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C H A P T E R

6
RESIDUES AND POLES

The Cauchy–Goursat theorem (Sec. 50) states that if a function is analytic at all points
interior to and on a simple closed contour C , then the value of an integral of the
function around that contour is zero. If, however, the function fails to be analytic at a
finite number of points interior to C , there is, as we shall see in this chapter, a specific
number, called a residue, which each of those points contributes to the value of the
integral. We develop here the theory of residues; and, in Chap. 7, we shall illustrate
their use in certain areas of applied mathematics.

74. ISOLATED SINGULAR POINTS

We saw in Sec. 25 that a function f is analytic at a point z0 if it has a derivative at each
point in some neighborhood of z0. If, on the other hand, f fails to be analytic at z0 but
is analytic at some point in every neighborhood of it, we also saw in Sec. 25 that z0 is
a singular point of f.

The theory of residues in this chapter centers around a special type of singu-
lar point. Namely, a singular point z0 is said to be isolated if there is a deleted ε

neighborhood 0 < |z − z0| < ε of z0 throughout which f is analytic.

EXAMPLE 1. The function

f (z) = z − 1

z5(z2 + 9)

227
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has the three isolated singular points z = 0 and z = ±3i . In fact, the singular points of
a rational function, or quotient of two polynomials, are always isolated. This because
the zeros of the polynomial in the denominator are finite in number (Sec. 58).

EXAMPLE 2. The origin z = 0 is a singular point of the principal branch
(Sec. 33)

F(z) = Log z = ln r + i� (r > 0, −π < � < π)

of the logarithmic function. It is not, however, an isolated singular point since every
deleted ε neighborhood of it contains points on the negative real axis (see Fig. 88)
and the branch is not even defined there. Similar remarks can be made regarding any
branch

f (z) = log z = ln z + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function.
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y

FIGURE 88

EXAMPLE 3. The function

f (z) = 1

sin(π/z)

clearly does not have a derivative at the origin z = 0; and because sin(π/z) = 0 when
π/z = nπ (n = ±1, ±2, . . .), the derivative of f also fails to exist at each of the
points z = 1/n (n = ±1, ±2, . . .). Inasmuch as the derivative of f does exist at every
point that is not on the real axis, it follows that f is analytic at some point in every
neighborhood of each of the points

z = 0 and z = 1/n (n = ±1, ±2, . . .).(1)

Hence each of the points (1) is a singularity of f.
The singularity z = 0 is not isolated because every deleted ε neighborhood of it

contains other singular points. More precisely, when a positive number ε is specified
and m is any positive integer such that m > 1/ε, the fact that 0 < 1/m < ε means
that the singularity z = 1/m lies in the deleted ε neighborhood 0 < |z| < ε.
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The remaining points z = 1/n (n = ±1, ±2, . . .) are in fact, isolated. In order
to see this, let m denote any fixed positive integer and observe that f is analytic in the
deleted neighborhood of z = 1/m whose radius is

ε = 1

m
− 1

m + 1
= 1

m(m + 1)
.

(See Fig. 89.) A similar observation can be made when m is a negative integer.
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FIGURE 89

In this chapter, it will be important to keep in mind that if a function is analytic
everywhere inside a simple closed contour C except for a finite number of singular
points z1, z2, . . . , zn , those points must all be isolated and the deleted neighborhoods
about them can be made small enough to lie entirely inside C . To see that this is so,
consider any one of the points zk . The radius ε of the needed deleted neighborhood can
be any positive number that is smaller than the distances to the other singular points
and also smaller than the distance from zk to the closest point on C .

Finally, we mention that it is sometimes convenient to consider the point
at infinity (Sec. 17) as an isolated singular point. To be specific, if there is a
positive number R1 such that f is analytic for R1 < |z| < ∞, then f is said to
have an isolated singular point at z0 = ∞. Such a singular point will be used in
Sec. 77.

75. RESIDUES

When z0 is an isolated singular point of a function f , there is a positive number R2

such that f is analytic at each point z for which 0 < |z − z0| < R2. Consequently,
f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)

(0 < |z − z0| < R2),

where the coefficients an and bn have certain integral representations (Sec. 66). In
particular,

bn = 1

2π i

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .)
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where C is any positively oriented simple closed contour around z0 that lies in the
punctured disk 0 < |z − z0| < R2 (Fig. 90). When n = 1, this expression for bn

becomes

b1 = 1

2π i

∫
C

f (z) dz

or ∫
C

f (z) dz = 2π ib1.(2)
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FIGURE 90

The complex number b1, which is the coefficient of 1/(z − z0) in expansion (1),
is called the residue of f at the isolated singular point z0, and we shall often write

b1 = Res
z=z0

f (z).

Equation (2) then becomes ∫
C

f (z) dz = 2π i Res
z=z0

f (z).(3)

Sometimes we simply use B to denote the residue when the function f and the point
z0 are clearly indicated.

Equation (3) provides a powerful method for evaluating certain integrals around
simple closed contours.

EXAMPLE 1. Consider the integral∫
C

ez − 1

z4
dz(4)

where C is the positively oriented unit circle |z| = 1 (Fig. 91). Since the integrand
is analytic everywhere in the finite plane except at z = 0, it has a Laurent series
representation that is valid when 0 < |z| < ∞. Thus, according to equation (3), the
value of integral (4) is 2π i times the residue of its integrand at z = 0.
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To determine that residue, we recall (Sec. 64) the Maclaurin series representation

ez =
∞∑

n=0

zn

n!
(|z| < ∞)

and use it to write

ez − 1

z5
= 1

z5

∞∑
n=1

zn

n!
=

∞∑
n=1

zn−5

n!
(0 < |z| < ∞).

The coefficient of 1/z in this last series occurs when n − 5 = −1, or when n = 4.
Hence

Res
z=0

ez − 1

z5
= 1

4!
= 1

24
;

and so ∫
C

ez − 1

z4
dz = 2π i

(
1

24

)
= π i

12
.
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FIGURE 91

EXAMPLE 2. Let us show that∫
C

cosh
(

1

z2

)
dz = 0(5)

where C is the same positively oriented unit circle |z| = 1 as in Example 1. The
composite function cosh(1/z2) is analytic everywhere except at the origin since the
same is true of 1/z2 and since cosh z is entire. The isolated singular point z = 0 is
interior to C , and Fig. 91 in Example 1 can be used here as well. With the help of the
Maclaurin series expansion (Sec. 64)

cosh z = 1 + z2

2!
+ z4

4!
+ z6

6!
+ · · · (|z| < ∞),

one can write the Laurent series expansion

cosh
(

1

z

)
= 1 + 1

2!
· 1

z2
+ 1

4!
· 1

z4
+ 1

6!
· 1

z6
· · · (0 < |z| < ∞).
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The residue of the integrand at its isolated singular point z = 0 is, therefore, zero
(b1 = 0), and the value of integral (5) is established.

We are reminded in this example that although the analyticity of a function within
and on a simple closed contour C is a sufficient condition for the value of the integral
around C to be zero, it is not a necessary condition.

EXAMPLE 3. A residue can be used to evaluate the integral∫
C

dz

z(z − 2)5
(6)

where C is the positively oriented circle |z − 2| = 1 (Fig. 92). Since the integrand is
analytic everywhere in the finite plane except at the points z = 0 and z = 2, it has
a Laurent series representation that is valid in the punctured disk 0 < |z − 2| < 2,
which is shown in Fig. 92. Thus, according to equation (3), the value of integral (6) is
2π i times the residue of its integrand at z = 2. The nature of that integrand suggests
that we might use the geometric series (Sec. 64)

1

1 − z
=

∞∑
n=0

zn (|z| < 1)

to determine the residue. We write

1

z(z − 2)5
= 1

(z − 2)5
· 1

2 + (z − 2)
= 1

2(z − 2)5
· 1

1 −
(

− z − 2

2

) ,

and then use the geometric series:

1

z(z − 2)5
= 1

2(z − 2)5

∞∑
n=0

(
− z − 2

2

)n

=
∞∑

n=0

(−1)n

2n+1
(z − 2)n−5 (0 < |z − 2| < 2).

In this Laurent series, which could be written in the form (1), the coefficient of 1/(z−2)

is the desired residue, namely 1/32. Consequently,∫
C

dz

z(z − 2)5
= 2π i

(
1

32

)
= π i

16
.
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C
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FIGURE 92
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76. CAUCHY’S RESIDUE THEOREM

If, except for a finite number of singular points, a function f is analytic inside a simple
closed contour C , those singular points must all be isolated (Sec. 74). The following
theorem, which is known as Cauchy’s residue theorem, is a precise statement of the
fact that if f is also analytic on C and if C is positively oriented, then the value of the
integral of f around C is 2π i times the sum of the residues of f at the singular points
inside C .

Theorem. Let C be a simple closed contour, described in the positive sense. If
a function f is analytic inside and on C except for a finite number of singular points
zk (k = 1, 2, . . . , n) inside C (Fig. 93), then∫

C
f (z) dz = 2π i

n∑
k=1

Res
z=zk

f (z).(1)
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FIGURE 93

To prove the theorem, let the points zk (k = 1, 2, . . . , n) be centers of positively
oriented circles Ck which are interior to C and are so small that no two of them have
points in common. The circles Ck , together with the simple closed contour C , form
the boundary of a closed region throughout which f is analytic and whose interior is a
multiply connected domain consisting of the points inside C and exterior to each Ck .
Hence, according to the adaptation of the Cauchy–Goursat theorem to such domains
(Sec. 53), ∫

C
f (z) dz −

n∑
k=1

∫
Ck

f (z) dz = 0.

This reduces to equation (1) because (Sec. 75)∫
Ck

f (z) dz = 2π i Res
z=zk

f (z) (k = 1, 2, . . . , n),

and the proof is complete.
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EXAMPLE. Let us use the theorem to evaluate the integral∫
C

4z − 5

z(z − 1)
dz(2)

where C is the circle |z| = 2, described in the counterclockwise direction (Fig. 94).
The integrand has the two isolated singularities z = 0 and z = 1, both of which are
interior to C . The corresponding residues B1 at z = 0 and B2 at z = 1 are readily
found with the aid of the Maclaurin series representation (Sec. 64)

1

1 − z
= 1 + z + z2 + · · · (|z| < 1).

We observe first that when 0 < |z| < 1,

4z − 5

z(z − 1)
= 4z − 5

z
· −1

1 − z
=

(
4 − 5

z

)
(−1 − z − z2 − · · ·);

and by identifying the coefficient of 1/z in the product on the right here, we find that

B1 = 5.(3)

Also, since

4z − 5

z(z − 1)
= 4(z − 1) − 1

z − 1
· 1

1 + (z − 1)

=
(

4 − 1

z − 1

)
[1 − (z − 1) + (z − 1)2 − · · ·]

when 0 < |z − 1| < 1, it follows that

B2 = −1.(4)

Thus ∫
C

4z − 5

z(z − 1)
dz = 2π i(B1 + B2) = 8π i.(5)
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FIGURE 94
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In this example, it is actually easier to start by writing the integrand in integral
(2) as the sum of its partial fractions:

4z − 5

z(z − 1)
= 5

z
+ −1

z − 1
.

Then, since 5/z is already a Laurent series when 0 < |z| < 1 and since −1/(z − 1) is
a Laurent series when 0 < |z − 1| < 1, it follows that statement (5) is true.

77. RESIDUE AT INFINITY

Suppose that a function f is analytic throughout the finite plane except for a finite
number of singular points interior to a positively oriented simple closed contour C .
Next, let R1 denote a positive number which is large enough that C lies inside the circle
|z| = R1 (see Fig. 95). The function f is evidently analytic throughout the domain
R1 < |z| < ∞ and, as already mentioned at the end of Sec. 74, the point at infinity is
then said to be an isolated singular point of f .
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R0R1O
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FIGURE 95

Now let C0 denote a circle |z| = R0, oriented in the clockwise direction, where
R0 > R1. The residue of f at infinity is defined by means of the equation∫

C0

f (z) dz = 2π i Res
z=∞ f (z).(1)

Note that the circle C0 keeps the point at infinity on the left, just as the singular point
in the finite plane is on the left in equation (3), Sec. 75. Since f is analytic throughout
the closed region bounded by C and C0, the principle of deformation of paths (Sec. 53)
tells us that ∫

C
f (z) dz =

∫
−C0

f (z) dz = −
∫

C0

f (z) dz.



Brown/Churchill-3930327 book July 19, 2013 11:32

236 RESIDUES AND POLES CHAP. 6

So, in view of definition (1),∫
C

f (z) dz = −2π i Res
z=∞ f (z).(2)

To find this residue, write the Laurent series (see Sec. 66)

f (z) =
∞∑

n=−∞
cn zn (R1 < |z| < ∞),(3)

where

cn = 1

2π i

∫
−C0

f (z) dz

zn+1
(n = 0, ±1, ±2, . . .).(4)

Replacing z by 1/z in equation (3) and then multiplying through the result by 1/z2, we
see that

1

z2
f

(
1

z

)
=

∞∑
n=−∞

cn

zn+2
=

∞∑
n=−∞

cn−2

zn

(
0 < |z| <

1

R1

)

and

c−1 = Res
z=0

[
1

z2
f

(
1

z

)]
.

Putting n = −1 in expression (4), we now have

c−1 = 1

2π i

∫
−C0

f (z) dz,

or ∫
C0

f (z) dz = −2π i Res
z=0

[
1

z2
f

(
1

z

)]
.(5)

Note how it follows from this and definition (1) that

Res
z=∞ f (z) = − Res

z=0

[
1

z2
f

(
1

z

)]
.(6)

With equations (2) and (6), the following theorem is now established. This theorem
is sometimes more efficient to use than Cauchy’s residue theorem in Sec. 76 since it
involves only one residue.

Theorem. If a function f is analytic everywhere in the finite plane except for a
finite number of singular points interior to a positively oriented simple closed contour
C, then ∫

C
f (z) dz = 2π i Res

z=0

[
1

z2
f

(
1

z

)]
.(7)
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EXAMPLE. It is easy to see that the singularities of the function

f (z) = z3(1 − 3z)

(1 + z)(1 + 2z4)

all lie inside the positively oriented circle C centered at the origin with radius 3. In
order to use the theorem in this section, we write

1

z2
f

(
1

z

)
= 1

z
· z − 3

(z + 1)(z4 + 2)
.(8)

Inasmuch as the quotient

z − 3

(z + 1)(z4 + 2)

is analytic at the origin, it has a Maclaurin series representation whose first term is the
nonzero number −3/2. Hence, in view of expression (8),

1

z2
f

(
1

z

)
= 1

z

(
−3

2
+ a1z + a2z2 + a3z3 + · · ·

)
= −3

2
· 1

z
+ a1 + a2z + a3z2 + · · ·

for all z in some punctured disk 0 < |z| < R0. It is now clear that

Res
z=0

[
1

z2
f

(
1

z

)]
= −3

2
,

and so ∫
C

z3(1 − 3z)

(1 + z)(1 + 2z4)
dz = 2π i

(
−3

2

)
= −3π i.(9)

EXERCISES
1. Find the residue at z = 0 of the function

(a)
1

z + z2
; (b) z cos

(
1

z

)
; (c)

z − sin z

z
; (d)

cot z

z4
; (e)

sinh z

z4(1 − z2)
.

Ans. (a) 1; (b) −1/2 ; (c) 0 ; (d) −1/45 ; (e) 7/6.

2. Use Cauchy’s residue theorem (Sec. 76) to evaluate the integral of each of these functions
around the circle |z| = 3 in the positive sense:

(a)
exp(−z)

z2
; (b)

exp(−z)

(z − 1)2
; (c) z2 exp

(
1

z

)
; (d)

z + 1

z2 − 2z
.

Ans. (a) −2π i ; (b) −2π i/e ; (c) π i/3 ; (d) 2π i .

3. In the example in Sec. 76, two residues were used to evaluate the integral∫
C

4z − 5

z(z − 1)
dz

where C is the positively oriented circle |z| = 2. Evaluate this integral once again by
using the theorem in Sec. 77 and finding only one residue.
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4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

(a)
z5

1 − z3
; (b)

1

1 + z2
; (c)

1

z
.

Ans. (a) −2π i ; (b) 0 ; (c) 2π i .

5. Let C denote the circle |z| = 1, taken counterclockwise, and use the following steps to
show that ∫

C
exp

(
z + 1

z

)
dz = 2π i

∞∑
n=0

1

n! (n + 1)!
.

(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 71, which
justifies the term by term integration that is to be used, write the above integral as

∞∑
n=0

1

n!

∫
C

zn exp
(

1

z

)
dz.

(b) Apply the theorem in Sec. 76 to evaluate the integrals appearing in part (a) to arrive
at the desired result.

6. Suppose that a function f is analytic throughout the finite plane except for a finite number
of singular points z1, z2, . . . , zn . Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞ f (z) = 0.

7. Let the degrees of the polynomials

P(z) = a0 + a1z + a2z2 + · · · + anzn (an �= 0)

and

Q(z) = b0 + b1z + b2z2 + · · · + bm zm (bm �= 0)

be such that m ≥ n + 2. Use the theorem in Sec. 77 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C , then∫

C

P(z)

Q(z)
dz = 0.

[Compare with Exercise 4(b).]

78. THE THREE TYPES OF ISOLATED
SINGULAR POINTS

We saw in Sec. 75 that the theory of residues is based on the fact that if f has an
isolated singular point at z0, then f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)
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