Estimation

Interval estimation

Normal Pop With σ Unknown

When a random sample $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots \ldots \mathrm{X}_{\mathrm{n}}$ of size n is drawn from a normal pop with σ unknown, we estimate σ by the sample standard deviation, which is then used in place of σ.if the sample size is sufficiently large ($\mathrm{n} \geq 30$), then the central limit theorem allow us to assume that the sampling distribution of \bar{X} is approximately normal with mean μ and a standard deviation of $\frac{S}{\sqrt{n}}$, where S is the sample standard deviation.

The Probability expression for estimating μ then becomes
$\mathrm{P}\left(\overline{\mathrm{X}}-\mathrm{z} \alpha / 2 \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{X}}+\mathrm{z} \alpha / 2 \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}\right)=1-\alpha$

Thus a $100(1-\alpha)$ percent confidence interval for μ is given by

$$
\overline{\mathrm{X}} \pm \mathrm{z} \alpha / 2 \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}
$$

When σ is unknow and sample size is small $(\mathrm{n}<30)$, the sampling distribution of $\overline{\mathrm{X}}$ will not be normally distributed. The sampling distribution of \bar{X} then follows a distribution, known as student's-t distribution.

Thus if $-\mathrm{t} \alpha_{/ 2(\mathrm{v})}$ and $\mathrm{t} \alpha_{/ 2(\mathrm{v})}$ denote the values of t for which an area equal to $\alpha / 2$ lies in each tail of the student's t-distribution with v degree of freedom, then the probability of t lying between these two values is given by the relation
$\mathrm{P}\left(\overline{\mathrm{X}}-\mathrm{t} \alpha / 2,(\mathrm{v}) \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{X}}+\mathrm{t} \alpha / 2,(\mathrm{v}) \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}\right)=1-\alpha$

Thus a $100(1-\alpha)$ percent confidence interval for μ (when pop σ is unknown) for particular random sample of size $(\mathrm{n}<30)$ is given by

$$
\overline{\mathrm{X}} \pm \mathrm{t} \alpha / 2,(\mathrm{v}) \frac{\mathrm{s}}{\sqrt{\mathrm{n}}}
$$

Large Sample Confidence interval for Pop Mean μ when Pop Standard deviation σ is unknown.

Example \#1

The mean and standard deviation of the maximum loads supported by 60 cables are 11.09 tons respectively. Find (a) 95% and (b) 99% confidence interval for the mean of the maximum loads of all cables produced by the company.

Solution
The Sample size n is large so that a normal approximation for the distribution of the sample mean is appropriate.

From the sample data, we have $\overline{\mathrm{X}}=11.09, \mathrm{~S}=0.73$ and $\mathrm{n}=60$
(a)

With $1-\alpha=0.95$ we have $\alpha / 2=0.025$ and $\mathrm{Z} \alpha / 2=1.96$
Hence a 95% Confidnce interval for Pop Mean μ is

$$
\begin{align*}
& \left(\overline{\mathrm{X}}-\mathrm{z} \alpha / 2 \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}, \overline{\mathrm{X}}+\mathrm{z} \alpha / 2 \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}\right) \\
& \left(11.09-(1.96) \frac{0.73}{\sqrt{60}}, 11.09+(1.96) \frac{0.73}{\sqrt{60}}\right) \\
& (11.09-0.18, \quad 11.09+0.18) \tag{10.91,11.27}
\end{align*}
$$

Thus the 95% confidence interval estimate for μ is $(10.91,11.27)$
(b) Do it Yourself

Example \#2

Compute A 90% confidence interval for pop mean, if
$\mathrm{n}=36 \sum \mathrm{X}=5400$, and $\sum(\mathrm{X}-\overline{\mathrm{X}})^{2}=1296$.

