
CHAPTER 10.  SIMPLE REGRESSION AND CORRELATION 
 
 In agricultural research we are often interested in describing the change in one variable 
(Y, the dependent variable) in terms of a unit change in a second variable (X, the independent 
variable).  Regression is commonly used to establish such a relationship.  A simple linear 
regression takes the form of  

$Y = a + bx 
 
where  is the predicted value of Y for a given value of X, a estimates the intercept of the 
regression line with the Y axis, and b estimates the slope or rate of change in Y for a unit change 
in X. 

$Y

 
 The regression coefficients, a and b, are calculated from a set of paired values of X and 
Y.  The problem of determining the best values of a and b involves the principle of least squares. 
 
10.1  The Regression Equation 
 
 To illustrate the principle, we will use the artificial data presented as a scatter diagram in 
Figure 10-1. 

 
 
 
Figure 10-1.  A scatter diagram to illustrate the linear relationship between 2 variables. 
 
Because of the existence of experimental errors, the observations (Y) made for a given set of 
independent values (X) will not permit the calculation of a single straight line that will go 



through all the points.  The least squares line is the line that goes through the points so that the 
sum of the squares of the vertical deviations of the points from the line is minimal.  Those with a 
knowledge of calculus should recognize that this is a problem of finding the minimum value of a 
function.  That is, set the first derivatives of the regression equation with respect to a and b to 
zero and solve for a and b.  This procedure yields the following formulas for a and b based on k 
pairs of X and Y: If  X is not a random variable, the coefficients so obtained are the best linear 
unbiased estimates of the true parameters. 
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Independent Variable - Fixed Design Points  
 
 In Chapter 9, we showed that a linear response was appropriate to describe the effect of 
N fertilizer on the sucrose content of beet roots.  Note that the N rates were specifically chosen 
by the experimenter and, therefore, are considered fixed design points.  The differences in the 
levels are not random.  Now we show the computation of the regression equation for this 
situation.  The first step is to complete a scatter diagram of the mean responses of % sucrose to 
increasing levels of N.  The data are given in Table 10-1 and the scatter diagram in Figure 10-2.  
The construction of the least squares line is as follows: 
 
Table 10-1.  Elements necessary to compute the least squares regression for changes in % 
sucrose associated with changes in N-fertilizer. 

X 
lbs N 
(acre) 

Y 
mean % 
(sucrose) 

 
X2 

 
XY 

$Y 
predicted 

(% sucrose) 

 
$Y-Y 

    0 16.16            0         0 16.22 -0.06 
  50 15.74     2,500     787 15.78 -0.04 
 100 15.29   10,000  1,529 15.35 -0.06 
 150 15.29   22,500  2,293.5 14.92  0.39 
 200 14.36   40,000  2,872 14.48 -0.12 
 250 13.94   62,500  3,485 14.05 -0.11 

(Total) 
750 

 
90.78 

 
137,500 

 
10,966 

  

(Mean) 
125 

 
15.13 

 
  22,916.67 

   

 
 



 

 
 
Figure 10-2.  The relationship between % sucrose and levels of N-fertilizer. 
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 The resulting regression equation is,  = 16.22 - - 0.0087X.  This equation says that for 
every additional pound of fertilizer N, % sucrose decreases by 0.0087 sucrose percentage points.  
Our best estimate of percent sucrose from 0 to 250 lb N/acre is determined by substituting the N 
rate in the regression equation and calculating Y (the last column of Table 10-1).  For example, 
we may want to estimate % sucrose for 135 lb N/acre, then 

$Y

 
  = 16.22 - 0.0087(125) = 15.13 $Y
 
Independence variable - measurement with error 
 
 Sometimes researchers are interested in estimating a quantity that is difficult to measure 
directly.  It is desirable to be able to predict this quantity from another variable that is easier to 
measure.  For example, to predict leaf area from the length and width of leaves, sugar content 
from percent total solids, or rate of gain from initial body weight. 
 
 For a case study we will use data collected to see if it is possible to predict the weight of 
the livers of mice from their body weights.  The data are given in Table 10-2 and the calculation 
of the regression line is shown below the table. 
 



Table 10-2. Mice body and liver weights (grams) and predicted liver weights from a linear 
regression of Y on X. 

  
X body 

wts 
(x10g) 

 
X2  

 
Y liver 

wt. 

 
 

Y2 

 
 

XY 

$Y 
predicted 
liver wt. 

 
 

Y -  $Y

 
 

(Y- )2 $Y

16.4 268.96 2.67 7.13 43.79 2.37  0.30 0.09 
17.2 295.84 2.75 7.56 47.30 2.95 -0.20 0.04 
17.6 309.76 2.99 8.94 52.62 3.24 -0.25 0.06 
18.0 324.00 3.14 9.86 56.52 3.53 -0.39 0.15 
18.2 331.24 3.88 15.05 70.62 3.68  -0.20 0.04 
18.5 342.25 4.23 17.89 78.25 3.89 0.34 0.12 

(Total) 
105.9 

 
1,872.05 

 
19.66 

 
66.44 

 
389.10 

  
 0.00 

 
0.50 

(Mean) 
17.65 

  
 3.28 
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 The predicted values of Y are obtained by substituting X's in the regression equation.  
The values of  in Table 10-2 were calculated to several decimal places and rounded off, and 
therefore will not be exactly equal to  values by using the regression equation given above. 

$Y
$Y

 
 The relation between body and liver weights and the regression line are plotted in Figure 
10-3 

 



 
Figure 10-3.  Linear regression of liver weight (g.) on body weight (10 g) of mice. 
 
 Note that the calculation procedures for determining the regressions of Figures 10-2 and 
10-3 are identical.  However, in the case where X values are measured with error there are two 
variances, one associated with measuring Y and the other with measuring X. 
 

 The variance in measuring Y is  and the variance in measuring X values  

estimated regression coefficient (b) is biased toward zero by a factor of 

σ 2
e σ 2

x

 

  σ σ σ2 2 2
x x e/ ( )+

 
 The effect of the error of X on the standard error of b is not always biased one direction, 
but the ratio of the regression coefficient and the standard error (that t statistic for testing a 
greater than zero slope) is always smaller in absolute value than the case when X values can be 
fixed experimentally without error.  Therefore, the probability of detecting a nonzero slope is 
decreased.  Thus an experimenter may be justified in selecting a higher probability for rejection 
of the null hypothesis (e.g. 10% rather than 5%). 
 
 We now turn to the consideration of the validity and usefulness of regression equations. 
 
10-2.  The analysis of variance of regression 
 
 The total sum of squares of the dependent variable (Y) can be partitioned into two 
components:  one due to the regression line and the other due to the sum of squares not 
explainable by the regression line.  The deviation of each Y from Y  is made up of a deviation 
due to regression, -$Y Y  and a deviation not explainable by regression (or the difference between 
observation and prediction), Y -  (see Table 10-3).  That is, $Y
 
 Y Y Y Y Y Y− = − + −( $ ) ( $ )  
 
squaring and summing all terms, gives 
 
 Σ Σ Σ( ) ( $ ) ( $ )Y Y Y Y Y Y− = − + −2 2 2  
 
where Σ(Y Y− 2)  is the total sum of squares, SSY. 
 
 Σ( $ )Y Y− 2  is the sum of squares due to the linear regression SSR, with mean square  
   MSR. 
 
  is the sum of squares not explainable by the regression line, and is Σ( $ )Y Y− 2

    called the residual sum of squares Ssr, with mean square Msr. 
 
 This information can be summarized in an analysis of variance table (Table 10-3). 
 
  Table 10-3.  Analysis of variance of regression. 



Source DF SS MS F 

k-1 Σ( )Y Y− 2    Total 

Regression 1 Σ( $ )Y Y− 2  MSR MSR/MSr 

Residual k-2 Σ( $ )Y Y− 2  MSr  

 
 The F test, MSR/MSr provides a test for the null hypothesis which is that the true 
regression coefficient equals Zero, β = 0, versus the alternative hypothesis that β ≠ 0.  This test is 
only valid when Msr estimates the variance of the experimental error.  However, this condition 
cannot be tested unless there are replications of Y-values for each X so that the true experimental 
error can be estimated. 
 
 The machine formulas for the sum of squares in Table 10-3 are,  
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 = b[ΣXY - (ΣX) (ΣY)/k] 
 
 or in another form 
 
 = b2[ΣX2 - (ΣX)2/k] 
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 For the data of Table 10-2, the AOV for the regression is presented in Table 10-4 with 
calculations shown below. 
 

Table 10-4. AOV of regression of the liver weight on 
body weight. 
Total 5 2.02   

Regression 1 1.53 1.53 11.77 

Residual 4 0.49 0.13  

 
SSY = ΣY2 - (ΣY)2/k = 66.44 - 19.662/6 = 2.02 
SSR Y Y= − = − + + − =Σ( $ ) ( . . ) ... ( . . ) .2 2 22 37 328 389 328 153 
Ssr = SSY - SSR = 2.02 - 1.53 = 0.49 
 
 The significant F-test suggests that there is a nonzero regression coefficient.   However, 
due to the lack of replication, no rigorous assessment of lack of fit to the model can be made. 



 
10.3  Testing Fitness of a Regression Model 
 
 In this section, data of nitrogen content in corn crops obtained from a CRD field 
experiment will be used to illustrate the procedure of testing fitness of a regression model.  Five 
levels of fertilization with a stable isotopic formulation of ammonium sulfate were involved in 
the experiment.  This formulation enabled the researcher to distinguish between  nitrogen in the 
crop derived from the fertilizer and soil.  The data are shown in Table 10-5. 
 

Table 10-5. Nitrogen (lb/acre) in a corn crop (green, cobs and 
fodder) derived from 5 rates of N15 depleted ammonium sulfate. 
Fertilizer N Replication  

lb/acre 1 2 3 Mean 
 50  20.47  20.91  18.15  19.84 
100  41.61  44.07  60.03  48.57 
150  89.06  86.27  87.16  87.50 
200  83.83 116.16 120.67 106.89 
250 121.43 250 153.68 133.45 

 
 The data in Table 10-5 are plotted in Figure 10-4, a practice that provides a visual 
examination of the response trend. 
 
 
 
 
 

 
 

Figure 10-4.  A plot of the data in Table 10-5. 
 
 The intercept and regression coefficients are calculated as shown in Section 10.1.  this 
can be done by using all observations or by just using the treatment means.  The coefficients will 
be the same in either case.  To simplify the calculation, we use means. 
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and 
 
 a Y bX= − = −6 41.  
 
 The regression coefficient estimates the rate of fertilizer-N recovery by the crop, that is, 
57% of the applied fertilizer-N is taken up by the corn crop.  Note that the true intercept should 
not be less than zero which indicates that the information of this regression should not be 
extrapolated below 50 lb/acre fertilizer N. 
 
 To test how well the regression model fits the data, we proceed with the analysis outlined 
in Table 10-6. 

 
Table 10-6. AOV to test fitness of a regression model with k 
levels of treatment and n replications per treatment. 
Source df SS MS F 

Total kn-1 SSY   

Regression 1 SSR MSR  

Residual kn-2 Ssr Msr  

Deviation k-2 SSD MSD MSD/MSE 

Exp. error k(n-1) SSE MSE  
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 The difference between Ssr and SSE measures the deviations of the data points from the 
regression line that are not due to experimental error.  This is frequently called the "lack of fit" 
sum of squares, and is denoted as sum of squares of deviation, SSD. 
 

SSD = Ssr - SSE 
 
The ratio of MSD/MSE provides a F test of the lack of fit of the regression model.  The 
nonsignificance of this F value indicates that the deviation from the linear regression is entirely 
due to random error.  Thus a linear regression is a good description of the relationship between 
the dependent and independent variables.  A significant F test would suggest the existence of a 
non-random deviation from the linear model and that the data may be better described by some 
other model. 
 
 For the data in Table 10-5, the AOV is given in Table 10-7. 
 

Table 10-7.  AOV of the nitrogen recovery data. 
 
Source df SS MS F 

Total 14 26,302.81   

Regression  1 24,459.36 24,459.36 172.49 

Residual 13 1,843.45 141.80  

Deviation  3 262.09 87.36 0.55 

Exp. error 10 1,581.35 158.13  

 
 The nonsignificant lack of fit F test (F = 0.55) indicates that a linear regression is an 
adequate model to describe the uptake of fertilizer-N by corn.  The hypothesis of a zero 
regression slope is then tested by using the residual mean square to form the test F = MSR/MSr 
= 172.49.  The F is highly significant (P < 0.01) indicating the null hypothesis should be 
rejected.  If the lack of fit F test is significant, then MSE should be used instead of Msr to form a 
F test (F = MSR/MSE) about the hypothesis of a zero regression slope. 
 
10.4  Coefficient of determination and correlation coefficient 
 
 The coefficient of determination (R2) is defined as 
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 If a regression model fits perfectly, the total sum of squares is due entirely to regression, 
then R2 = 1.  Thus R2.  (100) indicates the percent of total variability accounted for by the 
regression.  For a simple linear regression R2 is commonly denoted as r2.  In the example of 
regressing liver weight on body weight, 
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 Thus 75% of the variation in liver weight is accounted for by a linear relationship with 
the body weight.  This high percentage of explainable variability gives some assurance that the 
linear regression equation is a reasonable description of the relationship.  The coefficient of 
determination is particularly useful when the data do not permit a formal lack of fit test. 
 
 The correlation coefficient, r, is calculated as,  
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 r ranges between -1 and +1.  A coefficient of 1 indicates a perfect linear relationship and 
the sign indicates the direction of the relationship.  A negative sign indicates that Y decreases as 
X increases.  Note the square of r is the coefficient of determination, but only one solution of the 
square root of r2 is the correct correlation coefficient. 
 
 For the example of the animal data of Table 10-2,  
 

 r = −
− −
349103 1059 19 66 6

1872 05 1059 6 66 44 19 66 62 2

. ( . )( . ) /
{[ . ( . ) / ][ . ( . ) / ]} /1 2  

    = 0.87 
 
 Based on the observed r-value, the hypothesis that the true correlation is zero can be 
tested by referring to a critical value of Appendix Table A-11 with k-2 degrees of freedom.  The 
tabular value from Appendix Table A-11 for 4 degrees of freedom and at the 5% level is 0.81.  
Thus we again have evidence for a significant linear relationship. 
 
 In calculating r, it is immaterial which variable is designated as dependent or 
independent.  In computing the regression coefficient, b, it is important to recognize which of the 
two variables depends on the other.  r and b are related as follows: 
 
 r b bYX XY=  
 



with the same sign as bYX or b XY.  The coefficient bYX represents the regression of Y on X 
and bXY is the regression of X on Y. 
 
 From the formula of r, one can easily shown that 
 
 r b x X Y YYX= − −Σ Σ( ) / (2 2)  
 
which is identical to the earlier calculation. 
 
 Note that if there is variation among X's and Y's, a nonzero r implies a nonzero b and 
vice versa.  Therefore the F test for a nonzero β is equivalent to the test for a nonzero r 
(Appendix Table A-11). 
 
 Because r and r2 are related algebraically to regression, the sum of squares for regression 
and residual in Table 10-3 can be expressed in terms of r2. 
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where Σ(Y Y− 2)

)

 is the total sum of squares among the Y-values.  For the AOV in Table 10-5, 
 
 SSR =(0.75) • (2.02) = 1.52 
 Ssr = (0.25) • (2.02) = 0.51 
 

 In more complicated regression models, it is often desirable to adjust  for the 

degrees of freedom of regression by 

R Radj
2 2(

 

  R adj MSr MSY2 1= − /

 
For the liver-body weight examples (Table 10-4) 
 

  R adj
2 1 013 2 02 5 0 68= − =. / ( . / ) .

Note that the considerable reduction in R2  (from 0.75 to 0.68) is a result of the large adjustment 
due to the small number of regression points.  In the case of corn data in Table 10-7, 
 
 R2  = 24459.36/26302.81 = 0.93 and     

  = 1 - [141.8/(26302.81/14)] = 0.925 R adj
2

 
This is a relatively small change due to the greater number of degrees of freedom. 
 
10.5  Confidence limits for the regression coefficient (β) 
 
 The mean square for residuals from regression (Msr) can be used as an estimate of the 
population variance if there is no significant lack of fit.  Its square root is used to compute 



standard errors for various statistics associated with regression.  The standard error of the 
regression coefficient b is Sb 
 
 S MSr X Xb = −[ / ( ) ] /Σ 2 1 2

 
 
 To construct a confidence interval for the true regression coefficient, we need a t-statistic 
which is defined as 
 

t = (b - β/Sb     with df = k-2 
 
where β is the true regression coefficient.  This formula provides a t-test for significance for a 
nonzero β equivalent to the F-test of the AOV for regression. 
 
 The confidence limits of β for a given α are, 
 
 b + t,α,k-2 •Sb 
 
 The 95% C. L. for   for the regression of liver weight on body weight are computed as 
follows, 
 
 MSr X X= − =013 2 922. , ( ) . ,Σ  
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Note that the confidence limits do  not bracket zero, also suggesting a nonzero β. 
 
10.6  Confidence limits for the intercept (a0) 
 
 The standard error of the estimated Y intercept, a, is 
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Again a t statistic for testing the hypotheses related to the true intercept, aO  is, 
 
 a + t ,df • Sa 
 
For the liver-body weight example, 
 
 MSr X X X a= = − = = −013 17 65 2 92 9 432. , . , ( ) . , .Σ  
 t0.05,4 = 2.776  and 
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      = 3.73 
 
 -9.43 + (2.776)(3.73) = -9.43 + 10.35 
     = -19.78 
      =   0.92 
 
 Since this confidence limit brackets zero, we do not have evidence for a nonzero 
intercept.  For the purpose of predicting the liver weight from body weight, the intercept value 
has little meaning.  In other cases, however, inferences about the intercept may have 
considerable importance. 
 
10.7  Confidence limits for predicted values ( ) $Y
 
  can be considered as a predicted value for a mean of Y's for a given X or as a 
predicted value for an individual Y for a given X.  In both cases  will be the same but the 
reliability will be different. 

$Y
$Y

 
 The standard error for  when it predicts a Y-mean is, $Y
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and the standard error for   when it predicts an individual Y is, 
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The (1-α) confidence limits for a predicted mean are 
 
 $

, $Y t Sdf y± •α  
 
and for an individual  are, $Y
 
  $

, $Y t Sdf y± •α

 
 Note that a different standard error is needed for each value of X and that the greater the 
departure of X from X  larger the standard error.  The reliability of a prediction decreases as X 
moves away from the central value of the independent variable.  Thus extrapolation from a 
regression model should be done with great caution. 
 
 Table 10-8 gives confidence limits for predicted means and individual observations for 
the liver-body weight data.  The calculations for completing the first line of the table are as 
follows: 
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 L = 1.54 and U = 3.20 
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 L = 1.07 and U = 3.67 
 
 Thus, for a given body weight of 164 g., we have 95% confidence that the mean liver 
weight will fall between 1.54 and 3.20 g. and that an individual liver weight will fall in the range 
of 1.07 and 3.67 g. 
 
Table 10-8. 95% confidence limits for predicted means and individual observations for the 

liver - body weight data. 
    Limits for 

predicted 
mean 

 Limits for 
individual 

observation 

 
 
 

X 
(10 g) 

Y 
(g) 

Sy$  Sy$  L U L U 

16.4 2.37 0.30 0.47 1.54 3.20 1.07 3.67 

 17.2 2.95 0.18 0.40 2.45 3.45 1.84 4.06 

17.6 3.24 0.15 0.39 2.82 3.66 2.16 4.32 

18.0 3.53 0.16 0.40 3.09 3.97 2.42 4.64 

18.2 3.68 0.19 0.41 3.15 4.21 2.54 4.82 

18.5 3.89 0.23 0.43 3.25 4.53 2.70 5.08 

 
 



 
 
Figure 10-5. 95% confidence bands for the predicted means and predicted individual 

observations of liver weight from body weight. 
 
 
10.8  Difference between two regression coefficients or two intercepts 
 
 If two regression coefficients b1 and b2 are compared to determine whether or not they 
can be considered estimates of a common  , the following t-test can be applied. 
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 SSX1 and SSX2 are the sums of squares of the X’s of the two regressions, and 
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is a pooled estimate of the variation about regression.  SSr1 is the sum of squares of deviation 
from the first regression and Ssr2 is the sum of squares of deviation in the second regression 
analysis. 
 
 To illustrate the procedure, we use the % sucrose data from Table 8-4.  Suppose we are 
concerned that the effect of nitrogen levels on % sucrose is the same in block 1 and block 5.  The 
data are presented in Table 10-9.  The AOV is presented in Table 10-10. 
 
   Table 10-9.  % sucrose for two blocks. 



 
  X 

(block 1) 
Y1 

(block 5) 
Y2 

  0 16.45 16.40 

 50 16.30 16.30 

100 15.35 14.75 

150 15.55 15.40 

200 13.90 14.10 

250 13.60 14.45 

 
  Table 10-10.  Regression AOV of % sucrose in blocks 1 and 5. 

   Block  Block 5 

Source df SS MS SS MS 

Total 5 7.167  4.658  

Regression 1 6.428 6.428 3.532 3.52 

Residual 4 0.739 0.185 1.126 0.282 
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Now the H0:  β1 = β2 versus H1:  β1 ≠ β2 can be tested by 
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 with df = 8 which is not significant at the 5% level.  Therefore we conclude there is no 
evidence that the rate of sucrose reduction in the two blocks is different. 
 
 Similarly the difference between two intercepts can also be tested by 
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 with df = k1 + k2 - 4. 



 
For the above example, 
 
 the HO:  a01 = a02 versus H1:  a01 ≠ a02 
 
is tested by calculating 
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with df = 8.  Again the null hypothesis a01 = a02 cannot be rejected. 
 
10.9  Inverse prediction 
 
 Sometimes, it is desirable to use the regression equation to estimate the unknown value 
of X associated with an observed Y value.  This is particularly useful for bioassays, such as to 
estimate the concentration of a toxic substance in the soil from the comparison of growth of 
plants in the soil with a standard growth curve.  Suppose the following data were obtained in an 
experiment for establishing the standard curve. 
 
 
  Table 10-11.  % growth as control (Y) under herbicide application (X). 

 X Y   (Y -  )2 

 -2 0.95 0.9 0.0025 

 -1 0.75 0.7 0.0025 

  0 0.50 0.5 0.0000 

  1 0.25 0.3 0.0025 

  2 0.05 0.1 0.0025 

Total 0 2.50 2.5 0.01 

Mean 0 0.5 0.5  

  Msr = (0.01)/(5 - 2) = 0.0033 

 
 Where X is the coded concentration of a herbicide (say, the concentration is 10X+3 ppm) 
and Y is the observed growth, as a percent of control, the estimate regression equation is 
 
  = 0.5 - 0.2X $Y

and Sb MSr X X2 0 000332= − =/ ( ) .Σ  

 
The inverse estimation is the estimate, X, for an observed Y value: 
 
  = (Y - a)/b $X
 
 A 100 • (1 -  ) confidence interval for the true but unknown X can be constructed as 
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 In our example if we observed a plant growth of 70% in soil which contains an unknown 
amount of the herbicide, the estimated concentration is 
 

 $ . .
.

.X =
−

−
= −

0 7 05
0 2

10 

 (or 10-1+3 = 100 ppm) 
 
The 95% confidence interval of the herbicide concentration is: 
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where t5%, 3 = 3.18, C = [(0.2)2 - (3.18)2(0.00033)] = 0.0367 
 
and D X X= − =1 02/ ( ) .Σ 1 .  Thus 
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 If several observations (say r observations) are made at the unknown level of X, the 
average value of these r observations should be used in the above formulas.  Also replace k by (k 
+ r) and t ,(k-2) by t ,(k+r-3) in the formula to construct an approximate (1- ) confidence interval. 
 
10.10.  Relationship between regression and analysis of variance models. 
 
 In Chapter 7, 8, and 9, experiments that were designed to study the response of a variable 
to varying doses of a treatment were analyzed.  The total sum of squares for any particular 
variable is partitioned according to the design of the experiment and the assumed model of the 
response.  For example, in a typical one-way classification experiment from CRD with several 
treatments, the analysis of variance model is, 
 

Yij = µ +  i +  ij 
 
where Yij is the jth observation in ith treatment,  i is the ith treatment effect, and  ij is the 
experimental error associated with the observation Yij.  Based on this model, the sum of squares 
of Y is partitioned into sum of squares of treatment and sum of squares of error.  In a regression 
analysis, the model may be specified as: 
 

Yij =   +   Xi +  ij 
 
where   and   are intercept and regression coefficients, respectively, and Xi is the ith  level of the 
independent variable.  The sum of squares of Y is now partitioned into sum of squares of 



regression and sum of squares of residuals.  When the treatments are quantitative levels of a 
factor and a regression relationship can be defined, the two procedures are closely related. 
 
 The example of percent sucrose in sugarbeet shown in chapters 8 and 9 will be used to 
illustrate the relationship.  For the purpose of easy explanation, the means of the experimental 
plots are presented in Table 10-12. 

 
Table 10-12.  Mean % sucrose for two beet samples per plot from an  

    RCBD. 
Fertilizer N Block   Treatment 

(lb/acre) 1 2 3 4 5 Mean 

  0 16.45 16.10 15.50 16.35 16.40 16.16 
 50 16.30 14.15 16.05 15.90 16.30 15.74 
100 15.35 14.65 16.05 15.65 14.75 15.29 
150 15.55 14.95 15.55 15.00 15.40 15.29 
200 13.90 13.75 14.80 15.25 14.10 14.36 
250 13.60 12.55 14.70 14.40 14.45 13.94 
Block mean 15.19 14.36 15.44 15.43 15.23 15.13 

 
 If the treatment means were analyzed according to the simple regression model, the 
following analysis of variance result would be obtained. 
 
Table 10-13. Analysis of variance of regression of % sucrose on N levels based on treatment 

means. 
Source df SS MS F 

Total 5 3.494   

Regression 1 3.318 3.318 75.41 

Residual 4 0.176 0.044  
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Recall that the treatment means are calculated from observations of 5 replications with 2 samples 
per replicate.  If we multiply the total sum of squares of Table 10-13 by 10, 5 replicates times 2 
samples (e.g., 3.494 (5)(2) = 34.94) we would obtain identical treatment sum of squares as in 
Table 8-6 or Table 9-7.  The term Ssr (sum of squares of residual) in Table 10-13 multiplied by 
10 will also yield the same sum of squares of residual of Table 9-7.  This illustrates that the AOV 
for the regression of treatment means is merely a partitioning of the treatment sum of squares. 
 
 The estimated regression equation as calculated in section 1 is: 
 
  = 16.22 - 0.0087X $Y
 



  If all the plot means were used in the regression analysis, the estimated regression 
equation would still be the same as calculated from regression on treatment means but the AOV 
would be as shown in Table 10-14. 
 
  Table 10-14.  AOV of regression of sucrose of sugarbeets based on plot means. 
 

Source df SS MS F 

Source df SS MS F 
Total 29 27.85   

Regression  1 16.57 16.57 41.43 

Residual 28 11.28 0.40  

 
When we compare the analysis of variance results in Table 10-14 and Table 9-7, we find the 
following: 
 
From Table 10-14, regression 
AOV of all plots. 

 From Table 9-7, regression AOV 
of individual observations. 

df Sum of squares x Sample 
per plot 
= 

Sum of squares  df 

29  Sum of squares of total x 2  = Sum of squares of plots 29 

  1 Sum of squares of regression x 2  = Linear treatment of squares   1 

28 Sum of squares of residual x 2  = Sum of squares of (blocks 
                              + 
                          residual 
                              + 
                       exp. error 

  4 
  + 
  4 
  + 
20 

 
 In this case the factor 2 is the sample size per plot, or the number of observations used to 
calculate plot means in the regression analysis. 
 
 Basically, there is no difference in ideas between the regression analysis of variance and 
the analysis of variance of experiments as discussed in Chapters 7, 8, and 9.  It all depends on 
how the data are organized and which part of the sum of squares are partitioned.  The sum of 
squares of regression for a quantitative treatment is only a part of the treatment sum of squares.  
In some cases Y and X are paired observations without replicates, and a simple partitioning of 
sum of squares of Y (dependent variable) into sum of squares of regression and of residual may 
be adequate.  However, in designed experiments where multiple observations of Y are made for 
each fixed level of X, a complete breakdown of the total sum of squares of individual sample 
observations as shown in Table 9-7 is recommended. 
 



 The relationships of various procedures in partitioning sums of squares for CRD and 
RCBD experiments are shown in Tables 10-15 and 10-1



Table 10-15. Relationships among various procedures in partitioning sum of squares for a CRD 
experiment (k levels of treatments and r replications). 

 
Procedures 
 
1. AOV on treatment means  (Regression analysis on means) 
 Total S Y Yi.S.{ . ..)Σ − 2  with df = k - 1} 
 = Regression S Y Yi.S.{ ( $ . ..)Σ − 2  with df = 1} 
      + Deviation S Y Yi i.S.{ ( $ . .)Σ − 2  with df = k - 2} 
 
2. AOV on all data (Design analysis on data) 
 Total { ( ..)ΣΣ Y Yij −

2  with df = kr - 1} 

 = Treatment S r Y Yi.S.{ ( . ..)Σ − 2  with df = k - 1} 
      + Error { ( .)ΣΣ Y Yij i− 2  with df = k(r - 1)} 
 
3. AOV on all data (Regression analysis on data) 
 Total S Y Yij.S.{ ( ..)ΣΣ − 2  with df = kr - 1} 

 = Regression r Y Y Yi iΣ( $ . $ . ..)− − 2  with df = 1} 
     + Residual  with df = kr - 2} S Y Yij i.S.{ ( $ .)ΣΣ − 2

 and 
 Residual S Y  with df = k - 2} Yij i.S.{ ( $ .)ΣΣ − 2

 = Deviation S r Y Y Yi i i.S.{ $ . . .)Σ − − 2  with df = k - 2} 
     + Error S Y  with df = k(r - 1)} Yij i.S.{ ( .)ΣΣ − 2

 
Relationships among analyses
 
1. (Total S.S.) of procedure - 1 x ® 
 = (Treatment S.S.) of procedure - 2 
 = (Regression S.S.) + (Deviation S.S.) of procedure - 3 
2. (Regression S.S.) of procedure - 1 x  ® 
 = (Regression S.S.) of procedure - 3 
3. (Deviation S.S.) of procedure - 1 x ® 
 = Deviation S.S. of procedure - 3 
4. (Total S.S.) of procedure - 2 
 = (Total S.S.) of procedure - 3 



Table 10-16. Relationships among various procedures in partitioning sum of squares for a 
RCBD experiment (k levels of treatments and r blocks). 
 
Procedures
 
1. AOV on treatment means (Regression analysis on means) 
 Total S Y Yi.S.{ ( . ..)Σ − 2  with df = k - 1} 
 = Regression S Y Yi.S.{ ( $ . ..)Σ − 2  with df = 1} 
 + Deviation S Y Yi i.S.{ ( $ . .)Σ − 2  with df = k - 2} 
 
2. AOV on all data (Design analysis on data) 
 Total S Y Yij.S.{ ( ..)ΣΣ − 2  with df = kr - 1} 

 = Treatment S r Y Yi.S.{ ( . ..)Σ − 2  with df = k - 1} 
 + block S k Y Yjj

.S.{ ( . ..)Σ − 2  with df = r - 1} 

 + Error S Y Y Y Yij i j.S.{ ( . . ..)ΣΣ − − +  
    with df = (k - 1)(r - 1)} 
 
3. AOV on all data  (Reression analysis on data) 
 Total S Y Yij.S.{ ( ..)ΣΣ − 2  with df = kr - 1} 

 = Regression S k Y Yi.S.{ ( $ . ..)Σ − 2  with df = 1} 
 + Residual S Y  with df = kr - 2} Yij i.S.{ ( $ .)ΣΣ − 2

 and 
 Residual S Y  with df = kr - 2} Yij i.S.{ ( $ .)ΣΣ − 2

 = Block S k Y Yj.S.{ ( . ..)Σ − 2  with df = r - 1} 

 + Deviation S r Y Yi i.S.{ $ . .)Σ − 2  with df = k - 2} 
 + Error S Y Y Y Yij i j.S.{ ( . . ..)ΣΣ − − + 2  
    with df = (k - 1) (r - 1} 
 
Relationships among analyses
 
1. (Total S.S.) of procedure - 1 x ® 
 = (Treatment S.S.) of procedure - 2 
 = (Regression S.S.) + (Deviation S.S.) of procedure - 3 
2. (Regression S.S.) of procedure - 1 x ® 
 = (Regression S.S.) of procedure - 3 
3. (Deviation S.S.) of procedure - 1 x ® 
 = Deviation S.S. of procedure - 3 
4. (Total S.S.) of procedure - 2 
 = (Total S.S.) of procedure - 3 



SUMMARY 
 

1. Coefficients of a simple regression equation 
 

  
b XY X Y k

X X k
a Y bX

=
−
−

= −

Σ Σ Σ
Σ Σ

( ) ( ) /
( ) /2 2  

 
2. AOV of a regression 
  
  

Source df SS MS 
Total k-1 Σ( )Y Y− 2   
Regression    1 Σ( $ )Y Y− 2  MSR 
Residual k-2 Σ( $ )Y Y− 2  MSr 

 
If replications (say, n experimental units with and without s sampling units) of Y’s are available 
for each given X, then the random variation estimate, MSE, can be calculated to compare with 
Msr which is calculated based on treatment means, i.e., 
 

 
F MSr n

MSE
without subsamples

MSr n s
MSE

with subsamples

=

=

( )

( )( )
 

 
 will provide a test of the lack of fit to the regression model. 
 
3. The coefficient of determination, R2 or r2 is defined as 
 

 R SSR
SSY

and R
adj

MSr
MSY

2 2
1= = − ,  

 
 where SSR is the sum of squares of regression, SSY is the total sum of squares and Msr is 

the mean square of residual.  The simple correlation coefficient is 
 

 r XY X Y k
X X k Y Y k

with df k=
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− −
= −
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 The significance of r can be tested by referring to critical values of Appendix Table A-11. 
 
4. Confidence limits of β are, 
 
  b + tα,k-2 • Sb

 
 where S MSr X Xb = −[ / ( ) ] /Σ 2 1 2  with df = k - 2 



 
5. Confidence limits of the true intercept (a0) are 
 
  a + tα,df • Sa
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X
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6. Confidence limits for a predicted mean 
 
  $

, $Y t Sdf y± •α  
 
 where $Y  is the predicted value and 
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7. Confidence limits for a predicted individual observation 
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, $Y t Sdf Y± •α
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EXERCISES 
 
1. Given the following data on the amount of fertilizer (X) and the yield (Y) of wheat: 
 

Fertilizer in Pounds 
X 

  2   8 

  4   9 

  6 11 

  8 11 

10 12 

12 15 

 
 a) Plot the data as a scatter diagram. 
 b) Find the regression line of Y on X. (a = 6.6, b = 0.62) 
 c) Predict the wheat yield when 9 and 13 pounds of fertilizer are used. 

(y = 12.26 and 14.78) 
 
2. Complete the following table and draw an appropriate conclusion of the linear regression 

coefficient. 
 

Source df Sum of Squares 

Total 25 800 

Regression   

Residual  600 

 
3. Does the least-square line always pass through the point ( , )X Y ? 
 
4. Use data in exercise 1. 
 
 a) Step up the analysis of variance table and test the significance of the regression. 

(F = 47.7) 
 
 b) Construct 95% confidence intervals for   and  . 
  (α:  U = 4.632, L = 8.568; β:  U = 0.376, L = 0.882) 
 
 c) Find 95% confidence intervals for the predicted yields of wheat at fertilizer   
  levels of 9 and 13 pounds. 
 
  (for y , U = 13.26, L = 11.26    
    U = 16.52, L = 13.03)  
 
5. Show algebraically that 



 
 a) Σ Σ( $ ) ( )(Y Y b X X Y Y− = − −2  
 b) Σ Σ Σ( $ ) ( ) ( )(Y Y Y Y b X X Y Y− = − − − −2 2 )  
 
6. Suppose that wheat yields in exercise 1 are actually means of two replications, i.e., 

Rep-1 7   7.5 10.5 10 11.7 14.5 

Rep-2 9 10.5 11.5 12 12.3 15.5 

Y  8   9 11 11 12 15 

 
 Test the lack of fit of the regression model that was obtained in exercise 1. 

(F = 0.73) 
 
7. Sulfur and selenium are closely related chemically and it has been reported that each can 

reduce the uptake of the other in animals.  Outbreaks of white muscle disease in lambs, a 
selenium deficiency symptom have been observed following application of sulfur to 
pastures.  Data from an experiment to investigate this problem are shown below. 

 
 

S application rate 
lbs/acre 

Blood levels of lambs on 
subclover-grass pasture 

 μg Se/ml 
  0 0.07 

10 0.04 

20 0.05 

40 0.02 

80 0.03 

 
 a) Find the regression equation.  (a = 0.05475, b = -0.000425) 
 
 b) Is there a significant negative linear trend between the rate of sulfur application 

and the level of selenium in lambs blood?  (F = 2.861) 
 
 c) Confirm the conclusion reached in b) by calculating a 95% CI. 

(-0.0012243, 0.0003743) 
 
8. Two treatments were used in an experiment to determine the N-treatment effect on growth 

rate of potato tubers.  The conventional method used 260 Kg N/ha in four applications and 
45 cm irrigations.  The improved treatment was intended to minimize leaching of nitrogen.  
It received 170 Kg N/ha in ten applications and 27 cm irrigations.  The following average 
accumulated dry matter of tubers were obtained. 

 



Days after 
emergence, X 

Average dry matter 
Conventional, Y1 

Yield (g/plant) 
Improved, Y2 

  35     8     9 

  49   50   52 

  71 180 170 

  91 250 270 

104 270 310 

 
 a) Find the regression equation of Y1 on X. (a = -133.204, b = 4.069) 
 
 b) Find the regression equation of Y2 on X. (a = -158.91, b = 4.587) 
 
 c) Test the hypothesis that the two regression coefficients are the same. 
        (t = 1.845, df = 6) 
 
 d) Interpret your results. 
 

9.Reduced legume growth under acid soil conditions is often due to the toxicity of aluminum.  
The effect of aluminum on the growth of soybeans supplied with adequate inorganic 
nitrogen was investigated.  The results are presented in the table below. 

 
 

 Replicatio
n (g/plant) 

   

Al ( m) 1 2 3 Mean 

  0 0.51 0.63 0.65 0.5967 

  4 0.56 0.61 0.65 0.6067 

  7 0.48 0.51 0.55 0.5133 

10 0.44 0.49 0.50 0.4767 

20 0.28 0.35 0.42 0.3500 

30 0.28 0.31 0.34 0.3100 

35 0.18 0.19 0.20 0.1900 

 
 a) Calculate the regression line. (a = 0.6071, b = -0.01138) 
 
 b) Perform the AOV of the regression line, including lack of fit. 

(F =416.70; 1.558) 
 
 c) Calculate the 95% confidence interval for mean soybean growth. 

(0.4939, 0.5269) 
 



10. Consider the regression problem of Y2 on X in exercise 8 and predict the average dry 
matter weight at 150 days after emergence.  Is the prediction reliable? 

(U = 587.33, L = 470.94) 
 
11. Crop residues are often used as soil amendments.  A study was conducted to investigate the 

yield response of continuous corn to removal or addition of crop residue under no-tillage 
management.  The quantities of residue to be returned to each treatment were 0, 50, 100, or 
150% of that produced (150% included additional residue over what was produced).  The 
results for 1981 and 1982 are shown below: 

 
 Grain Yield  

Treatment 1981 1982 

0 5.36 5.71 

50 3.90 6.85 

100 4.97 7.72 

150 6.01 7.75 

 
 a) Calculate the regression equation for 1981. (a = 3.207, b = 0.01804) 
 b) Perform the AOV for this regression. (F = 104.068)                  
 c) Calculate the regression equation for 1982. (a = 5.956, b = 0.01398) 
 d) Perform the AOV for this regression. (F = 15.067)                    
 e) Are the two regression coefficients for 1981 and 1982 significantly different? 

(t = 1.012, df = 4)           
 
12. Data gathered to estimate the influence of residual phosphorus in the soil on wheat yield is 

given in the table below: 
 

Phosphorus Applied 
in 1978 

Yield of  
Wheat 1979 

Y  

0 2910  

0 3100 3005.00 

25 3006  

25 3320 3163.00 

50 3340  

50 3590 3465.00 

 
 a) Calculate the regression equation. (a = 2,981; b = 9.2) 
 b) Perform the AOV, including lack of fit and discuss the results. 

(F = 8.02; <1) 
 c) Calculate a 95% confidence interval for the true regression coefficient,  . 

(0.1835, 18.217) 
 



13. In determining the relationship of plant growth rate (absolute ratio of dry matter 
accumulation per plant) and growth rate of the plant tissue (leaf area growth rate), the 
following data were obtained in the time interval from 22 to 29 days after planting for 10 
soybean cultivars. 
 

 
Growth Rate 
(g/plant/day) 

Y 

Leaf Area Growth Rate 
(cm/plant/day) 

X 
0.339 34.33 

0.398 51.70 

0.386 48.61 

0.385 45.64 

0.378 42.52 

0.368 39.09 

0.356 38.43 

0.354 36.13 

0.353 41.30 

0.351 37.36 

� 
 a) Find the regression line of Y on X. (a = 0.235, b = 0.0032)         
 b) Perform the AOV of the regression model. (F = 62.32)                           
 c) Find the 99% confidence limits for the regression coefficient. 

(U = 0.00456, L = 0.00184) 
 d) Give some reasons why or why not the leaf area growth rate is a good predictor of 

the plant growth rate for the data. (R2 = 0.8862)                        
 
14. The California Department of Food and Agriculture publishes reports of agricultural 

statistics periodically.  For purposes of the exercise we divided all crops into three 
categories:  field Crops (A):  Fruit and Nut Crops (B); and Vegetable and Melons (C).  
Data of harvested acreage (millions of acres) of type-B and type-C crops from 1981 to 
1985 were obtained from one of the reports and are shown in the following tables. 

 
Table 1. Harvested acreage (millions of 
acres) of type-B crops from 1981 to 1985 and 
some calculated values. 
 

 Year Average (Y) X2 Y2 XY 
  1 1.80   1  3.2400   1.80 
   2 1.82   4  3.3124   3.64 
   3 1.86   9  3.4596   5.58 
  4 1.91 16  3.6481   7.64 



  5 1.96 25  3.8416   9.80 
Total 15 9.35 55 17.5017 28.46 

 
 

Table 2. Harvested acreage (millions of acres) of type-C crops from 
1981 to 1985 and some calculated values. 

 Year (X) Acreage (Y) X2 Y2 XY 

 1 0.87 1 0.7569 0.87 

 2 0.94 4 0.8836 1.88 

 3 0.95 9 0.9025 2.85 

 4 1.00 16 1.0000 4.00 

 5 0.99 25 0.9801 4.95 

Total 15 4.75 55 4.5231 14.55 

  
 Based on the above information, answer the following questions: 
 
 a) What are your estimates of the rate of change of harvested acreage of each crop type 

(B and C)? (0.041 acre/yr, 0.030 acre/yr) 
 
 b) Test whether the estimated rates (slopes) are significantly different from zero.  What 

are the R2-values of the fitted lines?  Interpret your results. 
(F = 129.31; 16.875) 

 
 c) Assume that the total harvested crop land was 8.8 million acres in 1986.  What is 

your estimated acreage of type-A crop?  Give reasons of why or why not the 
prediction is reliable. (5.767 acres) 

 
15. Student enrollment figures of the fall quarter on the Davis campus since 1977 are shown 

below.  (Note:  carry three digits after the decimal point for the calculation) 
 

  
Year 

X 

Students 
(in 1,000) 

Y 

 
 

X2 

 
 

Y2 

 
 

XY 
 1977   17.250   3,908,529    297.562   34,103.250 

 1978   17.511   3,912,484    306.635   34,636.758 

 1979   17.950   3,916,441    322.203   35,523.050 

 1980   18.887   3,920,400    356.719   37,396.260 

 1983   18.969   3,932,289    356.823   37,615.527 

 1984   19.542   3,936,256    381.890   38,771.328 

 1985   19.721   3,940,225    388.918   39,146.185 

Total 13,866 129.830 27,466,624 2,413.759 257,192.358 



 
   a) Based on this data, what is the rate of increase of student enrollment over the years?  

(300 students/yr) 
 
 b) How would you decide if the regression model is an acceptable description of the 

relationship between enrollment and year? 
 
 c) What is your prediction of student enrollment in the year 2000?  Give an indication as 

to how good this prediction is with a 95% level of confidence. 
(24,290 students; CI: 22,118 to 26,462) 

 
16. A new herbicide was tested in the field for weed control.  Five levels of the herbicide 

were applied in the study, with each level applied to four plots by a completely 
randomized design.  The following table shows the percent weeds in each plot and the 
average and the total of each treatment. 

 
 Herbicide 

Concentration 
(lbs/acre) 

     

  1 2 3 4 5 Total 

   26   27   29 12 13  

   30   34   28 10   6  

   27   26   26 14   8  

   34   29   25 11 13  

Ave.        29.25        
29.00 

       
27.00 

     
11.75 

    
10.00 

107 

Total 117 116 108 47 40 428 

 
 a) Is there a linear relationship between the percent weed and the herbicide 

concentration?  Use average of % weeds for each treatment to estimate the linear 
regression line and draw a residual plot.   (F = 58.038) 

 
 b) Give a statistical conclusion about the significance of the lack of fit of the linear 

regression line. (F = 9.441) 
 
17. For what range of values can the coefficient of correlation of a sample of 52 pairs be 

considered significantly different from zero at the 1% level of significance? 
(range = 0.3541 to 1.00) 

 
18. Test at the 5% level the hypothesis H0:  p = 0.50, if in a sample of 100 pairs the 

correlation coefficient is found to be equal to 0.80. 
 
19. At the 5% level of significance what is the complete range of values for which the 

coefficient of correlation of a sample of 21 pairs of values is significantly different from a 
population value of 0.77? (r < 0.3371) 

 



20. Explain the differences between regression and correlation analyses. 
 
21. It was hypothesized that the elder brother (E) of twin pairs was slightly taller than the 

younger one (Y).  The following table presents the height data of 8 twin brothers. 
 
Twin 1 2 3 4 5 6 7 8 Total 

E 70 67 64 71 66 68 72 65 543 

Y 71 70 65 69 70 66 71 63 545 

 
E2 

 
4900 

 
4489 

 
4096 

 
5041 

 
4356 

 
4624 

 
5184 

 
4225 

 
36,915 

Y2 5041 4900 4225 4761 4900 4356 5041 3969 37,193 

ExY 4970 4690 4160 4899 4620 4488 5112 4095 37,034 

 
 Test if there is a significant correlation between the heights of the twin brothers. 

(r = 0.682) 
 
22. Do the following for the data in exercise 8: 
 
 a) Compute the coefficients of correlation between X and Y1, Y1 and Y2, and X and 

Y2. 
(r = 0.987; 0.7968; 0.9966) 

 
 b) Compute coefficients of determination between X and Y1, and X and Y2.  Interpret 

these coefficients. (r = 0.974; 0.993) 
 
 c) Test the hypothesis that the population correlation coefficient between Y1 and Y2 is 

0.80 against the alternative that it is not. 
 
23. The following data of yield components were obtained from 10 parental triticale 

populations in 1972.  (Averages of several locations.) 
�



Kernel Weight 
(mg) 

No. Kernels 
Per Spikelet 

No. Spikelets 
Per Spike 

No. 
Tillers 

41 2.9 37 10.6 

55 2.8 34 14.7 

38 3.2 25  8.8 

46 2.8 27  9.0 

53 2.7 24 13.4 

44 1.9 26 11.6 

50 3.1 25 14.9 

45 3.0 29 11.4 

42 2.6 33  9.3 

40 3.3 28  8.9 

 
 a) Compute coefficients of correlation between each pair of components. 
 
 b) Do the correlations differ significantly from zero? 
 
 c) Interpret the results. 
 


