Boolean Algebra

Logic Gates

Basic logic gates

Not

And

Or

Χ-

V

X V

X

- Nand
- Nor
- $\overline{X+Y}$ X V
- Xor

x⊕y

xy

2

The AND gate

The OR gate

The NOT gate (or inverter)

A logic buffer gate

The NAND gate

The NOR gate

The Exclusive OR gate

The Exclusive NOR gate

$$C = \overline{A \oplus B}$$

(c) Boolean expression

Boolean Algebra

Boolean Constants

- these are '0' (false) and '1' (true)

- Boolean Variables
 - variables that can only take the vales '0' or '1'
- Boolean Functions
 - each of the logic functions (such as AND, OR and NOT) are represented by symbols as described above
- Boolean Theorems
 - a set of identities and laws see text for details

Boolean laws

AB = BAA + AB = AA + B = B + AA(A + B) = AA(B+C) = AB + BC $\overline{A+B} = \overline{A} \bullet \overline{B}$ A+BC = (A+B)(A+C) $\overline{A \bullet B} = \overline{A} + \overline{B}$

A(BC) = (AB)CA + (B+C) = (A+B) + C

 $A + \overline{A}B = A + B$ $A(\overline{A} + B) = AB$

OR Gate

Current flows if either switch is closed

- Logic notation A + B = C

А	В	С
0	0	0
0	1	1
1	0	1
1	1	1

Pavithran Puthiyapurayil , Maldives National University

AND Gate

In order for current to flow, both switches must be closed

- Logic notation $A \bullet B = C$

(Sometimes AB = C)

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Properties of AND and OR

- Commutation
 - $\circ A + B = B + A$
 - $\circ A \bullet B = B \bullet A$

Commutation Circuit

A • B

B • A

A + B

Pavithran Puthiyapurayil, Maldives National University

Properties of AND and OR

Associative Property

☆A + (B + C) = (A + B) + C

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C$$

$$A \bullet B \bullet C$$

Distributive Property

$(A + B) \bullet (A + C)$

National University

Binary Addition

Α	В	S	C(arry)
0	0	0	0
1	0	1	0
0	1	1	0
1	1	0	1

Notice that the carry results are the same as AND

$C = A \bullet B$

Inversion (NOT)

Logic: $Q = \overline{A}$

Α	Q
0	1
1	0

Circuit for XOR

 $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$

Accumulating our results: Binary addition is the result of XOR plus AND

Pavithran Puthiyapurayil , Maldives National University

• Find the output of the following circuit

• Answer: (*x+y*)y⁻⁻

_{4/30/2018} Or (*x*∨*y*)∧¬y

Pavithran Puthiyapurayil , Maldives National University

• Find the output of the following circuit

• Answer: $x\overline{y}^-$

4/30/2018 Or $\neg(\neg x \land \neg y) \equiv x \lor y$ ithran Puthiyapurayil, Maldives National University

 Write the circuits for the following Boolean algebraic expressions

a) x+y

 Write the circuits for the following Boolean algebraic expressions

b) (x+y)x

Writing xor using and/or/not

- $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$
- $x \oplus y \equiv (x + y)(xy)$

X	У	<i>x</i> ⊕y
1	1	0
1	0	1
0	1	1
0	0	0

Converting decimal numbers to binary

- 53 = 32 + 16 + 4 + 1
 - $= 2^5 + 2^4 + 2^2 + 2^0$
 - $= 1^{*}2^{5} + 1^{*}2^{4} + 0^{*}2^{3} + 1^{*}2^{2} + 0^{*}2^{1} + 1^{*}2^{0}$
 - = 110101 in binary
 - = 00110101 as a full byte in binary
- 211=128+64+16+2+1= $2^7+2^6+2^4+2^1+2^0$ = $1^*2^7+1^*2^6+0^*2^5+1^*2^4+0^*2^3+0^*2^2+1^*2^1+1^*2^0$ = 11010011 in binary
 - = 11010011 in binary

Converting binary numbers to decimal

- What is 10011010 in decimal? 10011010 = $1^{*}2^{7} + 0^{*}2^{6} + 0^{*}2^{5} + 1^{*}2^{4} + 1^{*}2^{3} + 0^{*}2^{2} + 1^{*}2^{1} + 0^{*}2^{0}$ = $2^{7} + 2^{4} + 2^{3} + 2^{1}$ = 128 + 16 + 8 + 2= 154
- What is 00101001 in decimal? 00101001 = $0^{*}2^{7} + 0^{*}2^{6} + 1^{*}2^{5} + 0^{*}2^{4} + 1^{*}2^{3} + 0^{*}2^{2} + 0^{*}2^{1} + 1^{*}2^{0}$ = $2^{5} + 2^{3} + 2^{0}$ = 32 + 8 + 1= 41

A note on binary numbers

- In this slide set we are only dealing with nonnegative numbers
- The book (section 1.5) talks about two'scomplement binary numbers
 - Positive (and zero) two's-complement binary numbers is what was presented here
 - We won't be getting into negative two'scomplmeent numbers

How to add binary numbers

- Consider adding two 1-bit binary numbers x and y
 - 0+0 = 0
 - 0+1 = 1
 - 1+0 = 1
 - 1+1 = 10

X	У	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- Carry is x AND y
- Sum is *x* XOR *y*
- The circuit to compute this is called a half-adder

The half-adder

- Sum = *x* XOR *y*
- Carry = x AND y

X	У	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Using half adders

• We can then use a half-adder to compute the sum of two Boolean numbers

How to fix this

- We need to create an adder that can take a carry bit as an additional input
 - Inputs: x, y, carry in
 - Outputs: sum, carry out
- This is called a full adder
 - Will add x and y with a half-adder
 - Will add the sum of that to the carry in
- What about the carry out?
 - It's 1 if either (or both):
 - -x+y = 10
 - x+y = 01 and carry in = 1

x	У	С	carry	sum
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

The full adder

 The "HA" boxes are half-adders

X	У	С	S ₁	C ₁	carry	sum
1	1	1	0	1	1	1
1	1	0	0	1	1	0
1	0	٦	1	0	1	0
1	0	0	1	0	0	1
0	1	1	1	0	1	0
0	1	0	1	0	0	1
0	0	1	0	0	0	1
0	0	0	0	0	0	0

Pavithran Puthiyapurayil , Maldives National University

The full adder

• The full circuitry of the full adder

Pavithran Puthiyapurayil , Maldives National University

Adding bigger binary numbers

Just chain full adders together

National University

Adding bigger binary numbers

- A half adder has 4 logic gates
- A full adder has two half adders plus a OR gate
 Total of 9 logic gates
- To add *n* bit binary numbers, you need 1 HA and *n*-1 FAs
- To add 32 bit binary numbers, you need 1 HA and 31 FAs
 - Total of 4+9*31 = 283 logic gates
- To add 64 bit binary numbers, you need 1 HA and 63 FAs

- Total of 4+9*63 = 571 logic gates

More about logic gates

- To implement a logic gate in hardware, you use a transistor
- Transistors are all enclosed in an "IC", or integrated circuit
- The current Intel Pentium IV processors have 55 million transistors!

Flip-flops

• Consider the following circuit:

Memory

- A flip-flop holds a single bit of memory
 - The bit "flip-flops" between the two NAND gates
- In reality, flip-flops are a bit more complicated
 - Have 5 (or so) logic gates (transistors) per flip-flop
- Consider a 1 Gb memory chip
 - 1 Gb = 8,589,934,592 bits of memory
 - That's about 43 million transistors!
- In reality, those transistors are split into 9 ICs of about 5 million transistors each

Table 1.5.3

Hexadecimal

- A numerical range from 0-15
 - Where A is 10, B is 11, ...
 and F is 15
- Often written with a '0x' prefix
- So 0x10 is 10 hex, or 16
 0x100 is 100 hex, or 256
- Binary numbers easily translate:

Decimal	Hexadecimal	4-Bit Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	А	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
Maldil 5	F	1111

Pavithran Puthiyapuray I, Maldiv

National University

© 2007 Thomson Higher Education