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INTRODUCATION
 combinational logic is a type of digital logic which is 
implemented by Boolean circuits, where the output is a 
pure function of the present input only. 

 This is in contrast to sequential logic, in which the output 
depends not only on the present input but also on the 
history of the input.

 In other words, sequential logic has memory while 
combinational logic does not. 

 The outputs of Combinational Logic Circuits are only 
determined by the logical function of their current input 
state, logic “0” or logic “1”, at any given instant in time.

 The result is that combinational logic circuits have no 
feedback, and any changes to the signals being applied 
to their inputs will immediately have an effect at the 
output



 Design procedure 

 The design of combinational circuits starts from the verbal outline of the problem and ends in a logic 
circuit diagram or a set of Boolean functions from which the logic diagram can be easily obtained. The 
procedure involves the following steps: 

 1. Specification 

Write a specification for the circuit if one is not already available 

 2. Formulation 

 Derive a truth table or initial Boolean equations that define the required relationships between the inputs 
and outputs, if not in the specification.

 Apply hierarchical design if appropriate 

 3. Optimization 

 Apply 2-level and multiple-level optimization 

 Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters 

 4. Technology Mapping 

 Map the logic diagram to the implementation technology selected 



Adder 

 Digital computers perform a variety of information-processing 
tasks. Among the basic functions encountered are the various 
arithmetic operations. 

 The most basic arithmetic operation, no doubt, is the addition 
of two binary digits. 

 Half-Adder 

 A combinational circuit that performs the addition of two bits is 
called a half-adder. 

 Circuit needs two inputs and two outputs. The input variables 
designate the augend (x) and addend (y) bits; the output 
variables produce the sum (S) and carry (C). 

 In half adder we do not add carry from previous one.

 It is the basic building block for addition of two single bit 
numbers.





 A full-adder is a combinational circuit that forms the 
arithmetic sum of three input bits. 

 It consists of three inputs and two outputs. Two of the 
input variables, denoted by x and y, represent the two 
significant bits to be added. The third input, z, represents 
the carry from the previous lower significant position. 

Full-Adder 
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IMPLIMENTATION OF FULL ADDER 
WITH TWO HALF ADDER

 We can achieve a full adder using two half adder.

 We have to take two half adder in one sequence and lets 
assume S1,c1 is the sum and carry of first adder and 
S2,c2 is the sum and carry of second adder.

 So for the second adder S1 is the input and and also Cin
is the work as input for second 



Substractor

 The subtraction of two binary numbers may be 
accomplished by taking the complement of the 
subtrahend and adding it to the minuend.

 By this method, the subtraction operation becomes an 
addition operation requiring full-adders for its machine 
implementation. 

 It is possible to implement subtraction with logic circuits 
in a direct manner, as done with paper and pencil. 

 By this method, each subtrahend bit of the number is 
subtracted from its corresponding significant minuend bit 
to form a difference bit. 

 If the minuend bit is smaller than the subtrahend bit, a 1 
is borrowed from the next significant position 



Half-Subtractor

 A half-subtractor is a combinational circuit that subtracts two 
bits and produces their difference bit. 

 Denoting minuend bit by x and the subtrahend bit by y. 

 To perform x - y, we have to check the relative magnitudes of x 
and y: 

 If x≥ y, we have three possibilities: 0 - 0 = 0, 1 - 0 = 1, and 1 -
1 = 0. 

 If x < y, we have 0 - 1, and it is necessary to borrow a 1 from 
the next higher stage. 

 The half-subtractor needs two outputs, difference (D) and 
borrow (B). 
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FULL SUBTRACTOR
 Full-Subtractor

 A full-subtractor is a combinational circuit that performs a 
subtraction between two bits, taking into account that a 1 
may have been borrowed by a lower significant stage. 

 This circuit has three inputs and two outputs. The three 
inputs, x, y, and z, denote the minuend, subtrahend, and 
previous borrow, respectively.

 The two outputs, D and B, represent the difference and 
output-borrow, respectively. 

D = x'y'z + x'yz' + xy'z' + xyz B = x'y + x'z + yz



Code Conversion 

 The availability of a large variety of codes for the same discrete 
elements of information results in the use of different codes by 
different digital systems. It is sometimes necessary to use the output 
of one system as the input to another. 

 A conversion circuit must be inserted between the two systems if 
each uses different codes for the same information. 

 Thus, a code converter is a circuit that makes the two systems 
compatible even though each uses a different binary code. 

 To convert from binary code A to binary code B, code converter has 
input lines supplying the bit combination of elements as specified by 
code A and the output lines of the converter generating the 
corresponding bit combination of code B.

 A Code converter (combinational circuit) performs this 
transformation by means of logic gates. 

 The design procedure of code converters will be illustrated by 
means of a specific example of conversion from the BCD to the 
excess-3 code. 



BCD to Excess-3 code converter 

 Transforms BCD code for the decimal digits to Excess-3 code 
for the decimal digits 

 BCD code words for digits 0 through 9: 4-bit patterns 0000 to 
1001, respectively. 

 Excess-3 code words for digits 0 through 9: 4-bit patterns 
consisting of 3 (binary 0011) added to each BCD code word 

 Implementation: multiple-level circuit 

 Conversion of 4-bit codes can be most easily formulated by a 
truth table 

 Variables- BCD: A, B, C, D 

 Variables- Excess-3: W, X, Y, Z 

 Don’t Cares: BCD 1010 to 1111 





 Analysis Procedure 

 The design of a combinational circuit starts from the verbal specifications of a required 
function and ends with a set of output Boolean functions or a logic diagram. The analysis of 
a combinational circuit is somewhat the reverse process. It starts with a given logic diagram 
and culminates with a set of Boolean functions, a truth table, or a verbal explanation of the 
circuit operation. 

 Steps in analysis: 

 1. The first step in the analysis is to make sure that the given circuit is combinational and 
not sequential. 

 2. Assign symbols to all gate outputs that are a function of the input variables. Obtain the 
Boolean functions for each gate. 

 3. Label with other arbitrary symbols those gates that are a function of input variables 
and/or previously labeled gates. Find the Boolean functions for these gates. 

 4. Repeat step 3 until the outputs of the circuit are obtained. 

 5. By repeated substitution of previously defined functions, obtain the output Boolean 
functions in terms of input variables only. 



F2 = AB + AC + BC 
T1=A+B+C 
T2 = ABC 
Next we consider outputs of gates that are a function of already defined 
symbols: 
T3 = F2’T1 
F1 = T3 + T2 

Analysis of the combinational circuit below illustrates the proposed 
procedure:



To obtain F1 as a function of A, B, and C, forms a series of substitutions 
as follows:

If you want to determine the information-transformation task 
achieved by this circuit, you can derive the truth table directly 
from the Boolean functions and try to recognize a familiar 
operation. For this example, we note that the circuit is a full-
adder, with F, being the sum output and F, the carry output. A, 
B, and C are the three inputs added arithmetically.



Concept of multi-level NAND and NOR 
circuits 

 To implement a Boolean function with NAND gates we need to obtain 
the simplified Boolean function in terms of Boolean operators and 
then convert the function to NAND logic. 

 The conversion of an algebraic expression from AND, OR, and 
complement to NAND can be done by simple circuit-manipulation 
techniques that change AND-OR diagrams to NAND diagrams. 

 To obtain a multilevel NAND diagram from a Boolean expression, 
proceed as follows: 

 1. From the given Boolean expression, draw the logic diagram with 
AND, OR, and inverter gates. Assume that both the normal and 
complement inputs are available. 

 2. Convert all AND gates to NAND gates with AND-invert graphic 
symbols. 

 3. Convert all OR gates to NAND gates with invert-OR graphic 



 Example: F = A + (B' + C) (D' + BE ') 



 Multi-level NOR circuits 

 The NOR function is the dual of the NAND function. 

 For this reason, all procedures and rules for NOR logic form a dual of the 
corresponding procedures and rules developed for NAND logic. 

 Similar to NAND, NOR has also two graphic symbols: OR-invert and invert-AND 
symbol. 

 The procedure for implementing a Boolean function with NOR gates is similar to 
the procedure outlined in the previous section for NAND gates: 

 1. Draw the AND-OR logic diagram from the given algebraic expression. Assume 
that both the normal and complement inputs are available. 

 2. Convert all OR gates to NOR gates with OR-invert graphic symbols. 

 3. Convert all AND gates to NOR gates with invert-AND graphic symbols. 

 4. Any small circle that is not compensated by another small circle along the 
same line needs an inverter or the complementation of the input variable. 

Example: F = (AB + E) (C + D)


