MEAN DEVIATION

CONTENTS

- Definition
- Purpose
* Formula
- Example

Coefficient of mean deviation
Advantages
disadvantages

MEAN DEVIATION

- It is a statistical measure of the average deviation of values from the mean in a sample.
- It is also known as mean absolute deviation
- It is the measure of statistical dispersion

PURPOSE

Mean absolute deviation (MAD) of a data set is the average distance between data value and the mean .
MAD is a way to describe variation in a data set.
\square MAD helps us to get a sense of how spread out the values in a data set.

FORMULAS

* UNGROUPED DATA

$$
\text { Mean Deviation }=\frac{\Sigma|x-\mu|}{N}
$$

EXAMPLE OF UNGROUPED DATA

Example $=$ the mean deviation of 3,6 , 6,7,8,11,15,16 .
Step 1 : find the mean

$$
\begin{aligned}
\text { mean } & =(3+6+6+7+8+11+15+16) / 8 \\
& =72 / 8=9
\end{aligned}
$$

MEASURE OF MEAN DEVIATION

Step 2; find the distance of each value from the mean

value	$\|x-\mu\|$
3	$\|3-9\|=$
6	$\|6-9\|=$
6	$\|6-9\|=$
7	$\|7-9\|=$
8	$\|8-9\|=$
11	$\|11-9\|=$
15	$\|15-9\|=$
16	$\|16-9\|=$

MEASURE OF MEAN DEVIATION

Step 3;find the mean of those distance:
mean deviation=

$$
\begin{aligned}
& (6+3+3+2+1+2+6+7) \backslash 9 \\
& =30 \backslash 9 \\
& =3.33
\end{aligned}
$$

MEASURE OF MEAN DEVIATION

So, the mean $=9$, and the mean deviation $=3.33$

- It tells us how far , on average , all values are from the middle.
- In that examples the values are, on average, 3.33away from the middle.

GROUPED DATA

$f=$ frequency

EXAMPLE

x	f	$f x$	$x-x$	$\|x-x\|$
0	4	0	-1.8	1.8

STEPS TO FIND MEAN DEVIATION

Step 1;find the mean by using the formula $\mu=\sum \mathrm{f} \mathrm{x} / \sum \mathrm{f}$
$=54 / 30$
$=1.8$

MEASURE OF MEAN DEVIATION

Step 2; solve for $|x-\mu|$ and multiply it to the frequency of each class to find the $\sum \mathrm{f}|\mathrm{x}-\mu|$
$=33.6$

MEASURE OF MEAN DEVIATION

Step 3; divide the answer of $\sum \mathrm{f}|\mathrm{x}-\mu|$ to the $\sum \mathrm{f}$

$$
\begin{aligned}
& =33.6 / 30 \\
& =1.12
\end{aligned}
$$

COEFFICIENT OF MEAN DEVIATION

\Rightarrow It is defined as the ratio of mean deviation of the average used in calculations of the mean deviation.
thus:
Coefficient of Mean deviation= Mean deviation from mean/mean

EXAMPLE

Mean deviation=1.12 Mean=1.8
 Coefficient of mean
 deviation=1_12/1.8
 =0.62

ADVANTAGES OF MEAN DEVIATION

- Simple and easy:

Mean deviation can be computed easily by using simple formula. It can be easily understood.

ADVANTAGES

- Easy comparison:

Different items of observation can be easily compared with mean deviation.

ADVANTAGES

Δ Better measure:
Mean deviation is better than quartile deviation and range because it is based on all the observations of the series.

ADVANTAGES

\square Less affected:
Mean deviation is less affected by extreme values in the series while comparing to standard deviation.

ADVANTAGES

\square Usefulness:

It is very useful in various fields

such as;

- Economics

Commerce etc.

DISADVANTAGES

- Difficulty:

It become difficult to compute mean deviation in case of fractions.

DISADVANTAGES

\square Ignore negative signs:
Mean deviation is not a good measure as it ignores negative signs of deviations.

DISADVANTAGES

4 Not applicable:
Mean deviation is not applicable for algebraic calculations.

MEAN DEVIATION FOR MODE

Ungrouped data

$=\Sigma \mid x$ mode \mid / n

Grouped data

$$
=\Sigma f \mid x \text {-mode } \mid / \Sigma f
$$

MEAN DEVIATION FOR MEDIAN

Ungrouped data
$=\Sigma \mid x$ median \mid / \mathbb{N}
Groped data

$$
=\Sigma f \mid x=\text { median } \mid / \Sigma f
$$

