Topic

The Quartile Deviation
 Or
 Semi-Interquartile deviation

DEFINATION:

The Inter-quartile Range is a measure of dispersion defined by the difference between $3^{\text {rd }}$ and $1^{\text {st }}$ quartiles and half of this range is called semi-inter quartile (S.I.Q.R) or the quartile deviation (Q.D).

FORMULA:

Q.D=(Q3-Q1)/2

Q1=First Quartile
Q3=Third Quartile

CO-EFFICIENT OF QUARTILE

DEVIATION:
Quartile deviation is an absolute measure of dispersion.
Its relative measure is called Co-efficient of Quartile Deviation.

FORMULA:

Co-efficient of Q.D=

$\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$

It is a pure number used for comparing the variation in two or more sets of data

EXAMPLE

(UNGROUPED DATA) 11,14,18,22,30,32,35
SOLUTION:
Q1 $=\mathrm{n}+1 / 4$

$$
\begin{aligned}
& =7+1 / 4 \\
& =8 / 4 \\
& =2
\end{aligned}
$$

That is $=14$

$$
\begin{aligned}
\text { Q3 } & =3(n+1) / 4 \\
& =3(7+1) / 4 \\
& =3(8) / 4 \\
& =24 / 4 \\
& =6
\end{aligned}
$$

That is $=32$
Q.D=Q3-Q1/2
$=32-14 / 2$ =9

Co-efficient of Q.D =

$Q_{3}-Q_{1}$
 $Q_{3}+Q_{1}$

$$
\begin{aligned}
& =(32-14) /(32+14) \\
& =18 / 46 \\
& =0.391
\end{aligned}
$$

EXAMPLE (GROUPED DATA):

CLASS MARKS	f	x	C.B	C.F
$10-19$	5	14.5	$9.5-19.5$	5
$20-29$	25	24.5	$19.5-29.5$	30
$30-39$	40	34.5	$29.5-39.5$	70
$40-49$	20	44.5	$39.5-49.5$	90
$50-59$	10 $=100$	54.5	$49.5-59.5$	100

Q1 = I+h/f (n/4-C.F)

$n / 4=100 / 4=25$
Q1 $=19.5+10 / 25(25-5)$
$=19.5+200 / 25$
$=19.5+8$
Q1 $=27.5$

Q3 = I+h/f (3n/4-C.F)

$3 n / 4=3(100) / 4=75$
Q3 $=39.5+10 / 20(75-70)$
$=39.5+10 / 20(5)$
$=39.5+2.5$
Q1 $=42$

$$
\begin{aligned}
\text { Q.D } & =\text { Q3-Q1/2 } \\
& =42-27.5 / 2 \\
& =14.5 / 2 \\
& =7.25
\end{aligned}
$$

Co-efficient of Q.D=

$$
\begin{aligned}
& =42-27.5 / 42+27.5 \\
& =14.5 / 69.5 \\
& =0.20
\end{aligned}
$$

ADVANTAGES:

It is simple to understand and easy to calculate.
2. Quartile deviation is superior to Range as it is not affected by extremely large or small observations.

DISADVANTAGES:

1. It gives no information about the position of observations laying outside the two quartiles.
2. It is not suited for algebraic expressions.
3. It is greatly affected by sampling variability.
