
Brown/Churchill-3930327 book July 18, 2013 10:5

SEC. 37 THE TRIGONOMETRIC FUNCTIONS sin z AND cos z 103

Hence

(z2z3)
i = [

eπ/4ei(ln 2)/2][e3π/4ei(ln 2)/2]e−2π ,

or

(z2z3)
i = zi

2zi
3 e−2π .(2)

EXERCISES
1. Show that

(a) (1 + i)i = exp
(

−π

4
+ 2nπ

)
exp

(
i

ln 2

2

)
(n = 0, ±1, ±2, . . .);

(b)
1

i2i
= exp[(4n + 1)π ] (n = 0, ±1, ±2, . . .).

2. Find the principal value of

(a) (−i)i ; (b)
[

e

2
(−1 − √

3i)
]3π i

; (c) (1 − i)4i .

Ans. (a) exp(π/2); (b) − exp(2π2); (c) eπ [cos(2 ln 2) + i sin(2 ln 2)].

3. Use definition (1), Sec. 35, of zc to show that (−1 + √
3i)3/2 = ± 2

√
2.

4. Show that the result in Exercise 3 could have been obtained by writing

(a) (−1 + √
3i)3/2 = [(−1 + √

3i)1/2]3 and first finding the square roots of −1 + √
3i ;

(b) (−1 + √
3i)3/2 = [(−1 + √

3i)3]1/2 and first cubing −1 + √
3i .

5. Show that the principal nth root of a nonzero complex number z0 that was defined in
Sec. 10 is the same as the principal value of z1/n

0 defined by equation (3), Sec. 35.

6. Show that if z �= 0 and a is a real number, then |za | = exp(a ln |z|) = |z|a , where the
principal value of |z|a is to be taken.

7. Let c = a + bi be a fixed complex number, where c �= 0, ±1, ±2, . . . , and note that i c

is multiple-valued. What additional restriction must be placed on the constant c so that
the values of |i c| are all the same?

Ans. c is real.

8. Let c, c1, c2, and z denote complex numbers, where z �= 0. Prove that if all of the powers
involved are principal values, then

(a) zc1 zc2 = zc1+c2; (b)
zc1

zc2
= zc1−c2;

(c) (zc)n = zc n (n = 1, 2, . . .).

9. Assuming that f ′(z) exists, state the formula for the derivative of c f (z).

37. THE TRIGONOMETRIC FUNCTIONS sin z AND cos z

Euler’s formula (Sec. 7) tells us that

eix = cos x + i sin x and e−i x = cos x − i sin x
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for every real number x . Hence

eix − e−i x = 2i sin x and eix + e−i x = 2 cos x .

That is,

sin x = eix − e−i x

2i
and cos x = eix + e−i x

2
.

It is, therefore, natural to define the sine and cosine functions of a complex variable z
as follows:

sin z = eiz − e−i z

2i
and cos z = eiz + e−i z

2
.(1)

These functions are entire since they are linear combinations (Exercise 3, Sec. 26) of
the entire functions eiz and e−i z. Knowing the derivatives

d

dz
eiz = ieiz and

d

dz
e−i z = −ie−i z

of those exponential functions, we find from equations (1) that

d

dz
sin z = cos z and

d

dz
cos z = − sin z.(2)

It is easy to see from definitions (1) that the sine and cosine functions remain odd
and even, respectively:

sin(−z) = − sin z, cos(−z) = cos z.(3)

Also,

eiz = cos z + i sin z.(4)

This is, of course, Euler’s formula (Sec. 7) when z is real.
A variety of identities carry over from trigonometry. For instance (see Exercises 2

and 3),

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2,(5)

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.(6)

From these, it follows readily that

sin 2z = 2 sin z cos z, cos 2z = cos2 z − sin2 z,(7)

sin
(

z + π

2

)
= cos z, sin

(
z − π

2

)
= − cos z,(8)

and [Exercise 4(a)]

sin2 z + cos2 z = 1.(9)



Brown/Churchill-3930327 book July 18, 2013 10:5

SEC. 38 ZEROS AND SINGULARITIES OF TRIGONOMETRIC FUNCTIONS 105

The periodic character of sin z and cos z is also evident:

sin(z + 2π) = sin z, sin(z + π) = − sin z,(10)

cos(z + 2π) = cos z, cos(z + π) = − cos z.(11)

When y is any real number, definitions (1) and the hyperbolic functions

sinhy = ey − e−y

2
and coshy = ey + e−y

2
from calculus can be used to write

sin(iy) = i sinhy and cos(iy) = coshy.(12)

Also, the real and imaginary components of sin z and cos z can be displayed in terms
of those hyperbolic functions:

sin z = sin x cosh y + i cos x sinh y,(13)

cos z = cos x cosh y − i sin x sinh y,(14)

where z = x + iy. To obtain expressions (13) and (14), we write

z1 = x and z2 = iy

in identities (5) and (6) and then refer to relations (12). Observe that once expres-
sion (13) is obtained, relation (14) also follows from the fact (Sec. 21) that if the
derivative of a function

f (z) = u(x, y) + iv(x, y)

exists at a point z = (x, y), then

f ′(z) = ux(x, y) + ivx(x, y).

Expressions (13) and (14) can be used (Exercise 7, Sec. 38), to show that

| sin z|2 = sin2 x + sinh2 y,(15)

| cos z|2 = cos2 x + sinh2 y.(16)

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two
equations that sin z and cos z are not bounded on the complex plane, whereas the
absolute values of sin x and cos x are less than or equal to unity for all values of x .
(See the definition of a bounded function at the end of Sec. 18.)

38. ZEROS AND SINGULARITIES OF
TRIGONOMETRIC FUNCTIONS

A zero of a given function f is a number z0 such that f (z0) = 0. It is possible that
a function of a real variable can have more zeros when the domain of definition is
enlarged.
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EXAMPLE. The function f (x) = x2 + 1, defined on the real line, has no zeros.
But the function f (z) = z2 + 1, defined on the complex plane, has the zeros z = ±i .

Consider now the sine function f (z) = sin z that was introduced in Sec. 37. Since
sin z becomes the usual sine function sin x in calculus when z is real, we know that
the real numbers

z = nπ (n = 0, ±1, 2, . . .)

are zeros of sin z. One might ask if there are other zeros in the entire plane, and a
similar question can be asked regarding the cosine function.

Theorem. The zeros of sin z and cos z in the complex plane are the same as the
zeros of sin x and cos x on the real line. That is,

sin z = 0 if and only if z = nπ (n = 0, ±1, 2, . . .)

and

cos z = 0 if and only if z = π

2
+ nπ (n = 0, ±1, ±2, . . .).

In order to prove this theorem, we consider first the sine function and assume that
sin z = 0. Since sin z becomes the usual sine function in calculus when z is real, we
know that the real numbers z = nπ (n = 0, ±1, ±2, . . .) are all zeros of sin z. To
show that there are no other zeros, we assume that sin z = 0 and note how it follows
from equation (15), Sec. 37, that

sin2 x + sinh2 y = 0.

This sum of two squares reveals that

sin x = 0 and sinh y = 0.

Evidently, then, x = nπ (n = 0, ±1, 2, . . .) and y = 0. Hence the zeros of sin z are
as stated in the theorem.

As for the cosine function, the second of relations (8) in Sec. 37 tells us that

cos z = − sin
(

z − π

2

)
;

and it follows that the zeros of cos z are also the ones in the statement of the theorem.
The other four trigonometric functions are defined in terms of the sine and cosine

functions by the expected relations:

tan z = sin z

cos z
, cot z = cos z

sin z
,(1)

sec z = 1

cos z
, csc z = 1

sin z
.(2)
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Observe that the quotients tan z and sec z are analytic everywhere except at the singu-
larities (Sec. 25)

z = π

2
+ nπ (n = 0, ±1, ±2, . . .),

which are the zeros of cos z. Likewise, cot z and csc z have singularities at the zeros
of sin z, namely

z = nπ (n = 0, ±1, ±2, . . .).

By differentiating the right-hand sides of equations (1) and (2), we obtain the antici-
pated differentiation formulas

d

dz
tan z = sec2 z,

d

dz
cot z = − csc2 z,(3)

d

dz
sec z = sec z tan z,

d

dz
csc z = − csc z cot z.(4)

The periodicity of each of the trigonometric functions defined by equations (1) and
(2) follows readily from equations (10) and (11) in Sec. 37. For example,

tan(z + π) = tan z.(5)

Mapping properties of the transformation w = sin z are especially important in
the applications later on. A reader who wishes at this time to learn some of those
properties is sufficiently prepared to read Secs. 104 and 105 (Chap. 8), where they are
discussed.

EXERCISES
1. Give details in the derivation of expressions (2), Sec. 37, for the derivatives of sin z and

cos z.

2. (a) With the aid of expression (4), Sec. 37, show that

eiz1 eiz2 = cos z1 cos z2 − sin z1 sin z2 + i(sin z1 cos z2 + cos z1 sin z2).

Then use relations (3), Sec. 37, to show how it follows that

e−i z1 e−i z2 = cos z1 cos z2 − sin z1 sin z2 − i(sin z1 cos z2 + cos z1 sin z2).

(b) Use the results in part (a) and the fact that

sin(z1 + z2) = 1

2i

[
ei(z1+z2) − e−i(z1+z2)

]
= 1

2i

(
eiz1 eiz2 − e−i z1 e−i z2

)
to obtain the identity

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

in Sec. 37.

3. According to the final result in Exercise 2(b),

sin(z + z2) = sin z cos z2 + cos z sin z2.
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By differentiating each side here with respect to z and then setting z = z1, derive the
expression

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

that was stated in Sec. 37.

4. Verify identity (9) in Sec. 37 using

(a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 28 and the fact that the entire function

f (z) = sin2 z + cos2 z − 1

has zero values along the x axis.

5. Use identity (9) in Sec. 37 to show that

(a) 1 + tan2 z = sec2 z; (b) 1 + cot2 z = csc2 z.

6. Establish differentiation formulas (3) and (4) in Sec. 38.

7. In Sec. 37, use expressions (13) and (14) to derive expressions (15) and (16) for |sin z|2
and |cos z|2.

Suggestion: Recall the identities sin2 x + cos2 x = 1 and cosh2 y − sinh2 y = 1.

8. Point out how it follows from expressions (15) and (16) in Sec. 37 for |sin z|2 and |cos z|2
that

(a) |sin z| ≥ |sin x |; (b) |cos z| ≥ |cos x |.
9. With the aid of expressions (15) and (16) in Sec. 37 for |sin z|2 and |cos z|2, show that

(a) |sinh y| ≤ |sin z| ≤ cosh y; (b) |sinh y| ≤ |cos z| ≤ cosh y.

10. (a) Use definitions (1), Sec. 37, of sin z and cos z to show that

2 sin(z1 + z2) sin(z1 −z2) = cos 2z2 − cos 2z1.

(b) With the aid of the identity obtained in part (a), show that if cos z1 = cos z2, then at
least one of the numbers z1 + z2 and z1 − z2 is an integral multiple of 2π .

11. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that neither sin z
nor cos z is an analytic function of z anywhere.

12. Use the reflection principle (Sec. 29) to show that for all z,

(a) sin z = sin z; (b) cos z = cos z.

13. With the aid of expressions (13) and (14) in Sec. 37, give direct verifications of the
relations obtained in Exercise 12.

14. Show that

(a) cos(i z) = cos(i z) for all z;
(b) sin(i z) = sin(i z) if and only if z = nπ i (n = 0, ±1, ±2, . . .).

15. Find all roots of the equation sin z = cosh 4 by equating the real parts and then the
imaginary parts of sin z and cosh 4.

Ans.
(

π

2
+ 2nπ

)
± 4i (n = 0, ±1, ±2, . . .).
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16. With the aid of expression (14), Sec. 37, show that the roots of the equation cos z = 2
are

z = 2nπ + i cosh−1 2 (n = 0, ±1, ±2, . . .).

Then express them in the form

z = 2nπ ± i ln(2 +
√

3) (n = 0, ±1, ±2, . . .).

39. HYPERBOLIC FUNCTIONS

The hyperbolic sine and cosine functions of a complex variable z are defined as they
are with a real variable:

sinh z = ez − e−z

2
, cosh z = ez + e−z

2
.(1)

Since ez and e−z are entire, it follows from definitions (1) that sinh z and cosh z are
entire. Furthermore,

d

dz
sinh z = cosh z,

d

dz
cosh z = sinh z.(2)

Because of the way in which the exponential function appears in definitions (1)
and in the definitions (Sec. 37)

sin z = eiz − e−i z

2i
, cos z = eiz + e−i z

2

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those
trigonometric functions:

−i sinh(i z) = sin z, cosh(i z) = cos z,(3)

−i sin(i z) = sinh z, cos(i z) = cosh z.(4)

Note how it follows readily from relations (4) and the periodicity of sin z and cos z
that sinh z and cosh z are periodic with period 2π i .

Some of the most frequently used identities involving hyperbolic sine and cosine
functions are

sinh(−z) = − sinh z, cosh(−z) = cosh z,(5)

cosh2 z − sinh2 z = 1,(6)

sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2,(7)

cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2(8)
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and

sinh z = sinh x cos y + i cosh x sin y,(9)

cosh z = cosh x cos y + i sinh x sin y,(10)

|sinh z|2 = sinh2 x + sin2 y,(11)

|cosh z|2 = sinh2 x + cos2 y,(12)

where z = x + iy. While these identities follow directly from definitions (1), they
are often more easily obtained from related trigonometric identities, with the aid of
relations (3) and (4).

EXAMPLE 1. To illustrate the method of proof just suggested, let us verify
identity (6), starting with the relation

sin2 z + cos2 z = 1(13)

in Sec. 37. Using relations (3) to replace sin z and cos z in relation (13) here, we have

− sinh2(i z) + cosh2(i z) = 1.

Then, replacing z by −i z in this last equation, we arrive at identity (6).

EXAMPLE 2. Let us verify expression (12) using the second of relations (4).
We begin by writing

| cosh z|2 = | cos(i z)|2 = | cos(−y + i x)|2.(14)

Now we already know from relation (16) in Sec. 37 that

| cos(x + iy)|2 = cos2 x + sinh2 y,

and this tells us that

| cos(−y + i x)|2 = cos2 y + sinh2 x .(15)

Expressions (14) and (15) now combine to yield relation (12).

We turn now to the zeros of sinh z and cosh z. We present the results as a theorem
in order to emphasize their importance in later chapters and in order to provide easy
comparison with the theorem in Sec. 38, regarding the zeros of sin z and cos z. In fact,
the theorem here is an immediate consequence of relations (4) and that earlier theorem.

Theorem. The zeros of sinh z and cosh z in the complex plane all lie on the
imaginary axis. To be specific,

sinh z = 0 if and only if z = nπ i (n = 0, ±1, 2, . . .)

and

cosh z = 0 if and only if z =
(π

2
+ nπ

)
i (n = 0, ±1, ±2, . . .).
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The hyperbolic tangent of z is defined by means of the equation

tanh z = sinh z

cosh z
(16)

and is analytic in every domain in which cosh z �= 0. The functions coth z, sech z, and
csch z are the reciprocals of tanh z, cosh z, and sinh z, respectively. It is straightforward
to verify the following differentiation formulas, which are the same as those established
in calculus for the corresponding functions of a real variable:

d

dz
tanh z = sech2z,

d

dz
coth z = − csch2z,(17)

d

dz
sech z = − sech z tanh z,

d

dz
csch z = − csch z coth z.(18)

EXERCISES
1. Verify that the derivatives of sinh z and cosh z are as stated in equations (2), Sec. 39.

2. Prove that sinh 2z = 2 sinh z cosh z by starting with

(a) definitions (1), Sec. 39, of sinh z and cosh z;
(b) the identity sin 2z = 2 sin z cos z (Sec. 37) and using relations (3) in Sec. 39.

3. Show how identities (6) and (8) in Sec. 39 follow from identities (9) and (6), respectively,
in Sec. 37.

4. Write sinh z = sinh(x + iy) and cosh z = cosh(x + iy), and then show how expressions
(9) and (10) in Sec. 39 follow from identities (7) and (8), respectively, in that section.

5. Derive expression (11) in Sec. 39 for |sinh z|2.

6. Show that |sinh x | ≤ |cosh z| ≤ cosh x by using

(a) identity (12), Sec. 39;
(b) the inequalities |sinh y| ≤ |cos z| ≤ cosh y, obtained in Exercise 9(b), Sec. 38.

7. Show that

(a) sinh(z + π i) = − sinh z; (b) cosh(z + π i) − cosh z;

(c) tanh(z + π i) = tanh z.

8. Give details showing that the zeros of sinh z and cosh z are as in the theorem in Sec. 39.

9. Using the results proved in Exercise 8, locate all zeros and singularities of the hyperbolic
tangent function.

10. Show that tanh z = −i tan(i z).
Suggestion: Use identities (4) in Sec. 39.

11. Derive differentiation formulas (17), Sec. 39.

12. Use the reflection principle (Sec. 29) to show that for all z,

(a) sinh z = sinh z; (b) cosh z = cosh z.

13. Use the results in Exercise 12 to show that tanh z = tanh z at points where cosh z �= 0.
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14. By accepting that the stated identity is valid when z is replaced by the real variable x
and using the lemma in Sec. 28, verify that

(a) cosh2 z − sinh2 z = 1; (b) sinh z + cosh z = ez .

[Compare with Exercise 4(b), Sec. 38.]

15. Why is the function sinh(ez) entire? Write its real component as a function of x and y,
and state why that function must be harmonic everywhere.

16. By using one of the identities (9) and (10) in Sec. 39 and then proceeding as in Exercise 15,
Sec. 38, find all roots of the equation

(a) sinh z = i ; (b) cosh z = 1

2
.

Ans. (a) z =
(

2n + 1

2

)
π i (n = 0, ±1, ±2, . . .);

(b) z =
(

2n ± 1

3

)
π i (n = 0, ±1, ±2, . . .).

17. Find all roots of the equation cosh z = −2. (Compare this exercise with Exercise 16,
Sec. 38.)

Ans. z = ± ln(2 + √
3) + (2n + 1)π i (n = 0, ±1, ±2, . . .).

40. INVERSE TRIGONOMETRIC
AND HYPERBOLIC FUNCTIONS

Inverses of the trigonometric and hyperbolic functions can be described in terms of
logarithms.

In order to define the inverse sine function sin−1 z, we write

w = sin−1 z when z = sin w.

That is, w = sin−1 z when

z = eiw − e−iw

2i
.

If we put this equation in the form

(eiw)2 − 2i z(eiw) − 1 = 0,

which is quadratic in eiw, and solve for eiw [see Exercise 8(a), Sec. 11 ], we find that

eiw = i z + (1 − z2)1/2(1)

where (1 − z2)1/2 is, of course, a double-valued function of z. Taking logarithms of
each side of equation (1) and recalling that w = sin−1 z, we arrive at the expression

sin−1 z = −i log[i z + (1 − z2)1/2].(2)

The following example emphasizes the fact that sin−1 z is a multiple-valued function,
with infinitely many values at each point z.
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EXAMPLE. Expression (2) tells us that

sin−1(−i) = −i log(1 ±
√

2).

But

log(1 +
√

2) = ln(1 +
√

2) + 2nπ i (n = 0, ±1, ±2, . . .)

and

log(1 −
√

2) = ln(
√

2 − 1) + (2n + 1)π i (n = 0, ±1, ±2, . . .).

Since

ln(
√

2 − 1) = ln
1

1 + √
2

= − ln(1 +
√

2),

then, the numbers

(−1)n ln(1 +
√

2) + nπ i (n = 0, ±1, ±2, . . .)

constitute the set of values of log(1 ± √
2). Thus, in rectangular form,

sin−1(−i) = nπ + i(−1)n+1 ln(1 +
√

2) (n = 0, ±1, ±2, . . .).

One can apply the technique used to derive expression (2) for sin−1 z to show that

cos−1 z = −i log
[
z + i(1 − z2)1/2](3)

and that

tan−1 z = i

2
log

i + z

i − z
.(4)

The functions cos−1 z and tan−1 z are also multiple-valued. When specific branches of
the square root and logarithmic functions are used, all three inverse functions become
single-valued and analytic because they are then compositions of analytic functions.

The derivatives of these three functions are readily obtained from their logarithmic
expressions. The derivatives of the first two depend on the values chosen for the square
roots:

d

dz
sin−1 z = 1

(1 − z2)1/2
,(5)

d

dz
cos−1 z = −1

(1 − z2)1/2
.(6)

The derivative of the last one,

d

dz
tan−1 z = 1

1 + z2
,(7)

does not, however, depend on the manner in which the function is made single-valued.
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Inverse hyperbolic functions can be treated in a corresponding manner. It turns
out that

sinh−1 z = log
[
z + (z2 + 1)1/2] ,(8)

cosh−1 z = log
[
z + (z2 − 1)1/2] ,(9)

and

tanh−1 z = 1

2
log

1 + z

1 − z
.(10)

Finally, we remark that common alternative notation for all of these inverse func-
tions is arcsin z, etc.

EXERCISES
1. Find all the values of

(a) tan−1(2i); (b) tan−1(1 + i); (c) cosh−1(−1); (d) tanh−1 0.

Ans. (a)
(

n + 1

2

)
π + i

2
ln 3(n = 0, ±1, ±2, . . .);

(d) nπ i(n = 0, ±1, ±2, . . .).

2. Solve the equation sin z = 2 for z by

(a) equating real parts and then imaginary parts in that equation;
(b) using expression (2), Sec. 40, for sin−1 z.

Ans. z =
(

2n + 1

2

)
π ± i ln(2 + √

3)(n = 0, ±1, ±2, . . .).

3. Solve the equation cos z = √
2 for z.

4. Derive expression (5), Sec. 40, for the derivative of sin−1 z.

5. Derive expression (4), Sec. 40, for tan−1 z.

6. Derive expression (7), Sec. 40, for the derivative of tan−1 z.

7. Derive expression (9), Sec. 40, for cosh−1 z.


