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Expression (4) can be useful in finding powers of complex numbers even when
they are given in rectangular form and the result is desired in that form.

EXAMPLE 1. In order to put (−1 + i)7 in rectangular form, write

(−1 + i)7 = (
√

2 ei3π/4)7 = 27/2ei 21π/4 = (23ei5π)(21/2ei π/4).

Because

23ei5π = (8)(−1) = − 8

and

21/2ei π/4 =
√

2
(

cos
π

4
+ i sin

π

4

)
=

√
2

(
1√
2

+ i√
2

)
= 1 + i,

we arrive at the desired result: (−1 + i)7 = − 8 (1 + i).

Finally, we observe that if r = 1, equation (4) becomes

(eiθ )n = einθ (n = 0, ±1, ±2, . . .).(5)

When written in the form

(cos θ + i sin θ)n = cos nθ + i sin nθ (n = 0, ±1, ±2, . . .),(6)

this is known as de Moivre’s formula. The following example uses a special case of it.

EXAMPLE 2. Formula (6) with n = 2 tells us that

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ,

or

cos2 θ − sin2 θ + i2 sin θ cos θ = cos 2θ + i sin 2θ.

By equating real parts and then imaginary parts here, we have the familiar trigonometric
identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

(See also Exercises 10 and 11, Sec. 9.)

9. ARGUMENTS OF PRODUCTS AND QUOTIENTS

If z1 = r1eiθ1 and z2 = r2eiθ2 , the expression

z1z2 = (r1r2)e
i(θ1+θ2)(1)

in Sec. 8 can be used to obtain an important identity involving arguments:

arg(z1z2) = arg z1 + arg z2.(2)
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Equation (2) is to be interpreted as saying that if values of two of the three (multiple-
valued) arguments are specified, then there is a value of the third such that the equation
holds.

We start the verification of statement (2) by letting θ1 and θ2 denote any values
of arg z1 and arg z2, respectively. Expression (1) then tells us that θ1 + θ2 is a value
of arg(z1z2). (See Fig. 9.) If, on the other hand, values of arg(z1z2) and arg z1 are
specified, those values correspond to particular choices of n and n1 in the expres-
sions

arg(z1z2) = (θ1 + θ2) + 2nπ (n = 0, ±1, ±2, . . .)

and

arg z1 = θ1 + 2n1π (n1 = 0, ±1, ±2, . . .).

Since

(θ1 + θ2) + 2nπ = (θ1 + 2n1π) + [θ2 + 2(n − n1)π ],

equation (2) is evidently satisfied when the value

arg z2 = θ2 + 2(n − n1)π

is chosen. Verification when values of arg(z1z2) and arg z2 are specified follows from
the fact that statement (2) can also be written

arg(z2z1) = arg z2 + arg z1.

xO

y z1z2

z1

z2

FIGURE 9

Statement (2) is sometimes valid when arg is replaced everywhere by Arg (see
Exercise 6). But, as the following example illustrates, that is not always the case.

EXAMPLE 1. When z1 = −1 and z2 = i ,

Arg(z1z2) = Arg(−i) = −π

2
but Arg z1 + Arg z2 = π + π

2
= 3π

2
.

If, however, we take the values of arg z1 and arg z2 just used and select the value

Arg(z1z2) + 2π = −π

2
+ 2π = 3π

2
of arg(z1z2), we find that equation (2) is satisfied.
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Statement (2) tells us that

arg
(

z1

z2

)
= arg

(
z1z−1

2

) = arg z1 + arg
(
z−1

2

);
and, since (Sec. 8)

z−1
2 = 1

r2
e−iθ2,

one can see that

arg
(
z−1

2

) = −arg z2.(3)

Hence

arg
(

z1

z2

)
= arg z1 − arg z2.(4)

Statement (3) is, of course, to be interpreted as saying that the set of all values on the
left-hand side is the same as the set of all values on the right-hand side. Statement (4)
is, then, to be interpreted in the same way that statement (2) is.

EXAMPLE 2. In order to illustrate statement (4), let us use it to find the principal
value of Argz when

z = i

−1 − i
.

We start by writing

arg z = arg i − arg (−1 − i).

Since

Arg i = π

2
and Arg (−1 − i) = −3π

4
,

one value of arg z is 5π/4. But this is not a principal value �, which must lie in the
interval −π < � ≤ π. We can, however, obtain that value by adding some integral
multiple, possibly negative, of 2π :

Arg
(

i

−1 − i

)
= 5π

4
− 2π = −3π

4
.

EXERCISES
1. Find the principal argument Arg z when

(a) z = − 2

1 + √
3 i

; (b) z =
(√

3 − i
)6

.

Ans. (a) 2π/3 ; (b) π .

2. Show that (a) |eiθ | = 1; (b) eiθ = e−iθ .
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3. Use mathematical induction to show that

eiθ1 eiθ2 · · · eiθn = ei(θ1+θ2+···+θn) (n = 2, 3, . . .).

4. Using the fact that the modulus |eiθ − 1| is the distance between the points eiθ and 1 (see
Sec. 4), give a geometric argument to find a value of θ in the interval 0 ≤ θ < 2π that
satisfies the equation |eiθ − 1| = 2.

Ans. π .

5. By writing the individual factors on the left in exponential form, performing the needed
operations, and finally changing back to rectangular coordinates, show that

(a) i(1 − √
3i)(

√
3 + i) = 2(1 + √

3i); (b) 5i/(2 + i) = 1 + 2i ;

(c) (
√

3 + i)6 = − 64; (d) (1 + √
3 i)−10 = 2−11(−1 + √

3 i).

6. Show that if Re z1 > 0 and Re z2 > 0, then

Arg(z1z2) = Arg z1 + Arg z2,

where principal arguments are used.

7. Let z be a nonzero complex number and n a negative integer (n = −1, −2, . . .). Also,
write z = reiθ and m = −n = 1, 2, . . . . Using the expressions

zm = rmeimθ and z−1 =
(

1

r

)
ei(−θ),

verify that (zm)−1 = (z−1)m and hence that the definition zn = (z−1)m in Sec. 7 could
have been written alternatively as zn = (zm)−1.

8. Prove that two nonzero complex numbers z1 and z2 have the same moduli if and only if
there are complex numbers c1 and c2 such that z1 = c1c2 and z2 = c1c2.

Suggestion: Note that

exp
(

i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ1)

and [see Exercise 2(b)]

exp
(

i
θ1 + θ2

2

)
exp

(
i
θ1 − θ2

2

)
= exp(iθ2).

9. Establish the identity

1 + z + z2 + · · · + zn = 1 − zn+1

1 − z
(z �= 1)

and then use it to derive Lagrange’s trigonometric identity:

1 + cos θ + cos 2θ + · · · + cos nθ = 1

2
+ sin[(2n + 1)θ/2]

2 sin(θ/2)
(0 < θ < 2π).

Suggestion: As for the first identity, write S = 1 + z + z2 + · · · + zn and consider
the difference S − zS. To derive the second identity, write z = eiθ in the first one.
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10. Use de Moivre’s formula (Sec. 8) to derive the following trigonometric identities:

(a) cos 3θ = cos3 θ − 3 cos θ sin2 θ ;
(b) sin 3θ = 3 cos2 θ sin θ − sin3 θ .

11. (a) Use the binomial formula (14), Sec. 3, and de Moivre’s formula (Sec. 8) to write

cos nθ + i sin nθ =
n∑

k=0

(
n

k

)
cosn−k θ (i sin θ)k (n = 0, 1, 2, . . .).

Then define the integer m by means of the equations

m =
{

n/2 if n is even,

(n − 1)/2 if n is odd

and use the above summation to show that [compare with Exercise 10(a)]

cos nθ =
m∑

k=0

(
n

2k

)
(−1)k cosn−2k θ sin2k θ (n = 0, 1, 2, . . .).

(b) Write x = cos θ in the final summation in part (a) to show that it becomes a
polynomial∗

Tn(x) =
m∑

k=0

(
n
2k

)
(−1)k xn−2k(1 − x2)k

of degree n (n = 0, 1, 2, . . .) in the variable x .

10. ROOTS OF COMPLEX NUMBERS

Consider now a point z = reiθ , lying on a circle centered at the origin with radius
r (Fig. 10). As θ is increased, z moves around the circle in the counterclockwise
direction. In particular, when θ is increased by 2π , we arrive at the original point; and
the same is true when θ is decreased by 2π . It is, therefore, evident from Fig. 10 that
two nonzero complex numbers

z1 = r1eiθ1 and z2 = r2eiθ2

xO

r

y

FIGURE 10

∗These are called Chebyshev polynomials and are prominent in approximation theory.
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are equal if and only if

r1 = r2 and θ1 = θ2 + 2kπ,

where k is any integer (k = 0, ±1, ±2, . . .).
This observation, together with the expression zn = rneinθ in Sec. 8 for integral

powers of complex numbers z = reiθ , is useful in finding the nth roots of any nonzero
complex number z0 = r0eiθ0 , where n has one of the values n = 2, 3, . . . . The method
starts with the fact that an nth root of z0 is a nonzero number z = reiθ such that zn = z0,
or

rneinθ = r0eiθ0 .

According to the statement in italics just above, then,

rn = r0 and nθ = θ0 + 2kπ,

where k is any integer (k = 0, ±1, ±2, . . .). So r = n
√

r0, where this radical denotes
the unique positive nth root of the positive real number r0, and

θ = θ0 + 2kπ

n
= θ0

n
+ 2kπ

n
(k = 0, ±1, ±2, . . .).

Consequently, the complex numbers

z = n
√

r0 exp
[

i

(
θ0

n
+ 2kπ

n

)]
(k = 0, ±1, ±2, . . .)

are nth roots of z0. We are able to see immediately from this exponential form of the
roots that they all lie on the circle |z| = n

√
r0 about the origin and are equally spaced

every 2π/n radians, starting with argument θ0/n. Evidently, then, all of the distinct
roots are obtained when k = 0, 1, 2, . . . , n − 1, and no further roots arise with other
values of k. We let ck (k = 0, 1, 2, . . . , n − 1) denote these distinct roots and write

ck = n
√

r0 exp
[

i

(
θ0

n
+ 2kπ

n

)]
(k = 0, 1, 2, . . . , n − 1).(1)

(See Fig. 11.)

xO

y

n

ck–1

ck

√
—r0

n

FIGURE 11
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The number n
√

r0 is the length of each of the radius vectors representing the n roots.
The first root c0 has argument θ0/n; and the two roots when n = 2 lie at the opposite
ends of a diameter of the circle |z| = n

√
r0, the second root being −c0. When n ≥ 3,

the roots lie at the vertices of a regular polygon of n sides inscribed in that circle.
We shall let z1/n

0 denote the set of nth roots of z0. If, in particular, z0 is a positive
real number r0, the symbol r1/n

0 denotes the entire set of roots; and the symbol n
√

r0

in expression (1) is reserved for the one positive root. When the value of θ0 that is
used in expression (1) is the principal value of arg z0 (−π < θ0 ≤ π), the number
c0 is referred to as the principal root. Thus when z0 is a positive real number r0, its
principal root is n

√
r0.

Observe that if we write expression (1) for the roots of z0 as

ck = n
√

r0 exp
(

i
θ0

n

)
exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1),

and also write

ωn = exp
(

i
2π

n

)
,(2)

it follows from property (5), Sec. 8, of eiθ that

ωk
n = exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1)(3)

and hence that

ck = c0ω
k
n (k = 0, 1, 2, . . . , n − 1).(4)

The number c0 here can, of course, be replaced by any particular nth root of z0, since
ωn represents a counterclockwise rotation through 2π/n radians.

Finally, a convenient way to remember expression (1) is to write z0 in its most
general exponential form (compare with Example 2 in Sec. 7)

z0 = r0 ei(θ0+2kπ) (k = 0, ±1, ±2, . . .)(5)

and to formally apply laws of fractional exponents involving real numbers, keeping in
mind that there are precisely n roots:

ck = [
r0 ei(θ0+2kπ)

]1/n = n
√

r0 exp
[

i(θ0 + 2kπ)

n

]
= n

√
r0 exp

[
i

(
θ0

n
+ 2kπ

n

)]

(k = 0, 1, 2, . . . , n − 1).

The examples in the next section serve to illustrate this method for finding roots of
complex numbers.
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11. EXAMPLES

In each of the examples here, we start with expression (5), Sec. 10, and proceed in the
manner described just after it.

EXAMPLE 1. Let us find all four values of (−16)1/4, or all of the fourth roots
of the number −16. One need only write

−16 = 16 exp[i(π + 2kπ)] (k = 0, ±1, ±2, . . .)

to see that the desired roots are

ck = 2 exp
[

i

(
π

4
+ kπ

2

)]
(k = 0, 1, 2, 3).(1)

They lie at the vertices of a square, inscribed in the circle |z| = 2, and are equally
spaced around that circle, starting with the principal root (Fig. 12)

c0 = 2 exp
[
i
(π

4

)]
= 2

(
cos

π

4
+ i sin

π

4

)
= 2

(
1√
2

+ i
1√
2

)
=

√
2(1 + i).

Without any further calculations, it is then evident that

c1 =
√

2(−1 + i), c2 =
√

2(−1 − i), and c3 =
√

2(1 − i).

Note how it follows from expressions (2) and (4) in Sec. 10 that these roots can
be written

c0, c0ω4, c0ω
2
4, c0ω

3
4 where ω4 = exp

(
i

π

2

)
.

x

y

c1 c0

c2 c3

z

FIGURE 12

EXAMPLE 2. In order to determine the nth roots of unity, we start with

1 = 1 exp[i(0 + 2kπ)] (k = 0, ±1, ±2 . . .)

and find that

ck = n
√

1 exp
[

i

(
0

n
+ 2kπ

n

)]
= exp

(
i
2kπ

n

)
(k = 0, 1, 2, . . . , n − 1).(2)

When n = 2, these roots are, of course, ±1. When n ≥ 3, the regular polygon at
whose vertices the roots lie is inscribed in the unit circle |z| = 1, with one vertex
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corresponding to the principal root z = 1 (k = 0). In view of expression (3), Sec. 10,
these roots are simply

1, ωn, ω
2
n, . . . , ω

n−1
n where ωn = exp

(
i
2π

n

)
.

See Fig. 13, where the cases n = 3, 4, and 6 are illustrated. Note that ωn
n = 1.

x

y

1 x

y

1 x

y

1

FIGURE 13

EXAMPLE 3. Let a denote any positive real number. In order to find the two
square roots of a + i , we first write

A = |a + i | =
√

a2 + 1 and α = Arg(a + i).

Since

a + i = A exp [i(α + 2k π)] (k = 0, ±1, ±2, . . .),

the desired square roots are

ck =
√

A exp
[
i
(α

2
+ kπ

)]
(k = 0, 1).(3)

Because eiπ = −1, these two values of (a + i)1/2 reduce to

c0 =
√

A ei α/2 and c1 = − c0.(4)

Euler’s formula tells us that

c0 =
√

A
(

cos
α

2
+ i sin

α

2

)
.(5)

Because a + i lies above the real axis, we know that 0 < α < π ; and so

cos
α

2
> 0 and sin

α

2
> 0.

Hence, in view of the trigonometric identities

cos2 α

2
= 1 + cos α

2
, sin2 α

2
= 1 − cos α

2
,
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expression (5) can be put in the form

c0 =
√

A

(√
1 + cos α

2
+ i

√
1 − cos α

2

)
.(6)

But cos α = a/A, and so√
1 ± cos α

2
=

√
1 ± (a/A)

2
=

√
A ± a

2A
.(7)

Consequently, it follows from expression (6) and (7), as well as the relation c1 = − c0,
that the two square roots of a + i(a > 0) are (see Fig. 14)

± 1√
2

(√
A + a + i

√
A − a

)
.(8)

x

y

c0

c1 = –c0
A√
—

FIGURE 14

EXERCISES
1. Find the square roots of (a) 2i ; (b) 1−√

3i and express them in rectangular coordinates.

Ans. (a) ± (1 + i); (b) ±
√

3 − i√
2

.

2. Find the three cube roots ck(k = 0, 1, 2) of −8i , express them in rectangular coordinates,
and point out why they are as shown in Fig. 15.

Ans. ±√
3 − i, 2i .

x

y
c1

c0c2

2

FIGURE 15
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3. Find (−8 − 8
√

3i)1/4, express the roots in rectangular coordinates, exhibit them as the
vertices of a certain square, and point out which is the principal root.

Ans. ±(
√

3 − i), ±(1 + √
3i).

4. In each case, find all of the roots in rectangular coordinates, exhibit them as vertices of
certain regular polygons, and identify the principal root:

(a) (−1)1/3; (b) 81/6.

Ans. (b) ±√
2, ±1 + √

3i√
2

, ±1 − √
3i√

2
.

5. According to Sec. 10, the three cube roots of a nonzero complex number z0 can be written
c0, c0ω3, c0ω

2
3 where c0 is the principal cube root of z0 and

ω3 = exp
(

i
2π

3

)
= −1 + √

3i

2
.

Show that if z0 = −4
√

2 + 4
√

2i , then c0 = √
2(1 + i) and the other two cube roots are,

in rectangular form, the numbers

c0ω3 = −(
√

3 + 1) + (
√

3 − 1)i√
2

, c0ω
2
3 = (

√
3 − 1) − (

√
3 + 1)i√

2
.

6. Find the four zeros of the polynomial z4 + 4, one of them being

z0 =
√

2 eiπ/4 = 1 + i.

Then use those zeros to factor z2 + 4 into quadratic factors with real coefficients.

Ans. (z2 + 2z + 2)(z2 − 2z + 2).

7. Show that if c is any nth root of unity other than unity itself, then

1 + c + c2 + · · · + cn−1 = 0.

Suggestion: Use the first identity in Exercise 9, Sec. 9.

8. (a) Prove that the usual formula solves the quadratic equation

az2 + bz + c = 0 (a �= 0)

when the coefficients a, b, and c are complex numbers. Specifically, by completing
the square on the left-hand side, derive the quadratic formula

z = −b + (b2 − 4ac)1/2

2a
,

where both square roots are to be considered when b2 − 4ac �= 0,

(b) Use the result in part (a) to find the roots of the equation z2 + 2z + (1 − i) = 0.

Ans. (b)

(
−1 + 1√

2

)
+ i√

2
,

(
−1 − 1√

2

)
− i√

2
.
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9. Let z = reiθ be a nonzero complex number and n a negative integer (n = −1, −2, . . .).

Then define z1/n by means of the equation z1/n = (z−1)1/m where m = −n. By showing
that the m values of (z1/m)−1 and (z−1)1/m are the same, verify that z1/n = (z1/m)−1.
(Compare with Exercise 7, Sec. 9.)

12. REGIONS IN THE COMPLEX PLANE

In this section, we are concerned with sets of complex numbers, or points in the z plane,
and their closeness to one another. Our basic tool is the concept of an ε neighborhood

|z − z0| < ε(1)

of a given point z0. It consists of all points z lying inside but not on a circle cen-
tered at z0 and with a specified a positive radius ε (Fig. 16). When the value of ε is
understood or immaterial in the discussion, the set (1) is often referred to as just a
neighborhood. Occasionally, it is convenient to speak of a deleted neighborhood, or
punctured disk,

0 < |z − z0| < ε(2)

consisting of all points z in an ε neighborhood of z0 except for the point z0 itself.

x

z

|z – z0|

z0

O

y

FIGURE 16

A point z0 is said to be an interior point of a set S whenever there is some
neighborhood of z0 that contains only points of S; it is called an exterior point of S
when there exists a neighborhood of it containing no points of S. If z0 is neither of
these, it is a boundary point of S. A boundary point is, therefore, a point all of whose
neighborhoods contain at least one point in S and at least one point not in S. The
totality of all boundary points is called the boundary of S. The circle |z| = 1, for
instance, is the boundary of each of the sets

|z| < 1 and |z| ≤ 1.(3)

A set is open if it does not contain any of its boundary points. It is left as an
exercise to show that a set is open if and only if each of its points is an interior point.
A set is closed if it contains all of its boundary points, and the closure of a set S is the
closed set consisting of all points in S together with the boundary of S. Note that the
first of sets (3) is open and that the second is its closure.

Some sets are, of course, neither open nor closed. For a set S to be not open there
must be a boundary point that is contained in the set, and for S to be not closed there
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must be a boundary point not in it. Observe that the punctured disk 0 < |z| ≤ 1 is
neither open nor closed. The set of all complex numbers is, on the other hand, both
open and closed since it has no boundary points.

An open set S is connected if each pair of points z1 and z2 in it can be joined
by a polygonal line, consisting of a finite number of line segments, joined end to end,
that lies entirely in S. The open set |z| < 1 is connected. The annulus 1 < |z| < 2
is, of course open and it is also connected (see Fig. 17). A nonempty open set that
is connected is called a domain. Note that any neighborhood is a domain. A domain
together with some, none, or all of its boundary points is usually referred to as a region.

x
z1

z2

O 1 2

y

FIGURE 17

A set S is bounded if every point in S lies inside some circle |z| = R; otherwise,
it is unbounded. Both of the sets (3) are bounded regions, and the half plane Re z ≥ 0
is unbounded.

EXAMPLE. Let us sketch the set

Im
(

1

z

)
> 1(4)

and identify a few of the properties just described.
First of all, except when z = 0,

1

z
= z̄

z z̄
= z̄

|z|2 = x − iy

x2 + y2
(z = x + iy).

Inequality (4) then becomes

−y

x2 + y2
> 1,

or

x2 + y2 + y < 0.

By completing the square, we arrive at

x2 +
(

y2 + y + 1

4

)
<

1

4
.
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So inequality (4) represents the region interior to the circle (Fig. 18)

(x − 0)2 +
(

y + 1

2

)2

=
(

1

2

)2

,

centered at z = − i/2 and with radius 1/2.

x

i
2

y

–

O

FIGURE 18

A point z0 is said to be an accumulation point, or limit point, of a set S if each
deleted neighborhood of z0 contains at least one point of S. It follows that if a set S is
closed, then it contains each of its accumulation points. For if an accumulation point
z0 were not in S, it would be a boundary point of S; but this contradicts the fact that
a closed set contains all of its boundary points. It is left as an exercise to show that
the converse is, in fact, true. Thus a set is closed if and only if it contains all of its
accumulation points.

Evidently, a point z0 is not an accumulation point of a set S whenever there exists
some deleted neighborhood of z0 that does not contain at least one point in S. Note
that the origin is the only accumulation point of the set

zn = i

n
(n = 1, 2, . . .).

EXERCISES
1. Sketch the following sets and determine which are domains:

(a) |z − 2 + i | ≤ 1; (b) |2z + 3| > 4;

(c) Im z > 1; (d) Im z = 1;

(e) 0 ≤ arg z ≤ π/4 (z �= 0); (f) |z − 4| ≥ |z|.
Ans. (b), (c) are domains.

2. Which sets in Exercise 1 are neither open nor closed?
Ans. (e).

3. Which sets in Exercise 1 are bounded?
Ans. (a).
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4. In each case, sketch the closure of the set:

(a) −π < arg z < π (z �= 0); (b) |Re z| < |z|;

(c) Re
(

1

z

)
≤ 1

2
; (d) Re(z2) > 0.

5. Let S be the open set consisting of all points z such that |z| < 1 or |z − 2| < 1. State
why S is not connected.

6. Show that a set S is open if and only if each point in S is an interior point.

7. Determine the accumulation points of each of the following sets:

(a) zn = i n (n = 1, 2, . . .); (b) zn = i n/n (n = 1, 2, . . .);

(c) 0 ≤ arg z < π/2 (z �= 0); (d) zn = (−1)n(1+i)
n − 1

n
(n = 1, 2, . . .).

Ans. (a) None; (b) 0; (d) ±(1 + i).

8. Prove that if a set contains each of its accumulation points, then it must be a closed set.

9. Show that any point z0 of a domain is an accumulation point of that domain.

10. Prove that a finite set of points z1, z2, . . . , zn cannot have any accumulation points.


