Estimation

Interval estimation

Normal Pop With σ Unknown

When a random sample X_{1,X_2,\ldots,X_n} of size n is drawn from a normal pop with σ unknown, we estimate σ by the sample standard deviation, which is then used in place of σ . if the sample size is sufficiently large ($n \ge 30$), then the central limit theorem allow us to assume that the sampling distribution of \overline{X} is approximately normal with mean μ and a standard deviation of $\frac{s}{\sqrt{n}}$, where S is the sample standard deviation.

The Probability expression for estimating μ then becomes

$$P(\overline{X} - z\alpha_{/2}\frac{s}{\sqrt{n}} < \mu < \overline{X} + z\alpha_{/2}\frac{s}{\sqrt{n}}) = 1 - \alpha$$

Thus a 100(1- α) percent confidence interval for μ is given by

$$\overline{X} \pm z \alpha_{/2} \frac{s}{\sqrt{n}}$$

When σ is unknow and sample size is small (n < 30), the sampling distribution of \overline{X} will not be normally distributed. The sampling distribution of \overline{X} then follows a distribution, known as student's-t distribution.

Thus if $-t\alpha_{/2(v)}$ and $t\alpha_{/2(v)}$ denote the values of t for which an area equal to $\alpha_{/2}$ lies in each tail of the student's t-distribution with v degree of freedom, then the probability of t lying between these two values is given by the relation

$$P(\overline{X} - t\alpha_{/2,(v)}\frac{s}{\sqrt{n}} < \mu < \overline{X} + t\alpha_{/2,(v)}\frac{s}{\sqrt{n}}) = 1 - \alpha$$

Thus a 100(1- α) percent confidence interval for μ (when pop σ is unknown) for particular random sample of size (n < 30) is given by

$$\overline{X} \pm t \alpha_{/2,(v)} \frac{s}{\sqrt{n}}$$

Large Sample Confidence interval for Pop Mean μ when Pop Standard deviation σ is unknown.

Example #1

The mean and standard deviation of the maximum loads supported by 60 cables are 11.09 tons respectively. Find (a) 95% and (b) 99% confidence interval for the mean of the maximum loads of all cables produced by the company.

Solution

The Sample size n is large so that a normal approximation for the distribution of the sample mean is appropriate.

From the sample data, we have $\overline{X} = 11.09$, S = 0.73 and n = 60

(a)

With
$$1 - \alpha = 0.95$$
 we have $\alpha/2 = 0.025$ and $Z\alpha/2 = 1.96$

Hence a 95% Confidnce interval for Pop Mean μ is

$$(\overline{X} - z\alpha_{/2}\frac{S}{\sqrt{n}}, \overline{X} + z\alpha_{/2}\frac{S}{\sqrt{n}})$$

(11.09 - (1.96) $\frac{0.73}{\sqrt{60}}$, 11.09 + (1.96) $\frac{0.73}{\sqrt{60}}$)
(11.09 - 0.18, 11.09 + 0.18)
(10.91,11.27)

Thus the 95% confidence interval estimate for μ is (10.91,11.27)

(**b**) Do it Yourself

Example #2

Compute A 90% confidence interval for pop mean, if

n= 36 $\sum X = 5400$, and $\sum (X - \overline{X})^2 = 1296$.