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Boolean Algebra

• Boolean algebra is a mathematical system for the

manipulation of variables that can have one of two values.

– In formal logic, these values are “true” and “false.”

– In digital systems, these values are “on” and “off,” 1 and

0, or “high” and “low.”

• When we learned numbers like 1, 2, 3, we also then learned

how to add, multiply, etc. with them. Boolean Algebra

covers operations that we can do with 0’s and 1’s.

Computers do these operations ALL THE TIME and they

are basic building blocks of computation inside your

computer program.
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How does Boolean Algebra fit into 

the big picture?  

• It is part of the Combinational Logic topics (memoryless)

– Different from the Sequential logic topics (can store

information)

• Learning Axioms and theorems of Boolean algebra

• Allows you to design logic functions

• Allows you to know how to combine different logic

gates

• Allows you to simplify or optimize on the complex

operations
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NOT Gate -- Inverter

X Y

0

1

1

0

X Y

Y

NOT

X Y

Y = ~X

NOT

• The NOT operation is most often designated by an

overbar. It is sometimes indicated by a prime mark ( ‘ ) or

an “elbow” ().

Basic Logic Gates
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AND Gate

AND (Multiplication)

X

Y

Z

Z = X . Y

X  Y  Z

0  0  0

0  1  0

1  0  0

1  1  1



Slide 6

OR Gate

OR (Addition)

X

Y
Z

Z = X + Y

X  Y  Z

0  0  0

0  1  1

1  0  1

1  1  1
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NAND Gate

NOT-AND

X

Y

Z

W = X . Y

Z = ~W = ~(X . Y)

X  Y  W  Z

0  0  0  1

0  1  0  1

1  0  0  1

1  1  1  0

W
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NAND Gate

X

Y

X

Y

Z
Z

Z = ~(X . Y) Z = ~X + ~Y

=

X  Y  W  Z

0  0  0  1

0  1  0  1

1  0  0  1

1  1  1  0

X  Y ~X ~Y  Z

0  0  1  1  1

0  1  1  0  1

1  0  0  1  1

1  1  0  0  0

W
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NOR Gate

NOT-OR

X

Y

W = X + Y

Z = ~W = ~(X + Y)

X  Y  W  Z

0  0  0  1

0  1  1  0

1  0  1  0

1  1  1  0

Z
W
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NOR Gate

X

Y
Z

Z = ~(X + Y)

X  Y  Z

0  0  1

0  1  0

1  0  0

1  1  0

X

Y

Z

Z = ~X . ~Y

X  Y ~X ~Y  Z

0  0  1  1  1

0  1  1  0  0

1  0  0  1  0

1  1  0  0  0
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Exclusive-OR Gate

X Y  Z
XOR

X

Y
Z 0 0  0

0 1  1

1 0  1

1 1  0

xor(Z,X,Y)

• The output of an XOR gate is true (1) only when exactly one of its inputs

is true (1). If both of an XOR gate's inputs are false (0), or if both of its

inputs are true (1), then the output of the XOR gate is false (0).
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Exclusive-NOR Gate

X Y  Z
XNOR

X

Y
Z 0 0  1

0 1  0

1 0  0

1 1  1

xnor(Z,X,Y)

• The output of an XNOR gate is true (1) when all of its inputs are true (1)

or when all of its inputs are false (0). If some of its inputs are true (1) and

others are false (0), then the output of the XNOR gate is false(0).
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Multiple-input AND Gate

Z 1 

Output        is HIGH only if all inputs are HIGHZ 1 
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Multiple-input OR Gate

Output        is LOW only if all inputs are LOWZ 2 

2 Z 
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Multiple-input NAND Gate

Output        is LOW only if all inputs are HIGHZ 3 

3 Z 
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Multiple-input NOR Gate

Output        is HIGH only if all inputs are LOWZ 4 

4 Z 
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Some notation

• Priorities: 

1.Parentheses

2.NOT > AND > XOR > OR

• Variables and their complements are 

sometimes called literals

A B+C = ((A) B)+C 
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Laws of Boolean Algebra

• Commutative Law of Addition:

A + B = B + A
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Laws of Boolean Algebra

• Commutative Law of Multiplication:

A * B = B * A
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Laws of Boolean Algebra

• Associative Law of Addition:

A + (B + C) = (A + B) + C
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Laws of Boolean Algebra

• Associative Law of Multiplication:

A * (B * C) = (A * B) * C
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Laws of Boolean Algebra

• Distributive Law:

A(B + C) = AB + AC
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Rules of Boolean Algebra

• Rule 1    IDENTITY w.r.t ADDITION

OR Truth Table
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Rules of Boolean Algebra

• Rule 2   NULL w.r.t ADDITION

OR Truth Table
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Rules of Boolean Algebra

• Rule 3  NULL w.r.t MULTIPLICATION

AND Truth Table
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Rules of Boolean Algebra

• Rule 4  IDENTITY w.r.t MULTIPLICATION

AND Truth Table
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Rules of Boolean Algebra

• Rule 5  IDEMPOTENT w.r.t  ADDITION

OR Truth Table
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Rules of Boolean Algebra 

• Rule 6   COMPLEMENTARITY w.r.t 

ADDITION

OR Truth Table
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Rules of Boolean Algebra

• Rule 7   IDEMPOTENT w.r.t 

MULTIPLICATION

AND Truth Table
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Rules of Boolean Algebra

• Rule 8   COMPLEMENTARITY w.r.t 

MULTIPLICATION

AND Truth Table



Slide 31

Rules of Boolean Algebra

• Rule 9     INVOLUTION
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Rules of Boolean Algebra

• Rule 10: A + AB = A

AND Truth Table OR Truth Table
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Rules of Boolean Algebra

• Rule 11: BABAA 

AND Truth Table OR Truth Table
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Rules of Boolean Algebra

• Rule 12: (A + B)(A + C) = A + BC

AND Truth Table OR Truth Table
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A logic circuit showing the development of the Boolean

expression for the output.
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Example 1

Determine if the following equation is valid
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Left-Hand Side (LHS)
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Right-Hand Side (RHS)
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?

LHS RHS
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Canonical forms

• Canonical forms

– Standard forms for Boolean expressions

– Derived from truth table

– Generally not the simplest forms (can be 
minimized)

• Two canonical forms

– Sum-of-products (minterms) 

– Product-of-sums (maxterms)
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Sum-of-products (SOP)

• Also called disjunctive normal form (DNF) 

or minterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

001           011          101          110          111

F = A'B'C + A'BC + AB'C + ABC' + ABC

F' = A'B'C' + A'BC' + AB'C'

minterm

0= ‘

NOTICE 1 TO SOLVE
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Minterms

• Variables appear exactly once in each 

minterm in true or inverted form (but not 

both)

short-hand notation

A B C minterms
0 0 0 A'B'C' m0
0 0 1 A'B'C m1
0 1 0 A'BC' m2
0 1 1 A'BC m3
1 0 0 AB'C' m4
1 0 1 AB'C m5
1 1 0 ABC' m6
1 1 1 ABC m7

F in canonical form:

F(A,B,C) =  m(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7
=  A'B'C+A'BC+AB'C+ABC'+ABC
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Product-of-sums (POS)

• Also called conjunctive normal form (CNF) 

or maxterm expansion

A B C F F'
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

000                   010                     100

F = (A + B + C) (A + B' + C) (A' + B + C)

F' = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C)(A'+B'+C')

maxterm

1 = ‘

NOTICE 0 TO SOLVE
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Maxterms

• Variables appear exactly once in each 

maxterm in true or inverted form (but not 

both)

A B C maxterms
0 0 0 A+B+C M0
0 0 1 A+B+C' M1
0 1 0 A+B'+C M2
0 1 1 A+B'+C' M3
1 0 0 A'+B+C M4
1 0 1 A'+B+C' M5
1 1 0 A'+B'+C M6
1 1 1 A'+B'+C' M7

short-hand notation

F in canonical form:

F(A,B,C) =  M(0,2,4)

=  M0 • M2 • M4
=  (A+B+C)(A+B'+C)(A'+B+C)
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Example

• Truth table for f1(a,b,c) at right

• The canonical sum-of-products form for 
f1 is
f1(a,b,c) = m1 + m2 + m4 + m6

= a’b’c + a’bc’ + ab’c’ + abc’

• The canonical product-of-sums form for 
f1 is
f1(a,b,c) = M0 • M3 • M5 • M7

= (a+b+c)•(a+b’+c’)• 
(a’+b+c’)•(a’+b’+c’).

a b c f1
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0
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Example 2

Design the minimum-cost product-of-

sums and sum-of-product expression for 

the function
f(x1, x2, x3) = Σ m(0, 2, 4, 5, 6, 7)
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Minterms and Maxterms

(with three variables)
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Minterms and Maxterms

(with three variables)

The function is 

1 for these rows
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Minterms and Maxterms

(with three variables)

The function is 

1 for these rows

The function is 

0 for these rows
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From SOP to POS and back

• Minterm to maxterm

– Use maxterms that aren’t in minterm 
expansion

– F(A,B,C) = m(1,3,5,6,7) = M(0,2,4)

• Maxterm to minterm

– Use minterms that aren’t in maxterm 
expansion

– F(A,B,C) = M(0,2,4) = m(1,3,5,6,7) 
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From SOP to POS and back

• Minterm of F to minterm of F'

– Use minterms that don’t appear

– F(A,B,C) = m(1,3,5,6,7) F' = m(0,2,4)

• Maxterm of F to maxterm of F'

– Use maxterms that don’t appear

– F(A,B,C) = M(0,2,4)F' = M(1,3,5,6,7)
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SOP, POS, and DeMorgan's

• Product-of-sums
– F' = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C')

• Apply DeMorgan's to get SOP

– (F')' = ((A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C'))'

– F = A'B'C + A'BC + AB'C + ABC
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SOP, POS, and DeMorgan's

• Sum-of-products

– F' = A'B'C' + A'BC' + AB'C'

• Apply DeMorgan's to get POS

– (F')' = (A'B'C' + A'BC' + AB'C')'

– F = (A+B+C)(A+B'+C)(A'+B+C)
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Conversion of SOP from standard to canonical form

• Expand non-canonical terms by inserting 

equivalent of 1 in each missing variable x:

(x + x’) = 1

• Remove duplicate minterms

• f1(a,b,c) = a’b’c + bc’ + ac’

= a’b’c + (a+a’)bc’ + a(b+b’)c’

= a’b’c + abc’ + a’bc’ + abc’ + ab’c’

= a’b’c + abc’ + a’bc + ab’c’
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Conversion of POS from standard to canonical form

• Expand noncanonical terms by adding 0 in terms 

of missing variables (e.g., xx’ = 0) and using the 

distributive law (e.g., A + (BC) = (A + B).(A + C))

• Remove duplicate maxterms

• f1(a,b,c)   = (a+b+c)•(b’+c’)•(a’+c’)

= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•

(a’+b+c’)•(a’+b’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)
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Exercise
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Implementation of the SOP expression AB + BCD + AC. 
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Exercise: The logic implementation for segment X. 
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Exercise: The  logic implementation for segment a. 
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Exercise: What is the Boolean expression for each of the     

logic gates?
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Exercise: What is the Boolean expression for each of the 

logic gates?
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• Example: Prove

x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’
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2-68

• Two-level implementation

Multi-level implementation
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– Multiple NOR = a complement of OR gate

– Multiple NAND = a complement of AND

– The cascaded NAND operations = sum of products

– The cascaded NOR operations = product of sums
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2-70

– The XOR and XNOR gates are commutative and 

associative

– Multiple-input XOR gates are uncommon.

– XOR is an odd function: it is equal to 1 if the inputs 

variables have an odd number of 1's
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Two-Level NAND Gate Implementation - Example

F (X,Y,Z) = m(0,6)

1. Express F in SOP form: 

F = X’Y’Z’ + XYZ’

2. Obtain the AND-OR implementation for F.

3. Add bubbles and inverters to transform 

AND-OR to NAND-NAND gates.
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Example (cont.)

Two-level implementation with NANDs

F = X’Y’Z’ + XYZ’
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1. The associative law for addition is normally written as 

a. A + B = B + A

b. (A + B) + C = A + (B + C)

c. AB = BA

d. A + AB = A

2. The Boolean equation AB + AC = A(B+ C) illustrates

a. the distribution law

b. the commutative law

c. the associative law

d. DeMorgan’s theorem
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3. The Boolean expression A . 1 is equal to

a.  A

b.  B

c.  0

d.  1

4. The Boolean expression A + 1 is equal to

a.  A

b.  B

c.  0

d.  1
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5. The Boolean equation AB + AC = A(B+ C) illustrates

a. the distribution law

b. the commutative law

c. the associative law

d. DeMorgan’s theorem

6. A Boolean expression that is in standard SOP form is

a. the minimum logic expression

b. contains only one product term

c. has every variable in the domain in every term

d. none of the above
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Answers:

1.  b

2.  c

3.  a

4.  d

5.  a

6.  c

The end 


