

E. Physical Methods

i. Fruit irradiation:

- Food irradiation improves the safety and extends the shelf life of foods by reducing or eliminating microorganisms and insects.
- Among the ionizing radiation, gamma irradiation is most successfully used for inhibiting the growth of pathogens inside fruit tissue.
- Irradiation ranging between 0.3 KGY and 1.2 KGY reduces the incidence of postharvest storage diseases of mango (*Gloesporium & Botryodiplodia*) but a dose above 0.6 KGY results in surface discoloration of the fruits. e.g. peaches, strawberries and guava fruits.
- Alternaria, Botrytis and Stemphylium can be controlled in vegetables in greenhouses with special UV-absorbing polyvinyl film.

ii. Washing of Fruits

- After harvest before packing/marketing, individual fruits should be washed in abundant flow of clean water to remove plant debris and trash and pathogens responsible for causing diseases in transit.
- Washing fruits and vegetables in hydro cooler is much beneficial as it extends the shelf life of the produce.

- Hydrocooling is helpful to avoid wilting, shrinking and losing flavor in fresh fruits and vegetables.
- Fruits and vegetables are placed on a conveyor that pushes the boxes through a cooling tunnel.
- Hydro cooling can lower the product's temperature to a safe level.

Hydrocooling

- A hydro cooling unit can cool fruits and vegetables from 30 to 5°C at a rate of 20,000 kg/h.
- The water is circulated and cooled by the evaporator section of a refrigeration system.

iii. Hot Water Treatment

- Why hot water treatment is required?
- Contaminated or dirty fresh fruits and vegetables may cause food-borne illness.
- Contamination can come from water, soil, fertilizer, wild animals or birds, unsanitary processing methods, and when food is handled or prepared by the consumer.

Mode of Entry for Pathogens

- Natural openings
- Mechanical damage
- Bruises
- Severe blemishes
- Direct penetration

- Hot water treatment was first introduced in 1922 to control postharvest decay in citrus fruit.
- In hot water treatment fruits are immersed in hot water before storage or marketing.
- Hot water treatment is promising and has been used with success in eradicating or suppressing the development of fungi/bacteria on the fruit surface as well as those situated just below the surface as a result of pre-harvest infection.

Methods of Hot Water Treatment

• 1. Hot water immersion

• 2. Rinsing and brushing

iv. Aerated Steam / Vapour Heat Treatment

- Recently heated forced air treatment has gained some importance in the postharvest treatment of some fruits.
- e.g. treatment of mango at 48 °C for 15 minutes considerably reduces the anthracnose /stem end rot (*B. theobromae*) and also eradicates the infection of fruit fly.

 Vapor heat treatment is a method of heating fruit with air saturated with water vapor at temperatures of 40–50°C to kill insect eggs and larvae as a quarantine treatment before fresh market shipment.

Benefits of Vapour Heat Treatment

- VHT system is a non-chemical alternative to control unwanted insects and fungi in perishable commodities and tropical fruits like mangoes or papayas.
- VHT is a very environmentally friendly process of sterilization which is much safer than the use of insecticides and other synthetic chemicals.

Vapour Heat Treatment System

v. Drying fruits

 Many fruits can be stored for longer time after drying and can be kept free of disease because moisture is kept below a certain level during storage e.g. grapes, plums, dates and figs, slices of fleshy fruits apples, peaches and apricots etc.

F. Biological Control

- Use of microbes offers one of the most effective means of controlling the postharvest diseases without any adverse effect on the environment and the consumer.
- Spraying with suspensions of *T. harzinum, T.*
- viride, Gliocladium roseum and Paceilomyces variotii results in a partial control of Botrytis in strawberry fruits and Alternaria rot in lemons.

G. Fruit Coating with Vegetable / Edible Oil

- Use of vegetable oils in plant disease control is a recent development in the field of
- plant pathology. e.g. Castor, Linseed, Mustard, Sunflower, Safflower, Groundnut, mineral oils, Palma rosa, red thyme / liquid paraffin

etc. are coated on harvested fruits to prevent entry of pathogen as well as decreasing respiration due to their antifungal activity.

 Herbal edible coatings are used as a nutraceutical and beneficial for consumer health.

- Edible coatings are also used for extension of shelf life of fruits and vegetables.
- These can also be safely eaten as part of the product and do not add unfavourable properties to the foodstuff.

- Edible coatings help to prevent loss of firmness and moisture and also control maturation, development and respiratory rate.
- Edible coatings prevent oxidative browning and decrease growth of microorganisms in fruits and vegetables e.g. Tomato, Cucumber, and Cherries.
- They have high potential to manage browning, discolouration activity and off flavor.
- They contain active components such as antioxidants, vitamins etc. and enhance nutritional composition of fruits and vegetables without affecting desired quality.

Examples of Edible Coatings on Fruits and Vegetables

Fruits:

• Orange, Apple, Grapefruit, Cherry, Papaya, Lemon, Strawberry, Mango, Peach etc. and freshcut Apple, fresh-cut Peach, fresh-cut Pear etc.

Vegetables:

 Tomato. Cucumber, Capsicum, Cantaloupe and minimally processed Carrot, fresh-cut Potato, Cabbage, fresh-cut Tomato slices, fresh-cut Onion, Lettuce etc.

Classes of Edible Coatings

- The edible coatings are mainly divided into three classes:
- **1. Hydrocolloids**: e.g. Polysaccharides, proteins and alginate.
- 2. Lipids: e.g. Fatty acids and waxes.
- 3. Composites: e.g. Protein/protein, polysaccharides/protein, lipid/polysaccharides.

Examples Edible Coating

- Fruit and Vegetable
- Tomato
- Apple

- Mango
- Strawberry

Edible Coating

Aloe Vera gel Aloe vera gel, neem oil, guar gum, marigold flower extract. Aloe vera, chitosan Sodium Alginate, linseed mucilage extract, Arabian gum

H. Natural Plant Products

- Neem leaves kept in grain store houses prevent deterioration by molds and pests.
- Baskets of fruits and vegetables are lined with neem leaves for their protection against microbial attacks.
- It is believed that toxic substance emitted by the leaves keep the air remarkably free of pathogenic microorganisms.

I. Treatments to minimize water loss

- Postharvest studies have shown that reducing transpiration provides a means of extending the shelf-life of fresh produce.
- Water loss during transpiration leads to shrinkage, drying and softening and triggers senescence, leading to accelerated deterioration of produce.
- Waxing is commercially used to reduce the transpiration rate of fruits and vegetables.

*Sources

- 1. Recommended books.
- 2. Latest research articles downloaded from Google.
- 3. Google images.

• *Solely for academic purpose and guidance of students.