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and 

We have defined general exponential functions such as and In this section we
compute their derivatives and integrals. We also define the general logarithmic functions
such as and and find their derivatives and integrals as well.

The Derivative of 

We start with the definition 

If then

With the Chain Rule, we get a more general form.

d
dx

 ax
= ax ln a.

a 7 0,

 = ax ln a .

d
dx

 eu
= eu 

du
dx

 
d
dx

 ax
=

d
dx

 ex ln a
= ex ln a # d

dx
 sx ln ad

ax
= ex ln a :

au

logp x ,log2 x, log10 x ,

px .2x, 10x ,

loga xax7.4

If and u is a differentiable function of x, then is a differentiable function
of x and

(1)
d
dx

 au
= au ln a  

du
dx

.

aua 7 0

These equations show why is the exponential function preferred in calculus. If 
then and the derivative of simplifies to

d
dx

 ex
= ex ln e = ex .

axln a = 1
a = e ,ex
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EXAMPLE 1 Differentiating General Exponential Functions

(a)

(b)

(c)

From Equation (1), we see that the derivative of is positive if or 
and negative if or Thus, is an increasing function of x if 
and a decreasing function of x if In each case, is one-to-one. The second
derivative

is positive for all x, so the graph of is concave up on every interval of the real line
(Figure 7.12).

Other Power Functions

The ability to raise positive numbers to arbitrary real powers makes it possible to define
functions like and for We find the derivatives of such functions by rewriting
the functions as powers of e.

EXAMPLE 2 Differentiating a General Power Function

Find 

Solution Write as a power of e:

Then differentiate as usual:

The Integral of 

If so that we can divide both sides of Equation (1) by ln a to obtain

au 
du
dx

=
1

ln a
 
d
dx

 saud .

ln a Z 0,a Z 1,

au

 = xx s1 + ln xd .

 = xx ax # 1
x + ln xb

 = ex ln x 
d
dx

 sx ln xd

 
dy
dx

=

d
dx

 ex ln x

ax with a = x .y = xx
= ex ln x .

xx

dy>dx if y = xx, x 7 0.

x 7 0.xln xxx

ax

d2

dx2 saxd =

d
dx

 sax ln ad = sln ad2 ax

ax0 6 a 6 1.
a 7 1ax0 6 a 6 1.ln a 6 0,

a 7 1,ln a 7 0,ax

d
dx

 3sin x
= 3sin xsln 3d 

d
dx

 ssin xd = 3sin x sln 3d cos x

d
dx

 3-x
= 3-xsln 3d 

d
dx

 s -xd = -3-x ln 3

d
dx

 3x
= 3x ln 3
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x
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1
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y � 1x

y � 





1
2

x
y � 





1
3

x
y � 





1
10 y � 10x

y � 3x

y � 2x

FIGURE 7.12 Exponential functions
decrease if and increase if

As we have if
and if As

we have if 
and if a 7 1.ax : 0

0 6 a 6 1ax : qx : - q ,
a 7 1.ax : q0 6 a 6 1
ax : 0x : q ,a 7 1.

0 6 a 6 1
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7.4 and 497loga xax

Integrating with respect to x then gives

Writing the first integral in differential form gives

L  au  
du
dx

 dx = L  
1

ln a
 
d
dx

 saud dx =
1

ln aL  
d
dx

 saud dx =
1

ln a
 au

+ C .

(2)Lau du =

au

ln a
+ C .

EXAMPLE 3 Integrating General Exponential Functions

(a) Eq. (2) with

(b)

and Eq. (2)

u replaced by sin x

Logarithms with Base a

As we saw earlier, if a is any positive number other than 1, the function is one-to-one
and has a nonzero derivative at every point. It therefore has a differentiable inverse. We
call the inverse the logarithm of x with base a and denote it by loga x.

ax

=
2sin x

ln 2
+ C

u = sin x, du = cos x dx,= L  2u du =
2u

ln 2
+ C

L  2sin x cos x dx

a = 2, u = xL  2x dx =
2x

ln 2
+ C

DEFINITION
For any positive number 

is the inverse function of ax .loga x

a Z 1,

loga x

The graph of can be obtained by reflecting the graph of across the 45°
line (Figure 7.13). When we have of Since 
and are inverses of one another, composing them in either order gives the identity function.ax

loga xex
= ln x .loge x = inversea = e ,y = x

y = axy = loga x

Inverse Equations for and 

(3)

(4)loga saxd = x sall xd

a loga x
= x sx 7 0d

loga xax

x

y

1
2

0 1 2

y � log2x

y � 2x

y � x

FIGURE 7.13 The graph of and its
inverse, log 2 x .

2x
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EXAMPLE 4 Applying the Inverse Equations

(a) (b)

(c) (d)

Evaluation of 

The evaluation of is simplified by the observation that is a numerical multiple
of ln x.

loga xloga x

loga x

10log10 s4d
= 42log2 s3d

= 3

log10 s10-7d = -7log2 s25d = 5
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(5)loga x =
1

ln a
#  ln x =

ln x
ln a

We can derive this equation from Equation (3):

Eq. (3)

Take the natural logarithm of both sides.

The Power Rule in Theorem 2

Solve for

For example,

The arithmetic rules satisfied by are the same as the ones for ln x (Theorem 2).
These rules, given in Table 7.2, can be proved by dividing the corresponding rules for the
natural logarithm function by ln a. For example,

Rule 1 for natural logarithms

divided by ln a

gives Rule 1 for base a logarithms.

Derivatives and Integrals Involving 

To find derivatives or integrals involving base a logarithms, we convert them to natural
logarithms.

If u is a positive differentiable function of x, then

d
dx

 sloga ud =

d
dx

 aln u
ln a
b =

1
ln a

 
d
dx

 sln ud =
1

ln a
# 1
u

 
du
dx

.

loga x

Á loga xy = loga x + loga y .

ÁÁ 
ln xy
ln a

=

ln x
ln a

+

ln y
ln a

Á ln xy = ln x + ln y

loga x

log10 2 =
ln 2
ln 10

L

0.69315
2.30259

L 0.30103

loga x . loga x =

ln x
ln a

 loga sxd #  ln a = ln x

 ln a loga sxd
= ln x

 a loga sxd
= x

TABLE 7.2 Rules for base a
logarithms

For any numbers and

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule:

4. Power Rule:

loga xy
= y loga x

loga 
1
y = - loga y

loga 
x
y = loga x - loga y

loga xy = loga x + loga y

y 7 0,

x 7 0

d
dx

 sloga ud =
1

ln a
# 1
u

 
du
dx
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7.4 and 499loga xa x

EXAMPLE 5

(a)

(b)

Base 10 Logarithms

Base 10 logarithms, often called common logarithms, appear in many scientific formu-
las. For example, earthquake intensity is often reported on the logarithmic Richter scale.
Here the formula is

where a is the amplitude of the ground motion in microns at the receiving station, T is the pe-
riod of the seismic wave in seconds, and B is an empirical factor that accounts for the weak-
ening of the seismic wave with increasing distance from the epicenter of the earthquake.

EXAMPLE 6 Earthquake Intensity

For an earthquake 10,000 km from the receiving station, If the recorded vertical
ground motion is microns and the period is the earthquake’s magnitude
is

An earthquake of this magnitude can do great damage near its epicenter. 

The pH scale for measuring the acidity of a solution is a base 10 logarithmic scale.
The pH value (hydrogen potential) of the solution is the common logarithm of the recipro-
cal of the solution’s hydronium ion concentration, 

The hydronium ion concentration is measured in moles per liter. Vinegar has a pH of three,
distilled water a pH of 7, seawater a pH of 8.15, and household ammonia a pH of 12. The
total scale ranges from about 0.1 for normal hydrochloric acid to 14 for a normal solution
of sodium hydroxide.

Another example of the use of common logarithms is the decibel or dB (“dee bee”)
scale for measuring loudness. If I is the intensity of sound in watts per square meter, the
decibel level of the sound is

(6)Sound level = 10 log10 sI * 1012d dB.

pH = log10 
1

[H3 O+]
= - log10 [H3 O+] .

[H3 O+]:

R = log10 a10
1
b + 6.8 = 1 + 6.8 = 7.8.

T = 1 sec,a = 10
B = 6.8.

Magnitude R = log10 aa
T
b + B,

=
1

ln 2
 
u2

2
+ C =

1
ln 2

 
sln xd2

2
+ C =

sln xd2

2 ln 2
+ C

u = ln x, du =

1
x  dx=

1
ln 2

 Lu du

log2 x =

ln x
ln 2L  

log2 x
x  dx =

1
ln 2

 L  
ln x
x  dx

d
dx

 log10 s3x + 1d =
1

ln 10
 #  

1
3x + 1

 
d
dx

 s3x + 1d =

3
sln 10ds3x + 1d

Most foods are acidic 

Food pH Value

Bananas 4.5–4.7
Grapefruit 3.0–3.3
Oranges 3.0–4.0
Limes 1.8–2.0
Milk 6.3–6.6
Soft drinks 2.0–4.0
Spinach 5.1–5.7

spH 6 7d.
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If you ever wondered why doubling the power of your audio amplifier increases the sound
level by only a few decibels, Equation (6) provides the answer. As the following example
shows, doubling I adds only about 3 dB.

EXAMPLE 7 Sound Intensity

Doubling I in Equation (6) adds about 3 dB. Writing log for (a common practice), we
have

Eq. (6) with 2I for I

log10 2 L 0.30 L original sound level + 3.

 = original sound level + 10 log 2

 = 10 log 2 + 10 log sI * 1012d
 = 10 log s2 # I * 1012d

 Sound level with I doubled = 10 log s2I * 1012d

log10

500 Chapter 7: Transcendental Functions

Typical sound levels

Threshold of hearing 0 dB
Rustle of leaves 10 dB
Average whisper 20 dB
Quiet automobile 50 dB
Ordinary conversation 65 dB
Pneumatic drill 10 feet 90 dB

away
Threshold of pain 120 dB
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EXERCISES 7.4

Algebraic Calculations With and 
Simplify the expressions in Exercises 1–4.

1. a. b. c.

d. e. f.

2. a. b. c.

d. e. f.

3. a. b. c.

4. a. b. c.

Express the ratios in Exercises 5 and 6 as ratios of natural logarithms
and simplify.

5. a. b. c.

6. a. b. c.

Solve the equations in Exercises 7–10 for x.

7.

8.

9.

10.

Derivatives
In Exercises 11–38, find the derivative of y with respect to the given
independent variable.

11. 12.

13. 14.

15. 16. y = t1- ey = xp
y = 2ss2dy = 52s

y = 3-xy = 2x

ln e + 4-2 log4 sxd
=

1
x  log10 s100d

3log3 sx2d
= 5e ln x

- 3 # 10log10 s2d

8log8 s3d
- e ln 5

= x2
- 7log7 s3xd

3log3 s7d
+ 2log2 s5d

= 5log5 sxd

log a b

log b a

log210  x

log22  x

log 9 x

log 3 x

log x a

log x2 a

log 2 x

log 8 x

log 2 x

log 3 x

log4 s2ex sin xdloge sexd25log5 s3x2d

log2 se sln 2dssin xdd9log3 x2log4 x

log3 a1
9
blog121 11log11 121

plogp 710log10 s1>2d2log2 3

log4 a1
4
blog323log4 16

1.3log1.3 758log8225log5 7

loga xax
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

Logarithmic Differentiation
In Exercises 39–46, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

39. 40.

41. 42.

43. 44.

45. 46.

Integration
Evaluate the integrals in Exercises 47–56.

47. 48. Ls1.3dx dxL  5x dx

y = sln xdln xy = xln x

y = xsin xy = ssin xdx

y = t2ty = s1tdt

y = xsx+ 1dy = sx + 1dx

y = t log 3 Ae ssin tdsln 3d By = log 2 s8t ln 2d
y = 3 log8 slog2 tdy = 3log2 t

y = log2 a x2e2

22x + 1
by = log5 ex

y = log7 asin u cos u

eu 2u
by = u sin slog7 ud

y = log5 B a 7x
3x + 2

b ln 5

y = log3 a ax + 1
x - 1

b ln 3b
y = log3 r # log9 ry = log2 r # log4 r

y = log25 ex
- log51xy = log4 x + log4 x2

y = log3s1 + u ln 3dy = log2 5u

y = 5-cos 2ty = 2sin 3t

y = 3tan u ln 3y = 7sec u ln 7

y = sln udpy = scos ud22
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7.4 and 501loga xa x

49. 50.

51. 52.

53. 54.

55. 56.

Evaluate the integrals in Exercises 57–60.

57. 58.

59. 60.

Evaluate the integrals in Exercises 61–70.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

Evaluate the integrals in Exercises 71–74.

71. 72.

73. 74.

Theory and Applications
75. Find the area of the region between the curve 

and the interval of the x-axis.

76. Find the area of the region between the curve and the in-
terval of the x-axis.

77. Blood pH The pH of human blood normally falls between 7.37
and 7.44. Find the corresponding bounds for 

78. Brain fluid pH The cerebrospinal fluid in the brain has a hy-
dronium ion concentration of about 
per liter. What is the pH?

79. Audio amplifiers By what factor k do you have to multiply the
intensity of I of the sound from your audio amplifier to add 10 dB
to the sound level?

80. Audio amplifiers You multiplied the intensity of the sound of
your audio system by a factor of 10. By how many decibels did
this increase the sound level?

[H3 O+] = 4.8 * 10-8 moles

[H3 O+] .

-1 … x … 1
y = 21- x

-2 … x … 2
y = 2x>s1 + x2d

1
ln a

 L
x

1
 
1
t  dt, x 7 0L

1>x
1

 
1
t  dt, x 7 0

L
e x

1
 
1
t  dtL

ln x

1
 
1
t  dt, x 7 1

L  
dx

xslog8 xd2L  
dx

x log10 x

L
3

2
 
2 log2 sx - 1d

x - 1
 dxL

9

0
 
2 log10 sx + 1d

x + 1
 dx

L
10

1>10
 
log10 s10xd

x  dxL
2

0
 
log2 sx + 2d

x + 2
 dx

L
e

1
 
2 ln 10 log10 x

x  dxL
4

1
 
ln 2 log2 x

x  dx

L
4

1
 
log2 x

x  dxL  
log10 x

x  dx

L
e

1
 xsln 2d - 1 dxL

3

0
s12 + 1dx12 dx

Lx22- 1 dxL  3x23 dx

L
2

1
 
2ln x

x  dxL
4

2
 x2xs1 + ln xd dx

L
p>4

0
 a1

3
b tan t

 sec2 t dtL
p>2

0
 7cos t sin t dt

L
4

1
 
21x1x

 dxL
22

1
 x2sx2d dx

L
0

-2
 5-u duL

1

0
 2-u du

81. In any solution, the product of the hydronium ion concentration
(moles L) and the hydroxyl ion concentration 

(moles L) is about 

a. What value of minimizes the sum of the concentrations,
(Hint: Change notation. Let

)

b. What is the pH of a solution in which S has this minimum
value?

c. What ratio of to minimizes S?

82. Could possibly equal Give reasons for your an-
swer.

83. The equation has three solutions: and one
other. Estimate the third solution as accurately as you can by
graphing.

84. Could possibly be the same as for Graph the two
functions and explain what you see.

85. The linearization of

a. Find the linearization of at Then round its
coefficients to two decimal places.

b. Graph the linearization and function together for
and 

86. The linearization of

a. Find the linearization of at Then round
its coefficients to two decimal places.

b. Graph the linearization and function together in the window
and 

Calculations with Other Bases
87. Most scientific calculators have keys for and ln x. To find

logarithms to other bases, we use the Equation (5), 

Find the following logarithms to five decimal places.

a. b.

c. d.

e. ln x, given that 

f. ln x, given that 

g. ln x, given that 

h. ln x, given that 

88. Conversion factors

a. Show that the equation for converting base 10 logarithms to
base 2 logarithms is

b. Show that the equation for converting base a logarithms to
base b logarithms is

logb x =

ln a
ln b

 loga x .

log2 x =

ln 10
ln 2

 log10 x .

log10 x = -0.7

log2 x = -1.5

log2 x = 1.4

log10 x = 2.3

log0.5 7log20 17

log7 0.5log3 8

sln xd>sln ad .
log a x =

log10 x

2 … x … 4.0 … x … 8

x = 3.ƒsxd = log3 x

log3 x

-1 … x … 1.-3 … x … 3

x = 0.ƒsxd = 2x

2x

x 7 0?2ln xxln 2

x = 2, x = 4,x2
= 2x

1>logb a?loga b

[OH-][H3 O+]

x = [H3 O+] .
S = [H3 O+] + [OH-]?

[H3 O+]

10-14 .> [OH-]>[H3 O+]

T

T

T

T

T
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89. Orthogonal families of curves Prove that all curves in the family

(k any constant) are perpendicular to all curves in the family
(c any constant) at their points of intersection. (See

the accompanying figure.)

90. The inverse relation between and ln x Find out how good
your calculator is at evaluating the composites

91. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation ln x = 1.

eln x and  ln sexd .

e x

y = ln x + c

y = -

1
2

 x2
+ k

92. Which is bigger, or Calculators have taken some of the
mystery out of this once-challenging question. (Go ahead and
check; you will see that it is a surprisingly close call.) You can an-
swer the question without a calculator, though.

a. Find an equation for the line through the origin tangent to the
graph of 

b. Give an argument based on the graphs of and the
tangent line to explain why for all positive 

c. Show that for all positive 

d. Conclude that for all positive 

e. So which is bigger, or ep?pe

x Z e .xe
6 ex

x Z e .ln sxed 6 x

x Z e .ln x 6 x>e
y = ln x

[–3, 6] by [–3, 3]

y = ln x .

ep?pe

502 Chapter 7: Transcendental Functions

T

T

T
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Exponential Growth and Decay

Exponential functions increase or decrease very rapidly with changes in the independent
variable. They describe growth or decay in a wide variety of natural and industrial situa-
tions. The variety of models based on these functions partly accounts for their importance.

The Law of Exponential Change

In modeling many real-world situations, a quantity y increases or decreases at a rate pro-
portional to its size at a given time t. Examples of such quantities include the amount of a
decaying radioactive material, funds earning interest in a bank account, the size of a popu-
lation, and the temperature difference between a hot cup of coffee and the room in which it
sits. Such quantities change according to the law of exponential change, which we derive
in this section.

If the amount present at time is called then we can find y as a function of t
by solving the following initial value problem:

(1)

If y is positive and increasing, then k is positive, and we use Equation (1) to say that the
rate of growth is proportional to what has already been accumulated. If y is positive and
decreasing, then k is negative, and we use Equation (1) to say that the rate of decay is pro-
portional to the amount still left.

 Initial condition:  y = y0 when t = 0.

 Differential equation: dy
dt

= ky

y0,t = 0

7.5 
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7.5 Exponential Growth and Decay 503

We see right away that the constant function is a solution of Equation (1) if
To find the nonzero solutions, we divide Equation (1) by y:

Integrate with respect to t; 

Exponentiate.

If then 

By allowing A to take on the value 0 in addition to all possible values we can include
the solution in the formula.

We find the value of A for the initial value problem by solving for A when and

The solution of the initial value problem is therefore 
Quantities changing in this way are said to undergo exponential growth if and

exponential decay if k 6 0.
k 7 0,

y = y0 ekt .

y0 = Aek # 0
= A.

t = 0:
y = y0

y = 0
;eC ,

 y = Aekt .

y = ;r .ƒ y ƒ = r , y = ;eCekt

ea + b
= ea # eb ƒ y ƒ = eC # ekt

 ƒ y ƒ = ekt + C

1s1>ud du = ln ƒ u ƒ + C . ln ƒ y ƒ = kt + C

 L  
1
y  

dy
dt

 dt = Lk dt

 
1
y  #  

dy
dt

= k

y0 = 0.
y = 0

A is a shorter name for
;eC .

The Law of Exponential Change

(2)

The number k is the rate constant of the equation.

Growth: k 7 0 Decay: k 6 0

y = y0 ekt

The derivation of Equation (2) shows that the only functions that are their own deriva-
tives are constant multiples of the exponential function.

Unlimited Population Growth

Strictly speaking, the number of individuals in a population (of people, plants, foxes, or
bacteria, for example) is a discontinuous function of time because it takes on discrete val-
ues. However, when the number of individuals becomes large enough, the population can
be approximated by a continuous function. Differentiability of the approximating function
is another reasonable hypothesis in many settings, allowing for the use of calculus to
model and predict population sizes.

If we assume that the proportion of reproducing individuals remains constant and as-
sume a constant fertility, then at any instant t the birth rate is proportional to the number
y(t) of individuals present. Let’s assume, too, that the death rate of the population is stable
and proportional to y(t). If, further, we neglect departures and arrivals, the growth rate
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dy dt is the birth rate minus the death rate, which is the difference of the two proportional-
ities under our assumptions. In other words, so that where is the
size of the population at time As with all kinds of growth, there may be limitations
imposed by the surrounding environment, but we will not go into these here. (This situa-
tion is analyzed in Section 9.5.)

In the following example we assume this population model to look at how the number
of individuals infected by a disease within a given population decreases as the disease is
appropriately treated.

EXAMPLE 1 Reducing the Cases of an Infectious Disease

One model for the way diseases die out when properly treated assumes that the rate dy dt
at which the number of infected people changes is proportional to the number y. The num-
ber of people cured is proportional to the number that have the disease. Suppose that in the
course of any given year the number of cases of a disease is reduced by 20%. If there are
10,000 cases today, how many years will it take to reduce the number to 1000?

Solution We use the equation There are three things to find: the value of 
the value of k, and the time t when 

The value of We are free to count time beginning anywhere we want. If we count
from today, then when so Our equation is now

(3)

The value of k. When the number of cases will be 80% of its present value,
or 8000. Hence,

Logs of both sides

At any given time t,

(4)

The value of t that makes We set y equal to 1000 in Equation (4) and solve
for t:

Logs of both sides

It will take a little more than 10 years to reduce the number of cases to 1000. 

Continuously Compounded Interest

If you invest an amount of money at a fixed annual interest rate r (expressed as a deci-
mal) and if interest is added to your account k times a year, the formula for the amount of
money you will have at the end of t years is

(5)At = A0 a1 +
r
k
b kt

.

A0

 t =

ln 0.1
ln 0.8

L 10.32 years .

 sln 0.8dt = ln 0.1

 e sln 0.8dt
= 0.1

 1000 = 10,000e sln 0.8dt

y = 1000.

y = 10,000e sln 0.8dt .

 k = ln 0.8 6 0.

 ln sekd = ln 0.8

 ek
= 0.8

 8000 = 10,000eks1d

t = 1 year,

y = 10,000ekt .

y0 = 10,000.t = 0,y = 10,000
y0.

y = 1000.
y0,y = y0 ekt .

>

t = 0.
y0y = y0 ekt ,dy>dt = ky ,

>
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Eq. (3) with
y = 8000

t = 1 and 
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7.5 Exponential Growth and Decay 505

The interest might be added (“compounded,” bankers say) monthly weekly
daily or even more frequently, say by the hour or by the minute. By

taking the limit as interest is compounded more and more often, we arrive at the following
formula for the amount after t years,

As

Substitute

Theorem 4

The resulting formula for the amount of money in your account after t years is

(6)

Interest paid according to this formula is said to be compounded continuously. The num-
ber r is called the continuous interest rate. The amount of money after t years is calcu-
lated with the law of exponential change given in Equation (6).

EXAMPLE 2 A Savings Account

Suppose you deposit $621 in a bank account that pays 6% compounded continuously. How
much money will you have 8 years later?

Solution We use Equation (6) with and 

Nearest cent

Had the bank paid interest quarterly ( in Equation 5), the amount in your ac-
count would have been $1000.01. Thus the effect of continuous compounding, as com-
pared with quarterly compounding, has been an addition of $3.57. A bank might decide it
would be worth this additional amount to be able to advertise, “We compound interest
every second, night and day—better yet, we compound the interest continuously.”

Radioactivity

Some atoms are unstable and can spontaneously emit mass or radiation. This process is
called radioactive decay, and an element whose atoms go spontaneously through this
process is called radioactive. Sometimes when an atom emits some of its mass through
this process of radioactivity, the remainder of the atom re-forms to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium, through a
number of intermediate radioactive steps, decays into lead.

Experiments have shown that at any given time the rate at which a radioactive element
decays (as measured by the number of nuclei that change per unit time) is approximately
proportional to the number of radioactive nuclei present. Thus, the decay of a radioactive
element is described by the equation It is conventional to usedy>dt = -ky, k 7 0.

k = 4

As8d = 621es0.06ds8d
= 621e0.48

= 1003.58

t = 8:A0 = 621, r = 0.06,

Astd = A0 ert .

= A0 ert

x =

r
k

= A0 c lim
x:0

s1 + xd1/x d rt

k : q , 
r
k

: 0= A0 B lim
r
k :0

 a1 +
r
k
b

k
rR rt

= A0 lim
k: q

 a1 +
r
k
b

k
r 
# rt

lim
k: q

 At = lim
k: q

 A0 a1 +
r
k
b kt

sk = 365d ,sk = 52d ,
sk = 12d ,

For radon-222 gas, t is measured in days
and For radium-226, which
used to be painted on watch dials to
make them glow at night (a dangerous
practice), t is measured in years and
k = 4.3 * 10-4 .

k = 0.18 .

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 505

bounce07.html?3_4_l


here instead of to emphasize that y is decreasing. If is the number
of radioactive nuclei present at time zero, the number still present at any later time t will be

EXAMPLE 3 Half-Life of a Radioactive Element

The half-life of a radioactive element is the time required for half of the radioactive nuclei
present in a sample to decay. It is an interesting fact that the half-life is a constant that does
not depend on the number of radioactive nuclei initially present in the sample, but only on
the radioactive substance.

To see why, let be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time t will be We seek the value of t at
which the number of radioactive nuclei present equals half the original number:

This value of t is the half-life of the element. It depends only on the value of k; the number
does not enter in.

(7)

EXAMPLE 4 Half-Life of Polonium-210

The effective radioactive lifetime of polonium-210 is so short we measure it in days rather
than years. The number of radioactive atoms remaining after t days in a sample that starts
with radioactive atoms is

Find the element’s half-life.

Solution

Eq. (7)

EXAMPLE 5 Carbon-14 Dating

The decay of radioactive elements can sometimes be used to date events from the Earth’s
past. In a living organism, the ratio of radioactive carbon, carbon-14, to ordinary carbon
stays fairly constant during the lifetime of the organism, being approximately equal to the

 L 139 days

 =
ln 2

5 * 10-3

 Half-life =
ln 2
k

y = y0 e-5* 10-3 t .

y0

Half-life =
ln 2
k

y0

 t =
ln 2
k

 -kt = ln 
1
2

= - ln 2

 e-kt
=

1
2

 y0 e-kt
=

1
2

 y0

y = y0 e-kt .
y0

y = y0 e-kt, k 7 0.

y0ksk 6 0d-ksk 7 0d
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Reciprocal Rule for logarithms

The k from polonium’s decay equation
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7.5 Exponential Growth and Decay 507

ratio in the organism’s surroundings at the time. After the organism’s death, however, no
new carbon is ingested, and the proportion of carbon-14 in the organism’s remains de-
creases as the carbon-14 decays.

Scientists who do carbon-14 dating use a figure of 5700 years for its half-life (more
about carbon-14 dating in the exercises). Find the age of a sample in which 10% of the ra-
dioactive nuclei originally present have decayed.

Solution We use the decay equation There are two things to find: the value
of k and the value of t when y is (90% of the radioactive nuclei are still present). That
is, find t when or 

The value of k. We use the half-life Equation (7):

The value of t that makes

Logs of both sides

The sample is about 866 years old. 

Heat Transfer: Newton’s Law of Cooling

Hot soup left in a tin cup cools to the temperature of the surrounding air. A hot silver ingot
immersed in a large tub of water cools to the temperature of the surrounding water. In sit-
uations like these, the rate at which an object’s temperature is changing at any given time is
roughly proportional to the difference between its temperature and the temperature of the
surrounding medium. This observation is called Newton’s law of cooling, although it ap-
plies to warming as well, and there is an equation for it.

If H is the temperature of the object at time t and is the constant surrounding tem-
perature, then the differential equation is

(8)

If we substitute y for then

Eq. (8)

H - HS = y. = -ky .

 = -ksH - HSd

 =

dH
dt

HS is a constant . =

dH
dt

- 0

 
dy
dt

=

d
dt

 sH - HSd =

dH
dt

-

d
dt

 sHSd

sH - HSd ,

dH
dt

= -ksH - HSd .

HS

 t = -

5700 ln 0.9
ln 2

L 866 years .

 -
ln 2

5700
 t = ln 0.9

 e-sln 2>5700dt
= 0.9

 e-kt
= 0.9

e-kt
= 0.9:

k =
ln 2

half-life
=

ln 2
5700
 sabout 1.2 * 10-4d

e-kt
= 0.9.y0 e-kt

= 0.9y0 ,
0.9y0

y = y0 e-kt .
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Now we know that the solution of is where Substi-
tuting for y, this says that

(9)

where is the temperature at This is the equation for Newton’s Law of Cooling.

EXAMPLE 6 Cooling a Hard-Boiled Egg

A hard-boiled egg at 98°C is put in a sink of 18°C water. After 5 min, the egg’s tempera-
ture is 38°C. Assuming that the water has not warmed appreciably, how much longer will
it take the egg to reach 20°C?

Solution We find how long it would take the egg to cool from 98°C to 20°C and sub-
tract the 5 min that have already elapsed. Using Equation (9) with and 
the egg’s temperature t min after it is put in the sink is

To find k, we use the information that when 

The egg’s temperature at time t is Now find the time t when

The egg’s temperature will reach 20°C about 13 min after it is put in the water to cool.
Since it took 5 min to reach 38°C, it will take about 8 min more to reach 20°C. 

 t =

ln 40
0.2 ln 4

L 13 min.

 -s0.2 ln 4dt = ln 
1
40

= - ln 40

 e-s0.2 ln 4dt
=

1
40

 80e-s0.2 ln 4dt
= 2

 20 = 18 + 80e-s0.2 ln 4dt

H = 20:
H = 18 + 80e-s0.2 ln 4dt .

k =
1
5 ln 4 = 0.2 ln 4 sabout 0.28d .

 -5k = ln 
1
4

= - ln 4

 e-5k
=

1
4

 38 = 18 + 80e-5k

t = 5:H = 38

H = 18 + s98 - 18de-kt
= 18 + 80e-kt .

H0 = 98,HS = 18

t = 0.H0

H - HS = sH0 - HSde-kt ,

sH - HSd
ys0d = y0.y = y0 e-kt ,dy>dt = -ky
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EXERCISES 7.5

The answers to most of the following exercises are in terms of loga-
rithms and exponentials. A calculator can be helpful, enabling you to
express the answers in decimal form.

1. Human evolution continues The analysis of tooth shrinkage
by C. Loring Brace and colleagues at the University of Michi-

gan’s Museum of Anthropology indicates that human tooth size is
continuing to decrease and that the evolutionary process did not
come to a halt some 30,000 years ago as many scientists contend.
In northern Europeans, for example, tooth size reduction now has
a rate of 1% per 1000 years.
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a. If t represents time in years and y represents tooth size, use
the condition that when to find the value
of k in the equation Then use this value of k to
answer the following questions.

b. In about how many years will human teeth be 90% of their
present size?

c. What will be our descendants’ tooth size 20,000 years from
now (as a percentage of our present tooth size)?

(Source: LSA Magazine, Spring 1989, Vol. 12, No. 2, p. 19, Ann
Arbor, MI.)

2. Atmospheric pressure The earth’s atmospheric pressure p is of-
ten modeled by assuming that the rate dp dh at which p changes
with the altitude h above sea level is proportional to p. Suppose
that the pressure at sea level is 1013 millibars (about 14.7 pounds
per square inch) and that the pressure at an altitude of 20 km is 90
millibars.

a. Solve the initial value problem

to express p in terms of h. Determine the values of and k
from the given altitude-pressure data.

b. What is the atmospheric pressure at 

c. At what altitude does the pressure equal 900 millibars?

3. First-order chemical reactions In some chemical reactions,
the rate at which the amount of a substance changes with time is
proportional to the amount present. For the change of 
lactone into gluconic acid, for example,

when t is measured in hours. If there are 100 grams of 
lactone present when how many grams will be left after the
first hour?

4. The inversion of sugar The processing of raw sugar has a step
called “inversion” that changes the sugar’s molecular structure.
Once the process has begun, the rate of change of the amount of
raw sugar is proportional to the amount of raw sugar remaining.
If 1000 kg of raw sugar reduces to 800 kg of raw sugar during
the first 10 hours, how much raw sugar will remain after another
14 hours?

5. Working underwater The intensity L(x) of light x feet beneath
the surface of the ocean satisfies the differential equation

As a diver, you know from experience that diving to 18 ft in the
Caribbean Sea cuts the intensity in half. You cannot work without
artificial light when the intensity falls below one-tenth of the sur-
face value. About how deep can you expect to work without artifi-
cial light?

dL
dx

= -kL .

t = 0,
d-glucono

dy

dt
= -0.6y

d-glucono

h = 50 km?

p0

Differential equation: dp>dh = kp sk a constantd
Initial condition: p = p0 when h = 0

>

y = y0 e kt .
t = 1000y = 0.99y0

6. Voltage in a discharging capacitor Suppose that electricity is
draining from a capacitor at a rate that is proportional to the volt-
age V across its terminals and that, if t is measured in seconds,

Solve this equation for V, using to denote the value of V when
How long will it take the voltage to drop to 10% of its

original value?

7. Cholera bacteria Suppose that the bacteria in a colony can
grow unchecked, by the law of exponential change. The colony
starts with 1 bacterium and doubles every half-hour. How many
bacteria will the colony contain at the end of 24 hours? (Under fa-
vorable laboratory conditions, the number of cholera bacteria can
double every 30 min. In an infected person, many bacteria are de-
stroyed, but this example helps explain why a person who feels
well in the morning may be dangerously ill by evening.)

8. Growth of bacteria A colony of bacteria is grown under ideal
conditions in a laboratory so that the population increases expo-
nentially with time. At the end of 3 hours there are 10,000 bacte-
ria. At the end of 5 hours there are 40,000. How many bacteria
were present initially?

9. The incidence of a disease (Continuation of Example 1.) Sup-
pose that in any given year the number of cases can be reduced by
25% instead of 20%.

a. How long will it take to reduce the number of cases to 1000?

b. How long will it take to eradicate the disease, that is, reduce
the number of cases to less than 1?

10. The U.S. population The Museum of Science in Boston dis-
plays a running total of the U.S. population. On May 11, 1993, the
total was increasing at the rate of 1 person every 14 sec. The dis-
played population figure for 3:45 P.M. that day was 257,313,431.

a. Assuming exponential growth at a constant rate, find the rate
constant for the population’s growth (people per 365-day
year).

b. At this rate, what will the U.S. population be at 3:45 P.M.
Boston time on May 11, 2008?

11. Oil depletion Suppose the amount of oil pumped from one of
the canyon wells in Whittier, California, decreases at the continu-
ous rate of 10% per year. When will the well’s output fall to one-
fifth of its present value?

12. Continuous price discounting To encourage buyers to place
100-unit orders, your firm’s sales department applies a continu-
ous discount that makes the unit price a function p(x) of the num-
ber of units x ordered. The discount decreases the price at the rate
of $0.01 per unit ordered. The price per unit for a 100-unit order
is 

a. Find p(x) by solving the following initial value problem:

Differential equation:
dp

dx
= -

1
100

 p

Initial condition: ps100d = 20.09.

ps100d = $20.09.

t = 0.
V0

dV
dt

= -

1
40

 V .
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b. Find the unit price p(10) for a 10-unit order and the unit price
p(90) for a 90-unit order.

c. The sales department has asked you to find out if it is
discounting so much that the firm’s revenue, 
will actually be less for a 100-unit order than, say, for a 90-
unit order. Reassure them by showing that r has its maximum
value at 

d. Graph the revenue function for 

13. Continuously compounded interest You have just placed 
dollars in a bank account that pays 4% interest, compounded con-
tinuously.

a. How much money will you have in the account in 5 years?

b. How long will it take your money to double? To triple?

14. John Napier’s question John Napier (1550–1617), the Scottish
laird who invented logarithms, was the first person to answer the
question, What happens if you invest an amount of money at
100% interest, compounded continuously?

a. What does happen?

b. How long does it take to triple your money?

c. How much can you earn in a year?

Give reasons for your answers.

15. Benjamin Franklin’s will The Franklin Technical Institute of
Boston owes its existence to a provision in a codicil to Benjamin
Franklin’s will. In part the codicil reads:

I wish to be useful even after my Death, if possible, in form-
ing and advancing other young men that may be serviceable
to their Country in both Boston and Philadelphia. To this end
I devote Two thousand Pounds Sterling, which I give, one
thousand thereof to the Inhabitants of the Town of Boston in
Massachusetts, and the other thousand to the inhabitants of
the City of Philadelphia, in Trust and for the Uses, Interests
and Purposes hereinafter mentioned and declared.

Franklin’s plan was to lend money to young apprentices at 5% inter-
est with the provision that each borrower should pay each year along

with the yearly Interest, one tenth part of the Principal,
which sums of Principal and Interest shall be again let to fresh
Borrowers. If this plan is executed and succeeds as pro-
jected without interruption for one hundred Years, the Sum
will then be one hundred and thirty-one thousand Pounds of
which I would have the Managers of the Donation to the In-
habitants of the Town of Boston, then lay out at their discretion
one hundred thousand Pounds in Public Works. The re-
maining thirty-one thousand Pounds, I would have continued
to be let out on Interest in the manner above directed for an-
other hundred Years. At the end of this second term if no
unfortunate accident has prevented the operation the sum will
be Four Millions and Sixty-one Thousand Pounds.

Á

Á

Á

Á

A0

0 … x … 200.rsxd = xpsxd
x = 100.

rsxd = x # psxd ,

It was not always possible to find as many borrowers as
Franklin had planned, but the managers of the trust did the best
they could. At the end of 100 years from the reception of the
Franklin gift, in January 1894, the fund had grown from 1000
pounds to almost exactly 90,000 pounds. In 100 years the original
capital had multiplied about 90 times instead of the 131 times
Franklin had imagined.

What rate of interest, compounded continuously for 100 years,
would have multiplied Benjamin Franklin’s original capital by
90?

16. (Continuation of Exercise 15.) In Benjamin Franklin’s estimate
that the original 1000 pounds would grow to 131,000 in 100 years,
he was using an annual rate of 5% and compounding once each
year. What rate of interest per year when compounded continu-
ously for 100 years would multiply the original amount by 131?

17. Radon-222 The decay equation for radon-222 gas is known to
be with t in days. About how long will it take the
radon in a sealed sample of air to fall to 90% of its original value?

18. Polonium-210 The half-life of polonium is 139 days, but your
sample will not be useful to you after 95% of the radioactive nu-
clei present on the day the sample arrives has disintegrated. For
about how many days after the sample arrives will you be able to
use the polonium?

19. The mean life of a radioactive nucleus Physicists using the ra-
dioactivity equation call the number 1 k the mean life
of a radioactive nucleus. The mean life of a radon nucleus is about

The mean life of a carbon-14 nucleus is more
than 8000 years. Show that 95% of the radioactive nuclei originally
present in a sample will disintegrate within three mean lifetimes,
i.e., by time Thus, the mean life of a nucleus gives a quick
way to estimate how long the radioactivity of a sample will last.

20. Californium-252 What costs $27 million per gram and can be
used to treat brain cancer, analyze coal for its sulfur content, and
detect explosives in luggage? The answer is californium-252, a
radioactive isotope so rare that only 8 g of it have been made in
the western world since its discovery by Glenn Seaborg in 1950.
The half-life of the isotope is 2.645 years—long enough for a
useful service life and short enough to have a high radioactivity
per unit mass. One microgram of the isotope releases 170 million
neutrons per second.

a. What is the value of k in the decay equation for this isotope?

b. What is the isotope’s mean life? (See Exercise 19.)

c. How long will it take 95% of a sample’s radioactive nuclei to
disintegrate?

21. Cooling soup Suppose that a cup of soup cooled from 90°C to
60°C after 10 min in a room whose temperature was 20°C. Use
Newton’s law of cooling to answer the following questions.

a. How much longer would it take the soup to cool to 35°C?

b. Instead of being left to stand in the room, the cup of 90°C
soup is put in a freezer whose temperature is How
long will it take the soup to cool from 90°C to 35°C?

-15°C.

t = 3>k .

1>0.18 = 5.6 days .

>y = y0 e-kt

y = y0 e-0.18t ,
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22. A beam of unknown temperature An aluminum beam was
brought from the outside cold into a machine shop where the tem-
perature was held at 65°F. After 10 min, the beam warmed to 35°F
and after another 10 min it was 50°F. Use Newton’s law of cooling
to estimate the beam’s initial temperature.

23. Surrounding medium of unknown temperature A pan of
warm water (46°C) was put in a refrigerator. Ten minutes later,
the water’s temperature was 39°C; 10 min after that, it was 33°C.
Use Newton’s law of cooling to estimate how cold the refrigerator
was.

24. Silver cooling in air The temperature of an ingot of silver is
60°C above room temperature right now. Twenty minutes ago, it
was 70°C above room temperature. How far above room tempera-
ture will the silver be

a. 15 min from now?

b. 2 hours from now?

c. When will the silver be 10°C above room temperature?

25. The age of Crater Lake The charcoal from a tree killed in the
volcanic eruption that formed Crater Lake in Oregon contained
44.5% of the carbon-14 found in living matter. About how old is
Crater Lake?

26. The sensitivity of carbon-14 dating to measurement To see
the effect of a relatively small error in the estimate of the amount
of carbon-14 in a sample being dated, consider this hypothetical
situation:

a. A fossilized bone found in central Illinois in the year A.D.
2000 contains 17% of its original carbon-14 content. Estimate
the year the animal died.

b. Repeat part (a) assuming 18% instead of 17%.

c. Repeat part (a) assuming 16% instead of 17%.

27. Art forgery A painting attributed to Vermeer (1632–1675),
which should contain no more than 96.2% of its original carbon-
14, contains 99.5% instead. About how old is the forgery?
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7.6 Relative Rates of Growth 511

Relative Rates of Growth

It is often important in mathematics, computer science, and engineering to compare the
rates at which functions of x grow as x becomes large. Exponential functions are important
in these comparisons because of their very fast growth, and logarithmic functions because
of their very slow growth. In this section we introduce the little-oh and big-oh notation
used to describe the results of these comparisons. We restrict our attention to functions
whose values eventually become and remain positive as 

Growth Rates of Functions

You may have noticed that exponential functions like and seem to grow more rapidly
as x gets large than do polynomials and rational functions. These exponentials certainly
grow more rapidly than x itself, and you can see outgrowing as x increases in Figure
7.14. In fact, as the functions and grow faster than any power of x, even

(Exercise 19).
To get a feeling for how rapidly the values of grow with increasing x, think of

graphing the function on a large blackboard, with the axes scaled in centimeters. At
the graph is above the x-axis. At the graph is

high (it is about to go through the ceiling if it hasn’t done so already).
At the graph is high, higher than most buildings.
At the graph is more than halfway to the moon, and at from the ori-
gin, the graph is high enough to reach past the sun’s closest stellar neighbor, the red dwarf
star Proxima Centauri:

 L 5.0 light-years

 L 1.58 * 108 light-seconds

 = 4.73 * 1013 km

 e43
L 4.73 * 1018 cm

x = 43 cmx = 24 cm,
e10

L 22,026 cm L 220 mx = 10 cm,
e6

L 403 cm L 4 m
x = 6 cm,e1

L 3 cmx = 1 cm,

y = ex
x1,000,000

ex2xx : q ,
x22x

ex2x

x : q .

7.6 

In a vacuum, light travels
at 300,000 km sec.>
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y
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FIGURE 7.14 The graphs of 
and x2 .
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The distance to Proxima Centauri is about 4.22 light-years. Yet with from the
origin, the graph is still less than 2 feet to the right of the y-axis.

In contrast, logarithmic functions like and grow more slowly as
than any positive power of x (Exercise 21). With axes scaled in centimeters, you

have to go nearly 5 light-years out on the x-axis to find a point where the graph of 
is even high. See Figure 7.15.

These important comparisons of exponential, polynomial, and logarithmic functions
can be made precise by defining what it means for a function ƒ(x) to grow faster than an-
other function g(x) as x : q .

y = 43 cm
y = ln x

x : q

y = ln xy = log2 x

x = 43 cm

DEFINITION Rates of Growth as 
Let ƒ(x) and g(x) be positive for x sufficiently large.

1. ƒ grows faster than g as if

or, equivalently, if

We also say that g grows slower than ƒ as 

2. ƒ and g grow at the same rate as if

where L is finite and positive.

lim
x: q

  
ƒsxd
gsxd

= L

x : q

x : q .

lim
x: q

  
gsxd
ƒsxd

= 0.

lim
x: q

  
ƒsxd
gsxd

= q

x : q

x : q

According to these definitions, does not grow faster than The two
functions grow at the same rate because

which is a finite, nonzero limit. The reason for this apparent disregard of common sense is
that we want “ƒ grows faster than g” to mean that for large x-values g is negligible when
compared with ƒ.

EXAMPLE 1 Several Useful Comparisons of Growth Rates

(a) grows faster than as because

Using l’Hôpital’s Rule twice

(b) grows faster than as because

lim
x: q

 
3x

2x = lim
x: q

 a3
2
b x

= q .

x : q2x3x

lim
x: q

 ex

x2 = lim
x: q

 ex

2x
= lim

x: q

 ex

2
= q .

(')'* (')'*

x : qx2ex

lim
x: q

 
2x
x = lim

x: q

 2 = 2,

y = x .y = 2x
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y � ex

y � ln x

FIGURE 7.15 Scale drawings of the
graphs of and ln x.ex

q > qq > q
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7.6 Relative Rates of Growth 513

(c) grows faster than ln x as because

l’Hôpital’s Rule

(d) ln x grows slower than x as because

l’Hôpital’s Rule

EXAMPLE 2 Exponential and Logarithmic Functions with Different Bases

(a) As Example 1b suggests, exponential functions with different bases never grow at the
same rate as If then grows faster than Since 

(b) In contrast to exponential functions, logarithmic functions with different bases a and
b always grow at the same rate as 

The limiting ratio is always finite and never zero. 

If ƒ grows at the same rate as g as and g grows at the same rate as h as
then ƒ grows at the same rate as h as The reason is that

together imply

If and are finite and nonzero, then so is 

EXAMPLE 3 Functions Growing at the Same Rate

Show that and grow at the same rate as 

Solution We show that the functions grow at the same rate by showing that they both
grow at the same rate as the function 

 lim
x: q

 
(21x - 1)2

x = lim
x: q

 a21x - 11x
b2

= lim
x: q

 a2 -
11x
b2

= 4.

 lim
x: q

 
2x2

+ 5
x = lim

x: qA1 +

5
x2 = 1, 

g sxd = x :

x : q .s21x - 1d22x2
+ 5

L1 L2.L2L1

lim
x: q

 
ƒ
h

= lim
x: q

 
ƒ
g #  

g
h

= L1 L2 .

lim
x: q

 
ƒ
g = L1 and lim

x: q

 
g
h

= L2

x : q .x : q ,
x : q ,

lim
x: q

 
loga x
logb x

= lim
x: q

 
ln x>ln a

ln x>ln b
=

ln b
ln a

.

x : q :

lim
x: q

 
ax

bx = lim
x: q

 aa
b
b x

= q .

sa>bd 7 1,bx .axa 7 b 7 0,x : q .

= lim
x: q

 
1
x = 0.

lim
x: q

 
ln x
x = lim

x: q

 
1>x
1

x : q

lim
x: q

 
x2

ln x
= lim

x: q

 
2x
1>x = lim

x: q

 2x2
= q .

x : q ,x2
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Order and Oh-Notation

Here we introduce the “little-oh” and “big-oh” notation invented by number theorists a
hundred years ago and now commonplace in mathematical analysis and computer science.

514 Chapter 7: Transcendental Functions

DEFINITION Little-oh

A function ƒ is of smaller order than g as if We indi-

cate this by writing (“ƒ is little-oh of g”).ƒ � osgd

lim
x: q

 
ƒsxd
gsxd

= 0.x : q

Notice that saying as is another way to say that ƒ grows slower than g as

EXAMPLE 4 Using Little-oh Notation

(a)

(b) x2
= osx3

+ 1d as x : q because lim
x: q

 
x2

x3
+ 1

= 0

ln x = osxd as x : q because lim
x: q

 
ln x
x = 0

x : q .
x : qf = osgd

DEFINITION Big-oh
Let ƒ(x) and g (x) be positive for x sufficiently large. Then ƒ is of at most the
order of g as if there is a positive integer M for which

for x sufficiently large. We indicate this by writing (“ƒ is big-oh of g”).ƒ � Osgd

ƒsxd
gsxd

… M ,

x : q

EXAMPLE 5 Using Big-oh Notation

(a)

(b)

(c)

If you look at the definitions again, you will see that implies for func-
tions that are positive for x sufficiently large. Also, if ƒ and g grow at the same rate, then

and (Exercise 11).

Sequential vs. Binary Search

Computer scientists often measure the efficiency of an algorithm by counting the number
of steps a computer must take to execute the algorithm. There can be significant differences

g = Osƒdƒ = Osgd

ƒ = Osgdƒ = osgd

x = Osexd as x : q because x
ex : 0 as x : q .

ex
+ x2

= Osexd as x : q because ex
+ x2

ex : 1 as x : q .

x + sin x = Osxd as x : q because x + sin x
x … 2 for x sufficiently large.
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7.6 Relative Rates of Growth 515

in how efficiently algorithms perform, even if they are designed to accomplish the same
task. These differences are often described in big-oh notation. Here is an example.

Webster’s Third New International Dictionary lists about 26,000 words that begin with
the letter a. One way to look up a word, or to learn if it is not there, is to read through the
list one word at a time until you either find the word or determine that it is not there. This
method, called sequential search, makes no particular use of the words’ alphabetical
arrangement. You are sure to get an answer, but it might take 26,000 steps.

Another way to find the word or to learn it is not there is to go straight to the middle
of the list (give or take a few words). If you do not find the word, then go to the middle of
the half that contains it and forget about the half that does not. (You know which half con-
tains it because you know the list is ordered alphabetically.) This method eliminates
roughly 13,000 words in a single step. If you do not find the word on the second try, then
jump to the middle of the half that contains it. Continue this way until you have either
found the word or divided the list in half so many times there are no words left. How many
times do you have to divide the list to find the word or learn that it is not there? At most
15, because

That certainly beats a possible 26,000 steps.
For a list of length n, a sequential search algorithm takes on the order of n steps to

find a word or determine that it is not in the list. A binary search, as the second algorithm
is called, takes on the order of steps. The reason is that if then

and the number of bisections required to narrow the list to one
word will be at most the integer ceiling for 

Big-oh notation provides a compact way to say all this. The number of steps in a se-
quential search of an ordered list is O(n); the number of steps in a binary search is

In our example, there is a big difference between the two (26,000 vs. 15), and
the difference can only increase with n because n grows faster than as (as in
Example 1d).

n : qlog2 n
Oslog2 nd .

log2 n .m = < log2 n= ,
m - 1 6 log2 n … m ,

2m - 1
6 n … 2m ,log2 n

s26,000>215d 6 1.
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EXERCISES 7.6

Comparisons with the Exponential 
1. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h.

2. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. ex - 1ecos x

xexe-x

s5>2dx21 + x4

x ln x - x10x4
+ 30x + 1

ex ?
ex as x : q ?

log10 xex>2
ex>2s3>2dx

4x1x

x3
+ sin2 xx + 3

ex ?
ex as x : q ?

ex Comparisons with the Power 
3. Which of the following functions grow faster than 

Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. x ln x f.

g. h.

4. Which of the following functions grow faster than 
Which grow at the same rate as Which grow slower?

a. b.

c. d.

e. f.

g. h. x2
+ 100xs1.1dx

s1>10dxx3
- x2

log10 sx2dx2e-x

10x2x2
+ 1x

x2 ?
x2 as x : q ?

8x2x3e-x

2x

sx + 3d22x4
+ x3

x5
- x2x2

+ 4x

x2 ?
x2 as x : q ?

x2
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Comparisons with the Logarithm ln x
5. Which of the following functions grow faster than 

Which grow at the same rate as ln x? Which grow
slower?

a. b. ln 2x

c. d.

e. x f. 5 ln x

g. 1 x h.

6. Which of the following functions grow faster than 
Which grow at the same rate as ln x? Which grow

slower?

a. b.

c. d.

e. f.

g. ln (ln x) h.

Ordering Functions by Growth Rates
7. Order the following functions from slowest growing to fastest

growing as 

a. b.

c. d.

8. Order the following functions from slowest growing to fastest
growing as 

a. b.

c. d.

Big-oh and Little-oh; Order
9. True, or false? As 

a. b.

c. d.

e. f.

g. h.

10. True, or false? As 

a. b.

c. d.

e. f.

g. h.

11. Show that if positive functions ƒ(x) and g(x) grow at the same rate
as then and 

12. When is a polynomial ƒ(x) of smaller order than a polynomial
g (x) as Give reasons for your answer.

13. When is a polynomial ƒ(x) of at most the order of a polynomial
g (x) as Give reasons for your answer.x : q ?

x : q ?

g = Osƒd .f = Osgdx : q ,

ln sxd = osln sx2
+ 1ddln sln xd = Osln xd

x ln x = osx2dex
+ x = Osexd

2 + cos x = Os2d1
x -

1
x2 = o a1x b

1
x +

1
x2 = O a1x b1

x + 3
= O a1x b

x : q ,

2x2
+ 5 = Osxdln x = osln 2xd

x + ln x = Osxdex
= ose2xd

x = Os2xdx = Osx + 5d
x = osx + 5dx = osxd

x : q ,

exsln 2dx

x22x

x : q .

ex>2sln xdx

xxex

x : q .

ln s2x + 5d
e-xx - 2 ln x

1>x21>1x

log10 10xlog2 sx2d

x : q ?
ln x as 

ex>
1xln 1x

log3 x

x : q ?
ln x as 

14. What do the conclusions we drew in Section 2.4 about the limits
of rational functions tell us about the relative growth of polynomi-
als as 

Other Comparisons
15. Investigate

Then use l’Hôpital’s Rule to explain what you find.

16. (Continuation of Exercise 15.) Show that the value of

is the same no matter what value you assign to the constant a.
What does this say about the relative rates at which the functions

and grow?

17. Show that grow at the same rate as
by showing that they both grow at the same rate as as

18. Show that grow at the same rate as
by showing that they both grow at the same rate as as

19. Show that grows faster as than for any positive inte-
ger n, even (Hint: What is the nth derivative of )

20. The function outgrows any polynomial Show that grows
faster as than any polynomial

21. a. Show that ln x grows slower as than for any posi-
tive integer n, even 

b. Although the values of eventually overtake the
values of ln x, you have to go way out on the x-axis before
this happens. Find a value of x greater than 1 for which

You might start by observing that when
the equation is equivalent to the

equation 

c. Even takes a long time to overtake ln x. Experiment with
a calculator to find the value of x at which the graphs of 
and ln x cross, or, equivalently, at which 
Bracket the crossing point between powers of 10 and then
close in by successive halving.

d. (Continuation of part (c).) The value of x at which
is too far out for some graphers and root

finders to identify. Try it on the equipment available to you
and see what happens.

22. The function ln x grows slower than any polynomial Show that
ln x grows slower as than any nonconstant polynomial.x : q

ln x = 10 ln sln xd

ln x = 10 ln sln xd .
x1>10

x1>10

ln sln xd = sln xd>1,000,000 .
ln x = x1>1,000,000x 7 1

x1>1,000,000
7 ln x .

x1>1,000,000

x1>1,000,000 .
x1>nx : q

an xn
+ an - 1 x

n - 1
+

Á
+ a1 x + a0 .

x : q

exe x

xn ?x1,000,000 .
xnx : qex

x : q .
x2x : q

2x4
+ x and 2x4

- x3

x : q .
1xx : q

210x + 1 and 2x + 1

g sxd = ln xƒsxd = ln sx + ad

lim
x: q

 
ln sx + ad

ln x

lim
x: q

 
ln sx + 1d

ln x
 and lim

x: q

 
ln sx + 999d

ln x
.

x : q ?

516 Chapter 7: Transcendental Functions
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