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Theorem. Suppose that zn = xn + iyn (n = 1, 2, . . .) and z = x + iy. Then

lim
n→∞ zn = z(3)

if and only if

lim
n→∞ xn = x and lim

n→∞ yn = y.(4)

To prove this theorem, we first assume that conditions (4) hold and obtain condi-
tion (3) from it. According to conditions (4), there exist, for each positive number ε,
positive integers n1 and n2 such that

|xn − x | <
ε

2
whenever n > n1

and

|yn − y| <
ε

2
whenever n > n2.

Hence if n0 is the larger of the two integers n1 and n2,

|xn − x | <
ε

2
and |yn − y| <

ε

2
whenever n > n0.

Since

|(xn + iyn) − (x + iy)| = |(xn − x) + i(yn − y)| ≤ |xn − x | + |yn − y|,
then,

|zn − z| <
ε

2
+ ε

2
= ε whenever n > n0.

Condition (3) thus holds.
Conversely, if we start with condition (3), we know that for each positive number

ε, there exists a positive integer n0 such that

|(xn + iyn) − (x + iy)| < ε whenever n > n0.

But

|xn − x | ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|
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and

|yn − y| ≤ |(xn − x) + i(yn − y)| = |(xn + iyn) − (x + iy)|;
and this means that

|xn − x | < ε and |yn − y| < ε whenever n > n0.

That is, conditions (4) are satisfied.
Note how the theorem enables us to write

lim
n→∞(xn + iyn) = lim

n→∞ xn + i lim
n→∞ yn

whenever we know that both limits on the right exist or that the one on the left exists.

EXAMPLE 1. The sequence

zn = −1 + i
(−1)n

n2
(n = 1, 2, . . .)

converges to −1 since

lim
n→∞

[
−1 + i

(−1)n

n2

]
= lim

n→∞(−1) + i lim
n→∞

(−1)n

n2
= −1 + i · 0 = −1.

Definition (1) can also be used to obtain this result. More precisely,

|zn − (−1)| =
∣∣∣∣i (−1)n

n2

∣∣∣∣ = 1

n2
< ε whenever n >

1√
ε
.

One must be careful when adapting our theorem to polar coordinates, as the
following example shows.

EXAMPLE 2. Consider now the same sequence

zn = −1 + i
(−1)n

n2
(n = 1, 2, . . .)

as in Example 1. If we use the polar coordinates

rn = |zn| and �n = Arg zn (n = 1, 2, . . .)

where Arg zn denotes principal arguments (−π < �n ≤ π), we find that

lim
n→∞ rn = lim

n→∞

√
1 + 1

n4
= 1

but that

lim
n→∞ �2n = π and lim

n→∞ �2n−1 = −π (n = 1, 2, . . .).

Evidently, then, the limit of �n does not exist as n tends to infinity. (See also Exercise 2,
Sec. 61.)
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61. CONVERGENCE OF SERIES

An infinite series
∞∑

n=1

zn = z1 + z2 + · · · + zn + · · ·(1)

of complex numbers converges to the sum S if the sequence

SN =
N∑

n=1

zn = z1 + z2 + · · · + zN (N = 1, 2, . . .)(2)

of partial sums converges to S; we then write
∞∑

n=1

zn = S.

Note that since a sequence can have at most one limit, a series can have at most one
sum. When a series does not converge, we say that it diverges.

Theorem. Suppose that zn = xn + iyn (n = 1, 2, . . .) and S = X + iY . Then
∞∑

n=1

zn = S(3)

if and only if
∞∑

n=1

xn = X and
∞∑

n=1

yn = Y.(4)

This theorem tells us, of course, that one can write
∞∑

n=1

(xn + iyn) =
∞∑

n=1

xn + i
∞∑

n=1

yn

whenever it is known that the two series on the right converge or that the one on the
left does.

To prove the theorem, we first write the partial sums (2) as

SN = X N + iYN ,(5)

where

X N =
N∑

n=1

xn and YN =
N∑

n=1

yn.

Now statement (3) is true if and only if

lim
N→∞

SN = S ;(6)
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and, in view of relation (5) and the theorem on sequences in Sec. 60, limit (6) holds if
and only if

lim
N→∞

X N = X and lim
N→∞

YN = Y .(7)

Limits (7) therefore imply statement (3), and conversely. Since X N and YN are the
partial sums of the series (4), the theorem here is proved.

This theorem can be useful in showing that a number of familiar properties of
series in calculus carry over to series whose terms are complex numbers. To illustrate
how this is done, we include here two such properties and present them as corollaries.

Corollary 1. If a series of complex numbers converges, the nth term converges
to zero as n tends to infinity.

Assuming that series (1) converges, we know from the theorem that if

zn = xn + iyn (n = 1, 2, . . .),

then each of the series
∞∑

n=1

xn and
∞∑

n=1

yn(8)

converges. We know, moreover, from calculus that the nth term of a convergent series
of real numbers approaches zero as n tends to infinity. Thus, by the theorem in Sec. 60,

lim
n→∞ zn = lim

n→∞ xn + i lim
n→∞ yn = 0 + 0 · i = 0 ;

and the proof of Corollary 1 is complete.
It follows from this corollary that the terms of convergent series are bounded. That

is, when series (1) converges, there exists a positive constant M such that |zn| ≤ M
for each positive integer n. (See Exercise 9.)

For another important property of series of complex numbers that follows from
a corresponding property in calculus, series (1) is said to be absolutely convergent if
the series

∞∑
n=1

|zn| =
∞∑

n=1

√
x2

n + y2
n (zn = xn + iyn)

of real numbers
√

x2
n + y2

n converges.

Corollary 2. The absolute convergence of a series of complex numbers implies
the convergence of that series.

To prove Corollary 2, we assume that series (1) converges absolutely. Since

|xn| ≤
√

x2
n + y2

n and |yn| ≤
√

x2
n + y2

n ,
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we know from the comparison test in calculus that the two series
∞∑

n=1

|xn| and
∞∑

n=1

|yn|

must converge. Moreover, since the absolute convergence of a series of real numbers
implies the convergence of the series itself, it follows that the series (8) both converge.
In view of the theorem in this section, then, series (1) converges. This finishes the
proof of Corollary 2.

In establishing the fact that the sum of a series is a given number S, it is often
convenient to define the remainder ρN after N terms, using the partial sums (2):

ρN = S − SN .(9)

Thus S = SN + ρN ; and, since |SN − S| = |ρN − 0|, we see that a series converges
to a number S if and only if the sequence of remainders tends to zero. We shall make
considerable use of this observation in our treatment of power series. They are series
of the form

∞∑
n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · · + an(z − z0)
n + · · · ,

where z0 and the coefficients an are complex constants and z may be any point in
a stated region containing z0. In such series, involving a variable z, we shall denote
sums, partial sums, and remainders by S(z), SN (z), and ρN (z), respectively.

EXAMPLE. With the aid of remainders, it is easy to verify that
∞∑

n=0

zn = 1

1 − z
whenever |z| < 1.(10)

We need only recall the identity (Exercise 9, Sec. 9)

1 + z + z2 + · · · + zn = 1 − zn+1

1 − z
(z �= 1)

to write the partial sums

SN (z) =
N−1∑
n=0

zn = 1 + z + z2 + · · · + zN−1 (z �= 1)

as

SN (z) = 1 − zN

1 − z
.

If

S(z) = 1

1 − z
,
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then,

ρN (z) = S(z) − SN (z) = zN

1 − z
(z �= 1).

Thus

|ρN (z)| = |z|N

|1 − z| ,

and it is clear from this that the remainders ρN (z) tend to zero when |z| < 1 but not
when |z| ≥ 1. Summation formula (10) is, therefore, established.

EXERCISES
1. Use definition (1), Sec. 60, of limits of sequences to show that

lim
n→∞

(
1

n2
+ i

)
= i.

2. Let �n (n = 1, 2, . . .) denote the principal arguments of the numbers

zn = 1 + i
(−1)n

n2
(n = 1, 2, . . .),

and point out why

lim
n→∞ �n = 0.

(Compare with Example 2, Sec. 60.)

3. Use the inequality (see Sec. 5) ||zn| − |z|| ≤ |zn − z| to show that

if lim
n→∞ zn = z , then lim

n→∞ |zn| = |z|.

4. Write z = reiθ , where 0 < r < 1, in the summation formula (10), Sec. 61. Then, with
the aid of the theorem in Sec. 61, show that

∞∑
n=1

rn cos nθ = r cos θ − r2

1 − 2r cos θ + r2
and

∞∑
n=1

rn sin nθ = r sin θ

1 − 2r cos θ + r2

when 0 < r < 1. (Note that these formulas are also valid when r = 0.)

5. Show that a limit of a convergent sequence of complex numbers is unique by appealing
to the corresponding result for a sequence of real numbers.

6. Show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

zn = S.

7. Let c denote any complex number and show that

if
∞∑

n=1

zn = S, then
∞∑

n=1

czn = cS.
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8. By recalling the corresponding result for series of real numbers and referring to the
theorem in Sec. 61, show that

if
∞∑

n=1

zn = S and
∞∑

n=1

wn = T, then
∞∑

n=1

(zn + wn) = S + T .

9. Let a sequence zn (n = 1, 2, . . .) converge to a number z. Show that there exists a
positive number M such that the inequality |zn| ≤ M holds for all n. Do this in each of
the following ways.

(a) Note that there is a positive integer n0 such that

|zn| = |z + (zn − z)| < |z| + 1

whenever n > n0.
(b) Write zn = xn + iyn and recall from the theory of sequences of real numbers that

the convergence of xn and yn (n = 1, 2, . . .) implies that |xn| ≤ M1 and |yn| ≤ M2

(n = 1, 2, . . .) for some positive numbers M1 and M2.

62. TAYLOR SERIES

We turn now to Taylor’s theorem, which is one of the most important results of the
chapter.

Theorem. Suppose that a function f is analytic throughout a disk |z − z0| < R0,
centered at z0 and with radius R0 (Fig. 77). Then f (z) has the power series represen-
tation

f (z) =
∞∑

n=0

an(z − z0)
n (|z − z0| < R0),(1)

where

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .).(2)

That is, series (1) converges to f (z) when z lies in the stated open disk.

x

z0

R0

O

y

z

FIGURE 77

This is the expansion of f (z) into a Taylor series about the point z0. It is the
familiar Taylor series from calculus, adapted to functions of a complex variable. With
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the agreement that

f (0)(z0) = f (z0) and 0! = 1,

series (1) can, of course, be written

f (z) = f (z0) + f ′(z0)

1!
(z − z0) + f ′′(z0)

2!
(z − z0)

2 + · · · (|z − z0| < R0).(3)

Any function which is analytic at a point z0 must have a Taylor series about z0.
For, if f is analytic at z0, it is analytic throughout some neighborhood |z − z0| < ε of
that point (Sec. 25) ; and ε may serve as the value of R0 in the statement of Taylor’s
theorem. Also, if f is entire, R0 can be chosen arbitrarily large; and the condition of
validity becomes |z − z0| < ∞. The series then converges to f (z) at each point z in
the finite plane.

When it is known that f is analytic everywhere inside a circle centered at z0,
convergence of its Taylor series about z0 to f (z) for each point z within that circle is
ensured; no test for the convergence of the series is even required. In fact, according to
Taylor’s theorem, the series converges to f (z) within the circle about z0 whose radius
is the distance from z0 to the nearest point z1 at which f fails to be analytic. In Sec. 71,
we shall find that this is actually the largest circle centered at z0 such that the series
converges to f (z) for all z interior to it.

In the following section, we shall first prove Taylor’s theorem when z0 = 0, in
which case f is assumed to be analytic throughout a disk |z| < R0. Series (1) then
becomes a Maclaurin series:

f (z) =
∞∑

n=0

f (n)(0)

n!
zn (|z| < R0).(4)

The proof when z0 is nonzero will follow as an immediate consequence. A reader
who wishes to accept the proof of Taylor’s theorem can easily skip to the examples in
Sec. 64.

63. PROOF OF TAYLOR’S THEOREM

As indicated at the end of Sec. 62, the proof falls naturally into two parts.

The case z0 = 0

To begin the derivation of representation (4) in Sec. 62, we write |z| = r and let C0

denote the positively oriented circle |z| = r0 where r < r0 < R0 (see Fig. 78). Since
f is analytic inside and on the circle C0 and since the point z is interior to C0, the
Cauchy integral formula

f (z) = 1

2π i

∫
C0

f (s) ds

s − z
(1)

applies.
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Now the factor 1/(s − z) in the integrand here can be put in the form

1

s − z
= 1

s
· 1

1 − (z/s)
;(2)

and we know from the example in Sec. 56 that

1

1 − z
=

N−1∑
n=0

zn + zN

1 − z
(3)

when z is any complex number other than unity. Replacing z by z/s in expression (3),
then, we can rewrite equation (2) as

1

s − z
=

N−1∑
n=0

1

sn+1
zn + zN 1

(s − z)s N
.(4)

Multiplying through this equation by f (s) and then integrating each side with respect
to s around C0, we find that∫

C0

f (s) ds

s − z
=

N−1∑
n=0

∫
C0

f (s) ds

sn+1
zn + zN

∫
C0

f (s) ds

(s − z)s N
.

In view of expression (1) and the fact that (Sec. 55)

1

2π i

∫
C0

f (s) ds

sn+1
= f (n)(0)

n!
(n = 0, 1, 2, . . .),

this reduces, after we multiply through by 1/(2π i), to

f (z) =
N−1∑
n=0

f (n)(0)

n!
zn + ρN (z),(5)

where

ρN (z) = zN

2π i

∫
C0

f (s) ds

(s − z)s N
.(6)
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Representation (4) in Sec. 62 now follows once it is shown that

lim
N→∞

ρN (z) = 0.(7)

To accomplish this, we recall that |z| = r and that C0 has radius r0, where r0 > r .
Then, if s is a point on C0, we can see that

|s − z| ≥ ||s| − |z|| = r0 − r.

Consequently, if M denotes the maximum value of | f (s)| on C0,

|ρN (z)| ≤ r N

2π
· M

(r0 − r)r N
0

2πr0 = Mr0

r0 − r

(
r

r0

)N

.

Inasmuch as (r/r0) < 1, limit (7) clearly holds.

The case z0 � = 0

In order to verify the theorem when the disk of radius R0 is centered at an arbitrary
point z0, we suppose that f is analytic when |z − z0| < R0 and note that the composite
function f (z + z0) must be analytic when |(z + z0) − z0| < R0. This last inequality
is, of course, just |z| < R0 ; and, if we write g(z) = f (z + z0), the analyticity of g in
the disk |z| < R0 ensures the existence of a Maclaurin series representation:

g(z) =
∞∑

n=0

g(n)(0)

n!
zn (|z| < R0).

That is,

f (z + z0) =
∞∑

n=0

f (n)(z0)

n!
zn (|z| < R0).

After replacing z by z − z0 in this equation and its condition of validity, we have the
desired Taylor series expansion (1) in Sec. 62.

64. EXAMPLES

In Sec. 72, we shall see that any Taylor series representing a function f (z) about a
given point z0 is unique. More precisely, we will show that if

f (z) =
∞∑

n=0

an(z − z0)
n

for all points z interior to some circle centered at z0, then the power series here
must be the Taylor series for f about z0, regardless of how those constants arise.
This observation often allows us to find the coefficients an in Taylor series in more
efficient ways than by appealing directly to the formula an = f (n)(z0)/n! in Taylor’s
theorem.
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This section is devoted to finding the following six Maclaurin series expansions,
where z0 = 0, and to illustrate how they can be used to find related expansions:

1

1 − z
=

∞∑
n=0

zn = 1 + z + z2 + · · · (|z| < 1),(1)

ez =
∞∑

n=0

zn

n!
= 1 + z

1!
+ z2

2!
+ · · · (|z| < ∞),(2)

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
= z − z3

3!
+ z5

5!
− · · · (|z| < ∞),(3)

cos z =
∞∑

n=0

(−1)n z2n

(2n)!
= 1 − z2

2!
+ z4

4!
− · · · (|z| < ∞),(4)

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
= z + z3

3!
+ z5

5!
+ · · · (|z| < ∞),(5)

cosh z =
∞∑

n=0

z2n

(2n)!
= 1 + z2

2!
+ z4

4!
+ · · · (|z| < ∞).(6)

We list these results together in order to have them for ready reference later on. Since
the expansions are familiar ones from calculus with z instead of x , the reader should,
however, find them easy to remember.

In addition to collecting expansions (1) through (6) together, we now present their
derivations as Examples 1 through 6, along with some other series that are immediate
consequences. The reader should always keep in mind that

(a) the regions of convergence can be determined before the actual series are found;
(b) there may be several reasonable ways to find the desired series.

EXAMPLE 1. Representation (1) was, of course, obtained earlier in Sec. 61,
where Taylor’s theorem was not used. In order to see how Taylor’s theorem can be
used, we first note that the point z = 1 is the only singularity of the function

f (z) = 1

1 − z

in the finite plane. So the desired Maclaurin series converges to f (z) when |z| < 1.
The derivatives of f (z) are

f (n)(z) = n!

(1 − z)n+1
(n = 1, 2, . . .).

Hence if we agree that f (0)(z) = f (z) and 0! = 1, we find that f (n)(0) = n! when
n = 0, 1, 2, . . .; and upon writing

f (z) =
∞∑

n=0

f (n)(0)

n!
zn =

∞∑
n=0

zn,

we arrive at the series representation (1).
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If we substitute −z for z in equation (1) and its condition of validity, and note
that |z| < 1 when | − z| < 1, we see that

1

1 + z
=

∞∑
n=0

(−1)nzn (|z| < 1).

If, on the other hand, we replace the variable z in equation (1) by 1 − z, we have
the Taylor series representation

1

z
=

∞∑
n=0

(−1)n(z − 1)n (|z − 1| < 1).

This condition of validity follows from the one associated with expansion (1) since
|1 − z| < 1 is the same as |z − 1| < 1.

For another application of expansion (1), we now seek a Taylor series represen-
tation of the function

f (z) = 1

1 − z

about the point z0 = i . Since the distance between z0 and the singularity z = 1 is
|1 − i | = √

2, the condition of validity is |z − i | <
√

2. (See Fig. 79.) To find the
series, which involves powers of z − i , we first write

1

1 − z
= 1

(1 − i) − (z − i)
= 1

1 − i
· 1

1 −
(

z − i

1 − i

) .

Because ∣∣∣∣ z − i

1 − i

∣∣∣∣ = |z − i |
|1 − i | = |z − i |√

2
< 1

when |z − i | <
√

2, expansion (1) now tells us that

1

1 −
(

z − i

1 − i

) =
∞∑

n=0

(
z − i

1 − i

)n

(|z − i | <
√

2);

x

i

O

y

1

2

FIGURE 79
|z − i | <

√
2
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and we arrive at the Taylor series expansion

1

1 − z
= 1

1 − i

∞∑
n=0

(
z − i

1 − i

)n

=
∞∑

n=0

(z − i)n

(1 − i)n+1
(|z − i | <

√
2).

EXAMPLE 2. Since the function f (z) = ez is entire, it has a Maclaurin series
representation that is valid for all z. Here f (n)(z) = ez (n = 0, 1, 2, . . .); and because
f (n)(0) = 1(n = 0, 1, 2, . . .), expansion (2) follows. Note that if z = x + i0, the
expansion becomes

ex =
∞∑

n=0

xn

n!
(−∞ < x < ∞).

The entire function z3e2z is also represented by a Maclaurin series. The simplest
way to show this is to replace z by 2z in expression (2) and then multiply through the
result by z3:

z3e2z =
∞∑

n=0

2n

n!
zn+3 (|z| < ∞).

Finally, if we replace n by n − 3 here, we have

z3e2z =
∞∑

n=3

2n−3

(n − 3)!
zn (|z| < ∞).

EXAMPLE 3. One can use expansion (2) and the definition (Sec. 37)

sin z = eiz − e−i z

2i

to find the Maclaurin series for the entire function f (z) = sin z. To give the details,
we refer to expansion (1) and write

sin z = 1

2i

[ ∞∑
n=0

(i z)n

n!
−

∞∑
n=0

(−i z)n

n!

]
= 1

2i

∞∑
n=0

[
1 − (−1)n] i nzn

n!
(|z| < ∞).

But 1 − (−1)n = 0 when n is even, and so we can replace n by 2n + 1 in this last
series:

sin z = 1

2i

∞∑
n=0

[
1 − (−1)2n+1] i2n+1z2n+1

(2n + 1)!
(|z| < ∞).

Inasmuch as

1 − (−1)2n+1 = 2 and i2n+1 = (i2)ni = (−1)ni,

this reduces to expansion (3).
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EXAMPLE 4. Using term by term differentiation, which will be justified in
Sec. 71, we differentiate each side of equation (3) and write

cos z =
∞∑

n=0

(−1)n

(2n + 1)!

d

dz
z2n+1 =

∞∑
n=0

(−1)n 2n + 1

(2n + 1)!
z2n =

∞∑
n=0

(−1)n z2n

(2n)!

(|z| < ∞).

Expansion (4) is now verified.

EXAMPLE 5. Because sinh z = −i sin(i z), as pointed out in Sec. 39, we need
only recall expansion (3) for sin z and write

sinh z = −i
∞∑

n=0

(−1)n (i z)2n+1

(2n + 1)!
(|z| < ∞),

which becomes

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
(|z| < ∞).

EXAMPLE 6. Since cosh z = cos(i z), according to Sec. 39, the Maclaurin
series (4) for cos z reveals that

cosh z =
∞∑

n=0

(−1)n (i z)2n

(2n)!
(|z| < ∞),

and we arrive at the Maclaurin series representation

cosh z =
∞∑

n=0

z2n

(2n)!
(|z| < ∞).

Observe that the Taylor series for cosh z about the point z0 = −2π i , for example,
is obtained by replacing the variable z on each side of this last equation by z + 2π i
and then recalling (Sec. 39) that cosh(z + 2π i) = cosh z for all z:

cosh z =
∞∑

n=0

(z + 2π i)2n

(2n)!
(|z| < ∞).

65. NEGATIVE POWERS OF (z − z0)

If a function f fails to be analytic at a point z0, one cannot apply Taylor’s theorem
there. It is often possible, however, to find a series representation for f (z) involving
both positive and negative powers of (z − z0). Such series are extremely important
and are taken up in the next section. They are often obtained by using one or more of
the six Maclaurin series listed at the beginning of Sec. 64. In order that the reader be
accustomed to series involving negative powers of (z − z0), we pause here with several
examples before exploring their general theory.


