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Chapter Technology Application Projects

Mathematica/Maple Module
Using Riemann Sums to Estimate Areas, Volumes, and Lengths of Curves

Visualize and approximate areas and volumes in Part I and Part II: Volumes of Revolution; and Part III: Lengths of Curves.

Mathematica/Maple Module

Modeling a Bungee Cord Jump

Collect data (or use data previously collected) to build and refine a model for the force exerted by a jumper’s bungee cord. Use the work-energy
theorem to compute the distance fallen for a given jumper and a given length of bungee cord.
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TRANSCENDENTAL
FUNCTIONS

OVERVIEW Functions can be classified into two broad groups (see Section 1.4). Polynomial
functions are called algebruic, as are functions obtained from them by addition, multiplication,
division, or taking powers and roots. Functions that are not algebraic are called transcendental.
The trigonometric, exponential, logarithmic, and hyperbolic functions are transcendental, as
are their inverses.

Transcendental functions occur frequently in many calculus settings and applications,
including growths of populations, vibrations and waves, efficiencies of computer algorithms,
and the stability of engineered structures. In this chapter we introduce several important tran-
scendental functions and investigate their graphs, properties, derivatives, and integrals.

Inverse Functions and Their Derivatives

A function that undoes, or inverts, the effect of a function f is called the inverse of f. Many
common functions, though not all, are paired with an inverse. Important inverse functions
often show up in formulas for antiderivatives and solutions of differential equations. Inverse
functions also play a key role in the development and properties of the logarithmic and
exponential functions, as we will see in Section 7.3.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion f(x) = x? assigns the same value, 1, to both of the numbers —1 and +1; the sines of
/3 and 27/3 are both V/3/2. Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

DEFINITION  One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x,) whenever x; # x,
in D.
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EXAMPLE 1 Domains of One-to-One Functions

(a) f(x) = Vx is one-to-one on any domain of nonnegative numbers because Vx; #
\/x, whenever x; # x;.

(b) g(x) = sinx is not one-to-one on the interval [0, 77] because sin (7/6) = sin (57/6).
The sine is one-to-one on [0, 77/2], however, because it is a strictly increasing func-
tion on [0, 77/2]. ]

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at
most once. If it intersects the line more than once, it assumes the same y-value more than
once, and is therefore not one-to-one (Figure 7.1).

The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

J /

One-to-one: Graph meets each
horizontal line at most once.

Same y-value

Same y-value

57T\x

6

\ |
\ \
\ \
I I i
-1 0 1 s
6

y =sinx
Not one-to-one: Graph meets one or
more horizontal lines more than once.

FIGURE 7.1 Using the horizontal line test, we
see that y = x> and y = V/x are one-to-one on
their domains (—00, 00) and [0, ©0), but y = x
and y = sinx are not one-to-one on their
domains (—00, c0).

2

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.
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DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse
function ! is defined by

fYa) = b if f(b) = a.
The domain of £~ is R and the range of f ' is D.

The domains and ranges of f and f~! are interchanged. The symbol f~! for the
inverse of f is read “f inverse.” The “—1” in f~! is not an exponent: f~'(x) does not
mean 1/f(x).

If we apply f to send an input x to the output f(x) and follow by applying f ! to f(x)
we get right back to x, just where we started. Similarly, if we take some number y in the
range of £, apply f ' to it, and then apply f to the resulting value f~!(y), we get back the
value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

(f'e f)(x) =x,  forallxin the domain of
(fo f () =y,  forallyinthe domain of f ' (or range of f)

Only a one-to-one function can have an inverse. The reason is that if f(x;) = y and
f(xz) = y for two distinct inputs x; and x,, then there is no way to assign a value to ()
that satisfies both f'(f(x;)) = x; and f~(f(x2)) = x».

A function that is increasing on an interval, satisfying f(x;) > f(x;) when x; > xp, is
one-to-one and has an inverse. Decreasing functions also have an inverse (Exercise 39).
Functions that have positive derivatives at all x are increasing (Corollary 3 of the Mean
Value Theorem, Section 4.2), and so they have inverses. Similarly, functions with negative
derivatives at all x are decreasing and have inverses. Functions that are neither increasing
nor decreasing may still be one-to-one and have an inverse, as with the function sec ! x in
Section 7.7.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a func-
tion from its graph, we start at a point x on the x-axis, go vertically to the graph, and
then move horizontally to the y-axis to read the value of y. The inverse function can be
read from the graph by reversing this process. Start with a point y on the y-axis, go
horizontally to the graph, and then move vertically to the x-axis to read the value of
x = f1(y) (Figure 7.2).

We want to set up the graph of f~! so that its input values lie along the x-axis, as is
usually done for functions, rather then on the y-axis. To achieve this we interchange the
x and y axes by reflecting across the 45° line y = x. After this reflection we have a new
graph that represents f'. The value of f~'(x) can now be read from the graph in the
usual way, by starting with a point x on the x-axis, going vertically to the graph and
then horizontally to the y-axis to get the value of f~!(x). Figure 7.2 indicates the rela-
tion between the graphs of f and f~'. The graphs are interchanged by reflection
through the line y = x.
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(a) To find the value of f at x, we start at x, (b) The graph of fis already the graph of !,

go up to the curve, and then over to the y-axis. but with x and y interchanged. To find the x
that gave y, we start at y and go over to the curve
and down to the x-axis. The domain of ! is the
range of f. The range of f ! is the domain of f.
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(c) To draw the graph of f ~!in the (d) Then we interchange the letters x and y.
more usual way, we reflect the We now have a normal-looking graph of !
system in the line y = x. as a function of x.

FIGURE 7.2 Determining the graph of y = £~ !(x) from the graph of y = f(x).

The process of passing from f to £ ! can be summarized as a two-step process.

1. Solve the equation y = f(x) for x. This gives a formula x = £ !(y) where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula y = f~'(x) where f ! is expressed in the
conventional format with x as the independent variable and y as the dependent variable.
EXAMPLE 2 Finding an Inverse Function

Find the inverse of y = %x + 1, expressed as a function of x.

Solution

1. Solve for x in terms of y:  y = %x +1

2y=x+2
x=2y—2.
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y y=2x-2

FIGURE 7.3 Graphing

f(x) = (1/2)x + land f '(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x. The slopes are
reciprocals of each other (Example 2).

0

FIGURE 7.4 The functions y = Vx and
y = x2,x = 0, are inverses of one
another (Example 3).

1. b
A V= m* T m
1 s
Slope =77 7y =x

0

FIGURE 7.5 The slopes of nonvertical
lines reflected through the line y = x are
reciprocals of each other.
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2. Interchangex andy: y = 2x — 2.

The inverse of the function f(x) = (1/2)x + 1 is the function f~'(x) = 2x — 2. To
check, we verify that both composites give the identity function:

fIU@»=2Gx+1>—2=x+2—2=x
ﬂf*@»=:%mx—2)+1::x—1-r1=x.
See Figure 7.3. [

EXAMPLE 3

Find the inverse of the function y = x

Finding an Inverse Function
2, x = 0, expressed as a function of x.

Solution We first solve for x in terms of y:

y=x

\[y = Vi = |x| = x
We then interchange x and y, obtaining
y = Va.

The inverse of the function y = x% x = 0, is the function y = Vx (Figure 7.4).

Notice that, unlike the restricted function y = x%,x = 0, the unrestricted function

y = x?is not one-to-one and therefore has no inverse. [

|x| = x because x = 0

Derivatives of Inverses of Differentiable Functions

If we calculate the derivatives of f(x) = (1/2)x + 1 and its inverse f '(x) = 2x — 2
from Example 2, we see that

d d (1 1
ax /) :dx<2x+ 1) =2
”uy:%@x—m=z

d
dx /

The derivatives are reciprocals of one another. The graph of f is the line y = (1/2)x + 1,
and the graph of ! is the line y = 2x — 2 (Figure 7.3). Their slopes are reciprocals of
one another.

This is not a special case. Reflecting any nonhorizontal or nonvertical line across the
line y = x always inverts the line’s slope. If the original line has slope m # 0 (Figure 7.5),
the reflected line has slope 1/m (Exercise 36).

The reciprocal relationship between the slopes of f and f~! holds for other functions
as well, but we must be careful to compare slopes at corresponding points. If the slope of
y = f(x) at the point (a, f(a)) is f'(a) and f'(a) # 0, then the slope of y = f~(x) at the
point (f(a), a) is the reciprocal 1/f'(a) (Figure 7.6). If we set b = f(a), then

1 1
@) ')
If y = f(x) has a horizontal tangent line at (a, f(a)) then the inverse function f~! has a
vertical tangent line at (f(a), ), and this infinite slope implies that f ~!is not differentiable

(f ) =
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1

The slopes are reciprocal: ( f by = —— or ( f ) = 1
fa)

)

FIGURE 7.6 The graphs of inverse functions have reciprocal
slopes at corresponding points.

at f(a). Theorem 1 gives the conditions under which f~! is differentiable in its domain,
which is the same as the range of f.

THEOREM 1 The Derivative Rule for Inverses

If f has an interval 7 as domain and f'(x) exists and is never zero on 7, then f ' is
differentiable at every point in its domain. The value of (')’ at a point 5 in the
domain of f! is the reciprocal of the value of f at the pointa = f~'(b):

=1\ b — 1
O =50
or
df™! 1
dx b - iT (1)
x| =)

The proof of Theorem 1 is omitted, but here is another way to view it. When y = f(x)
is differentiable at x = @ and we change x by a small amount dx, the corresponding change
in y is approximately

dy = f'(a) dx.

This means that y changes about f'(a) times as fast as x when x = «a and that x changes
about 1/f’(a) times as fast as y when y = b. It is reasonable that the derivative of f ' at b
is the reciprocal of the derivative of f at a.

EXAMPLE 4  Applying Theorem 1
The function f(x) = x% x = 0 and its inverse f'(x) = Vx have derivatives f'(x) = 2x

and (f71)'(x) = 1/(2Vx).
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y Theorem 1 predicts that the derivative of f~'(x) is
_ 2 =
e (Y6 =
()
1
4 Slope4f(2,4) P ESVRY
‘ 2(f/7(x)
3r } Slope 1 = 1
| - -
Al i \ %/; 2(Vi)
} /:( = Theorem 1 gives a derivative that agrees with our calculation using the Power Rule for the
1 } | derivative of the square root function.
| 1 | i Let’s examine Theorem 1 at a specific point. We pick x = 2 (the number a) and
0 1 b 3 4 * f(2) = 4 (the value b). Theorem 1 says that the derivative of f at 2, f'(2) = 4, and the
derivative of £ ! at £(2), (f7')'(4), are reciprocals. It states that
FIGURE 7.7 The derivative of (fil)'(4) _ 1 __ 1 _ 1 _1
f£71(x) = VA at the point (4, 2) is the (Y4 @2 2x|,., 4
reciprocal of the derivative of f(x) = x? at See Figure 7.7 -

(2, 4) (Example 4).

Equation (1) sometimes enables us to find specific values of df ~'/dx without knowing a
formula for .

Y yexio2 EXAMPLE 5  Finding a Value of the Inverse Derivative
- 2 _ 2 _
6F (2,67 Slope3x™ =327 =12y ¢ f(x) = x* — 2. Find the value of df ! /dx at x = 6 = f(2) without finding a formula
for 7 1(x).
Solution
Reciprocal slope:/ll—z_ d f i ’
P 6.2 —_— = 3x =
/ }( +2) dx x=2 x=2
|
R é * ar” R
/ dx ¥=£(2) ﬂ 12 ’
i) dx x=2
See Figure 7.8. L]
FIGURE 7.8 The derivative of P trizi I F H
f(x) = 3 — 2atx = 2 tells us the arametrizing inverse runctions
derivative of /' at x = 6 (Example 5). We can graph or represent any function y = f(x) parametrically as

x=t and y= f(¢).
Interchanging ¢ and f(¢) produces parametric equations for the inverse:
x = f(1) and y=¢

(see Section 3.5).
For example, to graph the one-to-one function f(x) = x% x = 0, on a grapher to-
gether with its inverse and the line y = x,x = 0, use the parametric graphing option with

Graphof f: x; = ¢, =t t=0
Graphof f7': x, =12, y, =1t
t

Graphofy =x: x3 =1, e
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Identifying One-to-One Functions Graphically

Which of the functions graphed in Exercises 1-6 are one-to-one, and
which are not?

1.

y

y=—3x

3

y = 2|x|

y
x
-1 0 1
y=x*— x2
y
y =intx -
o
o
)
B R —
o
o
o
o
o
y
y=x13
x

9 10.
y y
y =/ =sinx, y=f(x) = tanx,
Toy=T 4L _m ™
_x_2 1 2<x<2
o =>* A
2 2
1k

11. a. Graph the function f(x) = V1 — x% 0 < x = 1. What
symmetry does the graph have?

b. Show that f is its own inverse. (Remember that Va2 = xif
x=0.

12. a. Graph the function f(x) = 1/x. What symmetry does the
graph have?

b. Show that f is its own inverse.

Formulas for Inverse Functions

Each of Exercises 13—18 gives a formula for a function y = f(x) and
shows the graphs of f and f!. Find a formula for ! in each case.

Graphing Inverse Functions

Each of Exercises 7-10 shows the graph of a function y = f(x). Copy
the graph and draw in the line y = x. Then use symmetry with respect
to the line y = x to add the graph of ! to your sketch. (It is not nec-
essary to find a formula for ') Identify the domain and range of

7

7.

X 1
y=f=1-5x>0

S

X
1

13. fx) =x>+1, x=0 14. f(x) =x> x=0

y y
y =1
y=f\ 1}
| x
! y=f70 Op 1
0 ll * y=r"m
15. f(x) = x> — 1 16. fx) =x>—2x+ 1, x=1
y
y =1
. y=r")
y=f"W
1 k=
1+ =
'_] /1 x y=fx)
/1 X
0 1
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17. f(x) = (x + 12, x=—1 18. f(x) = ¥ x=0
y y

y=Ie )

y=f"

/l

L L

o] 1 * -
aF .

y =/

Each of Exercises 19-24 gives a formula for a function y = f(x). In
each case, find f~'(x) and identify the domain and range of f~'. As a
check, show that f(f'(x)) = £ '(f(x)) = x.

19. f(x) = x° 20. f(x) =x* x=0
21, f(x) =x3+ 1 22. f(x) = (1/2)x — 7/2
23. f(x) = 1/x%, x>0 24, f(x) =1/x3, x#0

Derivatives of Inverse Functions
In Exercises 25-28:

a. Find f~'(x).

b. Graph f and f! together.

c. Evaluate df/dx at x = a and df '/dx at x = f(a) to show that at
these points df ~'/dx = 1/(df/dx).

25. f(x) =2x+3, a=-1 26. fx) =(1/5)x+7, a= -1

27. f(x) =5—4x, a=1/2 28. f(x) =2x% x=0, a=35

Exercise

Show that f(x) = x* and g(x) = Vx are inverses of one
another.

29. a.

b. Graph f and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and (—1, —1). Be sure the
picture shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs of f and g at
(1, 1) and (—1, —1) (four tangents in all).
d. What lines are tangent to the curves at the origin?

30. a. Show that A(x) = x3/4 and k(x) = (4x)'/ are inverses of one
another.

b. Graph / and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and (=2, —2). Be sure the
picture shows the required symmetry about the line y = x.

c¢. Find the slopes of the tangents to the graphs at 4 and & at
(2,2)and (=2, —2).

d. What lines are tangent to the curves at the origin?

31. Let f(x) = x> — 3x? — 1,x = 2. Find the value of df !/dx at
the pointx = —1 = f(3).

32. Let f(x) = x> — 4x — 5,x > 2. Find the value of df !/dx at
the pointx = 0 = f(5).

33. Suppose that the differentiable function y = f(x) has an inverse
and that the graph of f passes through the point (2, 4) and has a
slope of 1/3 there. Find the value of df ~'/dx at x = 4.

34. Suppose that the differentiable function y = g(x) has an inverse
and that the graph of g passes through the origin with slope 2.
Find the slope of the graph of g ! at the origin.

Inverses of Lines

35. a. Find the inverse of the function f(x) = mx, where m is a con-
stant different from zero.
b. What can you conclude about the inverse of a function
y = f(x) whose graph is a line through the origin with a
nonzero slope m?

36. Show that the graph of the inverse of f(x) = mx + b, where m
and b are constants and m # 0, is a line with slope 1/m and y-
intercept —b/m.

37. a. Find the inverse of f(x) = x + 1. Graph f and its inverse

together. Add the line y = x to your sketch, drawing it with

dashes or dots for contrast.

b. Find the inverse of f(x) = x + b (b constant). How is the

graph of f~! related to the graph of f?

c. What can you conclude about the inverses of functions whose

graphs are lines parallel to the line y = x?

Find the inverse of f(x) = —x + 1. Graph the line

y = —x + 1 together with the line y = x. At what angle do

the lines intersect?

b. Find the inverse of f(x) = —x + b (b constant). What angle

does the line y = —x + b make with the line y = x?

38. a.

¢. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line y = x?

Increasing and Decreasing Functions

39. As in Section 4.3, a function f(x) increases on an interval / if for
any two points x; and x; in /,

= flx) > flx).

Similarly, a function decreases on / if for any two points x; and x;
in 7,

XQ>)C1

X > X1

= flr) < flx).

Show that increasing functions and decreasing functions are one-
to-one. That is, show that for any x; and x; in /, x, # x| implies

fa) # flx1).

Use the results of Exercise 39 to show that the functions in Exercises
40-44 have inverses over their domains. Find a formula for df ~!/dx
using Theorem 1.

41. f(x) = 27x3
43. f(x) = (1 — x)°

40. f(x) = (1/3)x + (5/6)
42. f(x) =1 — 83

44. f(x) = xP
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Theory and Applications

45.

46.

47.

48.

49.

50.

51.

52.

If f(x) is one-to-one, can anything be said about g(x) = —f(x)?
Is it also one-to-one? Give reasons for your answer.

If f(x) is one-to-one and f(x) is never zero, can anything be said
about 2(x) = 1/f(x)? Is it also one-to-one? Give reasons for your
answer.

Suppose that the range of g lies in the domain of f so that the
composite f ° g is defined. If f and g are one-to-one, can any-
thing be said about f o g? Give reasons for your answer.

If a composite f ° g is one-to-one, must g be one-to-one? Give
reasons for your answer.

Suppose f(x) is positive, continuous, and increasing over the in-
terval [a, b]. By 1nterpret1ng the graph of f show that

/f(x)dx+/( f7') dy = bf(b) — af(a).

Determine conditions on the constants a, b, ¢, and d so that the ra-
tional function

0= g

has an inverse.

If we write g(x) for f 71(x) Equation (1) can be written as

g (fla)) = f() or g'(f(a))-f'(a) =

If we then write x for a, we get

g (f(x)- f'x) = 1.
The latter equation may remind you of the Chain Rule, and indeed
there is a connection.

Assume that f and g are differentiable functions that are in-
verses of one another, so that (g o f)(x) = x. Differentiate both
sides of this equation with respect to x, using the Chain Rule to
express (g © f)'(x) as a product of derivatives of g and f. What
do you find? (This is not a proof of Theorem 1 because we as-
sume here the theorem’s conclusion that ¢ = f~! is differen-
tiable.)

Equivalence of the washer and shell methods for finding volume
Let f be differentiable and increasing on the interval ¢ = x = b,
with @ > 0, and suppose that f has a differentiable inverse, f .
Revolve about the y-axis the region bounded by the graph of f
and the lines x = a and y = f(b) to generate a solid. Then the
values of the integrals given by the washer and shell methods for
the volume have identical values:

f(b) b
/ (0N — a?) dy = / 2x(f(B) — F()) dx.

fla) a

To prove this equality, define
/o 1(.,))2 2
w0 = [ Ao - e

(1) :/ 2mx(f(1) — f(x)) dx.
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Then show that the functions # and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section 4.8,
Exercise 102, this will guarantee W(¢) = S(z) for all ¢ in [a, b]. In
particular, W(b) = S(b). (Source: “Disks and Shells Revisited,”
by Walter Carlip, American Mathematical Monthly, Vol. 98,
No. 2, Feb. 1991, pp. 154-156.)

COMPUTER EXPLORATIONS

In Exercises 53—60, you will explore some functions and their inverses
together with their derivatives and linear approximating functions at
specified points. Perform the following steps using your CAS:

a. Plot the function y = f(x) together with its derivative over the
given interval. Explain why you know that f is one-to-one over
the interval.

b. Solve the equation y = f(x) for x as a function of y, and name
the resulting inverse function g.

c. Find the equation for the tangent line to f at the specified point
(x0, f(x0))-

d. Find the equation for the tangent line to g at the point (f(x,), xo)
located symmetrically across the 45° line y = x (which is the
graph of the identity function). Use Theorem 1 to find the slope
of this tangent line.

e. Plot the functions f and g, the identity, the two tangent lines, and
the line segment joining the points (x¢, f(xp)) and ( f(xo), xo) -
Discuss the symmetries you see across the main diagonal.

53. y = V3x — 2, ;< =4, xy=3

3
sa.y= P2 a=x=2 x=1p2
55. y= - j=yx=1, x=12
X2+ 1
6 x’ 1 1 2
56. y = , —l=x=1, x=1
7 X2+ 1 0 /
57.y=x3*3x2*1, 2 =x=235, x0=%
_ 3 _3
58. y=2—-—x—-x’, 2=x=2, Xo =5

59. y=¢', -3=x=5 x=1

60. y = sinx, —%Sx_

A
S
&
Il

In Exercises 61 and 62, repeat the steps above to solve for the func-
tions y = f(x) and x = f !(y) defined implicitly by the given equa-
tions over the interval.

6l. y'P—1=(x+2)0> -5=x=5 x3=-3/2

62. cosy=x'"°, 0=x=1, x=1/2
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Natural Logarithms

For any positive number «, the function value f(x) = a* is easy to define when x is an
integer or rational number. When x is irrational, the meaning of a* is not so clear.
Similarly, the definition of the logarithm log, x, the inverse function of f(x) = a¥, is not
completely obvious. In this section we use integral calculus to define the natural loga-
rithm function, for which the number « is a particularly important value. This function al-
lows us to define and analyze general exponential and logarithmic functions, y = a* and
y = log, x.

Logarithms originally played important roles in arithmetic computations. Historically,
considerable labor went into producing long tables of logarithms, correct to five, eight, or
even more, decimal places of accuracy. Prior to the modern age of electronic calculators
and computers, every engineer owned slide rules marked with logarithmic scales. Calcula-
tions with logarithms made possible the great seventeenth-century advances in offshore
navigation and celestial mechanics. Today we know such calculations are done using
calculators or computers, but the properties and numerous applications of logarithms are
as important as ever.

Definition of the Natural Logarithm Function

One solid approach to defining and understanding logarithms begins with a study of the
natural logarithm function defined as an integral through the Fundamental Theorem of
Calculus. While this approach may seem indirect, it enables us to derive quickly the fa-
miliar properties of logarithmic and exponential functions. The functions we have studied
so far were analyzed using the techniques of calculus, but here we do something more
fundamental. We use calculus for the very definition of the logarithmic and exponential
functions.

The natural logarithm of a positive number x, written as In x, is the value of an
integral.

DEFINITION  The Natural Logarithm Function

1nx=/}dt, x>0
1

If x> 1, then In x is the area under the curve y = 1/t from t=1 to t = x
(Figure 7.9). For 0 < x < 1, In x gives the negative of the area under the curve from x to
1. The function is not defined for x = 0. From the Zero Width Interval Rule for definite

integrals, we also have
"
Inl = / 7dt =0.
1



TABLE 7.1 Typical 2-place
values of [n x

X In x

0 undefined
0.05 —3.00
0.5 —0.69

1 0

2 0.69
3 1.10
4 1.39
10 2.30

X
If0<x<1,thenlnx/
1

gives the negative of this area.

If x> 1,thenlnx =

gives this area.
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~ | —
53
Il
|
~
~ ] — -
S

A\

X

1
Ifx = 1,thenlnx=/1dt=0.
1

FIGURE 7.9 The graph of y = Inx and its
relation to the function y = 1/x,x > 0. The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the

axis as x moves from 1 to the left.

Notice that we show the graph of y = 1/x in Figure 7.9 but use y = 1/¢ in the inte-
gral. Using x for everything would have us writing

1
lan/ de,

with x meaning two different things. So we change the variable of integration to ¢.

By using rectangles to obtain finite approximations of the area under the graph of
v = 1/t and over the interval between r = 1 and ¢ = x, as in Section 5.1, we can
approximate the values of the function In x. Several values are given in Table 7.1. There is
an important number whose natural logarithm equals 1.

DEFINITION

The Number e

The number e is that number in the domain of the natural logarithm satisfying

In(e) = 1

Geometrically, the number e corresponds to the point on the x-axis for which the area
under the graph of y = 1/t and above the interval [1, e] is the exact area of the unit square.
The area of the region shaded blue in Figure 7.9 is 1 sq unit when x = e.
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The Derivative of y = lnx

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

d, _d "1, _1
dxlnx—dx[tdt—x.

For every positive value of x, we have

==

iln =
dx

Therefore, the function y = Inx is a solution to the initial value problem dy/dx = 1/x,
x > 0, with y (1) = 0. Notice that the derivative is always positive so the natural loga-
rithm is an increasing function, hence it is one-to-one and invertible. Its inverse is studied in
Section 7.3.

If u is a differentiable function of x whose values are positive, so that In u is defined,
then applying the Chain Rule

b _ b du
dx  dudx
to the function y = Inu gives
ilnu = ilnu-@ = 1du
dx du dx  udx’
d,y ., - ldu
dxlu_udx’ u>0 (1)

EXAMPLE 1  Derivatives of Natural Logarithms
d _1d 1yl
(b) Equation (1) with u = x*> + 3 gives

1
X2+ 3

d, 2 _
dxln(x +3) =

+
N
|
B
[
u

Ld 2
e
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Notice the remarkable occurrence in Example la. The function y = In2x has the
same derivative as the function y = Inx. This is true of y = In ax for any positive number a:

[—

d 1 d 1
alnax=a'a(ax)=a(a)=x. (2)

Since they have the same derivative, the functions y = Inax and y = In x differ by a constant.

Properties of Logarithms

Logarithms were invented by John Napier and were the single most important improve-
ment in arithmetic calculation before the modern electronic computer. What made them
so useful is that the properties of logarithms enable multiplication of positive numbers by
addition of their logarithms, division of positive numbers by subtraction of their loga-
rithms, and exponentiation of a number by multiplying its logarithm by the exponent. We
summarize these properties as a series of rules in Theorem 2. For the moment, we restrict
the exponent » in Rule 4 to be a rational number; you will see why when we prove the rule.

THEOREM 2  Properties of Logarithms

For any numbers ¢ > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx

2. Quotient Rule: ln% = Ina — Inx

3.  Reciprocal Rule: ln% = —Inx Rule 2 witha = 1

4. Power Rule: Inx" = rinx r rational

We illustrate how these rules apply.

EXAMPLE 2 Interpreting the Properties of Logarithms
(a) n6 =In(2:3) =1In2 + In3 Product

(b) In4 — In5 = Ins = 08 Quotient
1 _ .
(c) ln§ = —In8 Reciprocal
= —In 23 = —3In2 Power |

EXAMPLE 3  Applying the Properties to Function Formulas

(a) In4 + Insinx = In (4 sinx) Product

(b) In ;xtl:,’ =mh(x+1) —h2x—3) Quotient



bounce07.html?1_6_l
bounce07.html?5_6_a

480

Chapter 7: Transcendental Functions

(¢) Insecx = In colsx = —Incosx Reciprocal
@ IV + 1=In(x+ 1) = %m (x+1)  Power n

We now give the proof of Theorem 2. The steps in the proof are similar to those used
in solving problems involving logarithms.

Proof that Inax = lna + Inx The argument is unusual—and elegant. It starts by ob-
serving that In ax and In x have the same derivative (Equation 2). According to Corollary 2
of the Mean Value Theorem, then, the functions must differ by a constant, which means
that

Inax = Inx + C

for some C.
Since this last equation holds for all positive values of x, it must hold for x = 1.
Hence,

In(a-1) =Inl + C
Ina=0+C Inl =0
C=lna.
By substituting we conclude,

Inax = Ina + Inx.

Proof that lnx" = rlnx (assuming r rational) We use the same-derivative argument
again. For all positive values of x,

d 1 d
—Inx"=—— (xr) Eq. (1) withu = x”
dx x" dx ) )
Here is where we need 7 to be rational,
1 r—1
= ? rx at least for now. We have proved the
Power Rule only for rational
1 d exponents.
re~=—(rlnx).
x = g rlnx)

Since Inx" and r In x have the same derivative,
Inx"=rlnx + C

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.
You are asked to prove Rule 2 in Exercise 84. Rule 3 is a special case of Rule 2, obtained
by setting ¢ = 1 and noting that In1 = 0. So we have established all cases of Theorem 2. m

We have not yet proved Rule 4 for 7 irrational; we will return to this case in Section 7.3.
The rule does hold for all r, rational or irrational.

The Graph and Range of ln x

The derivative d(In x)/dx = 1/x is positive for x > 0, so In x is an increasing function of
x. The second derivative, —1/x?, is negative, so the graph of In x is concave down.



0 1 2

FIGURE 7.10 The rectangle of height
vy = 1/2 fits beneath the graph of y = 1/x
for the interval 1 = x = 2.
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We can estimate the value of In 2 by considering the area under the graph of y = 1/x
and above the interval [1, 2]. In Figure 7.10 a rectangle of height 1/2 over the interval [1, 2]
fits under the graph. Therefore the area under the graph, which is In 2, is greater than the
area, 1/2, of the rectangle. So In2 > 1/2. Knowing this we have,

n_ 1\ _n
In2"=nln2 > n<2> =5

and
27" = —nln2 < —n<1> -
2 2
It follows that
lim Inx = 00 and lim Inx = —00.

x—00 x—0
We defined In x for x > 0, so the domain of In x is the set of positive real numbers. The

above discussion and the Intermediate Value Theorem show that its range is the entire real
line giving the graph of y = In x shown in Figure 7.9.

The Integral [(1/u) du

Equation (1) leads to the integral formula

/;w=mu+c 3)

when u is a positive differentiable function, but what if u is negative? If u is negative, then
—u is positive and

/Llldu = / (—11,{) d(—u) Eq. (3) with u replaced by —u
=1In(-u) + C. (4)

We can combine Equations (3) and (4) into a single formula by noticing that in each
case the expression on the right is In |[u| + C. In Equation (3), Inu = In |u| because
u > 0; in Equation (4), In(—u«) = In |u| because u < 0. Whether u is positive or nega-
tive, the integral of (1/u) du is In |u| + C.

If u is a differentiable function that is never zero,

/;WzmM+c. 5)

Equation (5) applies anywhere on the domain of 1/u, the points where u # 0.
We know that

un+1
u"du = —— + C, n # —1 and rational
n+1
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Equation (5) explains what to do when n equals —1. Equation (5) says integrals of a certain
form lead to logarithms. If u = f(x), then du = f'(x) dx and

1,  [[®
/udu = 70 dx.

So Equation (5) gives
f'(x)
fx)

whenever f(x) is a differentiable function that maintains a constant sign on the domain
given for it.

d = In | f(x)| + C

EXAMPLE 4  Applying Equation (5)

2 2 -1 d -1 u=x*— 5, du = 2xdkx,
(a) / xsdx:/ uu=ln|u|] IR
0 - -5

Video 2

=In|-1|—In|-5] =Inl —In5= —In5

o) 5 u=3+ 2sinf, du= 2cosbdb,
™2 4cos 6 B 2
TS0 h = | = du
1

(b) s 3+ 2sind u(=m/2) =1, u(w/2) =5

5
=21n|u|}
1

=2In|5| = 2In|l| =2In5
Note thatu = 3 + 2 sin 6 is always positive on [—7/2, /2], so Equation (5) applies. m

The Integrals of tan x and cot x

Equation (5) tells us at last how to integrate the tangent and cotangent functions. For the
tangent function,

_ sin x _ —du u = cosx > 0on(—m/2,7/2),
/tan”lx - / cosx X = u du = —sinx dx
du
== = —In |u| + C
1
= —In |cosx| +C=1In + C Reciprocal Rule
|cos x|

= In |secx| + C.

For the cotangent,

cos x dx du u = sinx,
s x du = cosx dx

=1In|u| + C =In|sinx| + C = —In|ecscx| + C.
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/tanudu = —In|cosu| + C =In|secu| + C
/cotudu =1In|sinu| + C = —In|cscx| + C

EXAMPLE 5
/6 /3 du 1 /3 Substitute u = 2x,
/ tan 2x dx = / tan u ST 2/ tan u du dx = du/2,
0 0 0 u(0) = 0,
1 /3 1 1 u(m/6) = 7/3
—21n|secu|]0 —§(In2—lnl)—§1n2 |

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, and
powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formulas
before differentiating. The process, called logarithmic differentiation, is illustrated in the
next example.

EXAMPLE 6  Using Logarithmic Differentiation
Find dy/dx if

_ @t D +3)

P x> 1.

b

Solution We take the natural logarithm of both sides and simplify the result with the
properties of logarithms:
(> + D(x +3)2

Iny =1In —

=In((2+ Dx+3)"2) —Inkx—1) Rule 2
=In(x>+1) +In(x+3)"?—In(x—1) Rule 1

— G241+ %ln(x +3) —In(x—1).  Rules

We then take derivatives of both sides with respect to x, using Equation (1) on the left:

d
T WP SRS S T
Yidx 2 4+1 2 x+3 x-—1

Next we solve for dy/dx:

dy 2x 1 1
?_y 3 +2 - .
/X X2+ 1 x+6 x-—1
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Finally, we substitute for y:

dy (P D +3)P 0 0 (S
dx x—1 x2+1 2x+6 x-—1)°

A direct computation in Example 6, using the Quotient and Product Rules, would be much
longer.



484 Chapter 7: Transcendental Functions

EXERCISES 7.2

Using the Properties of Logarithms 25. y = 6(sin(In6) + cos (In0))
A 1. Express the following logarithms in terms of In 2 and In 3. 26. y = In(sec6 + tan6)
g a. In0.75 b. In (4/9) c. In(1/2) 2. y=In—— 28, y =2l

d. Vo e. n3V2 f. n\V135 *Vz+1

2. Express the following logarithms in terms of In 5 and In 7. 29. y = } i_ }E; 30. y= VIn V¢
a. In(1/125 b. 1n9.8 c. n7V7

n (1/125) " . _ \V sin 6 cos 6

d. In 1225 e. 1n0.056 31. y = In(sec(In6)) 2. y=mh{T"T5m0
f. (In35 + In(1/7))/(In25)

(x* + 1)

(x+ 1)
Use the properties of logarithms to simplify the expressions in 3.y=h < m) 34. y=Iny (x + 2

Exercises 3 and 4.

2 Vx
3. a. Insind — In (3“;9) b. In(3:2 — 9%) + In <3ix) 35. y = [z/zln\/"” 36. y = /\/; Inz dt
1 .
¢. SIn(4r!) —In2 Integration
4 a InsecO + Incosf b. In(8x + 4) — 21n2 Evaluate the integrals in Exercises 37-54.
¢ 3V — 1 —In(t + 1) 3. [ & 38, [ &
-3 X 1 3x — 2
Derivatives of Logarithms 39 / 2ydy m / 8rdr
In Exercises 5-36, find the derivative of y with respect to x, #, or 8, as y: =25 42 -5
appropriate. T sint ™3 4sing
5. y=1In3x 6. y = Inkx, k constant 41. z 2 - costdt 42. o 1 —4cosé a9
7. y = In(t?) 8. y=1In(? 22 1nx Y dx
3 10 43. ¥ dx 44, Tnx
9. y=In3 10. y =In~ 1 2
1. y=I(0+1) 12. y = In(20 + 2) s [ 6 [
iR i © )2 x(lnx)? Lo Vd
13. y = Inx? 14. y = (Inx)? 5 . ‘ n
3sec”t secytany
— 2 N _osectr SRR
15. y = t(41nt) ) 16. y = t3 In¢ . 47. /6 + 3tantdt 48. / 2 + secy &
X x X x
17. y = =Inx — == 18. y = =Ilnx — — /2 /2
YT 16 r73 9 49, / tan % dx 50. / cot t dt
0 /4
19. y = 20. y= 100! ., o
In In 51. / 2 cot§d0 52. / 6 tan 3x dx
2.y = X 2. = Xlinx /2 0
1+ Inx 1+ Inx
53 / dx 54 sec x dx
23. y = In(Inx) 24. y = In(In(Inx)) 2Vx + 2x VIn (secx + tanx)
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Exercise

Logarithmic Differentiation

In Exercises 55-68, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

55. y= Vx(x + 1) 56. y = V(x> + D)(x — 1)

_ t _ 1
STy =T By=\r
59. y = V6O + 3sinf 60. y = (tan0)\V'20 + 1

1

Ly =t(t+ D+ Ly =
61. y =¢t(r+ 1)+ 2) 62. y )+ 2)
_6+5 _ 6sinf
63. y = 9cost 64. y = Voot
V1 G+ )P
65. y=—"—""—"+ 66. y =/ —
(x + 1)*3 (2x + 1)

_afxle + Dx = 2)
VG2 + DRx +3)

x(x — 2)
67. y = J——— 68.
Y X2+ 1 ’

Theory and Applications

69. Locate and identify the absolute extreme values of

. In(cosx) on [—m/4, 7/3],
b. cos (Inx)on [1/2, 2].

70. a. Prove that f(x) = x — Inx is increasing for x > 1.
b. Using part (a), show that Inx < xifx > 1.

o

71. Find the area between the curves y = Inx and y = In2x from
x=1tox =25.

72. Find the area between the curve y = tanx and the x-axis from
x=—m/4tox = mw/3.

73. The region in the first quadrant bounded by the coordinate axes,
the line y = 3, and the curve x = 2/ Vy + 1is revolved about
the y-axis to generate a solid. Find the volume of the solid.

74. The region between the curve y = Vcotx and the x-axis from
x = /6 to x = /2 is revolved about the x-axis to generate a
solid. Find the volume of the solid.

75. The region between the curve y = 1/x? and the x-axis from
x = 1/2 to x = 2 is revolved about the y-axis to generate a solid.
Find the volume of the solid.

76. In Section 6.2, Exercise 6, we revolved about the y-axis the region
between the curve y = 9x/ \/x* + 9 and the x-axis from x = 0
tox = 3 to generate a solid of volume 367 . What volume do you
get if you revolve the region about the x-axis instead? (See
Section 6.2, Exercise 6, for a graph.)

77. Find the lengths of the following curves.

a. y= %8 —Inx, 4=x=38
b. x = (y/4)? —2In(y/4), 4=y=12
78. Find a curve through the point (1, 0) whose length from x = 1 to
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x=2is

2 1
L=/ 1+ —dx.
1 X

Find the centroid of the region between the curve y = 1/x
and the x-axis from x = 1 tox = 2. Give the coordinates to
two decimal places.

79. a.

b. Sketch the region and show the centroid in your sketch.

80. a. Find the center of mass of a thin plate of constant density
covering the region between the curve y = 1/V/x and the x-

axis fromx = 1tox = 16.

b. Find the center of mass if, instead of being constant, the
density function is 8(x) = 4/ V.

Solve the initial value problems in Exercises 81 and 82.

dy 1
81.5—14‘;, y(1) =3
%y
82. 7 =sec’x, y(0)=0 and y'(0) =1

x2

The linearization of In (1 + x) atx = 0 Instead of approxi-
mating In x near x = 1, we approximate In (1 + x) near x = 0.
We get a simpler formula this way.

83.

a. Derive the linearization In (1 + x) = xatx = 0.

b. Estimate to five decimal places the error involved in replacing
In(1 + x) by x on the interval [0, 0.1].

c. GraphIn(1 + x) and x together for 0 =< x = 0.5. Use
different colors, if available. At what points does the
approximation of In (1 + x) seem best? Least good? By
reading coordinates from the graphs, find as good an upper
bound for the error as your grapher will allow.

84. Use the same-derivative argument, as was done to prove Rules 1
and 4 of Theorem 2, to prove the Quotient Rule property of loga-
rithms.

Grapher Explorations

85. Graph In x, In 2x, In 4x, In 8x, and In 16x (as many as you can) to-
gether for 0 < x = 10. What is going on? Explain.

86. Graph y = In |sinx| in the window 0 = x =22, -2 =y = 0.
Explain what you see. How could you change the formula to turn
the arches upside down?

87. a. Graph y = sinx and the curves y = In(a + sinx) fora = 2,
4,8, 20, and 50 together for 0 = x = 23.
b. Why do the curves flatten as a increases? (Hint: Find an
a-dependent upper bound for [)’|.)
88. Does the graph of y = Vx — Inx, x > 0, have an inflection
point? Try to answer the question (a) by graphing, (b) by using cal-
culus.
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The Exponential Function

Having developed the theory of the function In x, we introduce the exponential function
expx = e" as the inverse of In x. We study its properties and compute its derivative and in-
tegral. Knowing its derivative, we prove the power rule to differentiate x"” when # is any
real number, rational or irrational.

y The Inverse of ln x and the Number e
gl y=Inlx The function In x, being an increasing function of x with domain (0, ) and range
or (—00, 00), has an inverse In"! x with domain (— 00, 00) and range (0, 0). The graph of
T x=lIny In"! x is the graph of In x reflected across the line y = x. As you can see in Figure 7.11,
lim In"'x =00  and lim In"'x = 0.
x—>00 x—>—00

The function In"! x is also denoted by exp x.

In Section 7.2 we defined the number e by the equation In(e) =1, so
e=In"!(1) = exp (1). Although e is not a rational number, later in this section we see one
way to express it as a limit. In Chapter 11, we will calculate its value with a computer to as
many places of accuracy as we want with a different formula (Section 11.9, Example 6).
To 15 places,

e = 2.718281828459045.

The Function y = e*

We can raise the number e to a rational power 7 in the usual way:

2_ . - _ 1 12 _
FIGURE 7.11 The graphs of y = Inx and e"=ee e » ¢ Ve,

y = In"'x = exp x. The number e is ) ) o ) o )
1 = exp (1). and so on. Since e is positive, e” is positive too. Thus, e” has a logarithm. When we take the

logarithm, we find that
Ine" =rlne=r-1=r.
Since In x is one-to-one and In (In"' ) = 7, this equation tells us that
e =Inlr=expr for  rational . (1)

We have not yet found a way to give an obvious meaning to e* for x irrational. But In~! x
has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the
definition of e* to irrational values of x. The function In~" x is defined for all x, so we use it

Typical values of e* to assign a value to e at every point where ¢* had no previous definition.
X e* (rounded)
-1 037 DEFINITION  The Natural Exponential Function
0 1 For every real number x, ¢* = In"'x = expx.
1 2.72
2 7.39
10 22026 For the first time we have a precise meaning for an irrational exponent. Usually the
100 2.6881 X 10% exponential function is denoted by e* rather than exp x. Since In x and e* are inverses of

one another, we have



| Transcendental Numbers and
Transcendental Functions
Numbers that are solutions of polynomial
equations with rational coefficients are
called algebraic: —2 is algebraic because
it satisfies the equation x + 2 = 0, and
V3is algebraic because it satisfies the
equation x> — 3 = 0. Numbers that are
not algebraic are called transcendental,
like e and 7r. In 1873, Charles Hermite
proved the transcendence of e in the
sense that we describe. In 1882, C.L.F.
Lindemann proved the transcendence
of 7.

Today, we call a function y = f(x)
algebraic if it satisfies an equation of the
form

Pnyn+"'+P1y+P0:0

in which the P’s are polynomials in x
with rational coefficients. The function
vy =1/Vx + 1is algebraic because
it satisfies the equation

(x + 1)y*> = 1 = 0. Here the
polynomials are P, = x + 1, P, = 0,
and Py = —1. Functions that are not
algebraic are called transcendental.
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7.3 The Exponential Function

Inverse Equations for ¢* and In x
(allx > 0) (2)
(all x) (3)

elnx = x

In(e*) = x

The domain of In x is (0, 0) and its range is (— 00, ©0). So the domain of e* is (— 00, 00)
and its range is (0, 00).

EXAMPLE 1 Using the Inverse Equations
(a) Ine? =2

(b) Ine! = —1

(© Ve =%

(d) Ines™ = sinx

() =2

(f) e]n(x2+l) — xz +1

(g 32 = 2 _ 8 _ g One way
(h) 32 = (eln2)3 =2=38 Another way |
EXAMPLE 2 Solving for an Exponent

Find k if % = 10.

Solution  Take the natural logarithm of both sides:
e =10
Ine** = In 10
2k = In 10 Eq. (3)
1
k= Eln 10. -

The General Exponential Function a*
Since a = ¢ for any positive number a, we can think of a* as (¢™%)* = ¢*"?_ We there-
fore make the following definition.

DEFINITION  General Exponential Functions
For any numbers ¢ > 0 and x, the exponential function with base a is
x — ,xlna
a* = e ",

When a = e, the definition gives a* = e*¢ = ¢¥In¢ = ¥ = ¥,
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HISTORICAL BIOGRAPHY EXAMPLE 3  Evaluating Exponential Functions
Siméon Denis Poisson (a) V3 = e\/§1n2 ~ !0 332

(1781-1840) (b) 27 = ™2 x Q218 x g n

We study the calculus of general exponential functions and their inverses in the next
section. Here we need the definition in order to discuss the laws of exponents for e*.

Laws of Exponents

Even though e” is defined in a seemingly roundabout way as In"! x, it obeys the familiar
laws of exponents from algebra. Theorem 3 shows us that these laws are consequences of
the definitions of In x and e*.

THEOREM 3 Laws of Exponents for e*
For all numbers x, x;, and x;, the natural exponential e* obeys the following laws:

1. e":e? =0
_ 1
2. e =—
ex
X1
e _
3. ="
-5
e

4 (eny = e = (o)

Proof of Law 1 Let
y = e and vy = e, (4)
Then

x1 =Iny; and x; =1Iny, Take logs of both
sides of Eqgs. (4).
X1 + Xy = 1ny1 + lllyz

=In y1)2 Product Rule for logarithms

et = Sy Exponentiate.

1

=0 e =u
= e"en. [

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4  Applying the Exponent Laws

(a) e"Tn2 = g¥.eln2 = 2p* Law 1
- 1 1
(b) e™ = ——=+ Law 2
e X
2
e -
() e = e Law 3

(d) (63)x =¥ = (ex)3 Law 4 |
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Theorem 3 is also valid for a*, the exponential function with base a. For example,

a¥l - g© = gfilna. gnlna Definition of a*
= Ml Ina+x;Ina Law 1
= gmtx)lna Factor In a
— Xx1tx L. .
=a . Definition of a

The Derivative and Integral of e*

The exponential function is differentiable because it is the inverse of a differentiable func-
tion whose derivative is never zero (Theorem 1). We calculate its derivative using Theorem 1
and our knowledge of the derivative of In x. Let

f(x) = Inx and  y=e" =mh'lx=f"x).
Then,

dy g _d
= - 1n X

el oCl
d ,_
- L)
o
)
Trey e

1
= f'(z) = %wilhz = e"

#)

= ¢e*.

Theorem 1

That is, for y = e*, we find that dy/dx = e* so the natural exponential function e* is its
own derivative. We will see in Section 7.5 that the only functions that behave this way are
constant multiples of e*. In summary,

et =e¢e* (5)

&=

EXAMPLE 5  Differentiating an Exponential

dicxy_<cd
dx(Se)—dee
:5ex | |

The Chain Rule extends Equation (5) in the usual way to a more general form.


bounce07.html?2_2_l

490 Chapter 7: Transcendental Functions

If u is any differentiable function of x, then

ae =e e (6)

Ii Ii EXAMPLE 6  Applying the Chain Rule with Exponentials
Video Video (a) %eﬂc = eixa%(—x) =ef(—1)=—e" Eq. (6) withu = —x

d g we d 4
(b) aesmx = esmxa(smx) = e -cosx Eq. (6) with u = sinx ]

The integral equivalent of Equation (6) is

/e”du=e”+C.

EXAMPLE 7  Integrating Exponentials
u = 3x, ldu =dx, u(0) =0,

In2 In8 1 3
3 _
(a)/ exdx—/ et 3 du u(In2) =312 =12 = In8
0 0

_ leu In8
3 0

_le_pn=7
=38~ D=3

w2 ) /2

(b) / e’ cosx dx = esmx:| Antiderivative from Example 6
0 0
=el—el=e—1 u

EXAMPLE 8  Solving an Initial Value Problem

Solve the initial value problem

d
eya = 2x, x> \/3; ¥(2) = 0.

Solution We integrate both sides of the differential equation with respect to x to obtain

e’ =x*+ C.
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We use the initial condition y(2) = 0 to determine C:

C=e"— (2)?

This completes the formula for e”:
eV =x*— 3.
To find y, we take logarithms of both sides:
Ine’ = In(x? — 3)
y =1In(x?* — 3).

Notice that the solution is valid for x > \/3.
Let’s check the solution in the original equation.

d
ey% = eydi;cln(xz ~3)
= ¢V 22x Derivative of In (x> — 3)
x- =3
— ln(x273)27x o ,
- ¢ y=In(x"—3)
x2 -3 ) n(x
= 2 L Iny _
=" -3 iy —
( )xz -3 e )

= 2x.

The solution checks. _

The Number e Expressed as a Limit

We have defined the number e as the number for which Ine = 1, or the value exp (1). We
see that e is an important constant for the logarithmic and exponential functions, but what
is its numerical value? The next theorem shows one way to calculate e as a limit.

THEOREM 4  The Number e as a Limit
The number e can be calculated as the limit

e = lim (1 + x)'”.
x—0

Proof If f(x) = Inx,then f'(x) = 1/x,so0 f'(1) = 1.But, by the definition of derivative,

, fa ) =) f0+x) = f(1)
) = i R = i S
In(1 +x)—1Inl
=xli_r)r%)n( i) n :)}i_r)r%)%ln(l+x) Inl =0

= limIn(1 + x)l/x =In [lim(l + x)l/x:| In is continuous.
x—0 x—0
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Because f'(1) = 1, we have
In {lim(l + x)l/x] =1
x—0
Therefore,

lim (1 + x)l/x =e€ Ine = 1 and In is one-to-one u
x—0

By substituting y = 1/x, we can also express the limit in Theorem 4 as

1)’
eZyE)ngo <1 +y> . (7)

At the beginning of the section we noted that e = 2.718281828459045 to 15 decimal
places.

The Power Rule (General Form)

We can now define x" for any x > 0 and any real number 7 as x" = ¢"'"*_ Therefore, the n
in the equation Inx" = nInx no longer needs to be rational—it can be any number as long
asx > 0:

Inx” = In (enlnx) =nlnx Ine* = u, any u

Together, the law a*/a’ = a*” and the definition x" = ¢"!"* enable us to establish

the Power Rule for differentiation in its final form. Differentiating x" with respect to x
gives

d d
—x" = *enlnx Definition of x", x > 0
dx dx
nlnx ,i i u
e dx (n In x) Chain Rule for e

_ .nn N .

=Xy The definition again

= nx""!

In short, as long as x > 0,

d

n—1
—Xx
dx

= nx

The Chain Rule extends this equation to the Power Rule’s general form.

Power Rule (General Form)
If u is a positive differentiable function of x and » is any real number, then u” is a
differentiable function of x and

i n — n—l@
u nu dx
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EXAMPLE 9  Using the Power Rule with Irrational Powers
(a) %x\/i = V2Vl (x> 0)

d

(b) I (2 + sin3x)™ = w(2 + sin3x)" '(cos 3x) + 3

37(2 + sin3x)" '(cos 3x).
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Algebraic Calculations with the Exponential
and Logarithm

Find simpler expressions for the quantities in Exercises 1—4.

1. a. eM72 b. e—lnx2 c. enx—iny
2. a eln(x2+y2) b. e—ln0.3 c. eln‘n’x—an
3a.2lnVe b In(ned) e In(e™ )
4. a. In (%% b. In(e®") c. In(e2"¥)

27. y = cos (efez)
29. y = In(3te™)

!
3l. y=1In 4o

33. y = e(cost+lnt)

Inx
35. y=/ sine’ dt
0

28. y = 0% 2 cos 50

30. y = In(2¢”'sint)
Vo )

32. y=In (7

1+ Vo

34. y=e(In? + 1)

2x

36. y = LW Intdt

Solving Equations with Logarithmic
or Exponential Terms

In Exercises 5-10, solve for y in terms of 7 or x, as appropriate.

In Exercises 37-40, find dy/ dx.

37. Iny = &’sinx
39. ¥ = sin(x + 3y)

38. Inxy = &
40. tany = e* + Inx

5. Iny=2t+ 4 6. Iny=—-r+5
7. In(y — 40) = 51 8. In(1 —2y) =1
9. In(y — 1) —In2 =x + Inx

10. In(y*> — 1) — In(y + 1) = In(sinx)

Integrals

Evaluate the integrals in Exercises 41-62.

In Exercises 11 and 12, solve for k.

1. a. e®=4 b 100" =200 ¢ 100 =
12. a. & =% b. 80ef = 1 c. ek =03

In Exercises 13—-16, solve for ¢.

13. a. ¢ " =27 b. " =% c. M0 =04

~001r _ o L 2y — 1
14. a. e 1000 b. e 10 c. e 5
15. V1 = 2 16. @@+ = o

Derivatives

In Exercises 17-36, find the derivative of y with respect to x, #, or 6, as
appropriate.

17. y = e 18. y = &
19. y =77 20. y = o@Va+s)
21. y = xe* — " 22. y=(1 + x)e ™

41. /(e3" + 5¢™) dx

In3
43./ e’ dx
In2
45, /Se(x+1)dx
In9
47./ e dx
In4
[

49. dr
Vr
51. / 2te" dt
1/x
53. / € dx
X

/4
55. / (1 + ™% sec?0 do
0

57. /esec ™ sec wttan wt dt

42, / (2¢* — 3e7>) dx

0

44, / e “dx
—In2

46. / 2¢>7D g
In 16

48. / e¥/* dx

0
50. [ &—ar
r

v,

52. /t3e“4) dt
—1/x?

54. / €
X

/2
56. / (1 + e csc? 0 do
/4

23.
25.

y=(x2—2.x+2)e"
y = e%sin® + cos @)

24.
26.

y = (%% — 6x + 2)e¥
y = In(30e7")

58. /e“sc(”“) csc(m + t)cot (o + t) dt
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In (7/2)
59. / 2e? cos e’ dv
In (7/6)

er
61. /1+e,dr

Vin ) 5
60. / 2x e* cos (e¥) dx
0

dx
1+ e°

62.

Initial Value Problems

Solve the initial value problems in Exercises 63—66.

dy :
63. s e'sin(e’ —2), y(In2)=0
d
64. j); = e 'sec? (me™), y(Ind) =2/w
d2
y -X — ! —
65. F=2@ , y(0)=1 and »'(0) =0
X
d2
66. ?f =1-¢% yp(1)=-1 and y'(1)=0

Theory and Applications

67. Find the absolute maximum and minimum values of f(x) =
e* — 2xon|O0, 1].

68. Where does the periodic function f(x) = 2¢*™ /2) take on its ex-
treme values and what are these values?

y

sin (x/2)

y=2e

0]

69. Find the absolute maximum value of f(x) = x*In (1/x) and say

where it is assumed.

70. Graph f(x) = (x — 3)%" and its first derivative together. Com-
ment on the behavior of f in relation to the signs and values of f'.
Identify significant points on the graphs with calculus, as neces-
sary.

Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve y = e, below by the curve y = e*,
and on the right by the line x = In 3.

71.

72. Find the area of the “triangular” region in the first quadrant that is

bounded above by the curve y = e¥/?, below by the curve
y = ¢ 2, and on the right by the line x = 21n2.

Find a curve through the origin in the xy-plane whose length from

x=0tox=1is
Y
LZ% 1+Ze"’“a’x.

Find the area of the surface generated by revolving the curve
x= (e’ +¢7)/2,0 =y = In2, about the y-axis.

73.

74.

_el+e?

In2

|

|
5%\\\1

|

75. a. Show that flnxdx =xlnx —x + C.
b. Find the average value of In x over [1, e].
76.

7.

Find the average value of f(x) = 1/xon[1,2].
The linearization of e* atx = 0
a. Derive the linear approximation e® ~ 1 + xatx = 0.

. Estimate to five decimal places the magnitude of the error
involved in replacing e* by 1 + x on the interval [0, 0.2].

. Graph e*and 1 + x together for —2 = x = 2. Use different
colors, if available. On what intervals does the approximation
appear to overestimate e*? Underestimate e*?

78. Laws of Exponents

a. Starting with the equation e*'e*? = ¢***?, derived in the text,
show that e = 1/e* for any real number x. Then show that
e*'/e™ = " for any numbers x; and x;.

b. Show that (™) = "™ = (¢*)" for any numbers x; and x;.

79.
80.

A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation Inx = 1.

The inverse relation between ¢ and In x Find out how good
your calculator is at evaluating the composites

In(e¥).

e™ and

81. Show that for any number a > 1

a Ina
/ lnxdx+/ e’dy = alna.
1 0

(See accompanying figure.)

y
y=Inx

Ina

82. The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of e is concave up over every interval of
x-values.
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