposite side 2 and hypotenuse 3 (Figure 7.27). The length of the remaining side is

Pythagorean theorem

We add this information to the figure and then read the values we want from the completed
triangle:

EXAMPLE 5 Find 

Solution We let (to give the angle a name) and picture in a right trian-
gle with

The length of the triangle’s hypotenuse is2x2
+ 32

= 2x2
+ 9.

tan u = opposite>adjacent = x>3.

uu = tan-1 sx>3d

sec A tan-1 
x
3 B .

cos a =

25
3

, tan a =
225

,  sec a =

325
, csc a =

3
2

, cot a =

25
2

.

2s3d2
- s2d2

= 29 - 4 = 25.

asin a = 2>3.

a = sin-1 
2
3

.

cot acos a, tan a, sec a, csc a ,

s -p>2, p>2d .
tan-1 x

�

3
2

�5

FIGURE 7.27 If then
the values of the other basic trigonometric
functions of can be read from this
triangle (Example 4).

a

a = sin-1 s2/3d ,

� �

3 3

x x
tan � � x

3
sec � � 

�x2 � 9
3�x2 � 9

Thus,

sec u =

hypotenuse

adjacent
 =

2x2
+ 9

3
.

 sec atan-1 
x
3
b = sec u

EXAMPLE 3 Common Values of tan-1 x
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EXAMPLE 6 Drift Correction

During an airplane flight from Chicago to St. Louis the navigator determines that the
plane is 12 mi off course, as shown in Figure 7.28. Find the angle a for a course parallel to
the original, correct course, the angle b, and the correction angle 

Solution

The Derivative of 

We know that the function is differentiable in the interval 
and that its derivative, the cosine, is positive there. Theorem 1 in Section 7.1 therefore as-
sures us that the inverse function is differentiable throughout the interval

We cannot expect it to be differentiable at or because the
tangents to the graph are vertical at these points (see Figure 7.29).

We find the derivative of by applying Theorem 1 with and

Theorem 1

Alternate Derivation: Instead of applying Theorem 1 directly, we can find the derivative
of using implicit differentiation as follows:

Derivative of both sides with respect to x

Chain Rule

cos y = 21 - sin2 y =
121 - x2

 
dy
dx

=
1

cos y

 cos y  
dy
dx

= 1

 
d
dx

 ssin yd = 1

y = sin-1 x 3 sin y = x sin y = x

y = sin-1 x

sin ssin-1 xd = x =
121 - x2

cos u = 21 - sin2 u =
121 - sin2 ssin-1 xd

ƒ¿sud = cos u =
1

cos ssin-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

ƒ -1sxd = sin-1 x .
ƒsxd = sin xy = sin-1 x

x = -1x = 1-1 6 x 6 1.
y = sin-1 x

-p>2 6 y 6 p>2x = sin y

y = sin-1 u

 c = a + b L 15°.

 b = sin-1 
12
62

L 0.195 radian L 11.2°

 a = sin-1 
12
180

L 0.067 radian L 3.8°

c = a + b .

524 Chapter 7: Transcendental Functions

Chicago

Springfield

Plane
St. Louis

62
61 12

180

179

a

b

c

FIGURE 7.28 Diagram for drift
correction (Example 6), with distances
rounded to the nearest mile (drawing not to
scale).

We can divide because
for -p>2 6 y 6 p>2.

cos y 7 0

y

1–1
x

y � sin–1x
Domain:
Range:

– �
2

�
2 –1 � x � 1

–�/2 � y � �/2

FIGURE 7.29 The graph of y = sin-1 x .
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7.7 Inverse Trigonometric Functions 525

No matter which derivation we use, we have that the derivative of with re-
spect to x is

If u is a differentiable function of x with we apply the Chain Rule to getƒ u ƒ 6 1,

d
dx

 ssin-1 xd =
121 - x2

 .

y = sin-1 x

d
dx

 ssin-1 ud =
121 - u2

 
du
dx

 , ƒ u ƒ 6 1.

d
dx

  stan-1 ud =
1

1 + u2 
du
dx

.

EXAMPLE 7 Applying the Derivative Formula

The Derivative of 

We find the derivative of by applying Theorem 1 with and
Theorem 1 can be applied because the derivative of tan x is positive for

Theorem 1

The derivative is defined for all real numbers. If u is a differentiable function of x, we get
the Chain Rule form:

tan stan-1 xd = x =
1

1 + x2

sec2 u = 1 + tan2 u =
1

1 + tan2 stan-1 xd

ƒ¿sud = sec2 u =
1

sec2 stan-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1sxdd

-p>2 6 x 6 p>2.
ƒ -1sxd = tan-1 x .

ƒsxd = tan xy = tan-1 x

y = tan-1 u

d
dx

 ssin-1 x2d =
121 - sx2d2

 #  
d
dx

 sx2d =

2x21 - x4

EXAMPLE 8 A Moving Particle

A particle moves along the x-axis so that its position at any time is 
What is the velocity of the particle when 

Solution

ystd =

d
dt

 tan-11t =
1

1 + (1t)2 #  
d
dt

 1t =
1

1 + t
 #  

1
21t

t = 16?
xstd = tan-12t .t Ú 0

4100 AWL/Thomas_ch07p466-552  8/20/04  10:03 AM  Page 525

bounce07.html?4_5_l


When the velocity is

The Derivative of 

Since the derivative of sec x is positive for and Theorem 1
says that the inverse function is differentiable. Instead of applying the formula
in Theorem 1 directly, we find the derivative of using implicit dif-
ferentiation and the Chain Rule as follows:

Inverse function relationship

Differentiate both sides.

Chain Rule

To express the result in terms of x, we use the relationships

to get

Can we do anything about the sign? A glance at Figure 7.30 shows that the slope of the
graph is always positive. Thus,

With the absolute value symbol, we can write a single expression that eliminates the 
ambiguity:

If u is a differentiable function of x with we have the formulaƒ u ƒ 7 1,

d
dx

 sec-1 x =
1

ƒ x ƒ2x2
- 1

 .

“;”

d
dx

 sec-1 x = d +  
1

x2x2
- 1

if x 7 1

-  
1

x2x2
- 1

if x 6 -1.

y = sec-1 x
;

dy
dx

= ;  
1

x2x2
- 1

 .

sec y = x and tan y = ;2sec2 y - 1 = ;2x2
- 1

 
dy
dx

=
1

sec y tan y

 sec y tan y 
dy
dx

= 1

 
d
dx

 ssec yd =

d
dx

 x

 sec y = x

 y = sec-1 x

y = sec-1 x, ƒ x ƒ 7 1,
y = sec-1 x

p>2 6 x 6 p ,0 6 x 6 p/2

y = sec-1 u

ys16d =
1

1 + 16
 #  

1

2216
=

1
136

.

t = 16,

526 Chapter 7: Transcendental Functions

Since lies in
and

sec y tan y Z 0.
s0, p>2d ´ sp>2, pd

ƒ x ƒ 7 1, y

d
dx

 ssec-1 ud =
1

ƒ u ƒ2u2
- 1

 
du
dx

 , ƒ u ƒ 7 1.

x

y

0

�

1–1

y � sec–1x

�
2

FIGURE 7.30 The slope of the curve
is positive for both 

and x 7 1.
x 6 -1y = sec-1 x
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EXAMPLE 9 Using the Formula

Derivatives of the Other Three

We could use the same techniques to find the derivatives of the other three inverse trigono-
metric functions—arccosine, arccotangent, and arccosecant—but there is a much easier
way, thanks to the following identities.

 =
4

x225x8
- 1

5x4
7 0 =

1

5x4225x8
- 1

 s20x3d

 
d
dx

 sec-1 s5x4d =
1

ƒ5x4
ƒ2s5x4d2

- 1
 
d
dx

 s5x4d

Inverse Function–Inverse Cofunction Identities

 csc-1 x = p>2 - sec-1 x

 cot-1 x = p>2 - tan-1 x

 cos-1 x = p>2 - sin-1 x

We saw the first of these identities in Equation (4). The others are derived in a similar
way. It follows easily that the derivatives of the inverse cofunctions are the negatives of the
derivatives of the corresponding inverse functions. For example, the derivative of 
is calculated as follows:

Identity

Derivative of arcsine

EXAMPLE 10 A Tangent Line to the Arccotangent Curve

Find an equation for the line tangent to the graph of at 

Solution First we note that

The slope of the tangent line is

so the tangent line has equation y - 3p>4 = s -1>2dsx + 1d .

dy
dx

 `
x = -1

= -
1

1 + x2 `
x = -1

= -
1

1 + s -1d2 = -
1
2

,

cot-1 s -1d = p>2 - tan-1 s -1d = p>2 - s -p>4d = 3p>4.

x = -1.y = cot-1 x

 = -
121 - x2

 = -

d
dx

 (sin-1 x)

 
d
dx

 (cos-1 x) =

d
dx

 ap
2

- sin-1 xb

cos-1 x
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The derivatives of the inverse trigonometric functions are summarized in Table 7.3.

528 Chapter 7: Transcendental Functions

TABLE 7.3 Derivatives of the inverse trigonometric functions

1.

2.

3.

4.

5.

6.
dscsc-1 ud

dx
=

-du>dx

ƒ u ƒ2u2
- 1

 , ƒ u ƒ 7 1

dssec-1 ud
dx

=

du>dx

ƒ u ƒ2u2
- 1

 , ƒ u ƒ 7 1

dscot-1 ud
dx

= -

du>dx

1 + u2

dstan-1 ud
dx

=

du>dx

1 + u2

dscos-1 ud
dx

= -

du>dx21 - u2
 ,  ƒ u ƒ 6 1

dssin-1 ud
dx

=

du>dx21 - u2
 ,  ƒ u ƒ 6 1

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant 

1. (Valid for )

2. (Valid for all u)

3. (Valid for )ƒ u ƒ 7 a 7 0L  
du

u2u2
- a2

=
1
a sec-1

ƒ  
u
a ƒ + C

L  
du

a2
+ u2 =

1
a tan-1 aua b + C

u2
6 a2

L  
du2a2

- u2
= sin-1 aua b + C

a Z 0.

The derivative formulas in Table 7.3 have but in most integrations and
the formulas in Table 7.4 are more useful.

EXAMPLE 11 Using the Integral Formulas

(a)

 = sin-1 a23
2
b - sin-1 a22

2
b =

p
3

-
p
4

=
p
12

 L
23>222>2

 
dx21 - x2

= sin-1 x d22>2
23>2

a Z 1,a = 1,

Integration Formulas

The derivative formulas in Table 7.3 yield three useful integration formulas in Table 7.4.
The formulas are readily verified by differentiating the functions on the right-hand sides.
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(b)

(c)

EXAMPLE 12 Using Substitution and Table 7.4

(a)

(b)

Formula 1

EXAMPLE 13 Completing the Square

Evaluate

Solution The expression does not match any of the formulas in Table 7.4,
so we first rewrite by completing the square:

Then we substitute and to get

Table 7.4, Formula 1

EXAMPLE 14 Completing the Square

Evaluate

L  
dx

4x2
+ 4x + 2

.

 = sin-1 ax - 2
2
b + C

 = sin-1 aua b + C

a = 2, u = x - 2, and du = dx = L  
du2a2

- u2

 L  
dx24x - x2

= L  
dx24 - sx - 2d2

du = dxa = 2, u = x - 2,

4x - x2
= -sx2

- 4xd = -sx2
- 4x + 4d + 4 = 4 - sx - 2d2 .

4x - x2
24x - x2

L  
dx24x - x2

 .

 =
1
2

 sin-1 a 2x23
b + C

 =
1
2

 sin-1 aua b + C

a = 23, u = 2x, and du>2 = dx L  
dx23 - 4x2

=
1
2L  

du2a2
- u2

L  
dx29 - x2

= L  
dx2s3d2

- x2
= sin-1 ax

3
b + C

L
22

2>23
  

dx

x2x2
- 1

= sec-1 x d
2>23

22

=
p
4

-
p
6

=
p
12

L
1

0
 

dx
1 + x2 = tan-1 x d

0

1

= tan-1 s1d - tan-1 s0d =
p
4

- 0 =
p
4

Table 7.4 Formula 1,
with a = 3, u = x
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Solution We complete the square on the binomial 

Then,

Table 7.4, Formula 2

EXAMPLE 15 Using Substitution

Evaluate

Solution

Table 7.4, Formula 3

 =
126

 sec-1 a ex26
b + C

 =
1
a sec-1

ƒ  
u
a ƒ + C

 = L  
du

u2u2
- a2

 L  
dx2e2x

- 6
= L  

du>u2u2
- a2

L  
dx2e2x

- 6
 .

a = 1, u = 2x + 1 =
1
2

 tan-1 s2x + 1d + C

 =
1
2

 #  
1
a

 tan-1 aua b + C

 L  
dx

4x2
+ 4x + 2

= L  
dx

s2x + 1d2
+ 1

=
1
2L  

du
u2

+ a2

 = 4 ax +
1
2
b2

+ 1 = s2x + 1d2
+ 1.

 4x2
+ 4x + 2 = 4sx2

+ xd + 2 = 4 ax2
+ x +

1
4
b + 2 -

4
4

4x2
+ 4x :

530 Chapter 7: Transcendental Functions

and du>2 = dx
a = 1, u = 2x + 1,

 a = 16
dx = du>ex

= du>u, 
u = ex, du = ex dx, 
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EXERCISES 7.7

Common Values of Inverse Trignonometric
Functions
Use reference triangles like those in Examples 1–3 to find the angles
in Exercises 1–12.

1. a. b. c.

2. a. b. c. tan-1 a -123
btan-123tan-1s -1d

tan-1 a 123
btan-1s -13dtan-1 1

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c. cos-1 a-23
2
bcos-1 a 122

bcos-1 a-1
2
b

cos-1 a23
2
bcos-1 a -122

bcos-1 a1
2
b

sin-1 a23
2
bsin-1 a -122

bsin-1 a1
2
b

sin-1 a-23
2
bsin-1 a 122

bsin-1 a-1
2
b
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7.7 Inverse Trigonometric Functionss 531

7. a. b. c.

8. a. b. c.

9. a. b. c.

10. a. b. c.

11. a. b. c.

12. a. b. c.

Trigonometric Function Values
13. Given that find 

and 

14. Given that find 
and 

15. Given that find 
and 

16. Given that find 
and 

Evaluating Trigonometric and Inverse
Trigonometric Terms
Find the values in Exercises 17–28.

17. 18.

19. 20.

21.

22.

23.

24.

25. 26.

27.

28.

Finding Trigonometric Expressions
Evaluate the expressions in Exercises 29–40.

29. 30. sec stan-1 2xdsec atan-1 
x
2
b

cot-1 acot a- p
4
b b sThe answer is not -p>4.d

sec-1 asec a- p
6
b b sThe answer is not -p>6.d

sec scot-1 13 + csc-1s -1ddsec stan-1 1 + csc-1 1d

cot asin-1 a- 1
2
b - sec-1 2b

sin asin-1 a- 1
2
b + cos-1 a- 1

2
b b

tan ssec-1 1d + sin scsc-1s -2dd
csc ssec-1 2d + cos stan-1 s -13dd

cot asin-1 a- 23
2
b btan asin-1 a- 1

2
b b

sec acos-1 
1
2
bsin acos-1 a22

2
b b

cot a .
csc a ,tan a,cos a,sin a,a = sec-1 s -113>2d ,

cot a .
csc a ,tan a,cos a,sin a,a = sec-1 s -15d ,

cot a .
csc a ,sec a,cos a, sin a,a = tan-1 s4>3d ,

cot a .
csc a ,sec a,tan a,cos a,a = sin-1 s5>13d ,

cot-1 a 123
bcot-1 s -13dcot-1 (1)

cot-1 a -123
bcot-1 s13dcot-1 s -1d

csc-1 s -2dcsc-1 a 223
bcsc-1 s -12d

csc-1 2csc-1 a -223
bcsc-1 22

sec-1 2sec-1 a -223
bsec-122

sec-1s -2dsec-1 a 223
bsec-1s -12d 31. 32.

33. 34.

35.

36. 37.

38. 39.

40.

Limits
Find the limits in Exercises 41–48. (If in doubt, look at the function’s
graph.)

41. 42.

43. 44.

45. 46.

47. 48.

Finding Derivatives
In Exercises 49–70, find the derivative of y with respect to the appro-
priate variable.

49. 50.

51. 52.

53. 54.

55.

56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68. 69.

70.

Evaluating Integrals
Evaluate the integrals in Exercises 71–94.

71. 72. L  
dx21 - 4x2L  

dx29 - x2

y = ln sx2
+ 4d - x tan-1 ax

2
b

y = x sin-1 x + 21 - x2y = cot-1 
1
x - tan-1 x

y = tan-12x2
- 1 + csc-1 x, x 7 1

y = 2s2
- 1 - sec-1 sy = s21 - s2

+ cos-1 s

y = cos-1 se-tdy = csc-1 setd
y = tan-1 sln xdy = ln stan-1 xd
y = cot-1 2t - 1y = cot-1 2t

y = sin-1 
3
t2y = sec-1 

1
t , 0 6 t 6 1

y = csc-1 
x
2

y = csc-1 sx2
+ 1d, x 7 0

y = sec-1 5sy = sec-1 s2s + 1d
y = sin-1 s1 - tdy = sin-122 t

y = cos-1 s1/xdy = cos-1 sx2d

lim
x: -q

 csc-1 xlim
x: q

 csc-1 x

lim
x: -q

 sec-1 xlim
x: q

 sec-1 x

lim
x: -q

 tan-1 xlim
x: q

 tan-1 x

lim
x: -1+

 cos-1 xlim
x:1-

 sin-1 x

sin sec-1 a2x2
+ 4

x b
sin asec-1 

x
4
bcos asin-1 

y

5
b

cos asin-1 
2y

3
bsin atan-1 

x2x2
+ 1
b

sin stan-11x2
- 2xd, x Ú 2

tan scos-1 xdcos ssin-1 xd

tan asec-1 
y

5
btan ssec-1 3yd
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73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87.

88.

89. 90.

91. 92.

93. 94.

Evaluate the integrals in Exercises 95–104.

95. 96.

97. 98.

99. 100.

101. 102.

103. 104.

Evaluate the integrals in Exercises 105–112.

105. 106.

107. 108.

109. 110.

111. 112. L
2

2>23
 
cos ssec-1 xd dx

x2x2
- 1L

222
 
sec2 ssec-1 xd dx

x2x2
- 1

L  
dy

ssin-1 yd21 - y2L  
dy

stan-1 yds1 + y2d

L  
2tan-1 x dx

1 + x2L  
ssin-1 xd2 dx21 - x2

L  
ecos-1 x dx21 - x2L  

esin-1 x dx21 - x2

L  
dx

sx - 2d2x2
- 4x + 3L  

dx

sx + 1d2x2
+ 2x

L
4

2
 

2 dx

x2
- 6x + 10L

2

1
 

8 dx

x2
- 2x + 2

L  
dy

y2
+ 6y + 10L  

dy

y2
- 2y + 5

L
1

1>2
 

6 dt23 + 4t - 4t2L
0

-1
 

6 dt23 - 2t - t2

L  
dx22x - x2L  

dx2-x2
+ 4x - 3

L  
sec2 y dy21 - tan2 yL  

y dy21 - y4

L
ep>4

1
 

4 dt

ts1 + ln2 tdL
ln 23

0
 

ex dx

1 + e2x

L
p>4
p>6

 
csc2 x dx

1 + scot xd2L
p>2

-p>2
 

2 cos u du

1 + ssin ud2

L  
dx

sx + 3d2sx + 3d2
- 25

L  
dx

s2x - 1d2s2x - 1d2
- 4

L  
dx

1 + s3x + 1d2L  
dx

2 + sx - 1d2

L  
6 dr24 - sr + 1d2L  

3 dr21 - 4sr - 1d2

L
-22>3

-2>3
 

dy

y29y2
- 1L

-22>2
-1

 
dy

y24y2
- 1

L
2

-2
 

dt

4 + 3t2L
2

0
 

dt

8 + 2t2

L
322>4

0
 

ds29 - 4s2L
1

0
 

4 ds24 - s2

L  
dx

x25x2
- 4L  

dx

x225x2
- 2

L  
dx

9 + 3x2L  
dx

17 + x2
Limits
Find the limits in Exercises 113–116.

113. 114.

115. 116.

Integration Formulas
Verify the integration formulas in Exercises 117–120.

117.

118.

119.

120.

Initial Value Problems
Solve the initial value problems in Exercises 121–124.

121.

122.

123.

124.

Applications and Theory
125. You are sitting in a classroom next to the wall looking at the

blackboard at the front of the room. The blackboard is 12 ft long
and starts 3 ft from the wall you are sitting next to. Show that
your viewing angle is

if you are x ft from the front wall.

B
la

ck
bo

ar
d

12'

3'
Wall

You
�

x

a = cot-1 
x

15
- cot-1 

x
3

dy

dx
=

1
1 + x2 -

221 - x2
, y s0d = 2

dy

dx
=

1

x2x2
- 1

, x 7 1; y s2d = p

dy

dx
=

1
x2

+ 1
- 1, y s0d = 1

dy

dx
=

121 - x2
, y s0d = 0

L  ln sa2
+ x2d dx = x ln sa2

+ x2d - 2x + 2a tan-1 
x
a + C

Lssin-1 xd2 dx = xssin-1 xd2
- 2x + 221 - x2 sin-1 x + C

Lx3 cos-1 5x dx =

x4

4
 cos-1 5x +

5
4L  

x4 dx21 - 25x2

L  
tan-1 x

x2  dx = ln x -

1
2

 ln s1 + x2d -

tan-1 x
x + C

lim
x:0

 
2 tan-1 3x2

7x2lim
x: q

 x tan-1 
2
x

lim
x:1+

 
2x2

- 1

sec-1 x
lim
x:0

 
sin-1 5x

x
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7.7 Inverse Trigonometric Functions 533

126. The region between the curve and the x-axis from
to (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

127. The slant height of the cone shown here is 3 m. How large
should the indicated angle be to maximize the cone’s volume?

128. Find the angle 

129. Here is an informal proof that 
Explain what is going on.

130. Two derivations of the identity

a. (Geometric) Here is a pictorial proof that 
See if you can tell what is going on.p - sec-1 x .

sec-1 s -xd =

sec-1 s -xd = P - sec-1 x

tan-1 1 + tan-1 2 + tan-1 3 = p .

65°

21

50
�

�

a .

What angle here
gives the largest
volume?

3
h

r

y � sec–1 x

x

y

210

�
3

x = 2x = 1
y = sec-1 x

b. (Algebraic) Derive the identity by
combining the following two equations from the text:

Eq. (3)

Eq. (5)

131. The identity Figure 7.21 establishes
the identity for To establish it for the rest of

verify by direct calculation that it holds for 0,
and Then, for values of x in let 
and apply Eqs. (1) and (3) to the sum 

132. Show that the sum is constant.

Which of the expressions in Exercises 133–136 are defined, and
which are not? Give reasons for your answers.

133. a. b.

134. a. b.

135. a. b.

136. a. b.

137. (Continuation of Exercise 125.) You want to position your chair
along the wall to maximize your viewing angle How far from
the front of the room should you sit?

138. What value of x maximizes the angle shown here? How large is
at that point? Begin by showing that 

139. Can the integrations in (a) and (b) both be correct? Explain.

a.

b.

140. Can the integrations in (a) and (b) both be correct? Explain.

a. L  
dx21 - x2

= -L-

dx21 - x2
= -cos-1 x + C

L  
dx21 - x2

= -L-

dx21 - x2
= -cos-1 x + C

L  
dx21 - x2

= sin-1 x + C

x

y

1

20 x

�

-  cot-1 s2 - xd .
u = p - cot-1 xu

u

a .

cos-1 s -5dcot-1 s- 1>2d
sin-122sec-1 0

csc-1 2csc-1 (1>2)

cos-1 2tan-1 2

tan-1 x + tan-1 s1>xd
sin-1s -ad + cos-1s -ad .

x = -a, a 7 0,s -1, 0d ,-1.
x = 1,[-1, 1] ,

0 6 x 6 1.
sin-1 x + cos-1 x = p>2

sec-1 x = cos-1 s1>xd

cos-1 s -xd = p - cos-1 x

sec-1 s -xd = p - sec-1 x

x

y

0

�

1 x–1–x

y � sec–1x

�
2
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b.

141. Use the identity

to derive the formula for the derivative of in Table 7.3
from the formula for the derivative of 

142. Derive the formula

for the derivative of by differentiating both sides of
the equivalent equation 

143. Use the Derivative Rule in Section 7.1, Theorem 1, to derive

144. Use the identity

to derive the formula for the derivative of in Table 7.3
from the formula for the derivative of 

145. What is special about the functions

Explain.

146. What is special about the functions

Explain.

147. Find the volume of the solid of revolution shown here.

x

y

�3

–�3
3 y � 1

�1 � x2

ƒsxd = sin-1 
12x2

+ 1
 and g sxd = tan-1 

1
x ?

ƒsxd = sin-1  
x - 1
x + 1

, x Ú 0, and g sxd = 2 tan-11x?

tan-1 u .
cot-1 u

cot-1 u =

p

2
- tan-1 u

d
dx

 sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1.

tan y = x .
y = tan-1 x

dy

dx
=

1
1 + x2

sec-1 u .
csc-1 u

csc-1 u =

p

2
- sec-1 u

u = -x = cos-1 s -xd + C

 = cos-1 u + C

 = L  
-du21 - u2

 L  
dx21 - x2

= L  
-du21 - s -ud2

148. Arc length Find the length of the curve 

Volumes by Slicing
Find the volumes of the solids in Exercises 149 and 150.

149. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular to the 

x-axis are
a. circles whose diameters stretch from the curve 

to the curve 

b. vertical squares whose base edges run from the curve 
to the curve 

150. The solid lies between planes perpendicular to the x-axis at
and The cross-sections perpendicular

to the x-axis are
a. circles whose diameters stretch from the x-axis to the curve 

b. squares whose diagonals stretch from the x-axis to the curve 

Calculator and Grapher Explorations
151. Find the values of

a. b. c.

152. Find the values of

a. b. c.

In Exercises 153–155, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers. Com-
ment on any differences you see.

153. a. b.

154. a. b.

155. a. b.

156. Graph Explain what you
see.

157. Newton’s serpentine Graph Newton’s serpentine, 
Then graph in the same

graphing window. What do you see? Explain.

158. Graph the rational function Then graph 
in the same graphing window. What do you see?

Explain.

159. Graph together with its first two derivatives.
Comment on the behavior of ƒ and the shape of its graph in rela-
tion to the signs and values of and 

160. Graph together with its first two derivatives.
Comment on the behavior of ƒ and the shape of its graph in rela-
tion to the signs and values of and ƒ– .ƒ¿

ƒsxd = tan-1 x

ƒ– .ƒ¿

ƒsxd = sin-1 x

cos s2 sec-1 xd
y =y = s2 - x2d>x2 .

y = 2 sin s2 tan-1 xd4x>sx2
+ 1d .

y =

y = sec ssec-1 xd = sec scos-1s1>xdd .

y = cos scos-1 xdy = cos-1 scos xd
y = sin ssin-1 xdy = sin-1 ssin xd
y = tan stan-1 xdy = tan-1 stan xd

cot-1 s -2dcsc-1 1.7sec-1s -3d

cot-1 2csc-1 s -1.5dsec-1 1.5

y = 2> 4   21 - x2 .

y = 2> 4   21 - x2 .

x = 22>2.x = -22>2

y = 1>21 + x2 .-1>21 + x2
y =

y = 1>21 + x2 .-1>21 + x2
y =

x = 1.x = -1

 -1>2 … x … 1>2.
y = 21 - x2, 
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T

dx = -du
x = -u,
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Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions and The hyperbolic functions simplify many mathematical expressions and
they are important in applications. For instance, they are used in problems such as comput-
ing the tension in a cable suspended by its two ends, as in an electric transmission line.
They also play an important role in finding solutions to differential equations. In this sec-
tion, we give a brief introduction to hyperbolic functions, their graphs, how their deriva-
tives are calculated, and why they appear as important antiderivatives.

Even and Odd Parts of the Exponential Function

Recall the definitions of even and odd functions from Section 1.4, and the symmetries of
their graphs. An even function ƒ satisfies while an odd function satisfies

Every function ƒ that is defined on an interval centered at the origin can
be written in a unique way as the sum of one even function and one odd function. The de-
composition is

If we write this way, we get

The even and odd parts of called the hyperbolic cosine and hyperbolic sine of x, re-
spectively, are useful in their own right. They describe the motions of waves in elastic
solids and the temperature distributions in metal cooling fins. The centerline of the Gate-
way Arch to the West in St. Louis is a weighted hyperbolic cosine curve.

Definitions and Identities

The hyperbolic cosine and hyperbolic sine functions are defined by the first two equations
in Table 7.5. The table also lists the definitions of the hyperbolic tangent, cotangent, se-
cant, and cosecant. As we will see, the hyperbolic functions bear a number of similarities
to the trigonometric functions after which they are named. (See Exercise 84 as well.)

The notation cosh x is often read “kosh x,” rhyming with “gosh x,” and sinh x is pro-
nounced as if spelled “cinch x,” rhyming with “pinch x.”

Hyperbolic functions satisfy the identities in Table 7.6. Except for differences in sign,
these resemble identities we already know for trigonometric functions.

The second equation is obtained as follows:

 = sinh 2x .

 =

e2x
- e-2x

2

 2 sinh x cosh x = 2 aex
- e-x

2
b aex

+ e-x

2
b

ex ,

ex
=

ex
+ e-x

2
+

ex
- e-x

2 .
(')'* (')'*

even part odd part

ex

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.
('')''* ('')''*

even part odd part

ƒs -xd = -ƒsxd .
ƒs -xd = ƒsxd ,

e-x .ex

7.8 
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536 Chapter 7: Transcendental Functions

TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

Hyperbolic sine of x:          

Hyperbolic cosine of x:      

Hyperbolic tangent:

Hyperbolic cotangent:

Hyperbolic secant:

Hyperbolic cosecant:

x

y

1–1 2–2

2

1

–1

(e)

y � csch x

csch x =
1

sinh x
=

2
ex

- e-x

x

y

1–1 0 2–2

2

(d)

y � sech x

y � 1

sech x =
1

cosh x
=

2
ex

+ e-x

coth x =

cosh x
sinh x

=

ex
+ e-x

ex
- e-x

x

y

2

1–1 2–2

–2

(c)

y � coth x

y � tanh x

y � coth x

y � 1

y � –1

tanh x =

sinh x
cosh x

=

ex
- e-x

ex
+ e-x

x

y

1–1 2 3–2–3

(b)

y � cosh x

y �
ex

2
y �

e–x

2 1
2
3

cosh x =

ex
+ e-x

2

x

y

1

–1
1

2
3

–2
–3

2 3–2 –1–3

(a)

y � sinh xy �
ex

2

y � – e–x

2

sinh x =

ex
- e-x

2

TABLE 7.6 Identities for
hyperbolic functions

coth2 x = 1 + csch2 x

tanh2 x = 1 - sech2 x

sinh2 x =

cosh 2x - 1
2

cosh2 x =

cosh 2x + 1
2

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 sinh x cosh x

cosh2 x - sinh2 x = 1
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7.8 Hyperbolic Functions 537

The other identities are obtained similarly, by substituting in the definitions of the hy-
perbolic functions and using algebra. Like many standard functions, hyperbolic functions
and their inverses are easily evaluated with calculators, which have special keys or key-
stroke sequences for that purpose.

Derivatives and Integrals

The six hyperbolic functions, being rational combinations of the differentiable functions
and have derivatives at every point at which they are defined (Table 7.7). Again,

there are similarities with trigonometric functions. The derivative formulas in Table 7.7
lead to the integral formulas in Table 7.8.

e-x ,ex

TABLE 7.7 Derivatives of
hyperbolic functions

d
dx

 scsch ud = -csch u coth u 
du
dx

d
dx

 ssech ud = -sech u tanh u 
du
dx

d
dx

 scoth ud = -csch2 u 
du
dx

d
dx

 stanh ud = sech2 u 
du
dx

d
dx

 scosh ud = sinh u 
du
dx

d
dx

 ssinh ud = cosh u 
du
dx

TABLE 7.8 Integral formulas for
hyperbolic functions

L  csch u coth u du = -csch u + C

L  sech u tanh u du = -sech u + C

L  csch2 u du = -coth u + C

L  sech2 u du = tanh u + C

L  cosh u du = sinh u + C

L  sinh u du = cosh u + C

The derivative formulas are derived from the derivative of 

Definition of sinh u

Derivative of

Definition of cosh u

This gives the first derivative formula. The calculation

Definition of csch u

Quotient Rule

Rearrange terms.

Definitions of csch u and coth u

gives the last formula. The others are obtained similarly.

 = -csch u coth u 
du
dx

 = -
1

sinh u
 
cosh u
sinh u

 
du
dx

 = -

cosh u
sinh2 u

 
du
dx

 
d
dx

 scsch ud =

d
dx

 a 1
sinh u

b

 = cosh u 
du
dx

eu =

eu du>dx + e-u du>dx

2

 
d
dx

 ssinh ud =

d
dx

 aeu
- e-u

2
b

eu :
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EXAMPLE 1 Finding Derivatives and Integrals

(a)

(b)

(c) Table 7.6

(d)

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration. Since
the hyperbolic sine is an increasing function of x. We denote

its inverse by

For every value of x in the interval the value of is the num-
ber whose hyperbolic sine is x. The graphs of and are shown in
Figure 7.32a.

The function is not one-to-one, as we can see from the graph in
Figure 7.31b. The restricted function however, is one-to-one and
therefore has an inverse, denoted by

For every value of is the number in the interval whose
hyperbolic cosine is x. The graphs of and are shown in
Figure 7.32b.

Like the function fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

For every value of x in the interval is the nonnegative number whose
hyperbolic secant is x. The graphs of and are shown in
Figure 7.32c.

y = sech-1 xy = sech x, x Ú 0,
s0, 1], y = sech-1 x

y = sech-1 x .

y = sech x = 1>cosh xy = cosh x ,

y = cosh-1 xy = cosh x, x Ú 0,
0 … y 6 qx Ú 1, y = cosh-1 x

y = cosh-1 x .

y = cosh x, x Ú 0,
y = cosh x

y = sinh-1 xy = sinh x
y = sinh-1 x- q 6 x 6 q ,

y = sinh-1 x .

dssinh xd>dx = cosh x 7 0,

 L 1.6137

 = 4 - 2 ln 2 - 1

 = Ce2x
- 2x D0ln 2

= se2 ln 2
- 2 ln 2d - s1 - 0d

 L
ln 2

0
 4ex sinh x dx = L

ln 2

0
 4ex  

ex
- e-x

2
 dx = L

ln 2

0
 s2e2x

- 2d dx

 =

sinh 2
4

-
1
2

L 0.40672

 =
1
2L

1

0
 scosh 2x - 1d dx =

1
2

 csinh 2x
2

- x d
0

1

 L
1

0
 sinh2 x dx = L

1

0
 
cosh 2x - 1

2
 dx

 =
1
5 ln ƒ u ƒ + C =

1
5 ln ƒ sinh 5x ƒ + C

 L  coth 5x dx = L  
cosh 5x
sinh 5x

 dx =
1
5L  

du
u

 =

t21 + t2
 sech2 21 + t2

 
d
dt

 A tanh 21 + t2 B = sech2 21 = t2 # d
dt

 A21 + t2 B

538 Chapter 7: Transcendental Functions

Evaluate with
a calculator

du = 5 cosh 5x dx
u = sinh 5x ,
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7.8 Hyperbolic Functions 539

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

These functions are graphed in Figure 7.33.

y = tanh-1 x, y = coth-1 x, y = csch-1 x .

x

y

1
2

2 4 6–6 –4 –2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a)

(b) (c)

y � sinh x y � x

y � sinh–1 x
(x � sinh y)

y � cosh x,
x � 0

y � sech x
x � 0

y � x y � x

y � cosh–1 x
(x � cosh y, y � 0)

y � sech–1 x
(x � sech y,
  y � 0)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x .

x

y

0–1 1

(a)

x

y

0–1 1

(b)

x

y

0

(c)

x � tanh y
y � tanh–1x

 x � coth y
y � coth–1x

 x � csch y
y � csch–1x

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.

Useful Identities

We use the identities in Table 7.9 to calculate the values of and 
on calculators that give only and These identities are direct
consequences of the definitions. For example, if then

sech acosh-1 a1x b b =
1

cosh acosh-1 a1x b b
=

1

a1x b
= x

0 6 x … 1,
tanh-1 x .cosh-1 x, sinh-1 x ,

coth-1 xsech-1 x, csch-1 x ,

TABLE 7.9 Identities for inverse
hyperbolic functions

coth-1 x = tanh-1 
1
x

csch-1 x = sinh-1 
1
x

sech-1 x = cosh-1 
1
x
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so

since the hyperbolic secant is one-to-one on 

Derivatives and Integrals

The chief use of inverse hyperbolic functions lies in integrations that reverse the derivative
formulas in Table 7.10.

s0, 1].

cosh-1 a1x b = sech-1 x

540 Chapter 7: Transcendental Functions

TABLE 7.10 Derivatives of inverse hyperbolic functions

dscsch-1 ud
dx

=

-du>dx

ƒ u ƒ21 + u2
 , u Z 0

dssech-1 ud
dx

=

-du>dx

u21 - u2
 ,  0 6 u 6 1

dscoth-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 7 1

dstanh-1 ud
dx

=
1

1 - u2 
du
dx

 ,   ƒ u ƒ 6 1

dscosh-1 ud
dx

=
12u2

- 1
 
du
dx

 ,      u 7 1

dssinh-1 ud
dx

=
121 + u2

 
du
dx

The restrictions and on the derivative formulas for and
come from the natural restrictions on the values of these functions. (See

Figure 7.33a and b.) The distinction between and becomes important
when we convert the derivative formulas into integral formulas. If the integral of

is If the integral is 
We illustrate how the derivatives of the inverse hyperbolic functions are found in

Example 2, where we calculate The other derivatives are obtained by sim-
ilar calculations.

EXAMPLE 2 Derivative of the Inverse Hyperbolic Cosine

Show that if u is a differentiable function of x whose values are greater than 1, then

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

dscosh-1 ud>dx .

coth-1 u + C .ƒ u ƒ 7 1,tanh-1 u + C .1>s1 - u2d
ƒ u ƒ 6 1,

ƒ u ƒ 7 1ƒ u ƒ 6 1
coth-1 u

tanh-1 uƒ u ƒ 7 1ƒ u ƒ 6 1

HISTORICAL BIOGRAPHY

Sonya Kovalevsky
(1850–1891)
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7.8 Hyperbolic Functions 541

Solution First we find the derivative of for by applying Theorem 1
with and Theorem 1 can be applied because the deriva-
tive of cosh x is positive for 

Theorem 1

In short,

The Chain Rule gives the final result:

Instead of applying Theorem 1 directly, as in Example 2, we could also find the derivative
of using implicit differentiation and the Chain Rule:

Equivalent equation

With appropriate substitutions, the derivative formulas in Table 7.10 lead to the inte-
gration formulas in Table 7.11. Each of the formulas in Table 7.11 can be verified by dif-
ferentiating the expression on the right-hand side.

EXAMPLE 3 Using Table 7.11

Evaluate

L
1

0
 

2 dx23 + 4x2
.

cosh y = x =
12x2

- 1
.

 
dy
dx

=
1

sinh y
=

12cosh2 y - 1

 1 = sinh y 
dy
dx

 x = cosh y

 y = cosh-1 x

y = cosh-1 x, x 7 1,

d
dx

 scosh-1 ud =
12u2

- 1
 
du
dx

.

d
dx

 scosh-1 xd =
12x2

- 1
.

cosh scosh-1 xd = x =
12x2

- 1

 =
12cosh2 scosh-1 xd - 1

ƒ¿sud = sinh u =
1

sinh scosh-1 xd

 sƒ -1d¿sxd =
1

ƒ¿sƒ -1 sxdd

0 6 x .
ƒ -1sxd = cosh-1 x .ƒsxd = cosh x

x 7 1y = cosh-1 x

2cosh2 u - 1sinh u =

cosh2 u - sinh2 u = 1,

Implicit differentiation
with respect to x, and
the Chain Rule

Since 
and sinh y 7 0

x 7 1, y 7 0
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Solution The indefinite integral is

Formula from Table 7.11

Therefore,

 = sinh-1 a 2

3
b - 0 L 0.98665.

 L
1

0
 

2 dx23 + 4x2
= sinh-1 a 2x23

b d
0

1

= sinh-1 a 223
b - sinh-1 s0d

 = sinh-1 a 2x23
b + C .

 = sinh-1 aua b + C

u = 2x, du = 2 dx, a = 23 L  
2 dx23 + 4x2

= L  
du2a2

+ u2

542 Chapter 7: Transcendental Functions

TABLE 7.11 Integrals leading to inverse hyperbolic functions

1.

2.

3.

4.

5. and a 7 0L  
du

u2a2
+ u2

= -
1
a csch-1 

ƒ  
u
a ƒ + C,   u Z 0

L  
du

u2a2
- u2

= -
1
a sech-1 aua b + C,  0 6 u 6 a

L  
du

a2
- u2 = d 1

a tanh-1 aua b + C  if u2
6 a2

1
a coth-1 aua b + C,  if u2

7 a2

L  
du2u2

- a2
= cosh-1 aua b + C,      u 7 a 7 0

L  
du2a2

+ u2
= sinh-1 aua b + C,      a 7 0
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542 Chapter 7: Transcendental Functions

EXERCISES 7.8

Hyperbolic Function Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity to find the values of the
remaining five hyperbolic functions.

1. 2.

3. 4. cosh x =

13
5

, x 7 0cosh x =

17
15

, x 7 0

sinh x =

4
3

sinh x = -

3
4

cosh2 x - sinh2 x = 1

Rewrite the expressions in Exercises 5–10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)

7. 8.

9.

10. ln scosh x + sinh xd + ln scosh x - sinh xd
ssinh x + cosh xd4

cosh 3x - sinh 3xcosh 5x + sinh 5x

4100 AWL/Thomas_ch07p466-552  8/20/04  10:03 AM  Page 542

tcu0708a.html
tcu0708a.html
tcu0708b.html
tcu0708b.html


7.8 Hyperbolic Functions 543

11. Use the identities

to show that

a.

b.

12. Use the definitions of cosh x and sinh x to show that

Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23.

(Hint: Before differentiating, express in terms of exponentials
and simplify.)

24.

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.

b.

38.

39. L  x coth-1 x dx =

x2
- 1
2

 coth-1 x +

x
2

+ C

L  x sech-1 x dx =

x2

2
 sech-1 x -

1
2
21 - x2

+ C

L  sech x dx = sin-1 stanh xd + C

L  sech x dx = tan-1 ssinh xd + C

y = cosh-1 ssec xd, 0 6 x 6 p>2
y = sinh-1 stan xd

y = csch-1 2uy = csch-1 a1
2
bu

y = ln x + 21 - x2 sech-1 xy = cos-1 x - x sech-1 x

y = s1 - t2d coth-1 ty = s1 - td coth-1 2t

y = su2
+ 2ud tanh-1 su + 1dy = s1 - ud tanh-1 u

y = cosh-1 22x + 1y = sinh-1 1x

y = s4x2
- 1d csch sln 2xd

y = sx2
+ 1d sech sln xd

y = ln sinh y -

1
2

 coth2 yy = ln cosh y -

1
2

 tanh2 y

y = csch us1 - ln csch udy = sech us1 - ln sech ud
y = ln scosh zdy = ln ssinh zd
y = t2 tanh 

1
ty = 22t tanh 2t

y =

1
2

 sinh s2x + 1dy = 6 sinh 
x
3

cosh2 x - sinh2 x = 1.

cosh 2x = cosh2 x + sinh2 x .

sinh 2x = 2 sinh x cosh x

 cosh sx + yd = cosh x cosh y + sinh x sinh y

 sinh sx + yd = sinh x cosh y + cosh x sinh y
40.

Indefinite Integrals
Evaluate the integrals in Exercises 41–50.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

Definite Integrals
Evaluate the integrals in Exercises 51–60.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

Evaluating Inverse Hyperbolic Functions
and Related Integrals
When hyperbolic function keys are not available on a calculator, it is
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

L
ln 10

0
 4 sinh2 ax

2
b  dxL

0

-ln 2
 cosh2 ax

2
b  dx

L
4

1
 
8 cosh 1x1x

 dxL
2

1
 
cosh sln td

t  dt

L
p>2

0
 2 sinh ssin ud cos u duL

p>4
-p>4

 cosh stan ud sec2 u du

L
ln 2

0
 4e-u sinh u duL

-ln 2

-ln 4
 2eu cosh u du

L
ln 2

0
 tanh 2x dxL

ln 4

ln 2
 coth x dx

L  
csch sln td coth sln td dt

tL  
sech 2t tanh 2t dt2t

L  csch2 s5 - xd dxL  sech2 ax -

1
2
b  dx

L  coth 
u23

 duL  tanh 
x
7

 dx

L  4 cosh s3x - ln 2d dxL  6 cosh ax
2

- ln 3b  dx

L  sinh 
x
5

 dxL  sinh 2x dx

L  tanh-1 x dx = x tanh-1 x +

1
2

 ln s1 - x2d + C

 coth-1 x =

1
2

 ln 
x + 1
x - 1

 ,          ƒ x ƒ 7 1

 csch-1 x = ln a1x +

21 + x2

ƒ x ƒ

b , x Z 0

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x
1 - x

 ,          ƒ x ƒ 6 1

 cosh-1 x = ln Ax + 2x2
+ 1 B , x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B , - q 6 x 6 q

4100 AWL/Thomas_ch07p466-552  8/20/04  10:03 AM  Page 543

tcu0708c.html
tcu0708c.html
tcu0708d.html
tcu0708d.html
tcu0708e.html
tcu0708e.html
tcu0708f.html
tcu0708f.html


Use the formulas in the box here to express the numbers in Exercises
61–66 in terms of natural logarithms.

61. 62.

63. 64.

65. 66.

Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.

b. natural logarithms.

67. 68.

69. 70.

71. 72.

73. 74.

Applications and Theory
75. a. Show that if a function ƒ is defined on an interval symmetric

about the origin (so that ƒ is defined at whenever it is de-
fined at x), then

(1)

Then show that is even and that
is odd.

b. Equation (1) simplifies considerably if ƒ itself is (i) even or
(ii) odd. What are the new equations? Give reasons for your
answers.

76. Derive the formula 

Explain in your derivation why the plus sign is used with
the square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the
action of gravity encounters an air resistance proportional to the
square of the velocity, then the body’s velocity t sec into the fall
satisfies the differential equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not af-
fect the outcome significantly.)

a. Show that

y = Amg

k
 tanh aAgk

m  tb

m 
dy
dt

= mg - ky2 ,

q .6  

- q 6 xsinh-1 x = ln Ax + 2x2
+ 1 B ,

sƒsxd - ƒs -xdd>2
sƒsxd + ƒs -xdd>2

ƒsxd =

ƒsxd + ƒs -xd
2

+

ƒsxd - ƒs -xd
2

.

-x

L
e

1
 

dx

x21 + sln xd2L
p

0
 

cos x dx21 + sin2 x

L
2

1
 

dx

x24 + x2L
3>13

1>5
 

dx

x21 - 16x2

L
1>2

0
 

dx

1 - x2L
2

5>4
 

dx

1 - x2

L
1>3

0
 

6 dx21 + 9x2L
223

0
 

dx24 + x2

csch-1 s -1>13dsech-1 s3>5d

coth-1 s5>4dtanh-1 s -1>2d

cosh-1 s5>3dsinh-1 s -5>12d

satisfies the differential equation and the initial condition that
when 

b. Find the body’s limiting velocity, 

c. For a 160-lb skydiver with time in seconds and
distance in feet, a typical value for k is 0.005. What is the
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a.

b.

Show in both cases that the acceleration is proportional to
s but that in the first case it is directed toward the origin, whereas
in the second case it is directed away from the origin.

79. Tractor trailers and the tractrix When a tractor trailer turns
into a cross street or driveway, its rear wheels follow a curve like
the one shown here. (This is why the rear wheels sometimes ride
up over the curb.) We can find an equation for the curve if we pic-
ture the rear wheels as a mass M at the point (1, 0) on the x-axis
attached by a rod of unit length to a point P representing the cab
at the origin. As the point P moves up the y-axis, it drags M along
behind it. The curve traced by M—called a tractrix from the
Latin word tractum, for “drag”—can be shown to be the graph of
the function that solves the initial value problem

Solve the initial value problem to find an equation for the curve.
(You need an inverse hyperbolic function.)

80. Area Show that the area of the region in the first quadrant en-
closed by the curve the coordinate axes, and
the line is the same as the area of a rectangle of height 1 a
and length s, where s is the length of the curve from to

(See accompanying figure.)x = b .
x = 0

>x = b
y = s1>ad cosh ax ,

x

y

0 (1, 0)

P

M(x, y)

y � f (x)

Differential equation:  
dy

dx
= -

1

x21 - x2
+

x21 - x2

Initial condition: y = 0 when x = 1.

y = ƒsxd

d2s>dt2

s = a cosh kt + b sinh kt .

s = a cos kt + b sin kt

smg = 160d ,

limt:q y .

t = 0.y = 0

544 Chapter 7: Transcendental Functions
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7.8 Hyperbolic Functions 545

81. Volume A region in the first quadrant is bounded above by the
curve below by the curve and on the left
and right by the y-axis and the line respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

82. Volume The region enclosed by the curve the

x-axis, and the lines is revolved about the x-axis to
generate a solid. Find the volume of the solid.

83. Arc length Find the length of the segment of the curve 

from to 

84. The hyperbolic in hyperbolic functions In case you are won-
dering where the name hyperbolic comes from, here is the an-
swer: Just as and are identified with points
(x, y) on the unit circle, the functions and 
are identified with points (x, y) on the right-hand branch of the
unit hyperbola, 

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola is
twice the area of the sector AOP pictured in the accompanying
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

Asud =

1
2

 cosh u sinh u - L
cosh u

1
2x2

- 1 dx .

x2
- y2

= 1

x

y

1

10

u→
−∞

–1

u→
∞

P(cosh u, sinh u)
u � 0

x2 � y2 � 1

x2
- y2

= 1.

y = sinh ux = cosh u
y = sin ux = cos u

x = ln 25.x = 0s1>2d cosh 2x

y =

x = ;  ln 23

y = sech x ,

x = 2,
y = sinh x ,y = cosh x ,

x

y

0 sb

s

1
a

y �     cosh ax1
a

b. Differentiate both sides of the equation in part (a) with
respect to u to show that

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your
solution? With C determined, what does your solution say
about the relationship of u to A(u)?

85. A minimal surface Find the area of the surface swept out by re-
volving about the x-axis the curve 

It can be shown that, of all continuously differentiable curves
joining points A and B in the figure, the curve 
generates the surface of least area. If you made a rigid wire frame
of the end-circles through A and B and dipped them in a soap-film
solution, the surface spanning the circles would be the one gener-
ated by the curve.

86. a. Find the centroid of the curve 

b. Evaluate the coordinates to two decimal places. Then sketch
the curve and plot the centroid to show its relation to the
curve.

y = cosh x, - ln 2 … x …  ln 2 .

y = 4 cosh sx>4d

x

y

–ln 16 ln 810

4
A(–ln 16, 5)

B(ln 81, 6.67)

y � 4 cosh (x /4)

- ln 16 … x …  ln 81 .
y = 4 cosh sx>4d, 

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 � y2 � 1
x2 � y2 � 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u � 0
u � 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)

A¿sud =

1
2

.

T

Since the point
(cosh u, sinh u) lies on the right-hand
branch of the hyperbola 
for every value of u (Exercise 84).

x2
- y2

= 1

cosh2 u - sinh2 u = 1,

One of the analogies between hyperbolic and circular
functions is revealed by these two diagrams (Exercise 84).
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Hanging Cables
87. Imagine a cable, like a telephone line or TV cable, strung from

one support to another and hanging freely. The cable’s weight per
unit length is w and the horizontal tension at its lowest point is a
vector of length H. If we choose a coordinate system for the plane
of the cable in which the x-axis is horizontal, the force of gravity
is straight down, the positive y-axis points straight up, and the
lowest point of the cable lies at the point on the y-axis
(see accompanying figure), then it can be shown that the cable
lies along the graph of the hyperbolic cosine

Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next
accompanying figure displays the tension at P as a vector of
length (magnitude) T, as well as the tension H at the lowest
point A. Show that the cable’s slope at P is

b. Using the result from part (a) and the fact that the horizontal
tension at P must equal H (the cable is not moving), show that

Hence, the magnitude of the tension at P(x, y) is
exactly equal to the weight of y units of cable.
T = wy .

tan f =

dy

dx
= sinh 

w
H

 x .

x

y

0

H

Hanging
cable

H
w

y �      cosh     xH
w

w
H

y =

H
w  cosh 

w
H

 x .

y = H>w

88. (Continuation of Exercise 87.) The length of arc AP in the Exer-
cise 87 figure is where Show that
the coordinates of P may be expressed in terms of s as

89. The sag and horizontal tension in a cable The ends of a cable
32 ft long and weighing 2 lb ft are fastened at the same level to
posts 30 ft apart.

a. Model the cable with the equation

Use information from Exercise 88 to show that a satisfies the
equation

(2)

b. Solve Equation (2) graphically by estimating the coordinates
of the points where the graphs of the equations and

intersect in the ay-plane.

c. Solve Equation (2) for a numerically. Compare your solution
with the value you found in part (b).

d. Estimate the horizontal tension in the cable at the cable’s
lowest point.

e. Using the value found for a in part (c), graph the catenary

over the interval Estimate the sag in the
cable at its center.

-15 … x … 15.

y =

1
a cosh ax

y = sinh 15a
y = 16a

16a = sinh 15a .

y =

1
a cosh ax, -15 … x … 15.

>

x =

1
a sinh-1 as, y = As2

+

1
a2 .

a = w>H .s = s1>ad sinh ax ,

x

y

0

H

T

T cos �

�
P(x, y)

y �      cosh     xH
w

w
H







H
wA  0, 
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546 Chapter 7: Transcendental Functions

Chapter 7 Questions to Guide Your Review

1. What functions have inverses? How do you know if two functions
ƒ and g are inverses of one another? Give examples of functions
that are (are not) inverses of one another.

2. How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

3. How can you sometimes express the inverse of a function of x as a
function of x?

4. Under what circumstances can you be sure that the inverse of a
function ƒ is differentiable? How are the derivatives of ƒ and 
related?

ƒ -1
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Chapter 7 547

5. What is the natural logarithm function? What are its domain,
range, and derivative? What arithmetic properties does it have?
Comment on its graph.

6. What is logarithmic differentiation? Give an example.

7. What integrals lead to logarithms? Give examples. What are the
integrals of tan x and cot x?

8. How is the exponential function defined? What are its domain,
range, and derivative? What laws of exponents does it obey?
Comment on its graph.

9. How are the functions and defined? Are there any re-
strictions on a? How is the graph of related to the graph of
ln x? What truth is there in the statement that there is really only
one exponential function and one logarithmic function?

10. Describe some of the applications of base 10 logarithms.

11. What is the law of exponential change? How can it be derived
from an initial value problem? What are some of the applications
of the law?

12. How do you compare the growth rates of positive functions as

13. What roles do the functions and ln x play in growth compar-
isons?

14. Describe big-oh and little-oh notation. Give examples.

ex

x : q ?

loga x
loga xax

ex

15. Which is more efficient—a sequential search or a binary search?
Explain.

16. How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

17. What are the derivatives of the inverse trigonometric functions?
How do the domains of the derivatives compare with the domains
of the functions?

18. What integrals lead to inverse trigonometric functions? How do
substitution and completing the square broaden the application of
these integrals?

19. What are the six basic hyperbolic functions? Comment on their
domains, ranges, and graphs. What are some of the identities re-
lating them?

20. What are the derivatives of the six basic hyperbolic functions?
What are the corresponding integral formulas? What similarities
do you see here with the six basic trigonometric functions?

21. How are the inverse hyperbolic functions defined? Comment on
their domains, ranges, and graphs. How can you find values of

and using a calculator’s keys for
and 

22. What integrals lead naturally to inverse hyperbolic functions?

tanh-1 x?cosh-1 x, sinh-1 x ,
coth-1 xsech-1 x, csch-1 x ,
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Chapter 7 Practice Exercises 547

Chapter 7 Practice Exercises

Differentiation
In Exercises 1–24, find the derivative of y with respect to the appropri-
ate variable.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16. 17.

18.

19.

20. y = s1 + t2d cot-1 2t

y = t tan-1 t -

1
2

 ln t

y = z cos-1 z - 21 - z2

y = ln cos-1 xy = sin-1 a 12y b , y 7 1

y = sin-121 - u2, 0 6 u 6 1

y = 2sln xdx>2y = sx + 2dx + 2

y = 22x-22y = 5x3.6

y = 92ty = 8-t

y = log5 s3x - 7dy = log2 sx2>2d
y = ln ssec2 udy = ln ssin2 ud

y = x2e-2>xy =

1
4

 xe4x
-

1
16

 e4x

y = 22e22xy = 10e-x>5

21.

22.

23.

24.

Logarithmic Differentiation
In Exercises 25–30, use logarithmic differentiation to find the deriva-
tive of y with respect to the appropriate variable.

25. 26.

27.

28.

29. 30.

Integration
Evaluate the integrals in Exercises 31–78.

31. 32. Let cos s3et
- 2d dtLex sin sexd dx

y = sln xd1>sln xdy = ssin ud2uy =

2u2u2u2
+ 1

y = ast + 1dst - 1d
st - 2dst + 3d

b5

, t 7 2

y =
10A3x + 4

2x - 4
y =

2sx2
+ 1d2cos 2x

y = s1 + x2de tan-1 x

y = csc-1 ssec ud, 0 6 u 6 p>2
y = 22x - 1  sec-11x

y = z sec-1 z - 2z2
- 1, z 7 1
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33.

34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74. L  
dx2-x2
+ 4x - 1L  

dx2-2x - x2

L
-26>25

-2>25
 

dy

ƒ y ƒ25y2
- 3L

2>322>3
 

dy

ƒ y ƒ29y2
- 1

L  
24 dy

y2y2
- 16L  

dy

y24y2
- 1

L
323

 
dt

3 + t2L
2

-2
 

3 dt

4 + 3t2

L
1>5

-1>5
 

6 dx24 - 25x2L
3>4

-3>4
 

6 dx29 - 4x2

L
e

1
 
8 ln 3 log3 u

u
 duL

8

1
 
log4 u

u
 du

L
4

2
s1 + ln tdt ln t dtL

3

1
 
sln sy + 1dd2

y + 1
 dy

L
e2

e
 

1

x2ln x
 dxL

e

1
 
1
x  s1 + 7 ln xd-1>3 dx

L
ln 9

0
 euseu - 1d1>2 duL

ln 5

0
 ers3er

+ 1d-3>2 dr

L
0

-ln 2
 e2w dwL

-1

-2
 e-sx + 1d dx

L
8

1
 a 2

3x
-

8
x2 b  dxL

4

1
 ax

8
+

1
2x
b  dx

L
32

1
 
1
5x

 dxL
7

1
 
3
x  dx

L  2tan x sec2 x dxLx3x2

 dx

L  
cos s1 - ln yd

y  dyL  
1
r  csc2 s1 + ln rd dr

L  
ln sx - 5d

x - 5
 dxL  

sln xd-3

x  dx

L  
dy
y ln yL  

tan sln yd
y  dy

L
p>6

-p>2
 

cos t
1 - sin t

 dtL
4

0
 

2t

t2
- 25

 dt

L
1>4

1>6
 2 cot px dxL

p

0
 tan 

x
3

 dx

L
e

1
 
2ln x

x  dxL
1

-1
 

dx
3x - 4

L  csc2 x ecot x dxL  sec2 sxde tan x dx

Ley csc sey
+ 1d cot sey

+ 1d dy

Lex sec2 sex
- 7d dx 75. 76.

77. 78.

Solving Equations with Logarithmic
or Exponential Terms
In Exercises 79–84, solve for y.

79. 80.

81. 82.

83. 84.

Evaluating Limits
Find the limits in Exercises 85–96.

85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

Comparing Growth Rates of Functions
97. Does ƒ grow faster, slower, or at the same rate as g as 

Give reasons for your answers.

a.

b.

c.

d.

e.

f.

98. Does ƒ grow faster, slower, or at the same rate as g as 
Give reasons for your answers.

a.

b.

c.

d.

e.

f. gsxd = e-xƒsxd = sech x,

gsxd = 1>x2ƒsxd = sin-1s1>xd,
gsxd = 1>xƒsxd = tan-1s1>xd,
gsxd = exƒsxd = 10x3

+ 2x2,

gsxd = ln x2ƒsxd = ln 2x,

gsxd = 2-xƒsxd = 3-x,

x : q ?

gsxd = exƒsxd = sinh x,

gsxd = 1>xƒsxd = csc-1 x,

gsxd = tan-1 xƒsxd = x,

gsxd = xe-xƒsxd = x>100,

gsxd = x +

1
xƒsxd = x,

gsxd = log3 xƒsxd = log2 x,

x : q ?

lim
x:0+

 a1 +

3
x b

x

lim
x: q

 a1 +

3
x b

x

lim
y:0+

 e-1>y ln ylim
t:0+

 aet

t -

1
t b

lim
x:4

 
sin2 spxd

ex - 4
+ 3 - x

lim
t:0+

 
t - ln s1 + 2td

t2

lim
x:0

 
4 - 4ex

xexlim
x:0

 
5 - 5 cos x
ex

- x - 1

lim
x:0

 
2-sin x

- 1
ex

- 1
lim
x:0

 
2sin x

- 1
ex

- 1

lim
u:0

 
3u - 1
u

lim
x:0

 
10x

- 1
x

ln s10 ln yd = ln 5xln sy - 1d = x + ln y

3y
= 3 ln x9e2y

= x2

4-y
= 3y + 23y

= 2y + 1

L  
dt

s3t + 1d29t2
+ 6tL  

dt

st + 1d2t2
+ 2t - 8

L
1

-1
 

3 dy
4y2

+ 4y + 4L
-1

-2
 

2 dy
y2

+ 4y + 5
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Chapter 7 Practice Exercises 549

99. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f.

100. True, or false? Give reasons for your answers.

a. b.

c. d.

e. f.

Theory and Applications
101. The function being differentiable and one-to-

one, has a differentiable inverse Find the value of
at the point ƒ(ln 2).

102. Find the inverse of the function Then
show that and that

In Exercises 103 and 104, find the absolute maximum and minimum
values of each function on the given interval.

103.

104.

105. Area Find the area between the curve and the x-
axis from to 

106. Area

a. Show that the area between the curve and the x-axis
from to is the same as the area between the
curve and the x-axis from to 

b. Show that the area between the curve and the x-axis
from ka to kb is the same as the area between the curve and
the x-axis from to 

107. A particle is traveling upward and to the right along the curve
Its x-coordinate is increasing at the rate 
At what rate is the y-coordinate changing at the point

108. A girl is sliding down a slide shaped like the curve 
Her y-coordinate is changing at the rate 

At approximately what rate is her x-coordinate changing
when she reaches the bottom of the slide at (Take to
be 20 and round your answer to the nearest ft sec.)

109. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle its
largest area, and what is that area?

y = e-x2

.

> e3x = 9 ft?
ft>sec .

s -1>4d29 - ydy>dt =

y = 9e-x>3 .

se2, 2d?
1x m>sec .

sdx>dtd =y = ln x .

x = b s0 6 a 6 b, k 7 0d .x = a

y = 1>x
x = 2.x = 1

x = 20x = 10
y = 1>x

x = e .x = 1
y = 2sln xd/x

y = 10xs2 - ln xd, s0, e2]

y = x ln 2x - x, c 1
2e

, 
e
2
d

dƒ -1

dx
 `

ƒsxd
=

1
ƒ¿sxd

.

ƒ -1sƒsxdd = ƒsƒ -1sxdd = x
ƒsxd = 1 + s1>xd, x Z 0.

dƒ -1>dx
ƒ -1sxd .

ƒsxd = ex
+ x ,

sinh x = Osexdsec-1 x = Os1d
ln 2x = Osln xdln x = osx + 1d

1
x4 = o a 1

x2 +

1
x4b1

x4 = O a 1
x2 +

1
x4b

cosh x = Osexdtan-1 x = Os1d
ln sln xd = osln xdx = osx + ln xd

1
x2 +

1
x4 = O a 1

x4b1
x2 +

1
x4 = O a 1

x2b

110. The rectangle shown here has one side on the positive y-axis,
one side on the positive x-axis, and its upper right-hand vertex
on the curve What dimensions give the rectangle
its largest area, and what is that area?

111. The functions and differ by a con-
stant. What constant? Give reasons for your answer.

112. a. If must 

b. If must 

Give reasons for your answers.

113. The quotient has a constant value. What value?
Give reasons for your answer.

114. vs. How does compare with
Here is one way to find out.

a. Use the equation to express ƒ(x) and
g(x) in terms of natural logarithms.

b. Graph ƒ and g together. Comment on the behavior of ƒ in re-
lation to the signs and values of g.

115. Graph the following functions and use what you see to locate
and estimate the extreme values, identify the coordinates of the
inflection points, and identify the intervals on which the graphs
are concave up and concave down. Then confirm your estimates
by working with the functions’ derivatives.

a. b. c.

116. Graph Does the function appear to have an ab-
solute minimum value? Confirm your answer with calculus.

117. What is the age of a sample of charcoal in which 90% of the car-
bon-14 originally present has decayed?

118. Cooling a pie A deep-dish apple pie, whose internal tempera-
ture was 220°F when removed from the oven, was set out on a
breezy 40°F porch to cool. Fifteen minutes later, the pie’s inter-
nal temperature was 180°F. How long did it take the pie to cool
from there to 70°F?

119. Locating a solar station You are under contract to build a so-
lar station at ground level on the east–west line between the two
buildings shown here. How far from the taller building should
you place the station to maximize the number of hours it will be

ƒsxd = x ln x .

y = s1 + xde-xy = e-x2

y = sln xd>1x

loga b = sln bd>sln ad
gsxd = log2 sxd?

ƒsxd = logx s2dlog2 sxdlogx s2d

slog4 xd>slog2 xd

x = 1>2?sln xd>x = -2 ln 2 ,

x = 2?sln xd>x = sln 2d>2,

gsxd = ln 3xƒsxd = ln 5x

x

y

0

0.2 y � 

1

0.1
x2

ln x

y = sln xd>x2 .

x

y

0

1 y � e–x2

T

T

T
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in the sun on a day when the sun passes directly overhead? Begin
by observing that

Then find the value of x that maximizes 

x
50 m0

60 m

�
30 m

x

u .

u = p - cot-1 
x

60
- cot-1 

50 - x
30

.

120. A round underwater transmission cable consists of a core of cop-
per wires surrounded by nonconducting insulation. If x denotes
the ratio of the radius of the core to the thickness of the insula-
tion, it is known that the speed of the transmission signal is given
by the equation If the radius of the core is 1 cm,
what insulation thickness h will allow the greatest transmission
speed?

Insulation

x � r
h

h
r

Core

y = x2 ln s1>xd .
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T

Chapter 7 Additional and Advanced Exercises

Limits
Find the limits in Exercises 1–6.

1. 2.

3. 4.

5.

6.

7. Let A(t) be the area of the region in the first quadrant enclosed by
the coordinate axes, the curve and the vertical line

Let V(t) be the volume of the solid generated by re-
volving the region about the x-axis. Find the following limits.

a. b. c.

8. Varying a logarithm’s base

a. Find as and 

b. Graph as a function of a over the interval

Theory and Examples
9. Find the areas between the curves and 

and the x-axis from to What is the ratio
of the larger area to the smaller?

10. Graph for Then use
calculus to explain what you see. How would you expect ƒ to be-
have beyond the interval Give reasons for your answer.

11. For what does Give reasons for your
answer.

x sxxd
= sxxdx ?x 7 0

[-5, 5]?

-5 … x … 5.ƒsxd = tan-1 x + tan-1s1>xd

x = e .x = 12slog4 xd>x
y =y = 2slog2 xd>x

0 6 a … 4.
y = loga 2

q .a : 0+, 1-, 1+ ,lim loga 2

lim
t:0+

 Vstd>Astdlim
t: q

 Vstd>Astdlim
t: q

 Astd

x = t, t 7 0.
y = e-x ,

lim
n: q

 
1
n Ae1>n

+ e2>n
+

Á
+ e sn - 1d>n

+ en>n B
lim

n: q

 a 1
n + 1

+

1
n + 2

+
Á

+

1
2n
b

lim
x: q

sx + exd2>xlim
x:0+

scos 1xd1>x

lim
x: q

 
1
xL

x

0
 tan-1 t dtlim

b:1-L
b

0
 

dx21 - x2

12. Graph over Explain what you see.

13. Find if and 

14. a. Find df dx if

b. Find ƒ(0).

c. What can you conclude about the graph of ƒ? Give reasons
for your answer.

15. The figure here shows an informal proof that

How does the argument go? (Source: “Behold! Sums of Arctan,”
by Edward M. Harris, College Mathematics Journal, Vol. 18,
No. 2, Mar. 1987, p. 141.)

16.

a. Why does the accompanying figure “prove” that 
(Source: “Proof Without Words,” by Fouad Nakhil,
Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 165.)

b. The accompanying figure assumes that has an
absolute maximum value at How do you know it does?x = e .

ƒsxd = sln xd>x

pe
6 ep?

Pe<eP

C

B

EA

D

tan-1 
1
2

+ tan-1 
1
3

=

p

4
.

ƒsxd = L
ex

1
 
2 ln t

t  dt .

>
g sxd = L

x

2
 

t

1 + t4 dt .ƒsxd = egsxdƒ¿s2d

[0, 3p] .ƒsxd = ssin xdsin x

T

T
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Chapter 7 Additional and Advanced Exercises 551

17. Use the accompanying figure to show that

18. Napier’s inequality Here are two pictorial proofs that

Explain what is going on in each case.

a.

b.

(Source: Roger B. Nelson, College Mathematics Journal, Vol. 24,
No. 2, March 1993, p. 165.)

x

y

0 a b

y � 1
x

x

y

0 a b

L1

L2

L3

y � ln x

b 7 a 7 0 Q  1
b

6

ln b - ln a
b - a

6

1
a .

0 1

1

�
2

�
2

y � sin x

y � sin–1 x

x

y

L
p>2

0
 sin x dx =

p

2
- L

1

0
 sin-1 x dx .

x

y

0 1 e �

NOT TO SCALE

y �
ln x

x

ln e
e

ln �
�

19. Even-odd decompositions

a. Suppose that g is an even function of x and h is an odd
function of x. Show that if for all x then

for all x and for all x.

b. Use the result in part (a) to show that if 
is the sum of an even function and an

odd function then

c. What is the significance of the result in part (b)?

20. Let g be a function that is differentiable throughout an open inter-
val containing the origin. Suppose g has the following properties:

i. for all real numbers x, y, and

in the domain of g.

ii.

iii.

a. Show that 

b. Show that 

c. Find g (x) by solving the differential equation in part (b).

Applications
21. Center of mass Find the center of mass of a thin plate of con-

stant density covering the region in the first and fourth quadrants
enclosed by the curves and 
and by the lines and 

22. Solid of revolution The region between the curve
and the x-axis from to is revolved

about the x-axis to generate a solid.

a. Find the volume of the solid.

b. Find the centroid of the region.

23. The Rule of 70 If you use the approximation (in
place of ), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5%
will double in about If you want it to double in
10 years instead, you have to invest it at Show how
the Rule of 70 is derived. (A similar “Rule of 72” uses 72 instead
of 70, because 72 has more integer factors.)

24. Free fall in the fourteenth century In the middle of the four-
teenth century, Albert of Saxony (1316–1390) proposed a model
of free fall that assumed that the velocity of a falling body was
proportional to the distance fallen. It seemed reasonable to think
that a body that had fallen 20 ft might be moving twice as fast as a
body that had fallen 10 ft. And besides, none of the instruments in
use at the time were accurate enough to prove otherwise. Today
we can see just how far off Albert of Saxony’s model was by

70>10 = 7%.
70>5 = 14 years .

0.69314 Á

ln 2 L 0.70

x = 4x = 1>4y = 1>s21xd

x = 1.x = 0
y = -1>s1 + x2dy = 1>s1 + x2d

g¿sxd = 1 + [g sxd]2 .

gs0d = 0.

lim
h:0

 
g shd

h
= 1

lim
h:0

 g shd = 0

x + y

g sx + yd =

g sxd + g syd
1 - g sxdg syd

ƒE sxd = sƒsxd + ƒs -xdd>2 and ƒO sxd = sƒsxd - ƒs -xdd>2.

ƒO sxd ,
ƒE sxdƒE sxd + ƒO sxd

ƒsxd =

hsxd = 0g sxd = 0
g sxd + h sxd = 0
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solving the initial value problem implicit in his model. Solve the
problem and compare your solution graphically with the equation

You will see that it describes a motion that starts too
slowly at first and then becomes too fast too soon to be realistic.

25. The best branching angles for blood vessels and pipes When
a smaller pipe branches off from a larger one in a flow system, we
may want it to run off at an angle that is best from some energy-
saving point of view. We might require, for instance, that energy
loss due to friction be minimized along the section AOB shown in
the accompanying figure. In this diagram, B is a given point to be
reached by the smaller pipe, A is a point in the larger pipe up-
stream from B, and O is the point where the branching occurs. A
law due to Poiseuille states that the loss of energy due to friction
in nonturbulent flow is proportional to the length of the path and
inversely proportional to the fourth power of the radius. Thus, the
loss along AO is and along OB is where k is a
constant, is the length of AO, is the length of OB, R is the ra-
dius of the larger pipe, and r is the radius of the smaller pipe. The
angle is to be chosen to minimize the sum of these two losses:

In our model, we assume that and are fixed.
Thus we have the relations

so that

d1 = a - d2 cos u = a - b cot u .

d2 = b csc u ,

d1 + d2 cos u = a d2 sin u = b ,

BC = bAC = a

a

C

B

O

A

d1

d2

d2 cos �

b � d2 sin �

�

L = k 
d1

R4 + k 
d2

r4 .

u

d2d1

skd2d>r4 ,skd1d>R4

s = 16t2 .

We can express the total loss L as a function of 

a. Show that the critical value of for which equals zero
is

b. If the ratio of the pipe radii is estimate to the
nearest degree the optimal branching angle given in part (a).

The mathematical analysis described here is also used to explain
the angles at which arteries branch in an animal’s body. (See In-
troduction to Mathematics for Life Scientists, Second Edition, by
E. Batschelet [New York: Springer-Verlag, 1976].)

26. Group blood testing During World War II it was necessary to
administer blood tests to large numbers of recruits. There are two
standard ways to administer a blood test to N people. In method 1,
each person is tested separately. In method 2, the blood samples
of x people are pooled and tested as one large sample. If the test is
negative, this one test is enough for all x people. If the test is pos-
itive, then each of the x people is tested separately, requiring a to-
tal of tests. Using the second method and some probability
theory it can be shown that, on the average, the total number of
tests y will be

With and find the integer value of x that
minimizes y. Also find the integer value of x that maximizes y.
(This second result is not important to the real-life situation.) The
group testing method was used in World War II with a savings of
80% over the individual testing method, but not with the given
value of q.

N = 1000,q = 0.99

y = N a1 - qx
+

1
x b .

x + 1

r>R = 5>6,

uc = cos-1 
r4

R4 .

dL>duu

L = k aa - b cot u

R4 +

b csc u

r4 b .

u :
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OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral.
Evaluating the indefinite integral

is equivalent to finding a function F such that and then adding an
arbitrary constant C:

In this chapter we study a number of important techniques for finding indefinite
integrals of more complicated functions than those seen before. The goal of this chapter
is to show how to change unfamiliar integrals into integrals we can recognize, find in a
table, or evaluate with a computer. We also extend the idea of the definite integral to
improper integrals for which the integrand may be unbounded over the interval of inte-
gration, or the interval itself may no longer be finite.

L  ƒsxd dx = Fsxd + C .

F¿sxd = ƒsxd ,

L  ƒsxd dx

553

TECHNIQUES OF

INTEGRATION

C h a p t e r

8 

Basic Integration Formulas

To help us in the search for finding indefinite integrals, it is useful to build up a table of
integral formulas by inverting formulas for derivatives, as we have done in previous chap-
ters. Then we try to match any integral that confronts us against one of the standard types.
This usually involves a certain amount of algebraic manipulation as well as use of the Sub-
stitution Rule.

Recall the Substitution Rule from Section 5.5:

where is a differentiable function whose range is an interval I and ƒ is continuous
on I. Success in integration often hinges on the ability to spot what part of the integrand
should be called u in order that one will also have du, so that a known formula can be
applied. This means that the first requirement for skill in integration is a thorough mastery of
the formulas for differentiation.

u = gsxd

L  ƒsgsxddg¿sxd dx = L  ƒsud du

8.1
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TABLE 8.1 Basic integration formulas

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

 = ln ƒ sec u ƒ + C

 L  tan u du = - ln ƒ cos u ƒ + C

L  csc u cot u du = -csc u + C

L  sec u tan u du = sec u + C

L  csc2 u du = -cot u + C

L  sec2 u du = tan u + C

L  cos u du = sin u + C

L  sin u du = -cos u + C

L  
du
u = ln ƒ u ƒ + C

L  un du =

un + 1

n + 1
+ C sn Z -1d

L  sdu + dyd = L  du + L  dy

Lk du = ku + C sany number kd

L  du = u + C 13.

14.

15.

16.

17.

18.

19.

20.

21.

22. L  
du2u2

- a2
= cosh-1 aua b + C su 7 a 7 0d

L  
du2a2

+ u2
= sinh-1 aua b + C sa 7 0d

L  
du

u2u2
- a2

=
1
a sec-1 `  ua ` + C

L  
du

a2
+ u2 =

1
a tan-1 aua b + C

L  
du2a2

- u2
= sin-1 aua b + C

L  cosh u du = sinh u + C

L  sinh u du = cosh u + C

Lau du =

au

ln a
+ C sa 7 0, a Z 1d

Leu du = eu
+ C

 = - ln ƒ csc u ƒ + C

 L  cot u du = ln ƒ sin u ƒ + C

554 Chapter 8: Techniques of Integration

We often have to rewrite an integral to match it to a standard formula.

EXAMPLE 1 Making a Simplifying Substitution

Evaluate

L  
2x - 92x2

- 9x + 1
 dx .

Table 8.1 shows the basic forms of integrals we have evaluated so far. In this section
we present several algebraic or substitution methods to help us use this table. There is a
more extensive table at the back of the book; we discuss its use in Section 8.6.
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Solution

EXAMPLE 2 Completing the Square

Evaluate

Solution We complete the square to simplify the denominator:

Then

EXAMPLE 3 Expanding a Power and Using a Trigonometric Identity

Evaluate

Solution We expand the integrand and get

The first two terms on the right-hand side of this equation are familiar; we can integrate
them at once. How about There is an identity that connects it with 

tan2 x + 1 = sec2 x,  tan2 x = sec2 x - 1.

sec2 x :tan2 x?

ssec x + tan xd2
= sec2 x + 2 sec x tan x + tan2 x .

L  ssec x + tan xd2 dx .

 = sin-1 ax - 4
4
b + C .

 = sin-1 aua b + C

 = L  
du2a2

- u2

 L  
dx28x - x2

= L  
dx216 - sx - 4d2

 = -sx2
- 8x + 16d + 16 = 16 - sx - 4d2 .

 8x - x2
= -sx2

- 8xd = -sx2
- 8x + 16 - 16d

L  
dx28x - x2

.

 = 22x2
- 9x + 1 + C

 = 2u1>2
+ C

 =

u s-1>2d + 1

s -1>2d + 1
+ C

 = Lu-1>2 du

 L  
2x - 92x2

- 9x + 1
 dx = L  

du1u

8.1 Basic Integration Formulas 555

Table 8.1 Formula 4,
with n = -1>2

du = dx
a = 4, u = sx - 4d,

Table 8.1, Formula 18

.du = s2x - 9d dx
u = x2

- 9x + 1,
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We replace by and get

EXAMPLE 4 Eliminating a Square Root

Evaluate

Solution We use the identity

With this identity becomes

Hence,

EXAMPLE 5 Reducing an Improper Fraction

Evaluate

Solution The integrand is an improper fraction (degree of numerator greater than or
equal to degree of denominator). To integrate it, we divide first, getting a quotient plus a
remainder that is a proper fraction:

Therefore,

L  
3x2

- 7x
3x + 2

 dx = L  ax - 3 +

6
3x + 2

b  dx =

x2

2
- 3x + 2 ln ƒ 3x + 2 ƒ + C .

3x2
- 7x

3x + 2
= x - 3 +

6
3x + 2

.

L  
3x2

- 7x
3x + 2

 dx .

 = 22 c1
2

- 0 d =

22
2

.

 = 22 csin 2x
2
d

0

p>4
 = 22L

p>4
0

 cos 2x dx

 = 22L
p>4

0
ƒ cos 2x ƒ  dx

 L
p>4

0
21 + cos 4x dx = L

p>4
0
22 2cos2 2x dx

1 + cos 4x = 2 cos2 2x .

u = 2x ,

cos2 u =

1 + cos 2u
2

,  or 1 + cos 2u = 2 cos2 u .

L
p>4

0
21 + cos 4x dx .

 = 2 tan x + 2 sec x - x + C .

 = 2L  sec2 x dx + 2L  sec x tan x dx - L  1 dx

 L  ssec x + tan xd2 dx = L  ssec2 x + 2 sec x tan x + sec2 x - 1d dx

sec2 x - 1tan2 x

556 Chapter 8: Techniques of Integration

On 
so ƒ cos 2x ƒ = cos 2x .

[0, p>4], cos 2x Ú 0 ,

Table 8.1, Formula 7, with
and du = 2 dxu = 2x

2u2
= ƒ u ƒ

x - 3  
3x + 2�3x2

- 7x 
3x2

+ 2x 
-9x 
-9x - 6

+ 6
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Reducing an improper fraction by long division (Example 5) does not always lead to
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Separating a Fraction

Evaluate

Solution We first separate the integrand to get

In the first of these new integrals, we substitute

The second of the new integrals is a standard form,

Combining these results and renaming as C gives

The final example of this section calculates an important integral by the algebraic
technique of multiplying the integrand by a form of 1 to change the integrand into one we
can integrate.

EXAMPLE 7 Integral of —Multiplying by a Form of 1

Evaluate

Solution

 = ln ƒ u ƒ + C = ln ƒ sec x + tan x ƒ + C .

 = L  
du
u

 = L  
sec2 x + sec x tan x

sec x + tan x  dx

 L  sec x dx = L  ssec xds1d dx = L  sec x # sec x + tan x
sec x + tan x dx

L  sec x dx .

y = sec x

L  
3x + 221 - x2

 dx = -321 - x2
+ 2 sin-1 x + C .

C1 + C2

2L  
dx21 - x2

= 2 sin-1x + C2 .

 = -

3
2

# u1>2
1>2 + C1 = -321 - x2

+ C1

 3L  
x dx21 - x2

= 3L  
s -1>2d du1u

= -

3
2L  u-1>2 du

 u = 1 - x2,  du = -2x dx,  and x dx = -
1
2

 du .

L  
3x + 221 - x2

 dx = 3L  
x dx21 - x2

+ 2L  
dx21 - x2

.

L  
3x + 221 - x2

 dx .

8.1 Basic Integration Formulas 557

du = ssec2 x + sec x tan xd dx
u = tan x + sec x ,

HISTORICAL BIOGRAPHY

George David Birkhoff
(1884–1944)
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With cosecants and cotangents in place of secants and tangents, the method of Exam-
ple 7 leads to a companion formula for the integral of the cosecant (see Exercise 95).

558 Chapter 8: Techniques of Integration

TABLE 8.2 The secant and cosecant integrals

1.

2. L  csc u du = - ln ƒ csc u + cot u ƒ + C

L  sec u du = ln ƒ sec u + tan u ƒ + C

Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying
substitution

Completing the square

Using a trigonometric
identity

Eliminating a square root

Reducing an improper
fraction

Separating a fraction

Multiplying by a form of 1

 =

sec2 x + sec x tan x
sec x + tan x

 sec x = sec x # sec x + tan x
sec x + tan x

3x + 221 - x2
=

3x21 - x2
+

221 - x2

3x2
- 7x

3x + 2
= x - 3 +

6
3x + 2

21 + cos 4x = 22 cos2 2x = 22 ƒ cos 2x ƒ

 = 2 sec2 x + 2 sec x tan x - 1

 + ssec2 x - 1d
 = sec2 x + 2 sec x tan x

 ssec x + tan xd2
= sec2 x + 2 sec x tan x + tan2 x

28x - x2
= 216 - sx - 4d2

2x - 92x2
- 9x + 1

 dx =

du1u
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EXERCISES 8.1

Basic Substitutions
Evaluate each integral in Exercises 1–36 by using a substitution to re-
duce it to standard form.

1. 2. L  
3 cos x dx21 + 3 sin xL  

16x dx28x2
+ 1

3. 4.

5. 6. L
p>3
p>4  

sec2 z
tan z dzL

1

0
 

16x dx

8x2
+ 2

L  cot3 y csc2 y dyL  32sin y cos y dy
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7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Completing the Square
Evaluate each integral in Exercises 37–42 by completing the square
and using a substitution to reduce it to standard form.

37. 38.

39. 40.

41. 42. L  
dx

sx - 2d2x2
- 4x + 3L  

dx

sx + 1d2x2
+ 2x

L  
du22u - u2L  

dt2- t2
+ 4t - 3

L
4

2
 

2 dx

x2
- 6x + 10L

2

1
 

8 dx

x2
- 2x + 2

L  
ln x dx

x + 4x ln2 xL
ep>3

1
 

dx
x cos sln xd

L  
dy2e2y

- 1L  
dx

ex
+ e-x

L  
dr

r2r2
- 9L  

6 dx

x225x2
- 1

L  
2 dx

x21 - 4 ln2 xL  
2s ds21 - s4

L
1

0
 

dt24 - t2L
1>6

0
 

dx21 - 9x2

L  
4 dx

1 + s2x + 1d2L  
9 du

1 + 9u2

L  102u duL  
21w dw
21w

L  
2lnx

x  dxL  3x + 1 dx

L  
e1t dt1tL  e tan y sec2 y dy

L
p

p>2ssin ydecos y dyL
2ln 2

0
 2x ex2

 dx

L  
1
u2 csc 

1
u

 duL  csc ss - pd ds

L  x sec sx2
- 5d dxL  sec 

t
3

 dt

L  
cot s3 + ln xd

x  dxL  eu csc seu + 1d du

L  csc spx - 1d dxL  cot s3 - 7xd dx

L  
dx

x - 1xL  
dx1x s1x + 1d
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Trigonometric Identities
Evaluate each integral in Exercises 43–46 by using trigonometric
identities and substitutions to reduce it to standard form.

43. 44.

45.

46.

Improper Fractions
Evaluate each integral in Exercises 47–52 by reducing the improper
fraction and using a substitution (if necessary) to reduce it to standard
form.

47. 48.

49. 50.

51. 52.

Separating Fractions
Evaluate each integral in Exercises 53–56 by separating the fraction
and using a substitution (if necessary) to reduce it to standard form.

53. 54.

55. 56.

Multiplying by a Form of 1
Evaluate each integral in Exercises 57–62 by multiplying by a form of
1 and using a substitution (if necessary) to reduce it to standard form.

57. 58.

59. 60.

61. 62.

Eliminating Square Roots
Evaluate each integral in Exercises 63–70 by eliminating the square
root.

63. 64. L
p

0
21 - cos 2x dxL

2p

0 A1 - cos x
2

 dx

L  
1

1 - csc x
 dxL  

1
1 - sec x

 dx

L  
1

csc u + cot u
 duL  

1
sec u + tan u

 du

L  
1

1 + cos x
 dxL  

1
1 + sin x

 dx

L
1>2

0
 
2 - 8x

1 + 4x2 dxL
p>4

0
 
1 + sin x

cos2 x
 dx

L  
x + 22x - 1

2x2x - 1
 dxL  

1 - x21 - x2
 dx

L  
2u3

- 7u2
+ 7u

2u - 5
 duL  

4t3
- t2

+ 16t

t2
+ 4

 dt

L
3

-1
  
4x2

- 7
2x + 3

 dxL
322

  
2x3

x2
- 1

 dx

L  
x2

x2
+ 1

 dxL  
x

x + 1
 dx

L  ssin 3x cos 2x - cos 3x sin 2xd dx

L  csc x sin 3x dx

L  scsc x - tan xd2 dxL  ssec x + cot xd2 dx
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