Boolean Algebra

Logic Gates

Basic logic gates

- Not

- And
- Or

- Nand

- Nor

- Xor

The AND gate

(a) Circuit symbol

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

(b) Truth table
(c) Boolean expression

The OR gate

A	B	C
0	0	0
0	1	1
1	0	1
1	1	1

$$
C=A+B
$$

(c) Boolean expression

The NOT gate (or inverter)

(a) Circuit symbol

$$
B=\bar{A}
$$

(b) Truth table
(c) Boolean expression

A logic buffer gate

(a) Circuit symbol

(b) Truth table

$$
B=A
$$

(c) Boolean expression

The NAND gate

(a) Circuit symbol

A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

(b) Truth table

$$
C=\overline{A \cdot B}
$$

(c) Boolean expression

The NOR gate

(a) Circuit symbol

The Exclusive OR gate

(a) Circuit symbol

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

(b) Truth table
(c) Boolean expression

The Exclusive NOR gate

(a) Circuit symbol

A	B	C
0	0	1
0	1	0
1	0	0
1	1	1

$$
C=\overline{A \oplus B}
$$

(c) Boolean expression

Boolean Algebra

- Boolean Constants
- these are ' 0 ' (false) and ' 1 ' (true)
- Boolean Variables
- variables that can only take the vales ' 0 ' or ' 1 '
- Boolean Functions
- each of the logic functions (such as AND, OR and NOT) are represented by symbols as described above
- Boolean Theorems
- a set of identities and laws - see text for details

Boolean laws

$A B=B A$
 $A+B=B+A$

$A(B+C)=A B+B C$
$A+B C=(A+B)(A+C)$
$A+A B=A$
$A(A+B)=A$
$\overline{A+B}=\bar{A} \bullet \bar{B}$
$\overline{A \bullet B}=\bar{A}+\bar{B}$
$A(B C)=(A B) C$
$A+(B+C)=(A+B)+C$

$$
A+\bar{A} B=A+B
$$

$$
A(\bar{A}+B)=A B
$$

OR Gate

* Current flows if either switch is closed
- Logic notation $A+B=C$

A	B	C
0	0	0
0	1	1
1	0	1
1	1	1

AND Gate

* In order for current to flow, both switches must be closed
- Logic notation $A \cdot B=C$ (Sometimes $A B=C$)

Properties of AND and OR

- Commutation
- $A+B=B+A$
$-A \cdot B=B \cdot A$

Same as

Commutation Circuit

Properties of AND and OR

- Associative Property
* $A+(B+C)=(A+B)+C$

$* \mathrm{~A} \cdot(\mathrm{~B} \cdot \mathrm{C})=(\mathrm{A} \cdot \mathrm{B}) \cdot \mathrm{C}$

Distributive Property

$$
(A+B) \cdot(A+C)
$$

A	B	C	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1

Binary Addition

A	B	S	C (arry)
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Notice that the carry results are the same as AND

$$
\mathrm{C}=\mathrm{A} \cdot \mathrm{~B}
$$

Inversion (NOT)

Circuit for XOR

Accumulating our results: Binary addition is the result of XOR plus AND

Converting between circuits and equations

- Find the output of the following circuit

- Answer: $(x+y) y^{-}$

4/300/2018 $\operatorname{Or}(x \vee y) \wedge \neg y$

Converting between circuits and equations

- Find the output of the following circuit

- Answer: $x \overline{\bar{y}}{ }^{-}$

Converting between circuits and equations

- Write the circuits for the following Boolean algebraic expressions
a) $\bar{x}+y$

Converting between circuits and equations

- Write the circuits for the following Boolean algebraic expressions
b) $\overline{(x+y)} x$

Writing xor using and/or/not

- $p \oplus q \equiv(p \vee q) \wedge \neg(p \wedge q)$
- $x \oplus y \equiv(x+y)(x y)$

x	y	$x \oplus y$
1	1	0
1	0	1
0	1	1
0	0	0

Converting decimal numbers to binary

- $53=32+16+4+1$
$=2^{5}+2^{4}+2^{2}+2^{0}$
$=1^{*} 2^{5}+1^{*} 2^{4}+0^{*} 2^{3}+1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}$
$=110101$ in binary
$=00110101$ as a full byte in binary
- $211=128+64+16+2+1$
$=2^{7}+2^{6}+2^{4}+2^{1}+2^{0}$
$=1^{*} 2^{7}+1^{*} 2^{6}+0^{*} 2^{5}+1^{*} 2^{4}+0^{*} 2^{3}+0^{*} 2^{2}+$ $1^{*} 2^{1}+1^{*} 2^{0}$
$=11010011$ in binary

Converting binary numbers to decimal

- What is 10011010 in decimal?

$$
\begin{aligned}
10011010= & 1^{*} 2^{7}+0^{*} 2^{6}+0^{*} 2^{5}+1^{*} 2^{4}+1^{*} 2^{3}+ \\
& 0^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0} \\
= & 2^{7}+2^{4}+2^{3}+2^{1} \\
= & 128+16+8+2 \\
= & 154
\end{aligned}
$$

- What is 00101001 in decimal?

$$
\begin{aligned}
00101001= & 0^{*} 2^{7}+0^{*} 2^{6}+1^{*} 2^{5}+0^{*} 2^{4}+1^{*} 2^{3}+ \\
& 0^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0} \\
= & 2^{5}+2^{3}+2^{0} \\
= & 32+8+1 \\
= & 41
\end{aligned}
$$

A note on binary numbers

- In this slide set we are only dealing with nonnegative numbers
- The book (section 1.5) talks about two'scomplement binary numbers
- Positive (and zero) two's-complement binary numbers is what was presented here
- We won't be getting into negative two'scomplmeent numbers

How to add binary numbers

- Consider adding two 1-bit binary numbers x and y

$$
\begin{aligned}
& -0+0=0 \\
& -0+1=1 \\
& -1+0=1 \\
& -1+1=10
\end{aligned}
$$

- Carry is x AND y
- Sum is x XOR y
- The circuit to compute this is called a half-adder

The half-adder

- Sum $=x$ XOR y
- Carry $=x$ AND y

x	y	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Using half adders

- We can then use a half-adder to compute the sum of two Boolean numbers

How to fix this

- We need to create an adder that can take a carry bit as an additional input
- Inputs: x, y, carry in
- Outputs: sum, carry out
- This is called a full adder
- Will add x and y with a half-adder
- Will add the sum of that to the carry in
- What about the carry out?
- It's 1 if either (or both):
$-x+y=10$
$-x+y=01$ and carry in = 1

x	y	c	carry	sum
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

The full adder

- The "HA" boxes are half-adders

x	y	c	s_{1}	c_{1}	carry
1	1	1	0	1	1
1	1	0	0	1	1
1	0	1	1	0	1
1	0	0	1	0	0
0	1	1	1	0	1
0	1	0	1	0	0
0	0	1	0	0	0
0	0	0	0	0	0

The full adder

- The full circuitry of the full adder

Adding bigger binary numbers

- Just chain full adders together

Adding bigger binary numbers

- A half adder has 4 logic gates
- A full adder has two half adders plus a OR gate
- Total of 9 logic gates
- To add n bit binary numbers, you need 1 HA and $n-1$ FAs
- To add 32 bit binary numbers, you need 1 HA and 31 FAs
- Total of 4+9*31 = 283 logic gates
- To add 64 bit binary numbers, you need 1 HA and 63 FAs
- Total of 4+9*63 = 571 logic gates

More about logic gates

- To implement a logic gate in hardware, you use a transistor
- Transistors are all enclosed in an "IC", or integrated circuit
- The current Intel Pentium IV processors have 55 million transistors!

Flip-flops

- Consider the following circuit:

- What does it do?

Memory

- A flip-flop holds a single bit of memory
- The bit "flip-flops" between the two NAND gates
- In reality, flip-flops are a bit more complicated
- Have 5 (or so) logic gates (transistors) per flip-flop
- Consider a 1 Gb memory chip
- $1 \mathrm{~Gb}=8,589,934,592$ bits of memory
- That's about 43 million transistors!
- In reality, those transistors are split into 9 ICs of about 5 million transistors each

Table 1.5.3

Hexadecimal

- A numerical range from 0-15
- Where A is $10, B$ is $11, \ldots$ and F is 15
- Often written with a ' $0 x^{\prime}$ prefix
- So $0 x 10$ is 10 hex, or 16 - 0x100 is 100 hex, or 256
- Binary numbers easily translate:

Decimal	Hexadecimal	4-Bit Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
, Maldilves	F	1111

