2

Ancient Egypt

Sesostris ... made a division of the soil of Egypt among the
inhabitants. . .. If the river carried away any portion of a man’s lot, . ..
the king sent persons to examine, and determine by measurement the
exact extent of the loss. ... From this practice, I think, geometry first
came to be known in Egypt, whence it passed into Greece.
Herodotus

The Era and the Sources

About 450 Bce, Herodotus, the inveterate Greek traveler and narrative
historian, visited Egypt. He viewed ancient monuments, interviewed
priests, and observed the majesty of the Nile and the achievements of those
working along its banks. His resulting account would become a cornerstone
for the narrative of Egypt’s ancient history. When it came to mathematics,
he held that geometry had originated in Egypt, for he believed that
the subject had arisen there from the practical need for resurveying after the
annual flooding of the river valley. A century later, the philosopher Aristotle
speculated on the same subject and attributed the Egyptians’ pursuit of
geometry to the existence of a priestly leisure class. The debate, extending
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well beyond the confines of Egypt, about whether to credit progress in
mathematics to the practical men (the surveyors, or “rope-stretchers’) or to
the contemplative elements of society (the priests and the philosophers)
has continued to our times. As we shall see, the history of mathematics
displays a constant interplay between these two types of contributors.

In attempting to piece together the history of mathematics in ancient
Egypt, scholars until the nineteenth century encountered two major
obstacles. The first was the inability to read the source materials that
existed. The second was the scarcity of such materials. For more than
thirty-five centuries, inscriptions used hieroglyphic writing, with varia-
tions from purely ideographic to the smoother hieratic and eventually the
still more flowing demotic forms. After the third century cg, when they
were replaced by Coptic and eventually supplanted by Arabic, knowledge
of hieroglyphs faded. The breakthrough that enabled modern scholars
to decipher the ancient texts came early in the nineteenth century when
the French scholar Jean-Francois Champollion, working with multi-
lingual tablets, was able to slowly translate a number of hieroglyphs. These
studies were supplemented by those of other scholars, including the British
physicist Thomas Young, who were intrigued by the Rosetta Stone, a tri-
lingual basalt slab with inscriptions in hieroglyphic, demotic, and Greek
writings that had been found by members of Napoleon’s Egyptian expe-
dition in 1799. By 1822, Champollion was able to announce a substantive
portion of his translations in a famous letter sent to the Academy of Sci-
ences in Paris, and by the time of his death in 1832, he had published a
grammar textbook and the beginning of a dictionary.

Although these early studies of hieroglyphic texts shed some light on
Egyptian numeration, they still produced no purely mathematical mate-
rials. This situation changed in the second half of the nineteenth century.
In 1858, the Scottish antiquary Henry Rhind purchased a papyrus roll in
Luxor that is about one foot high and some eighteen feet long. Except for a
few fragments in the Brooklyn Museum, this papyrus is now in the British
Museum. It is known as the Rhind or the Ahmes Papyrus, in honor of
the scribe by whose hand it had been copied in about 1650 Bck. The scribe
tells us that the material is derived from a prototype from the Middle
Kingdom of about 2000 to 1800 Bce. Written in the hieratic script,
it became the major source of our knowledge of ancient Egyptian
mathematics. Another important papyrus, known as the Golenishchev or
Moscow Papyrus, was purchased in 1893 and is now in the Pushkin
Museum of Fine Arts in Moscow. It, too, is about eighteen feet long but is
only one-fourth as wide as the Ahmes Papyrus. It was written less carefully
than the work of Ahmes was, by an unknown scribe of circa. 1890 BcEk. It
contains twenty-five examples, mostly from practical life and not differing
greatly from those of Ahmes, except for two that will be discussed further
on. Yet another twelfth-dynasty papyrus, the Kahun, is now in London; a
Berlin papyrus is of the same period. Other, somewhat earlier, materials



10 Ancient Egypt

are two wooden tablets from Akhmim of about 2000 BCE and a leather roll
containing a list of fractions. Most of this material was deciphered within a
hundred years of Champollion’s death. There is a striking degree of
coincidence between certain aspects of the earliest known inscriptions and
the few mathematical texts of the Middle Kingdom that constitute our
known source material.

Numbers and Fractions

Once Champollion and his contemporaries could decipher inscriptions on
tombs and monuments, Egyptian hieroglyphic numeration was easily dis-
closed. The system, at least as old as the pyramids, dating some 5,000 years
ago, was based on the 10 scale. By the use of a simple iterative scheme and
of distinctive symbols for each of the first half-dozen powers of 10, numbers
greater than a million were carved on stone, wood, and other materials.
A single vertical stroke represented a unit, an inverted wicket was used for
10, a snare somewhat resembling a capital C stood for 100, a lotus flower for
1,000, a bent finger for 10,000, a tadpole for 100,000, and a kneeling figure,
apparently Heh, the god of the Unending, for 1,000,000. Through repetition
of these symbols, the number 12,345, for example, would appear as

r %% 292 annni!

Sometimes the smaller digits were placed on the left, and other times the
digits were arranged vertically. The symbols themselves were occasion-
ally reversed in orientation, so that the snare might be convex toward
either the right or the left.

Egyptian inscriptions indicate familiarity with large numbers at an early
date. A museum at Oxford has a royal mace more than 5,000 years old, on
which a record of 120,000 prisoners and 1,422,000 captive goats appears.
These figures may have been exaggerated, but from other considerations it
is clear that the Egyptians were commendably accurate in counting and
measuring. The construction of the Egyptian solar calendar is an out-
standing early example of observation, measurement, and counting. The
pyramids are another famous instance; they exhibit such a high degree of
precision in construction and orientation that ill-founded legends have
grown up around them.

The more cursive hieratic script used by Ahmes was suitably adapted
to the use of pen and ink on prepared papyrus leaves. Numeration
remained decimal, but the tedious repetitive principle of hieroglyphic
numeration was replaced by the introduction of ciphers or special signs
to represent digits and multiples of powers of 10. The number 4, for
example, usually was no longer represented by four vertical strokes but
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by a horizontal bar, and 7 is not written as seven strokes but as a single
cipher \ resembling a sickle. The hieroglyphic form for the number
28 was nn{}i{; the hieratic form was simply =&. Note that the cipher = for
the smaller digit 8 (or two 4s) appears on the left, rather than on the right.
The principle of cipherization, introduced by the Egyptians some 4,000
years ago and used in the Ahmes Papyrus, represented an important
contribution to numeration, and it is one of the factors that makes our
own system in use today the effective instrument that it is.

Egyptian hieroglyphic inscriptions have a special notation for unit
fractions—that is, fractions with unit numerators. The reciprocal of any
integer was indicated simply by placing over the notation for the integer
an elongated oval sign. The fraction § thus appeared as ;ﬁ{ and % was
written as f3. In the hieratic notation, appearing in papyri, the elongated
oval is replaced by a dot, which is placed over the cipher for the cor-
responding integer (or over the right-hand cipher in the case of the
reciprocal of a multidigit number). In the Ahmes Papyrus, for example,
the fraction § appears as ==, and % is written as . Such unit fractions were
freely handled in Ahmes’s day, but the general fraction seems to have
been an enigma to the Egyptians. They felt comfortable with the fraction 3,
for which they had a special hieratic sign z-; occasionally, they used special
signs for fractions of the form n/(n + 1), the complements of the unit
fractions. To the fraction 3, the Egyptians assigned a special role in arith-
metic processes, so that in finding one-third of a number, they first found
two-thirds of it and subsequently took half of the result! They knew and
used the fact that two-thirds of the unit fraction 1/p is the sum of the two
unit fractions 1/2p and 1/6p; they were also aware that double the unit
fraction 1/2p is the unit fraction 1 /p. Yet it looks as though, apart from the
fraction }, the Egyptians regarded the general proper rational fraction of the
form m/n not as an elementary “thing” but as part of an uncompleted
process. Where today we think of % as a single irreducible fraction,
Egyptian scribes thought of it as reducible to the sum of three unit frac-
tions, } and £ and .

To facilitate the reduction of “mixed” proper fractions to the sum of
unit fractions, the Ahmes Papyrus opens with a table expressing 2/n as
a sum of unit fractions for all odd values of n from 5 to 101.
The equivalent of $ is given as 3 and 1, {7 is written as s and &, and 1 is
expressed as i and %. The last item in the table decomposes 1 into w7 and
mz and =3 and as. It is not clear why one form of decomposition was
preferred to another of the indefinitely many that are possible. This last
entry certainly exemplifies the Egyptian prepossession for halving and
taking a third; it is not at all clear to us why the decomposition
2/n=1/n+1/2n+1/3n+1/2-3-n is better than 1/n + 1/n. Perhaps
one of the objects of the 2/n decomposition was to arrive at unit frac-
tions smaller than 1/n. Certain passages indicate that the Egyptians had
some appreciation of general rules and methods above and beyond the
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specific case at hand, and this represents an important step in the
development of mathematics.

Arithmetic Operations

The 2/n table in the Ahmes Papyrus is followed by a short #/10 table for
n from 1 to 9, the fractions again being expressed in terms of the
favorites—unit fractions and the fraction 3. The fraction 1, for example,
is broken into % and s and 3. Ahmes had begun his work with the
assurance that it would provide a “complete and thorough study of all
things...and the knowledge of all secrets,” and therefore the main
portion of the material, following the 2/n and n/10 tables, consists of
eighty-four widely assorted problems. The first six of these require the
division of one or two or six or seven or eight or nine loaves of bread
among ten men, and the scribe makes use of the n/10 table that he has
just given. In the first problem, the scribe goes to considerable trouble to
show that it is correct to give to each of the ten men one tenth of a loaf!
If one man receives 1 of a loaf, two men will receive % or & and four men
will receive £ of a loaf or 3 + 15 of a loaf. Hence, eight men will receive
i 4% of a loaf or 3 +1 + 3% of a loaf, and eight men plus two men
will receive 3 +3 + 1% + 3, or a whole loaf. Ahmes seems to have had
a kind of equivalent to our least common multiple, which enabled him to
complete the proof. In the division of seven loaves among ten men,
the scribe might have chosen 1 + 3 of a loaf for each, but the predilection
for 3 led him instead to 3 and 3% of a loaf for each.

The fundamental arithmetic operation in Egypt was addition, and our
operations of multiplication and division were performed in Ahmes’s
day through successive doubling, or “duplation.” Our own word “mul-
tiplication,” or manifold, is, in fact, suggestive of the Egyptian process.
A multiplication of, say, 69 by 19 would be performed by adding 69 to
itself to obtain 138, then adding this to itself to reach 276, applying
duplation again to get 552, and once more to obtain 1104, which is, of
course, 16 times 69. Inasmuch as 19 =16 + 2 + 1, the result of multi-
plying 69 by 19 is 1104 + 138 + 69, that is, 1311. Occasionally, a
multiplication by 10 was also used, for this was a natural concomitant of
the decimal hieroglyphic notation. Multiplication of combinations of
unit fractions was also a part of Egyptian arithmetic. Problem 13 in the
Ahmes Papyrus, for example, asks for the product of i + 1z and
1 41 + %; the result is correctly found to be 3. For division, the duplation
process is reversed, and the divisor, instead of the multiplicand, is suc-
cessively doubled. That the Egyptians had developed a high degree of
artistry in applying the duplation process and the unit fraction concept is
apparent from the calculations in the problems of Ahmes. Problem 70
calls for the quotient when 100 is divided by 7 +3 +3i +3; the result,
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12+3 +4 + 1%, is obtained as follows. Doubling the divisor succes-
sively, we first obtain 15 + 7 + i, then 31 + 3, and finally 63, which is 8
times the divisor. Moreover, 3 of the divisor is known to be 5 + i. Hence,
the divisor when multiplied by 8 + 4 + 3 will total 993, which is i short of
the product 100 that is desired. Here a clever adjustment was made.
Inasmuch as 8 times the divisor is 63, it follows that the divisor when
multiplied by & will produce i. From the 2/n table, one knows that & is
# + 1s; hence, the desired quotient is 12 +3 + & + 1. Incidentally, this
procedure makes use of a commutative principle in multiplication, with
which the Egyptians evidently were familiar.

Many of Ahmes’s problems show knowledge of manipulations of
proportions equivalent to the “rule of three.” Problem 72 calls for the
number of loaves of bread of “strength” 45, which are equivalent to 100
loaves of “strength” 10, and the solution is given as 100/ 10 X 45, or 450
loaves. In bread and beer problems, the “strength,” or pesu, is the
reciprocal of the grain density, being the quotient of the number of
loaves or units of volume divided by the amount of grain. Bread and beer
problems are numerous in the Ahmes Papyrus. Problem 63, for example,
requires the division of 700 loaves of bread among four recipients if the
amounts they are to receive are in the continued proportion 3 :3 : 3 : . The
solution is found by taking the ratio of 700 to the sum of the fractions in
the proportion. In this case, the quotient of 700 divided by 13 is found by
multiplying 700 by the reciprocal of the divisor, which is 7 + 1. The
result is 400; by taking % and z and 3 and § of this, the required shares of
bread are found.

“Heap" Problems

The Egyptian problems so far described are best classified as arithmetic,
but there are others that fall into a class to which the term “algebraic” is
appropriately applied. These do not concern specific concrete objects,
such as bread and beer, nor do they call for operations on known
numbers. Instead, they require the equivalent of solutions of linear
equations of the form x + ax = b or x + ax + bx = ¢, where a and b and ¢
are known and x is unknown. The unknown is referred to as “aha,” or
heap. Problem 24, for instance, calls for the value of heap if heap and 7 of
heap is 19. The solution given by Ahmes is not that of modern textbooks
but is characteristic of a procedure now known as the “method of false
position,” or the “rule of false.” A specific value, most likely a false one,
is assumed for heap, and the operations indicated on the left-hand side of
the equality sign are performed on this assumed number. The result
of these operations is then compared with the result desired, and by the
use of proportions the correct answer is found. In problem 24, the ten-
tative value of the unknown is taken as 7, so that x + 7x is 8, instead of
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the desired answer, which was 19. Inasmuch as 8(2 +3i +3) = 19, one
must multiply 7 by 2 + i + 5 to obtain the correct heap; Ahmes found the
answer to be 16 +31 +3. Ahmes then “checked” his result by showing
that if to 16 +3 + 5 one adds 7 of this (which is 2 +3 +3), one does
indeed obtain 19. Here we see another significant step in the develop-
ment of mathematics, for the check is a simple instance of a proof.
Although the method of false position was generally used by Ahmes,
there is one problem (Problem 30) in which x +3x+ix+7x=37 is
solved by factoring the left-hand side of the equation and dividing 37 by
1 +3% +1 +4% the result being 16 +% + & + 7

Many of the “aha” calculations in the Rhind (Ahmes) Papyrus appear
to be practice exercises for young students. Although a large proportion
of them are of a practical nature, in some places the scribe seemed to
have had puzzles or mathematical recreations in mind. Thus, Problem 79
cites only “seven houses, 49 cats, 343 mice, 2401 ears of spelt, 16807
hekats.” It is presumed that the scribe was dealing with a problem,
perhaps quite well known, where in each of seven houses there are seven
cats, each of which eats seven mice, each of which would have eaten
seven ears of grain, each of which would have produced seven measures
of grain. The problem evidently called not for the practical answer,
which would be the number of measures of grain that were saved, but for
the impractical sum of the numbers of houses, cats, mice, ears of spelt,
and measures of grain. This bit of fun in the Ahmes Papyrus seems to be
a forerunner of our familiar nursery rhyme:

As I was going to St. Ives,

I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,

Every cat had seven Kits,

Kits, cats, sacks, and wives,

How many were going to St. Ives?

Geometric Problems

It is often said that the ancient Egyptians were familiar with the
Pythagorean theorem, but there is no hint of this in the papyri that have
come down to us. There are nevertheless some geometric problems in
the Ahmes Papyrus. Problem 51 of Ahmes shows that the area of an
isosceles triangle was found by taking half of what we would call the
base and multiplying this by the altitude. Ahmes justified his method of
finding the area by suggesting that the isosceles triangle can be thought
of as two right triangles, one of which can be shifted in position, so that
together the two triangles form a rectangle. The isosceles trapezoid is
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similarly handled in Problem 52, in which the larger base of a trapezoid
1s 6, the smaller base is 4, and the distance between them is 20. Taking
1 of the sum of the bases, “so as to make a rectangle,” Ahmes multiplied
this by 20 to find the area. In transformations such as these, in which
isosceles triangles and trapezoids are converted into rectangles, we may
see the beginnings of a theory of congruence and the idea of proof in
geometry, but there is no evidence that the Egyptians carried such work
further. Instead, their geometry lacks a clear-cut distinction between
relationships that are exact and those that are only approximations.

A surviving deed from Edfu, dating from a period some 1,500 years
after Ahmes, gives examples of triangles, trapezoids, rectangles, and
more general quadrilaterals. The rule for finding the area of the general
quadrilateral is to take the product of the arithmetic means of the
opposite sides. Inaccurate though the rule is, the author of the deed
deduced from it a corollary—that the area of a triangle is half of the sum
of two sides multiplied by half of the third side. This is a striking
instance of the search for relationships among geometric figures, as well
as an early use of the zero concept as a replacement for a magnitude in
geometry.

The Egyptian rule for finding the area of a circle has long been
regarded as one of the outstanding achievements of the time. In Problem
50, the scribe Ahmes assumed that the area of a circular field with a
diameter of 9 units is the same as the area of a square with a side of 8
units. If we compare this assumption with the modern formula A = 772,
we find the Egyptian rule to be equivalent to giving 7 a value of about 35,
a commendably close approximation, but here again we miss any hint
that Ahmes was aware that the areas of his circle and square were not
exactly equal. It is possible that Problem 48 gives a hint to the way in
which the Egyptians were led to their area of the circle. In this problem,
the scribe formed an octagon from a square having sides of 9 units by
trisecting the sides and cutting off the four corner isosceles triangles,
each having an area of 41 units. The area of the octagon, which does not
differ greatly from that of a circle inscribed within the square, is 63 units,
which is not far removed from the area of a square with 8 units on a side.
That the number 4(8/9)* did indeed play a role comparable to our con-
stant 7 seems to be confirmed by the Egyptian rule for the circumference
of a circle, according to which the ratio of the area of a circle to the
circumference is the same as the ratio of the area of the circumscribed
square to its perimeter. This observation represents a geometric rela-
tionship of far greater precision and mathematical significance than the
relatively good approximation for 7.

Degree of accuracy in approximation is not a good measure of either
mathematical or architectural achievement, and we should not over-
emphasize this aspect of Egyptian work. Recognition by the Egyptians
of interrelationships among geometric figures, on the other hand, has too
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often been overlooked, and yet it is here that they came closest in atti-
tude to their successors, the Greeks. No theorem or formal proof is
known in Egyptian mathematics, but some of the geometric comparisons
made in the Nile Valley, such as those on the perimeters and the areas of
circles and squares, are among the first exact statements in history
concerning curvilinear figures.

The value of # is often used today for m; but we must recall that
Ahmes’s value for 7 is about 3§, not 37. That Ahmes’s value was also
used by other Egyptians is confirmed in a papyrus roll from the twelfth
dynasty (the Kahun Papyrus), in which the volume of a cylinder is found
by multiplying the height by the area of the base, the base being
determined according to Ahmes’s rule.

Associated with Problem 14 in the Moscow Papyrus is a figure that
looks like an isosceles trapezoid (see Fig. 2.1), but the calculations
associated with it indicate that a frustum of a square pyramid is intended.
Above and below the figure are signs for 2 and 4, respectively, and
within the figure are the hieratic symbols for 6 and 56. The directions
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Reproduction (top) of a portion of the Moscow Papyrus, showing the problem of the
volume of a frustum of a square pyramid, together with hieroglyphic transcription
(below)
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FIG. 2.1

alongside make it clear that the problem calls for the volume of a
frustum of a square pyramid 6 units high if the edges of the upper and
lower bases are 2 and 4 units, respectively. The scribe directs one to
square the numbers 2 and 4 and to add to the sum of these squares the
product of 2 and 4, the result being 28. This result is then multiplied by a
third of 6, and the scribe concludes with the words “See, it is 56; you
have found it correctly.” That is, the volume of the frustum has been
calculated in accordance with the modern formula V = h(a? + ab + b?)/ 3,
where & is the altitude and a and b are the sides of the square bases.
Nowhere is this formula written out, but in substance it evidently was
known to the Egyptians. If, as in the deed from Edfu, one takes b =0,
the formula reduces to the familiar formula, one-third the base times the
altitude, for the volume of a pyramid.

How these results were arrived at by the Egyptians is not known. An
empirical origin for the rule on the volume of a pyramid seems to be a
possibility, but not for the volume of the frustum. For the latter, a theo-
retical basis seems more likely, and it has been suggested that the
Egyptians may have proceeded here as they did in the cases of the iso-
sceles triangle and the isosceles trapezoid—they may mentally have
broken the frustum into parallelepipeds, prisms, and pyramids. On
replacing the pyramids and the prisms by equal rectangular blocks, a
plausible grouping of the blocks leads to the Egyptian formula. One could,
for example, have begun with a pyramid having a square base and with the
vertex directly over one of the base vertices. An obvious decomposition of
the frustum would be to break it into four parts as in Fig. 2.2—a rectan-
gular parallelepiped having a volume b*h, two triangular prisms, each
with a volume of b(a — b)h /2, and a pyramid of volume (a — b)*h /3. The
prisms can be combined into a rectangular parallelepiped with dimensions
b and a — b and h; and the pyramid can be thought of as a rectangular
parallelepiped with dimensions a — b and a — b and &/3. On cutting up
the tallest parallelepipeds so that all altitudes are 4/3, one can easily
arrange the slabs so as to form three layers, each of altitude /#/3, and
having cross-sectional areas of a*> and ab and b?, respectively.
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FIG. 2.2

Problem 10 in the Moscow Papyrus presents a more difficult question
of interpretation than does Problem 14. Here the scribe asks for the surface
area of what looks like a basket with a diameter of 43. He proceeds as
though he were using the equivalent of a formula S = (1 — 5 (2x)-x,
where x is 41, obtaining an answer of 32 units. Inasmuch as (1 — 5) is the
Egyptian approximation of 7/4, the answer 32 would correspond to the
surface of a hemisphere of diameter 43, and this was the interpretation
given to the problem in 1930. Such a result, antedating the oldest known
calculation of a hemispherical surface by some 1,500 years, would have
been amazing, and it seems, in fact, to have been too good to be true. Later
analysis indicates that the “basket” may have been a roof—somewhat like
that of a Quonset hut in the shape of a half-cylinder of diameter 47 and
length 43. The calculation in this case calls for nothing beyond knowledge
of the length of a semicircle, and the obscurity of the text makes it
admissible to offer still more primitive interpretations, including the
possibility that the calculation is only a rough estimate of the area of a
domelike barn roof. In any case, we seem to have here an early estimation
of a curvilinear surface area.

Slope Problems

In the construction of the pyramids, it had been essential to maintain a
uniform slope for the faces, and it may have been this concern that led
the Egyptians to introduce a concept equivalent to the cotangent of an
angle. In modern technologys, it is customary to measure the steepness of
a straight line through the ratio of the “rise” to the “run.” In Egypt, it was
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customary to use the reciprocal of this ratio. There, the word “seqt”
meant the horizontal departure of an oblique line from the vertical
axis for every unit change in the height. The seqt thus corresponded,
except for the units of measurement, to the batter used today by archi-
tects to describe the inward slope of a masonry wall or pier. The vertical
unit of length was the cubit, but in measuring the horizontal distance,
the unit used was the “hand,” of which there were seven in a cubit.
Hence, the seqt of the face of a pyramid was the ratio of run to rise, the
former measured in hands, the latter in cubits.

In Problem 56 of the Ahmes Papyrus, one is asked to find the seqt of a
pyramid that is 250 ells or cubits high and has a square base 360 ells on
a side. The scribe first divided 360 by 2 and then divided the result by
250, obtaining 3 +# + % in ells. Multiplying the result by 7, he gave the
seqt as 535 in hands per ell. In other pyramid problems in the Ahmes
Papyrus, the seqt turns out to be 53, agreeing somewhat better with that
of the great Cheops Pyramid, 440 ells wide and 280 high, the seqt being
51 hands per ell.

Arithmetic Pragmatism

The knowledge indicated in extant Egyptian papyri is mostly of a
practical nature, and calculation was the chief element in the questions.
Where some theoretical elements appear to enter, the purpose may have
been to facilitate technique. Even the once-vaunted Egyptian geometry
turns out to have been mainly a branch of applied arithmetic. Where
elementary congruence relations enter, the motive seems to be to pro-
vide mensurational devices. The rules of calculation concern specific
concrete cases only. The Ahmes and Moscow papyri, our two chief
sources of information, may have been only manuals intended for stu-
dents, but they nevertheless indicate the direction and tendencies in
Egyptian mathematical instruction. Further evidence provided by
inscriptions on monuments, fragments of other mathematical papyri, and
documents from related scientific fields serves to confirm the general
impression. It is true that our two chief mathematical papyri are from a
relatively early period, a thousand years before the rise of Greek
mathematics, but Egyptian mathematics seems to have remained
remarkably uniform throughout its long history. It was at all stages built
around the operation of addition, a disadvantage that gave to Egyptian
computation a peculiar primitivity, combined with occasionally aston-
1shing complexity.

The fertile Nile Valley has been described as the world’s largest oasis
in the world’s largest desert. Watered by one of the most gentlemanly of
rivers and geographically shielded to a great extent from foreign
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invasion, it was a haven for peace-loving people who pursued, to a large
extent, a calm and unchallenged way of life. Love of the beneficent gods,
respect for tradition, and preoccupation with death and the needs of the
dead all encouraged a high degree of stagnation. Geometry may have been
a gift of the Nile, as Herodotus believed, but the available evidence sug-
gests that Egyptians used the gift but did little to expand it. The mathe-
matics of Ahmes was that of his ancestors and of his descendants. For more
progressive mathematical achievements, one must look to the more tur-
bulent river valley known as Mesopotamia.
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Mesopotamia

How much is one god beyond the other god?
An Old Babylonian astronomical text

The Era and the Sources

The fourth millennium before our era was a period of remarkable cultural
development, bringing with it the use of writing, the wheel, and metals. As in
Egypt during the first dynasty, which began toward the end of this extra-
ordinary millennium, so also in the Mesopotamian Valley there was at the
time a high order of civilization. There the Sumerians had built homes and
temples decorated with artistic pottery and mosaics in geometric patterns.
Powerful rulers united the local principalities into an empire that completed
vast public works, such as a system of canals to irrigate the land and control
flooding between the Tigris and Euphrates rivers, where the overflow of
the rivers was not predictable, as was the inundation of the Nile Valley. The
cuneiform pattern of writing that the Sumerians had developed during
the fourth millennium probably antedates the Egyptian hieroglyphic system.

The Mesopotamian civilizations of antiquity are often referred to as
Babylonian, although such a designation is not strictly correct. The city of
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