

CONTENTS

- Definition
- Purpose
- Formula
- Example
- Coefficient of mean deviation
- Advantages
- disadvantages

MEAN DEVIATION

► It is a statistical measure of the average deviation of values from the mean in a sample.

It is also known as mean absolute deviation

It is the measure of statistical dispersion

Mean absolute deviation (MAD) of a data set is the average distance between data value and the mean.

MAD is a way to describe variation in a data set.

MAD helps us to get a sense of how spread out the values in a data set.

*

UNGROUPED DATA

Mean Deviation = $\frac{\Sigma |x - \mu|}{N}$

X = EACH VALUE

 $\mu = MEAN$

N = NO OF VALUES

EXAMPLE OF UNGROUPED DATA

Example= the mean deviation of 3,6, 6,7,8,11,15,16.
Step 1: find the mean mean = (3+6+6+7+8+11+15+16)/8 =72/8 =9

Step 2; find the distance of each value from the mean

value	x-µ
3	3-9 = 6
6	6-9 = 3
6	6-9 = 3
7	7-9 = 2
8	8-9 = 1
11	11-9 = 2
15	15-9 = 6
16	16-9 = 7

□ Step 3; find the mean of those distance:

mean deviation= (6+3+3+2+1+2+6+7)\9 = 30\9 =3.33

- So, the mean=9, and the mean deviation =3.33
- It tells us how far , on average , all values are from the middle.
- In that examples the values are, on average,
 3.33away from the middle.

GROUPED DATA

x	f	fx	X- X	X-X	F x -x
0	4	0	-1.8	1.8	7.2
1	12	12	-0.8	0.8	9.6
2	8	16	0.2	0.2	1.6
3	2	6	1.2	1.2	2.4
4	1	4	2.2	2.2	2.2
5	2	10	3.2	3.2	6.4
6	1	6	4.2	4.2	4.2
	∑f=30	∑ f x=54			33.6

STEPS TO FIND MEAN DEVIATION

Step 1;find the mean by using the formula $\mu = \sum f x / \sum f$ =54/30 =1.8

Step 2; solve for $|x-\mu|$ and multiply it to the frequency of each class to find the $\sum f |x - \mu|$

=33.6

Step 3; divide the answer of $\sum f |x - \mu|$ to the $\sum f$

=33.6/30 =1.12

COEFFICIENT OF MEAN DEVIATION

➤ It is defined as the ratio of mean deviation of the average used in calculations of the mean deviation.

thus: Coefficient of Mean deviation= Mean deviation from mean/mean

ADVANTAGES OF MEAN DEVIATION

Simple and easy: Mean deviation can be computed easily by using simple formula . It can be easily understood.

Easy comparison: Different items of observation can be easily compared with mean deviation.

Better measure: Mean deviation is better than quartile deviation and range because it is based on all the observations of the series.

□ Less affected:

Mean deviation is less affected by extreme values in the series while comparing to standard deviation.

Usefulness: It is very useful in various fields such as; Economics

Commerce etc.

Difficulty:

It become difficult to compute mean deviation in case of fractions.

DISADVANTAGES

Ignore negative signs: Mean deviation is not a good measure as it ignores negative signs of deviations.

Not applicable: Mean deviation is not applicable for algebraic calculations.

MEAN DEVIATION FOR MODE

=
$$\sum f$$
 x-mode / $\sum f$

MEAN DEVIATION FOR MEDIAN

= $\sum |x$ -median |/N

