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EXAMPLE 4. Using term by term differentiation, which will be justified in
Sec. 71, we differentiate each side of equation (3) and write

cos z =
∞∑

n=0

(−1)n

(2n + 1)!

d

dz
z2n+1 =

∞∑
n=0

(−1)n 2n + 1

(2n + 1)!
z2n =

∞∑
n=0

(−1)n z2n

(2n)!

(|z| < ∞).

Expansion (4) is now verified.

EXAMPLE 5. Because sinh z = −i sin(i z), as pointed out in Sec. 39, we need
only recall expansion (3) for sin z and write

sinh z = −i
∞∑

n=0

(−1)n (i z)2n+1

(2n + 1)!
(|z| < ∞),

which becomes

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
(|z| < ∞).

EXAMPLE 6. Since cosh z = cos(i z), according to Sec. 39, the Maclaurin
series (4) for cos z reveals that

cosh z =
∞∑

n=0

(−1)n (i z)2n

(2n)!
(|z| < ∞),

and we arrive at the Maclaurin series representation

cosh z =
∞∑

n=0

z2n

(2n)!
(|z| < ∞).

Observe that the Taylor series for cosh z about the point z0 = −2π i , for example,
is obtained by replacing the variable z on each side of this last equation by z + 2π i
and then recalling (Sec. 39) that cosh(z + 2π i) = cosh z for all z:

cosh z =
∞∑

n=0

(z + 2π i)2n

(2n)!
(|z| < ∞).

65. NEGATIVE POWERS OF (z − z0)

If a function f fails to be analytic at a point z0, one cannot apply Taylor’s theorem
there. It is often possible, however, to find a series representation for f (z) involving
both positive and negative powers of (z − z0). Such series are extremely important
and are taken up in the next section. They are often obtained by using one or more of
the six Maclaurin series listed at the beginning of Sec. 64. In order that the reader be
accustomed to series involving negative powers of (z − z0), we pause here with several
examples before exploring their general theory.
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EXAMPLE 1. Using the familiar Maclaurin series

ez = 1 + z

1!
+ z2

2!
+ z3

3!
+ z4

4!
+ · · · (|z| < ∞),

we can see that

e−z

z2
= 1

z2

(
1 − z

1!
+ z2

2!
− z3

3!
+ z4

4!
− · · ·

)
= 1

z2
− 1

z
+ 1

2!
− z

3!
+ z2

4!
− · · ·

when 0 < |z| < ∞.

EXAMPLE 2. From the Maclaurin series

cosh z =
∞∑

n=0

z2n

(2n)!
(|z| < ∞)

it follows that when 0 < |z| < ∞,

z3 cosh
(

1

z

)
= z3

∞∑
n=0

1

(2n)!z2n
=

∞∑
n=0

1

(2n)!z2n−3
.

We note that 2n − 3 < 0 when n is 0 or 1 but that 2n − 3 > 0 when n ≥ 2. Hence this
last series can be rewritten so that

z3 cosh
(

1

z

)
= z3 + z

2
+

∞∑
n=2

1

(2n)!z2n−3
(0 < |z| < ∞).

Anticipating a standard form for such an expansion in the next section, we can replace
n by n + 1 in this series to arrive at

z3 cos
(

1

z

)
= z

2
+ z3 +

∞∑
n=1

1

(2n + 2)!
· 1

z2n−1
(0 < |z| < ∞).

EXAMPLE 3. For our next example, let us expand the function

f (z) = 1 + 2z2

z3 + z5
= 1

z3
· 2(1 + z2) − 1

1 + z2
= 1

z3

(
2 − 1

1 + z2

)
into a series involving powers of z. We cannot find a Maclaurin series since f (z) is
not analytic at z = 0. But we do know that

1

1 − z
= 1 + z + z2 + z3 + z4 + · · · (|z| < 1);

and, after replacing z by −z2 on each side here, we have

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · (|z| < 1).

So when 0 < |z| < 1,

f (z) = 1

z3
(2 − 1 + z2 − z4 + z6 − z8 + · · ·) = 1

z3
+ 1

z
− z + z3 − z5 + · · · .
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We call such terms as 1/z3 and 1/z negative powers of z since they can be written z−3

and z−1, respectively. As already noted at the beginning of this section, the theory of
expansions involving negative powers of (z − z0) will be discussed in the next section.

The reader will notice that in the series obtained in Examples 1 and 3 the negative
powers appear first but that the positive powers appear first in Example 2. Whether the
positive or negative powers come first is usually immaterial in the applications later
on. Also, these three examples involve powers of (z − z0) when z0 = 0. Our final
example here does, however, involve a nonzero z0.

EXAMPLE 4. We propose here to expand the function
ez

(z + 1)2

in powers of (z + 1). We start with the Maclaurin series

ez =
∞∑

n=0

zn

n!
(|z| < ∞)

and replace z by (z + 1):

ez+1 =
∞∑

n=0

(z + 1)n

n!
(|z + 1| < ∞).

Dividing through this equation by e(z + 1)2 reveals that

ez

(z + 1)2
=

∞∑
n=0

(z + 1)n−2

n!e
.

So we have

ez

(z + 1)2
= 1

e

[
1

(z + 1)2
+ 1

z + 1
+

∞∑
n=2

(z + 1)n−2

n!

]
(0 < |z + 1| < ∞),

which is the same as

ez

(z + 1)2
= 1

e

[ ∞∑
n=0

(z + 1)n

(n + 2)!
+ 1

z + 1
+ 1

(z + 1)2

]
(0 < |z + 1| < ∞).

EXERCISES∗

1. Obtain the Maclaurin series representation

z cosh(z2) =
∞∑

n=0

z4n+1

(2n)!
(|z| < ∞).

∗In these and subsequent exercises on series expansions, it is recommended that the reader use, when
possible, representations (1) through (6) in Sec. 64.
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2. Obtain the Taylor series

ez = e
∞∑

n=0

(z − 1)n

n!
(|z − 1| < ∞)

for the function f (z) = ez by

(a) using f (n)(1) (n = 0, 1, 2, . . .); (b) writing ez = ez−1e.

3. Find the Maclaurin series expansion of the function

f (z) = z

z4 + 4
= z

4
· 1

1 + (z4/4)
.

Ans. f (z) =
∞∑

n=0

(−1)n

22n+2
z4n+1 (|z| <

√
2).

4. With the aid of the identity (see Sec. 37)

cos z = − sin
(

z − π

2

)
,

expand cos z into a Taylor series about the point z0 = π/2.

5. Use the identity sinh(z + π i) = −sinh z, verified in Exercise 7(a), Sec. 39, and the fact
that sinh z is periodic with period 2π i to find the Taylor series for sinh z about the point
z0 = π i .

Ans. −
∞∑

n=0

(z − π i)2n+1

(2n + 1)!
(|z − π i | < ∞).

6. What is the largest circle within which the Maclaurin series for the function tanh z
converges to tanh z? Write the first two nonzero terms of that series.

7. Show that if f (z) = sin z, then

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n (n = 0, 1, 2, . . .).

Thus give an alternative derivation of the Maclaurin series (3) for sin z in Sec. 64.

8. Rederive the Maclaurin series (4) in Sec. 64 for the function f (z) = cos z by

(a) using the definition

cos z = eiz + e−i z

2
in Sec. 37 and appealing to the Maclaurin series (2) for ez in Sec. 64 ;

(b) showing that

f (2n)(0) = (−1)n and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).

9. Use representation (3), Sec. 64, for sin z to write the Maclaurin series for the function

f (z) = sin(z2),

and point out how it follows that

f (4n)(0) = 0 and f (2n+1)(0) = 0 (n = 0, 1, 2, . . .).
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10. Derive the expansions

(a)
sinh z

z2
= 1

z
+

∞∑
n=0

z2n+1

(2n + 3)!
(0 < |z| < ∞);

(b)
sin(z2)

z4
= 1

z2
− z2

3!
+ z6

5!
− z10

7!
+ · · · (0 < |z| < ∞).

11. Show that when 0 < |z| < 4,

1

4z − z2
= 1

4z
+

∞∑
n=0

zn

4n+2
.

66. LAURENT SERIES

We turn now to a statement of Laurent’s theorem, which enables us to expand a
function f (z) into a series involving positive and negative powers of (z − z0) when
the function fails to be analytic at z0.

Theorem. Suppose that a function f is analytic throughout an annular domain
R1 < |z − z0| < R2 , centered at z0 , and let C denote any positively oriented simple
closed contour around z0 and lying in that domain (Fig. 80). Then, at each point in
the domain, f (z) has the series representation

f (z) =
∞∑

n=0

an(z − z0)
n +

∞∑
n=1

bn

(z − z0)n
(R1 < |z − z0| < R2),(1)

where

an = 1

2π i

∫
C

f (z) dz

(z − z0)n+1
(n = 0, 1, 2, . . .)(2)

and

bn = 1

2π i

∫
C

f (z) dz

(z − z0)−n+1
(n = 1, 2, . . .).(3)

x

z0

R2

C

R1

O

y

z

FIGURE 80
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Note how replacing n by −n in the second series in representation (1) enables us
to write that series as

−1∑
n=−∞

b−n

(z − z0)−n
,

where

b−n = 1

2π i

∫
C

f (z) dz

(z − z0)n+1
(n = −1, −2, . . .).

Thus

f (z) =
−1∑

n=−∞
b−n(z − z0)

n +
∞∑

n=0

an(z − z0)
n (R1 < |z − z0| < R2).

If

cn =
{

b−n when n ≤ −1,

an when n ≥ 0,

this becomes

f (z) =
∞∑

n=−∞
cn(z − z0)

n (R1 < |z − z0| < R2)(4)

where

cn = 1

2π i

∫
C

f (z) dz

(z − z0)n+1
(n = 0, ±1, ±2, . . .).(5)

In either one of the forms (1) and (4), the representation of f (z) is called a Laurent
series.

Observe that the integrand in expression (3) can be written f (z)(z − z0)
n−1. Thus

it is clear that when f is actually analytic throughout the disk |z − z0| < R2, this
integrand is too. Hence all of the coefficients bn are zero; and, because (Sec. 55)

1

2π i

∫
C

f (z) dz

(z − z0)n+1
= f (n)(z0)

n!
(n = 0, 1, 2, . . .),

expansion (1) reduces to a Taylor series about z0.
If, however, f fails to be analytic at z0 but is otherwise analytic in the disk

|z − z0| < R2, the radius R1 can be chosen arbitrarily small. Representation (1) is
then valid in the punctured disk 0 < |z − z0| < R2. Similarly, if f is analytic at each
point in the finite plane exterior to the circle |z − z0| = R1, the condition of validity
is R1 < |z − z0| < ∞. Note that if f is analytic everywhere in the finite plane except
at z0, series (1) is valid at each point of analyticity, or when 0 < |z − z0| < ∞.

We shall prove Laurent’s theorem first when z0 = 0, which means that the annulus
is centered at the origin. The verification of the theorem when z0 is arbitrary will follow
readily; and, as was the case with Taylor’s theorem, a reader can skip the entire proof
without difficulty.
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68. EXAMPLES

The coefficients in a Laurent series are generally found by means other than appealing
directly to the integral representations in Laurent’s theorem (Sec. 66). This has already
been illustrated in Sec. 65, where the series found were actually Laurent series. The
reader is encouraged to go back to Sec. 65, as well as to Exercises 10 and 11 of that
section, in order to see how in each case the punctured plane or disk in which the series
is valid can now be predicted by Laurent’s theorem. Also, we shall always assume that
the Maclaurin series expansions (1) through (6) in Sec. 64 are well known, since we
shall need them so often in finding Laurent series. As was the case with Taylor series,
we defer the proof of uniqueness of Laurent series till Sec. 72.

EXAMPLE 1. The function

f (z) = 1

z(1 + z2)
= 1

z
· 1

1 + z2

has singularities at the points z = 0 and z = ±i . Let us find the Laurent series
representation of f (z) that is valid in the punctured disk 0 < |z| < 1 (see Fig. 82).

x

i

O

y

– i

1

FIGURE 82

Since | − z2| < 1 when |z| < 1, we may substitute −z2 for z in the Maclaurin
series expansion

1

1 − z
=

∞∑
n=0

zn (|z| < 1).(1)

The result is

1

1 + z2
=

∞∑
n=0

(−1)nz2n (|z| < 1),

and so

f (z) = 1

z

∞∑
n=0

(−1)nz2n =
∞∑

n=0

(−1)nz2n−1 (0 < |z| < 1).
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That is,

f (z) = 1

z
+

∞∑
n=1

(−1)nz2n−1 (0 < |z| < 1).

Replacing n by n + 1, we arrive at

f (z) = 1

z
+

∞∑
n=0

(−1)n+1z2n+1 (0 < |z| < 1).

In standard form, then,

f (z) =
∞∑

n=0

(−1)n+1z2n+1 + 1

z
(0 < |z| < 1).(2)

(See also Exercise 3.)

EXAMPLE 2. The function

f (z) = z + 1

z − 1
,

which has the singular point z = 1, is analytic in the domains (Fig. 83)

D1 : |z| < 1 and D2 : 1 < |z| < ∞.

In these domains f (z) has series representations in powers of z. Both series can be
found by making appropriate replacements for z in the same expansion (1) that was
used in Example 1.

xO

y

1

D1

D2

FIGURE 83

We consider first the domain D1 and note that the series asked for is a Maclaurin
series. In order to use series (1), we write

f (z) = −(z + 1)
1

1 − z
= −z

1

1 − z
− 1

1 − z
.
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Then

f (z) = −z
∞∑

n=0

zn −
∞∑

n=0

zn = −
∞∑

n=0

zn+1 −
∞∑

n=0

zn (|z| < 1).

Replacing n by n −1 in the first of the two series on the far right here yields the desired
Maclaurin series:

f (z) = −
∞∑

n=1

zn −
∞∑

n=0

zn = −1 − 2
∞∑

n=1

zn (|z| < 1).(3)

The representation of f (z) in the unbounded domain D2 is a Laurent series, and
the fact that |1/z| < 1 when z is a point in D2 suggests that we use series (1) to write

f (z) =
1 + 1

z

1 − 1

z

=
(

1 + 1

z

)
1

1 − 1

z

=
(

1 + 1

z

) ∞∑
n=0

1

zn
=

∞∑
n=0

1

zn
+

∞∑
n=0

1

zn+1

(1 < |z| < ∞).

Substituting n − 1 for n in the last of these series reveals that

f (z) =
∞∑

n=0

1

zn
+

∞∑
n=1

1

zn
(1 < |z| < ∞),

and we arrive at the Laurent series

f (z) = 1 + 2
∞∑

n=1

1

zn
(1 < |z| < ∞).(4)

EXAMPLE 3. Replacing z by 1/z in the Maclaurin series expansion

ez =
∞∑

n=0

zn

n!
= 1 + z

1!
+ z2

2!
+ z3

3!
+ · · · (|z| < ∞),

we have the Laurent series representation

e1/z =
∞∑

n=0

1

n! zn
= 1 + 1

1!z
+ 1

2!z2
+ 1

3!z3
+ · · · (0 < |z| < ∞).

Note that no positive powers of z appear here, since the coefficients of the positive
powers are zero. Note, too, that the coefficient of 1/z is unity; and, according to
Laurent’s theorem in Sec. 66, that coefficient is the number

b1 = 1

2π i

∫
C

e1/z dz
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where C is any positively oriented simple closed contour around the origin. Since
b1 = 1, then, ∫

C
e1/z dz = 2π i.

This method of evaluating certain integrals around simple closed contours will be
developed in considerable detail in Chap. 6 and then used extensively in Chap. 7.

EXAMPLE 4. The function f (z) = 1/(z−i)2 is already in the form of a Laurent
series, where z0 = i . That is,

1

(z − i)2
=

∞∑
n=−∞

cn(z − i)n (0 < |z − i | < ∞)

where c−2 = 1 and all of the other coefficients are zero. From expression (5), Sec. 66,
for the coefficients in a Laurent series, we know that

cn = 1

2π i

∫
C

dz

(z − i)n+3
(n = 0, ±1, ±2, . . .)

where C is, for instance, any positively oriented circle |z − i | = R about the point
z0 = i. Thus [compare with Exercise 13, Sec. 46]∫

C

dz

(z − i)n+3
=

{
0 when n �= −2,

2π i when n = −2.

EXERCISES
1. Find the Laurent series that represents the function

f (z) = z2 sin
(

1

z2

)

in the domain 0 < |z| < ∞.

Ans. 1 +
∞∑

n=1

(−1)n

(2n + 1)!
· 1

z4n
.

2. Find a representation for the function

f (z) = 1

1 + z
= 1

z
· 1

1 + (1/z)

in negative powers of z that is valid when 1 < |z| < ∞.

Ans.
∞∑

n=1

(−1)n+1

zn
.

3. Find the Laurent series that represents the function f (z) in Example 1, Sec. 68, when
1 < |z| < ∞.

Ans.
∞∑

n=1

(−1)n+1

z2n+1
.
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4. Give two Laurent series expansions in powers of z for the function

f (z) = 1

z2(1 − z)
,

and specify the regions in which those expansions are valid.

Ans.
∞∑

n=0

zn + 1

z
+ 1

z2
(0 < |z| < 1); −

∞∑
n=3

1

zn
(1 < |z| < ∞).

5. The function

f (z) = −1

(z − 1)(z − 2)
= 1

z − 1
− 1

z − 2
,

which has the two singular points z = 1 and z = 2, is analytic in the domains (Fig. 84)

D1 : |z| < 1, D2 : 1 < |z| < 2, D3 : 2 < |z| < ∞.

Find the series representation in powers of z for f (z) in each of those domains.

Ans.
∞∑

n=0

(2−n−1 − 1)zn in D1;
∞∑

n=0

zn

2n+1
+

∞∑
n=1

1

zn
in D2;

∞∑
n=1

1 − 2n−1

zn
in D3.

x

D3

D2

D1

O 1 2

y

FIGURE 84

6. Show that when 0 < |z − 1| < 2,

z

(z − 1)(z − 3)
= −3

∞∑
n=0

(z − 1)n

2n+2
− 1

2(z − 1)
.

7. (a) Let a denote a real number, where −1 < a < 1, and derive the Laurent series
representation

a

z − a
=

∞∑
n=1

an

zn
(|a| < |z| < ∞).

(b) After writing z = eiθ in the equation obtained in part (a), equate real parts and then
imaginary parts on each side of the result to derive the summation formulas

∞∑
n=1

an cos nθ = a cos θ − a2

1 − 2a cos θ + a2
and

∞∑
n=1

an sin nθ = a sin θ

1 − 2a cos θ + a2
,

where −1 < a < 1. (Compare with Exercise 4, Sec. 61.)
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