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PREFACE

Summary of Changes in
This Edition

This textbook is an expanded version of Elementary Linear Algebra, eleventh edition, by
Howard Anton. The first nine chapters of this book are identical to the first nine chapters
of that text; the tenth chapter consists of twenty applications of linear algebra drawn
from business, economics, engineering, physics, computer science, approximation theory,
ecology, demography, and genetics. The applications are largely independent of each
other, and each includes a list of mathematical prerequisites. Thus, each instructor has
the flexibility to choose those applications that are suitable for his or her students and to
incorporate each application anywhere in the course after the mathematical prerequisites
have been satisfied. Chapters 1-9 include simpler treatments of some of the applications
covered in more depth in Chapter 10.

This edition gives an introductory treatment of linear algebra that is suitable for a
first undergraduate course. Its aim is to present the fundamentals of linear algebra in the
clearest possible way—sound pedagogy is the main consideration. Although calculus
is not a prerequisite, there is some optional material that is clearly marked for students
with a calculus background. If desired, that material can be omitted without loss of
continuity.

Technology is not required to use this text, but for instructors who would like to
use MATLAB, Mathematica, Maple, or calculators with linear algebra capabilities, we
have posted some supporting material that can be accessed at either of the following
companion websites:

www.howardanton.com
www.wiley.com/college/anton
Many parts of the text have been revised based on an extensive set of reviews. Here are
the primary changes:
+ Earlier Linear Transformations Linear transformations are introduced earlier (starting
in Section 1.8). Many exercise sets, as well as parts of Chapters 4 and 8, have been
revised in keeping with the earlier introduction of linear transformations.

New Exercises Hundreds of new exercises of all types have been added throughout
the text.

Technology Exercises requiring technology such as MATLAB, Mathematica, or Maple
have been added and supporting data sets have been posted on the companion websites
for this text. The use of technology is not essential, and these exercises can be omitted
without affecting the flow of the text.

Exercise Sets Reorganized Many multiple-part exercises have been subdivided to create
a better balance between odd and even exercise types. To simplify the instructor’s task
of creating assignments, exercise sets have been arranged in clearly defined categories.

Reorganization In addition to the earlier introduction of linear transformations, the
old Section 4.12 on Dynamical Systems and Markov Chains has been moved to Chap-
ter 5 in order to incorporate material on eigenvalues and eigenvectors.

Rewriting Section 9.3 on Internet Search Engines from the previous edition has been
rewritten to reflect more accurately how the Google PageRank algorithm works in
practice. That section is now Section 10.20 of the applications version of this text.

Appendix A Rewritten The appendix on reading and writing proofs has been expanded
and revised to better support courses that focus on proving theorems.

Web Materials Supplementary web materials now include various applications mod-
ules, three modules on linear programming, and an alternative presentation of deter-
minants based on permutations.

Applications Chapter Section 10.2 of the previous edition has been moved to the
websites that accompany this text, so it is now part of a three-module set on Linear


www.wiley.com/college/anton

Hallmark Features

About the Exercises

Supplementary Materials
for Students

Preface vii

Programming. A new section on Internet search engines has been added that explains
the PageRank algorithm used by Google.

Relationships Among Concepts One of our main pedagogical goals is to convey to the
student that linear algebra is a cohesive subject and not simply a collection of isolated
definitions and techniques. One way in which we do this is by using a crescendo of
Equivalent Statements theorems that continually revisit relationships among systems
of equations, matrices, determinants, vectors, linear transformations, and eigenvalues.
To get a general sense of how we use this technique see Theorems 1.5.3, 1.6.4, 2.3.8,
4.8.8, and then Theorem 5.1.5, for example.

Smooth Transition to Abstraction Because the transition from R” to general vector
spaces is difficult for many students, considerable effort is devoted to explaining the
purpose of abstraction and helping the student to “visualize” abstract ideas by drawing
analogies to familiar geometric ideas.

Mathematical Precision When reasonable, we try to be mathematically precise. In
keeping with the level of student audience, proofs are presented in a patient style that
is tailored for beginners.

Suitability for a Diverse Audience This text is designed to serve the needs of students
in engineering, computer science, biology, physics, business, and economics as well as
those majoring in mathematics.

Historical Notes To give the students a sense of mathematical history and to convey
that real people created the mathematical theorems and equations they are studying, we
have included numerous Historical Notes that put the topic being studied in historical
perspective.

Graded Exercise Sets Each exercise set in the first nine chapters begins with routine
drill problems and progresses to problems with more substance. These are followed
by three categories of exercises, the first focusing on proofs, the second on true/false
exercises, and the third on problems requiring technology. This compartmentalization
is designed to simplify the instructor’s task of selecting exercises for homework.
Proof Exercises Linear algebra courses vary widely in their emphasis on proofs, so
exercises involving proofs have been grouped and compartmentalized for easy identifi-
cation. Appendix A has been rewritten to provide students more guidance on proving
theorems.

True/False Exercises The True/False exercises are designed to check conceptual un-
derstanding and logical reasoning. To avoid pure guesswork, the students are required
to justify their responses in some way.

Technology Exercises Exercises that require technology have also been grouped. To
avoid burdening the student with keyboarding, the relevant data files have been posted
on the websites that accompany this text.

Supplementary Exercises Each of the first nine chapters ends with a set of supplemen-
tary exercises that draw on all topics in the chapter. These tend to be more challenging.

Student Solutions Manual This supplement provides detailed solutions to most odd-
numbered exercises (ISBN 978-1-118-464427).

DataFiles Data files for the technology exercises are posted on the companion websites
that accompany this text.

MATLAB Manual and Linear Algebra Labs This supplement contains a set of MATLAB
laboratory projects written by Dan Seth of West Texas A&M University. It is designed
to help students learn key linear algebra concepts by using MATLAB and is available in
PDF form without charge to students at schools adopting the 11th edition of the text.
Videos A complete set of Daniel Solow’s How to Read and Do Proofs videos is available
to students through WileyPLUS as well as the companion websites that accompany
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Supplementary Materials
for Instructors

A Guide for the Instructor

Reviewers

this text. Those materials include a guide to help students locate the lecture videos
appropriate for specific proofs in the text.

Instructor’s Solutions Manual This supplement provides worked-out solutions to most
exercises in the text (ISBN 978-1-118-434482).

PowerPoint Presentations PowerPoint slides are provided that display important def-
initions, examples, graphics, and theorems in the book. These can also be distributed
to students as review materials or to simplify note taking.

Test Bank Test questions and sample exams are available in PDF or IATEX form.
WileyPLUS An online environment for effective teaching and learning. WileyPLUS
builds student confidence by taking the guesswork out of studying and by providing a
clear roadmap of what to do, how to do it, and whether it was done right. Its purposeis
to motivate and foster initiative so instructors can have a greater impact on classroom
achievement and beyond.

Although linear algebra courses vary widely in content and philosophy, most courses
fall into two categories—those with about 40 lectures and those with about 30 lectures.
Accordingly, we have created long and short templates as possible starting points for
constructing a course outline. Of course, these are just guides, and you will certainly
want to customize them to fit your local interests and requirements. Neither of these
sample templates includes applications or the numerical methods in Chapter 9. Those
can be added, if desired, and as time permits.

Long Template | Short Template

Chapter 1: Systems of Linear Equations and Matrices 8 lectures 6 lectures
Chapter 2: Determinants 3 lectures 2 lectures
Chapter 3: Euclidean Vector Spaces 4 lectures 3 lectures
Chapter 4: General Vector Spaces 10 lectures 9 lectures
Chapter 5: Eigenvalues and Eigenvectors 3 lectures 3 lectures
Chapter 6: Inner Product Spaces 3 lectures 1 lecture

Chapter 7: Diagonalization and Quadratic Forms 4 lectures 3 lectures
Chapter 8: General Linear Transformations 4 lectures 3 lectures
Total: 39 lectures 30 lectures

The following people reviewed the plans for this edition, critiqued much of the content,
and provided me with insightful pedagogical advice:

John Alongi, Northwestern University

Jiu Ding, University of Southern Mississippi

Eugene Don, City University of New York at Queens
John Gilbert, University of Texas Austin

Danrun Huang, St. Cloud State University

Craig Jensen, University of New Orleans

Steve Kahan, City University of New York at Queens
Harihar Khanal, Embry-Riddle Aeronautical University
Firooz Khosraviyani, Texas A&M International University
Y. George Lai, Wilfred Laurier University

Kouok Law, Georgia Perimeter College

Mark MacLean, Seattle University



Exercise Contributions

Special Contributions
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Vasileios Maroulas, University of Tennessee, Knoxville
Daniel Reynolds, Southern Methodist University

Qin Sheng, Baylor University

Laura Smithies, Kent State University

Larry Susanka, Bellevue College

Cristina Tone, University of Louisville

Yvonne Yaz, Milwaukee School of Engineering

Ruhan Zhao, State University of New York at Brockport

Special thanks are due to three talented people who worked on various aspects of the
exercises:

Przemyslaw Bogacki, Old Dominion University — who solved the exercises and created
the solutions manuals.

Roger Lipsett, Brandeis University — who proofread the manuscript and exercise solu-
tions for mathematical accuracy.

Daniel Solow, Case Western Reserve University —author of “How to Read and Do Proofs,”
for providing videos on techniques of proof and a key to using those videos in coordi-
nation with this text.

Sky Pelletier Waterpeace — who critiqued the technology exercises, suggested improve-
ments, and provided the data sets.

I would also like to express my deep appreciation to the following people with whom I
worked on a daily basis:

Anton Kaul — who worked closely with me at every stage of the project and helped to write
some new text material and exercises. On the many occasions that I needed mathematical
or pedagogical advice, he was the person I turned to. I cannot thank him enough for his
guidance and the many contributions he has made to this edition.

David Dietz — my editor, for his patience, sound judgment, and dedication to producing
a quality book.

Anne Scanlan-Rohrer — of Two Ravens Editorial, who coordinated the entire project and
brought all of the pieces together.

Jacqueline Sinacori — who managed many aspects of the content and was always there
to answer my often obscure questions.

Carol Sawyer — of The Perfect Proof, who managed the myriad of details in the production
process and helped with proofreading.

Maddy Lesure — with whom I have worked for many years and whose elegant sense of
design is apparent in the pages of this book.

Lilian Brady — my copy editor for almost 25 years. I feel fortunate to have been the ben-
eficiary of her remarkable knowledge of typography, style, grammar, and mathematics.

Pat Anton — of Anton Textbooks, Inc., who helped with the mundane chores duplicating,
shipping, accuracy checking, and tasks too numerous to mention.

John Rogosich — of Techsetters, Inc., who programmed the design, managed the compo-
sition, and resolved many difficult technical issues.

Brian Haughwout — of Techsetters, Inc., for his careful and accurate work on the illustra-
tions.

Josh Elkan — for providing valuable assistance in accuracy checking.

Howard Anton
Chris Rorres
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CHAPTER 1

. Systems of Linear
Equations and Matrices

CHAPTER CONTENTS

INTRODUCTION

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Introduction to Systems of Linear Equations 2
Gaussian Elimination 11

Matrices and Matrix Operations 25

Inverses; Algebraic Properties of Matrices 39
Elementary Matrices and a Method for Finding A~" 52
More on Linear Systems and Invertible Matrices 61
Diagonal, Triangular, and Symmetric Matrices 67
Matrix Transformations 75

Applications of Linear Systems 84

* Network Analysis (Traffic Flow) 84
e Electrical Circuits 86

e Balancing Chemical Equations 88
* Polynomial Interpolation 91

1.10 Leontief Input-Output Models 96

Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices
often appear as tables of numerical data that arise from physical observations, but they
occur in various mathematical contexts as well. For example, we will see in this chapter
that all of the information required to solve a system of equations such as

Sx+y=3
2x —y =4

is embodied in the matrix

51 3
2 -1 4

and that the solution of the system can be obtained by performing appropriate
operations on this matrix. This is particularly important in developing computer
programs for solving systems of equations because computers are well suited for
manipulating arrays of numerical information. However, matrices are not simply a
notational tool for solving systems of equations; they can be viewed as mathematical
objects in their own right, and there is a rich and important theory associated with
them that has a multitude of practical applications. It is the study of matrices and
related topics that forms the mathematical field that we call “linear algebra.” In this
chapter we will begin our study of matrices.
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1.1

Linear Equations

Introduction to Systems of Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology and
discuss a method for solving such systems.

Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)

and in three dimensions a plane in a rectangular xyz-coordinate system can be repre-
sented by an equation of the form

ax +by+cz=d (a,b,cnotall0)

These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we

define a linear equation in the n variables x{, x,, ..., x,, to be one that can be expressed
in the form

ayx; +axxy + - +ayx, = b (1)
where a;, as, . .., a, and b are constants, and the a’s are not all zero. In the special cases

where n = 2 or n = 3, we will often use variables without subscripts and write linear
equations as

aix +ay = b (aj, a; not both 0) 2)
a\x +ayy +asz =>b (aj,az,aznotall0) (3)

In the special case where b = 0, Equation (1) has the form
arxy + axxy + -+ apx, =0 4

which is called a homogeneous linear equation in the variables x1, x, ..., X,.

» EXAMPLE 1 Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All
variables occur only to the first power and do not appear, for example, as arguments of
trigonometric, logarithmic, or exponential functions. The following are linear equations:

x+3y=7 X1 —2x—3x3+x4=0
%x—y+3z=—1 xi+x2+-4+x,=1
The following are not linear equations:
x+3y2 =4 3x +2y —xy=>5
sinx +y=0 V20 4x=1 4

A finite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x,, and x3.

Sx+y=3 4x; — xp + 3x3 = —1

2x —y =4 3x1 +x24+9x3 = —4 (5-6)



The double subscripting on
the coefficients a;; of the un-
knowns gives their location
in the system—the first sub-
script indicates the equation
in which the coefficient occurs,
and the second indicates which
unknown it multiplies. Thus,
ay; is in the first equation and
multiplies x;.

Linear Systems in Two and
Three Unknowns

1.1 Introduction to Systems of Linear Equations 3

A general linear system of m equations in the n unknowns xp, x5, ..., X, can be written
as

anxy +anxy + - +awx, =b

anxy +anxy + - +ayx, =b )

A1 X1 + ApaXy + -+ + AupXy = bm

A solution of a linear system in n unknowns x1, x2, .. ., X, is a sequence of n numbers
S1, 82, ..., 8, for which the substitution
X1 =81, X2=282,..., Xp =38

makes each equation a true statement. For example, the system in (5) has the solution

and the system in (6) has the solution
x1=1, x=2, x3=-1
These solutions can be written more succinctly as
(1,=2) and (1,2,-1)

in which the names of the variables are omitted. This notation allows us to interpret
these solutions geometrically as points in two-dimensional and three-dimensional space.
More generally, a solution

X1 =381, X2=982,..., Xp =358
of a linear system in n unknowns can be written as

(51,82, .+, S)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear systems in two unknowns arise in connection with intersections of lines. For
example, consider the linear system

ax +by =c
X +byy =
in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this

system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.

In general, we say that a linear system is consistent if it has at least one solution and
inconsistent if it has no solutions. Thus, a consistent linear systemof two equations in
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y y y
X Vx X
No solution One solution Infinitely many
solutions

Figure 1.1.1 (coincident lines)

two unknowns has either one solution or infinitely many solutions—there are no other
possibilities. The same is true for a linear system of three equations in three unknowns

arx + bly =+ 1z = d1
ax + by +cz=dp
a3x + by +cz=d;

in which the graphs of the equations are planes. The solutions of the system, if any,
correspond to points where all three planes intersect, so again we see that there are only
three possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

4 3 g

No solutions No solutions No solutions No solutions
(three parallel planes; (two parallel planes; (no common intersection) (two coincident planes
no common intersection) no common intersection) parallel to the third;

no common intersection)

One solution Infinitely many solutions Infinitely many solutions Infinitely many solutions
(intersection is a point) (intersection is a line) (planes are all coincident; (two coincident planes;
intersection is a plane) intersection is a line)
Figure 1.1.2

We will prove later that our observations about the number of solutions of linear
systems of two equations in two unknowns and linear systems of three equations in
three unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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» EXAMPLE 2 A Linear System with One Solution
Solve the linear system
x—y=1
2x+y=6
Solution We can eliminate x from the second equation by adding —2 times the first
equation to the second. This yields the simplified system

x—y=1
3y=4
From the second equation we obtain y = %, and on substituting this value in the first

equation we obtainx =14+ y = % Thus, the system has the unique solution
7 4
=3 Y=3

Geometrically, this means that the lines represented by the equations in the system
intersect at the single point (%, %) We leave it for you to check this by graphing the
lines.

> EXAMPLE 3 A Linear System with No Solutions
Solve the linear system
x+ y=4
3x+3y=6
Solution We can eliminate x from the second equation by adding —3 times the first
equation to the second equation. This yields the simplified system

x+y= 4

0=-6
The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel

and distinct. We leave it for you to check this by graphing the lines or by showing that
they have the same slope but different y-intercepts.

P> EXAMPLE 4 A Linear System with Infinitely Many Solutions
Solve the linear system
4x =2y =1
16x — 8y =4
Solution We can eliminate x from the second equation by adding —4 times the first
equation to the second. This yields the simplified system

4x =2y =1
0=0

The second equation does not impose any restrictions on x and y and hence can be
omitted. Thus, the solutions of the system are those values of x and y that satisfy the
single equation

4x -2y =1 8)
Geometrically, this means the lines corresponding to the two equations in the original
system coincide. One way to describe the solution set is to solve this equation for x in
terms of y to obtainx = % + % y and then assign an arbitrary value 7 (called a parameter)
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In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x =t be
the parameter. The resulting
parametric equations would
look different but would
define the same solution set.

Augmented Matrices and
Elementary Row Operations

As noted in the introduction
to this chapter, the term “ma-
trix” is used in mathematics to
denote a rectangular array of
numbers. In a later section
we will study matrices in de-
tail, but for now we will only
be concerned with augmented
matrices for linear systems.

to y. This allows us to express the solution by the pair of equations (called parametric
equations)

X = % + %t, y=t
We can obtain specific numerical solutions from these equations by substituting numer-
ical values for the parameter t. For example, r = 0 yields the solution (% 0) , =1
yields the solution (3, 1), and r = —1 yields the solution (—%, —1) . You can confirm
that these are solutions by substituting their coordinates into the given equations.

P EXAMPLE 5 A Linear System with Infinitely Many Solutions

Solve the linear system
X— y+2z= 35
2x =2y +4z=10
3x =3y +6z=15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and
that those values of x, y, and z that satisfy the equation

xX—y+2z=5 )

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9).
We can do this by first solving this equation for x in terms of y and z, then assigning
arbitrary values r and s (parameters) to these two variables, and then expressing the
solution by the three parametric equations

x=54r—-2s, y=r, z=s

Specific solutions can be obtained by choosing numerical values for the parameters r
and s. For example, taking r = 1 and s = 0 yields the solution (6, 1, 0). <

As the number of equations and unknowns in a linear system increases, so does the
complexity of the algebra involved in finding solutions. The required computations can
be made more manageable by simplifying notation and standardizing procedures. For
example, by mentally keeping track of the location of the +s, the x’s, and the =’s in the
linear system

anxy + apxy +---+apx, =b;

anxy, +anx; +---+ apx, =b

Am1X1 + QX + -+ Xy = bm

we can abbreviate the system by writing only the rectangular array of numbers

ay ap a;, b
da  daxp axy, b
am1  Am2 Amn b

This is called the augmented matrix for the system. For example, the augmented matrix
for the system of equations

X1+ x+2x3=9 1 1 2 9

2x1 +4x, — 3x3 =1 is 2 4 -3 1

3x1 + 6x3 — Sx3 =0 3 6
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The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in

the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.

3. Add a constant times one row to another.

These are called elementary row operations on a matrix.

In the following example we will illustrate how to use elementary row operations and
an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply
to understand the computations.

» EXAMPLE 6 Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in
the system, and in the right column we solve the same system by operating on the rows
of the augmented matrix.

x4+ y+2z=9 1 1 2 9
2x +4y —3z=1 2 4 =3 1
3x +6y —52=0 3 6 -5 0

Add —2 times the first equation to the second ~ Add —2 times the first row to the second to

to obtain obtain

x+ y+2z= 9 1 1 2 9
2y — 7z =—17 0 2 =7 —17
3x+6y—-5%= 0 3 6 =5 0

Historical Note The first known use of augmented matrices appeared
between 200 B.c. and 100 B.c. in a Chinese manuscript entitled Nine
Chapters of Mathematical Art. The coefficients were arranged in
columns rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns. The
actual use of the term augmented matrix appears to have been intro-
duced by the American mathematician Maxime Bocher in his book /In-
troduction to Higher Algebra, published in 1907. In addition to being an
outstanding research mathematician and an expert in Latin, chemistry,
philosophy, zoology, geography, meteorology, art, and music, Bécher
was an outstanding expositor of mathematics whose elementary text-

X e books were greatly appreciated by students and are still in demand
Maxime Bocher today.

(1867-1918) [Image: Courtesy of the American Mathematical Society
www.ams.org]
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The solution in this example
can also be expressed as the or-
dered triple (1, 2, 3) with the
understanding that the num-
bers in the triple are in the
same order as the variables in
the system, namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in xi,

X5, and x3.
(a) X1 +5X2 - \/§X3 =1
(©) x;1 = =7x, + 3x3

(e) xf/5—2x2+x3=4

®) x4+ 3x +x1x3 =2
(d) 72+ x,+8x3 =5

(f) mx; — \/Exz =77

Add —3 times the first equation to the third to
obtain

x+ y+ 2z= 9
2y — Tz=-17
3y — 11z =-27

Multiply the second equation by % to obtain

x+ y+ 2z= 9

1, _ 17
Y- oi=3

3y — 11z =-27

Add —3 times the second equation to the third
to obtain

x+y+2z= 9
7 17

T3t =-3

i 3

1= 73

Multiply the third equation by —2 to obtain
x+y+2z= 9

7 —_
—32=

—_
-

Il
w Sl

Z

Add —1 times the second equation to the first
to obtain

Add —% times the third equation to the first
and % times the third equation to the second to
obtain

Add —3 times the first row to the third to obtain

1 1 2 9
0 2 =7 —17
0 3 —11 =27

Multiply the second row by % to obtain

Add —3 times the second row to the third to
obtain

1 2 9

7 17

0 1 -3 =3
1 3

00 = =3

1 1

Add —1 times the second row to the first to
obtain

11 35
1o 4 0¥
7 17
0 1 =3 =3
o 0 1 3

Add —% times the third row to the first and %
times the third row to the second to obtain

The solution x = 1, y = 2, z = 3 is now evident.

and y.

e) xy=1

(@) 2'3%x + /3y =1
(c) cos (%)x —4y =log3

2. In each part, determine whether the equation is linear in x

(b) 2x'P+3/y=1
(d) Zcosx —dy =0

) y+7=x



3. Using the notation of Formula (7), write down a general linear
system of

(a) two equations in two unknowns.
(b) three equations in three unknowns.

(c) two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5-6, find a linear system in the un-

knowns xp, x,, X3, ..., that corresponds to the given augmented

matrix.
2 0 o 30 -2 5
5. |3 -4 0 |7 1 4 =3
0 1 0 -2 1 7
[0 3 -1 -1 -1
@15 5 o -3 ¢
30 1 -4 3
-4 0 4 1 -3
(b)
-1 3 0 -2 -9
L0 0 0 -1 -2

In each part of Exercises 7-8, find the augmented matrix for
the linear system.

7.(@) —2x;= 6 (b) 6x; — x; +3x3=4

3)61 = 8 5X2 — X3 = 1
9)61 =-3
(c) 2x, —3x44+ xs= 0
—3X1— X2+X3 =-1
6X1+2X2—X3+2X4—3X5= 6
8. (a) 3x; —2x, = —1 (b) 2x, + 2x3 =1
4X1+5)C2= 3 3X1—X2+4.X3=7
Txi+3x= 2 6x; +x, — x3=0
(©) x =1
X2 =2
X3 =3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system
le —4XZ — X3 =1
X, — 3X2 + x3= 1
3.X] - 5.X2 - 3X3 =1

@ (3,1, 1)
@ (%.3.2)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

(b) 3,1, 1)
(e) (17,7,5)

(c) (13,5,2)

x+2y—-2z=3
Ix— y+ z=1
—x+ 5 —-5z=5

1.1 Introduction to Systems of Linear Equations 9

® (3.5.9)

© (5.7.2)

@ (3.5.1) © (5.8,1)

@ (5. 4.3)

11. In each part, solve the linear system, if possible, and use the
result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

(a) 3x —2y =4
6x —4y =9

b)2x —4y=1
4x =8y =2

() x—=2y=0
x—4y =38

12. Under what conditions on a and b will the following linear
system have no solutions, one solution, infinitely many solu-
tions?

2x =3y =a
4x —6y =D
In each part of Exercises 13-14, use parametric equations to
describe the solution set of the linear equation.

13. (a) 7x — 5y =3
(b) 3x; = Sxp +4x3 =7
() —8x;4+2x; —Sx3+6x4 =1
d3w—-8w+2x—y+4z=0

14. (a) x + 10y =2
() x; +3x, — 12x3 =3
() 4x; + 2x; + 3x3 + x4 =20
Dv+w+x—-5y+7z=0

In Exercises 15-16, each linear system has infinitely many so-
lutions. Use parametric equations to describe its solution set.

15. (a) 2x — 3y =1

6x —9y =3
(b) X1+3XZ— X3 = —4
3x1 =+ 9.X2 — 3X3 =—12
—X1—3)C2+ X3 = 4
16. (a) 6x; + 2x, = —8 (b) 2x— y+2z= —4
3x1 + xo=-—4 6x — 3y + 6z =—12

—4x +2y —4z= 8§

In Exercises 17-18, find a single elementary row operation that
will create a 1 in the upper left corner of the given augmented ma-
trix and will not create any fractions in its first row.

3 -1 2 4 [0 -1 =5 0
7. | 2 -3 3 2| ®|[2 -9 3 2
L0 2 -3 1] 1 4 -3 3
(2 4 —6 8] [ 7 -4 -2 2
8.@| 7 1 4 3 ®| 3 -1 8§ 1
-5 4 2 7] 6 3 -1 4
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In Exercises 19-20, find all values of k for which the given
augmented matrix corresponds to a consistent linear system.

T R Y

O e

21. The curve y = ax? 4 bx + ¢ shown in the accompanying fig-
ure passes through the points (x1, y;), (x2, y2), and (x3, y3).
Show that the coefficients a, b, and ¢ form a solution of the
system of linear equations whose augmented matrix is

2
xiox 1oy
2
x5 x 1 oy

X3 x5 1oy

y=ax’+bx+c

(Xga,V})
(x1.71)

(2. 72)

Figure Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations

xi+kxy=c and x +Ilx,=d

have the same solution set, then the two equations are identical
(i.e, k =land c =d).

24. Consider the system of equations

ax + by =k
cx +dy=1
ex + fy=m

Discuss the relative positions of the lines ax + by = k,
cx +dy =1,and ex + fy = m when

(a) the system has no solutions.
(b) the system has exactly one solution.

(c) the system has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat, 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food 1: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, 1 unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains 1 unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Let x, y, and z denote the number of ounces of the first, sec-
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in x, y, and z
whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and ¢ such that
the parabola y = ax®+ bx + ¢ passes through the points
(1, 1), (2,4), and (—1, 1). Find (but do not solve) a system
of linear equations whose solutions provide values for a, b,
and ¢. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that the
sum of the numbers is 12, the sum of two times the first plus
the second plus two times the third is 5, and the third number
is one more than the first. Find (but do not solve) a linear
system whose equations describe the three conditions.

True-False Exercises

TF. In parts (a)—(h) determine whether the statement is true or
false, and justify your answer.

(a) A linear system whose equations are all homogeneous must
be consistent.

(b) Multiplying a row of an augmented matrix through by zero is
an acceptable elementary row operation.

(c) The linear system
x— y=3
2x =2y =k
cannot have a unique solution, regardless of the value of k.

(d) A single linear equation with two or more unknowns must
have infinitely many solutions.

(e) If the number of equations in a linear system exceeds the num-
ber of unknowns, then the system must be inconsistent.

(f) If each equation in a consistent linear system is multiplied
through by a constant c, then all solutions to the new system
can be obtained by multiplying solutions from the original
system by c.

(g) Elementary row operations permit one row of an augmented
matrix to be subtracted from another.

(h) The linear system with corresponding augmented matrix
2 -1 4
0 0 -1

Working with Technology

is consistent.

T1. Solve the linear systems in Examples 2, 3, and 4 to see how
your technology utility handles the three types of systems.

T2. Use the result in Exercise 21 to find values of a, b, and ¢
for which the curve y = ax? + bx + ¢ passes through the points
(=1,1,4),(0,0,8),and (1, 1, 7).
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Considerations in Solving
Linear Systems

Echelon Forms

1.2 Gaussian Elimination 11

Gaussian Elimination

In this section we will develop a systematic procedure for solving systems of linear
equations. The procedure is based on the idea of performing certain operations on the rows
of the augmented matrix that simplify it to a form from which the solution of the system
can be ascertained by inspection.

When considering methods for solving systems of linear equations, it is important to
distinguish between large systems that must be solved by computer and small systems
that can be solved by hand. For example, there are many applications that lead to
linear systems in thousands or even millions of unknowns. Large systems require special
techniques to deal with issues of memory size, roundoff errors, solution time, and so
forth. Such techniques are studied in the field of numerical analysis and will only be
touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z
by reducing the augmented matrix to the form

1 0 0 1
01 0 2
00 I 3

from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
isa 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

P> EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

o 1 =2 0 1
0 0 4 1 00
o o o 1 3 0 0
o 1 o0 7|, |0 1 0], ,
o o0 o0 o0 O 0 0
0o o0 1 -1 0 0 1
o o0 o0 0 O

The following matrices are in row echelon form but not reduced row echelon form.

1 4 -3 7 1 1 0 0 1 2 6 0
0 1 6 21, 01 0], 0 0 I -1 0
0 0 1 5 0 0 0 0 0 0 0 1
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In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
3,-1,0,5).

P> EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the s, all matrices of the following types
are in row echelon form:

0 1 % % % % x % % 3%
I % % x* I % % x 1 % *x x
00 0 1 % % % % % x
01 % % 01 % x% 01 % =%
, , , 100 0 0 1 % % % % %
00 1 =% 00 1 =% 0000
000001 % % % %
0001 0000 0000
000O0OO0OO0TO0T1 %
All matrices of the following types are in reduced row echelon form:
01 « 000 % % 0 =%
1 000 1 00 % 1 0 % =%
0001 0 % % 0 =%
0100 010 % 01 % =%
, , , 000010 % %0 x|«
0010 00 1 % 0000
000001 =x % 0 %
0001 0000 0000
000O0O0OO0OO0OO0T1 %

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

» EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns xp, x;, x3, and
x4 has been reduced by elementary row operations to

1 0 0 0 3
0 1 0 0 -1
0 0 1 0 0
0 0 0 1 5

This matrix is in reduced row echelon form and corresponds to the equations

X1 = 3
X2 =—1
X3 = 0
X4 = 5
Thus, the system has a unique solution, namely, x; = 3, x; = —1,x3 =0, x4 = 5.

» EXAMPLE 4 Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, ¥, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

1 00 0 1 0 3 -1 1 =5 1 4
@lo 1 2 0 ®lo 1 —4 2 @0 0 o0 o
00 0 1 0 0 0 0 0 0 0 0



We will usually denote pa-
rameters in a general solution
by the letters r, s, ¢, ..., but
any letters that do not con-
flict with the names of the
unknowns can be used. For
systems with more than three
unknowns, subscripted letters
such as t;, t», t3, . . . are conve-
nient.

1.2 Gaussian Elimination 13

Solution (a) The equation that corresponds to the last row of the augmented matrix is
0x +0y+0z =1
Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.
Solution (b) The equation that corresponds to the last row of the augmented matrix is
0x +0y4+0z=0
This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the
linear system corresponding to the augmented matrix is
X +3z=-1
y—4z= 2
Since x and y correspond to the leading 1’s in the augmented matrix, we call these

the leading variables. The remaining variables (in this case z) are called firee variables.
Solving for the leading variables in terms of the free variables gives

x=—-1-3z
y=2+4z
From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value ¢, which then determines values for x and y. Thus, the
solution set can be represented by the parametric equations
x=—1-3t, y=2+4t, z=t
By substituting various values for ¢ in these equations we can obtain various solutions
of the system. For example, setting ¢ = 0 yields the solution
x=-1, y=2, z=0
and setting r = 1 yields the solution
x=—4, y=6, z=1

Solution (¢) As explained in part (b), we can omit the equations corresponding to the
zero rows, in which case the linear system associated with the augmented matrix consists
of the single equation

x—=5y+z=4 (1)
from which we see that the solution set is a plane in three-dimensional space. Although
(1) is a valid form of the solution set, there are many applications in which it is preferable
to express the solution set in parametric form. We can convert (1) to parametric form
by solving for the leading variable x in terms of the free variables y and z to obtain

x =445y —z

From this equation we see that the free variables can be assigned arbitrary values, say
y = s and z = ¢, which then determine the value of x. Thus, the solution set can be
expressed parametrically as

x=4+5—1t, y=s, z=t d ()

Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

DEFINITION 1 Ifalinear system has infinitely many solutions, then a set of parametric
equations from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.
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Elimination Methods

We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.

0 0o -2 0 7 12
2 4 -10 6 12 28
2 4 =5 6 -5 -1

Step 1. Locate the leftmost column that does not consist entirely of zeros.

o o -2 0 7 12
2 4 —-10 6 12 28
2 4 -5 6 -5 -1

T— Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.

2 4 —10 6 12 28
0 0 -2 0 7 12 <« The first and second rows in the preceding

matrix were interchanged.
2 4 =5 6 -5 -1

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.

1 2 =5 3 6 14
0 0 -2 0 7 12 <« The first row of the preceding matrix was

multiplied by %
2 4 -5 6 -5 —1

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.

1 2 =5 3 6 14
0 0o -2 0 7 12 <« —2 times the first row of the preceding

matrix was added to the third row.
0 0 5 0 —17 =29

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

1 2 =5 3 6 14
0 0 -2 0 7 12

0 0 5 0 —-17 =29
L Leftmost nonzero column
in the submatrix
1 2 =5 3 6 14

T'he first row in the submatrix was
-

(e
o
—_
(e
|
[EN]
|
(@)}

multiplied by 7% to introduce a
leading 1. -

o
o
9
o
|
-
2
|
)
O
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1 2 =5 3 6 14
0 0 1 0 _% —6 - S times the first row of the submatrix
was added to the second row of the
0 0 0 0 1 1 submatrix to introduce a zero below
- 2 - the leading 1.
1 2 =5 3 6 14
0 0 1 0o - 7 —6 <« The top row in the subnmlrix.\ms
2 covered, and we returned again to
0O 0 0 0 % 1 Step 1.
L Leftmost nonzero column
in the new submatrix
1 2 =5 3 6 14
0 0 1 0 — Z _6 <« The first (and only) row in the new
2 submatrix was multiplied by 2 to
0 0 0 0 1 2 introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.

1 2 -5 3 6 14

0 0 1 0 0 1 - 7 times the third row of the preceding
matrix was added to the second row.

0 0 0 0 1 2

1 2 =5 3 0 2

0 0 1 O 0 <« —06 times the third row was added to the
first row.

0 0 0 0 1 2

1 2 0 3 0 7

0 0 1 0 0 1 <« 5 times the second row was added to the
first row.

0 0 0 0 1 2

The last matrix is in reduced row echelon form.

The procedure (or algorithm) we have just described for reducing a matrix to reduced
row echelon form is called Gauss—Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

= i Historical Note Although versions of Gaussian elimination were known much
L oy = earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746-1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by

e . the method that we now call “Gaussian elimination.” The work of Gauss cre-
e ated a sensation when Ceres reappeared a year later in the constellation Virgo

Carl Friedrich Gauss Wilhelm Jordan at almost the precise position that he predicted! The basic idea of the method
(1777-1855) (1842-1899) was further popularized by the German engineer Wilhelm Jordan in his book

on geodesy (the science of measuring Earth shapes) entitled Handbuch der Ver-

messungskunde and published in 1888.
[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
Leemage/Universal Images Group/Getty Images (Jordan)]
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used, then the procedure produces a row echelon form and is called Gaussian elimination.
For example, in the preceding computations a row echelon form was obtained at the end
of Step 5.

P> EXAMPLE 5 Gauss-Jordan Elimination

Solve by Gauss—Jordan elimination.

X1+ 3x — 2x3 + 2x5 = 0

2x1 4+ 6x2 — 5x3 — 2x4 +4x5 — 3x6=—1
S5x3 + 10x4 + 15x¢ = 5

2x1 + 6x> + 8x4 + 4x5 + 18x¢ =

Solution The augmented matrix for the system is

1 3 =2 0 2 0 O]
2 6 =5 -2 4 -3 -1
0 0 5 10 0 15 5
2 6 0 8 4 18 6

Note that in constructing the
linear system in (3) we ignored
the row of zeros in the corre-
sponding augmented matrix.
Why is this justified?

Adding —2 times the first row to the second and fourth rows gives

3 =2 0 2 0 0]
0 -1 =2 0 -3 -1
0 5 10 0 15 5
0 0 4 8 0 18 6

[

Multiplying the second row by —1 and then adding —5 times the new second row to the
third row and —4 times the new second row to the fourth row gives

1 3 -2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0

0 0 0 0 0 6 2

Interchanging the third and fourth rows and then multiplying the third row of the re-
sulting matrix by é gives the row echelon form

1 3 -2 0 2 0 0
0 0 1 2 0 3
0 0 0 0 0 1
0 0 0 0 0 0

This completes the forward phase since
there are zeros below the leading 17s.

O W= =

Adding —3 times the third row to the second row and then adding 2 times the second
row of the resulting matrix to the first row yields the reduced row echelon form

1 3 0 4 2 0 0

0 0 1 2 0 0 0 ) :
This completes the backward phase since

0 0 0 0 0 1 % there are zeros above the leading 1’s.

0 0 0 0 0 0 0

The corresponding system of equations is

+ 4x4 + 2x5 =
X3 + 2x4

X1 + 3x;

S O

(©)

02| —

X6
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Solving for the leading variables, we obtain

X1 = —3)62 — 4)64 - 2)65
X3 = —ZX4

1
Xo = 3

Finally, we express the general solution of the system parametrically by assigning the
free variables x;, x4, and x5 arbitrary values r, s, and ¢, respectively. This yields

<

X1 =—-3r—4s —=2t, xo=vr, x3=-25, X4=2S8, X5=1, XGZ%

A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

anxy + apxy +---+ apx, =0

a)xy + anxy +---+ ayux, =0

Am1X1 + ApaX2 + -+ QupXp = 0

Every homogeneous system of linear equations is consistent because all such systems
havex; =0,x, =0, ..., x, = 0asasolution. This solution is called the trivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:
» The system has only the trivial solution.

* The system has infinitely many solutions in addition to the trivial solution.
In the special case of a homogeneous linear system of two equations in two unknowns,

say
aix + by =0 (a1, by not both zero)

ax + byy = 0 (az, by not both zero)

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).

ax+by=0
X

x+by=0 apx +by=0
d2% T 02 and
a)x +byy=C
Only the trivial solution Infinitely many
solutions

Figure 1.2.1

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.
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Free Variables in
Homogeneous Linear
Systems

» EXAMPLE 6 A Homogeneous System

Use Gauss—Jordan elimination to solve the homogeneous linear system

X1+ 3x — 2x3 + 2x5 =0
2x1 + 6x2 — S5x3 — 2x4 +4x5 — 3x=0 @

Sx3 + 10x4 + 15x¢ =0

2x1 4+ 6x> + 8x4 +4x5 4+ 18x4 =0

Solution Observe first that the coefficients of the unknowns in this system are the same
as those in Example 5; that is, the two systems differ only in the constants on the right
side. The augmented matrix for the given homogeneous system is

1 3 =2 0 2 0
2 6 -5 =2 4 =3
0 0 5 10 0 15
2 6 0 8 4 18

©)

S O o O

which is the same as the augmented matrix for the system in Example 5, except for zeros
in the last column. Thus, the reduced row echelon form of this matrix will be the same
as that of the augmented matrix in Example 5, except for the last column. However,
a moment’s reflection will make it evident that a column of zeros is not changed by an
elementary row operation, so the reduced row echelon form of (5) is

1 304 2 00
001 2 000
0000 O 1 O0 ©
0 00O OO0 O
The corresponding system of equations is
x| + 3)62 + 4)64 + 2)65 =0
X3 + 2)64 =0
X = 0
Solving for the leading variables, we obtain
X1 = —3x, —4x4 — 2x5
X3 = —2x4 @)

)C()ZO

If we now assign the free variables x;, x4, and x5 arbitrary values r, s, and ¢, respectively,
then we can express the solution set parametrically as

X1 =-3r—4s —=2t, xo=vr, x3=-25, xag=35, xs5=1, x¢=0

Note that the trivial solution results whenr = s =t = 0. <

Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.



Note that Theorem 1.2.2 ap-
plies only to homogeneous
systems—a nonhomogeneous
system with more unknowns
than equations need not be
consistent. However, we will
prove later that if a nonho-
mogeneous system with more
unknowns then equations is
consistent, then it has in-
finitely many solutions.

Gaussian Elimination and
Back-Substitution
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2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0)61 +0X2 +OX3 +OX4+0X5 +0)C6 =0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous linear
system has any rows of zero, the linear system corresponding to that reduced row
echelon form will either have the same number of equations as the original system
or it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading
variable, the homogeneous system corresponding to the reduced row echelon form of
the augmented matrix must have r leading variables and n — r free variables. Thus, this
system is of the form

Xk, +>()=0
Xk, +Z()=0

. . (®)
X, +2.()=0

where in each equation the expression ) () denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

THEOREM 1.2.1 Free Variable Theorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n — r free variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
more unknowns than equations. Specifically, if a homogeneous linear system has m
equations in n unknowns, and if m < n, then it must also be true that r < n (why?).
This being the case, the theorem implies that there is at least one free variable, and this
implies that the system has infinitely many solutions. Thus, we have the following result.

THEOREM 1.2.2 A homogeneous linear system with more unknowns than equations has
infinitely many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.

For small linear systems that are solved by hand (such as most of those in this text),
Gauss—Jordan elimination (reduction to reduced row echelon form) is a good procedure
to use. However, for large linear systems that require a computer solution, it is generally
more efficient to use Gaussian elimination (reduction to row echelon form) followed by
a technique known as back-substitution to complete the process of solving the system.
The next example illustrates this technique.
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» EXAMPLE 7 Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

1 3 =2 0 2 0 0
0 0 2 0 3 1
o 0o o0 o o0 1 1
0 0 0 0 0 0 0
To solve the corresponding system of equations
X1 + 3)62 — 2)63 + 2)65 0
X3 + 2x4 + 3xg =1
X = %
we proceed as follows:
Step 1. Solve the equations for the leading variables.
X1 = —3x, + 2x3 — 2x;5

x3=1—2x4—3x6

1
X6=§

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.
Substituting xs = % into the second equation yields

X1 = —3x, + 2x3 — 2x;5
X3 = —ZX4

1
X6=§

Substituting x3 = —2xy4 into the first equation yields

X = —3XQ - 4X4 — 2)(5
X3 = —ZJC4

1
X = 3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x,, x4, and x5 the arbitrary values r, s, and ¢, respectively, the
general solution is given by the formulas

X1 =-3r—4s —=2t, xo=r, x3=-25, X4=3S8, X5=1, Xg=

This agrees with the solution obtained in Example 5.

» EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the un-
knowns x;, x5, x3, and x4. These matrices are all in row echelon form but not reduced row
echelon form. Discuss the existence and uniqueness of solutions to the corresponding
linear systems
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7 2 5 1 -3 7 2 5 1 -3 7 2 5
2 —4 1 0 1 2 —4 1 0 1 2 —4 1
1 6 9 ®) 0 0 1 6 9 © 0 O 1 6 9
0 0 1 0 0 0 0 O 0 0 0 1 0

Solution (a) The last row corresponds to the equation
0x1 +0X2 +0X3 +0)C4 = 1
from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation
Ox; +0x7 4+ 0x3 +0x4 =0

which has no effect on the solution set. In the remaining three equations the variables
X1, X2, and x5 correspond to leading 1’s and hence are leading variables. The variable x4
is a free variable. With a little algebra, the leading variables can be expressed in terms
of the free variable, and the free variable can be assigned an arbitrary value. Thus, the
system must have infinitely many solutions.

Solution (¢) The last row corresponds to the equation
X4 = 0

which gives us a numerical value for x,4. If we substitute this value into the third equation,
namely,
X3+ 6)64 =9

we obtain x3 = 9. You should now be able to see that if we continue this process and
substitute the known values of x3 and x4 into the equation corresponding to the second
row, we will obtain a unique numerical value for x;; and if, finally, we substitute the
known values of x4, x3, and x, into the equation corresponding to the first row, we will
produce a unique numerical value for x;. Thus, the system has a unique solution. <

There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss—Jordan elimination or some other sequence of elementary row oper-
ations, the same reduced row echelon form will result in the end.”

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

w

Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix A have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of A. A
column that contains a pivot position is called a pivot column of A.

* A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A
Simple Proof,” by Thomas Yuster, Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93-94.
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» EXAMPLE 9 Pivot Positions and Columns
Earlier in this section (immediately after Definition 1) we found a row echelon form of

If A is the augmented ma- 0 0 -2 0 7 12]
trix for a linear system, then A=1|2 4 —10 6 12 28
the pivot columns identify the 2 4 5 6 —5 —1

leading variables. As an illus-
tration, in Example 5 the pivot to be

columns are 1, 3, and 6, and 1 2 =5 3 6 14
theleading variables are x|, x3, 0 0 1 0o -1 _—6
and xg. 2

0 0 0 0 1 2

The leading 1’s occur in positions (row 1, column 1), (row 2, column 3), and (row 3,
column 5). These are the pivot positions. The pivot columns are columns 1, 3, and 5.

<

Roundoff Error and  There is often a gap between mathematical theory and its practical implementation—
Instability — Gauss—Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability.
For example, it can be shown that for large linear systems Gauss—Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in
Chapter 9.

Exercise Set 1.2

In Exercises 1-2, determine whether the matrix is in row ech- 123 45
elon form, reduced row echelon form, both, or neither. (f) o7 13 (8 b2 ol
0 0 0 0 1 0 0 1 -2
[1 0 0 1 00 01 0 00 0 00
L@ 10 10 (b) 1010 © (0 01 In Exercises 3—4, suppose that the augmented matrix for a lin-
[0 0 1 000 0 00 ear system has been reduced by row operations to the given row
_ echelon form. Solve the system.
1 2 0 3 0
1 0 3 1 00 I 1 0 M — 4
(d) (e) 3 7
01 2 4 0 0 0 0 1 3. () |0 1 2 >
10 0 0 0 0 0 0 1 5
o i - B
o lo o © 1 —7 5 5 1 0 8 5 6
¥lo 1 3 2 ®lo 1 4 -9 3
K - 10 0 1 1 2
— B 7 =2 0 -8 =3
2 0 1 0 0 3 4 0 0 | | 6 5
2. |0 1 0 ® o 1 0 © [0 0 1 (©) .
|0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
i 5 -3 1 2 3 1 -3 7 1
@ |0 1 1 e ]0 0 0 @ |0 1 4 0
K 0 0 0 0 10 0 0 1




1 0 0 -3
4. |0 1 0
0 0 1
(1 0o o -7 8
mlo 1 0o 3 2
o 0o 1 1 =5
M -6 0o 0 3 -2
o0 0 1 0 4 7
©lo 0o 0o 1 5 8
o 0o o0 0 0 0
(1 =3 0 o0
@lo o 1 o0
0o 0o 0o 1

In Exercises 5-8, solve the linear system by Gaussian elimi-
nation.

5. x| + .X2+2X3= 8 6.

—X1 — 2X2 + SX3 =1
3X1 — 7)62 + 4.)63 =10

2)61 + 2X2 + 2.X3 = 0
—2X1 + 5X2 + 2.X3
8x1 + x4+ 4x3=—1

7. x— y+2z— w=-1
2x+ y—2z -2w=-2
—x+2y—4z+ w= 1

3x —3w=-3

8. —2b+4+3c= 1
3a +6b —3c=-2
6a +6b+3c= 5

In Exercises 9-12, solve the linear system by Gauss—Jordan
elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13-14, determine whether the homogeneous sys-
tem has nontrivial solutions by inspection (without pencil and

paper).

13. 2)(1 - SXZ +4X3 — X3 = 0
7x1+ .XZ—8.X3+9X4=O
2x1 +8x + x3— x4=0

14. x; +3x, — x3=0

X, — 8x3=0

4x;, =0

In Exercises 15-22, solve the given linear system by any
method.

15. 2x1 + x +3x3=0

X1 + 2x, =0

X+ x3=0

16. 2x — y—3z=0
—x+2y—-3z=0
x+ y+4z=0
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17. 3.X1 + x> +X3+X4:0 18.
5X1—X2+X3—X4:0

v+3w—-2x=0
2u+ v—4w+3x=0
2u+3v+2w— x=0
—4u —3v 45w —4x =0

19. 2x +2y+4z=0
w — y—3z=0
2w+3x+ y+ z=0

2w+ x+3y—-2z=0

20. x; + 3x, +x4=0
X1 + 4x, + 2x3 =0
—2xy) —2x3 — x4 =0

2x; —4x + x3+x4=0

X —2x — x34+x3=0

220, — L+3L+4l,= 9
I — 2L+ 7L = 11
3, — 3L+ L+5L= 8

2+ L+ 4L+ 41, = 10

22. Z3+ Z4+25=O
—Zl— ZZ+ZZ3_3Z4+ZSZO
Zl+ 22—223 —ZSZO

27, + 27, — Zs +Z5=0

In each part of Exercises 23-24, the augmented matrix for a
linear system is given in which the asterisk represents an unspec-
ified real number. Determine whether the system is consistent,
and if so whether the solution is unique. Answer “inconclusive” if
there is not enough information to make a decision.

1 ] 1 % % ]

23.(a) [0 1 ® |10 1 = =x

10 0 1 x| [0 0 0 0]

M1 % % x| (1 % % x|

© |0 1 % =% @0 0 x 0

10 0 0 1] [0 0 1 ]

1 % *x  «] 1 0 0 x|
24.(a) |0 1 =x =x ® [« 1 0

100 1 1] L *x ox 1 x|

1 0 0 0 1 % % ]

© |1 0 0 1 @if1 o o0 1

L1 ox % % |1 0 0 1]

In Exercises 25-26, determine the values of a for which the
system has no solutions, exactly one solution, or infinitely many
solutions.

25. x+2y — 3z = 4
y+ S5z = 2
dx+ y+@—-14)z=a+2

3x —
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26. x +2y+ z7=2
2x — 2y + 3z=1
x+2y—(@—-3z=a

In Exercises 27-28, what condition, if any, must a, b, and ¢
satisfy for the linear system to be consistent?

27.x+3y— z=a 28. x+3y+z=a
x4+ y+2z=5>b —x—=2y+z=">
2y —3z=c¢ 3x+7y—z=c¢

In Exercises 29-30, solve the following systems, where a, b,
and c are constants.

29.2x+ y=a 30, x;+ X+ x3=a
3x +6y="> 2x, +2x3=05b
3x; +3x3=c¢

31. Find two different row echelon forms of

;]

This exercise shows that a matrix can have multiple row eche-

lon forms.
32. Reduce
2 1 3
0o -2 =29
3 4 5

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0<a<27,0<B <2m,and0 <y <27.
sina + 2cos B 4+ 3tany =0
2sina + Scos B+ 3tany =0
—sinae — 5cosfB 4+ Stany =0
[Hint: Begin by making the substitutions x = sin «,

y=-cospB,and z =tany.]

34. Solve the following system of nonlinear equations for the un-
known angles «, 8, and y, where 0 < o <27,0 < 8 <2m,
and0 <y <.

2sinae — cosf + 3tany =3
4sina 4+ 2cosf — 2tany =2
6sina — 3cosp + tany =9
35. Solve the following system of nonlinear equations for x, y,
and z.
+y2 4+ 2=6
2=y +22=2
2+ y - =3
[Hint: Begin by making the substitutions X = x2, ¥ = y?,
Z=17]

36. Solve the following system for x, y, and z.

1 2 4_l
x oy oz
2 3 8
-+—-+-=0
x 'y z
1 9 10
4+l "5
x 'y z

37. Find the coefficients a, b, ¢, and d so that the curve shown
in the accompanying figure is the graph of the equation
y=ax’+bx>+cx +d.

y

Figure Ex-37

38. Find the coefficients a, b, ¢, and d so that the circle shown in
the accompanying figure is given by the equation
ax*+ay’> +bx +cy+d=0.

y
-2.7)

4.5

X

N

39. If the linear system
aixx +byy+cz=0
ax —byy+cz2=0

Figure Ex-38

azx + b3y —c3z=0

has only the trivial solution, what can be said about the solu-
tions of the following system?

ax+byy+cz= 3
ax —byy+cz= 17
azx +byy —c;z =11

40. (a) If A is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

(b) If B is a matrix with three rows and six columns, then
what is the maximum possible number of parameters in
the general solution of the linear system with augmented
matrix B?

(c) If C is a matrix with five rows and three columns, then
what is the minimum possible number of rows of zeros in
any row echelon form of C?



41. Describe all possible reduced row echelon forms of

a b ¢ d
a b c ¥ i
8
(@ |d e f ® | . "
. i k1
g h i
m n p g
42. Consider the system of equations
ax+by=0
cx+dy=0
ex+ fy=0

Discuss the relative positions of the lines ax + by = 0,
cx +dy = 0,and ex + fy = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs
43. (a) Prove that if ad — bc # 0, then the reduced row echelon

form of
a b| . 1 0
is
c d 0 1

(b) Use the resultin part (a) to prove thatif ad — bc # 0, then
the linear system
ax +by =k

cx+dy=1
has exactly one solution.

True-False Exercises

TF. In parts (a)—(i) determine whether the statement is true or
false, and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in
row echelon form.

(b) If an elementary row operation is applied to a matrix that is
in row echelon form, the resulting matrix will still be in row
echelon form.

(c) Every matrix has a unique row echelon form.
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(d) A homogeneous linear system in n unknowns whose corre-
sponding augmented matrix has a reduced row echelon form
with r leading 1’s has n — r free variables.

(e) All leading 1’s in a matrix in row echelon form must occur in
different columns.

(f) If every column of a matrix in row echelon form has a leading
1, then all entries that are not leading 1’s are zero.

(g) If ahomogeneous linear system of n equations in n unknowns
has a corresponding augmented matrix with a reduced row
echelon form containing n leading 1’s, then the linear system
has only the trivial solution.

(h) If the reduced row echelon form of the augmented matrix for
a linear system has a row of zeros, then the system must have
infinitely many solutions.

(1) Ifalinear system has more unknowns than equations, then it
must have infinitely many solutions.
Working with Technology

T1. Find the reduced row echelon form of the augmented matrix
for the linear system:

6X1 + X -+ 4.X4 =-3
—Ox; 4+ 2x 4+ 3x3 —8xy = 1
7)61 — 4.X3 + 5X4 = 2

Use your result to determine whether the system is consistent and,
if so, find its solution.

T2. Find values of the constants A, B, C, and D that make the
following equation an identity (i.e., true for all values of x).

3x3 4 4x? — 6x _ Ax + B n C n D
(2+2x+2)E2—1)  x2+2x+2 x+1
[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in

the two numerators. Students of calculus will recognize this as a
problem in partial fractions.]

x—1

1.3 Matrices and Matrix Operations

Rectangular arrays of real numbers arise in contexts other than as augmented matrices for

linear systems. In this section we will begin to study matrices as objects in their own right

by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and
Terminology

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, to
abbreviate systems of linear equations. However, rectangular arrays of numbers occur

in other contexts as well. For example, the following rectangular array with three rows
and seven columns might describe the number of hours that a student spent studying
three subjects during a certain week:
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Matrix brackets are often
omitted from 1 x 1 matri-
ces, making it impossible to
tell, for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from the
context.

Mon. Tues. Wed. Thurs. Fri. Sat. Sun.

Math 2 3 2 4 1 4 2
History 0 3 1 4 3 2 2
Language 4 1 3 1 0 0 2

If we suppress the headings, then we are left with the following rectangular array of
numbers with three rows and seven columns, called a “matrix”:

A O N
—_ D W
W - N
e S
S W o=
S N B
[N 2N ST NS

More generally, we make the following definition.

DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the entries in the matrix.

» EXAMPLE 1 Examples of Matrices

Some examples of matrices are

—/2

1
1 , |:3i|, [4] «

1 2
30, 2 1 0 —=3]
-1 4 0

S wi—

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 x 2). In a size description,
the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes 1 x 4, 3 x 3, 2 x 1, and
1 x 1, respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
is called a column vector (or a column matrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

A 2 1 7 c a b ¢
_[3 4 2} o _|:d e f]
When discussing matrices, it iscommon to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.

The entry that occurs in row 7 and column j of a matrix A will be denoted by a;;.
Thus a general 3 x 4 matrix might be written as



A matrix with n rows and n
columns is said to be a square
matrix of order n.

Operations on Matrices
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app ap apz apg
A=lan ap ap ay
asy dzx  asz Az

and a general m x n matrix as

ar aip A
asy dy -+ a4y

A= . ! )]
a1 am? e Amn

When a compact notation is desired, the preceding matrix can be written as
[aijlmxn or [a;]

the first notation being used when it is important in the discussion to know the size,
and the second when the size need not be emphasized. Usually, we will match the letter
denoting a matrix with the letter denoting its entries; thus, for a matrix B we would
generally use b;; for the entry in row i and column j, and for a matrix C we would use
the notation c;;.

The entry in row i and column j of a matrix A is also commonly denoted by the
symbol (A);;. Thus, for matrix (1) above, we have

(A)ij = ajj

2 =3
A=
7 0
we have (A)11 =2, (A)12 = =3, (A)21 =7, and (A)p = 0.
Row and column vectors are of special importance, and it is common practice to
denote them by boldface lowercase letters rather than capital letters. For such matrices,

double subscripting of the entries is unnecessary. Thus a general 1 x n row vector a and
a general m x 1 column vector b would be written as

and for the matrix

by
by
a=|[a a --- a,] and b= .
by
A matrix A with n rows and n columns is called a square matrix of order n, and the
shaded entries a1, ax, . . ., a,, in (2) are said to be on the main diagonal of A.
ayp a2 - din
azy axpp - dp
; > ; 2)
dpl  dp2 -+ dpn

So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of ma-
trices” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

DEFINITION 2 Two matrices are defined to be equal if they have the same size and
their corresponding entries are equal.
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The equality of two matrices
A= [a,-j] and B = [bll]

of the same size can be ex-
pressed either by writing

(A)yj = (B)y
or by writing
a;j = by

where it is understood that the
equalities hold for all values of
iand j.

» EXAMPLE 2 Equality of Matrices

Consider the matrices

2 1 2 1 2 1 0
A= . B= . C=
N O S N

If x =5, then A = B, but for all other values of x the matrices A and B are not equal,
since not all of their corresponding entries are equal. There is no value of x for which
A = C since A and C have different sizes.

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A — B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if A = [a;;] and B = [b;;] have the same size, then

(A+ B)ij = (A)y; + (B)ij = ai; +b; and (A — B);; = (A)y; — (B)ij = a;; — by

P> EXAMPLE 3 Addition and Subtraction

Consider the matrices

2 1 0 3 —4 3 5 1 |1
A=|-1 0 2 41, B= 2 2 0o —-1|, C= [2 2i|
4 -2 7 0 3 2 —4
Then
-2 4 5 4 6 -2 =5 2
A+ B = 1 2 2 3 and A—B=|-3 -2 2 5
7 0 3 5 1 -4 11 -5

The expressions A + C, B+ C, A — C, and B — C are undefined. <

DEFINITION 4 If A is any matrix and c is any scalar, then the product c A is the matrix
obtained by multiplying each entry of the matrix A by ¢. The matrix cA is said to be
a scalar multiple of A.

In matrix notation, if A = [a;;], then

(cA);j = c(A);; = cayj

» EXAMPLE 4 Scalar Multiples

For the matrices

2 3 4 0o 2 7 9 —6 3
A:[13 J’Bz[—l 3-4} CZL 01J
we have

4 6 8 0 -2 -7 32 1
ZA_h 6J’OMB_L<4 S}EC_L 0 4]

It is common practice to denote (—1)B by —B. <
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Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries
and subtracted by subtracting corresponding entries, it would seem natural to define
multiplication of matrices by multiplying corresponding entries. However, it turns out
that such a definition would not be very useful for most problems. Experience has led
mathematicians to the following more useful definition of matrix multiplication.

DEFINITION 5 If A is an m X r matrix and B is an r X n matrix, then the product
AB is the m x n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.

P> EXAMPLE 5 Multiplying Matrices
Consider the matrices
4 1 4 3
1 2 4
A= , B=|0 -1 3 1
2 6 0
2 7 5 2

Since A is a 2 x 3 matrix and B is a 3 x 4 matrix, the product AB is a 2 x 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.

pzqé_ii || 0000
260y T, 5 |7 |O0ORC

(2-4)+(6-3)+(0-5) =26

The entry in row 1 and column 4 of AB is computed as follows:

pzqé_ii ||| OO0
2 6 0y T 1 LT |OO00

(1-3)+@2-1)+(4-2)=13

The computations for the remaining entries are

(1-4) +Q2-0)+(4-2) = 12

1-H-QC-H+@-7= 27

1-4H+@2-3)+@-5 = 30 AB=|:12 27 30 13]4
Q2-4)+(6-00+(0-2)= 38 8 —4 26 12
Q-1H)—=(®6-1)+(0-7)=-4

2-3)+(6-1)+(0-2)= 12

The definition of matrix multiplication requires that the number of columns of the
first factor A be the same as the number of rows of the second factor B in order to form
the product AB. If this condition is not satisfied, the product is undefined. A convenient
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Partitioned Matrices

way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.

A B AB
m X r r X n = m X n
Inside (3)
Outside

» EXAMPLE 6 Determining Whether a Product Is Defined
Suppose that A, B, and C are matrices with the following sizes:

A B C
3x4 4 x7 7x3

Then by (3), AB is defined and isa 3 x 7 matrix; BC is defined and is a4 x 3 matrix; and
CAisdefined andisa 7 x 4 matrix. The products AC, C B, and BA are all undefined. <

In general, if A = [a;;]is an m x r matrix and B = [b;;]is anr X n matrix, then, as
illustrated by the shading in the following display,

ayy aip - daiy
ay axn - axy |[bun by -+ by - by
ap=| G L L Al I
ail a2 - dir : : : :
: : : by by - brj oo by
L 9ml  dm2 - dmr |

the entry (AB);; in row i and column j of AB is given by
(AB)ij = anbij + ainbyj + aizbsj + -+ - + airby; (%)

Formula (5) is called the row-column rule for matrix multiplication.

A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are
three possible partitions of a general 3 x 4 matrix A—the first is a partition of A into

Historical Note The concept of matrix multiplica-
tion is due to the German mathematician Gotthold
Eisenstein, who introduced the idea around 1844 to
simplify the process of making substitutions in lin-
ear systems. The idea was then expanded on and
formalized by Cayley in his Memoir on the Theory
of Matrices that was published in 1858. Eisenstein
was a pupil of Gauss, who ranked him as the equal
of Isaac Newton and Archimedes. However, Eisen-
stein, suffering from bad health his entire life, died
at age 30, so his potential was never realized.

[Image: http://www-history.mcs.st-andrews.ac.uk/
Gotthold Eisenstein Biographies/Eisenstein.html]
(1823-1852)
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four submatrices A1y, A1, Ay1, and A,;; the second is a partition of A into its row vectors
r1, I, and r3; and the third is a partition of A into its column vectors ¢y, ¢,, €3, and ¢4:

aiy app a3 | ay -
Ay Ap
A= layn ap ap|ay|=
LA A
asy ayp axp | ay
ay diz a3 ai r;
A=|ay apn a3 au|=|n
| 431 a3 azz az4 | | T3
ap | app | apz | dig4
A= lay |an |an |ax|=[c1 ¢ e c4]
a1 | axn | az | ax

Matrix Multiplication by  Partitioning has many uses, one of which is for finding particular rows or columns of a
Columns and by Rows  matrix product AB without computing the entire product. Specifically, the following for-
mulas, whose proofs are left as exercises, show how individual column vectors of AB can
be obtained by partitioning B into column vectors and how individual row vectors of

AB can be obtained by partitioning A into row vectors.

AB = A[b; b, --- b,]=[Ab; Ab, ... Ab,] 6)

(AB computed column by column)

a] alB

B
AB=|"|B=|" %)

a,, a,B

(AB computed row by row)

In words, these formulas state that
We now have three methods

for computing a product of
two matrices, entry by entry
using Definition 5, column
by column using Formula (8),
and row by row using For- ith row vector of AB = [ith row vector of A]B )
mula (9). We will call these the

entry method , the row method,

and the column method, re-
spectively. » EXAMPLE 7 Example 5 Revisited

If A and B are the matrices in Example 5, then from (8) the second column vector of
AB can be obtained by the computation

| R I

7

T !

Second column Second column
of B of AB

Jjth column vector of AB = A[ jth column vector of B] (8)
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Matrix Products as Linear
Combinations

Definition 6 is applicable, in
particular, to row and column
vectors. Thus, for example, a
linear combination of column
vectors X, X, ..., X, of the
same size is an expression of
the form

c1X) + X+ -+ o X,

and from (9) the first row vector of AB can be obtained by the computation

4 1 4 3
[1 2 4]l0 =1 3 1|=7[12 27 30 13] — «
2 7 5 2

First row of 4 First row of AB

The following definition provides yet another way of thinking about matrix multipli-
cation.

DEFINITION 6 If Ay, A,, ..., A, are matrices of the same size, and if ¢y, ¢, ..., ¢,
are scalars, then an expression of the form
ClA1 + Ay + -+ ¢ A

is called a linear combination of A;, A,, ..., A, with coefficients c|, c», . .., c,.

To see how matrix products can be viewed as linear combinations, let A beanm x n
matrix and x an n X 1 column vector, say

air aip - A X1
A= a?l a.zz a?” and x = aE
Am) A2 - App -x'n_
Then
anxy + apxy +---+ apX, ar ap | ain
Ax — a21‘x1 + Clzz')Q +- 4 az,fx,l — a.zl ) a'22 Fotx, a'z,,
am‘lxl + am'2x2 +- 4 am;txn am1 am2_ Amn

(10
This proves the following theorem.

THEOREM 1.3.1 If A is anm X n matrix, and if X is an n X 1 column vector, then the
product AX can be expressed as a linear combination of the column vectors of A in which
the coefficients are the entries of X.

P EXAMPLE 8 Matrix Products as Linear Combinations

The matrix product

—1 302 2 1
1 2 =3||-1|=|-9
2 1 =2 3 -3
can be written as the following linear combination of column vectors:
-1 3 2 1
21 1| —=1]2(+3|-3|=|-9

2 1 -2 -3
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P> EXAMPLE 9 Columns of a Product AB as Linear Combinations
We showed in Example 5 that

4 3
1 2 4 12 27 30 13
AB = 0 -1 3 1|=
2 6 0 8§ —4 26 12

It follows from Formula (6) and Theorem 1.3.1 that the jth column vector of AB can be
expressed as a linear combination of the column vectors of A in which the coefficients
in the linear combination are the entries from the jth column of B. The computations
are as follows:

12 —4H_+ob_+z]_
3 I ) 6 0
[ 27 B (1] b'+7%'
4| |2 6 0
30 —41_+3b_+5_—
26| |2 6 0
[13 i 2] 4
3 2 <
14 2 + 6 + 0

Partitioning provides yet another way to view matrix multiplication. Specifically, sup-
pose that an m X r matrix A is partitioned into its » column vectors ¢y, ¢, . . ., ¢ (each
of size m x 1) and an r x n matrix B is partitioned into its  row vectors ry, ra, ..., I,
(each of size 1 x n). Each term in the sum

Cirp + €Iy + - -+ ¢ Xy

has size m x n so the sum itself is an m x n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the
right side of Formula (5), from which it follows that

AB =c¢iry +crp + -+ -+ 1) (11)

We call (11) the column-row expansion of AB.

» EXAMPLE 10 Column-Row Expansion

Find the column-row expansion of the product

[1 3} [ 20 4}
AB = (12)
2 —1|l=3 51

Solution The column vectors of A and the row vectors of B are, respectively,

c1=H, czz[_ﬂ; n=[ 0 4. n=[3 5 1]



34 Chapter 1 Systems of Linear Equations and Matrices

The main use of the column-
row expansion is for develop-
ing theoretical results rather
than for numerical computa-
tions.

Matrix Form of a Linear
System

The vertical partition line in
the augmented matrix [A | b]
is optional, but is a useful way
of visually separating the coef-
ficient matrix A from the col-
umn vector b.

Transpose of a Matrix

Thus, it follows from (11) that the column-row expansion of AB is

AB:[;:| 2 0 4]+[_j [-3 5 1]
20 4] [-9 15 3
=[4 0 8:|+[ 3 =5 —1]

As a check, we leave it for you to confirm that the product in (12) and the sum in (13)
both yield
-7 15 7
AB = <
7 =5 7

Matrix multiplication has an important application to systems of linear equations. Con-
sider a system of m linear equations in n unknowns:

(13)

anxy + apxy +---+ apx, = by

anxi + anx; +---+ ayx, = b

Am1X1 + AuaXo + -+ + QuuXp = bm

Since two matrices are equal if and only if their corresponding entries are equal, we can
replace the m equations in this system by the single matrix equation

anxy + apxy +---+ apx, by
ar Xy + amxy +---+ anmx, by
Ami X1 + @umaXs + -+ AunXy b

The m x 1 matrix on the left side of this equation can be written as a product to give

ayy  ap e dap X by
as dy .-+ d >%) b,
a1 am?2 e Amn Xn bm

If we designate these matrices by A, x, and b, respectively, then we can replace the original
system of m equations in n unknowns by the single matrix equation

Ax=Db

The matrix A in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus
the augmented matrix is

ap app -0 dip by

as dy .- Ay by
[Albl=] . . ) .

aml am? e Amn bm

We conclude this section by defining two matrix operations that have no analogs in the
arithmetic of real numbers.



1.3 Matrices and Matrix Operations 35

DEFINITION 7 If A is any m x n matrix, then the transpose of A, denoted by AT, is
defined to be the n x m matrix that results by interchanging the rows and columns
of A; that is, the first column of A7 is the first row of A, the second column of A7 is
the second row of A, and so forth.

» EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

appy ap aiz ayg 2 3
A=|ay an axn au|, B=|1 4|, C=[1 3 5], D=I[4]
az] axn  az  as 56

apy  dp1  asg

(9]

2
ap axn axp _ cT=13|, DT =[4] «

o=
(o)

a3 axy ass 3

| d14 d24  d34

Observe that not only are the columns of AT the rows of A, but the rows of A are
the columns of A. Thus the entry in row i and column j of AT is the entry in row j and
column i of A; that is,

(AT); = (A)ji (14)

Note the reversal of the subscripts.

In the special case where A is a square matrix, the transpose of A can be obtained
by interchanging entries that are symmetrically positioned about the main diagonal. In
(15) we see that AT can also be obtained by “reflecting” A about its main diagonal.

-2 4 =2 @ 1 3 -5
P

A=| 3 7 0|=| 3 7 0| —>4aT=|-2 17
<
-5 8 6 =5 ® 6 4 0

T

Interchange entries that are
symmetrically positioned
about the main diagonal.

[oe]

(15)

(@)}

Historical Note The term matrix was first used by the English mathematician
James Sylvester, who defined the term in 1850 to be an “oblong arrangement
of terms.” Sylvester communicated his work on matrices to a fellow English
mathematician and lawyer named Arthur Cayley, who then introduced some of
the basic operations on matrices in a book entitled Memoir on the Theory of
Matrices that was published in 1858. As a matter of interest, Sylvester, who was
Jewish, did not get his college degree because he refused to sign a required
oath to the Church of England. He was appointed to a chair at the University of
Virginia in the United States but resigned after swatting a student with a stick
because he was reading a newspaper in class. Sylvester, thinking he had killed
the student, fled back to England on the first available ship. Fortunately, the
student was not dead, just in shock!

James Sylvester Arthur Cayley [Images: © Bettmann/CORBIS (Sylvester);
(1814-1897) (1821-1895) Photo Researchers/Getty Images (Cayley)]
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Trace of a Matrix DEFINITION 8 If A isa square matrix, then the trace of A, denoted by tr(A), is defined

to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A is not a square matrix.

» EXAMPLE 12 Trace

The following are examples of matrices and their traces.

ay dap apg
A=lay ap an|, B=
as; azxp  ass

tr(A) = ay + an + assz tr(B) =—14+54+7+0=11 <

In the exercises you will have some practice working with the transpose and trace

operations.

Exercise Set 1.3

In Exercises 1-2, suppose that A, B, C, D, and E are matrices
with the following sizes:
A B C D E
4x5 @x5 (Gx2) @x2) (Bx49
In each part, determine whether the given matrix expression is

defined. For those that are defined, give the size of the resulting
matrix.

1. (a) BA (b) ABT () AC+D
(d) E(AC) (€) A—3ET (f) E(3B + A)

2. (a) CD” (b) DC (c) BC—3D
(d) DT (BE) () BID+ED  (f) BAT+D

In Exercises 3-6, use the following matrices to compute the
indicated expression if it is defined.

4. (a) 2AT + C
(d) BT +5CT
(9) 2ET —3DT

(j) C(BA)

5. (a) AB
(d) (AB)C
(2 (DAY
(j) tr4E" — D)

6. (a) DT — E)A

© (—=AC)T +5DT

(b) DT — ET
() 1T —1A
(h) QET —3DT)T

(k) tr(DET)

(b) BA
() A(BC)
(h) (CTB)AT

© (D-E)
(f) B— BT
(i) (CD)E
() tr(BC)

(©) GE)D
(f) ccT
(i) tr(DDT)

(k) tr(CTAT 4+ 2E7) (I) tr((ECT)TA)

(b) (4B)C +2B

(d) (BAT —20)T

3.0 4 | 4 2 (e) BT(CCT — ATA) (f) DTET — (ED)T
A=|—-1 2|, B= , C= , . . . .
11 0 2 3 1 5 In Exercises 7-8, use the following matrices and either the row
method or the column method, as appropriate, to find the indi-
1 5 2 6 1 3 cated row or column.
D=|-1 0 1|, E=|—-1 1 2 3 =2 7 6 -2 4
3 2 4 4 1 3 A=1]6 5 4] and B=1|0 1 3
3.(a D+ E (b) D—E (c) 5A o 4 9 T 7 5
(d) =7C (e) 2B—-C (f) 4E — 2D 7. (a) the first row of AB (b) the third row of AB
(g) —3(D +2E) (hy A—A (i) tr(D) (c) the second column of AB  (d) the first column of BA
(j) tr(D —3E) (k) 4tr(7B) 1) tr(A) (e) the third row of AA (f) the third column of AA



8. (a) the first column of AB (b) the third column of BB

(c) the second row of BB (d) the first column of AA

(e) the third column of AB (f) the first row of BA

In Exercises 9-10, use matrices A and B from Exercises 7-8.

9. (a) Expresseach column vector of AA asalinear combination
of the column vectors of A.

(b) Express each column vector of BB as a linear combination
of the column vectors of B.

10. (a) Expresseach column vector of AB as a linear combination
of the column vectors of A.

(b) Express each column vector of BA as a linear combination
of the column vectors of B.

In each part of Exercises 11-12, find matrices A, x, and b that
express the given linear system as a single matrix equation Ax = b,
and write out this matrix equation.

11. (d) 2)61 — 3]62 =+ 5.)C3 = 7
9X1— X2+ )C3=—1
X1 +5X2+4X3: 0

(b) 4x, —3x3+ xg=1
SX] + X - 8X4 =3
2x1 —5x 4+ 9% — x4 =0

3)62— X3+7)C4=2

12. (a) x; — 2x; + 3x3 = -3 (b) 3x; +3x, +3x3=-3
2.X1 + X = 0 —X] — SXQ - 2.X3 = 3
—3XZ+4)C3= 1 —4XZ+ X3 = 0

X1 + x3= 5

In each part of Exercises 1314, express the matrix equation
as a system of linear equations.

5 6 —7|[x 2
3. |-1 =2 3||x|l=]|0
U 3
11 1] [« 2
|2 3 oll|lyl=]| 2
5 -3 —6] |z -9
3 - 1 2]
@ | 4 3 7||lx|l=]-1
-2 1 5] |x 4|
3 —2 0 1w [0
®) 5 0 2 =2f|x|_|o
31 4 7(|y]| |o
| —2 5 1 z L 0
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In Exercises 15-16, find all values of k, if any, that satisfy the
equation.

15. [k 1 1]f1 o 21

1 2
16.[2 2 k][2 0
[0 3

—_— O

2
21=0
k

In Exercises 17-20, use the column-row expansion of AB to
express this product as a sum of matrices.

4 =3 0 1 2
17. A= , B=
2 -1 -2 3 1
0 -2 1 4 1
18. A = , B=
4 -3 -3 0 2
- 1 2
1 2 3
19. A= , B=1|3 4
4 5 6
- 5 6
- 2 -1
0 4 2
20. A = , B=14 0
1 =2 5 1

21. For the linear system in Example 5 of Section 1.2, express the
general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical
entries. [Suggestion: Rewrite the general solution as a single
column vector, then write that column vector as a sum of col-
umn vectors each of which contains at most one parameter,
and then factor out the parameters.]

22. Follow the directions of Exercise 21 for the linear system in
Example 6 of Section 1.2.

In Exercises 23-24, solve the matrix equation for a, b, c,
and d.

a 3 4 d—2c
23. =
-1 a+b d+2c -2

a—-b b+a 8 1
24, =
3d+c 2d-c 7 6
25. (a) Show that if A has a row of zeros and B is any matrix for

which AB is defined, then AB also has a row of zeros.

(b) Find a similar result involving a column of zeros.

26. In each part, find a 6 x 6 matrix [a;;] that satisfies the stated
condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

(a) a; = 0 if i #] (b) aj = 0 if

i<j

i>]

(© ay =0 if da;=0 if |i—jl>1
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In Exercises 27-28, how many 3 x 3 matrices A can you find
for which the equation is satisfied for all choices of x, y, and z?

X X+y X Xy
27. Ayl =|x—Yy 28 Aly|=1]0
z 0 b4 0

29. A matrix B is said to be a square root of a matrix A if BB = A.
2 2
(a) Find two square roots of A = |:2 2i|,

(b) How many different square roots can you find of

50
A= ?
0 9
(¢) Do you think that every 2 x 2 matrix has at least one

square root? Explain your reasoning.

30. Let 0 denote a 2 x 2 matrix, each of whose entries is zero.

(a) Is there a 2 x 2 matrix A such that A # 0 and AA = 0?
Justify your answer.

(b) Is there a 2 x 2 matrix A such that A 7% 0 and AA = A?
Justify your answer.

31. Establish Formula (11) by using Formula (5) to show that
(AB);; = (eirp +eary + -+ - + €175

32. Find a 4 x 4 matrix A = [a;;] whose entries satisfy the stated

condition.
(a) Clij=i+j (b) d,‘j =ij71
1 if |i—j|>1
() aj = . . .
-1 if [i—jl<1

33. Suppose that type I items cost $1 each, type II items cost $2
each, and type I1I items cost $3 each. Also, suppose that the
accompanying table describes the number of items of each
type purchased during the first four months of the year.

Table Ex-33
Typel | Typell | Type III
Jan. 3 4 3
Feb. 5 6 0
Mar. 2 9 4
Apr. 1 1 7

What information is represented by the following product?

3 4 3 1
5 6 0

2
2 9 4

3
1 1 7

34. The accompanying table shows a record of May and June unit
sales for a clothing store. Let M denote the 4 x 3 matrix of
May sales and J the 4 x 3 matrix of June sales.

(a) What does the matrix M + J represent?
(b) What does the matrix M — J represent?

(¢) Find a column vector x for which Mx provides a list of the
number of shirts, jeans, suits, and raincoats sold in May.

(d) Find a row vector y for which yM provides a list of the
number of small, medium, and large items sold in May.

(e) Using the matrices x and y that you found in parts (c) and
(d), what does yM x represent?

Table Ex-34
May Sales
Small | Medium | Large
Shirts 45 60 75
Jeans 30 30 40
Suits 12 65 45
Raincoats 15 40 35
June Sales
Small | Medium | Large
Shirts 30 33 40
Jeans 21 23 25
Suits 9 12 11
Raincoats 8 10 9

Working with Proofs
35. Prove: If A and B are n x n matrices, then
tr(A 4+ B) = tr(A) + tr(B)

36. (a) Prove: If AB and BA are both defined, then AB and BA
are square matrices.

(b) Prove: If Aisanm x n matrix and A(BA) is defined, then
B isan n x m matrix.

True-False Exercises

TF. In parts (a)—(o) determine whether the statement is true or
false, and justify your answer.

(a) The matrix |:‘11 ? 2] has no main diagonal.

(b) An m x n matrix has m column vectors and n row vectors.
(¢) If A and B are 2 x 2 matrices, then AB = BA.

(d) The ith row vector of a matrix product AB can be computed
by multiplying A by the ith row vector of B.



(e) For every matrix A, it is true that (AT)T = A.

(f) If A and B are square matrices of the same order, then
tr(AB) = tr(A)tr(B)
(g) If A and B are square matrices of the same order, then
(AB)T = ATBT
(h) For every square matrix A, it is true that tr(A7) = tr(A).

(i) IfAisa6 x 4matrixand B isanm x n matrix such that BTAT
isa 2 x 6 matrix, thenm =4 and n = 2.

(j) If Aisann x nmatrix and c is a scalar, then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that
A—C =B —C,then A = B.

() If A, B, and C are square matrices of the same order such that
AC = BC, then A = B.

(m) If AB + BA is defined, then A and B are square matrices of
the same size.

(n) If B has a column of zeros, then so does AB if this product is
defined.

(o) If B has a column of zeros, then so does BA if this product is
defined.
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Working with Technology

T1. (a) Compute the product AB of the matrices in Example 5,
and compare your answer to that in the text.

(b) Use your technology utility to extract the columns of A
and the rows of B, and then calculate the product AB by
a column-row expansion.

T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type Il items at $2.15 each, and Type I11 items at $3.95 each. Sup-
pose also that the accompanying table describes the purchases of
those items (in thousands of units) for the first quarter of the year.
Write down a matrix product, the computation of which produces
a matrix that lists the manufacturer’s expenditure in each month
of the first quarter. Compute that product.

Typel | TypelIl | Type III
Jan. 3.1 4.2 3.5
Feb. 5.1 6.8 0
Mar. 2.2 9.5 4.0
Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties of Matrices

In this section we will discuss some of the algebraic properties of matrix operations. We will

see that many of the basic rules of arithmetic for real numbers hold for matrices, but we will

also see that some do not.

Properties of Matrix
Addition and Scalar
Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.

(@ A+B=B+A

[Commutative law for matrix addition]

b)) A4+ (B+C)=(A+ B)+ C [Associative law for matrix addition]

(¢) A(BC) = (AB)C
()

f)
(2)

A(B +C) = AB + AC
(¢) (B+C)A=BA+CA
A(B —C) = AB — AC
(B—C)A = BA—CA

[Associative law for matrix multiplication]
| Left distributive law]

[Right distributive law]

(h) a(B+C)=aB+aC
(i) a(B—-C)=aB —aC

(/)
(k)
() a(C) = (ab)C
(m)

(a+b)C =aC +bC
(a—b)C =aC —bC

a(BC) = (aB)C = B(aC)
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There are three basic ways
to prove that two matrices
of the same size are equal—
prove that corresponding en-
tries are the same, prove that
corresponding row vectors are
the same, or prove that corre-
sponding column vectors are
the same.

To prove any of the equalities in this theorem we must show that the matrix on the left
side has the same size as that on the right and that the corresponding entries on the two
sides are the same. Most of the proofs follow the same pattern, so we will prove part
(d) as a sample. The proof of the associative law for multiplication is more complicated
than the rest and is outlined in the exercises.

Proof (d) 'We must show that A(B + C) and AB + AC have the same size and that
corresponding entries are equal. To form A(B + C), the matrices B and C must have
the same size, say m x n, and the matrix A must then have m columns, so its size must
be of the form » x m. This makes A(B + C) anr x n matrix. It follows that AB + AC
is also an r x n matrix and, consequently, A(B + C) and AB + AC have the same size.

Suppose that A = [a;;], B = [b;;],and C = [¢;;]. We want to show that correspond-
ing entries of A(B + C) and AB + AC are equal; that is,

(A(B+0)),; = (AB + AC);

for all values of i and j. But from the definitions of matrix addition and matrix multi-
plication, we have
(AB+0)),; = an(bij +c1)) +apbyy + ) + -+ + i (buy + y)
= (anbyj + apbsj + - - - + aimbpj) + (airc1j + aipcaj + - - - + AimCmj)
= (AB);j + (AC);; = (AB + AC);;

Remark Although the operations of matrix addition and matrix multiplication were defined for
pairs of matrices, associative laws (b) and (c¢) enable us to denote sums and products of three
matrices as A + B + C and ABC without inserting any parentheses. This is justified by the fact
that no matter how parentheses are inserted, the associative laws guarantee that the same end
result will be obtained. In general, given any sum or any product of matrices, pairs of parentheses
can be inserted or deleted anywhere within the expression without affecting the end result.

P EXAMPLE 1 Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

1 2
4 3 1 0
A=1|3 4|, B= , =
2 1 2 3
0 1
Then
1 2 8 5 _
4 3 371 0 10 9
AB=|3 4 = (20 13 and BC = =
2 1 1{]2 3 4 3
0 1 2 1 -
Thus _
8 5 1 o 18 15
(AB)C =120 13 [2 3i|= 46 39
2 1 4 3
and
1 2] 18 15
10 9
ABC)= |3 4 4 3:|: 46 39
0 1]~ 4 3

so (AB)C = A(BC), as guaranteed by Theorem 1.4.1(c).
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Properties of Matrix Do not let Theorem 1.4.1 lull you into believing that a/l laws of real arithmetic carry over

Multiplication

Do not read too much into Ex-
ample 2—it does not rule out
the possibility that AB and BA
may be equal in certain cases,
just that they are not equal in
all cases. If it so happens that
AB = BA, then we say that
AB and BA commute.

Zero Matrices

to matrix arithmetic. For example, you know that in real arithmetic it is always true that
ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,
however, the equality of AB and BA can fail for three possible reasons:

1. AB may be defined and BA may not (for example, if Ais2 x 3 and B is 3 x 4).

2. AB and BA may both be defined, but they may have different sizes (for example, if
Ais2 x 3and Bis 3 x 2).

3. AB and BA may both be defined and have the same size, but the two products may
be different (as illustrated in the next example).

» EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices
-1 0 1 2
A= and B =
2 3 30

-1 =2 3 6
AB = and BA =
11 4 -3 0

Thus, AB # BA. <

Multiplying gives

A matrix whose entries are all zero is called a zero matrix. Some examples are

0
0 0
0 0f’

00 0 0 0
, ; ,[0]
00 0 0 0
0
We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote the m X n zero matrix by 0, ;.
It should be evident that if A and 0 are matrices with the same size, then

S O O
oS O O
oS O O

A+0=0+A=A

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the
numerical equationa +0=04a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

THEOREM 1.4.2 Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

@ A+0=0+A=A4

b)) A—0=A
() A—A=A+(—A4)=0
d) 0A=0

(e) IfcA=0,thenc=0o0rA=0.
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Identity Matrices

Since we know that the commutative law of real arithmetic is not valid in matrix
arithmetic, it should not be surprising that there are other rules that fail as well. For
example, consider the following two laws of real arithmetic:

e Ifab =acanda 7& 0, then b = c. [The cancellation law]
* Ifab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

» EXAMPLE 3 Failure of the Cancellation Law

Consider the matrices

el el

We leave it for you to confirm that

3 4
AB = AC =

Although A # 0, canceling A from both sides of the equation AB = AC would lead
to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in
general, for matrix multiplication (though there may be particular cases where it is true).

P EXAMPLE 4 A Zero Product with Nonzero Factors
Here are two matrices for which AB = 0, but A # 0 and B # 0:

A:[o 1}’ 32[3 7}4
0 2 0 0

A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

1 0 0 0
1 00
1 0 01 0 0
(1], . |0 1T 0fF,
0 1 00 1 O
0 0 1
0 0 0 1

An identity matrix is denoted by the letter /. If it is important to emphasize the size, we
will write I, for the n x n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 x 3 matrix A on each side by an identity matrix. Multiplying
on the right by the 3 x 3 identity matrix yields

1 00

a a a | |a a a

! 13 11 12 13 0 1 0 11 12 13
a a a a a a

21 22 23 0 0 1 21 22 23

and multiplying on the left by the 2 x 2 identity matrix yields

LA = 1 0 [all apn al3i|:|:a11 aip al3i|:A
0 1 ayy d» ax dz| dy 4
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The same result holds in general; that is, if A is any m x n matrix, then
Al,=A and [,A=A
Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equationa -1 =1-a = a.

As the next theorem shows, identity matrices arise naturally in studying reduced row
echelon forms of square matrices.

THEOREM 1.4.3 If R is the reduced row echelon form of ann x n matrix A, then either
R has a row of zeros or R is the identity matrix I,,.

Proof Suppose that the reduced row echelon form of A is

rnr rn o - i
) L& )
R= . )
nl Fn2 Ynn

Either the last row in this matrix consists entirely of zeros or it does not. If not, the
matrix contains no zero rows, and consequently each of the n rows has a leading entry
of 1. Since these leading 1’s occur progressively farther to the right as we move down
the matrix, each of these 1’s must occur on the main diagonal. Since the other entries in
the same column as one of these I’s are zero, R must be /,,. Thus, either R has a row of
zerosor R = I,,.

In real arithmetic every nonzero number a has a reciprocal a ' (= 1/a) with the property

The number a~! is sometimes called the multiplicative inverse of a. Our next objective is
to develop an analog of this result for matrix arithmetic. For this purpose we make the
following definition.

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I, then A is said to be invertible (or nonsingular) and
B is called an inverse of A. If no such matrix B can be found, then A is said to be
singular.

Remark The relationship AB = BA = I is not changed by interchanging A and B, so if A is
invertible and B is an inverse of A, then it is also true that B is invertible, and A is an inverse of
B. Thus, when

AB=BA=1

we say that A and B are inverses of one another.

P EXAMPLE 5 An Invertible Matrix

Let
2 =5 3 5
A=|:_1 3i| and B:[1 2i|
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As in Example 6, we will fre-
quently denote a zero matrix
with one row or one column
by a boldface zero.

Properties of Inverses

WARNING The symbol A~!
should not be interpreted as
1/A. Division by matrices will
not be a defined operation in
this text.

=0 -0 Y-
w=[} 305 -0 -

Thus, A and B are invertible and each is an inverse of the other.

» EXAMPLE 6 A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this
is so, consider the matrix
1 4 0
A=12 50
36 0
To prove that A is singular we must show that there is no 3 x 3 matrix B such that

AB = BA = I. For this purpose let ¢, ¢, 0 be the column vectors of A. Thus, for any
3 x 3 matrix B we can express the product BA as

BA = Blci ¢ 0]=][Bc; Bcy 0] [Formula (6) of Section 1.3]

The column of zeros shows that BA # I and hence that A is singular. <

It is reasonable to ask whether an invertible matrix can have more than one inverse. The
next theorem shows that the answer is no—an invertible matrix has exactly one inverse.

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then B = C.

Proof Since B is an inverse of A, we have BA = I. Multiplying both sides on the right
by C gives (BA)C = IC = C. But it is also true that (BA)C = B(AC) = BI = B, so
C = B.

As a consequence of this important result, we can now speak of “the” inverse of an
invertible matrix. If A is invertible, then its inverse will be denoted by the symbol A~"'.
Thus,

AA'=171 and A7A=1 1)

The inverse of A plays much the same role in matrix arithmetic that the reciprocal a~!
plays in the numerical relationships aa~! = 1 anda'a = 1.

In the next section we will develop a method for computing the inverse of an invertible
matrix of any size. For now we give the following theorem that specifies conditions under
which a 2 x 2 matrix is invertible and provides a simple formula for its inverse.

Historical Note The formula for A~ given inTheorem 1.4.5 first appeared (in a more general form)
in Arthur Cayley’s 1858 Memoir on the Theory of Matrices. The more general result that Cayley
discovered will be studied later.



The quantity ad — bc in The-
orem 1.4.5 is called the deter-
minant of the 2 x 2 matrix A
and is denoted by

det(A) = ad — bc
or alternatively by

a b

d =ad — bc

det(A4) = ><j\ =ad-bc

Figure 1.4.1

1.4 Inverses; Algebraic Properties of Matrices 45

A=l d)

is invertible if and only if ad — bc # 0, in which case the inverse is given by the formula

1 d —b
=]l _
A= ad — bc |:—c a] @

THEOREM 1.4.5 The matrix

We will omit the proof, because we will study a more general version of this theorem
later. For now, you should at least confirm the validity of Formula (2) by showing that
AAT' = A"A =1,

Remark Figure 1.4.1 illustrates that the determinant of a 2 x 2 matrix A is the product of the
entries on its main diagonal minus the product of the entries off its main diagonal.

P EXAMPLE 7 Calculating the Inverse of a 2 x 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

6 1 -1 2
(a)Az[s 2] (b)Az[ 3 —6]

Solution (a) The determinant of A is det(A) = (6)(2) — (1)(5) = 7, which is nonzero.
Thus, A is invertible, and its inverse is

Al = l 2 =17
715 6] |-
Solution (b) The matrix is not invertible since det(A) = (—1)(—6) — (2)(3) = 0.

BN [V ST ]
oy =

We leave it for you to confirm that AA™! = A7'A = 1.

P EXAMPLE 8 Solution of a Linear System by Matrix Inversion
A problem that arises in many applications is to solve a pair of equations of the form

u =ax + by

v=cx+dy
for x and y in terms of u and v. One approach is to treat this as a linear system of
two equations in the unknowns x and y and use Gauss—Jordan elimination to solve
for x and y. However, because the coefficients of the unknowns are literal rather than

numerical, this procedure is a little clumsy. As an alternative approach, let us replace the
two equations by the single matrix equation

-]
L)=[e alL

If we assume that the 2 x 2 matrix is invertible (i.e., ad — bc # 0), then we can multiply
through on the left by the inverse and rewrite the equation as

AN NI

which we can rewrite as
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which simplifies to

a b1 ' [u E:

c d v| |y

Using Theorem 1.4.5, we can rewrite this equation as
1 d —b||u] [x
ad —bc |—c a] [v] |y
du — bv av — cu
X =———, [
ad — bc Y ad — bc

from which we obtain

The next theorem is concerned with inverses of matrix products.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is
invertible and

(AB)"'=B7'A7!

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that
(ABY(B'A™H) = (B 'A™HYAB) =1

But
(ABY(BT'A™) = A(BB YA ' = AIA ' = AA ' =]

and similarly, (B~'A~")(AB) = I.

Although we will not prove it, this result can be extended to three or more factors:

A product of any number of invertible matrices is invertible, and the inverse of the product
is the product of the inverses in the reverse order.

P EXAMPLE 9 The Inverse of a Product

Consider the matrices
A 1 2 B— 3 2
o3 T2 2

We leave it for you to show that

If a product of matrices is
singular, then at least. one of AB — 7 6 . (AB)! = =3
the factors must be singular. 9 8 _% %

Why?
and also that

e e ERe

Thus, (AB)~' = B~'A~! as guaranteed by Theorem 1.4.6. <

g
I
w

|

[SIN-REN N
=

Powers of a Matrix If A is a square matrix, then we define the nonnegative integer powers of A to be

A0 =7 and A"=AA..-A |n factors]

and if A is invertible, then we define the negative integer powers of A to be

A" =AY =ATTAT A7 nfactors]
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Because these definitions parallel those for real numbers, the usual laws of nonnegative

exponents hold; for example,

A}’AS — AF+S and (AV)S — Ars

In addition, we have the following properties of negative exponents.

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:

(@) A~'isinvertible and (A=)~ = A.
(b) A" is invertible and (A")™' = A™" = (A~ H™.

(c) kA is invertible for any nonzero scalar k, and (kA)~™' = k='A~".

We will prove part (¢) and leave the proofs of parts («) and (b) as exercises.

Proof (¢) Properties (m) and (/) of Theorem 1.4.1 imply that

KAK A =k M)A = kK TTRAAT = (DI =1
and similarly, (k' A=1)(kA) = I. Thus, kA is invertible and (kA)~! = k=14~

P> EXAMPLE 10 Properties of Exponents
Let A and A~! be the matrices in Example 9; that is,

1 2 . 3 -2
A:|:1 3] and A :[_1 1i|
A3=(A1)3=[ 3 —2“ 3 —zH 3 —2}2
-1 1= 1Jl-1 1
oo U2 2 2 o 30
_[1 3} [1 3} [1 3]_[15 41}

so, as expected from Theorem 1.4.7(b),

JEN 1 41 -307 [ 41
@ = than - aoas) [—15 11] - [—15

Then

» EXAMPLE 11 The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

(@+b)?=a’+ab+ba+b>=a*+ab+ab+b>=a*+2ab+b*

41 =30
—15 11
—-30
— (A1)}
11} (A7)

However, in matrix arithmetic, where we have no commutative law for multiplication,

the best we can do is to write

(A+ B)> = A’ + AB + BA + B?

It is only in the special case where A and B commute (i.e., AB = BA) that we can go a

step further and write
(A+B)>’=A>+24AB+ B* 4
If A is a square matrix, say n x n, and if

p(x) =a0+a1x+a2x2+...+amxm
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Properties of the Transpose

is any polynomial, then we define the n x n matrix p(A) to be
p(A) = agl + a1 A+ arA> + -+ + a, A™ 3)

where [ is the n x n identity matrix; that is, p(A) is obtained by substituting A for x
and replacing the constant term ag by the matrix ao/. An expression of form (3) is called
a matrix polynomial in A.

P EXAMPLE 12 A Matrix Polynomial
Find p(A) for

-1 2
2
=x"—2x-3 d A=
px)=x X an |:0 3j|

Solution
p(A) = A> —2A — 31

-0 -0
=l o[ -

or more briefly, p(A) = 0. <

b 3=l o)

Remark 1t follows from the fact that A”A* = A" = AS™" = AYA" that powers of a square
matrix commute, and since a matrix polynomial in A is built up from powers of A, any two matrix
polynomials in A also commute; that is, for any polynomials p; and p, we have

p1(A)p2(A) = p2(A) pi(A) “)
The following theorem lists the main properties of the transpose.

THEOREM 1.4.8 [f the sizes of the matrices are such that the stated operations can be
performed, then:

(@ (AN =A

(b (A+B)7" =AT" + BT
(¢) (A—B)T = AT — BT
(d) (kA)T = kAT

(¢) (AB)T = BTAT

If you keep in mind that transposing a matrix interchanges its rows and columns, then
you should have little trouble visualizing the results in parts (a)—(d ). For example, part
(a) states the obvious fact that interchanging rows and columns twice leaves a matrix
unchanged; and part (b) states that adding two matrices and then interchanging the
rows and columns produces the same result as interchanging the rows and columns
before adding. We will omit the formal proofs. Part (e) is less obvious, but for brevity
we will omit its proof as well. The result in that part can be extended to three or more
factors and restated as:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.
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The following theorem establishes a relationship between the inverse of a matrix and
the inverse of its transpose.

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and
(A7) = (AT

Proof We can establish the invertibility and obtain the formula at the same time by
showing that
AT(Afl)T — (Afl)TAT =]
But from part (e) of Theorem 1.4.8 and the fact that I”7 = I, we have
ATA DY =(ATAT =17 =1
(Afl)TAT — (AAfl)T — IT =7

which completes the proof.

» EXAMPLE 13 Inverse of aTranspose

Consider a general 2 x 2 invertible matrix and its transpose:

a b T a c
A—|:c d] and A _|:b di|

Since A is invertible, its determinant ad — bc is nonzero. But the determinant of A7 is
also ad — bc (verify), so A7 is also invertible. It follows from Theorem 1.4.5 that

d c

ad —bc  ad — bc
b a

" ad — bc ad — bc

(AahH™' =

which is the same matrix that results if A~! is transposed (verify). Thus,

(AhH™h =@’

as guaranteed by Theorem 1.4.9. <«

Exercise Set 1.4

In Exercises 1-2, verify that the following matrices and scalars

satisfy the stated properties of Theorem 1.4.1.

3 -1 0 2
A= . B= ,
2 4 1 —4
4 1
Cc= . a=4, b=-T7
-3 -2

1. (a) The associative law for matrix addition.

(b) The associative law for matrix multiplication.

(¢) The left distributive law.
(d) (a+b)C =aC +bC

2. (a) a(BC) = (aB)C = B(aC)
(b) A(B—C)=AB — AC (c) (B+C)A=BA+CA
(d) a(bC) = (ab)C

In Exercises 34, verify that the matrices and scalars in Exer-
cise 1 satisfy the stated properties.

3. (AT =4 (b) (AB)T = BTAT
4. (a) (A+B)T = AT + BT (b) @C)" =aCT

In Exercises 5-8, use Theorem 1.4.5 to compute the inverse of
the matrix.

2 =3 3 1
5. A= 6. B =
i BN
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2.0 6 4
.C= .D=

9. Find the inverse of
Let+e™) Lt —e™
%(ex —e™) %(ex +e™)
10. Find the inverse of

[ cos@

sin 6
—sinf cosf

In Exercises 11-14, verify that the equations are valid for the

matrices in Exercises 5-8.

11. (AT)~! = (A~ HT 12. (A7H =4

13. (ABC)"' = C"'B'A~!  14. (ABC)" = CTBTAT

In Exercises 15-18, use the given information to find A.
-3 7 -1
1 -2 2

-1 2 2 -1
17. (I +24)~' = 18. A~ =
aranr =[] .

In Exercises 19-20, compute the following using the given ma-
trix A.

(a) A3 (c) A2—2A+1

3 1 2 0
19. A= 20. A =
b ) )

In Exercises 21-22, compute p(A) for the given matrix A and
the following polynomials.

(@ p(x)=x-2
(b) p(x) =2x*—x+1
(© px)=x3—2x+1

21. A= 3 22. A= 20
T2 1 B P
In Exercises 23-24, let
a b 0 1 0 0
A = s B = N =
c d 0 0 1 0
23. Find all values of a, b, ¢, and d (if any) for which the matrices
A and B commute.

15. 7A)~' = [ 16. GAT)"! = [_i

(b) A~

24. Find all values of a, b, ¢, and d (if any) for which the matrices
A and C commute.

In Exercises 25-28, use the method of Example 8 to find the
unique solution of the given linear system.

25. 3.X1 - 2X2 =-1 26. —Xx| + SXZ =4

4X1 + 5X2 = 3 —X] — 3X2 =1
27. 6X1 + Xy = 0 28. 2)(1 — 2)62 =4
4X1—3X2=—2 x1+4x2:4

If a polynomial p(x) can be factored as a product of lower
degree polynomials, say
p(x) = pi(x)pa(x)
and if A is a square matrix, then it can be proved that
p(A) = pi(A)p2(A)

In Exercises 29-30, verify this statement for the stated matrix A
and polynomials

p)=x"=9, pix)=x+3, p(x) =x-3

29. The matrix A in Exercise 21.
30. An arbitrary square matrix A.
31. (a) Give an example of two 2 x 2 matrices such that
(A+ B)(A — B) # A> — B?
(b) State a valid formula for multiplying out
(A+ B)(A—B)

(¢c) What condition can youimpose on A and B that will allow
you to write (A + B)(A — B) = A? — B*?

32. The numerical equation a® = 1 has exactly two solutions.
Find at least eight solutions of the matrix equation A2 = I.
[Hint: Look for solutions in which all entries off the main
diagonal are zero.]

33. (a) Show that if a square matrix A satisfies the equation
A% +2A + I =0, then A must be invertible. What is the
inverse?

(b) Show that if p(x) is a polynomial with a nonzero constant
term, and if A is a square matrix for which p(A) = 0, then
A is invertible.

(3]

4. Is it possible for A3 to be an identity matrix without A being
invertible? Explain.

35. Can a matrix with a row of zeros or a column of zeros have an
inverse? Explain.

36. Can a matrix with two identical rows or two identical columns
have an inverse? Explain.



In Exercises 37-38, determine whether A is invertible, and if
so, find the inverse. [Hint: Solve AX = I for X by equating cor-
responding entries on the two sides.]

—_ —_ o
—_ O =

1
38. A= |1
0

—_ o -

1 1
37. A= |1 0
0 1

In Exercises 3940, simplify the expression assuming that A,
B, C, and D are invertible.

39. (AB)"'(AC~')(D~'C)~'D"!
40. (AC~H)""(AC™"Y(AC™))'AD™!

41. Show that if R is a 1 x n matrix and C is an n x | matrix,
then RC = tr(CR).

42. If A is a square matrix and n is a positive integer, is it true that
(AMT = (AT)"? Justify your answer.

43. (a) Show that if A is invertible and AB = AC, then B = C.

(b) Explain why part (a) and Example 3 do not contradict one
another.

44. Show that if A is invertible and k is any nonzero scalar, then
(kA)" = k"A" for all integer values of n.

45. (a) Show thatif A, B, and A + B are invertible matrices with
the same size, then

AA'+B YBA+B) =1

(b) What does the result in part (a) tell you about the matrix
Al 4+ B 19

46. A square matrix A is said to be idempotent if A> = A.
(a) Show that if A is idempotent, then sois [ — A.

(b) Show that if A is idempotent, then 2A — [ is invertible
and is its own inverse.

47. Show that if A is a square matrix such that A¥ = 0 for some
positive integer k, then the matrix / — A is invertible and

U—A)"'"=T+A+A 4. 4 A

48. Show that the matrix

satisfies the equation

A —(a+d)A+ (ad — bc)l =0

1.4 Inverses; Algebraic Properties of Matrices 51

49. Assuming that all matrices are n x n and invertible, solve
for D.
C"B'A’BACT'DAT*BTC? ="

50. Assuming that all matrices are n x n and invertible, solve
for D.
ABC'DBA™C = AB"

Working with Proofs

In Exercises 51-58, prove the stated result.

51. Theorem 1.4.1(a) 52. Theorem 1.4.1(b)

53. Theorem 1.4.1(f) 54. Theorem 1.4.1(c)

55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)

True-False Exercises

TF. In parts (a)—(k) determine whether the statement is true or
false, and justify your answer.

(a) Two n x n matrices, A and B, are inverses of one another if
and only if AB = BA = 0.

(b) For all square matrices A and B of the same size, it is true that
(A+ B)> = A2 +2AB + B~

(¢) For all square matrices A and B of the same size, it is true that
A*— B* = (A - B)(A+ B).

(d) If A and B are invertible matrices of the same size, then AB is
invertible and (AB)™' = A~!B~L.

(e) If A and B are matrices such that AB is defined, then it is true
that (AB)T = ATBT”.
a b
a=[e

is invertible if and only if ad — bc # 0.

(f) The matrix

(g) If A and B are matrices of the same size and k is a constant,
then (kA + B)" = kAT + BT.

(h) If A is an invertible matrix, then so is A”.

(i) If p(x) = ayp + a;x + a»x* + - - - + a,x" and I is an identity
matrix, then p(I) =ay+a; +a + -+ -+ ay.

(j) A square matrix containing a row or column of zeros cannot
be invertible.

(k) The sum of two invertible matrices of the same size must be
invertible.
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Working with Technology
T1. Let A be the matrix

1 1
0 2 3
1 1
Eho

Discuss the behavior of AX as k increases indefinitely, that is, as
k — .

T2. In each part use your technology utility to make a conjecture
about the form of A" for positive integer powers of n.

D) Ao a 1 sin 6
@ A= 0 a cos 6

T3. The Fibonacci sequence (named for the Italian mathematician
Leonardo Fibonacci 1170-1250) is

cosf

—sinf

(b)A=|:

1.5

0,1, 1,2, 3,5, 8, 13, 21, 34, 55, 89, 144, ...
the terms of which are commonly denoted as
Fo, Fi, Fo, F5,..., F,, ...

After the initial terms Fy = 0 and F; = 1, each term is the sum of
the previous two; that is,

F,=F,_1+F_

R R 10
Q_F1 F|l |1 o

Confirm that if

then

Elementary Matrices and a Method for Finding A™’

In this section we will develop an algorithm for finding the inverse of a matrix, and we will

discuss some of the basic properties of invertible matrices.

In Section 1.1 we defined three elementary row operations on a matrix A:

1. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant ¢ times one row to another.

It should be evident that if we let B be the matrix that results from A by performing one
of the operations in this list, then the matrix A can be recovered from B by performing
the corresponding operation in the following list:

1. Multiply the same row by 1/c.

2. Interchange the same two rows.

3. If B resulted by adding ¢ times row r; of A to row r;, then add —c times r; to r;.

It follows that if B is obtained from A by performing a sequence of elementary row
operations, then there is a second sequence of elementary row operations, which when
applied to B recovers A (Exercise 33). Accordingly, we make the following definition.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an

elementary row operation.

DEFINITION 2 A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.



Theorem 1.5.1 will be a use-
ful tool for developing new re-
sults about matrices, but as a
practical matter it is usually
preferable to perform row op-
erations directly.
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» EXAMPLE 1 Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

| 0 (1) 8 8 (1) 1 0 3 1 00

b el e e
01 0 0

Multiply the Interchange the Add 3 times Multiply the

second row of second and fourth the third row of first row of
I, by —3. rows of 1. I; to the first row. L by 1.

The following theorem, whose proof'is left as an exercise, shows that when a matrix A
is multiplied on the left by an elementary matrix E, the effect is to perform an elementary
row operation on A.

THEOREM 1.5.1 Row Operations by Matrix Multiplication

If the elementary matrix E results from performing a certain row operation on I, and
if Ais an m X n matrix, then the product EA is the matrix that results when this same
row operation is performed on A.

» EXAMPLE 2 Using Elementary Matrices

Consider the matrix

1 0 2 3
A=12 -1 3 6
1 4 4 0

and consider the elementary matrix

1
E=]0
3

o = O
- o O

which results from adding 3 times the first row of /5 to the third row. The product EA is

1 0 2 3
EA=12 -1 3 6
4 4 10 9

which is precisely the matrix that results when we add 3 times the first row of A to the
third row. <«

‘We know from the discussion at the beginning of this section that if E is an elementary
matrix that results from performing an elementary row operation on an identity matrix
1, then there is a second elementary row operation, which when applied to E produces
I back again. Table 1 lists these operations. The operations on the right side of the table
are called the inverse operations of the corresponding operations on the left.
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Equivalence Theorem

Table 1

Row Operation on 7
That Produces E

Row Operation on E
That Reproduces 1

Multiply row i by ¢ # 0

Multiply row i by 1/¢

Interchange rows i and j

Interchange rows i and j

Add c time row i to row j

Add —c times row i to row j

» EXAMPLE 3 Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the 2 x 2 identity
matrix to obtain an elementary matrix E, then E is restored to the identity matrix by

applying the inverse row operation.
1 0 1
0 1 0

Multiply the second
row by 7.

Interchange the first
and second rows.

it
r

Add 5 times the
second row to the
first.

)= 1ol
|

Multiply the second
row by 1.

Interchange the first
and second rows.

J=1
r

Add —5 times the
second row to the

first.

<

The next theorem is a key result about invertibility of elementary matrices. It will be
a building block for many results that follow.

THEOREM 1.5.2 Every elementary matrix is invertible, and the inverse is also an ele-
mentary matrix.

Proof If E is an elementary matrix, then E results by performing some row operation
on . Let E( be the matrix that results when the inverse of this operation is performed
on /. Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the
effect of each other, it follows that

EE=1 and EEy=1
Thus, the elementary matrix Ej is the inverse of E.
One of our objectives as we progress through this text is to show how seemingly diverse

ideas in linear algebra are related. The following theorem, which relates results we
have obtained about invertibility of matrices, homogeneous linear systems, reduced row



The following figure illustrates
visually that from the se-
quence of implications

(@) = (b) = (0) = (d) = (a)
we can conclude that
(d) = ()= b) = (a)
and hence that
(@) & (b) < (o) & (d)
(see Appendix A).
(@)

(@ ®)

(0)
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echelon forms, and elementary matrices, is our first step in that direction. As we study
new topics, more statements will be added to this theorem.

THEOREM 1.5.3 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent, that is, all true or
all false.

(@) A is invertible.
(b) Ax = 0 has only the trivial solution.
(¢) The reduced row echelon form of A is I,.

(d) A is expressible as a product of elementary matrices.

Proof We will prove the equivalence by establishing the chain of implications:
(@) = () = (o) = (d) = (a).

(a) = (b) Assume A is invertible and let X be any solution of Ax = 0. Multiplying both
sides of this equation by the matrix A~! gives A~'(Axg) = A7!0, or (A~'A)xy = 0, or
Ixy =0, or xg = 0. Thus, Ax = 0 has only the trivial solution.

(b) = (¢) Let Ax = 0 be the matrix form of the system

anxy + apxy +---+ apx, =0
anxy + axnxy +---+ ayx, =0 )

an1 X1 + apXa + -+ AppXxy = 0

and assume that the system has only the trivial solution. If we solve by Gauss—Jordan
elimination, then the system of equations corresponding to the reduced row echelon
form of the augmented matrix will be

X1
= =" @
x, =0
Thus the augmented matrix
an ap -+ ap 0
ay an -+ ay 0
a;n a;12 cr dan 0

for (1) can be reduced to the augmented matrix

1 00 0 0
0 1 0 0 0
0 0 1

(e
LN )
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A Method for Inverting
Matrices

for (2) by a sequence of elementary row operations. If we disregard the last column (all
zeros) in each of these matrices, we can conclude that the reduced row echelon form of
AisT,.

(¢) = (d) Assume that the reduced row echelon form of A is /,,, so that A can be reduced
to I, by a finite sequence of elementary row operations. By Theorem 1.5.1, each of these
operations can be accomplished by multiplying on the left by an appropriate elementary

matrix. Thus we can find elementary matrices E;, E;, ..., E; such that
Ey---E2E1A=1, 3
By Theorem 1.5.2, Ey, E,, ..., E; are invertible. Multiplying both sides of Equation (3)
on the left successively by E,:l, R E;l, Efl we obtain
A=E'Ey' - E{'L = E{'Ey' - B @)

By Theorem 1.5.2, this equation expresses A as a product of elementary matrices.

(d) = (a) If Aisa product of elementary matrices, then from Theorems 1.4.7 and 1.5.2,
the matrix A is a product of invertible matrices and hence is invertible.

As a first application of Theorem 1.5.3, we will develop a procedure (or algorithm) that
can be used to tell whether a given matrix is invertible, and if so, produce its inverse. To
derive this algorithm, assume for the moment, that A is an invertible n x n matrix. In
Equation (3), the elementary matrices execute a sequence of row operations that reduce
A to I,. If we multiply both sides of this equation on the right by A~! and simplify, we
obtain

A" =E.---E,E\I,

But this equation tells us that the same sequence of row operations that reduces A to I,
will transform I, to A~'. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix A, find a sequence of
elementary row operations that reduces A to the identity and then perform that same
sequence of operations on I, to obtain A™!,

A simple method for carrying out this procedure is given in the following example.

» EXAMPLE 4 Using Row Operations to Find A~'

Find the inverse of

S L N
oo W W

Solution We want to reduce A to the identity matrix by row operations and simultane-
ously apply these operations to I to produce A~'. To accomplish this we will adjoin the
identity matrix to the right side of A, thereby producing a partitioned matrix of the form

[A]T]
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Then we will apply row operations to this matrix until the left side is reduced to 7; these
operations will convert the right side to A~!, so the final matrix will have the form

(714"
The computations are as follows:
1 2 3 0 ]
2 5 3 0
1 0 8| o 0 1]
i 2 3 1 0 ]
-3 -2 1 0 < Weadded —2 times the first
row to the second and —1 times
-2 5 —1 0 1 the first row to the third.

0 1 -3 -2 1 0 < Weadded 2 times the
second row to the third.

-3 -2 1 0 <« We multiplied the
third row by —1.

2 —14 6 3
0 1 0 13 —5 =3 « We added 3 times the third
row to the second and —3 times
0 0 1 5 =2 -1 the third row to the first.
10 —40 16 9]
0 1 0 13 -5 =3 «—— We added —2 times the
second row to the first.
0 0 5 -2 —1]
Thus,
—40 16 9
A= 13 -5 3| «
5 =2 -1

Often it will not be known in advance if a given n X n matrix A isinvertible. However,
if it is not, then by parts («) and (c¢) of Theorem 1.5.3 it will be impossible to reduce A
to I, by elementary row operations. This will be signaled by a row of zeros appearing
on the left side of the partition at some stage of the inversion algorithm. If this occurs,
then you can stop the computations and conclude that A is not invertible.

P> EXAMPLE 5 ShowingThat a Matrix Is Not Invertible

Consider the matrix

A= 2 4 -1
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Exercise Set 1.5

In Exercises 1-2, determine whether the given matrix is ele-

mentary.

1. (a)

©

2. (a)

(©

(b)

(d)

(b)

(d)

1
|
—_—
S =
| E—
1
1
I
|

Applying the procedure of Example 4 yields

1 6 4 1 0 0
2 4 —1 0 1 0
-1 2 5 0 0 1
i 6 4| 1 0 0]
0 -8 -9 | =2 1 0 <«—— We added —2 times the first
row to the second and added
0 8 9 1 0 1 the first row to the third.
1 6 4] 1 0 0]
0 -8 -9 | =2 1 0 « We added the second
row to the third.
0 0 0| -1 1

Since we have obtained a row of zeros on the left side, A is not invertible.

P EXAMPLE 6 Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.

(@) x4+ 2x; +3x3=0 (b)
2x1 4+ S5x, +3x3 =0
X1 +8x3=0

X1+ 6x, +4x3 =0
2x1 + 4x, —
—X1 +2x, + 5x3 =0

X3=0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has
only the trivial solution if and only if its coefficient matrix is invertible. From Examples 4
and 5 the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus,
system (a) has only the trivial solution while system (b) has nontrivial solutions. <

In Exercises 3-4, find a row operation and the corresponding
elementary matrix that will restore the given elementary matrix to
the identity matrix.

0 0
1 -3
3.(a)01i| | 01 0
2 0 0 2 i 0 0 1
01 0 0 -
_ 0 0 1 0
000 0 0
L 01 0 d
(©) ()1000
-5 0 1
1 - 0 0 0 1
0 0
1 00 - 1 0 o
_ 4')10 ® o 1
1 0 0 @ 5 )003
0 0 1 ) L
010 [0 0 0 1 (0 -+ 0
()0100 (d)0100
C
00 1 0 0o 0 1 0
(1 0 0 0 0o 0 0 1




In Exercises 5-6 an elementary matrix E and a matrix A are
given. Identify the row operation corresponding to E and ver-
ify that the product EA results from applying the row operation

to A.

5 E = _O
. (a) E= _1
B
b E=|0
_0
B
(¢ E=|0
_0

6. (a) E =
(b) E=|—
1
) E=|0
_0

1 -1 -2 5 -1
, A=

0} [3—6—6—6}

0 0 2 -1 0 —4 —4

1 0|, A=|1 -3 -1 5 3
-3 1 2 0 1 3 -1
0 4 1 4
1 ofl, A=12 5
0 1 306

-1 -2 5 -1
, A=

1} |:3—6—6—6i|

0 0 2 -1 0 -4 -4

1 0|, A=|1 -3 -1 5 3

0 1 2 0 1 3 -1
0 0 1 4
5 0/, A=|2 5
0 1 306

In Exercises 7-8, use the following matrices and find an ele-
mentary matrix E that satisfies the stated equation.

3
A:

3

c=|2

2

K

F=18

7. (@) EA= B

(c) EA=C

8.(a) EB=D

(c) EB=F

A= =

1 8 1 5
1|, B=|2 -7 -1
5 34 1
1 8 1 5
~1|, D=|-6 21 3
3 34 1
5
1
1
(b) EB=A
d) EC=A
(b) ED = B
(d) EF = B

In Exercises 9-10, first use Theorem 1.4.5 and then use the
inversion algorithm to find A", if it exists.

9.(a)A:|:

1 4
2 7

macl| 24
&a=1_, o

1.5 Elementary Matrices and a Method for Finding A

=5
—16

10. (@) A = [;

|:6
(b) A =

-3
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N

In Exercises 11-12, use the inversion algorithm to find the in-

verse of the matrix (if the inverse exists).

123
1. |2 5 3
|1 0 8
rlool
S 5
12.(a) [+ 1
Lo
L5 5

19

I~ 3= v

(b)

(b)

U= U n—

[SIESRVAISRVATS

' [
12 \=)

I= 3l v

o

In Exercises 13-18, use the inversion algorithm to find the in-

verse of the matrix (if the inverse exists).

0 1
13.]0 1 1
- ] 0_
- .
1502 7 6
_2 7_
2 —4 0
o2
0 0 2
0 -1 —4

14.

16.

18.

W W W O

wm wn O O

-~ o O O

wn W o N

0
-3

In Exercises 19-20, find the inverse of each of the following
4 x 4 matrices, where k1, k», k3, k4, and k are all nonzero.

k0
19. (a) 0 k
0 0
0 0
00
20. (a) 00
0 ks
(ks 0

(b)

(b)

S O o =

S O = X

O O =

S = = O

o = o O

_ o O

_—— O O

;O O O

In Exercises 21-22, find all values of ¢, if any, for which the
given matrix is invertible.

21. |1 ¢

22.

(=Y}

o = O
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In Exercises 23-26, express the matrix and its inverse as prod-
ucts of elementary matrices.

-3 1 T 1 0
23. 24.

| 2 2 -5 2

i 0 -2 1 1 0
5.0 4 3 2.1 1 1

0o o0 1 0 1 1

In Exercises 27-28, show that the matrices A and B are row
equivalent by finding a sequence of elementary row operations
that produces B from A, and then use that result to find a matrix
C such that CA = B.

1 2 3 1 0 5
27.A=1|1 4 1|, B=]0 2 =2
2 1 9 1 4
2 1 0 6 9 4
28. A=|—1 1 0|, B=|[-5 -1 0
| 3 0o -1 -1 -2 -1
29. Show that if
1 0 0
A=(0 1 0
a b c

is an elementary matrix, then at least one entry in the third
row must be zero.

30. Show that

00 a 0 0 0
b 0 ¢ 0 0
A=[0 d 0 e 0
00 f 0 g
00 0 h 0

is not invertible for any values of the entries.

Working with Proofs

31. Prove that if A and B are m x n matrices, then A and B are
row equivalent if and only if A and B have the same reduced
row echelon form.

32. Prove that if A is an invertible matrix and B is row equivalent
to A, then B is also invertible.

33. Prove that if B is obtained from A by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, which when applied to B recov-
ers A.

True-False Exercises

TF. In parts (a)-(g) determine whether the statement is true or
false, and justify your answer.

(a) The product of two elementary matrices of the same size must
be an elementary matrix.

(b) Every elementary matrix is invertible.

(c) If A and B are row equivalent, and if B and C are row equiv-
alent, then A and C are row equivalent.

(d) If A is an n x n matrix that is not invertible, then the linear
system Ax = 0 has infinitely many solutions.

(e) If A is an n x n matrix that is not invertible, then the matrix
obtained by interchanging two rows of A cannot be invertible.

(f) If A is invertible and a multiple of the first row of A is added
to the second row, then the resulting matrix is invertible.

(g) An expression of an invertible matrix A as a product of ele-
mentary matrices is unique.

Working with Technology
T1. It can be proved that if the partitioned matrix

A B
C D
is invertible, then its inverse is

|:A‘1 +A"'B(D — CA™'B)~'CA™!

—A"'B(D — CA~'B)"!
—(D — CA™'B)"'CA™!

(D — CA-'B)~!

provided that all of the inverses on the right side exist. Use this
result to find the inverse of the matrix

1 2 1 0
0 -1 0 1
0 0 2 0
0 0 3 3
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More on Linear Systems and Invertible Matrices

In this section we will show how the inverse of a matrix can be used to solve a linear system
and we will develop some more results about invertible matrices.

In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
system either has no solutions, has exactly one solution, or has infinitely many solutions.
We are now in a position to prove this fundamental result.

THEOREM 1.6.1 A system of linear equations has zero, one, or infinitely many solutions.
There are no other possibilities.

Proof If Ax =b is a system of linear equations, exactly one of the following is true:
(a) the system has no solutions, (b) the system has exactly one solution, or (c¢) the system
has more than one solution. The proof will be complete if we can show that the system
has infinitely many solutions in case (c).

Assume that Ax = b has more than one solution, and let xo = x; — X», where x;
and x; are any two distinct solutions. Because x; and x, are distinct, the matrix x, is
NONZero; moreover,

AX():A(XI —Xz) :AX] —AXZZb—bZO
If we now let k be any scalar, then
A(x) + kxo) = Ax) + A(kxg) = Ax| + k(Axo)
=b+k0=b+4+0=D>

But this says that x; 4 kx( is a solution of Ax = b. Since X, is nonzero and there are
infinitely many choices for &, the system Ax = b has infinitely many solutions.

Thus far we have studied two procedures for solving linear systems—Gauss—Jordan
elimination and Gaussian elimination. The following theorem provides an actual formula
for the solution of a linear system of n equations in n unknowns in the case where the
coefficient matrix is invertible.

THEOREM 1.6.2 If A is an invertible n X n matrix, then for each n x 1 matrix b, the
system of equations AX = b has exactly one solution, namely, x = A~'b.

Proof Since A(A~'b) = b, it follows that x = A~'b is a solution of Ax = b. To show
that this is the only solution, we will assume that x is an arbitrary solution and then
show that x, must be the solution A~ 'b.

If x( is any solution of Ax = b, then Axy, = b. Multiplying both sides of this equa-
tion by A~!, we obtain xg = A~'b.

» EXAMPLE 1 Solution of a Linear System Using A"
Consider the system of linear equations
X1+ 2x +3x3= 5
2x1 4+ 5x, + 3x3
X1 + 8x3 =17
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Keep in mind that the method
of Example 1 only applies
when the system has as many
equations as unknowns and
the coefficient matrix is invert-
ible.

Linear Systems with a
Common Coefficient Matrix

In matrix form this system can be written as Ax = b, where

1 23 X
A=12 5 3|, x=|x|, b=
1 0 8 X3 17
In Example 4 of the preceding section, we showed that A is invertible and
—40 16 9
Al=] 13 -5 -3
5 =2 -1

By Theorem 1.6.2, the solution of the system is

—40 16 9 5 1
x=A""b=| 13 -5 =3 3| =1-1
5 =2 —1]|]17 2

orx;=1,xn=—1x3=2 <

Frequently, one is concerned with solving a sequence of systems
Ax=by, Ax=by, Ax=bs, ..., Ax=by;

each of which has the same square coefficient matrix A. If A is invertible, then the
solutions

xi=A7b, xo=A4""by, x35=A7"b3,..., xp=A"by

can be obtained with one matrix inversion and k matrix multiplications. An efficient
way to do this is to form the partitioned matrix

[A by |by|---|b] (1

in which the coefficient matrix A is “augmented” by all k of the matrices by, by, ..., by,
and then reduce (1) to reduced row echelon form by Gauss—Jordan elimination. In this
way we can solve all k£ systems at once. This method has the added advantage that it
applies even when A is not invertible.

» EXAMPLE 2 SolvingTwo Linear Systems at Once

Solve the systems

@ x;4+2x+3x;=4
2X1 + 5)62 + 3)63 =5
X1 =+ 8)C3 = 9 X1

b)) x1+2x+3x3= 1
2)61 + 5X2 + 3)C3 = 6
+ 8)(3 = —6

Solution The two systems have the same coefficient matrix. If we augment this co-
efficient matrix with the columns of constants on the right sides of these systems, we

obtain

Reducing this matrix to reduced row echelon form

1 2 3
2 5 3|5
1 0 8|9
1 0 0] 1
0 1 010
0 0 11

6

—6

yields (verify)
)

1

-1
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It follows from the last two columns that the solution of system (a) is x; = 1, x, = 0,
x3 = 1 and the solution of system (b)isx; =2, x, =1, x3 = —1.

Up to now, to show that an n x n matrix A is invertible, it has been necessary to find an
n x n matrix B such that

AB =1 and BA=1

The next theorem shows that if we produce ann x n matrix B satisfying either condition,
then the other condition will hold automatically.

THEOREM 1.6.3 Let A be a square matrix.
(a) If B is a square matrix satisfying BA = I, then B = A~
(b) If B is a square matrix satisfying AB = I, then B = A~

We will prove part (a) and leave part (b) as an exercise.

Proof (a) Assume that BA = I. If we can show that A is invertible, the proof can be
completed by multiplying BA = I on both sides by A~! to obtain

BAA™'=1A7" or BI=IA"" or B=A""

To show that A is invertible, it suffices to show that the system Ax = 0 has only the trivial
solution (see Theorem 1.5.3). Let x¢ be any solution of this system. If we multiply both
sides of Axy = 0 on the left by B, we obtain BAxy = B0 or Ixy = 0 or xo = 0. Thus,
the system of equations Ax = 0 has only the trivial solution.

We are now in a position to add two more statements to the four given in Theorem 1.5.3.

THEOREM 1.6.4 Equivalent Statements

If A is an n X n matrix, then the following are equivalent.
(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢)  The reduced row echelon form of A is I,,.

(d) A is expressible as a product of elementary matrices.
(e) Ax = bis consistent for every n x 1 matrix b.

(f) Ax = b has exactly one solution for every n X 1 matrix b.

Proof Since we proved in Theorem 1.5.3 that (@), (b), (¢), and (d) are equivalent, it will
be sufficient to prove that (a) = (f) = (e) = (a).

(a) = (f) This was already proved in Theorem 1.6.2.

(f) = (e) This is almost self-evident, for if Ax = b has exactly one solution for every
n x 1 matrix b, then Ax = b is consistent for every n x 1 matrix b.
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It follows from the equiva-
lency of parts (e) and ( /) that
if you can show that Ax =b
has at least one solution for ev-
ery n x 1 matrix b, then you
can conclude that it has ex-
actly one solution for every
n x 1 matrix b.

(e) = (a) Ifthesystem Ax = bis consistent for every n x 1 matrix b, then, in particular,
this is so for the systems

1 0 0
0 1 0
Ax=|[0f, Ax=|0{,..., Ax=]0
0 0 1
Let xq, X3, ..., X, be solutions of the respective systems, and let us form an n x n ma-

trix C having these solutions as columns. Thus C has the form
C=[xi %] | %]
As discussed in Section 1.3, the successive columns of the product AC will be
Axy, AXy, ..., AX,

[see Formula (8) of Section 1.3]. Thus,

10 0
0 1 0
AC =[Ax| | Axs | -+ | Ax,]= |0 0 0| =1

By part (b) of Theorem 1.6.3, it follows that C = A~!. Thus, A is invertible.

We know from earlier work that invertible matrix factors produce an invertible prod-
uct. Conversely, the following theorem shows that if the product of square matrices is
invertible, then the factors themselves must be invertible.

THEOREM 1.6.5 Let A and B be square matrices of the same size. If AB is invertible,
then A and B must also be invertible.

Proof We will show first that B is invertible by showing that the homogeneous system
Bx = 0 has only the trivial solution. If we assume that x is any solution of this system,
then
(AB)xg = A(Bxy) = A0 =0
so xg = 0 by parts («) and (b) of Theorem 1.6.4 applied to the invertible matrix AB.
But the invertibility of B implies the invertibility of B~! (Theorem 1.4.7), which in turn
implies that
(AB)B"'=ABB™H) =AI=A

is invertible since the left side is a product of invertible matrices. This completes the
proof.

In our later work the following fundamental problem will occur frequently in various
contexts.

A Fundamental Problem Let A be a fixed m x n matrix. Find all m x 1 matrices b
such that the system of equations Ax = b is consistent.
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If A is an invertible matrix, Theorem 1.6.2 completely solves this problem by assert-
ing that for every m x 1 matrix b, the linear system Ax = b has the unique solution
x = A7'b. If A is not square, or if A is square but not invertible, then Theorem 1.6.2
does not apply. In these cases b must usually satisfy certain conditions in
order for Ax = b to be consistent. The following example illustrates how the methods
of Section 1.2 can be used to determine such conditions.

P EXAMPLE 3 Determining Consistency by Elimination
What conditions must by, by, and b3 satisfy in order for the system of equations
X1+ X + 2x3 = by
X1 + x3=>b;
2x1 4+ x2 4 3x3 = b3

to be consistent?

Solution The augmented matrix is

1 1 2 b
1 0 1 b
2 1 3 b;
which can be reduced to row echelon form as follows:
1 1 2 by
0 —1 -1 bl — b2 <« —1 times the first row was added
to the second and —2 times the
0 -1 -1 b3 - 2b1 first row was added to the third.
1 2 b,
0 1 1 bl — b2 . T'he second row was
multiplied by —1.
0 -1 -1 by — 2b,
1 1 2 b
0 1 1 b] — b2 <« The second row was added
to the third.
0 0 0 by — by — by

It is now evident from the third row in the matrix that the system has a solution if and
only if by, by, and b satisfy the condition

by —by,—b; =0 or by=>b;+ by

To express this condition another way, Ax = b is consistent if and only if b is a matrix

of the form
b

b= b,
by + b,
where b and b, are arbitrary.

P EXAMPLE 4 Determining Consistency by Elimination
What conditions must by, by, and bj; satisfy in order for the system of equations
X1+ 2x2 + 3x3 = by
2x1 + 5x5 + 3x3 = by
X1 + 8x3 = b3

to be consistent?
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Solution The augmented matrix is

1 2 3 b
2 5 3 b
1 0 8 bs

Reducing this to reduced row echelon form yields (verify)

1 0 0 —40by + 16by + 9b;
01 0 13b; — 5by — 3bs 2)
0 0 1 5by — 2b, — by
In this case there are no restrictions on by, b;, and b3, so the system has the unique
What does the result in Exam- solution

ple 4 tell you about the coeffi- X| = —40b; + 16by + 95, x» = 13by — Shy — 3bs, x3=5by —2by—by  (3)

cient matrix of the system?
for all values of by, by, and b;. <

Exercise Set 1.6

In Exercises 1-8, solve the system by inverting the coefficient 12, x; + 3x; + 5x3 = b;

matrix and using Theorem 1.6.2. —x1 — 2x, =b,
1. X1+ )C2=2 2. 4X1—3X2=—3 2.)61+5X2+4.X3:b3
5x1 + 6x, =9 2x1 — 5x, = 9 @) by=1, by=0, by=-1
(ll) b| :0, bzzl, b3:1
3. )C1+3.X2 + x3 = 4 4. 5)C1+3XZ+2X3:4 (111) b1=—1, bz:—], b3=0
2x1 4 2x5 + x3 = —1 3x1 +3x, + 2x3 =2
2x1 + 3x2 + xj - 3 ! xz + xz -5 In Exercises 13-17, determine conditigns on .the b;’s, if any, in
order to guarantee that the linear system is consistent.
5. x+y+ z= 5 6. — x—2y—3z=0 13. x; +3x, =b 14. 6x; — 4x, = b,
x+y—4z=10 w4+ x+4y+4z=7 =2x14+ xp=b 3x) —2x, =by
—dx+y+ z= 0 w4+3x+T7y+92=4

15. X1 — 2x3 + S5x3 = b, 16. X1 —2xy — x3=b,
4X1 — 5)C2 + 8)(3 = b2 —4)(1 + 5X2 + 2)(3 = b2
7. 3x1 + 56 = by 8. X1 + 20 + 3x; = by —3x1 + 30, = 3x; = by —4x1 + 7oy + dx3 = b
X1+ 2x, = by 2x1 + S5xy 4+ 5x3 = b, 17

3x1 4 5x; + 8x3 = bs

—w—2x —4y —62=06

X1 — X2+3X3+2X4=b1
—2)61 + x + 5X3 + x4 = b2
—3.)61 + 2)62 + Z.X3 — X4 = b3

In Exercises 9-12, solve the linear systems together by reducing
dx; — 3x + x3+ 3x4 =by

the appropriate augmented matrix.

9. x, — 5%, =b 18. Consider the matrices
3X1 + 2X2 = b2 2 1 2 X1
(l) b] = 1, bz =4 (ll) b] = —2, b2 =5 A=12 2 -2 and x= X2
10. —Xx; + 4X2 + x3= bl 3 1 1 X3
X+ 9% — 2x3=b, (a) Show that the equation Ax = X can be rewritten as
6x; + 4x, — 8x3 = b3 (A — Ix = 0 and use this result to solve Ax = x for x.
B by=0, bp=1, by3=0 (b) Solve Ax = 4x.

(i) by=-3, by=4, by;=-5
In Exercises 19-20, solve the matrix equation for X.

11. 4X1 - 7.X'2 = b]
X1 +2X2 =b2 1 —1 1 2 —1 5 7 8
G) by=0, by=1 (i) by = —4, by=6 9.12 3 o|lx=[|4 0 -3 0
(i) by=—1, by=3 (iv) by=-5 by=1 0 2 -1 305 =7 2 1



-2 0 1 4 3 2 1
20. 0 -1 —-1|X=[6 7 8 9
1 1 —4 1 3 7 9

Working with Proofs

21. Let Ax = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k
is any positive integer, then the system A*x = 0 also has only
the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations
in n unknowns, and let Q be an invertible n X n matrix.
Prove that Ax = 0 has only the trivial solution if and only
if (QA)x = 0 has only the trivial solution.

23. Let Ax = b be any consistent system of linear equations, and
let x; be a fixed solution. Prove that every solution to the
system can be written in the form x = x| + x,, where xq is a
solution to Ax = 0. Prove also that every matrix of this form
is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises
TF. In parts (a)-(g) determine whether the statement is true or
false, and justify your answer.

(a) Itisimpossible for a system of linear equations to have exactly
two solutions.

(b) If A is a square matrix, and if the linear system Ax = b has a
unique solution, then the linear system Ax = ¢ also must have
a unique solution.

(¢) If A and B are n x n matrices such that AB = [, then
BA =1,.

(d) If A and B are row equivalent matrices, then the linear systems
Ax = 0 and Bx = 0 have the same solution set.
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(e) Let A beann x n matrix and S is an n X n invertible matrix.
If x is a solution to the linear system (S~'AS)x = b, then Sx
is a solution to the linear system Ay = Sb.

(f) Let A be an n x n matrix. The linear system Ax = 4x has a
unique solution if and only if A — 4/ is an invertible matrix.

(g) Let A and B be n x n matrices. If A or B (or both) are not
invertible, then neither is AB.

Working with Technology

T1. Colors in print media, on computer monitors, and on televi-
sion screens are implemented using what are called “color mod-
els”. For example, in the RGB model, colors are created by mixing
percentages of red (R), green (G), and blue (B), and in the YIQ
model (used in TV broadcasting), colors are created by mixing
percentages of luminescence (Y) with percentages of a chromi-
nance factor (I) and a chrominance factor (Q). The conversion
from the RGB model to the YIQ model is accomplished by the
matrix equation

Y .299 587 A14 1 | R
I[=1].56 =275 -321||G
Q 212 —.523 311 B

What matrix would you use to convert the YIQ model to the RGB
model?

T2. Let
1 -2 2 0 11 1
A= 4 5 s B] = 1 5 Bz = 5 s B3 = —4
0 3 -1 7 3 2

Solve the linear systems Ax = B}, Ax = B,, Ax = B; using the
method of Example 2.

1.7 Diagonal, Triangular, and Symmetric Matrices

In this section we will discuss matrices that have various special forms. These matrices arise

in a wide variety of applications and will play an important role in our subsequent work.

Diagonal Matrices

A square matrix in which all the entries off the main diagonal are zero is called a diagonal

matrix. Here are some examples:

o -

o 4

o o -
o - o
- o o

|

AN
o o o o
® o o o

S O O
(e



68 Chapter 1 Systems of Linear Equations and Matrices

A general n x n diagonal matrix D can be written as

d 0 - 0
0 d - 0

=1 : M
0 0 --- d,

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in

Clemtibiug e b () oy slene this case the inverse of (1) is

ing that
DD '=D D=1 V0 e 0
0 1/d, --- 0
pi=| O YV . @)
0 0 - 1/d,

You can verify that this is so by multiplying (1) and (2).
Powers of diagonal matrices are easy to compute; we leave it for you to verify that if
D is the diagonal matrix (1) and & is a positive integer, then

a4 o .. 0
0 4 .. o
pk=|. 7 . 3)
0o 0 -.- dt
» EXAMPLE 1 Inverses and Powers of Diagonal Matrices
If
1 0 0
A=1]0 =3 0
0 0 2
then
1 0 0 1 0 0 1 0 0
Al=]0 -1 0|, A°=|0 243 0|, ATC=]|0 —55 0
I 1
0 0 3 0 0 32 0 0 =
<
Matrix products that involve diagonal factors are especially easy to compute. For
example,
di 0 0|[an an a3 au| [dian dian das dias
0 d» 0| lan an axpn au|=|day dan dyay dyaxy
0 0 ds]|as an a an| |dasn dyan dia  diaxn
- [d d d
ay  ap  aps 4 0 0 1ai1  dxapy  dias
dp1 dx a4 0 4 o0 |= diay  dray diax
2 =
asy  dszx  dss diay  dray dias;
0 0 ds
as  Ag  ds3 - | diasy  dhayp  dyags

In words, to multiply a matrix A on the left by a diagonal matrix D, multiply successive
rows of A by the successive diagonal entries of D, and to multiply A on the right by D,
multiply successive columns of A by the successive diagonal entries of D.
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Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a square matrix in which all the entries below the main diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

P> EXAMPLE 2 Upper and Lower Triangular Matrices

ajl aip a3 a4 ap 0 0 0
0 ax» a3 axn a; ap 0 0 <
0 0 ax au a1 ayp a0
0 0 0 au a4 a4 a43  a44
A general 4 x 4 upper A general 4 x 4 lower

triangular matrix triangular matrix

Remark Observe that diagonal matrices are both upper triangular and lower triangular since
they have zeros below and above the main diagonal. Observe also that a square matrix in row
echelon form is upper triangular since it has zeros below the main diagonal.

Properties of Triangular — Example 2 illustrates the following four facts about triangular matrices that we will state
Matrices  without formal proof:

* A square matrix A = [a;;] is upper triangular if and only if all entries to the left of
the main diagonal are zero; that is, a;; = 0if i > j (Figure 1.7.1).

¢ A square matrix A = [a;;] is lower triangular if and only if all entries to the right of
the main diagonal are zero; that is, a;; = 0if i < j (Figure 1.7.1).

Figure 1.7.1 A square matrix A = [a;;] is upper triangular if and only if the ith row starts with at

least i — 1 zeros for every i.
¢ Asquare matrix A = [a;;] is lower triangular if and only if the jth column starts with
at least j — 1 zeros for every j.

The following theorem lists some of the basic properties of triangular matrices.

THEOREM 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose
of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product of
upper triangular matrices is upper triangular.

(¢) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

(d) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by
reflecting the entries about the main diagonal; we omit the formal proof. We will prove
(b), but we will defer the proofs of (¢) and (d) to the next chapter, where we will have the
tools to prove those results more efficiently.

Proof(b) We will prove the result for lower triangular matrices; the proof for upper trian-
gular matrices is similar. Let A = [a;;] and B = [b;;] be lower triangular n x n matrices,
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Observe that in Example 3 the
diagonal entries of AB and
BA are the same, and in both
cases they are the products
of the corresponding diagonal
entries of A and B. In the
exercises we will ask you to
prove that this happens when-
ever two upper triangular ma-
trices or two lower triangular
matrices are multiplied.

Symmetric Matrices

It is easy to recognize a sym-
metric matrix by inspection:
The entries on the main diag-
onal have no restrictions, but
mirror images of entries across
the main diagonal must be
equal. Here is a picture using
the second matrix in Exam-
ple 4:

and let C = [c;;] be the product C = AB. We can prove that C is lower triangular by
showing that ¢;; = 0 for i < j. But from the definition of matrix multiplication,

cij = aitbyj + ainbyj + - - + ainby;
If we assume that i < j, then the terms in this expression can be grouped as follows:

¢ij = aitbyj + ainhyj + - 4 ai(j-1yb(j-1)j + @ijbjj + - - 4 dinby;

Terms in which the row
number of b is less than
the column number of b

Terms in which the row

number of a is less than

the column number of a

In the first grouping all of the b factors are zero since B is lower triangular, and in the
second grouping all of the a factors are zero since A is lower triangular. Thus, ¢;; =0,
which is what we wanted to prove.

P> EXAMPLE 3 Computations with Triangular Matrices

Consider the upper triangular matrices

1 3 -1 3 =2 2
A=10 2 4, B=10 0 -1
0 0 5 0 0 1

It follows from part (¢) of Theorem 1.7.1 that the matrix A is invertible but the matrix
B is not. Moreover, the theorem also tells us that A~!, AB, and BA must be upper
triangular. We leave it for you to confirm these three statements by showing that

1 -3 1 3 -2 -2 305 —1
A'=l0o 1 21, AB=|0 0 2|, BA=|0 0 5|«
o o I 0 0 5 0 0 5

DEFINITION 1 A square matrix A is said to be symmetric if A = AT

» EXAMPLE 4 Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).

7 3 ! 4 > Cf)l c(i) g 8

. |4 =3 , . <
-3 5 5 0 0 0 d O
0 0 0 ds

Remark Tt follows from Formula (14) of Section 1.3 that a square matrix A is symmetric if and
only if

(A = (A)ji “

for all values of i and j.

The following theorem lists the main algebraic properties of symmetric matrices. The
proofs are direct consequences of Theorem 1.4.8 and are omitted.
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Products AAT and ATA
are Symmetric
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THEOREM 1.7.2 If A and B are symmetric matrices with the same size, and if k is any
scalar, then:

(a) AT is symmetric.
(b) A+ Band A — B are symmetric.

(c) kA is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To
see why this is so, let A and B be symmetric matrices with the same size. Then it follows
from part (e) of Theorem 1.4.8 and the symmetry of A and B that

(AB)T = BTAT = BA

Thus, (AB)T = AB if and only if AB = BA, that s, if and only if A and B commute. In
summary, we have the following result.

THEOREM 1.7.3 The product of two symmetric matrices is symmetric if and only if the
matrices commute.

» EXAMPLE 5 Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not
symmetric, and the second shows a product of symmetric matrices that is symmetric. We
conclude that the factors in the first equation do not commute, but those in the second
equation do. We leave it for you to verify that this is so.

B R .
B[R

In general, a symmetric matrix need not be invertible. For example, a diagonal matrix
with a zero on the main diagonal is symmetric but not invertible. However, the following
theorem shows that if a symmetric matrix happens to be invertible, then its inverse must
also be symmetric.

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A~" is symmetric.

Proof Assume that A is symmetric and invertible. From Theorem 1.4.9 and the fact
that A = AT, we have

which proves that A~! is symmetric.

Matrix products of the form AA” and ATA arise in a variety of applications. If A is
an m X n matrix, then A7 is an n x m matrix, so the products AAT and ATA are both
square matrices—the matrix AA” has size m x m, and the matrix A”A has size n x n.
Such products are always symmetric since

(AATYT = (AT)TAT = AAT and (ATA)T = AT(ATHT = ATA
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Exercise Set 1.7

P EXAMPLE 6 The Product of a Matrix and Its Transpose Is Symmetric
Let A be the 2 x 3 matrix

Then

ATA =

AAT =

A=

4

:

2
0

4
)

-5

]

|17

10 -2
2 4
—11 -8
21 —17
34

Observe that ATA and AAT are symmetric as expected. <

—11
-8
41

}

Later in this text, we will obtain general conditions on A under which AAT and ATA
are invertible. However, in the special case where A is square, we have the following

result.

THEOREM 1.7.5 If A is an invertible matrix, then AAT and ATA are also invertible.

Proof Since A isinvertible, sois AT by Theorem 1.4.9. Thus AAT and ATA areinvertible,
since they are the products of invertible matrices.

In Exercises 1-2, classify the matrix as upper triangular, lower
triangular, or diagonal, and decide by inspection whether the ma-
trix is invertible. [Note: Recall that a diagonal matrix is both up-
per and lower triangular, so there may be more than one answer

in some parts.]
L@ 2 1
. (a
0 3

[4 0

2@,

(©

|

o viv o

(=R

wi—

0
0
-2

(b)

@lo o 3

b'o -3
®l
3 0 0
@3 1 0
70 0

In Exercises 36, find the product by inspection.

3 0
3.]0 -1
0 0

-1

0 0

3 0

0 2
2

=5 3
2 2

-1 3
2 0
1 -2

4 —4

0 3

2 2

-3 0 0
0 50
0 0 2

In Exercises 7-10, find A%, A=, and A~* (where k is any inte-
ger) by inspection.

o O W=

(=)

o wim

(=)

i

10. A =

—6 0 0
30
| 0 0 5
2 0 0 0
0 —4 0 0
0 0 -3 0
L0 0 o0 2



In Exercises 11-12, compute the product by inspection.
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In Exercises 23-24, find the diagonal entries of AB by inspec-
tion.

32 6 -1 2 7

23.A=|0 1 =2|, B=| 0 5 3
0 0 -1 0 0 6
4 0 0 6 0 0

24.A=|-2 0 0|, B=|1 5 o0
-3 0 7 32 6

10 0o][2 0 o][0o 0 0
1m.{o o oflo 5 oflo 2 o
0 0 3]0 0 of]o 0 1
—1 0 0][3 0 0][5 0 o0
1221 0 2 oflo 5 o|]lo —2 0
L 0o 0 4]0 0 7]l0 o 3

In Exercises 13-14, compute the indicated quantity.

In Exercises 25-26, find all values of the unknown constant(s)

for which A is symmetric.

39 1000
1 0 1 0

13. 14.
0 -1 0 -1

In Exercises 15-16, use what you have learned in this section
about multiplying by diagonal matrices to compute the product
by inspection.

[fa 0 0| [u v (r st ]
15. (a) b 0||lw x (b) voow

L 0 ¢ y z lx ¥y z 0 c |

fu v fa 0 ros ot
16. (a) a0 ® o b

.(a) |w x u v
0 b
LYy z 10 0 cf[x vy

In Exercises 17-18, create a symmetric matrix by substituting
appropriate numbers for the x’s.

25. A 4
U la+5 -1
2 a—2b+2c 2a+b+c
26 A= 1|3 5 a+c
K -2 7

In Exercises 27-28, find all values of x for which A is invertible.

27. A=

28. A =

x? x*
x+2 x?
0 x—4
0 0
x—% 0
X x4+

29. If A is an invertible upper triangular or lower triangular ma-

M1 X X X

2 -1 3 X X

17. (a) |:>< 3i| (b) g 0 y
L2 -3 9 0

1 7 =3 27

0 x X 4 5 =7

18 @ [3 0} R
| X X X 3]

In Exercises 19-22, determine by inspection whether the ma-

trix is invertible.

0 6 -1
19.10 7 —4 20.
0 0 -2
0 0 0
2 =5 0 0
21. 2.
4 =3 4 0
12 1 3

—1 2 4
0 3 0
0 0 5
2 0 0 0
-1 0 0
—6 0 0
0 3 8§ =5

trix, what can you say about the diagonal entries of A~!?

30. Show thatif A isa symmetricn X n matrixand Bisanyn x m
matrix, then the following products are symmetric:

B'B, BBT, BTAB

In Exercises 31-32, find a diagonal matrix A that satisfies the
given condition.

1 0 0 9 0 0
3. A=]0 -1 0 32.A72=1|0 4 0
0 0 -1 0 0 1

33. Verify Theorem 1.7.1(b) for the matrix product AB and The-
orem 1.7.1(d) for the matrix A, where

-1 2 2 -8 0
A=| 0o 1 ., B=|0 2 1
0 0 —4 0 0 3

34. Let A be an n x n symmetric matrix.
(a) Show that A? is symmetric.

(b) Show that 2A% — 3A 4+ I is symmetric.
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35. Verify Theorem 1.7.4 for the given matrix A.

1 -2 3
2 -1

(a) A=|:_1 3} b A=|-—2 1 -7

3 -7 4

36. Find all 3 x 3 diagonal matrices A that satisfy
A? —3A —4I =0.

37. Let A =[a;;] be an n x n matrix. Determine whether A is
symmetric.

@ ay=i*+j°
(C) aij =2 +2j

(b) a;=i*—j?
(d) ay =2i*+2j°

38. On the basis of your experience with Exercise 37, devise a gen-
eral test that can be applied to a formula for a;; to determine
whether A = [a;;] is symmetric.

39. Find an upper triangular matrix that satisfies

A3_1 30
“lo -8

40. If then x n matrix A can be expressed as A = LU, where L is
a lower triangular matrix and U is an upper triangular matrix,
then the linear system Ax = b can be expressed as LUx =b
and can be solved in two steps:

Step 1. Let Ux =Yy, so that LUx = b can be expressed as
Ly = b. Solve this system.

Step 2. Solve the system Ux =y for x.

In each part, use this two-step method to solve the given

system.
1 0 o]f2 -1 3][=m 1
@ |- 3 o|lo 1 x| =|-2
2 0 0 4f]|x 0
2 0 0][3 -5 2][x 4
™| 4 1 o|lo 4 1||x|=|-5
-3 =2 3[lo 0 2|]|x 2

In the text we defined a matrix A to be symmetric if A7 = A.
Analogously, a matrix A is said to be skew-symmetricif AT = —A.
Exercises 41-45 are concerned with matrices of this type.

41. Fill in the missing entries (marked with x) so the matrix A is
skew-symmetric.

X X 4 X 0 X
@A=]|0 x X (b) A=| x x —4
—1 X 8 X X

42. Find all values of a, b, ¢, and d for which A is skew-symmetric.

0 2a—3b+c¢ 3a—5b+5c
A=|-=-2 0 Sa — 8b + 6¢
-3 -5 d

43. We showed in the text that the product of symmetric matrices
is symmetric if and only if the matrices commute. Is the prod-
uct of commuting skew-symmetric matrices skew-symmetric?
Explain.

Working with Proofs

44. Prove that every square matrix A can be expressed as the sum
of a symmetric matrix and a skew-symmetric matrix. [Hint:
Note the identity A = 1(A + AT) + 1(A — AT) ]

45. Prove the following facts about skew-symmetric matrices.

(a) If A is an invertible skew-symmetric matrix, then A~ is
skew-symmetric.

(b) If A and B are skew-symmetric matrices, then so are A7,
A+ B, A — B, and kA for any scalar k.

46. Prove: If the matrices A and B are both upper triangular or
both lower triangular, then the diagonal entries of both AB
and BA are the products of the diagonal entries of A and B.

47. Prove: If ATA = A, then A is symmetric and A = A2,

True-False Exercises

TF. In parts (a)-(m) determine whether the statement is true or
false, and justify your answer.

(a) The transpose of a diagonal matrix is a diagonal matrix.

(b) The transpose of an upper triangular matrix is an upper tri-
angular matrix.

(¢) The sum of an upper triangular matrix and a lower triangular
matrix is a diagonal matrix.

(d) Allentries of a symmetric matrix are determined by the entries
occurring on and above the main diagonal.

(e) All entries of an upper triangular matrix are determined by
the entries occurring on and above the main diagonal.

(f) Theinverse of an invertible lower triangular matrix is an upper
triangular matrix.

(g) A diagonal matrix is invertible if and only if all of its diagonal
entries are positive.

(h) The sum of a diagonal matrix and a lower triangular matrix is
a lower triangular matrix.

(1) A matrix that is both symmetric and upper triangular must be
a diagonal matrix.

(j) If A and B are n x n matrices such that A 4+ B is symmetric,
then A and B are symmetric.

(k) If A and B are n x n matrices such that A + B is upper trian-
gular, then A and B are upper triangular.

() If A% is a symmetric matrix, then A is a symmetric matrix.

(m) If kA is a symmetric matrix for some k # 0, then A is a sym-
metric matrix.



Working with Technology

T1. Starting with the formula stated in Exercise T1 of Section 1.5,

D,
0
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in which D, and D, are invertible, and use your result to compute
the inverse of the matrix

derive a formula for the inverse of the “block diagonal” matrix 1.24 2.37 0 0
3.08 —1.01 0 0
0 M =
D2:| 0 0 2.76 4.92
0 0 3.23 5.54

1.8 MatrixTransformations

The term “vector” is used in
various ways in mathemat-
ics, physics, engineering, and
other applications. The idea
of viewing n-tuples as vectors
will be discussed in more detail
in Chapter 3, at which point we
will also explain how this idea
relates to more familiar notion
of a vector.

In this section we will introduce a special class of functions that arise from matrix
multiplication. Such functions, called “matrix transformations,” are fundamental in the
study of linear algebra and have important applications in physics, engineering, social
sciences, and various branches of mathematics.

Recall that in Section 1.1 we defined an “ordered n-tuple” to be a sequence of n real
numbers, and we observed that a solution of a linear system in n unknowns, say

X1 =81, X2=82,..., Xy =35
can be expressed as the ordered n-tuple

(S15 82, - vs Sn) 1)
Recall also that if n = 2, then the n-tuple is called an “ordered pair,” and if n = 3, it is
called an “ordered triple.” For two ordered n-tuples to be regarded as the same, they
must list the same numbers in the same order. Thus, for example, (1, 2) and (2, 1) are
different ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by the symbol R*. The
elements of R" are called vectors and are denoted in boldface type, such as a, b, v, w,
and x. When convenient, ordered n-tuples can be denoted in matrix notation as column
vectors. For example, the matrix

S
52
2
Sn
can be used as an alternative to (1). We call (1) the comma-delimited form of a vector
and (2) the column-vector form. Foreachi = 1,2, ..., n, let ¢; denote the vector in R"
with a 1 in the ith position and zeros elsewhere. In column form these vectors are
(1] [07] [07]
0 1 0
el = 0 ’ e2 = 0 LA en = O
1 0] 1 0] |1
We call the vectors ey, e, ..., e, the standard basis vectors for R". For example, the
vectors
1 0 0
e1=0,e2=1,e3:O
0 0 1

are the standard basis vectors for R3.
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Functions and
Transformations

/
a 0/\.
b=j(a)

Domain Codomain
A B

Figure 1.8.1

Matrix Transformations

It is common in linear algebra
to use the letter 7' to denote
a transformation. In keeping
with this usage, we will usually
denote a transformation from
R" to R™ by writing

T:R"—R"

The vectors e, es, ..., e, in R" are termed “basis vectors” because all other vectors
in R" are expressible in exactly one way as a linear combination of them. For example,
if

Xn
then we can express X as
X = xi€; + X282 + - - - + x5y,

Recall that a function is a rule that associates with each element of a set A one and only
one element in a set B. If f associates the element b with the element a, then we write

b= f(a)

and we say that b is the image of a under f or that f(a) is the value of f at a. The set
A is called the domain of f and the set B the codomain of f (Figure 1.8.1). The subset
of the codomain that consists of all images of elements in the domain is called the range
of f.

In many applications the domain and codomain of a function are sets of real numbers,
but in this text we will be concerned with functions for which the domain is R” and the
codomain is R™ for some positive integers m and n.

DEFINITION 1 If £ is a function with domain R" and codomain R, then we say that
[ is a transformation from R" to R™ or that f maps from R" to R™, which we denote
by writing

f:R"—R"
In the special case where m = n, a transformation is sometimes called an operator on
R".

In this section we will be concerned with the class of transformations from R" to R™
that arise from linear systems. Specifically, suppose that we have the system of linear
equations

wp = anXx; + apxy + -+ aApX,
Wy = do1X| + anXy + -+ ayX, 3)
Wy = Am1X1 + ApaX2 + - + AunXn
which we can write in matrix notation as
wi app  ap - A X1
(%) daz dxp - Qo X2
=1 : : : )
W am1  Am2 o Amn Xn
or more briefly as
w = AX ®)

Although we could view (5) as a compact way of writing linear system (3), we will view
it instead as a transformation that maps a vector x in R” into thevector w in R™ by



T
;/_\.
T,(x)
Rl’l Rﬂl
7:4 RV[ — Rﬂ‘l
Figure 1.8.2
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multiplying x on the left by A. We call this a matrix transformation (or matrix operator
in the special case where m = n). We denote it by

T4:R" — R™
(see Figure 1.8.2). This notation is useful when it is important to make the domain
and codomain clear. The subscript on T4 serves as a reminder that the transformation
results from multiplying vectors in R” by the matrix A. In situations where specifying
the domain and codomain is not essential, we will express (4) as
w = Ts(x) (6)

We call the transformation T4 multiplication by A. On occasion we will find it convenient
to express (6) in the schematic form

T,
X —5 w @)
which is read “7T4 maps X into w.”
> A Matrix Transformation from R* to R3

The transformation from R* to R? defined by the equations
w; =2x1 — 3x + x3 — Sxy
wy =4x; + xo —2x3+ x4 ®)
w3 = S5x; — X +4x3

can be expressed in matrix form as

X1
wq 2 =3 1 -5

X2
wy | = |4 1 =2 1

X3
w3 5 -1 4 0

X4

from which we see that the transformation can be interpreted as multiplication by
2 =3 1 =5
A=1[4 1 -2 1 )
5 -1 4 0
Although the image under the transformation 74 of any vector
X1
X2
X3
X4

in R* could be computed directly from the defining equations in (8), we will find it
preferable to use the matrix in (9). For example, if

1

-3

=1 o

2

then it follows from (9) that

w 2 =3 1 -5 _; 1
wy | =Ta(x) = Ax = | 4 1 -2 1 ol = 3
w3 5 —1 4 0 8
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Properties of Matrix
Transformations

P> EXAMPLE 2 ZeroTransformations
If 0 is the m x n zero matrix, then
Ty(x) =0x=10

so multiplication by zero maps every vector in R” into the zero vector in R™. We call T
the zero transformation from R" to R™.

P> EXAMPLE 3 ldentity Operators
If 1 is the n x n identity matrix, then
T, (x) =Ix=x

so multiplication by I maps every vector in R" to itself. We call T; the identity operator
on R".

The following theorem lists four basic properties of matrix transformations that follow
from properties of matrix multiplication.

THEOREM 1.8.1 For every matrix A the matrix transformation Ta: R" — R™ has the
following properties for all vectors u and v and for every scalar k:

(@) Ta(0)=0

(b) Tp(ku) = kT4(u) [Homogeneity property]

(¢) Ta(u+v) =T4s(u)+ Ta(v) [Additivity property]
(d) Ta(u—v)=Ty() —Ta(v)

Proof All four parts are restatements of the following properties of matrix arithmetic
given in Theorem 1.4.1:

A0 =0, A(ku) =k(Au), A(u+v)=Au+ Av, A(u—v) = Au— Ay
It follows from parts (b) and (¢) of Theorem 1.8.1 that a matrix transformation maps

a linear combination of vectors in R" into the corresponding linear combination of
vectors in R™ in the sense that

Ta(kiuy +kouy + - -+ keu) =k Ta(uy) + ko Ta(up) + - - + k- Ty (u,) (10)

Matrix transformations are not the only kinds of transformations. For example, if

wy = x{ +x3
PR (11)

Wy = X1X2

then there are no constants a, b, ¢, and d for which

HEE R

so that the equations in (11) do not define a matrix transformation from R? to R>.



Theorem 1.8.3 tells us that
for transformations from R" to
R™, the terms “matrix trans-
formation” and “linear trans-
formation” are synonymous.
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This leads us to the following two questions.

Question 1. Are there algebraic properties of a transformation 7': R” — R™ that can
be used to determine whether T is a matrix transformation?

Question 2. If we discover that a transformation 7: R" — R™ is a matrix transfor-
mation, how can we find a matrix for it?

The following theorem and its proof will provide the answers.

THEOREM 1.8.2 T:R" — R™ is a matrix transformation if and only if the following
relationships hold for all vectors w and v in R" and for every scalar k:

1) Ta+v)=Tw)+T() [Additivity property]

(i) T (ku) = kT (u) [Homogeneity property]

Proof If T is a matrix transformation, then properties (i) and (ii) follow respectively
from parts (c¢) and (b) of Theorem 1.8.1.
Conversely, assume that properties (i) and (ii) hold. We must show that there exists
an m X n matrix A such that
T(x) = Ax

for every vector x in R”. Recall that the derivation of Formula (10) used only the
additivity and homogeneity properties of 74. Since we are assuming that 7 has those
properties, it must be true that

T(kyuy +kowp +---+ku) =k T(ay) +koT(w) +---+k.T(u,) (12)

for all scalars ky, k», ..., k, and all vectors u;, up, ..., u, in R". Let A be the matrix
A=[T(e) | T(e) | | T(en)l (13)
where e, e,, . . ., e, are the standard basis vectors for R". It follows from Theorem 1.3.1

that Ax is a linear combination of the columns of A in which the successive coefficients
are the entries x1, x5, ..., x, of x. That is,

Ax =xT(e) + 2T (e2) + -+ +x, T (en)
Using Formula (10) we can rewrite this as

Ax =T (x1e; + x2e0 + - - - + x,e,) = T (X)
which completes the proof.

The additivity and homogeneity properties in Theorem 1.8.2 are called linearity
conditions, and a transformation that satisfies these conditions is called a linear transfor-
mation. Using this terminology Theorem 1.8.2 can be restated as follows.

THEOREM 1.8.3 Every linear transformation from R" to R™ is a matrix transformation,
and conversely, every matrix transformation from R" to R™ is a linear transformation.
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Depending on whether n-tuples and m-tuples are regarded as vectors or points, the
geometric effect of a matrix transformation T4: R" — R™ is to map each vector (point)
in R" into a vector (point) in R™ (Figure 1.8.3).

Rﬂ RIY‘I RH Rm
. T,(%) e ™
/\f‘ ¢
0 0 0 0
T, maps vectors to vectors. T, maps points to points.

Figure 1.8.3

The following theorem states that if two matrix transformations from R" to R™ have
the same image at each point of R”, then the matrices themselves must be the same.

THEOREM 1.8.4 [fTa: R"— R™ and Ty: R" — R™ are matrix transformations, and if’
Ts(x) = Tp(x) for every vector X in R", then A = B.

Proof To say that T4 (x) = Tg(X) for every vector in R” is the same as saying that

Ax = Bx
for every vector x in R”. This will be true, in particular, if x is any of the standard basis
vectors ey, ey, ..., e, for R"; that is,
Aej =Be; (j=1,2,...,n) (14)

Since every entry of e; is 0 except for the jth, which is 1, it follows from Theorem 1.3.1
that Ae; is the jth column of A and Be; is the jth column of B. Thus, (14) implies that
corresponding columns of A and B are the same, and hence that A = B.

Theorem 1.8.4is significant because it tells us that there is a one-to-one correspondence
between m X n matrices and matrix transformations from R" to R™ in the sense that
every m X n matrix A produces exactly one matrix transformation (multiplication by A)
and every matrix transformation from R" to R™ arises from exactly one m x n matrix;
we call that matrix the standard matrix for the transformation.

A Procedure for Finding  In the course of proving Theorem 1.8.2 we showed in Formula (13) that ife;, e», ..., e,
Standard Matrices  are the standard basis vectors for R” (in column form), then the standard matrix for a
linear transformation 7': R" — R™ is given by the formula

A=[T(e) |T(e)|---[T(en)] (15)
This suggests the following procedure for finding standard matrices.
Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors ey, e;, ..., €, for R".

Step 2. Construct the matrix that has the images obtained in Step 1 as its successive
columns. This matrix is the standard matrix for the transformation.



Although we could have ob-
tained the result in Example 5
by substituting values for the
variables in (13), the method
used in Example 5 is preferable
forlarge-scale problems in that
matrix multiplication is better
suited for computer computa-
tions.
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P> EXAMPLE 4 Finding a Standard Matrix

Find the standard matrix A for the linear transformation 7: R*> — R? defined by the

formula
2x1 + x>
X1
T <|: i|> = | X — 3)62 (16)
X2
—X1 + X2

Solution We leave it for you to verify that

2

1
Te)=T <|:(1):|> =| 1| and T(e) =T <|:(1):|> =|-3

Thus, it follows from Formulas (15) and (16) that the standard matrix is

21
A=[T()|TE)]l=| 1 -3
-1 1

P> EXAMPLE 5 Computing with Standard Matrices

For the linear transformation in Example 4, use the standard matrix A obtained in that

example to find
1
T

Solution The transformation is multiplication by A, so
| 2 1 | 6
T(H): - H= 1| «
4 4
-1 1 3

For transformation problems posed in comma-delimited form, a good procedure is
to rewrite the problem in column-vector form and use the methods previously illustrated.

» EXAMPLE 6 Finding a Standard Matrix

Rewrite the transformation 7 (x1, x») = (3x; + x», 2x; — 4x,) in column-vector form
and find its standard matrix.

()= S

Thus, the standard matrix is
3 1
2 =2

Remark This section is but a first step in the study of linear transformations, which is one of the
major themes in this text. We will delve deeper into this topic in Chapter 4, at which point we will
have more background and a richer source of examples to work with.

Solution
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Exercise Set 1.8

In Exercises 1-2, find the domain and codomain of the trans-
formation T4(x) = Ax.

1. (a) A hassize 3 x 2.
(c) A hassize 3 x 3.

(b) A hassize?2 x 3.
(d) A hassize 1 x 6.

2. (a) A hassize4 x 5.
(c) A hassize4 x 4.

(b) A hassize 5 x 4.
(d) A hassize3 x 1.

In Exercises 3-4, find the domain and codomain of the trans-
formation defined by the equations.

3. (a) wy = 4x; + 5x, (®) wy = 5x; — 7x,

Wy = X —8)62 U}2=6X1 + X2
w3 = 2)61 + 3)C2
4. (a) w x; —4x + 8x3  (b) wy = 2x; 4+ Tx; — 4x3
wr = —x; + 4x, + 2x3 wy = 4x1 — 3x, + 2x3
w3 = —3x1 + 2X2 — 5X3

In Exercises 5-6, find the domain and codomain of the trans-
formation defined by the matrix product.

r X1 2 -1 ]

5. (a) 31 2 ) |4 3 X1

. (a
6 7 1]]™ %
L X3 _2 -5 -
- 2 1 —6][x
6 3 X1

6. (a) i| |: i| ) |3 7 —4||x
—1 7 X2
- _1 0 3_ X3

In Exercises 7-8, find the domain and codomain of the trans-
formation 7" defined by the formula.

7. (@) T(x1, x2) = (2x1 — X2, X1 + X2)
(b) T (x1,x2, x3) = (4x1 + X2, X1 + X2)
8. (a) T(x1, x2, X3, x4) = (X1, X2)
(b) T (x1, x2, x3) = (x1, X2 — X3, X2)

In Exercises 9-10, find the domain and codomain of the trans-
formation T defined by the formula.

X1
4.X1 X1
X1 X2
9. T = | X — X3 10. T X2 =
X2 3 X1 — X3
X2 X3
0

In Exercises 11-12, find the standard matrix for the transfor-
mation defined by the equations.

11. (d) w; = 2x1 — 3.)C2 + X3
Wy = 3X1 + 5)62 — X3

(b) wy = Tx; + 2x, — 8x3
w, = — X+ 5x3
ws :4X] + 7X2 — X3

12. (@) wy = —x1 + x»
wy = 3x; — 2x»
w3 = 5X1 — 7X2

(b) wy = x,
wy = X| + X2
w3 = X1 + X2 + X3
Wy = X1+ X2+ X3+ X4

13. Find the standard matrix for the transformation 7" defined by
the formula.
(@) T (x1, x2) = (x2, —x1, X1 + 3x2, X1 — X2)
(b) T(x1, x2, X3, x4) = (Tx1 + 2x3 — X3 + X4, X3 + X3, —X1)
(©) T(x1,x2,x3)=1(0,0,0,0,0)
(d) T(x1, x2, X3, Xq) = (X4, X1, X3, X2, X — X3)
14. Find the standard matrix for the operator 7' defined by the
formula.
(@) T(x1,x2) = 2x1 — x2, X1 + x2)
(b) T(x1, x2) = (x1, x2)
(©) T(x1,x2, x3) = (x1 + 2x2 + x3, X1 + 5x2, Xx3)
(d) T(x1, x2, x3) = (4x1, Tx2, —8x3)
15. Find the standard matrix for the operator T: R* — R3 defined

by
w) = 3X1 =+ 5X2 — X3

wy =4x; — X3+ X3
W3:3X1+2X2—X3

and then compute 7'(—1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

16. Find the standard matrix for the transformation T: R* — R?
defined by
w; = 2x1 +3x — 5x3 — x4
Wy = X1 — 5.)62 +2X3 — 3)64
and then compute 7 (1, —1, 2, 4) by directly substituting in
the equations and then by matrix multiplication.

In Exercises 17-18, find the standard matrix for the transfor-
mation and use it to compute 7 (x). Check your result by substi-
tuting directly in the formula for 7.

17. (@) T (x1, x2) = (=x1 +x2, x2); x = (=1,4)
(b) T(x1,x2, x3) = (2x1 — X2 + X3, X3 + x3, 0);
x=@2,1,-3)
18. (a) T(x1, x2) = 2x1 — x2, X1 + x2); X = (=2,2)
(b) T (x1, x2, x3) = (X1, X2 — X3, X2); x = (1,0, 5)

In Exercises 19-20, find T4(x), and express your answer in
matrix form.

9@ A= lx=|
el 3o

1 2 0
(b)A:[s 1 5]”‘:



-2 1 4 X1
20. (a) A= 3 5 T x=|x
6 0 -1 X
" 1 _

X

A= 2 4|;x= 1]

X2

7 8

In Exercises 21-22, use Theorem 1.8.2 to show that T is a
matrix transformation.

2. (@) T(x,y) = Q2x+y,x—y)
(b) T (x1, x2, x3) = (x1, X3, X1 + X2)

22. () T(x,y,2)=(x+y,y+2zx)
(b) T (x1,x2) = (x2, x1)

In Exercises 23-24, use Theorem 1.8.2 to show that 7" is not a
matrix transformation.

23. (a) T(x,y) = (x*, y)
(b) T(x,y,2) = (x,y,x2)

24. (a) T(x,y)=(x,y+1)
(b) T(x1, %2, x3) = (x1, X2, /X3)

25. A function of the form f(x) = mx + b is commonly called a
“linear function” because the graph of y = mx + b is a line.
Is f a matrix transformation on R?

26. Show that T'(x, y) = (0, 0) defines a matrix operator on R’
but T (x, y) = (1, 1) does not.

In Exercises 27-28, the images of the standard basis vec-
tors for R* are given for a linear transformation 7: R®— R>.
Find the standard matrix for the transformation, and find
T (x).

1] [0 4] 2]
27.T(e) = |3 |, T(e)=|0|.,T(e5)=|-3]|; x=
K |1 —1 K
2] -3 1] [37]
28. T(e)) = JTe)=|—-1|,Te)=|0]; x=
3] |0 2| 1]

29. Let T: R*>— R? be a linear operator for which the images
of the standard basis vectors for R? are T (e;) = (a, b) and
T(e;) = (c,d). Find T (1, 1).
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30. We proved in the text that if 7: R” — R™ is a matrix transfor-
mation, then 7°(0) = 0. Show that the converse of this result
is false by finding a mapping 7: R” — R” that is not a matrix
transformation but for which 7'(0) = 0.

31. Let T4: R® — R® be multiplication by

-1 3 0
A= 2 1 2
4 5 =3

and let e, e, and e; be the standard basis vectors for R*. Find
the following vectors by inspection.

(a) Ty(er), Ta(ey), and Ty(es3)

(b) Ta(e; + e, +e3) (©) Ta(7e3)

Working with Proofs

32. (a) Prove: If T: R"— R™ is a matrix transformation, then
T (0) = 0; that is, T maps the zero vector in R" into the
zero vector in R™.

(b) The converse of this is not true. Find an example of a
function T for which 7' (0) = 0 but which is not a matrix
transformation.

True-False Exercises

TF. In parts (a)-(g) determine whether the statement is true or

false, and justify your answer.

(a) If Ais a2 x 3 matrix, then the domain of the transformation
T is R2.

(b) If A is an m x n matrix, then the codomain of the transfor-
mation Ty is R".

(c) There is at least one linear transformation 7: R" — R™ for
which T (2x) = 4T (x) for some vector x in R".

(d) There are linear transformations from R" to R™ that are not
matrix transformations.

(e) If T4: R" — R" and if T, (x) = 0 for every vector x in R", then
A is the n X n zero matrix.

(f) Thereis only one matrix transformation 7': R" — R™ such that
T (—x) = —T(x) for every vector x in R".

(g) If b is a nonzero vector in R", then T (x) = x + b is a matrix
operator on R”.
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Applications of Linear Systems

In this section we will discuss some brief applications of linear systems. These are but a
small sample of the wide variety of real-world problems to which our study of linear
systems is applicable.

The concept of a network appears in a variety of applications. Loosely stated, a network
is a set of branches through which something “flows.” For example, the branches might
be electrical wires through which electricity flows, pipes through which water or oil flows,
traffic lanes through which vehicular traffic flows, or economic linkages through which
money flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the
flow divides. Forexample, in an electrical network, nodes occur where three or more wires
join, in a traffic network they occur at street intersections, and in a financial network
they occur at banking centers where incoming money is distributed to individuals or
other institutions.

In the study of networks, there is generally some numerical measure of the rate at
which the medium flows through a branch. For example, the flow rate of electricity is
often measured in amperes, the flow rate of water or oil in gallons per minute, the flow rate
of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros
per day. We will restrict our attention to networks in which there is flow conservation at
each node, by which we mean that the rate of flow into any node is equal to the rate of flow
out of that node. This ensures that the flow medium does not build up at the nodes and
block the free movement of the medium through the network.

A common problem in network analysis is to use known flow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

» EXAMPLE 1 Network Analysis Using Linear Systems

Figure 1.9.1 shows a network with four nodes in which the flow rate and direction of
flow in certain branches are known. Find the flow rates and directions of flow in the
remaining branches.

Solution As illustrated in Figure 1.9.2, we have assigned arbitrary directions to the
unknown flow rates xy, x», and x3. We need not be concerned if some of the directions
are incorrect, since an incorrect direction will be signaled by a negative value for the flow
rate when we solve for the unknowns.

It follows from the conservation of flow at node A that

X1+ x, = 30
Similarly, at the other nodes we have

X, +x3 =35 (node B)
X3+ 15=60 (nodeC)
x1 +15=155 (node D)

These four conditions produce the linear system

X1 + x» =30
X> + x3 = 35
X3=45

X1 =40



Figure 1.9.3
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which we can now try to solve for the unknown flow rates. In this particular case the
system is sufficiently simple that it can be solved by inspection (work from the bottom
up). We leave it for you to confirm that the solution is

X1 = 40, Xy = —10, X3 = 45

The fact that x; is negative tells us that the direction assigned to that flow in Figure 1.9.2
is incorrect; that is, the flow in that branch is info node A.

P> EXAMPLE 2 Design of Traffic Patterns

The network in Figure 1.9.3 shows a proposed plan for the traffic flow around a new
park that will house the Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a
computerized traffic light at the north exit on Fifth Street, and the diagram indicates the
average number of vehicles per hour that are expected to flow in and out of the streets
that border the complex. All streets are one-way.

(a) How many vehicles per hour should the traffic light let through to ensure that the
average number of vehicles per hour flowing into the complex is the same as the
average number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in and out of

the complex, what can you say about the average number of vehicles per hour that
will flow along the streets that border the complex?

N .
200 % Traffic 200 X
WQE light
S ] A Yy A
Market St. . X3
0 >—& Thery (6 400 500 NS S G - B 400
£l oo |£ x4y A X
700 <« O i —<——400 700 < < <«——400
Chestnut St. D x; |4
A A
600 600
(a) (b)

Solution (a) 1If, as indicated in Figure 1.9.3b, we let x denote the number of vehicles per
hour that the traffic light must let through, then the total number of vehicles per hour
that flow in and out of the complex will be

Flowing in: 500 + 400 4 600 + 200 = 1700

Flowing out: x + 700 + 400

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per
hour pass through.

Solution (b) To avoid traffic congestion, the flow in must equal the flow out at each
intersection. For this to happen, the following conditions must be satisfied:

Intersection Flow In Flow Out
A 400+ 600 = x;+x
B X2 + X3 = 400+ x
C 5004200 = x3+4+ x4
D X1+ X4 = 700
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Thus, with x = 600, as computed in part (a), we obtain the following linear system:

X1 + X = 1000
X2 + X3 = 1000

x3 + x4 = 700

X1 + x4 = 700

We leave it for you to show that the system has infinitely many solutions and that these
are given by the parametric equations

x1 =700—1¢, x,=300+4+1, x3=700—1¢, x4=t nH

However, the parameter ¢ is not completely arbitrary here, since there are physical con-
straints to be considered. For example, the average flow rates must be nonnegative since
we have assumed the streets to be one-way, and a negative flow rate would indicate a flow
in the wrong direction. This being the case, we see from (1) that ¢ can be any real number
that satisfies 0 < ¢ < 700, which implies that the average flow rates along the streets will
fall in the ranges

0 <x; <700, 300 <x, <1000, 0<ux3<700, 0<ux4=<700

Next we will show how network analysis can be used to analyze electrical circuits con-
sisting of batteries and resistors. A battery is a source of electric energy, and a resistor,
such as a lightbulb, is an element that dissipates electric energy. Figure 1.9.4 shows a
schematic diagram of a circuit with one battery (represented by the symbol -||- ), one
resistor (represented by the symbol -wW~), and a switch. The battery has a positive pole
(+) and a negative pole (—). When the switch is closed, electrical current is considered to
flow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhead in the figure).

Electrical current, which is a flow of electrons through wires, behaves much like the
flow of water through pipes. A battery acts like a pump that creates “electrical pressure”
to increase the flow rate of electrons, and a resistor acts like a restriction in a pipe that
reduces the flow rate of electrons. The technical term for electrical pressure is electrical
potential; it is commonly measured in volts (V). The degree to which a resistor reduces the
electrical potential is called its resistance and is commonly measured in ohms (£2). The
rate of flow of electrons in a wire is called current and is commonly measured in amperes
(also called amps) (A). The precise effect of a resistor is given by the following law:

Ohm’s Law If a current of I amperes passes through a resistor with a resistance of
R ohms, then there is a resulting drop of E volts in electrical potential that is the
product of the current and resistance; that is,

E =1IR

A typical electrical network will have multiple batteries and resistors joined by some
configuration of wires. A point at which three or more wires in a network are joined is
called a node (or junction point). A branch is a wire connecting two nodes, and a closed
loop is a succession of connected branches that begin and end at the same node. For
example, the electrical network in Figure 1.9.5 has two nodes and three closed loops—
two inner loops and one outer loop. As current flows through an electrical network, it
undergoes increases and decreases in electrical potential, called voltage rises and voltage
drops, respectively. The behavior of the current at the nodes and around closed loops is
governed by two fundamental laws:
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Kirchhoff’s Current Law The sum of the currents flowing into any node is equal to the
sum of the currents flowing out.

Kirchhoff's Voltage Law In one traversal of any closed loop, the sum of the voltage
rises equals the sum of the voltage drops.

Kirchhoff’s current law is a restatement of the principle of flow conservation at a node
that was stated for general networks. Thus, for example, the currents at the top node in
Figure 1.9.6 satisfy the equation I} = I, + 5.

In circuits with multiple loops and batteries there is usually no way to tell in advance
which way the currents are flowing, so the usual procedure in circuit analysis is to as-
sign arbitrary directions to the current flows in the branches and let the mathematical
computations determine whether the assignments are correct. In addition to assigning
directions to the current flows, Kirchhoft’s voltage law requires a direction of travel for
each closed loop. The choice is arbitrary, but for consistency we will always take this
direction to be clockwise (Figure 1.9.7).We also make the following conventions:

» A voltage drop occurs at a resistor if the direction assigned to the current through the
resistor is the same as the direction assigned to the loop, and a voltage rise occurs at
a resistor if the direction assigned to the current through the resistor is the opposite
to that assigned to the loop.

* A voltage rise occurs at a battery if the direction assigned to the loop is from — to +
through the battery, and a voltage drop occurs at a battery if the direction assigned
to the loop is from + to — through the battery.

If you follow these conventions when calculating currents, then those currents whose
directions were assigned correctly will have positive values and those whose directions
were assigned incorrectly will have negative values.

» EXAMPLE 3 A Circuit with One Closed Loop

Determine the current [ in the circuit shown in Figure 1.9.8.

Solution Since the direction assigned to the current through the resistor is the same
as the direction of the loop, there is a voltage drop at the resistor. By Ohm’s law this
voltage drop is E = IR = 3I. Also, since the direction assigned to the loop is from —
to + through the battery, there is a voltage rise of 6 volts at the battery. Thus, it follows
from Kirchhoft’s voltage law that

3/ =6

from which we conclude that the current is / = 2 A. Since [ is positive, the direction
assigned to the current flow is correct.

» EXAMPLE 4 A Circuit with Three Closed Loops

Determine the currents Iy, I», and I3 in the circuit shown in Figure 1.9.9.

Solution Using the assigned directions for the currents, Kirchhoff’s current law provides
one equation for each node:

Node Current In Current Out
A L+ 1 = L
B Iz = L+ 1L
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Balancing Chemical
Equations

However, these equations are really the same, since both can be expressed as
h+L—-15=0 2

To find unique values for the currents we will need two more equations, which we will
obtain from Kirchhoff’s voltage law. We can see from the network diagram that there
are three closed loops, a left inner loop containing the 50 V battery, a right inner loop
containing the 30 V battery, and an outer loop that contains both batteries. Thus,
Kirchhoff’s voltage law will actually produce three equations. With a clockwise traversal
of the loops, the voltage rises and drops in these loops are as follows:

Voltage Rises  Voltage Drops

Left Inside Loop 50 51 + 2013
Right Inside Loop 30 + 10/, 4 2013 0
Outside Loop 30+ 50 4+ 1017, 51

These conditions can be rewritten as

51 +20= 50
101, + 2015 = —30 3)
51, — 101, = 380

However, the last equation is superfluous, since it is the difference of the first two. Thus,
if we combine (2) and the first two equations in (3), we obtain the following linear system
of three equations in the three unknown currents:

L+ L- L= 0
51, +20;= 50
101, + 2015 = —30

We leave it for you to show that the solution of this system in ampsis I} = 6, [, = —5,
and I3 = 1. The fact that I, is negative tells us that the direction of this current is opposite
to that indicated in Figure 1.9.9. <

Chemical compounds are represented by chemical formulas that describe the atomic
makeup of their molecules. For example, water is composed of two hydrogen atoms and
one oxygen atom, so its chemical formula is H>O; and stable oxygen is composed of two
oxygen atoms, so its chemical formula is O,.

When chemical compounds are combined under the right conditions, the atoms in
their molecules rearrange to form new compounds. For example, when methane burns,

Historical Note The Ger
man physicist Gustav Kirch-
hoff was a student of Gauss.
His work on Kirchhoff’s laws,
announced in 1854, was a
major advance in the calcu-
lation of currents, voltages,
and resistances of electri-
cal circuits. Kirchhoff was
severely disabled and spent
most of his life on crutches
or in a wheelchair.

Gustav Kirchhoff [Image: ullstein bild -

(1824-1887) histopics/akg-im]
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the methane (CHy4) and stable oxygen (O,) react to form carbon dioxide (CO,) and water
(H,O). This is indicated by the chemical equation

CH4 + 0, — CO, + H,0 4)

The molecules to the left of the arrow are called the reactants and those to the right
the products. In this equation the plus signs serve to separate the molecules and are
not intended as algebraic operations. However, this equation does not tell the whole
story, since it fails to account for the proportions of molecules required for a complete
reaction (no reactants left over). For example, we can see from the right side of (4) that
to produce one molecule of carbon dioxide and one molecule of water, one needs three
oxygen atoms for each carbon atom. However, from the left side of (4) we see that one
molecule of methane and one molecule of stable oxygen have only two oxygen atoms
for each carbon atom. Thus, on the reactant side the ratio of methane to stable oxygen
cannot be one-to-one in a complete reaction.

A chemical equation is said to be balanced if for each type of atom in the reaction,
the same number of atoms appears on each side of the arrow. For example, the balanced
version of Equation (4) is

CH, + 20, —> CO, + 2H,0 )

by which we mean that one methane molecule combines with two stable oxygen molecules
to produce one carbon dioxide molecule and two water molecules. In theory, one could
multiply this equation through by any positive integer. For example, multiplying through
by 2 yields the balanced chemical equation

2CH4 + 402 —> 2C02 + 4H20

However, the standard convention is to use the smallest positive integers that will balance
the equation.

Equation (4) is sufficiently simple that it could have been balanced by trial and error,
but for more complicated chemical equations we will need a systematic method. There
are various methods that can be used, but we will give one that uses systems of linear
equations. To illustrate the method let us reexamine Equation (4). To balance this
equation we must find positive integers, xi, X2, X3, and x4 such that

x1 (CHy) + x5 (O2) — x3 (CO,) + x4 (H,0) (6)

For each of the atoms in the equation, the number of atoms on the left must be equal to
the number of atoms on the right. Expressing this in tabular form we have

Left Side Right Side
Carbon X1 = X3
Hydrogen 4x, = 2x4
Oxygen 2x; = 2x3+2x4

from which we obtain the homogeneous linear system
X1 — X3 =0
4x1 — 2)(?4 =0
2%y — 2x3 — x4 =0
The augmented matrix for this system is
1 0 —1 0 0

4 0 0 -2 0
0 2 =2 -1 0
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We leave it for you to show that the reduced row echelon form of this matrix is

1
1o o -1 o
0 1 0 -1 0
1
o 0 1 -1 o

from which we conclude that the general solution of the system is

x1=t/2, Xy =1, .X3=t/2, X4 =1

where 7 is arbitrary. The smallest positive integer values for the unknowns occur when
we let t = 2, so the equation can be balanced by letting x; = 1, x, =2, x3 = 1, x4 = 2.
This agrees with our earlier conclusions, since substituting these values into Equation (6)
yields Equation (95).

> Balancing Chemical Equations Using Linear Systems
Balance the chemical equation

HCI + NasPO, — H;PO, + NaCl
[hydrochloric acid] + [sodium phosphate] —> [phosphoric acid] + [sodium chloride]

Solution Let x1, x5, x3, and x4 be positive integers that balance the equation
X1 (HCI) ) (Na3PO4) —> X3 (H';PO4) + x4 (NaCl) (7)

Equating the number of atoms of each type on the two sides yields

Ix; = 3x3
Ix; = Ixy
3x, = Ixy
1x; = 1x3
4xy) = 4x3

Hydrogen (H)
Chlorine (CI)
Sodium (Na)
Phosphorus (P)
Oxygen (O)

from which we obtain the homogeneous linear system

X1 — 3x3 =0
X1 —x4=0
3x, —x4=0

X2 — X3 =0

4xy — 4x3 =0

We leave it for you to show that the reduced row echelon form of the augmented matrix

for this system is

S O O O =
oS o O

S O W= W= =
o o o o O
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from which we conclude that the general solution of the system is
X =1, )Cz:l‘/:;, X3=t/3, X4 =1
where ¢ is arbitrary. To obtain the smallest positive integers that balance the equation,

we let + = 3, in which case we obtain x; = 3, x, = 1, x3 = 1, and x4 = 3. Substituting
these values in (7) produces the balanced equation

3HCI + Na3PO4 e H3PO4 + 3NaCl 4

Animportant problem in various applications is to find a polynomial whose graph passes
through a specified set of points in the plane; this is called an interpolating polynomial
for the points. The simplest example of such a problem is to find a linear polynomial

p(x)=ax+b ®)

whose graph passes through two known distinct points, (x, y;) and (x;, y»), in the
xy-plane (Figure 1.9.10). You have probably encountered various methods in analytic
geometry for finding the equation of a line through two points, but here we will give a
method based on linear systems that can be adapted to general polynomial interpolation.

The graph of (8) is the line y = ax + b, and for this line to pass through the points
(x1, y1) and (x3, y2), we must have

yi=ax;+b and y,=ax;+b
Therefore, the unknown coefficients @ and b can be obtained by solving the linear system
ax;+b =y
axy+b =y

We don’t need any fancy methods to solve this system—the value of @ can be obtained
by subtracting the equations to eliminate b, and then the value of a can be substituted
into either equation to find b. We leave it as an exercise for you to find a and b and then
show that they can be expressed in the form

Y2 =) YiX2 — YaXy
a = and b= —"-—""—
Xy — X Xy — X

)
provided x; # x,. Thus, for example, the line y = ax + b that passes through the points
2,1) and (5,4)

can be obtained by taking (x;, y;) = (2, 1) and (x3, ¥2) = (5, 4), in which case (9) yields

azuzl and b:w:
5-2 5_0

Therefore, the equation of the line is

—1

y=x—1

(Figure 1.9.11).
Now let us consider the more general problem of finding a polynomial whose graph
passes through n points with distinct x-coordinates

(xlv }’1)7 (.XQ, )’2), (x3’ Y3),~~7 (xrh )’n) (10)

Since there are n conditions to be satisfied, intuition suggests that we should begin by
looking for a polynomial of the form

p(x) =ap+aix +ax*+ -+ a,_x"! (a1
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since a polynomial of this form has n coefficients that are at our disposal to satisfy the
n conditions. However, we want to allow for cases where the points may lie on a line or
have some other configuration that would make it possible to use a polynomial whose
degreeisless than n — 1; thus, we allow for the possibility that a,,_; and other coefficients
in (11) may be zero.

The following theorem, which we will prove later in the text, is the basic result on
polynomial interpolation.

THEOREM 1.9.1 Polynomial Interpolation

Given any n points in the xy-plane that have distinct x-coordinates, there is a unique
polynomial of degree n — 1 or less whose graph passes through those points.

Let us now consider how we might go about finding the interpolating polynomial
(11) whose graph passes through the points in (10). Since the graph of this polynomial
is the graph of the equation

y=ao+aix +ax’ + -+ a1 x"! (12)

it follows that the coordinates of the points must satisfy

—1
ag + aixy + axxi + -4 ap_1x{ T =y
2 -1
ap+ arxy + axxy + a1 Xy =y (13)
ay + a1x, + axy + -+ a1 x) =y,

In these equations the values of x’s and y’s are assumed to be known, so we can view
this as a linear system in the unknowns ag, a1, ..., a,_;. From this point of view the
augmented matrix for the system is

2 n—1
I x x X Vi

2 n—1
I x x; X5 » (14)
1 x, x,% .- x,’,l’l YVn

and hence the interpolating polynomial can be found by reducing this matrix to reduced
row echelon form (Gauss—Jordan elimination).

» EXAMPLE 6 Polynomial Interpolation by Gauss-Jordan Elimination
Find a cubic polynomial whose graph passes through the points
(1’ 3)’ (21 _2)7 (3’ _5)5 (47 O)

Solution Since there are four points, we will use an interpolating polynomial of degree
n = 3. Denote this polynomial by

p(x) = ag+ a1x + axx” + asx’
and denote the x- and y-coordinates of the given points by

xi=1, xx=2, x3=3, x4q=4 and y; =3, y»=-2, y3=-5 y,=0
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Thus, it follows from (14) that the augmented matrix for the linear system in the un-
knowns ag, a;, a,, and as is

Lo xfoxf oo 11 13
I xy x5 3 »| |1 2 4 8§ -2
1 X3 x% x; V3 1 3 9 27 =5

; I 4 16 64 0

2
I x4 x5 x; 4

We leave it for you to confirm that the reduced row echelon form of this matrix is

1 0 0 0 4
0 1 0 0 3
0 0 1 0 -5
0 0 0 1 1
from which it follows that ag = 4, a; = 3,a, = —5,a; = 1. Thus, the interpolating

polynomial is
p(x) =44 3x — 5x2 4+ x3
The graph of this polynomial and the given points are shown in Figure 1.9.12. <

Remark Later we will give a more efficient method for finding interpolating polynomials that is
better suited for problems in which the number of data points is large.

P> EXAMPLE 7 Approximate Integration

There is no way to evaluate the integral

1 2
/ sin (nL) dx
0 2

directly since there is no way to express an antiderivative of the integrand in terms of
elementary functions. This integral could be approximated by Simpson’s rule or some
comparable method, but an alternative approach is to approximate the integrand by an
interpolating polynomial and integrate the approximating polynomial. For example, let
us consider the five points

Xo = 0, X1 = 025, Xy = 05, X3 = 075, X4 = 1

that divide the interval [0, 1] into four equally spaced subintervals (Figure 1.9.13). The

values of
£ = sin [ 5
x) =sin| —
2

at these points are approximately
f(0) =0, f(0.25) =0.098017,
f(0.75) = 0.77301,
The interpolating polynomial is (verify)
p(x) = 0.098796x + 0.762356x> + 2.14429x°> — 2.00544x*

£(0.5) = 0.382683,
f=1

(15)
and
(16)

As shown in Figure 1.9.13, the graphs of f and p match very closely over the interval
[0, 1], so the approximation is quite good. <

1
/ p(x)dx ~ 0.438501
0
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Exercise Set 1.9

1. The accompanying figure shows a network in which the flow
rate and direction of flow in certain branches are known. Find
the flow rates and directions of flow in the remaining branches.

50

30 60

40 Figure Ex-1
2. The accompanying figure shows known flow rates of hydro-

carbons into and out of a network of pipes at an oil refinery.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c) Find the flow rates and directions of flow if x4 = 50 and

X = 0.
200 X3 ﬂSO
xpy Xy 0
X6
25 > > » 200
X2 175 Figure Ex-2

3. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c¢) Ifthe flow along the road from A to B must be reduced for
construction, what is the minimum flow that is required to
keep traffic flowing on all roads?

400 750
D
> >
XA Y X4
400 _ _ B 200
< <« <
A Y
100 300 Figure Ex-3

4. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c) Isitpossibleto close the road from A to B for construction
and keep traffic flowing on the other streets? Explain.

300 200 100
so0. Y4 o tp 2 V00
Y X3 A Xy Y P
400 _ P . . 450
y oA Ty
350 600 400 Figure Ex-4

In Exercises 5-8, analyze the given electrical circuits by finding

the unknown currents.

5.

20Q
2V 30
I M
-«
Iy
| 4Q
|
7||+ N
4v L
| 5Q
|
||+ AN



In Exercises 9-12, write a balanced equation for the given
chemical reaction.

9. C3Hg + 02 — COz + HzO
10. CGHIZOG d COZ + C2H5OH

(propane combustion)
(fermentation of sugar)

11. CH;COF + H,0 — CH;COOH + HF

12. CO; + H,0 — C4H ;5,06 + O,  (photosynthesis)

13. Find the quadratic polynomial whose graph passes through
the points (1, 1), (2, 2), and (3, 5).

14. Find the quadratic polynomial whose graph passes through
the points (0, 0), (=1, 1), and (1, 1).

15. Find the cubic polynomial whose graph passes through the
points (—1, —1), (0, 1), (1, 3), (4, —1).

16. The accompanying figure shows the graph of a cubic polyno-
mial. Find the polynomial.

—_
(=)

— N W Ak N3 0 O

Figure Ex-16

17. (a) Find an equation that represents the family of all second-
degree polynomials that pass through the points (0, 1)
and (1,2). [Hint: The equation will involve one arbi-
trary parameter that produces the members of the family
when varied.]

(b) By hand, or with the help of a graphing utility, sketch
four curves in the family.

18. In this section we have selected only a few applications of lin-
ear systems. Using the Internet as a search tool, try to find
some more real-world applications of such systems. Select one
that is of interest to you, and write a paragraph about it.

True-False Exercises

TF. In parts (a)-(e) determine whether the statement is true or
false, and justify your answer.

(a) In any network, the sum of the flows out of a node must equal
the sum of the flows into a node.

1.9 Applications of Linear Systems 95

(b) When a current passes through a resistor, there is an increase
in the electrical potential in a circuit.

(¢) Kirchhoff’s current law states that the sum of the currents
flowing into a node equals the sum of the currents flowing out
of the node.

(d) A chemical equation is called balanced if the total number of
atoms on each side of the equation is the same.

(e) Given any n points in the xy-plane, there is a unique polyno-
mial of degree n — 1 or less whose graph passes through those
points.

Working with Technology

T1. The following table shows the lifting force on an aircraft wing
measured in a wind tunnel at various wind velocities. Model the
data with an interpolating polynomial of degree 5, and use that
polynomial to estimate the lifting force at 2000 ft/s.

Velocity

aootesy | 0| 2 4 8 16 | 32
Lifting Force

(100 1b) 0] 3.12 | 15.86 | 33.7 | 81.5 | 123.0

T2. (Calculus required) Use the method of Example 7 to approx-

imate the integral
1
/ e dx
0

by subdividing the interval of integration into five equal parts and
using an interpolating polynomial to approximate the integrand.
Compare your answer to that obtained using the numerical inte-
gration capability of your technology utility.

T3. Use the method of Example 5 to balance the chemical equa-
tion
FezO3 =+ A1—>A1203 =+ Fe

(Fe = iron, Al = aluminum, O = oxygen)

T4. Determine the currents in the accompanying circuit.

E(I)Y 30
I A
I
l 5 a0 _b TIZ
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1.10

Inputs and Outputs in an

Manufacturing

Economy

Agriculture

=

o
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Sector
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Figure 1.10.1

Leontief Model of an Open

Economy

Leontief Input-Output Models

In 1973 the economist Wassily Leontief was awarded the Nobel prize for his work on
economic modeling in which he used matrix methods to study the relationships among
different sectors in an economy. In this section we will discuss some of the ideas developed
by Leontief.

One way to analyze an economy is to divide it into sectors and study how the sectors
interact with one another. For example, a simple economy might be divided into three
sectors—manufacturing, agriculture, and utilities. Typically, a sector will produce cer-
tain outputs but will require inputs from the other sectors and itself. For example, the
agricultural sector may produce wheat as an output but will require inputs of farm ma-
chinery from the manufacturing sector, electrical power from the utilities sector, and food
from its own sector to feed its workers. Thus, we can imagine an economy to be a net-
work in which inputs and outputs flow in and out of the sectors; the study of such flows
is called input-output analysis. Inputs and outputs are commonly measured in monetary
units (dollars or millions of dollars, for example) but other units of measurement are
also possible.

The flows between sectors of a real economy are not always obvious. For example,
in World War II the United States had a demand for 50,000 new airplanes that required
the construction of many new aluminum manufacturing plants. This produced an unex-
pectedly large demand for certain copper electrical components, which in turn produced
a copper shortage. The problem was eventually resolved by using silver borrowed from
Fort Knox as a copper substitute. In all likelihood modern input-output analysis would
have anticipated the copper shortage.

Most sectors of an economy will produce outputs, but there may exist sectors that
consume outputs without producing anything themselves (the consumer market, for
example). Those sectors that do not produce outputs are called open sectors. Economies
with no open sectors are called closed economies, and economies with one or more open
sectors are called open economies (Figure 1.10.1). In this section we will be concerned with
economies with one open sector, and our primary goal will be to determine the output
levels that are required for the productive sectors to sustain themselves and satisfy the
demand of the open sector.

Let us consider a simple open economy with one open sector and three product-producing
sectors: manufacturing, agriculture, and utilities. Assume that inputs and outputs are
measured in dollars and that the inputs required by the productive sectors to produce
one dollar’s worth of output are in accordance with Table 1.

Historical Note It is somewhat ironic that it was
the Russian-born Wassily Leontief who won the No-
bel prize in 1973 for pioneering the modern meth-
ods for analyzing free-market economies. Leontief
was a precocious student who entered the University
of Leningrad at age 15. Bothered by the intellectual
restrictions of the Soviet system, he was put in jail
for anti-Communist activities, after which he headed
for the University of Berlin, receiving his Ph.D. there
in 1928. He came to the United States in 1931, where
he held professorships at Harvard and then New York
) ) © University.

Wassily Leontief lImage: © Bettmann/CORBIS]
(1906-1999)




What is the economic signifi-
cance of the row sums of the
consumption matrix?
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Table 1
Input Required per Dollar Output
Manufacturing | Agriculture | Ultilities
_ | Manufacturing $0.50 $0.10 $0.10
% Agriculture $0.20 $0.50 $0.30
= Utilities $0.10 $0.30 $0.40

Usually, one would suppress the labeling and express this matrix as

0.5 0.1 0.1
c=102 05 03 (1)
0.1 03 04

This is called the consumption matrix (or sometimes the technology matrix) for the econ-
omy. The column vectors

0.5 0.1 0.1
C = 0.2 , € = 0.5 , €3 = 0.3
0.1 0.3 0.4

in C list the inputs required by the manufacturing, agricultural, and utilities sectors,
respectively, to produce $1.00 worth of output. These are called the consumption vectors
of the sectors. For example, ¢; tells us that to produce $1.00 worth of output the manu-
facturing sector needs $0.50 worth of manufacturing output, $0.20 worth of agricultural
output, and $0.10 worth of utilities output.

Continuing with the above example, suppose that the open sector wants the economy
to supply it manufactured goods, agricultural products, and utilities with dollar values:

d; dollars of manufactured goods
d, dollars of agricultural products
ds dollars of utilities

The column vector d that has these numbers as successive components is called the outside
demand vector. Since the product-producing sectors consume some of their own output,
the dollar value of their output must cover their own needs plus the outside demand.
Suppose that the dollar values required to do this are

x1 dollars of manufactured goods
X, dollars of agricultural products
x3 dollars of utilities

The column vector x that has these numbers as successive components is called the
production vector for the economy. For the economy with consumption matrix (1), that
portion of the production vector x that will be consumed by the three productive sectors is

0.5 0.1 0.1 0.5 0.1 0.1 X1
x; 0.2 + x310.5 + x3]03(=1]02 05 03 Xy | =Cx
0.1 0.3 0.4 0.1 03 04 X3
Fractions Fractions Fractions
consumed by consumed by consumed
manufacturing agriculture by utilities




98 Chapter 1 Systems of Linear Equations and Matrices

Productive Open
Economies

The vector Cx is called the intermediate demand vector for the economy. Once the
intermediate demand is met, the portion of the production that is left to satisfy the
outside demand is x — Cx. Thus, if the outside demand vector is d, then x must satisfy
the equation

X — Cx = d
Amount Intermediate Outside
produced demand demand

which we will find convenient to rewrite as
(I-C)x=d 2

The matrix I — C is called the Leontief matrix and (2) is called the Leontief equation.

P> EXAMPLE 1 Satisfying Outside Demand

Consider the economy described in Table 1. Suppose that the open sector has a demand
for $7900 worth of manufacturing products, $3950 worth of agricultural products, and
$1975 worth of utilities.

(a) Can the economy meet this demand?

(b) If so, find a production vector x that will meet it exactly.

Solution The consumption matrix, production vector, and outside demand vector are

0.5 0.1 0.1 X1 7900
C=102 05 03|, x=|x2|, d=|3950 3
0.1 03 04 X3 1975

To meet the outside demand, the vector x must satisfy the Leontief equation (2), so the
problem reduces to solving the linear system

0.5 —0.1 —-0.1 X1 7900
—0.2 0.5 —0.3 X | = | 3950
—-0.1 —-0.3 0.6 X3 1975 @
I —-C X d

(if consistent). We leave it for you to show that the reduced row echelon form of the
augmented matrix for this system is

1 0 0]27,500
0 1 0133750
0 0 124,750

This tells us that (4) is consistent, and the economy can satisfy the demand of the open
sector exactly by producing $27,500 worth of manufacturing output, $33,750 worth of
agricultural output, and $24,750 worth of utilities output. <

In the preceding discussion we considered an open economy with three product-producing
sectors; the same ideas apply to an open economy with n product-producing sectors. In
this case, the consumption matrix, production vector, and outside demand vector have
the form

i € ottt Ci X1 d

€ Cp ot Cop X2 d>
C = . . o, o x=1 .|, d=

Cnl Cn2 *++ Cpp Xn dn
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where all entries are nonnegative and

¢;j = the monetary value of the output of the ith sector that is needed by the jth
sector to produce one unit of output

x; = the monetary value of the output of the ith sector
d;

the monetary value of the output of the ith sector that is required to meet
the demand of the open sector

Remark Note that the jth column vector of C contains the monetary values that the jth sector
requires of the other sectors to produce one monetary unit of output, and the ith row vector of C
contains the monetary values required of the ith sector by the other sectors for each of them to
produce one monetary unit of output.

As discussed in our example above, a production vector x that meets the demand d
of the outside sector must satisfy the Leontief equation

I—-C)x=d
If the matrix I — C is invertible, then this equation has the unique solution
x=(—-C)d 5)

for every demand vector d. However, for x to be a valid production vector it must
have nonnegative entries, so the problem of importance in economics is to determine
conditions under which the Leontief equation has a solution with nonnegative entries.

It is evident from the form of (5) thatif / — C is invertible, and if (/ — C)~! has non-
negative entries, then for every demand vector d the corresponding x will also have non-
negative entries, and hence will be a valid production vector for the economy. Economies
for which (I — C)~! has nonnegative entries are said to be productive. Such economies
are desirable because demand can always be met by some level of production. The follow-
ing theorem, whose proof can be found in many books on economics, gives conditions
under which open economies are productive.

THEOREM 1.10.1 If C is the consumption matrix for an open economy, and if all of
the column sums are less than 1, then the matrix I — C is invertible, the entries of
(I — C)~" are nonnegative, and the economy is productive.

Remark The jth column sum of C represents the total dollar value of input that the jth sector
requires to produce $1 of output, so if the jth column sum is less than 1, then the jth sector
requires less than $1 of input to produce $1 of output; in this case we say that the jth sector is
profitable. Thus, Theorem 1.10.1 states that if all product-producing sectors of an open economy
are profitable, then the economy is productive. In the exercises we will ask you to show that an
open economy is productive if all of the row sums of C are less than 1 (Exercise 11). Thus, an open
economy is productive if either all of the column sums or all of the row sums of C are less than 1.

P> EXAMPLE 2 An Open EconomyWhose Sectors Are All Profitable

The column sums of the consumption matrix C in (1) are less than 1, so (I — C)~! exists
and has nonnegative entries. Use a calculating utility to confirm this, and use this inverse
to solve Equation (4) in Example 1.
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Solution We leave it for you to show that

2.65823 1.13924 1.01266
1.89873 3.67089 2.15190
1.39241 2.02532 2.91139

(I-0)'~

This matrix has nonnegative entries, and

2.65823 1.13924 1.01266 7900 27,500
x=(—C)"'d~ | 1.89873 3.67089 2.15190 3950 | ~ | 33,750
1.39241 2.02532 2.91139 1975 24,750

which is consistent with the solution in Example 1. <«

Exercise Set 1.10

1. An automobile mechanic (M) and a body shop (B) use each
other’s services. For each $1.00 of business that M does, it
uses $0.50 of its own services and $0.25 of B’s services, and
for each $1.00 of business that B does it uses $0.10 of its own
services and $0.25 of M’s services.

(a) Construct a consumption matrix for this economy.

(b) How much must M and B each produce to provide cus-
tomers with $7000 worth of mechanical work and $14,000
worth of body work?

2. A simple economy produces food (F) and housing (H). The
production of $1.00 worth of food requires $0.30 worth of
food and $0.10 worth of housing, and the production of $1.00
worth of housing requires $0.20 worth of food and $0.60 worth
of housing.

(a) Construct a consumption matrix for this economy.
(b) What dollar value of food and housing must be produced

for the economy to provide consumers $130,000 worth of
food and $130,000 worth of housing?

3. Consider the open economy described by the accompanying
table, where the input is in dollars needed for $1.00 of output.

(a) Find the consumption matrix for the economy.
(b) Suppose that the open sector has a demand for $1930
worth of housing, $3860 worth of food, and $5790 worth

of utilities. Use row reduction to find a production vector
that will meet this demand exactly.

Table Ex-3
Input Required per Dollar Output
Housing | Food Utilities
_ | Housing $0.10 | $0.60 $0.40
% Food $0.30 $0.20 $0.30
| vtilities | $0.40 | $0.10 | $0.20

4. A company produces Web design, software, and networking
services. View the company as an open economy described by
the accompanying table, where input is in dollars needed for
$1.00 of output.

(a) Find the consumption matrix for the company.
(b) Suppose that the customers (the open sector) have a de-
mand for $5400 worth of Web design, $2700 worth of soft-

ware, and $900 worth of networking. Use row reduction
to find a production vector that will meet this demand

exactly.
Table Ex-4
Input Required per Dollar Output
Web Design | Software | Networking
_ | Web Design $0.40 $0.20 $0.45
% Software $0.30 $0.35 $0.30
a Networking $0.15 $0.10 $0.20

In Exercises 5-6, use matrix inversion to find the production
vector x that meets the demand d for the consumption matrix C.

s oo 0.1 0'3-.1— 50
T 04" |60

0.3 0.1 22
e[ 2

0.7
7. Consider an open economy with consumption matrix

(a) Show that the economy can meet a demand of d; = 2 units
from the first sector and d, = 0 units from the second sec-
tor, but it cannot meet a demand of d; = 2 units from the
first sector and d» = 1 unit from the second sector.

(b) Give both a mathematical and an economic explanation
of the result in part (a).



8. Consider an open economy with consumption matrix

= = =
I
col— hl— &l—

If the open sector demands the same dollar value from each
product-producing sector, which such sector must produce the
greatest dollar value to meet the demand? Is the economy pro-
ductive?

9. Consider an open economy with consumption matrix

Show that the Leontief equation x — Cx = d has a unique
solution for every demand vector d if ¢3¢, < 1 — ¢y;.

Working with Proofs

10. (a) Consider an open economy with a consumption matrix
C whose column sums are less than 1, and let x be the
production vector that satisfies an outside demand d; that
is, (I — C)~'d = x. Let d; be the demand vector that is
obtained by increasing the jth entry of d by 1 and leaving
the other entries fixed. Prove that the production vector
x; that meets this demand is

X; = X + jth column vector of (/ — O)!

(b) In words, what is the economic significance of the jth col-
umn vector of (I — C)™'? [Hint: Look at x; — x.]

11. Prove: If C is an n X n matrix whose entries are nonnegative
and whose row sums are less than 1, then I — C is invertible
and has nonnegative entries. [Hint: (A7)~ = (A™)T for any
invertible matrix A.]

Chapter 1 Supplementary Exercises

In Exercises 1-4 the given matrix represents an augmented
matrix for a linear system. Write the corresponding set of linear
equations for the system, and use Gaussian elimination to solve
the linear system. Introduce free parameters as necessary.

1 4 —17
3 -1 0 4 1 -2 -8 2
1. 2.
2 0 3 3 -1 312 -3
0 0 0]
2 -4 1 6 31 =2
3.4 0o 3 -1 4.1-9 -3 6
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True-False Exercises
TF. In parts (a)-(e) determine whether the statement is true or
false, and justify your answer.

(a) Sectors of an economy that produce outputs are called open
sectors.

(b) A closed economy is an economy that has no open sectors.

(c) The rows of a consumption matrix represent the outputs in a
sector of an economy.

(d) If the column sums of the consumption matrix are all less than
1, then the Leontief matrix is invertible.

(e) The Leontief equation relates the production vector for an
economy to the outside demand vector.

Working with Technology

T1. The following table describes an open economy with three sec-
tors in which the table entries are the dollar inputs required to pro-
duce one dollar of output. The outside demand during a 1-week
period if $50,000 of coal, $75,000 of electricity, and $1,250,000
of manufacturing. Determine whether the economy can meet the
demand.

Input Required per Dollar Output

Electricity | Coal Manufacturing
. Electricity $0.1 $0.25 $0.2
‘% Coal $0.3 $0.4 $0.5
= Manufacturing $0.1 $0.15 $0.1

5. Use Gauss—Jordan elimination to solve for x” and y’ in terms
of x and y.

/

_ 4 .7
x=3:x"=3y

3
5
y=3x+ 3y
6. Use Gauss—Jordan elimination to solve for x’ and y’ in terms
of x and y.
x =x"cosf — y'sinf
y=x"sin6 + y' cosf

7. Find positive integers that satisfy

x4+ y+ z=9
x4+ 5y 4+ 10z =44
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8.

10.

11.

12.

13.

14.

A box containing pennies, nickels, and dimes has 13 coins with
a total value of 83 cents. How many coins of each type are in
the box? Is the economy productive?

. Let
a 0 b 2
a a 4 4
0 a 2 b

be the augmented matrix for a linear system. Find for what
values of @ and b the system has

(a) a unique solution.

(b) a one-parameter solution.

(c) atwo-parameter solution. (d) no solution.

For which value(s) of a does the following system have zero
solutions? One solution? Infinitely many solutions?

)C1+.X2+X3=4
.X3=2
@ —dHxs=a-2

Find a matrix K such that AKB = C given that

1 4
20 0
A=|-2 3|, B= ,
0 1 -1
1 =2
8§ 6 —6
c=| 6 -1 1
-4 0 0

How should the coefficients a, b, and ¢ be chosen so that the
system
ax + by —3z=-3

—2x — by + cz=—1
ax +3y —cz=-3

has the solutionx =1,y = —1,and z = 2?

In each part, solve the matrix equation for X.

-1 0 1
1 2 0
@x| 1 1 o=
-3 1 5
3001 -1

1 -1 2 -5 -1 0
(b) X =
3 0 1 6 -3 7
3 1 1 4 2 =2
(©) X—-X =
-1 2 2 0 5 4

Let A be a square matrix.
(a) Showthat (] —A) ' =T+ A+ A+ A%ifA* =0.
(b) Show that
I-A"'"=T+A+A +...+ A"
if A"t = 0.

15.

16.

17.

18.

19.

20.

21.

22.

Find values of a, b, and ¢ such that the graph of the polyno-
mial p(x) = ax? + bx + ¢ passes through the points (1, 2),
(—1,6),and (2, 3).

(Calculus required) Find values of a, b, and ¢ such that
the graph of p(x) = ax? + bx + ¢ passes through the point
(—1, 0) and has a horizontal tangent at (2, —9).

Let J, be the n x n matrix each of whose entries is 1. Show
that if n > 1, then
. 1
(I_Jn) =1_7Jn
n—1

Show that if a square matrix A satisfies
AP+ 4A =24+ 71 =0
then so does AT

Prove: If B is invertible, then AB~! = B~'A if and only if
AB = BA.

Prove: If A is invertible, then A + B and [ + BA™! are both
invertible or both not invertible.

Prove: If Aisanm x n matrix and B is the n x 1 matrix each
of whose entries is 1/n, then
T
T
AB = | .
T

where 7; is the average of the entries in the ith row of A.

(Calculus required) If the entries of the matrix
cn(x)  en(x) cin(x)
) ) €24 (x)
Cmi(x)  Cma(x) Conn (X)

are differentiable functions of x, then we define

() () i, (x)
dﬁ_ ey (x) () 5, (x)
x| : :

c:nl ()C) Ct/nZ (X) Cr/nn (X)

Show that if the entries in A and B are differentiable func-
tions of x and the sizes of the matrices are such that the stated
operations can be performed, then

d dA
a) — (kA) = k—
(@) dx( ) T

d dA dB
b) —(A+B)= — + —
()dx( +B) dx+dx
(c) d(AB) dAB-I—AdB
c) — = — —

dx dx dx



23. (Calculus required) Use part (c) of Exercise 22 to show that

A dA
dx dx

State all the assumptions you make in obtaining this formula.

24. Assuming that the stated inverses exist, prove the following
equalities.
(@ (C'+DH'=C(C+D)'D
(b) I +CD)'C=C{ +DC)™!
() (C+DD")'D=C"'D(U+ DTC'D)™!

Partitioned matrices can be multiplied by the row-column rule
just as if the matrix entries were numbers provided that the sizes
of all matrices are such that the necessary operations can be per-
formed. Thus, for example, if A is partitioned into a 2 x 2 matrix
and B into a 2 x 1 matrix, then

A A B AnBi+ ApB
AB = 11 12 1 _ 1101 1202 (*)
Ay An|| B Ay B+ AnB)
provided that the sizes are such that AB, the two sums, and the
four products are all defined.

25. Let A and B be the following partitioned matrices.

o0 21 4
A—l4 1 0|3 —1|_|An Av
AZ] A22
0 3 4|2 -2
30
1
|4 —1|_|®
B,
3
2 s

26.

27.

28.

29.
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(a) Confirm that the sizes of all matrices are such that the
product AB can be obtained using Formula (x).

(b) Confirm that the result obtained using Formula () agrees
with that obtained using ordinary matrix multiplication.

Suppose that an invertible matrix A is partitioned as
A An An
Ay An

Al = Bi1  Bp
By Bxn
where
By = (A — A12A2721A21)717 By, = _BIIAIZA;ZI
By = —A3 Ay By, By = (A — AnAj'Ap)~!

Show that

provided all the inverses in these formulas exist.

In the special case where matrix A,; in Exercise 26 is zero, the
matrix A simplifies to

Ap

Ay

A= An
0

which is said to be in block upper triangular form. Use the
result of Exercise 26 to show that in this case

s |:A1‘1] —A;JAHA;;}
0

-1
Ap

A linear system whose coefficient matrix has a pivot position

in every row must be consistent. Explain why this must be so.

What can you say about the consistency or inconsistency of
a linear system of three equations in five unknowns whose
coefficient matrix has three pivot columns?
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Determinants
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INTRODUCTION In this chapter we will study “determinants” or, more precisely, “determinant
functions.” Unlike real-valued functions, such as f(x) = x2, that assign a real number
to a real variable x, determinant functions assign a real number f(A) to a matrix
variable A. Although determinants first arose in the context of solving systems of
linear equations, they are rarely used for that purpose in real-world applications. While
they can be useful for solving very small linear systems (say two or three unknowns),
our main interest in them stems from the fact that they link together various concepts
in linear algebra and provide a useful formula for the inverse of a matrix.

2.1 Determinants by Cofactor Expansion

In this section we will define the notion of a “determinant.” This will enable us to develop a
specific formula for the inverse of an invertible matrix, whereas up to now we have had only
a computational procedure for finding it. This, in turn, will eventually provide us with a
formula for solutions of certain kinds of linear systems.

Recall from Theorem 1.4.5 that the 2 x 2 matrix

o=[2 ]

is invertible if and only if ad — bc # 0 and that the expression ad — bc is called the

UG LIS g 1S SRR 10 determinant of the matrix A. Recall also that this determinant is denoted by writing

keep in mind that det(A) is a
number, whereas A is a matrix.

b
det(A) = ad — bc or ’ =ad — be 1)

a
c d
and that the inverse of A can be expressed in terms of the determinant as

. 1 d —b 5
T det(A) |:—c a] @

Minors and Cofactors  One of our main goals in this chapter is to obtain an analog of Formula (2) that is
applicable to square matrices of all orders. For this purpose we will find it convenient
to use subscripted entries when writing matrices or determinants. Thus, if we denote a

2 x 2 matrix as
ayjp  ap
a an

105
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WARNING We have followed
the standard convention of us-
ing capital letters to denote
minors and cofactors even
though they are numbers, not
matrices.

then the two equations in (1) take the form

det(A) = a an

= djdx — apaz (3

a daxn

In situations where it is inconvenient to assign a name to the matrix, we can express this
formula as
det |:a11 a121| = anax — ana “4)
ax;  an

There are various methods for defining determinants of higher-order square matrices.
In this text, we will us an “inductive definition” by which we mean that the determinant
of a square matrix of a given order will be defined in terms of determinants of square
matrices of the next lower order. To start the process, let us define the determinant of a

1 x 1 matrix [a;;] as
det[an] = an (5)

from which it follows that Formula (4) can be expressed as

det [a“ Cllz] = det[ay;] det[ax] — det[a;>] det[ay ]
a)  axn
Now that we have established a starting point, we can define determinants of 3 x 3
matrices in terms of determinants of 2 x 2 matrices, then determinants of 4 x 4 matrices
in terms of determinants of 3 x 3 matrices, and so forth, ad infinitum. The following
terminology and notation will help to make this inductive process more efficient.

DEFINITION 1 If A is a square matrix, then the minor of entry a;; is denoted by M;;
and is defined to be the determinant of the submatrix that remains after the ith row
and jth column are deleted from A. The number (—1)"*/M;; is denoted by C;; and
is called the cofactor of entry a;;.

> Finding Minors and Cofactors
Let

3 1 —4

A=1|2 5 6

1 4 8

The minor of entry ay; is

3 ——4
5 6
M= |2 5 6:48:16
| 8

The cofactor of a;; is
Ch=(E=D""My =M, =16

Historical Note The term determinant was first introduced by the German mathematician Carl
Friedrich Gauss in 1801 (see p. 15), who used them to “determine” properties of certain kinds of
functions. Interestingly, the term matrix is derived from a Latin word for “womb” because it was
viewed as a container of determinants.



2.1 Determinants by Cofactor Expansion 107

Similarly, the minor of entry as, is

3 1 —4
3 -4
My =12 5 6 —‘2 6‘226
1 4 8

The cofactor of as, is
Cn = (=1 My = —Myn =26 <

Remark Note that aminor M;; and its corresponding cofactor C;; are either the same or negatives
of each other and that the relating sign (—1)'*/ is either +1 or —1 in accordance with the pattern
in the “checkerboard” array

+ - + - +

+ - + - +
For example,

Ci=My, Cy=-My, Cn=My

and so forth. Thus, it is never really necessary to calculate (—1)"*/ to calculate C;;—you can simply

compute the minor M;; and then adjust the sign in accordance with the checkerboard pattern. Try
this in Example 1.

P EXAMPLE 2 Cofactor Expansions of a 2 x 2 Matrix
The checkerboard pattern for a 2 x 2 matrix A = [a;;] is

-

-+

Chh=M, =ap Cio=—Mp = —an
Cy = —M> = —an Cyn =My =ay

We leave it for you to use Formula (3) to verify that det(A) can be expressed in terms of
cofactors in the following four ways:

so that

det(A) = ap  dap

ar  dx»
=anCy +apC
= ayCo +anCxn
anCu1 + anCy
=apCpn+antCxy

(©)

Each of the last four equations is called a cofactor expansion of det(A). In each cofactor
expansion the entries and cofactors all come from the same row or same column of A.

Historical Note Theterm minor is apparently due to the English mathematician James Sylvester (see
p. 35), who wrote the following in a paper published in 1850: “Now conceive any one line and any one
column be struck out, we get...a square, one term less in breadth and depth than the original square;
and by varying in every possible selection of the line and column excluded, we obtain, supposing
the original square to consist of n lines and n columns, n? such minor squares, each of which will
represent what | term a “First Minor Determinant” relative to the principal or complete determinant.”
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Definition of a General
Determinant

For example, in the first equation the entries and cofactors all come from the first row of
A, in the second they all come from the second row of A, in the third they all come from
the first column of A, and in the fourth they all come from the second column of A. <

Formula (6) is a special case of the following general result, which we will state without
proof.

THEOREM 2.1.1 If A is an n X n matrix, then regardless of which row or column of A
is chosen, the number obtained by multiplying the entries in that row or column by the
corresponding cofactors and adding the resulting products is always the same.

This result allows us to make the following definition.

DEFINITION 2 If A is an n X n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,

det(A)=a1jC1j+a2jC2j—i-"-—i-ananj (7)
[cofactor expansion along the jth column]

and
det(A) = a;1Ci1 + ainCin + - - - + a;, Ciy, (®

[cofactor expansion along the ith row]

P EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

31 0
A=|-2 -4 3
5 4 =2

by cofactor expansion along the first row.

Historical Note Cofactor expansion is not
the only method for expressing the determi-
nant of a matrix in terms of determinants
of lower order. For example, although it is
not well known, the English mathematician
Charles Dodgson, who was the author of Al-
ice’s Adventures in Wonderland and Through
the Looking Glass under the pen name of
Lewis Carroll, invented such a method, called
condensation. That method has recently been
resurrected from obscurity because of its suit-
ability for parallel processing on computers.
[Image: Oscar G. Rejlander/
L Time & Life Pictures/Getty Images]
Charles Lutwidge Dodgson
(Lewis Carroll)
(1832-1898)



Note that in Example 4 we had
to compute three cofactors,
whereas in Example 3 only two
were needed because the third
was multiplied by zero. As a
rule, the best strategy for co-
factor expansion is to expand
alongarow or column with the
most zeros.
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Solution
3 1 0
—4 3 -2 3 -2 —4
det(A) =|—-2 —4 3 =3‘ l—l‘ ‘4_0‘ ‘
5 4 4 2 5 2 5 4

= 3(=4) — ()(=1) +0 = —1

P> EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the
first column of A.

Solution
3 1
—4 3 1 0 1 0
det(A) =|—-2 —4 3:3' ‘—(—2)‘ ‘-}-5‘ ‘
5 4 4 2 4 2 4 3

=3(=4) — (=2)(=2) + 5(3) = —1

This agrees with the result obtained in Example 3.

P> EXAMPLE 5 Smart Choice of Row or Column
If A is the 4 x 4 matrix

1 0 0 -1

3 1 2 2
A=

1 0 -2 1

2 0 0 1

then to find det(A) it will be easiest to use cofactor expansion along the second column,
since it has the most zeros:

10 -1
det(A)=1-]1 —2 1
2 0 1

For the 3 x 3 determinant, it will be easiest to use cofactor expansion along its second
column, since it has the most zeros:

1 -1
det(A) =1--2-
ct(A) -
=-2(1+2)
=—6

P> EXAMPLE 6 Determinant of a Lower Triangular Matrix

The following computation shows that the determinant of a4 x 4 lower triangular matrix
is the product of its diagonal entries. Each part of the computation uses a cofactor
expansion along the first row.

ay 0 0 0

an 0 0

any ann 0 0
=anjayp ay 0

ay; axn ayp 0
gy 43 A4q

a1 Qg a43 Q44

ass 0
= dajax

as3  Qag

= ay1anasslas| = ajarnasas 4
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The method illustrated in Example 6 can be easily adapted to prove the following
general result.

THEOREM 2.1.2 If A is an n X n triangular matrix (upper triangular, lower trian-
gular, or diagonal), then det(A) is the product of the entries on the main diagonal of
the matrix; that is, det(A) = ay1az - - - Apy.

A Useful Technique for Determinants of 2 x 2 and 3 x 3 matrices can be evaluated very efficiently using the
Evaluating 2 x 2 and 3 x 3 pattern suggested in Figure 2.1.1.
Determinants

Figure 2.1.1

Inthe2 x 2 case, the determinant can be computed by forming the product of the entries
on the rightward arrow and subtracting the product of the entries on the leftward arrow.
In the 3 x 3 case we first recopy the first and second columns as shown in the figure,
after which we can compute the determinant by summing the products of the entries
on the rightward arrows and subtracting the products on the leftward arrows. These
procedures execute the computations

WARNING The arrow tech-
nique works only for deter-
minants of 2 x2 and 3 x 3

matrices. It does not work ay  an
for matrices of size 4 x 4 or = djjdx — dappdy)
g daz an
higher.
ap app a3
dy dzs azl  dax ay dax
a axp ax| =ayn —apn +ai;
az  asz asy  asz as  as

asy dasy dasz
= ay(anas; — axaz) — an(ayaszz — axazr) + az(aaz — ar»asy)

= ayaxnas; + apaxas; + ajza asxy — aj3ands) — dpdzdzz — ajpd3ds)

which agrees with the cofactor expansions along the first row.

P EXAMPLE 7 ATechnique for Evaluating 2 x 2 and 3 x 3 Determinants

301
4 2|~ =(3)(-2)—(1)(4) =-10
1 2 3
-4 5 -
7 -8 9

[45 + 84 + 96] — [105 — 48 — 72] = 240 <



Exercise Set 2.1

In Exercises 1-2, find all the minors and cofactors of the ma-
trix A.

1 =2 3 1 2
1. A= 6 7 -1 22A=1|3 3 6
-3 1 4 0 4
3. Let
4 -1 1 6
A= 0 0 -3 3
4 1 0 14
4 1 3 2
Find

(a) M13 and C13. (b) M23 and C23.

(C) M22 and C22. (d) M2| and C2|.

4. Let
2 3 -1 1
-3 2 0 3
A =
-2 1 0
-2 1 4
Find

(a) M32 and C32. (b) M44 and C44.

(C) M41 and C41. (d) M24 and C24.

In Exercises 5-8, evaluate the determinant of the given matrix.
If the matrix is invertible, use Equation (2) to find its inverse.

s3] e[t o[22 s[7 ]

In Exercises 9-14, use the arrow technique to evaluate the de-
terminant.

-2 7 6
a—3 5
9. 10. | 5 1 =2
-3 a—2
3 8 4
-2 4 — 2
11. | 3 5 =7 12. | 3 0 -5
1 2 7 2
3 0 0 c —4 3
13. 2 -1 5 14. |2 1 c?
1 9 —4 4 c—1 2

In Exercises 1518, find all values of A for which det(A) = 0.
A—4 0 0
A—=2 1
15. A= 16. A = 0 A 2
-5 A+4
0 3 A—1

2.1 Determinants by Cofactor Expansion 111

A—=1 0
17.A:|:
2

A+1

)

A—4 4 0
18.A=| -1 1 0
0 0 A-5

19. Evaluate the determinant in Exercise 13 by a cofactor expan-

sion along

(a) the first row.
(c) the second row.
(e) the third row.

(b) the first column.
(d) the second column.
(f) the third column.

20. Evaluate the determinant in Exercise 12 by a cofactor expan-

sion along

(a) the first row.
(c) the second row.
(e) the third row.

(b) the first column.
(d) the second column.
(f) the third column.

In Exercises 21-26, evaluate det(A) by a cofactor expansion
along a row or column of your choice.

=3 o
2. A= 2 5
-1 0
(1 &k &
2. A=|1 k K
1k K
™ 3 0
2 2 0
25. A =
4 1 =3
2 10 3
4 0 0
33 3
26.A=|1 2 4
9 4 6
2 2 4

7
1
5

(3 3 1
2. A=|1 0 -4
1 -3 s
[k+1 k=1 7
4. A=| 2 k-3
5 k+1 k

W W W O O

In Exercises 27-32, evaluate the determinant of the given ma-

trix by inspection.

o o
27.10 -1 0
0o 0 1]
0 0 0 0]
120 0
29.
0 4 3 0
1 2 3 8]

[2 0 o
28.0 2 o
0 0 2
1 1 1
0 2 2 2
30.

0 0 3 3
0 0 0 4
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1 2 7 =3 -3 0 0 0

0 1 —4 1 1 2 0 0
31. 32.

0 0 2 7 40 10 -1 0

0 0 0 3 100 200 —23 3

33. In each part, show that the value of the determinant is inde-
pendent of 6.

sinf cosf
—cosf sinf

sin 6 cos 0

(b) —cosf sin 6 0

sinf —cosf sinf +cosf 1

34. Show that the matrices

commute if and only if

b a-c
=0
e d—f
35. By inspection, what is the relationship between the following
determinants?
a b ¢ a+r b ¢
d=|d 1 f| and do=| d 1 f
g 0 1 g 0 1
36. Show that
det(A) 1 |tr(A) 1
e ==
2 [tr(A%)  tr(A)

for every 2 x 2 matrix A.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number of zeros that a 3 x 3 matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries

must be an integer.

Working with Proofs

40. Prove that (x;, y;), (x2, y2), and (x3, y3) are collinear points
if and only if

xooy 1
X oy 11=0
x5 oy3 1

41. Prove that the equation of the line through the distinct points
(ay, by) and (ay, b,) can be written as

x oy 1
ay b| 11=0
ay bz 1

42. Prove that if A is upper triangular and Bj; is the matrix that
results when the ith row and jth column of A are deleted, then
Bj; is upper triangular if i < j.

True-False Exercises

TF. In parts (a)-(j) determine whether the statement is true or
false, and justify your answer.

(a) The determinant of the 2 x 2 matrix |:i b:| isad + bc.

d

(b) Two square matrices that have the same determinant must have
the same size.

(c) The minor Mj; is the same as the cofactor C;; if i + j is even.
(d) If Aisa 3 x 3 symmetric matrix, then Cj; = Cj; foralli and j.

(e) The number obtained by a cofactor expansion of a matrix A is
independent of the row or column chosen for the expansion.

(f) If A is a square matrix whose minors are all zero, then
det(A) = 0.

(g) The determinant of a lower triangular matrix is the sum of the
entries along the main diagonal.

(h) For every square matrix A and every scalar c, it is true that
det(cA) = cdet(A).

(1) For all square matrices A and B, it is true that
det(A 4+ B) = det(A) + det(B)
(j) Forevery 2 x 2 matrix A it is true that det(A?) = (det(A))>.

Working with Technology

T1. (a) Use the determinant capability of your technology utility
to find the determinant of the matrix

42 —13 11 60
00 00 —32 34
T 145 13 00 148
47 10 34 23

(b) Compare the result obtained in part (a) to that obtained by a
cofactor expansion along the second row of A.

T2. Let A" be the n X n matrix with 2’s along the main diagonal,
1’s along the diagonal lines immediately above and below the main
diagonal, and zeros everywhere else. Make a conjecture about the
relationship between n and det(A,,).



2.2

A Basic Theorem

Because transposing a matrix
changes its columns to rows
and its rows to columns, al-
most every theorem about the
rows of a determinant has
a companion version about
columns, and vice versa.

Elementary Row
Operations

2.2 Evaluating Determinants by Row Reduction 113

Evaluating Determinants by Row Reduction

In this section we will show how to evaluate a determinant by reducing the associated
matrix to row echelon form. In general, this method requires less computation than
cofactor expansion and hence is the method of choice for large matrices.

We begin with a fundamental theorem that will lead us to an efficient procedure for
evaluating the determinant of a square matrix of any size.

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of
zeros, then det(A) = 0.

Proof Since the determinant of A can be found by a cofactor expansion along any row
or column, we can use the row or column of zeros. Thus, if we let Cy, C,, ..., C, denote
the cofactors of A along that row or column, then it follows from Formula (7) or (8) in
Section 2.1 that

det(A) =0-C;+0-Co+---4+0-C, =0

The following useful theorem relates the determinant of a matrix and the determinant
of its transpose.

THEOREM 2.2.2 Let A be a square matrix. Then det(A) = det(AT).

Proof Since transposing a matrix changes its columns to rows and its rows to columns,
the cofactor expansion of A along any row is the same as the cofactor expansion of AT
along the corresponding column. Thus, both have the same determinant.

The next theorem shows how an elementary row operation on a square matrix affects the
value of its determinant. In place of a formal proof we have provided a table to illustrate
the ideas in the 3 x 3 case (see Table 1).

Table 1
The first panel of Table 1 Relationship Operation
shows that you can bring a ]
common factor from any row kayy  kaip  kay aiy  ap  ag In the matrix B thf? ﬁ.rst
(column) of a determinant ay  ay an|=klay ap axn LO“;COf A was multiplied
. . v k.

thrf)u.gh thf: deterrplnant sign. ) an  an ay  ap axp
This is a slightly different way i kd
of thinking about part («) of det(B) = k det(A)
Theorem 2.2.3. .

ay ay ap a;; ap  ap In the matrix B the first and

an ap as|=—lay an  ax §econd rows of A were

interchanged.
asy  dszx  dasz asy  dszx  ass
det(B) = —det(A)
ay +kay apn+kan ai+kax ay  ap  ap In the matrix B a multiple of
a arn an = |ay ayp ax| | thesecond row of A was
added to the first row.
asy asy ass asy  daszx  dass
det(B) = det(A)
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Elementary Matrices

Observe that the determinant
of an elementary matrix can-
not be zero.

Matrices with Proportional
Rows or Columns

THEOREM 2.2.3 Let A be ann X n matrix.

(a) If B is the matrix that results when a single row or single column of A is multiplied
by a scalar k, then det(B) = k det(A).

(b) If B is the matrix that results when two rows or two columns of A are interchanged,
then det(B) = — det(A).

(¢) If B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A).

We will verify the first equation in Table 1 and leave the other two for you. To start,
note that the determinants on the two sides of the equation differ only in the first row, so
these determinants have the same cofactors, Cy;, Cj», C13, along that row (since those
cofactors depend only on the entries in the second two rows). Thus, expanding the left
side by cofactors along the first row yields

kay  kap  kaps
ayy  ayp  ax | =kaCi +kapCi+kazCiz
ay axn  axn
= k(a1 Cn +anCix + a;3Cr3)
app dp ap
=k|ay axn an

asy dzp  ass

It will be useful to consider the special case of Theorem 2.2.3 in which A = I, is the
n X n identity matrix and E (rather than B) denotes the elementary matrix that results
when the row operation is performed on /,,. In this special case Theorem 2.2.3 implies
the following result.

THEOREM 2.2.4 Let E be an n X n elementary matrix.

(a) If E results from multiplying a row of I,, by a nonzero number k, then det(E) = k.
(b) If E results from interchanging two rows of I, then det(E) = —1.

(¢) If E results from adding a multiple of one row of I, to another, then det(E) = 1.

» EXAMPLE 1 Determinants of Elementary Matrices

The following determinants of elementary matrices, which are evaluated by inspection,
illustrate Theorem 2.2.4.

1 0 0 O 0 0 0 1 1 0 0 7
0 3 0 0 01 0 O 01 0 0
=3, =1, =1 «
0 0 1 0 0 0 1 O 0 01 0
0 0 0 1 1 0 0 O 0 0 0 1
The second row of I4 The first and last rows of 7 times the last row of I
was multiplied by 3. 14 were interchanged. was added to the first row.

If a square matrix A has two proportional rows, then a row of zeros can be introduced
by adding a suitable multiple of one of the rows to the other. Similarly for columns. But
adding a multiple of one row or column to another does not change the determinant, so
from Theorem 2.2.1, we must have det(A) = 0. This proves the following theorem.



Evaluating Determinants
by Row Reduction

Even with today’s fastest com-
putersit would take millions of
years to calculatea 25 x 25de-
terminant by cofactor expan-
sion, so methods based on row
reduction are often used for
large determinants. For deter-
minants of small size (such as
those in this text), cofactor ex-
pansion is often a reasonable
choice.

2.2 Evaluating Determinants by Row Reduction
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THEOREM 2.2.5 [If A is a square matrix with two proportional rows or two proportional

columns, then det(A) = 0.

» EXAMPLE 2 Proportional Rows or Columns
Each of the following matrices has two proportional rows or columns; thus, each has a

determinant of zero.

!

-9 3

3 -1 4
6 —2 5 2
5 8 1 4
—-12 15

We will now give a method for evaluating determinants that involves substantially less
computation than cofactor expansion. The idea of the method is to reduce the given
matrix to upper triangular form by elementary row operations, then compute the de-
terminant of the upper triangular matrix (an easy computation), and then relate that
determinant to that of the original matrix. Here is an example.

P> EXAMPLE 3 Using Row Reduction to Evaluate a Determinant

Evaluate det(A) where

Solution We will reduce A to row echelon form (which is upper triangular) and then

apply Theorem 2.1.2.

0 1 5
det(A) =3 —6 9|=
2 6 1

3
0
2

1

310

2

1

=-3|0

1
310
0

0

1

= (=3)(=55 10

= (=3)(=55)(1) = 165

0

—6
1
6

-2
1
6

=2
1
10

-2
1
0

-2
1
0

W

-5

3
5
—55

3
5
1

<« The first and second rows of
A were interchanged.

- A common factor of 3 from
the first row was taken
through the determinant sign.

<« —2 times the first row was
added to the third row.

- —10 times the second row
was added to the third row.

<«—— A common factor of —55
from the last row was taken
through the determinant sign.
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Example 4 points out that it
is always wise to keep an eye
open for column operations
that can shorten computa-
tions.

P> EXAMPLE 4 Using Column Operations to Evaluate a Determinant
Compute the determinant of

1 0 0

2 7 0 6
A=

0 6 3 0

7 3 I =5

Solution This determinant could be computed as above by using elementary row oper-
ations to reduce A to row echelon form, but we can put A in lower triangular form in
one step by adding —3 times the first column to the fourth to obtain

1 0 0 0
2 7 0

det(A)=det| = o I =DNE)(-26) = ~546 <
7 3 1 -2

Cofactor expansion and row or column operations can sometimes be used in com-
bination to provide an effective method for evaluating determinants. The following
example illustrates this idea.

P> EXAMPLE 5 Row Operations and Cofactor Expansion
Evaluate det(A) where

3 5 =2 6

1 2 -1 1
A=

2 4 1 5

3 7 5 3

Solution By adding suitable multiples of the second row to the remaining rows, we
obtain

0 -1 1 3
1 — 1
det(4) = | ;
0 0
—1 1 3
= — 0 3 3 < Cofactor expansion along
the first column
1 0
—1 3
= — 0 3 3 <« Weadded the first row to the
third row.
0 3
3 3 ) ,
[ (_ 1) <« Cofactor expansion along
9 3 the first column



Exercise Set 2.2

In Exercises 1-4, verify that det(A) = det(AT).

)

r—2
1. A= 3 2.
| 1 4
(2 -1 3
3.A=|1 2 4 4.
5 -3 6

In Exercises 5-8, find the determinant of the given elementary

matrix by inspection.

1 0 0 0

5. 0 0 0 6.
0 0 =5 0
o 0o o0 1
1 0 0 0
00 1 0

7. 8.
01 0 0
00 0 1

In Exercises 9-14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

3 -6 9
9.2 7 =2 10.
0o 1 5
(2 1 3 1
11. bo 1 12.
0 2 1 0
01 23
1 03 1 s 3
-2 =7 0 -4 2
3.] 0o o 1 0 1
0o 0 2 1 1
0 0 o0 1 1
1 -2 3 1
1 5 -9 6 3
-1 2 -6 -2
2 8 6 1

O -

(=R -

—6
2

S = O

(=]

o o wi-

- o O

(= = =]

- o O O
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d e f g h i
15. |g h i 16. [d e f
a b ¢ a b ¢
3a 3 3¢ a+d b+e cH+f
17. |-d —e —f 18. | —d —e —f
4g 4h 4i g h i
at+g b+h cH+i a b c
19. | d e f 20. | 2d 2e 2f
g h i g+3a h+3b i+3c
—3a —3b —3c a b ¢
21. d e f 22.|d e f
g—4d h—4e i—4f 2a 2b 2c

23. Use row reduction to show that

1 1 1

a b c|=W—-a)(c—a)(c—Db)

a> b 2

24. Verify the formulas in parts (a) and (b) and then make a con-
jecture about a general result of which these results are special

cases.
0 0 a3
(a) det | 0 ax ans
| 931 adxn  as
[0 0 0
0 ass
(b) det
dsyp a4z
| Q41 d42 Q43

= —da13axds;

aig
a4

= a1402303204]
asq

ayq

In Exercises 25-28, confirm the identities without evaluating

the determinants directly.

ar by ar+bi+a a b a
25. a b2 a + bz + | = |a; bz &)
a; by azt+bitc ay by ¢
a; + b]t a + bzt as + b3t a a) as
26. at + b| at + b2 ast + b3 = (1 - [2) b] b2 b3
Cy ) C3 i € C3
ar+b ar—b ¢ ar b «a
27. a) + bz ay — bz G = -2 [45) bz Cy
as + b3 as — b3 C3 as b3 C3
a; by+ta; ¢ +rb+sa a; a, a;
28. lay by+tay cy+rby+say|=1\by by b
as b3+ta3 c3—|—rb3+sa3 Cy C C3
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In Exercises 29-30, show that det(A) = 0 without directly eval-
uating the determinant.

r—2 8 1 4
32 5 1
2A4=1 10 6 5
| 4 -6 4 -3

(-4 1 1 1 1

1 -4 1 1 1

30. A= 1 1 -4 1 1

1 1 1 -4 1

|1 1 1 1 -4

It can be proved that if a square matrix M is partitioned into
block triangular form as

A 0 A C
M = or M=
RS

in which A and B are square, then det(M) = det(A) det(B). Use
this result to compute the determinants of the matrices in Exer-
cises 31 and 32.

T 1 2 0] 8 6 —97
2 05 0| 4 71 5
-1 3 2| 6 9 -2
3. M =
0 0 0| 3 0 0
0 0 0| 2 1 o0
L0 0 o0|-3 8 —4]

33. Let A be an n x n matrix, and let B be the matrix that re-
sults when the rows of A are written in reverse order. State a
theorem that describes how det(A) and det(B) are related.

34. Find the determinant of the following matrix.

2.3

S S _
S
SN N
ISEEEN IS N

True-False Exercises

TF. In parts (a)—(f) determine whether the statement is true or
false, and justify your answer.
(a) If Aisa4 x 4 matrix and B is obtained from A by interchang-

ing the first two rows and then interchanging the last two rows,
then det(B) = det(A).

(b) If Aisa 3 x 3matrix and B is obtained from A by multiplying
the first column by 4 and multiplying the third column by %,
then det(B) = 3det(A).

(c) If Ais a3 x 3 matrix and B is obtained from A by adding 5
times the first row to each of the second and third rows, then
det(B) = 25det(A).

(d) If Aisann x n matrix and B is obtained from A by multiply-
ing each row of A by its row number, then

nn+1)
2

det(B) = det(A)

(e) If A is a square matrix with two identical columns, then
det(A) = 0.

(f) If the sum of the second and fourth row vectors of a 6 x 6
matrix A is equal to the last row vector, then det(A) = 0.

Working with Technology

T1. Find the determinant of

42 -—-13 1.1 6.0
A 0.0 00 =32 34
4.5 1.3 0.0 1438
4.7 1.0 34 23

by reducing the matrix to reduced row echelon form, and compare
the result obtained in this way to that obtained in Exercise T1 of
Section 2.1.

Properties of Determinants; Cramer’s Rule

In this section we will develop some fundamental properties of matrices, and we will use

these results to derive a formula for the inverse of an invertible matrix and formulas for the

solutions of certain kinds of linear systems.

Basic Properties of
Determinants

Suppose that A and B are n x n matrices and k is any scalar. We begin by considering
possible relationships among det(A), det(B), and

det(kA),

det(A + B), and det(AB)

Since a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of , it follows that
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det(kA) = k" det(A) (1)

For example,
kayy kapp kaps air ap aps
kari kayn kaxn|=k|an an ax
kay kazn kass az  ax  axn

Unfortunately, no simple relationship exists among det(A), det(B), and det(A + B).
In particular, det(A 4+ B) will usually not be equal to det(A) + det(B). The following
example illustrates this fact.

P> EXAMPLE 1 det(A + B) # det(A) + det(B)

Consider
A_12 31 A+B—43
2 5] 1 3] 13 8

We have det(A) = 1, det(B) = 8, and det(A + B) = 23; thus
det(A + B) # det(A) + det(B) <

In spite of the previous example, there is a useful relationship concerning sums of
determinants that is applicable when the matrices involved are the same except for one
row (column). For example, consider the following two matrices that differ only in the

second row:
ay a ay a
A=|: 11 12] and B=|: 1 12:|
ay ap by by
Calculating the determinants of A and B, we obtain

det(A) + det(B) = (anaxn — ana) + (ar1bn — apnbiy)
= ay(an + by) — anax + bay)

B det[ an an }
ay +by  an+by

ap  ap ap  dap ap apn
det + det |: :| = det |: i|
|:6121 azz] by by ar + by an +bn

This is a special case of the following general result.

Thus

THEOREM 2.3.1 Let A, B, and C be n x n matrices that differ only in a single row,
say the rth, and assume that the rth row of C can be obtained by adding corresponding
entries in the rth rows of A and B. Then

det(C) = det(A) + det(B)
The same result holds for columns.

» EXAMPLE 2 Sums of Determinants
We leave it to you to confirm the following equality by evaluating the determinants.
1 7 5 1 7 5 1 7 5

det| 2 0 3 =det|2 0 3|4+det{2 0 3|
I1+0 441 74+(=D 1 4 7 0 1 -1
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Determinant of a Matrix
Product

Determinant Test for
Invertibility

Considering the complexity of the formulas for determinants and matrix multiplication,
it would seem unlikely that a simple relationship should exist between them. This is what
makes the simplicity of our next result so surprising. We will show that if A and B are
square matrices of the same size, then

det(AB) = det(A) det(B) )

The proof of this theorem is fairly intricate, so we will have to develop some preliminary
results first. We begin with the special case of (2) in which A is an elementary matrix.
Because this special case is only a prelude to (2), we call it a lemma.

LEMMA 2.3.2 If B isann X n matrix and E is an n X n elementary matrix, then

det(EB) = det(E)det(B)

Proof We will consider three cases, each in accordance with the row operation that
produces the matrix E.

Case 1 If E results from multiplying a row of [, by k, then by Theorem 1.5.1, EB results
from B by multiplying the corresponding row by k; so from Theorem 2.2.3(a) we have

det(EB) = k det(B)
But from Theorem 2.2.4(a) we have det(E) = k, so
det(EB) = det(FE) det(B)

Cases 2 and 3 The proofs of the cases where E results from interchanging two rows of
I, or from adding a multiple of one row to another follow the same pattern as Case 1
and are left as exercises.

Remark Tt follows by repeated applications of Lemma 2.3.2 that if B is an n x n matrix and
E\, E,, ..., E, are n x n elementary matrices, then

det(E\E; - - - E, B) = det(E,) det(E») - - - det(E,) det(B) 3)

Our next theorem provides an important criterion for determining whether a matrix is
invertible. It also takes us a step closer to establishing Formula (2).

THEOREM 2.3.3 A4 square matrix A is invertible if and only if det(A) # 0.

Proof Let R be the reduced row echelon form of A. As a preliminary step, we will
show that det(A) and det(R) are both zero or both nonzero: Let E|, E,, ..., E, be the
elementary matrices that correspond to the elementary row operations that produce R
from A. Thus
R=E, . ---E,E|A

and from (3),

det(R) = det(E,) - - - det(E;) det(E;) det(A) 4
We pointed out in the margin note that accompanies Theorem 2.2.4 that the determinant
of an elementary matrix is nonzero. Thus, it follows from Formula (4) that det(A) and
det(R) are either both zero or both nonzero, which sets the stage for the main part of
the proof. If we assume first that A is invertible, then it follows from Theorem 1.6.4 that



It follows from Theorems 2.3.3
and 2.2.5 that a square matrix
with two proportional rows or
two proportional columns is
not invertible.

Augustin Louis Cauchy
(1789-1857)

Historical Note In 1815 the great
French mathematician Augustin
Cauchy published a landmark pa-
per in which he gave the first sys-
tematic and modern treatment of
determinants. It was in that pa-
per thatTheorem 2.3.4 was stated
and proved in full generality for
the first time. Special cases of
the theorem had been stated and
proved earlier, but it was Cauchy
who made the final jump.

[Image: © Bettmann/CORBIS]
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R = I and hence that det(R) = 1 (% 0). This, in turn, implies that det(A) # 0, which
is what we wanted to show.

Conversely, assume that det(A) 7~ 0. It follows from this that det(R) # 0, which
tells us that R cannot have a row of zeros. Thus, it follows from Theorem 1.4.3 that
R = I and hence that A is invertible by Theorem 1.6.4.

P EXAMPLE 3 Determinant Test for Invertibility

Since the first and third rows of

A=

o = =
A O N

3
1
6
are proportional, det(A) = 0. Thus A is not invertible. <

We are now ready for the main result concerning products of matrices.

THEOREM 2.3.4 If' A and B are square matrices of the same size, then
det(AB) = det(A) det(B)

Proof We divide the proof into two cases that depend on whether or not A is invertible.
If the matrix A is not invertible, then by Theorem 1.6.5 neither is the product AB.
Thus, from Theorem 2.3.3, we have det(AB) = 0 and det(A) = 0, so it follows that
det(AB) = det(A) det(B).

Now assume that A is invertible. By Theorem 1.6.4, the matrix A is expressible as a
product of elementary matrices, say

A=EE, ---E, %)
)
AB =E\E,---E,B
Applying (3) to this equation yields
det(AB) = det(E) det(Ey) - - - det(E,) det(B)

and applying (3) again yields

det(AB) = det(E \E; - -- E,) det(B)
which, from (5), can be written as det(AB) = det(A) det(B).

» EXAMPLE 4 Verifying that det(AB) = det(A) det(B)

Consider the matrices
31 -1 3 2 17
A = 5 B = N AB =
2 1 5 8 3 14
We leave it for you to verify that

det(A) =1, det(B) = —23, and det(AB) = —23
Thus det(AB) = det(A) det(B), as guaranteed by Theorem 2.3.4. <«

The following theorem gives a useful relationship between the determinant of an
invertible matrix and the determinant of its inverse.
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Adjoint of a Matrix

Leonard Eugene
Dickson
(1874-1954)

Historical Note The use of the
term adjoint for the transpose
of the matrix of cofactors ap-
pears to have been introduced by
the American mathematician L. E.
Dickson in a research paper that he

published in 1902.
[Image: Courtesy of the American
Mathematical Society
www.ams.org]

THEOREM 2.3.5 If A is invertible, then
1

det(A™) = det(A)

Proof Since A~'A = I, it follows that det(A™!A) = det(/). Therefore, we must have
det(A7") det(A) = 1. Sincedet(A) # 0, the proof can be completed by dividing through
by det(A).

In a cofactor expansion we compute det(A) by multiplying the entries in a row or column
by their cofactors and adding the resulting products. It turns out that if one multiplies
the entries in any row by the corresponding cofactors from a different row, the sum of
these products is always zero. (This result also holds for columns.) Although we omit
the general proof, the next example illustrates this fact.

P> EXAMPLE 5 Entries and Cofactors from Different Rows
Let

32 -1
A=|1 6 3
2 -4 0
We leave it for you to verify that the cofactors of A are
Ch=12 Cp=6 Ci; =-—16
Cy =4 Cp=2 Cy =16

Cy =12 Cyp=-10 C;=16
so, for example, the cofactor expansion of det(A) along the first row is
det(A) =3C1 +2C + (=1)C13 =36+ 12416 = 64
and along the first column is
det(A) =3C) + Cy +2C3; =36 +4+24 =64

Suppose, however, we multiply the entries in the first row by the corresponding cofactors
from the second row and add the resulting products. The result is

3Cy1 +2C»n +(—=1)Cy3=124+4—-16=0

Or suppose we multiply the entries in the first column by the corresponding cofactors
from the second column and add the resulting products. The result is again zero since

3Ch+1C»n +2C3p=184+2—-20=0 <

DEFINITION 1 If Aisany n x n matrix and Cj; is the cofactor of a;;, then the matrix

Chn Cp -+ Cyy
Cy Cn - Cyy
Cnl Cn2 e Cnn

is called the matrix of cofactors from A. The transpose of this matrix is called the
adjoint of A and is denoted by adj(A).



It follows from Theorems 2.3.5

and 2.1.2 that if A is an invert-
ible triangular matrix, then
1 1 1

det(A™) = —— ..

ap ax Ann

Moreover, by using the adjoint
formula it is possible to show
that

1 1 1

°9

s .
ain an Ann

are actually the successive di-
agonal entries of A~! (com-
pare A and A~! in Example 3
of Section 1.7).
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» EXAMPLE 6 Adjoint of a 3 x 3 Matrix

Let
3 2 -1
A=1|1 6 3
2 —4 0
As noted in Example 5, the cofactors of A are
Cy =12 Cp=6 Ci3=-—16
Cy =4 Cyn=2 Cy =16
Cy =12 Cy =-—10 Cy3 =16
so the matrix of cofactors is
12 6 —16
4 2 16
12 —10 16
and the adjoint of A is
12 4 12
adj(A) = 6 2 —10| «
—16 16 16

In Theorem 1.4.5 we gave a formula for the inverse of a 2 x 2 invertible matrix. Our
next theorem extends that result to n x n invertible matrices.

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

1
-1 _ .
Al = A adj(A) (6)

Proof We show first that
Aadj(A) =det(A)]

Consider the product

ayny adpp ... dip
a1 4z ... A Cn Cyu ... le ... Cn
) Cpn Cn ... Cj .. Cp
Aadj(A) = . . . .
ajr  dip ... Qi : : E :
Ciw Cu ... Cp ... Cu
| dnl  dp2 ... dpp |

The entry in the ith row and jth column of the product A adj(A) is
ai1Cj1 +ainCp + -+ ainCjy (M

(see the shaded lines above).

If i = j, then (7) is the cofactor expansion of det(A) along the ith row of A (Theo-
rem 2.1.1), and if i 7 j, then the a’s and the cofactors come from different rows of A,
so the value of (7) is zero (as illustrated in Example 5). Therefore,
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det(A) 0 e 0
) 0 det(A)
Aadj(A) = . : = det(A)I ®)
0 0 <o+ det(A)
Since A is invertible, det(A) # 0. Therefore, Equation (8) can be rewritten as
Aadj(A)] =1 A djA) =1
Jegay AT =1 or |:det(A)aJ( )]
Multiplying both sides on the left by A~! yields
1
A7 adj(A)

= det(A)

P> EXAMPLE 7 Using the Adjoint to Find an Inverse Matrix

Use Formula (6) to find the inverse of the matrix A in Example 6.

Solution 'We showed in Example 5 that det(A) = 64. Thus,

12 4 12
| o4 R S
Al = ——adj(A) = — 6 2 —l0o|l=| & 2 _L| <«
det(A)aJ( ) 64 64 64 64
—16 16 16 16 16 16
64 64 64

Cramer’s Rule  Our next theorem uses the formula for the inverse of an invertible matrix to produce a
formula, called Cramer’s rule, for the solution of a linear system Ax = b of n equations
in n unknowns in the case where the coefficient matrix A is invertible (or, equivalently,
when det(A) # 0).

THEOREM 2.3.7 Cramer’s Rule

If Ax = b is a system of n linear equations in n unknowns such that det(A) # 0, then
the system has a unique solution. This solution is

det(Ay) det(Ay) det(A,)
X = , X2 = seees Xp =
det(A) det(A) det(A)
where A is the matrix obtained by replacing the entries in the jth column of A by the
entries in the matrix
Gabriel Cramer b
(1704-1752) b

Historical Note  Variations of
Cramer’s rule were fairly well b,
known before the Swiss mathe-

matician discussed it in work he .. . - .
published in 1750, It was Cramer's  700f If det(A) # 0, then A is invertible, and by Theorem 1.6.2, x = A~ 'bis the unique

superior notation that popularized ~ solution of Ax = b. Therefore, by Theorem 2.3.6 we have

the method and led mathemati-
cians to attach his name to it. Ci Cu v G by
[Image: Science Source/Photo K= A'p= 1 adj(A)b = 1 Cn Cn -+ Cp by
Researchers] det(A) det(A) : :

Cln C2n e Cnn bn



For n > 3, it is usually more
efficient to solve a linear sys-
tem with n equations in n
unknowns by Gauss—Jordan
elimination than by Cramer’s
rule. Its main use is for obtain-
ing properties of solutions of a
linear system without actually
solving the system.

Equivalence Theorem
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Multiplying the matrices out gives
b1Ci1 + b2Co1 + -+ - + by Cpy
1 b1Cia +b2Cop + -+ - + by Cpa
X = . .
det(A)

blcln + b2C2n +---+ bncnn
The entry in the jth row of x is therefore

_ biCj + DG+ -+ D, Gy

X = 9
! det(A) ©)
Now let
ajy app - ajj-1 by oagy - an
a) ap - @j—1 by ayjy - ay
A= . . . . . .

Aup1  Ap2 -+ Apj— bn Apj+1 =+ Qpn
Since A; differs from A only in the jth column, it follows that the cofactors of entries
by, by, ..., b, in A; are the same as the cofactors of the corresponding entries in the jth

column of A. The cofactor expansion of det(A ;) along the jth column is therefore
det(Aj) = b1C1j + bZCZj + -4 an,,j
Substituting this result in (9) gives

 det(4))
YT det(A)

P EXAMPLE 8 Using Cramer’s Rule to Solve a Linear System
Use Cramer’s rule to solve
X1 + +2x3= 6
—3x1 + 4x, + 6x3 = 30
—X1 —2x, +3x3= 8

Solution _ _ _
1 0 2 6 0 2
A=|-3 4 6|, A =130 ,
-1 =2 3 8 -2 3
1 6 2] 1 0 6
Ay=1-3 30 6|, A;=|-3 4 30
—1 8 3 -1 =2 8
Therefore,
det(A;)) —40 —10 det(A;) 72 18
X1 = = X2 = =

T det(A) 44 110 YT det(d) 441U
_det(Ay) 152 38
T odet(A) 44 11

X3

In Theorem 1.6.4 we listed five results that are equivalent to the invertibility of a matrix
A. We conclude this section by merging Theorem 2.3.3 with that list to produce the
following theorem that relates all of the major topics we have studied thus far.
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OPTIONAL

THEOREM 2.3.8 Equivalent Statements

If A is an n x n matrix, then the following statements are equivalent.
(@) A is invertible.

(b) Ax = 0 has only the trivial solution.

(¢)  The reduced row echelon form of A is I,,.

(d) A can be expressed as a product of elementary matrices.

(e) Ax = b is consistent for every n X 1 matrix b.

(f) Ax = b has exactly one solution for every n x 1 matrix b.

(g) det(A) #0.

We now have all of the machinery necessary to prove the following two results, which we
stated without proof in Theorem 1.7.1:

* Theorem 1.7.1(¢) A triangular matrix is invertible if and only if its diagonal entries
are all nonzero.

* Theorem 1.7.1(d) The inverse of an invertible lower triangular matrix is lower trian-
gular, and the inverse of an invertible upper triangular matrix is upper triangular.

Proof of Theorem 1.71(c) Let A = [a;;] be a triangular matrix, so that its diagonal
entries are

Aail, A2, -« App

From Theorem 2.1.2, the matrix A is invertible if and only if
det(A) =dady - dyp
is nonzero, which is true if and only if the diagonal entries are all nonzero.
Proof of Theorem 1.71(d) We will prove the result for upper triangular matrices and

leave the lower triangular case for you. Assume that A is upper triangular and invertible.
Since

1
Al = adj(A)
det(A)
we can prove that A~ is upper triangular by showing that adj(A) is upper triangular or,
equivalently, that the matrix of cofactors is lower triangular. We can do this by showing
that every cofactor Cj; with i < j (i.e., above the main diagonal) is zero. Since

Cyj = (=)' My

it suffices to show that each minor M;; with i < j is zero. For this purpose, let B;; be the
matrix that results when the ith row and jth column of A are deleted, so

M,'j = det(B,-_,) (10)

From the assumption thati < j, it follows that B;; is upper triangular (see Figure 1.7.1).
Since A is upper triangular, its (i 4 1)-st row begins with at least i zeros. But the ith row
of Bj; is the (i + 1)-st row of A with the entry in the jth column removed. Sincei < j,
none of the first i zeros is removed by deleting the jth column; thus the ith row of B;;
starts with at least i zeros, which implies that this row has a zero on the main diagonal.
It now follows from Theorem 2.1.2 that det(B;;) = 0 and from (10) that M;; = 0.



Exercise Set 2.3
In Exercises 1-4, verify that det(kA) = k" det(A).

—1

In Exercises 5-6, verify that det(AB) = det(BA) and deter-
mine whether the equality det(A + B) = det(A) + det(B) holds.

In Exercises 7-14, use determinants to decide whether the given

34

2

2
1

:|;k:2 2. A=

0 1

0 and B=|7
2 5
8 2

0 -1 and B =
2 2

matrix is invertible.

2
7.A=|-1
2

[
9.4=10
0

!

1. A=| -2
| 3

[ 2
13.A=1| 38
| =5

In Exercises 1518, find the values of k for which the matrix A

is invertible.
"k
L —2

15. A=

17. A=

=~ W o=

3

W = N

-1

-2
k—2

N N B

]

10. A =

12. A=

14. A =

16. A =

18. A =

2 2
 k=—4
;-

-1 3
1 2

0 1

2 -1 -4
11 3
0 3 -1

0 —1
-1 4

8 9 -1
NENG
3/2 =37
5 -9

k2
2 &k
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In Exercises 19-23, decide whether the matrix is invertible, and
if so, use the adjoint method to find its inverse.

2 5 5
19.4=|-1 -1 0
2 4 3

(2 -3 5]
2.A=]0 1 -3
0o 0 2

M 3 1 17

2 5 2 2
BA=|] 5 ¢
13 2 2]

24.

26.

28.

29.

30.

31.

32.

20. A =

22. A=

0 3
32
0 —4
0 0
10
306

In Exercises 24-29, solve by Cramer’s rule, where it applies.

Tx1 —2x, =3
31+ x,=5
x—4y+ z= 6

4x — y+4+2z= —1
2x +2y — 3z =-20

—X] — 4)62 + 2X3 + x4 = -32
2x1 — xp 4+ Tx3s +9x4 = 14
—x1 + X2+3X3+ X4 = 11

X1 —2x+ x3—4xs= —4
31 — X+ x3=4
—X] + 7X2 — 2X3 =1
2X1+6X2— X3=5
Show that the matrix
cosb
A= | —sinf

0

25. 4x + 5y
Ilx+ y+2z=3
x+5y+2z=1

0

cosf 0

1

=2

27. X]—3X2+ X3 = 4
2X1 — X2

—3)C3= 0

is invertible for all values of ; then find A~ using Theo-

rem 2.3.6.

Use Cramer’s rule to solve for y without solving for the un-

knowns x, z, and w.

+ y+ z+ w=
x+T7y— z4+ w=

6
1

Ix +3y — 52+ 8w = -3

X+ y+ z+2w=

3

Let Ax = b be the system in Exercise 31.

(a) Solve by Cramer’s rule.

(b) Solve by Gauss—Jordan elimination.

(¢) Which method involves fewer computations?
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33. Let
a b c
A=|d e f
g h i
Assuming that det(A) = —7, find
(a) det(3A) (b) det(A™1) (c) det2A™h)
a g d
(d) det(24)™) (e) det|b h e
c i f

34. In each part, find the determinant given that A isa 4 x 4 ma-
trix for which det(A) = —2.

(a) det(—A) (b) det(A™") (c) det(2AT) (d) det(A%)

35. In each part, find the determinant given that A isa 3 x 3 ma-

trix for which det(A) = 7.
(a) det(3A) (b) det(A™1)

(©) det(2A~") (d) det((24)7")

Working with Proofs

36. Prove that a square matrix A is invertible if and only if A7A is
invertible.

37. Prove thatif A is a square matrix, then det(A7A) = det(AAT).

38. Let Ax = b be a system of n linear equations in n unknowns
with integer coefficients and integer constants. Prove that if
det(A) = 1, the solution x has integer entries.

39. Prove that if det(A) = 1 and all the entries in A are integers,
then all the entries in A™! are integers.

True-False Exercises

TF. In parts (a)—(l) determine whether the statement is true or
false, and justify your answer.

(a) If Aisa 3 x 3 matrix, then det(2A) = 2 det(A).

(b) If A and B are square matrices of the same size such that
det(A) = det(B), then det(A + B) = 2det(A).

(c) If A and B are square matrices of the same size and A is in-
vertible, then
det(A~'BA) = det(B)

(d) A square matrix A is invertible if and only if det(A) = 0.

(e) The matrix of cofactors of A is precisely [adj(A)]”.

(f) For every n x n matrix A, we have
A - adj(A) = (det(A) 1,

(g) If A is a square matrix and the linear system Ax = 0 has mul-
tiple solutions for x, then det(A) = 0.

(h) If A is an n x n matrix and there exists an n x 1 matrix b
such that the linear system Ax = b has no solutions, then the
reduced row echelon form of A cannot be I,,.

(1) If E is an elementary matrix, then Ex = 0 has only the trivial
solution.

(j) If A is an invertible matrix, then the linear system Ax =0
has only the trivial solution if and only if the linear system
A~'x = 0 has only the trivial solution.

(k) If A is invertible, then adj(A) must also be invertible.

(1) If A has a row of zeros, then so does adj(A).

Working with Technology

T1. Consider the matrix

1 1
A:
1 1+4e€

in which € > 0. Since det(A) =€ # 0, it follows from The-
orem 2.3.8 that A is invertible. Compute det(A) for various
small nonzero values of € until you find a value that produces
det(A) = 0, thereby leading you to conclude erroneously that A
is not invertible. Discuss the cause of this.

T2. We know from Exercise 39 that if A is a square matrix then
det(ATA) = det(AAT). By experimenting, make a conjecture as
to whether this is true if A is not square.

T3. The French mathematician Jacques Hadamard (1865-1963)
proved that if A is an n x n matrix each of whose entries satisfies
the condition |a;;| < M, then

|det(A)] < V/n"M"

(Hadamard’s inequality). For the following matrix A, use this re-
sult to find an interval of possible values for det(A), and then
use your technology utility to show that the value of det(A) falls
within this interval.

03 =24 -—-1.7 25

02 -03 —-12 14
A=

2.5 2.3 0.0 1.8

1.7 1.0 =21 23
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In Exercises 1-8, evaluate the determinant of the given matrix

by (a) cofactor expansion and (b) using elementary row operations
to introduce zeros into the matrix.

10.

4 2 [ 7 1
. 2.
3 3 -2 -6
-1 5 2 -1 —2 =3
0 2 -1 4. -4 -5 -6
-3 11 -7 -8 9]
3 0 -1 [—5 ]
11 6 30
0 4 2 1 =2 |
T3 6 0 1 -1 -2 -3 —4
-2 3 1 4 g 4 3 2 1
1 0 —-1 1 2 3 4
-9 2 2 2 -4 -3 2 -1

. Evaluate the determinants in Exercises 3—6 by using the arrow

technique (see Example 7 in Section 2.1).

(a) Construct a 4 x 4 matrix whose determinant is easy to
compute using cofactor expansion but hard to evaluate
using elementary row operations.

(b) Construct a 4 x 4 matrix whose determinant is easy to
compute using elementary row operations but hard to
evaluate using cofactor expansion.

11. Use the determinant to decide whether the matrices in Exer-
cises 1-4 are invertible.
12. Use the determinant to decide whether the matrices in Exer-
cises 5-8 are invertible.
In Exercises 13-15, find the given determinant by any me-
thod.
3 —4 a
5 b—3
13. 14. |a* 1 2
b—2 =3
2 a—1 4
0 0 0 0 -3
0 0 —4 0
15. |0 0 - 0 0
0 2 0 0
5 0 0 0
16. Solve for x.
1 0 -3
X -1
=12 x —6
3 1—x
1 3 x-5
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In Exercises 17-24, use the adjoint method (Theorem 2.3.6) to
find the inverse of the given matrix, if it exists.
17. The matrix in Exercise 1. 18. The matrix in Exercise 2.

19. The matrix in Exercise 3.  20. The matrix in Exercise 4.
21. The matrix in Exercise 5.  22. The matrix in Exercise 6.
23. The matrix in Exercise 7.  24. The matrix in Exercise 8.

25. Use Cramer’s rule to solve for x” and y’ in terms of x and y.

/

_ 4.
x=zx'—3y

3
5
y=3x'+3y

26. Use Cramer’s rule to solve for x” and y’ in terms of x and y.

x =x'cosf — y'sin6
y=x"sin6 + y' cosb
27. By examining the determinant of the coefficient matrix, show
that the following system has a nontrivial solution if and only
ifa = 8.
x+ y+az=0
x+ y+pBz=0
ax+By+ z=0
28. Let A be a 3 x 3 matrix, each of whose entries is 1 or 0. What
is the largest possible value for det(A)?

29. (a) For the triangle in the accompanying figure, use trigonom-
etry to show that

bcosy + ccosB=a
ccosa +acosy =b

acosfB + becosa = ¢

and then apply Cramer’s rule to show that

b* +c? — a?
cosy = ———
2bc
(b) Use Cramer’s rule to obtain similar formulas for cos 8 and
cosy.
b ‘ a
¢ Figure Ex-29

30. Use determinants to show that for all real values of A, the only

solution of
x — 2y =Ax

X — y=Ay
isx=0,y=0.

31. Prove: If A is invertible, then adj(A) is invertible and

ST a1 adi Al
[adj(A)] _det(A)A_adJ(A )
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32. Prove: If A is an n x n matrix, then
det[adj(A)] = [det(4)]""!

33. Prove: If the entries in each row of an n x n matrix A add up
to zero, then the determinant of A is zero. [Hint: Consider
the product Ax, where x is the n x 1 matrix, each of whose
entries is one.]

34. (a) In the accompanying figure, the area of the triangle ABC
can be expressed as

area ABC = area ADEC + area CEFB — area ADFB

Use this and the fact that the area of a trapezoid equals
% the altitude times the sum of the parallel sides to show

that
MR 1
area ABC = 3 X y» 1
x3oy3 1

[Note: In the derivation of this formula, the vertices are
labeled such that the triangle is traced counterclockwise
proceeding from (xi, y;) to (x2, y») to (x3,y;). For a
clockwise orientation, the determinant above yields the
negative of the area.]

(b) Use the result in (a) to find the area of the triangle with
vertices (3, 3), (4,0), (=2, —1).

35.

36.

C(x3, ¥3)
B(xp, 3

Axy, yp) }

|
|

\ |
| |

D E F Figure Ex-34
Use the fact that

21375, 38798, 34162, 40223, 79154

are all divisible by 19 to show that

1 3 7 5
3 8 7 9 8
3 41 6 2
4 0 2 2 3
79 1 5 4

is divisible by 19 without directly evaluating the determinant.
Without directly evaluating the determinant, show that

sine  cosa sin(a + §)
sin cosB sin(B+38)| =0
siny cosy sin(y +96)
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INTRODUCTION Engineers and physicists distinguish between two types of physical quantities—
scalars, which are quantities that can be described by a numerical value alone, and
vectors, which are quantities that require both a number and a direction for their
complete physical description. For example, temperature, length, and speed are scalars
because they can be fully described by a number that tells “how much”—a temperature
of 20°C, a length of 5 cm, or a speed of 75 km/h. In contrast, velocity and force are
vectors because they require a number that tells “how much” and a direction that tells
“which way”—say, a boat moving at 10 knots in a direction 45° northeast, or a force of
100 1b acting vertically. Although the notions of vectors and scalars that we will study
in this text have their origins in physics and engineering, we will be more concerned
with using them to build mathematical structures and then applying those structures to
such diverse fields as genetics, computer science, economics, telecommunications, and
environmental science.

3.1 Vectors in 2-Space, 3-Space, and n-Space

Linear algebra is primarily concerned with two types of mathematical objects, “matrices”
and “vectors.” In Chapter 1 we discussed the basic properties of matrices, we introduced
the idea of viewing n-tuples of real numbers as vectors, and we denoted the set of all such
n-tuples as R". In this section we will review the basic properties of vectors in two and three
dimensions with the goal of extending these properties to vectors in R”.

Geometric \Vectors  Engineers and physicists represent vectors in two dimensions (also called 2-space) or
in three dimensions (also called 3-space) by arrows. The direction of the arrowhead
specifies the direction of the vector and the length of the arrow specifies the magnitude.
Mathematicians call these geometric vectors. The tail of the arrow is called the initial
point of the vector and the tip the terminal point (Figure 3.1.1).

In this text we will denote vectors in boldface type such as a, b, v, w, and x, and we
Initial point will denote scalars in lowercase italic type such as a, k, v, w, and x. When we want
to indicate that a vector v has initial point A and terminal point B, then, as shown in
Figure 3.1.2, we will write

Terminal point

Figure 3.1.1

_9
v=AB

131
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B

v=AB

Figure 3.1.2

Vector Addition

S

Equivalent vectors

Figure 3.1.3

Figure 3.1.4

Vectors with the same length and direction, such as those in Figure 3.1.3, are said to

be equivalent. Since we want a vector to be determined solely by its length and direction,
equivalent vectors are regarded as the same vector even though they may be in different
positions. Equivalent vectors are also said to be equal, which we indicate by writing

V=W

The vector whose initial and terminal points coincide has length zero, so we call this

the zero vector and denote it by 0. The zero vector has no natural direction, so we will
agree that it can be assigned any direction that is convenient for the problem at hand.

There are a number of important algebraic operations on vectors, all of which have their
origin in laws of physics.

Parallelogram Rule for Vector Addition If v and w are vectors in 2-space or 3-space
that are positioned so their initial points coincide, then the two vectors form adjacent
sides of a parallelogram, and the sum v 4 w is the vector represented by the arrow
from the common initial point of v and w to the opposite vertex of the parallelogram
(Figure 3.1.4a).

Here is another way to form the sum of two vectors.

Triangle Rule for Vector Addition If v and w are vectors in 2-space or 3-space that are
positioned so the initial point of w is at the terminal point of v, then the sum v + w
is represented by the arrow from the initial point of v to the terminal point of w
(Figure 3.1.4b).

In Figure 3.1.4¢ we have constructed the sums v + w and w + v by the triangle rule.

This construction makes it evident that

vV+w=w+v (1)

and that the sum obtained by the triangle rule is the same as the sum obtained by the
parallelogram rule.

(b) (c)

Vector addition can also be viewed as a process of translating points.

Vector Addition Viewed asTranslation Ifv, w, and v + w are positioned so their initial
points coincide, then the terminal point of v + w can be viewed in two ways:

1. The terminal point of v+ w is the point that results when the terminal point
of v is translated in the direction of w by a distance equal to the length of w
(Figure 3.1.5a).

2. The terminal point of v+ w is the point that results when the terminal point
of w is translated in the direction of v by a distance equal to the length of v
(Figure 3.1.5b).

Accordingly, we say that v+ w is the translation of v by w or, alternatively, the
translation of w by v.



Vector Subtraction

Scalar Multiplication

S

Figure 3.1.7

Parallel and Collinear
Vectors
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—_—

Figure 3.1.5 (a) (b)

In ordinary arithmetic we can write a — b = a + (—b), which expresses subtraction in
terms of addition. There is an analogous idea in vector arithmetic.

Vector Subtraction The negative of a vector v, denoted by —v, is the vector that has
the same length as v but is oppositely directed (Figure 3.1.6a), and the difference of v
from w, denoted by w — v, is taken to be the sum

W—vV=w+4 (—v) 2)

The difference of v from w can be obtained geometrically by the parallelogram
method shown in Figure 3.1.6h, or more directly by positioning w and v so their ini-
tial points coincide and drawing the vector from the terminal point of v to the terminal
point of w (Figure 3.1.6¢).

Figure 3.1.6 (a)

Sometimes there is a need to change the length of a vector or change its length and
reverse its direction. This is accomplished by a type of multiplication in which vectors
are multiplied by scalars. As an example, the product 2v denotes the vector that has the
same direction as v but twice the length, and the product —2v denotes the vector that is
oppositely directed to v and has twice the length. Here is the general result.

Scalar Multiplication If v is a nonzero vector in 2-space or 3-space, and if k is a
nonzero scalar, then we define the scalar product of v by k to be the vector whose
length is |k| times the length of v and whose direction is the same as that of v if k is
positive and opposite to that of v if k is negative. If k = 0 or v = 0, then we define kv
to be 0.

Figure 3.1.7 shows the geometric relationship between a vector vand some of its scalar
multiples. In particular, observe that (—1)v has the same length as v but is oppositely
directed; therefore,

(=Dv=—v (3)

Suppose that v and w are vectors in 2-space or 3-space with a common initial point. If
one of the vectors is a scalar multiple of the other, then the vectors lie on a common line,
so it is reasonable to say that they are collinear (Figure 3.1.8a). However, if we trans-
late one of the vectors, as indicated in Figure 3.1.8b, then the vectors are parallel but
no longer collinear. This creates a linguistic problem because translating a vector does
not change it. The only way to resolve this problem is to agree that the terms parallel and
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Sums ofThree or More
Vectors

Figure 3.1.9

Vectors in Coordinate
Systems

The component forms of the
zero vector are 0 = (0, 0) in
2-space and 0 = (0, 0, 0) in 3-
space.

collinear mean the same thing when applied to vectors. Although the vector 0 has no
clearly defined direction, we will regard it as parallel to all vectors when convenient.

S

kv 4 kv

Figure 3.1.8 (a) (b)

Vector addition satisfies the associative law for addition, meaning that when we add three
vectors, say u, v, and w, it does not matter which two we add first; that is,

ut+ (v+w)=@u+v)+w

It follows from this that there is no ambiguity in the expression u + v + w because the
same result is obtained no matter how the vectors are grouped.

A simple way to construct u + v + w is to place the vectors “tip to tail” in succession
and then draw the vector from the initial point of u to the terminal point of w (Figure
3.1.9a). The tip-to-tail method also works for four or more vectors (Figure 3.1.95).
The tip-to-tail method makes it evident that if u, v, and w are vectors in 3-space with a
common initial point, then u + v + w is the diagonal of the parallelepiped that has the
three vectors as adjacent sides (Figure 3.1.9¢).

()

Up until now we have discussed vectors without reference to a coordinate system. How-
ever, as we will soon see, computations with vectors are much simpler to perform if a
coordinate system is present to work with.

If a vector v in 2-space or 3-space is positioned with its initial point at the origin of
a rectangular coordinate system, then the vector is completely determined by the coor-
dinates of its terminal point (Figure 3.1.10). We call these coordinates the components
of v relative to the coordinate system. We will write v = (v;, v;) to denote a vector v in
2-space with components (vy, v,), and v = (v, v2, v3) to denote a vector v in 3-space
with components (vy, v, v3).

(v}, vy)

(v}, vy, V3)

Figure 3.1.10



(v, v7)

Figure 3.1.11 The ordered
pair (v, v,) can represent a
point or a vector.

Vectors Whose Initial Point
Is Not at the Origin

y
Pixp,p) v
0P,

Py(x3, y2)

op,

v=Pb, = OP,~ OP,

Figure 3.1.12

n-Space
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It should be evident geometrically that two vectors in 2-space or 3-space are equiv-
alent if and only if they have the same terminal point when their initial points are at
the origin. Algebraically, this means that two vectors are equivalent if and only if their
corresponding components are equal. Thus, for example, the vectors

v=(v1,v2,v3) and w= (wy, wa, w3)
in 3-space are equivalent if and only if

V] =W, V=W, VU3 =wW3

Remark It may have occurred to you that an ordered pair (v, v2) can represent either a vector
with components v; and v, or a point with coordinates v, and v, (and similarly for ordered triples).
Both are valid geometric interpretations, so the appropriate choice will depend on the geometric
viewpoint that we want to emphasize (Figure 3.1.11).

It is sometimes necessary to consider vectors whose initial points are not at the origin.

—>
If P, P, denotes the vector with initial point P;(x;, y;) and terminal point P,(x3, y2),
then the components of this vector are given by the formula

—
PP = (X2 — X1, 2 — 1) 4)

>
That is, the components of P; P, are obtained by subtracting the coordinates of the
initial point from the coordinates of the terminal point. For example, in Figure 3.1.12

— . — —
the vector P; P; is the difference of vectors OP, and OPy, so

—_— > —>

P1Py = OP, — OP; = (x2, y2) — (x1, y1) = (X2 — x1, Y2 — Y1)

As you might expect, the components of a vector in 3-space that has initial point
P (x1, y1, z1) and terminal point P>(x», y», z2) are given by

—
PPy = (X — X1, Y2 — Y1, 22 — 21) ®)]

» EXAMPLE 1 Finding the Components of a Vector

—
The components of the vector v = P; P, with initial point P;(2, —1, 4) and terminal
point P,(7, 5, —8) are

v=(7-2,5—(=1),(-8) —4) = (5,6,—12) «

The idea of using ordered pairs and triples of real numbers to represent points in two-
dimensional space and three-dimensional space was well known in the eighteenth and
nineteenth centuries. By the dawn of the twentieth century, mathematicians and physi-
cists were exploring the use of “higher dimensional” spaces in mathematics and physics.
Today, even the layman is familiar with the notion of time as a fourth dimension, an idea
used by Albert Einstein in developing the general theory of relativity. Today, physicists
working in the field of “string theory” commonly use 11-dimensional space in their quest
for a unified theory that will explain how the fundamental forces of nature work. Much
of the remaining work in this section is concerned with extending the notion of space to
n dimensions.

To explore these ideas further, we start with some terminology and notation. The
set of all real numbers can be viewed geometrically as a line. It is called the real line and
is denoted by R or R'. The superscript reinforces the intuitive idea that a line is one-
dimensional. The set of all ordered pairs of real numbers (called 2-tuples) and the set of all
ordered triples of real numbers (called 3-tuples) are denoted by R” and R3, respectively.
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The superscript reinforces the idea that the ordered pairs correspond to points in the
plane (two-dimensional) and ordered triples to points in space (three-dimensional). The
following definition extends this idea.

DEFINITION 1 If n is a positive integer, then an ordered n-tuple is a sequence of n
real numbers (vy, vy, ..., v,). The set of all ordered n-tuples is called n-space and is
denoted by R".

Remark You can think of the numbers in an n-tuple (vy, vs, ..., v,) as either the coordinates of
a generalized point or the components of a generalized vector, depending on the geometric image
you want to bring to mind—the choice makes no difference mathematically, since it is the algebraic
properties of n-tuples that are of concern.

Here are some typical applications that lead to n-tuples.

» Experimental Data—A scientist performs an experiment and makes n numerical
measurements each time the experiment is performed. The result of each experiment
can be regarded as a vector y = (y1, y2, ..., ¥») in R" in which yy, y5, ..., y, are
the measured values.

* Storage and Warehousing—A national trucking company has 15 depots for storing
and servicing its trucks. At each point in time the distribution of trucks in the service
depots can be described by a 15-tuple x = (x1, X3, ..., X15) in which x; is the number
of trucks in the first depot, x, is the number in the second depot, and so forth.

 Electrical Circuits—A certain kind of processing chip is designed to receive four
input voltages and produce three output voltages in response. The input voltages
can be regarded as vectors in R* and the output voltages as vectors in R3. Thus, the
chip can be viewed as a device that transforms an input vector v = (vy, vz, v3, V4) in
R* into an output vector w = (wy, w,, w3) in R>.

+ Graphical Images—One way in which color images are created on computer screens
is by assigning each pixel (an addressable point on the screen) three numbers that
describe the hue, saturation, and brightness of the pixel. Thus, a complete color image
can be viewed as a set of 5-tuples of the form v = (x, y, &, s, b) in which x and y are
the screen coordinates of a pixel and £, s, and b are its hue, saturation, and brightness.

*  Economics—One approach to economic analysis is to divide an economy into sectors
(manufacturing, services, utilities, and so forth) and measure the output of each sector
by a dollar value. Thus, in an economy with 10 sectors the economic output of the
entire economy can be represented by a 10-tuple s = (51, 52, ..., S19) in which the
numbers sy, 57, ..., $19 are the outputs of the individual sectors.

Historical Note The German-born physicist Albert Einstein
immigrated to the United States in 1935, where he settled at
Princeton University. Einstein spent the last three decades
of his life working unsuccessfully at producing a unified field
theory that would establish an underlying link between the
forces of gravity and electromagnetism. Recently, physi-
cists have made progress on the problem using a frame-
work known as string theory. In this theory the smallest,
indivisible components of the Universe are not particles but
loops that behave like vibrating strings. Whereas Einstein’s
space-time universe was four-dimensional, strings reside in
an 11-dimensional world that is the focus of current re-
Albert Einstein search.

(1879-1955) [Image: © Bettmann/CORBIS]
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Figure 3.1.13

3.1 Vectors in 2-Space, 3-Space, and n-Space 137

* Mechanical Systems—Suppose that six particles move along the same coordinate
line so that at time ¢ their coordinates are xi, x», ..., X¢ and their velocities are
v1, U, ..., Ug, respectively. This information can be represented by the vector

vV = (X1, X2, X3, X4, X5, X6, V1, V2, U3, U4, Vs, Vg, 1)

in R'3. This vector is called the state of the particle system at time 7.

Our next goal is to define useful operations on vectors in R". These operations will all
be natural extensions of the familiar operations on vectors in R? and R3. We will denote
a vector vin R" using the notation

V= (V,V2,...,0)

and we will call 0 = (0, 0, ..., 0) the zero vector.
We noted earlier that in R? and R? two vectors are equivalent (equal) if and only if
their corresponding components are the same. Thus, we make the following definition.

DEFINITION 2 Vectorsv = (v, va, ..., v,) andw = (wy, wy, ..., w,) in R" are said
to be equivalent (also called equal) if

Vp =W, V2 =W2,..., Uy =Wy

We indicate this by writing v = w.

» EXAMPLE 2 Equality of Vectors

(a5 b7 c, d) = (1’ _4’ 27 7)
ifandonlyifa =1,b=—4,c=2,andd =7. d

Our next objective is to define the operations of addition, subtraction, and scalar
multiplication for vectors in R". To motivate these ideas, we will consider how these op-
erations can be performed on vectors in R” using components. By studying Figure 3.1.13
you should be able to deduce that if v = (vy, v2) and w = (wy, w;), then

v+w= (v +w, v+ ws) (6)
kv = (kl}], kvz) (7)

In particular, it follows from (7) that

—v=(=Dv=(-vi, —v) 3

(V) +wy, vy +wy)
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and hence that

wW—v=w+4 (—v) = (w; — v, Wy — 7) ©))

Motivated by Formulas (6)—(9), we make the following definition.

DEFINITION 3 If v = (v, vp,...,v,) and w = (wy, ws, ..., w,) are vectors in R",
and if k is any scalar, then we define

v4+w= (v +w, v+ ws, ..., v, +wy,) (10)
kv = (kvy, kv, ..., kv,) (11)
—v=(—v, =V, ..., —Uy) (12)
W—v=Ww+ (—V) = (W] — v, Wr — V2, ..., W, — V) (13)

P EXAMPLE 3 Algebraic Operations Using Components

In words, vectors are added (or
subtracted) by adding (or sub-
tracting) their corresponding
components, and a vector is
multiplied by a scalar by multi-

Ifv=(1,-3,2)and w = (4, 2, 1), then

V4w=(5 —1,3), 2v= (2, —6,4)
—W= (_47 _27 _1)7 V—w=vV+ (_W) = (_3’ _57 1) 4

plyingeach component by that The following theorem summarizes the most important properties of vector opera-

scalar. tions.

THEOREM 3.1.1 If u, v, and w are vectors in R", and if k and m are scalars, then:

(a)
(b)
@
(d)
(e)
N
(8)
(h)

ut+v=v+u
u+v)+w=u+ (v+w)
u+0=0+u=u
u+(—u) =0

k(u+v) = ku—+ kv

(k + m)u = ku + mu
k(mu) = (km)u

lu=u

We will prove part (b) and leave some of the other proofs as exercises.

Proof (b) Let w= (uy,uz,...,u,),v= (v, 02,...,0,), and w = (wy, wa, ..., W,).

Then

V) +w= (1,2, ..o ty) + Q1020 V)) + (W1, W, W)

=W +v,ur+ vy, ..., u, +v,) + (W, wa, ..., W) [Vector addition]
= ((I/ll +vy) + wy, (U + v2) +wo, ..., (u, +v,) + w,,) [Vector addition]
= (w1 + (1 +wp), us + (V2 + w2, .y + Uy + W) [Regroup]

= Ui, Uzy ... Upy) + (V1 F w00+ W, .., U W) [Vector addition]
=u+ (v+w

The following additional properties of vectors in R" can be deduced easily by ex-
pressing the vectors in terms of components (verify).



Calculating Without
Components

Linear Combinations

Note that this definition of a
linear combination is consis-
tent with that given in the con-
text of matrices (see Definition
6 in Section 1.3).

Alternative Notations for
Vectors
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THEOREM 3.1.2 [If v is a vector in R" and k is a scalar, then:

(@) Ov=0
b) kK0=0
(¢) (=Dv=—v

One of the powerful consequences of Theorems 3.1.1 and 3.1.2 is that they allow cal-
culations to be performed without expressing the vectors in terms of components. For
example, suppose that x, a, and b are vectors in R", and we want to solve the vector
equation x 4+ a = b for the vector x without using components. We could proceed as
follows:

x+a=Dhb [Given]

(x+a) 4+ (—a) = b+ (—a) [Add the negative of a to both sides]
x+(a+(—a)=b—a [Part (b) of Theorem 3.1.1]
x+0=b—a [ Part (d) of Theorem 3.1.1]
x=b—a [ Part (c) of Theorem 3.1.1]

While this method is obviously more cumbersome than computing with components in
R", it will become important later in the text where we will encounter more general kinds
of vectors.

Addition, subtraction, and scalar multiplication are frequently used in combination to
form new vectors. For example, if v{, v,, and v; are vectors in R", then the vectors

u=2;+3v+vz and w="7vi —6vy+ 8wz

are formed in this way. In general, we make the following definition.

DEFINITION 4 If w is a vector in R", then w is said to be a linear combination of the

vectors vy, va, ..., v, in R" if it can be expressed in the form
w=kivi+kvo+ -+ kv, (14)
where k1, k, .. ., k, are scalars. These scalars are called the coefficients of the linear

combination. In the case where r = 1, Formula (14) becomes w = k;v;, so that a
linear combination of a single vector is just a scalar multiple of that vector.

Up to now we have been writing vectors in R" using the notation

v=(v1,v2,...,0,) (15)

We call this the comma-delimited form. However, since a vector in R” is just a list of
its n components in a specific order, any notation that displays those components in the
correct order is a valid way of representing the vector. For example, the vector in (15)
can be written as

v=[v vy - vl (16)
which is called row-vector form, or as
V1

%)
v=1 | 17

Un
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which is called column-vector form. The choice of notation is often a matter of taste or
convenience, but sometimes the nature of a problem will suggest a preferred notation.
Notations (15), (16), and (17) will all be used at various places in this text.

Application of Linear Combinations to Color Models

Colors on computer monitors are commonly based on what is called
the RGB color model. Colors in this system are created by adding
together percentages of the primary colors red (R), green (G), and
blue (B). One way to do this is to identify the primary colors with
the vectors

r=(1,0,0) (purered),

g =(0,1,0) (pure green),

b=(0,0,1) (pure blue)

in R3 and to create all other colors by forming linear combinations
of r, g, and b using coefficients between 0 and 1, inclusive; these
coefficients represent the percentage of each pure color in the mix.

@]
Figure 3.1.14 (1,0,0)

Exercise Set 3.1

In Exercises 1-2, find the components of the vector.

1. (a) AV (b) :
L o (1,5) (0,0, 4)
I \4(4,1) )
| | X
X (2,3,0)
2. (a) ¥ (b) z 0.4.4
(-3,3) 2,3) (3,0,4)
—0
L ,
L s
X
X

The set of all such color vectors is called RGB space or the RGB
color cube (Figure 3.1.14). Thus, each color vector ¢ in this cube is
expressible as a linear combination of the form

¢ = kir + krg + ks3b
=k1(1,0,0) + k2(0, 1, 0) + £3(0, 0, 1)
= (ki1, k2, k3)
where 0 < k; < 1. Asindicated in the figure, the corners of the cube
represent the pure primary colors together with the colors black,
white, magenta, cyan, and yellow. The vectors along the diagonal
running from black to white correspond to shades of gray.

Cyan
0,1,1)

White
(1, 1, 1)

S Yellow
(1, 1,0)

—
In Exercises 3-4, find the components of the vector P, P,.
3. (a) P(3,5), P(2,8) (b) Pi(5,-2,1), P,(2,4,2)

4. (a) Pi(—6,2), P,(—4,-1) (b) P1(0,0,0), Py(—1,6,1)

5. (a) Find the terminal point of the vector that is equivalent to
u = (1, 2) and whose initial point is A(1, 1).
(b) Find the initial point of the vector that is equivalent to
u = (1, 1, 3) and whose terminal point is B(—1, —1, 2).
6. (a) Find the initial point of the vector that is equivalent to
u = (1, 2) and whose terminal point is B(2, 0).
(b) Find the terminal point of the vector that is equivalent to
u = (1, 1, 3) and whose initial point is A(0, 2, 0).
. . .. . H .
7. Find an initial point P of a nonzero vector u = PQ with ter-
minal point Q(3, 0, —5) and such that
(a) u has the same direction asv = (4, =2, —1).

(b) uis oppositely directed tov = (4, =2, —1).



—
8. Find a terminal point Q of a nonzero vector u = PQ with
initial point P(—1, 3, —5) and such that

(a) u has the same direction as v = (6, 7, —3).
(b) uis oppositely directed to v = (6, 7, —3).
9. Let u= (4, —1), v=(0,5), and w = (-3, —3). Find the
components of
(@ utw (b) v—3u
(©) 2(u — Sw) (d) 3v—2(u+ 2w)

10. Let u=(-3,1,2), v=(4,0,—-8), and w= (6, —1, —4).
Find the components of

(a) v—w (b) 6u—+2v

() =3(v—8w) (d) Qu—"7w) — (8v+u)
11. Letu=(—3,2,1,0),v= (4,7, —3,2), and

w = (5, =2, 8, 1). Find the components of

(@v—w (b) —u+ (v—4w)

(c) 6(u—3v) (d) (6v —w) — (4u+v)

12. Letu=(1,2,-3,5,0),v= (0,4, —1,1,2), and
w= (7,1, —4, =2, 3). Find the components of

(@) v+w (b) 32u—v)
(©) Bu—v)— (2u+4w) (d) %(w —5v+2u)+v
13. Let u, v, and w be the vectors in Exercise 11. Find the com-

ponents of the vector x that satisfies the equation
3u+v—2w = 3x 4 2w.

14. Let u, v, and w be the vectors in Exercise 12. Find the com-
ponents of the vector x that satisfies the equation
2u—v+x="7x+w.

15. Which of the following vectors in R, if any, are parallel to
u=(-2,1,0,3,5,1)?
(a) (4,2,0,6,10,2)
(b) 4, -2,0,—6,—10, —2)
(¢) (0,0,0,0,0,0)

16. For what value(s) of ¢, if any, is the given vector parallel to
u=(4,-1)?
(a) (8¢,-2) (b) (8t,21) (¢) (1,1%)

17. Letu = (1, —1, 3, 5)andv = (2, 1, 0, —3). Find scalars a and
b so that au + bv = (1, —4, 9, 18).

18. Letu=(2,1,0,1, —1) and v = (-2, 3, 1, 0, 2). Find scalars
a and b so that au + bv = (-8, 8,3, —1,7).

In Exercises 19-20, find scalars ¢, ¢, and c; for which the
equation is satisfied.
19. ¢;(1, —1,0) + (3,2, 1) + ¢3(0,1,4) = (—1, 1, 19)
20. ¢1(=1,0,2) + 2(2,2, =2) + c3(1, =2, 1) = (-6, 12, 4)
21. Show that there do not exist scalars ¢y, ¢,, and ¢z such that
€1(=2,9,6) + 2(=3,2,1) + ¢3(1,7,5) = (0,5, 4)

22.

23.

24.

25.

26.

27.

28.

29.

30.
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Show that there do not exist scalars ¢y, ¢,, and ¢z such that
ci1(1,0,1,0) + (1,0, =2, 1) +¢3(2,0,1,2) = (1, =2, 2,3)

Let P be the point (2, 3, —2) and Q the point (7, —4, 1).

(a) Find the midpoint of the line segment connecting the
points P and Q.

(b) Find the point on the line segment connecting the points
P and Q thatis % of the way from P to Q.

In relation to the points Py and P, in Figure 3.1.12, what can
you say about the terminal point of the following vector if its
initial point is at the origin?

—> —_— —>
u= 0P + 1(OP, — OP))

In each part, find the components of the vector u + v 4 w.
(a) ’ (b) ’
7 /X
/ Y / 1\
w D v
L1/
/ X 7k Ly
/ u w N\
s - —
1 \ I [

Referring to the vectors pictured in Exercise 25, find the com-
ponents of the vector u — v + w.

Let P be the point (1, 3, 7). If the point (4, 0, —6) is the mid-
point of the line segment connecting P and Q, what is Q?

If the sum of three vectors in R? is zero, must they lie in the
same plane? Explain.

Consider the regular hexagon shown in the accompanying fig-
ure.

(a) What is the sum of the six radial vectors that run from the
center to the vertices?

(b) How is the sum affected if each radial vector is multiplied
by %?

(c) What is the sum of the five radial vectors that remain if a
is removed?

(d) Discuss some variations and generalizations of the result
in part (c).

a

d Figure Ex-29

What is the sum of all radial vectors of a regular n-sided poly-
gon? (See Exercise 29.)
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Working with Proofs
31. Prove parts (a), (¢), and (d) of Theorem 3.1.1.

32. Prove parts (e)—(h) of Theorem 3.1.1.
33. Prove parts (@)—(c) of Theorem 3.1.2.

True-False Exercises

TF. In parts (a)—(k) determine whether the statement is true or
false, and justify your answer.

(a) Two equivalent vectors must have the same initial point.
(b) The vectors (a, b) and (a, b, 0) are equivalent.

(c) If k is a scalar and v is a vector, then v and kv are parallel if
and only if k > 0.

(d) The vectors v + (u+ w) and (w + v) + u are the same.

(e) fu+v=u+w,thenv=w.

3.2

(f) If a and b are scalars such that au + bv = 0, then u and v are
parallel vectors.

(g) Collinear vectors with the same length are equal.

(h) If (a, b, c) + (x,y,z) = (x,y, 2), then (a, b, ¢) must be the
zero vector.

(1) If k and m are scalars and u and v are vectors, then
(k +m)(u+v) = ku+ mv
(j) If the vectors v and w are given, then the vector equation
32v—x) =5x —4w+v
can be solved for x.

(k) The linear combinations a;v, + a,v, and byv; + b,v, can only
be equal if a; = by and a, = b,.

Norm, Dot Product, and Distance in R"

In this section we will be concerned with the notions of length and distance as they relate to
vectors. We will first discuss these ideas in R? and R* and then extend them algebraically

to R".

Norm of a Vector

In this text we will denote the length of a vector v by the symbol ||v||, which is read as

the norm of v, the length of v, or the magnitude of v (the term “norm” being a common
mathematical synonym for length). As suggested in Figure 3.2.1aq, it follows from the

Theorem of Pythagoras that the norm of a vector (v, v») in R? is

(Ula vy)
IVl = Vi +v3 (1
X
Similarly, for a vector (vy, vs, v3) in R3, it follows from Figure 3.2.15 and two applica-
tions of the Theorem of Pythagoras that
: IVI> = (OR)* + (RP)* = (0Q)* + (QR)” + (RP)” = v} + v; + 13
P(vy, vy, v3) and hence that
vl IVl = Vo7 + 03 + 3 2)
y

(b) DEFINITION 1 Ifv = (v, vy, ..

Motivated by the pattern of Formulas (1) and (2), we make the following definition.

., Uy)isavectorin R", then the norm of v (also called

the length of v or the magnitude of v) is denoted by ||v||, and is defined by the formula

Figure 3.2.1

IVl = vv? + 03 + - + 0 (3)



Unit Vectors

WARNING Sometimes you will
see Formula (4) expressed as

v

u=—
lIvll

This is just a more compact
way of writing that formula
and is not intended to convey
that v is being divided by ||v]|.
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» EXAMPLE 1 Calculating Norms

Tt follows from Formula (2) that the norm of the vector v = (=3, 2, 1) in R? is

IVl = V(=32 + 22+ 12 =414

and it follows from Formula (3) that the norm of the vector v = (2, —1, 3, —=5) in R%is

IVl = V22 + (—1)2 + 2 + (—5)> = /39 «

Our first theorem in this section will generalize to R" the following three familiar
facts about vectors in R” and R3:

+ Distances are nonnegative.

* The zero vector is the only vector of length zero.

»  Multiplying a vector by a scalar multiplies its length by the absolute value of that
scalar.

It is important to recognize that just because these results hold in R? and R? does not
guarantee that they hold in R"—their validity in R" must be proved using algebraic
properties of n-tuples.

THEOREM 3.2.1 If'vis a vector in R", and if k is any scalar, then:
(@ lIvll=0

) |Ivll = 0ifandonly if v=10

(o) kvl = [klllvll

We will prove part (c¢) and leave (a) and (b) as exercises.
Proof (¢) Ifv= (vy,vs,...,v,),then kv = (kvy, kv, ..., kv,), so

kvl = v/ (kvi)? + (kva)2 + - - - + (kvy)?

= SO+ 0+ 02)

= |k|\/vf+v§+~~+v,%
= |klIvll

A vector of norm 1 is called a unit vector. Such vectors are useful for specifying a
direction when length is not relevant to the problem at hand. You can obtain a unit vector
in a desired direction by choosing any nonzero vector v in that direction and multiplying
v by the reciprocal of its length. For example, if v is a vector of length 2 in R” or R?,
then %v is a unit vector in the same direction as v. More generally, if v is any nonzero
vector in R", then

1
u= ——yv
[Ivll

4)

defines a unit vector that is in the same direction as v. We can confirm that (4) is a unit
vector by applying part (¢) of Theorem 3.2.1 with k = 1/||v|| to obtain

1
l[ull = llkvll = [k[lIv]l = kllvIl = MIIVII =1
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The Standard Unit Vectors

i
(1,0,0)

(b)
Figure 3.2.2

o, 1,

0)

Distance in R"

The process of multiplying a nonzero vector by the reciprocal of its length to obtain a
unit vector is called normalizing v.

» EXAMPLE 2 Normalizing a Vector

Find the unit vector u that has the same direction asv = (2, 2, —1).

Solution The vector v has length

IVl = V22 4+ 224+ (-1)2 =3
Thus, from (4)
w=te2-D=(3-Y

As a check, you may want to confirm that |[ul| = 1. <

When a rectangular coordinate system is introduced in R? or R?, the unit vectors in the
positive directions of the coordinate axes are called the standard unit vectors. In R? these
vectors are denoted by

i=(1,0) and j=(0,1)
and in R3 by
i=(1,0,0), j=(0,1,0), and k=(0,0,1)
(Figure 3.2.2). Every vector v = (v;, v») in R? and every vector v = (v, va, v3) in R?
can be expressed as a linear combination of standard unit vectors by writing
v=(vi,v2) = v1(1,0) + v2(0, 1) = vii + v2j (5)
v = (v, v2,v3) = v1(1,0,0) +v2(0, 1, 0) + v3(0, 0, 1) = v1i + v2j + v3k (6)

Moreover, we can generalize these formulas to R” by defining the standard unit vectors
in R" to be

e, =(1,0,0,...,0), e=¢(0,1,0,...,0),..., e,=(0,0,0,...,1) @)
in which case every vector v = (v, vs, ..., V,) in R" can be expressed as
v= (v, V2,...,0,) =vie; + 1€ + -+ v,e, 3

» EXAMPLE 3 Linear Combinations of Standard Unit Vectors

(2, —3,4) = 2i — 3j+ 4k
(7, 3, —4, 5) = 761 + 362 — 403 + 564 4

e
If P; and P, are points in R? or R>, then the length of the vector P; P, is equal to the
distance d between the two points (Figure 3.2.3). Specifically, if P;(x;, y;) and P>(x2, y,)
are points in R?, then Formula (4) of Section 3.1 implies that

d= PPl = -2+ (32— y1)? ©)



Py

P]
d =[PP

Figure 3.2.3

We noted in the previous
section that n-tuples can be
viewed either as vectors or
points in R". In Definition
2 we chose to describe them
as points, as that seemed the
more natural interpretation.

Dot Product

Figure 3.2.4
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This is the familiar distance formula from analytic geometry. Similarly, the distance
between the points P;(xi, y1, z1) and P>(x3, 2, z2) in 3-space is

dw,v) = [Pl = v/(2 — x> + (2 — y1)2 + (22 — 21)2 (10)

Motivated by Formulas (9) and (10), we make the following definition.

DEFINITION 2 Ifu = (uy, us, ..., u,)andv = (vy, va, ..., v,) are pointsin R", then
we denote the distance between u and v by d(u, v) and define it to be

du,v) = lu—=v] = V@ — )2+ (r — )2+ - + W, —v,)? (1)

P> EXAMPLE 4 Calculating Distance in R"
If

u=(1,3,-2,7) and v=1(0,7,2,2)
then the distance between u and v is

du,v) =v/(1—02+B =72+ (—2-22+(7—2)> = /58 4

Our next objective is to define a useful multiplication operation on vectors in R and R?
and then extend that operation to R". To do this we will first need to define exactly what
we mean by the “angle” between two vectors in R* or R3. For this purpose, let u and
v be nonzero vectors in R? or R? that have been positioned so that their initial points
coincide. We define the angle between u and v to be the angle 6 determined by u and v
that satisfies the inequalities 0 < 6 < 7 (Figure 3.2.4).

The angle 6 between u and v satisfies 0 <6 < 7.

DEFINITION 3 Ifuand vare nonzero vectorsin R? or R3, and if @ is the angle between
u and v, then the dot product (also called the Euclidean inner product) of u and v is
denoted by u - v and is defined as

u-v=|ulv| cosd (12)

Ifu =0 orv =0, then we define u - v to be 0.

The sign of the dot product reveals information about the angle 6 that we can obtain
by rewriting Formula (12) as
u-v
= (13)
llull{vll
Since 0 < 8 < m, it follows from Formula (13) and properties of the cosine function
studied in trigonometry that

* fisacuteifu-v>0. < fisobtuseifu-v<0. <+ 6=mx/2ifu-v=0.
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z » EXAMPLE 5 Dot Product
0.2.2) Find the dot product of the vectors shown in Figure 3.2.5.
v Solution The lengths of the vectors are
©,0.HA Jul =1 and |Iv]| = v/8 =2v2
u 0=45°

and the cosine of the angle # between them is
cos(45°) = 1/4/2
Thus, it follows from Formula (12) that
u-v=[luffvlcosd = (H2V2)(1/v/2) =2 <

Figure 3.2.5

Component Form of the  For computational purposes it is desirable to have a formula that expresses the dot
Dot Product product of two vectors in terms of components. We will derive such a formula for
vectors in 3-space; the derivation for vectors in 2-space is similar.
Let u = (uy, u», u3) and v = (vy, vy, v3) be two nonzero vectors. If, as shown in
Figure 3.2.6, 0 is the angle between u and v, then the law of cosines yields

P(“l,uzs u3) ey 2 2 2
I1POI" = llall” + lIvl® = 2[[ull[[v]| cos & (14)
" .= .
v O(vy,v5,v3)  Since PO = v — u, we can rewrite (14) as
0
" 1
lull vl cos& = 5(llull* + [VII* — [lv — ul|*)
Y, or
Figure 3.2.6 u-v =3+ [v|]> — v —ul?)
Substituting
2 2 2 2 2 2 2 2
lull® = uy 4+ u5 + u3, IvlI* = vi +v5 + v3
and

v —ul?> = (1 —u1)? + (V2 — u2)* + (v3 — u3)?

we obtain, after simplifying,

Although we derived Formula
(15) and its 2-space compan-
ion under the assumption that
u and v are nonzero, it turned
out that these formulas are
also applicable if u=0 or -V =uv + 1y (16)
v = 0 (verify).

U-V=uv + uvy + usvs (15)

The companion formula for vectors in 2-space is

Motivated by the pattern in Formulas (15) and (16), we make the following definition.

Historical Note The dot product notation was first in-
troduced by the American physicist and mathemati-
cian J. Willard Gibbs in a pamphlet distributed to his
students at Yale University in the 1880s. The prod-
uct was originally written on the baseline, rather than
centered as today, and was referred to as the direct
product. Gibbs’s pamphlet was eventually incorpo-
rated into a book entitled Vector Analysis that was pub-
lished in 1901 and coauthored with one of his students.
Gibbs made major contributions to the fields of ther-
modynamics and electromagnetic theory and is gen-
erally regarded as the greatest American physicist of
Josiah Willard Gibbs the nineteenth century.

(1839-1903) [Image: SCIENCE SOURCE/Photo Researchers/
Getty Images]




In words, to calculate the
dot product (Euclidean inner
product) multiply correspond-
ing components and add the
resulting products.

(k, k, k)

u, y

(0, k, 0)

(k, 0,0)
Figure 3.2.7

Note that the angle 6 obtained
in Example 7 does not involve
k. Why was this to be ex-
pected?

Algebraic Properties of the
Dot Product
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DEFINITION4 Ifu = (uy, us,...,u,)andv = (vy, v, ..., v,)arevectorsin R", then
the dot product (also called the Euclidean inner product) of u and v is denoted by u - v
and is defined by

U-vV=1uv +uyv,+---+u,v, 17

» EXAMPLE 6 Calculating Dot Products Using Components
(a) Use Formula (15) to compute the dot product of the vectors u and v in Example 5.

(b) Calculate u - v for the following vectors in R*:
u=(-1,3,57, v=(-3,-4,1,0)

Solution (a) The component forms of the vectors are u = (0, 0, 1) and v = (0, 2, 2).
Thus,

u-v=(0)(0)+ O+ (12 =2
which agrees with the result obtained geometrically in Example 5.

Solution (b)
u-v=(=1)(=3)+ 3 (=4 + D) + (N(O0) = -4

P> EXAMPLE 7 A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.

Solution Let k be the length of an edge and introduce a coordinate system as shown in
Figure 3.2.7. If we letu; = (k, 0, 0), u, = (0, k£, 0), and u3 = (0, 0, k), then the vector
d=(k,k, k) =u +u+us
is a diagonal of the cube. It follows from Formula (13) that the angle 6 between d and

the edge u; satisfies
uj - d k2 1

92 = =
lalllldll (k)(V/3k2) /3

With the help of a calculator we obtain

1
6 = cos™! (— ~ 54.74° <«
ﬁ)

In the special case where u = v in Definition 4, we obtain the relationship

vev=0vl+ vl 4o 40 = ||y (18)
This yields the following formula for expressing the length of a vector in terms of a dot
product:

vl = v/v-v (19)

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 [fu, v, and w are vectors in R", and if k is a scalar, then:

(@ u-v=v-u [Symmetry property |
b)) u-(v+w)=u-v+u-w | Distributive property]
(¢) k(u-v) = (ku)-v | Homogeneity property |

(d) vev>=0andv-v=0Iifandonly ifv=0 [Positivity property]

We will prove parts (¢) and (d) and leave the other proofs as exercises.
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Cauchy-Schwarz Inequality
and Angles in R"

Proof(c) Letu= (uy,uy,...,u,)andv= (v, vs,...,v,). Then
k(u-v) = k(uivy + uzv2 + - - + u,v,)
= (kup)vy + (kuz)va + -+ + (kup) v, = (ku) - v
Proof (d) The result follows from parts () and (b) of Theorem 3.2.1 and the fact that
Vev=00] + 00+ -+ 0,0, =vf+v§+~'+v5= [Iv]|?
The next theorem gives additional properties of dot products. The proofs can be

obtained either by expressing the vectors in terms of components or by using the algebraic
properties established in Theorem 3.2.2.

THEOREM 3.2.3 Ifu, v, and w are vectors in R", and if k is a scalar, then:
(@ 0-v=v-0=0

b)) (+v)-w=u-w+v-w

(¢) u+(v—w)=u-v—u-w

d UU—V)-W=u-wW—V-W

(e) k(u-v) =u- (kv)

We will show how Theorem 3.2.2 can be used to prove part (b) without breaking the
vectors into components. The other proofs are left as exercises.

Proof (b)
(u4v)y-w=w-(m+v) [By symmetry]
= W-U-+ W-V [By distributivity]
=u+W-+Ve+W [Bysymmetry|
Formulas (18) and (19) together with Theorems 3.2.2 and 3.2.3 make it possible to
manipulate expressions involving dot products using familiar algebraic techniques.

» EXAMPLE 8 Calculating with Dot Products

(u—2v) - Bu+4v) =u- Bu+4v) —2v-. (3u+4v)
=3-u)+4@m-v) —6(v-u) —8(v-v)
=3uf® = 2(u-v) - 8|v|]> <«

Our next objective is to extend to R" the notion of “angle” between nonzero vectors u
and v. We will do this by starting with the formula

0= —1< a-v ) 20
S uliv (20)

which we previously derived for nonzero vectors in R? and R*. Since dot products and
norms have been defined for vectors in R", it would seem that this formula has all the
ingredients to serve as a definition of the angle 6 between two vectors, u and v, in R".
However, there is a fly in the ointment, the problem being that the inverse cosine in
Formula (20) is not defined unless its argument satisfies the inequalities

< ' @1
allvl

Fortunately, these inequalities do hold for all nonzero vectors in R" as a result of the
following fundamental result known as the Cauchy—Schwarz inequality.




Geometry in R"

u
flu+ vl < flufl + IvI

Figure 3.2.8

u

d(u, v) < d(u, w) + d(w, v)

Figure 3.2.9
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THEOREM 3.2.4 Cauchy-Schwarz Inequality
Ifu= (u,uy,...,u,) andv= (vy, va, ..., v,) are vectors in R", then

[u- v < [lul[[lv] (22)
or in terms of components

luvy + upvy + - - - + uyv,| < (u%+u§+...+ui)1/2(v12+vg+...+vr2!)l/2
(23)

We will omit the proof of this theorem because later in the text we will prove a more
general version of which this will be a special case. Our goal for now will be to use this
theorem to prove that the inequalities in (21) hold for all nonzero vectors in R". Once
that is done we will have established all the results required to use Formula (20) as our
definition of the angle between nonzero vectors u and vin R".

To prove that the inequalities in (21) hold for all nonzero vectors in R”, divide both
sides of Formula (22) by the product ||u]|||v]| to obtain

|u - vl .
=
([l {IvI]

from which (21) follows.

or equivalently <1

([al[lIvIl

Earlier in this section we extended various concepts to R" with the idea that familiar
results that we can visualize in R? and R*® might be valid in R" as well. Here are two
fundamental theorems from plane geometry whose validity extends to R":

* The sum of the lengths of two side of a triangle is at least as large as the third (Figure
3.2.8).

» The shortest distance between two points is a straight line (Figure 3.2.9).

The following theorem generalizes these theorems to R”.

THEOREM 3.2.5 Ifu, v, and w are vectors in R", then:
(@) |lu+v] < |ju|l + [Iv] [ Triangle inequality for vectors]
() d(u,v) <d(u,w)+d(w,v) [Triangle inequality for distances]

Historical Note The Cauchy-Schwarz in-
equality is named in honor of the
French mathematician Augustin Cauchy
(see p. 121) and the German mathemati-
cian Hermann Schwarz. Variations of this
inequality occur in many different settings
and under various names. Depending on
the context in which the inequality occurs,
you may find it called Cauchy’s inequal-
ity, the Schwarz inequality, or sometimes
even the Bunyakovsky inequality, in recog-
nition of the Russian mathematician who

R/

Hermann Amandus Viktor Yakovlevich

published his version of the inequality in
Schwarz Bunyakovsky 1859, about 25 years before Schwarz.
(1843-1921) (1804-1889) [Images: © Rudolph Duehrkoop/

ullstein bild/The Image Works (Schwarz);
http://www-history.mcs.st-and.ac.uk/
Biographies/Bunyakovsky.html
(Bunyakovsky)]
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u+yv

u

Figure 3.2.10

Note that Formula (25) ex-
presses the dot product in
terms of norms.

Dot Products as Matrix
Multiplication

Proof (a)

flutvlP=@+v):@+v)=@-uw)+2u-v)+(v-v)
= [[ul* +2(u-v) + |Iv|I?

< ||ll||2 —+ 2|ll . V| —+ ||V||2 <« Property of absolute value
< ||u||2 =+ 2|l ||v|| + ||v||2 <« Cauchy-Schwarz inequality
= (llull + [IvID?

This completes the proof since both sides of the inequality in part (@) are nonnegative.

Proof (b) Tt follows from part («) and Formula (11) that

d(u,v) = flu—v|| = [[(u—w + (W=
< lu—=w[ + [lw—v|[ = d(u,w) +d(w,v)

It is proved in plane geometry that for any parallelogram the sum of the squares of
the diagonals is equal to the sum of the squares of the four sides (Figure 3.2.10). The
following theorem generalizes that result to R".

THEOREM 3.2.6 Parallelogram Equation for Vectors

Ifu and v are vectors in R", then

ll 4+ 1>+ flu = vI* = 2 (flull + 1IvII*) 24

Proof
lu+vl>+lu—v[P=@+V)-@+V)+@—=v): (u—V)
=2(m-u)+2(v-v)
=2 (Jlull* + [IvII?)

We could state and prove many more theorems from plane geometry that generalize
to R", but the ones already given should suffice to convince you that R" is not so different
from R? and R? even though we cannot visualize it directly. The next theorem establishes
a fundamental relationship between the dot product and norm in R”.

THEOREM 3.2.7 Ifu andv are vectors in R" with the Euclidean inner product, then

u-v=gllutvl® - jllu—v|? 25

Proof
lu+v?=@+v) - @+v) = u*+2(-v) +[]v]?

lu=vl* = @—=v) - @=v) = |jull> = 2(-v) + [Iv|?

from which (25) follows by simple algebra.

There are various ways to express the dot product of vectors using matrix notation.
The formulas depend on whether the vectors are expressed as row matrices or column
matrices. Table 1 shows the possibilities.
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Table 1
Form Dot Product Example
1 5
u=| -3 wv=[1 -3 5]|4|=-7
u a column 5 0
matrix and v a u-v=u'v=v'u
column matrix 5 1
v= |4 vViu=[5 4 0]|-3|=-7
0 5
5
‘ u=[1 -3 5] |w=[l -3 5]|[4]|=-7
u a row matrix 0
andvacolumn | u-v=uv=vu’ 5
matrix v= |4 1
0 viu' =[5 4 0]|-3|=-7
E
1
1 va=[5 4 0] —3:| = -7
u a column u=|_3 5
matrixandva | u-v=va=u’v’ 5
row matrix 5
v=[5 4 0] v =[1 =3 5]|4|=-7
:
.
w! =[1 =3 5]|4]|=-7
u a row matrix u=[1 =3 5] 0]
and v a row u-v=u’ =w’
matrix v=[5 4 0] 1]
v’ =[5 4 0]|-3|=-7
5

Application of Dot Products to ISBN Numbers

Although the system has recently changed, most older books have
been assigned a unique 10-digit number called an International Stan-
dard Book Number or ISBN. The first nine digits of this number are
split into three groups—the first group representing the country or
group of countries in which the book originates, the second iden-
tifying the publisher, and the third assigned to the book title itself.
The tenth and final digit, called a check digit, is computed from the
first nine digits and is used to ensure that an electronic transmission
of the ISBN, say over the Internet, occurs without error.

To explain how this is done, regard the first nine digits of the
ISBN as a vector b in R?, and let a be the vector

a=(1,2,3,4,5,6,7,8,9)

Then the check digit ¢ is computed using the following procedure:

1. Form the dot product a - b.

2. Divide a - b by 11, thereby producing a remainder ¢ that is an
integer between 0 and 10, inclusive. The check digit is taken to

be ¢, with the proviso that ¢ = 10 is written as X to avoid double
digits.

For example, the ISBN of the brief edition of Calculus, sixth edition,
by Howard Anton is
0-471-15307-9

which has a check digit of 9. This is consistent with the first nine
digits of the ISBN, since

a-b=(1,2,3,4,5,6,7,8,9-(0,4,7,1,1,5,3,0,7) = 152

Dividing 152 by 11 produces a quotient of 13 and a remainder of
9, so the check digit is ¢ = 9. If an electronic order is placed for a
book with a certain ISBN, then the warehouse can use the above
procedure to verify that the check digit is consistent with the first
nine digits, thereby reducing the possibility of a costly shipping error.
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A Dot Product View of
Matrix Multiplication

If A is an n x n matrix and u and v are n x 1 matrices, then it follows from the first
row in Table 1 and properties of the transpose that

Au-v=vI(Au) = vVAu= A"V Tu=u-ATv
u-Av=(Av)Tu = vADu =vI(ATu) = ATu - v

The resulting formulas

Au-v=u-Aly (26)
u-Av=ATu.v (27)

provide an important link between multiplication by an n x n matrix A and multiplica-
tion by AT,

» EXAMPLE 9 Verifying that Au-v =u-Alv

Suppose that

1 -2 3 -1 [—2

A=| 2 4 1|, u=| 2|, v=
-1 0 1 4 5

Then B L L

-2 3] [-1 7

Au=| 2 4 1 21 =110

-1 0 1 4 5

1 2 —1|[=2] [-7

Aly=|-2 4 0 ol=1| 4

31 1 5 -1

from which we obtain
Au-v=7(=2)+ 10(0) + 5(5) = 11
u-Alv=(=1)(=7) +2(4) +4(-1) =11

Thus, Au-v=u- A’v as guaranteed by Formula (26). We leave it for you to verify
that Formula (27) also holds. <

Dot products provide another way of thinking about matrix multiplication. Recall that
if A =[ag;]isanm x r matrix and B = [b;;] is an r x n matrix, then the ijth entry of
AB is

ainbyj + apby; + - + aiyby;
which is the dot product of the ith row vector of A

laii ain -+ airl

and the jth column vector of B



Thus, if the row vectors of A are ry, 1y, ..
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., I, and the column vectors of B are ¢,

c, ..., C,, then the matrix product AB can be expressed as
rp<C rp-¢ Iy - ¢,
ap=| " e ne (28)
Iy <€ Iy € Iy €y

Exercise Set 3.2

In Exercises 1-2, find the norm of v, and a unit vector that is
oppositely directed to v.

1. (@) v=(2,2,2) (b) v=(1,0,2,1,3)

2. @) v=(1,-1,2) (b) v=(-2,3,3,—1)

In Exercises 3-4, evaluate the given expression with
u=(2,-2,3),v=(1,-3,4),and w = (3,6, —4).

3. (a) [lu+v (b) flull + fIvll

©) [|—2u+2v| (d) |13u—5v+ wl|
4. (a) [lu+v+w| (b) flu—vll

(©) 113vll = 3livll (d) fufl —fivil

In Exercises 5-6, evaluate the given expression with
u=(-2,-1,4,5,v=3,1,-5,7), and w = (—6,2,1, 1).

5. (@) ||3u—5v+w||
© [l—lhullv]|
6. () llull + I=2v[l + [I-3w]|

(®) [13ull = 5{Ivil + [Iwll

(b) || llu — vilw]|
7. Letv = (=2, 3,0, 6). Find all scalars k such that ||kv| = 5.

8. Letv=(1,1,2, -3, 1). Find all scalars k such that
[lkv| = 4.
In Exercises 9-10, findu-v, u-u, and v - v.

9. @ u=(3,1,4), v=(2,2,-4)
(b)u=(1,1,4,6), v=(2,-2,3,-2)

10. (@) u=(1,1,-2,3), v=(-1,0,5,1)

b)u=(2,-1,1,0,-2), v=(1,2,2,2,1)
In Exercises 11-12, find the Euclidean distance between uand v

and the cosine of the angle between those vectors. State whether
that angle is acute, obtuse, or 90°.

1L () u= (3,3,3), v=(1,0,4)
By u=(0,-2,—1,1), v=(—3,2,4,4)
12. (@) u=(1,2,-3,0), v=(5,1,2, =2)
M u=(0,1,1,1,2), v=(2,1,0, -1, 3)

13. Suppose that a vector a in the xy-plane has a length of 9 units
and points in a direction that is 120° counterclockwise from

the positive x-axis, and a vector b in that plane has a length of
5 units and points in the positive y-direction. Find a - b.

14. Suppose that a vector a in the xy-plane points in a direction
that is 47° counterclockwise from the positive x-axis, and a
vector b in that plane points in a direction that is 43° clock-
wise from the positive x-axis. What can you say about the
value of a - b?

In Exercises 15-16, determine whether the expression makes
sense mathematically. If not, explain why.

15. (@) u- (v-w) ®)u-(v+w

(© llu-vl (d) (w-v) — Ju
16. (a) [lull - [Ivll () u-v)—w
(©) (w-v) —k (d) k-u

In Exercises 17-18, verify that the Cauchy—Schwarz inequality
holds.

17. () u=(=3,1,0), v= (2, —1,3)
B u=(0,221), v=(1,1,1,1)

18.@u=@411), v=(1,273)
M u=(1,2,1,2,3), v=(0,1,1,5,—2)

19. Letry = (xo, yo) be a fixed vectorin R?. In each part, describe
in words the set of all vectors r = (x, y) that satisfy the stated
condition.

@ [Ir—rl =1 (b) lIr =l <1 (© lIr =l > 1
20. Repeat the directions of Exercise 19 for vectors r = (x, y, )

and ry = (xo, Yo, Zo) in R,

Exercises 21-25 The direction of a nonzero vectorvinan xyz-
coordinate system is completely determined by the angles «, 3,
and y between v and the standard unit vectors i, j, and k (Fig-
ure Ex-21). These are called the direction angles of v, and their
cosines are called the direction cosines of v.

21. Use Formula (13) to show that the direction cosines of a vector
v = (v, v, v3) in R? are
cosa =

V1 U2 U3
—, osf=—, cosy=——
lIvl lIvl vl



154 Chapter 3 Euclidean Vector Spaces

Figure Ex-21

22. Use the result in Exercise 21 to show that
cos? o 4 cos’ B +cos?y = 1
23. Show that two nonzero vectors v; and v, in R? are orthogonal
if and only if their direction cosines satisty
COS (/] COS &ty + €os 31 cos B + cosy cosy, =0
24. The accompanying figure shows a cube.

(a) Find the angle between the vectors d and u to the nearest
degree.

(b) Make a conjecture about the angle between the vectors
d and v, and confirm your conjecture by computing the
angle.

Figure Ex-24

25. Estimate, to the nearest degree, the angles that a diagonal of a
box with dimensions 10 cm x 15 cm x 25 cm makes with the
edges of the box.

26. If ||v]| = 2 and ||w|| = 3, what are the largest and smallest val-
ues possible for |[v — w||? Give a geometric explanation of
your results.

27. What can you say about two nonzero vectors, u and v, that
satisfy the equation |lu + v|| = |ju]| + [|v||?

28. (a) What relationship must hold for the point p = (a, b, ¢)
to be equidistant from the origin and the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

(b) What relationship must hold for the point p = (a, b, ¢) to
be farther from the origin than from the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

29. State a procedure for finding a vector of a specified length m
that points in the same direction as a given vector v.

30. Under what conditions will the triangle inequality (Theo-
rem 3.2.5a) be an equality? Explain your answer geometri-
cally.

Exercises 31-32  The effect that a force has on an object de-
pends on the magnitude of the force and the direction in which it is
applied. Thus, forces can be regarded as vectors and represented
as arrows in which the length of the arrow specifies the magnitude
of the force, and the direction of the arrow specifies the direction in
which the force is applied. It is a fact of physics that force vectors
obey the parallelogram law in the sense that if two force vectors
F, and F, are applied at a point on an object, then the effect is
the same as if the single force F; + F, (called the resultant) were
applied at that point (see accompanying figure). Forces are com-
monly measured in units called pounds-force (abbreviated 1bf) or
Newtons (abbreviated N).

F, +F,

The single force

F, + F, has the
same effect as the
two forces F; and F,.

31. A particle is said to be in static equilibrium if the resultant of
all forces applied to it is zero. For the forces in the accompa-
nying figure, find the resultant F that must be applied to the
indicated point to produce static equilibrium. Describe F by
giving its magnitude and the angle in degrees that it makes
with the positive x-axis.

32. Follow the directions of Exercise 31.

y
10 1b
120N 150N
75
8 1b o ° 100 N
5 60 X 45 3 X
Figure Ex-31 Figure Ex-32

Working with Proofs
33. Prove parts (a) and (b) of Theorem 3.2.1.

34. Prove parts (a) and (c¢) of Theorem 3.2.3.

35. Prove parts (d) and (e) of Theorem 3.2.3.

True-False Exercises

TF. In parts (a)—(j) determine whether the statement is true or
false, and justify your answer.



(a) If each component of a vector in R? is doubled, the norm of
that vector is doubled.

(b) In R?, the vectors of norm 5 whose initial points are at the ori-
gin have terminal points lying on a circle of radius 5 centered
at the origin.

(c) Every vector in R” has a positive norm.

(d) If vis anonzero vector in R", there are exactly two unit vectors
that are parallel to v.

(e) If lu]l =2, |Iv] = 1, and u - v = 1, then the angle between u
and v is 77/3 radians.

(f) The expressions (u - v) + wand u - (v + w) are both meaning-
ful and equal to each other.

(g) fu-v=u-w,thenv=w.

3.3 Orthogonality
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(h) Ifu-v =0, then eitheru = 0 orv = 0.

(i) In R?, if u lies in the first quadrant and v lies in the third
quadrant, then u - v cannot be positive.

(j) For all vectors u, v, and w in R", we have

lu4v+wil < full + vl + lIwl

Working with Technology

T1. Let u be a vector in R'” whose ith component is i, and let v
be the vector in R'® whose ith component is 1/(i 4 1). Find the
dot product of u and v.

T2. Find, to the nearest degree, the angles that a diagonal of a box
with dimensions 10 cm x 11 em x 25 cm makes with the edges of
the box.

In the last section we defined the notion of “angle” between vectors in R". In this section

we will focus on the notion of “perpendicularity.” Perpendicular vectors in R” play an

important role in a wide variety of applications.

Orthogonal Vectors

Recall from Formula (20) in the previous section that the angle 6 between two nonzero

vectors u and v in R" is defined by the formula

9=cosl< gy )
llul{{v]|

It follows from this that & = /2 if and only if u - v = 0. Thus, we make the following

definition.

DEFINITION 1 Two nonzero vectors u and v in R" are said to be orthogonal (or
perpendicular) ifu - v = 0. We will also agree that the zero vector in R" is orthogonal

to every vector in R".

» EXAMPLE 1 Orthogonal Vectors
(a) Show thatu = (=2,3,1,4)andv = (1, 2, 0, —1) are orthogonal vectors in R*.

(b) Let S = {i, j, k) be the set of standard unit vectors in R3. Show that each ordered
pair of vectors in S is orthogonal.

Solution (a) The vectors are orthogonal since

u-v=(=2)(H+ B2+ MHO)+ H(D) =0

Solution (b)

It suffices to show that
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Using the computations in R?
as a model, you should be able
to see that each ordered pair of
standard unit vectors in R" is
orthogonal.

Lines and Planes
Determined by Points and
Normals

Formula (1) is called the point-
normal form of a line or plane
and Formulas (2) and (3) the
component forms.

because it will follow automatically from the symmetry property of the dot product that
jri=k-i=k-j=0
Although the orthogonality of the vectors in S is evident geometrically from Figure 3.2.2,
it is confirmed algebraically by the computations
i-j=(1,0,0)-(0,1,0) =0
i-k=(1,0,0)-(0,0,1)=0
j-k=(0,1,00-(0,0,1)=0 «

One learns in analytic geometry that a line in R? is determined uniquely by its slope and
one of its points, and that a plane in R’ is determined uniquely by its “inclination” and
one of its points. One way of specifying slope and inclination is to use a nonzero vector
n, called a normal, that is orthogonal to the line or plane in question. For example,
Figure 3.3.1 shows the line through the point Py(x¢, yo) that has normal n = (a, b) and
the plane through the point Py(x, Yo, zo) that has normal n = (a, b, ¢). Both the line
and the plane are represented by the vector equation

—

n- PP =0 (1)
where P is either an arbitrary point (x, y) on the line or an arbitrary point (x, y, z) in
the plane. The vector Py P can be expressed in terms of components as

—
PoP = (x — X0,y — Yo) [line]
—_—

PyP = (x —x0,y — Y0, 2 — 20) [plane]
Thus, Equation (1) can be written as
a(x —xo) +b(y — yo) =0 [line] 2

a(x —xo) +b(y — yo) +c(z—20) =0 [plane] A3)
These are called the point-normal equations of the line and plane.

y AZ

(a, b, ¢)

Figure 3.3.1

» EXAMPLE 2 Point-Normal Equations
It follows from (2) that in R? the equation
6(x—=3)+(+7=0

represents the line through the point (3, —7) with normaln = (6, 1); and it follows from
(3) that in R? the equation

4x =3)+2y—5(z—7) =0
represents the plane through the point (3, 0, 7) with normaln = (4, 2, —5). <



Referring to Table 1 of Sec-
tion 3.2, in what other ways
can you write (6) if n and x are
expressed in matrix form?

Orthogonal Projections
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When convenient, the terms in Equations (2) and (3) can be multiplied out and the
constants combined. This leads to the following theorem.

THEOREM 3.3.1

(a) If a and b are constants that are not both zero, then an equation of the form
ax+by+c=0 4)

represents a line in R? with normaln = (a, b).

(b) Ifa, b, and c are constants that are not all zero, then an equation of the form
ax+by+cz+d=0 ®)

represents a plane in R® with normaln = (a, b, c).

» EXAMPLE 3 Vectors Orthogonal to Lines and Planes Through the Origin

(a) The equation ax + by = 0 represents a line through the origin in R?. Show that
the vector n; = (a, b) formed from the coefficients of the equation is orthogonal to
the line, that is, orthogonal to every vector along the line.

(b) The equation ax + by + cz = 0 represents a plane through the origin in R*. Show
that the vector n, = (a, b, ¢) formed from the coefficients of the equation is orthog-
onal to the plane, that is, orthogonal to every vector that lies in the plane.

Solution 'We will solve both problems together. The two equations can be written as
(a,b) - (x,y) =0 and (a,b,c)-(x,y,2) =0

or, alternatively, as

n-(x,y)=0 and m-(x,y,2) =0
These equations show that n; is orthogonal to every vector (x, y) on the line and that n,
is orthogonal to every vector (x, v, z) in the plane (Figure 3.3.1). <

Recall that
ax+by=0 and ax+by+cz=0

are called homogeneous equations. Example 3 illustrates that homogeneous equations
in two or three unknowns can be written in the vector form

n-x=20 ©6)

where n is the vector of coefficients and x is the vector of unknowns. In R? this is called
the vector form of a line through the origin, and in R? it is called the vector form of a
plane through the origin.

In many applications it is necessary to “decompose” a vector u into a sum of two terms,
one term being a scalar multiple of a specified nonzero vector a and the other term being
orthogonal to a. For example, if u and a are vectors in R? that are positioned so their
initial points coincide at a point Q, then we can create such a decomposition as follows
(Figure 3.3.2):
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* Drop a perpendicular from the tip of u to the line through a.
» Construct the vector w; from Q to the foot of the perpendicular.
» Construct the vector w, = u — wy.
Since
wWit+tw=w +@—w)=u

we have decomposed u into a sum of two orthogonal vectors, the first term being a scalar
multiple of a and the second being orthogonal to a.

=V

Figure 3.3.2 Three possible cases.

The following theorem shows that the foregoing results, which we illustrated using
vectors in R2, apply as well in R".

THEOREM 3.3.2 Projection Theorem

Ifu and a are vectors in R", and if a # 0, then u can be expressed in exactly one way
in the formu = w; + Wo, where Wy is a scalar multiple of a and w, is orthogonal to a.

Proof Since the vector wy is to be a scalar multiple of a, it must have the form
w; = ka @)
Our goal is to find a value of the scalar k and a vector w; that is orthogonal to a such
that
u=w +w 3
We can determine k by using (7) to rewrite (8) as

u=w; +w,=ka+w
and then applying Theorems 3.2.2 and 3.2.3 to obtain
u-a=(ka+w)-a=kla|’>+(w-a) ©)

Since w; is to be orthogonal to a, the last term in (9) must be 0, and hence k must satisfy
the equation
u-a=kjal’

from which we obtain u-a

" al?
as the only possible value for k. The proof can be completed by rewriting (8) as
u-a

w2=u—w1=u—ka=u——za
llall

and then confirming that w, is orthogonal to a by showing that w, - a = 0 (we leave the
details for you).



(cos 6, sin 6)
lsin 6
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N,

cos 0 Vgl =(1,0)
Figure 3.3.3
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The vectors w; and w; in the Projection Theorem have associated names—the vector
w; is called the orthogonal projection of u on a or sometimes the vector component of
u along a, and the vector w, is called the vector component of u orthogonal to a. The
vector w is commonly denoted by the symbol proj,u, in which case it follows from (8)
that w, = u — proj,u. In summary,

pr O]a ——a (vector component of u along a) (10)

|I I|2

u— projau =u-— a (vector component of u orthogonal to a) (11)

u-
llall?

P EXAMPLE 4 Orthogonal Projection on a Line

Find the orthogonal projections of the vectors e; = (1, 0) and e; = (0, 1) on the line L
that makes an angle 6 with the positive x-axis in R.

Solution As illustrated in Figure 3.3.3, a = (cos#, sin ) is a unit vector along the line
L, so our first problem is to find the orthogonal projection of e; along a. Since

lall = vsin?6 +cos20 =1 and e -a=(1,0)- (cosh,sinf) = cosh

it follows from Formula (10) that this projection is

proj,e; = a = (cos0)(cos b, sinf) = (cos’ 0, sin O cos )

|| |I2

Similarly, since e; - a = (0, 1) - (cos 6, sinf) = sin 0, it follows from Formula (10) that

proj,e; = a = (sinf)(cosf, sinf) = (sinH cosH, sin 0)

|| ||2

» EXAMPLE 5 Vector Component of uAlong a

Letu= (2, —1,3)and a = (4, —1, 2). Find the vector component of u along a and the
vector component of u orthogonal to a.

Solution

u-a=Q2Q)@ +H=H+B)Q2) =15
lal? = 4> + (—=1)* + 2> =21
Thus the vector component of u along a is
u-a
e 74 -1.2=(.-37)

and the vector component of u orthogonal to a is

proj,u =

w-proju = 0.1 = (-5 %) = (4.1 )

As a check, you may wish to verify that the vectors u — proj,u and a are perpendicular
by showing that their dot product is zero.
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V ®

v_____°

|ju]| cos 6

T
(@) 0s6< 7

YV &

—||ul| cos &

(b) §<0Sn

Figure 3.3.4

The Theorem of Pythagoras

utv

u

Figure 3.3.5

OPTIONAL
Distance Problems

Sometimes we will be more interested in the norm of the vector component of u
along a than in the vector component itself. A formula for this norm can be derived as
follows:
|u-a

lla]l?

u-a
[ER

llall = llall

Iprojul H“'a
proj,u| = ||[——=a
g BE

where the second equality follows from part (¢) of Theorem 3.2.1 and the third from the
fact that ||a]|> > 0. Thus,

|u - af

llall

(12)

lIproj,ull =

If 6 denotes the angle between u and a, then u - a = ||u||||a]| cos 8, so (12) can also be
written as

(13)

lIprojaull = [lull| cos 6|

(Verify.) A geometric interpretation of this result is given in Figure 3.3.4.

In Section 3.2 we found that many theorems about vectors in R? and R? also hold in R".
Another example of this is the following generalization of the Theorem of Pythagoras
(Figure 3.3.5).

THEOREM 3.3.3 Theorem of Pythagoras in R"

Ifu and v are orthogonal vectors in R" with the Euclidean inner product, then

u+vII* = [l + [Iv]? (14)

Proof Since u and v are orthogonal, we have u - v = 0, from which it follows that

lu+vI? = @+v) - (@+v) = Jul® +2@-v) + V> = lu)]® + [Iv]?

P> EXAMPLE 6 Theorem of Pythagoras in R*
We showed in Example 1 that the vectors
u=(-2,3,1,4 and v=(1,2,0,-1)

are orthogonal. Verify the Theorem of Pythagoras for these vectors.
Solution We leave it for you to confirm that

ut+v=(—1,51,3)

lu+v[* =36

I + Iv]I> = 30 + 6
Thus, [lu+v|* = [lul|* + [|v]* <

We will now show how orthogonal projections can be used to solve the following three
distance problems:

Problem 1. Find the distance between a point and a line in R
Problem 2. Find the distance between a point and a plane in R?.

Problem 3. Find the distance between two parallel planes in R>.



n=(a,b,c)
Po(xo: Yo» Zo)
proj, 0P }
D } D
f

l/ |
L ]
O(xy, vy, 21) /

Distance from P, to plane.

Figure 3.3.6
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A method for solving the first two problems is provided by the next theorem. Since the
proofs of the two parts are similar, we will prove part (b) and leave part (a) as an exercise.

THEOREM 3.3.4

(a) In R? the distance D between the point Py(xo, yo) and the line ax + by +c¢ = 0

A
b
|(1)C0 + Yo + C|

(15)
(b) In R the distance D between the point Py(xo, Yo, zo) and the plane
ax +by+cz+d=0is
b d
D— laxo + byo + czo + d| (16)

Proof (b) The underlying idea of the proof is illustrated in Figure 3.3.6. As shown in
that figure, let Q(x1, y1, z1) be any point in the plane, and let n = (a, b, ¢) be a normal
vector to the plane that is positioned with its initial point at Q. It is now evident that the
distance D between Py and the plane is simply the length (or norm) of the orthogonal

—>
projection of the vector QP on n, which by Formula (12) is

|0, - |
. 0-°n
D = |proj, QP |l = ———
[In]|
But
—
QPy = (xo — x1, Yo — Y1, 20 — 21)
—
OPFy-n=a(xo—x1) +b(yo — y1) +c(zo — 21)
Inll = va?+b*+¢?
Thus

_ la(xo — x1) + b(yo — y1) + c(z0 — 21)]

/a2 + b2 + C2
Since the point Q(x1, yi1, z1) lies in the given plane, its coordinates satisfy the equation
of that plane; thus

D

(17

ax; +byi+cz1+d=0
or
d = —ax| — by; — czy

Substituting this expression in (17) yields (16).

P EXAMPLE 7 Distance Between a Point and a Plane
Find the distance D between the point (1, —4, —3) and the plane 2x — 3y + 6z = —1.

Solution Since the distance formulas in Theorem 3.3.4 require that the equations of the
line and plane be written with zero on the right side, we first need to rewrite the equation
of the plane as
2x =3y +6z+1=0
from which we obtain
D— 12(1) + (=3) (=) +6(=3)+1] |-3] 3

=- <
V24 (=32 +6 7 7
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o

—t—1——0'

bl

W,

Figure 3.3.7 The distance
between the parallel planes V
and W is equal to the distance
between Py and W.

Exercise Set 3.3

The third distance problem posed above is to find the distance between two parallel
planes in R®. As suggested in Figure 3.3.7, the distance between a plane V and a plane
W can be obtained by finding any point P, in one of the planes, and computing the
distance between that point and the other plane. Here is an example.

P EXAMPLE 8 Distance Between Parallel Planes
The planes
x+2y—2z=3 and 2x+4y—4z=7
are parallel since their normals, (1, 2, —2) and (2, 4, —4), are parallel vectors. Find the
distance between these planes.

Solution To find the distance D between the planes, we can select an arbitrary point in
one of the planes and compute its distance to the other plane. By setting y =z =01in
the equation x + 2y — 2z = 3, we obtain the point Py(3, 0, 0) in this plane. From (16),
the distance between Py and the plane 2x +4y — 4z = 7is

_ RO+ + (HO -7 _ 1

V22442 4 (—4)2 6

D <

In Exercises 1-2, determine whether u and v are orthogonal 12. x —2y +3z =4, —2x + 5y +4z=—1

vectors.
1. (@) u=(6,1,4), v=(2,0,-3)
®u=(0,0,-1, v=(1,1,1)

©u=3,-213, v=(-41,-37

In Exercises 13-14, find ||proj,u]|.
13. (@) u=(1,-2), a=(—4,-3)
(byu=(3,0,4), a=(2,3,3)

(du=(5-4,03), v=(—4,1,-3,7) 4. (@) u=(56), a=(2, -1

2. @) u=(23), v=(5 -7
B u=(1,1,1), v=(0,0,0)
© u=(1,-54), v=(3,3,3)

b)yu=(@3,-2,6), a=(1,2,-7)

In Exercises 15-20, find the vector component of u along a and
the vector component of u orthogonal to a.

(u=@1,-2,%, v=(-1,53,1 15.u=(6,2),a=(3,-9) 16.u=(—1,-2), a=(=2,3)

In Exercises 3-6, find a point-normal form of the equation of 17, y = (3,1, —=7), a = (1,0, 5)
the plane passing through P and having n as a normal.

3. P(=1,3,-2); n=(=2,1,-1)

18.u=(2,0,1), a=(1,2,3)

4. P(1,1,4); n=(1,9,8) 5. P(2,0,0); n=(0,0,2) 9.u=0Q2112),a=4-42-2)

6. P(0,0,0); n=(1,2,3)

20.u=(50-3,7), a=@2,1,—1,-1)

In Exercises 7-10, determine whether the given planes are In Exercises 21-24, find the distance between the point and the
parallel. line.
T.4x—y+2:=5 and Tx —3y+4z=38 21 (=3, 1); 4x 43y +4=0
8.x—4y—3;-2=0 and 3x—12y—9z—-7=0 22. (L4 x—3y+2=0
9.2y =8x—4z+5 and x=1z+1y 23. 2.3 y=—4x+2

10. (=4,1,2) - (x,y,z2) =0 and (8,—2,—4)-(x,y,2) =0 24. (1,8); 3x+y=>5

In Exercises 11-12, determine whether the given planes are In Exercises 25-26, find the distance between the point and the

perpendicular.

plane.

11.3x —y+2z—-4=0, x+2z=-1 25. 3,1,-2); x+2y—2z=4



26. (—1,—1,2); 2x +5y — 6z =4
In Exercises 27-28, find the distance between the given parallel
planes.

27.2x —y—z=5 and —4x+2y+2z=12

28.2x —y+z=1 and 2x —y+z=—1

29. Find a unit vector that is orthogonal to bothu = (1, 0, 1) and
v=1(0,1,1).

30. (a) Show that v= (a,b) and w = (—b, a) are orthogonal
vectors.

(b) Use the result in part (a) to find two vectors that are or-
thogonal tov = (2, —3).

(¢) Find two unit vectors that are orthogonal to v = (-3, 4).

31. Do the points A(1, 1, 1), B(=2, 0, 3),and C(-3, —1, 1) form
the vertices of a right triangle? Explain.

32. Repeat Exercise 31 for the points A(3, 0, 2), B(4, 3,0), and
Cc@,1,—-1).

33. Show that if v is orthogonal to both w; and w,, then v is or-
thogonal to k;w; + kow, for all scalars k; and k.

34. Is it possible to have proj,u = proj,a? Explain.

Exercises 35-37 In physics and engineering the work W per-
formed by a constant force F applied in the direction of motion to
an object moving a distance d on a straight line is defined to be

W = ||F|ld (force magnitude times distance)
In the case where the applied force is constant but makes an angle

6 with the direction of motion, and where the object moves along

a line from a point P to a point Q, we call @ the displacement
and define the work performed by the force to be

— —
W =F- PQ = [[F||[|PQ]l cos &

(see accompanying figure). Common units of work are ft-1b (foot
pounds) or Nm (Newton meters).

[¥]_~ F
6
[|F|| cos &

A4

| 170l .

Work = (|[F]| cos 6) || PO

35. Show that the work performed by a constant force (not nec-
essarily in the direction of motion) can be expressed as

W =+ PO i—F
== Qllllprojp—é Il

and explain when the + sign should be used and when the —
sign should be used.
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36. As illustrated in the accompanying figure, a wagon is pulled
horizontally by exerting a force of 10 1b on the handle at an
angle of 60° with the horizontal. How much work is done in
moving the wagon 50 ft?
F

101b

k 50 ft 1

37. A sailboat travels 100 m due north while the wind exerts a
force of 500 N toward the northeast. How much work does
the wind do?

Working with Proofs

38. Letuand v be nonzero vectors in 2- or 3-space, and let k = ||ul|
and [ = ||v||. Prove that the vector w = [u + kv bisects the
angle between u and v.

39. Prove part (a) of Theorem 3.3.4.

True-False Exercises

TF. In parts (a)-(g) determine whether the statement is true or
false, and justify your answer.

(a) The vectors (3, —1, 2) and (0, 0, 0) are orthogonal.

(b) If w and v are orthogonal vectors, then for all nonzero scalars
k and m, ku and mv are orthogonal vectors.

(c) The orthogonal projection of u on a is perpendicular to the
vector component of u orthogonal to a.

(d) Ifaandb are orthogonal vectors, then for every nonzero vector
u, we have

proj, (proj, (w)) = 0
(e) If a and u are nonzero vectors, then
proj, (proj, (w)) = proj, (u)
(f) If the relationship

Proj,u = proj,y

holds for some nonzero vector a, thenu = v.
(g) For all vectors u and v, it is true that

lu+vil = lJull + vl

Working with Technology

T1. Find the lengths of the sides and the interior angles of the
triangle in R* whose vertices are

P(2,4,2,4,2), 0(6,4,4,4,6), R(57,572)

T2. Express the vector u = (2, 3, 1, 2) in the form u = w; + w»,
where w is a scalar multiple of a = (—1, 0, 2, 1) and w, is orthog-
onal to a.
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3.4

Vector and Parametric
Equations of Lines in R?
and R®

Figure 3.4.2

Although it is not stated ex-
plicitly, it is understood in
Formulas (1) and (2) that the
parameter ¢ varies from —oo
to . This applies to all vec-
tor and parametric equations
in this text except where stated
otherwise.

Vector and Parametric
Equations of Planes in R®

The Geometry of Linear Systems

In this section we will use parametric and vector methods to study general systems of linear
equations. This work will enable us to interpret solution sets of linear systems with n
unknowns as geometric objects in R” just as we interpreted solution sets of linear systems
with two and three unknowns as points, lines, and planes in R? and R>.

In the last section we derived equations of lines and planes that are determined by a
point and a normal vector. However, there are other useful ways of specifying lines and
planes. For example, a unique line in R? or R? is determined by a point x, on the line and
a nonzero vector v parallel to the line, and a unique plane in R? is determined by a point
X in the plane and two noncollinear vectors v and v, parallel to the plane. The best way
to visualize this is to translate the vectors so their initial points are at x, (Figure 3.4.1).

Figure 3.4.1

Let us begin by deriving an equation for the line L that contains the point x, and is
parallel to v. If x is a general point on such a line, then, as illustrated in Figure 3.4.2, the
vector x — X will be some scalar multiple of v, say

X — Xo = tv orequivalently x = x¢ + tv

As the variable ¢ (called a parameter) varies from —o to o, the point x traces out the
line L. Accordingly, we have the following result.

THEOREM 3.4.1 Let L be the line in R> or R® that contains the point Xy and is parallel
to the nonzero vector v. Then the equation of the line through X, that is parallel to v is

X = X + tv (1)
If xg = 0, then the line passes through the origin and the equation has the form
X =tV 2)

Next we will derive an equation for the plane W that contains the point x¢ and is parallel
to the noncollinear vectors v; and v,. As shown in Figure 3.4.3, if x is any point in the
plane, then by forming suitable scalar multiples of v; and v,, say #;v; and #,v,, we can
create a parallelogram with diagonal x — x and adjacent sides #,v; and #,v,. Thus, we
have

X — Xg = V] + v, orequivalently x = xo + 1;v] + v

As the variables #; and 1, (called parameters) vary independently from —oo to oo, the
point x varies over the entire plane W. In summary, we have the following result.



Figure 3.4.3
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THEOREM 3.4.2 Let W be the plane in R® that contains the point Xy and is parallel
to the noncollinear vectors vy and v,. Then an equation of the plane through X, that is
parallel to vy and v, is given by

X = Xo + V1 + HV2 (3)
If xo = 0, then the plane passes through the origin and the equation has the form
X = v + V) 4)

Remark Observe that the line through x, represented by Equation (1) is the translation by x, of
the line through the origin represented by Equation (2) and that the plane through x, represented
by Equation (3) is the translation by x, of the plane through the origin represented by Equation
(4) (Figure 3.4.4).

X = X + 1, + 1HVy

X =1V + 1y,

Figure 3.4.4

Motivated by the forms of Formulas (1) to (4), we can extend the notions of line and
plane to R" by making the following definitions.

DEFINITION 1 If xo and v are vectors in R", and if v is nonzero, then the equation
X = Xg + v )

defines the line through x that is parallel to v. In the special case where x, = 0, the
line is said to pass through the origin.

DEFINITION 2 If x¢, v;, and v, are vectors in R", and if v; and v, are not collinear,
then the equation

X = Xg + 71V + V2 (6)
defines the plane through x that is parallel to v, and v,. In the special case where
Xo = 0, the plane is said to pass through the origin.

Equations (5) and (6) are called vector forms of a line and plane in R". If the vectors
in these equations are expressed in terms of their components and the corresponding
components on each side are equated, then the resulting equations are called parametric
equations of the line and plane. Here are some examples.

» EXAMPLE 1 Vector and Parametric Equations of Lines in R? and R®

(a) Find a vector equation and parametric equations of the line in R? that passes
through the origin and is parallel to the vector v = (=2, 3).

(b) Find a vector equation and parametric equations of the line in R® that passes
through the point Py(1, 2, —3) and is parallel to the vector v = (4, —5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the line that are
different from P.
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We would have obtained dif-
ferent parametric and vector
equations in Example 2 had we
solved (8) for y or z rather than
x. However, one can show the
same plane results in all three
cases as the parameters vary
from —oo to ce.

Solution (a) Tt follows from (5) with xo = 0 that a vector equation of the line is x = 7v.
If we let x = (x, y), then this equation can be expressed in vector form as

(x,y) =1(=2,3)

Equating corresponding components on the two sides of this equation yields the para-
metric equations
x=-=2t, y=73t

Solution (b) Tt follows from (5) that a vector equation of the line is x = x( + tv. If we
let x = (x, y, z), and if we take xo = (1, 2, —3), then this equation can be expressed in
vector form as
(x,v,2)=(1,2,-3)4+1t4,-5,1) @)
Equating corresponding components on the two sides of this equation yields the para-
metric equations
x=14+4t, y=2-5t, z=-3+1¢

Solution (¢) A point on the line represented by Equation (7) can be obtained by sub-
stituting a specific numerical value for the parameter . However, since ¢ = 0 produces
(x,y,2) = (1,2, —3), which is the point Py, this value of # does not serve our purpose.
Taking t = 1 produces the point (5, —3, —2) and taking r = —1 produces the point
(=3, 7, —4). Any other distinct values for 7 (except t = 0) would work just as well.

» EXAMPLE 2 Vector and Parametric Equations of a Plane in R®
Find vector and parametric equations of the plane x — y + 2z = 5.
Solution We will find the parametric equations first. We can do this by solving the

equation for any one of the variables in terms of the other two and then using those two
variables as parameters. For example, solving for x in terms of y and z yields

P ®)
and then using y and z as parameters #; and #,, respectively, yields the parametric equa-
tions
x=5+1n—-2h, y=t, z=~h
To obtain a vector equation of the plane we rewrite these parametric equations as
x,y,2) =0+t —20,0,h)

or, equivalently, as

(-xv yv Z) = (53 07 0) + tl(lv 11 0) + tz(_z’ 07 1)

P EXAMPLE 3 Vector and Parametric Equations of Lines and Planes in R*

(a) Find vector and parametric equations of the line through the origin of R* that is
parallel to the vector v = (5, =3, 6, 1).

(b) Find vectorand parametricequations of the planein R* that passes through the point
xo = (2, —1, 0, 3) and is parallel to both v = (1, 5,2, —4) and v, = (0, 7, —8, 6).

Solution (a) 1If we let x = (x1, X2, X3, x4), then the vector equation x = 7v can be ex-
pressed as
(x1, X2, x3, x4) = 1(5, =3,6, 1)

Equating corresponding components yields the parametric equations

X1 =5t xp=-3t, x3=06f, x4=t
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Solution (b) The vector equation X = Xg + #1v; + f,V, can be expressed as
(x1, X2, x3, x4) = (2, —1,0,3) + (1, 5, 2, =4) + (0, 7, —8, 6)

which yields the parametric equations

X1 =2+1
X =—14+54+7h
x3 =2t — 8n

X4 =3 —41 + 61 |

Lines Through Two Points  1fxyand x; are distinct points in R”, then the line determined by these points is parallel to
in R"  the vector v = x; — X, (Figure 3.4.5), so it follows from (5) that the line can be expressed

in vector form as
X

X = X + 1(X] — Xp) )
X
. or, equivalently, as
Figure 3.4.5 x = (1 —1)xg +1xq (10)

These are called the two-point vector equations of a line in R".

» EXAMPLE 4 A LineThroughTwo Points in R?

Find vector and parametric equations for the line in R? that passes through the points
P(0,7)and Q(5,0).

Solution We will see below that it does not matter which point we take to be x, and
which we take to be x|, so let us choose xy = (0, 7) and x; = (5, 0). It follows that
x| — Xg = (5, —7) and hence that

which we can rewrite in parametric form as
x=5, y=7-"Tt

Had we reversed our choices and taken xy = (5, 0) and x; = (0, 7), then the resulting
vector equation would have been

(x,y)=(5,0)+1(=5,7) (12)
and the parametric equations would have been
x=5=-5t y=Tt

(verify). Although (11) and (12) look different, they both represent the line whose equa-
tion in rectangular coordinates is

7x + 5y = 35

x (Figure 3.4.6). This can be seen by eliminating the parameter ¢ from the parametric

equations (verify). <

Figure 3.4.6

The point x = (x, y) in Equations (9) and (10) traces an entire line in R> as the
parameter ¢ varies over the interval (—oo, o). If, however, we restrict the parameter to
vary from t = 0 to t = 1, then x will not trace the entire line but rather just the /ine
segment joining the points x¢ and x;. The point x will start at xo when # = 0 and end at
x; when ¢ = 1. Accordingly, we make the following definition.
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Dot Product Form of a
Linear System

DEFINITION 3 If x¢ and x; are vectors in R", then the equation
X=xo+1(x1—%x0) (0=r=1) (13)

defines the line segment firom x, to x;. When convenient, Equation (13) can be written
as
x=(0-Hxo+1tx; 0<r=<1) (14)

P> EXAMPLE 5 A Line Segment from One Point to Another in R?

It follows from (13) and (14) that the line segment in R? from xy = (1, —3) tox; = (5, 6)
can be represented either by the equation

x=(,-3)+149 O=r=<1

or by the equation
x=(1-0(,-3)+1256) (O<r<1) 4

Our next objective is to show how to express linear equations and linear systems in dot
product notation. This will lead us to some important results about orthogonality and
linear systems.

Recall that a /inear equation in the variables xi, x2, ..., x, has the form

a\xy +ayxy +---+a,x, =b (aj,as,...,a,notall zero) (15)
and that the corresponding homogeneous equation is
aix) +ayx; +---+apx, =0 (ay,as,...,a, notall zero) (16)
These equations can be rewritten in vector form by letting
a=(ay,ay,...,a,) and x= (x1,Xx2,...,X,)
in which case Formula (15) can be written as
a-x=2>, (17)
and Formula (16) as
a-x=0 (18)

Except for anotational change fromnto a, Formula (18) is the extension to R” of Formula
(6) in Section 3.3. This equation reveals that each solution vector x of a homogeneous
equation is orthogonal to the coefficient vector a. To take this geometric observation a
step further, consider the homogeneous system

anxy +apxy + -+ apx, =0

anxy +anxy + -+ awx, =0

A1 X1 + @uaXy + -+ QX =0

If we denote the successive row vectors of the coefficient matrix by ry, 1, ..., I, then
we can rewrite this system in dot product form as
r X = 0
X = 0

. . (19)
Iy x=0

from which we see that every solution vector x is orthogonal to every row vector of the
coefficient matrix. In summary, we have the following result.
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THEOREM 3.4.3 If A is an m X n matrix, then the solution set of the homogeneous
linear system Ax = 0 consists of all vectors in R" that are orthogonal to every row
vector of A.

P> EXAMPLE 6 Orthogonality of Row Vectors and Solution Vectors

We showed in Example 6 of Section 1.2 that the general solution of the homogeneous
linear system

X
1 3 =2 0 2 07 | x2 0
2 6 —5 =2 4 =3||x3| |0
0 0 5 10 0 I5||x4| O
2 6 0 8 4 18] | x5 0
| 6|
is
X1 =-3r—4s —=2t, xpo=r, x3=-25, x4=95, xs=1, x=0

which we can rewrite in vector form as
X = (—3r —4s —2t,r, —2s,5,1,0)
According to Theorem 3.4.3, the vector x must be orthogonal to each of the row vectors

r=(1,3,-2,0,2,0)
= (2,6 -5 —2,4 —3)
1 = (0,0,5,10,0,15)
1= (2,6,0,8,4,18)

We will confirm that x is orthogonal tor;, and leave it for you to verify that x is orthogonal
to the other three row vectors as well. The dot product of r; and x is

r X =1(=3r —4s — 2t) + 3(r) + (=2)(—2s) + 0(s) + 2(t) + 0(0) = 0
which establishes the orthogonality. <

We will conclude this section by exploring the relationship between the solutions of
a homogeneous linear system Ax = 0 and the solutions (if any) of a nonhomogeneous
linear system Ax = b that has the same coefficient matrix. These are called corresponding
linear systems.

To motivate the result we are seeking, let us compare the solutions of the correspond-
ing linear systems

X1 X1
2 0 X2 0 1 3 =2 0 2 0 X3 0
4 -3 X3 0 2 6 -5 =2 4 -3 X3 —1
= and =
0 15 X4 0 0 0 5 10 0 15 X4 5
4 18 X5 0 2 6 0 8 4 18 X5 6
[ Xe_] L X6_]

We showed in Examples 5 and 6 of Section 1.2 that the general solutions of these linear
systems can be written in parametric form as

homogeneous —> X1 = —3r —4s —2t, X, =71, X3=—25, X4=3S5, Xs5=1, x6=0

nonhomogeneous —> X1 = —3r —4s —2t, xp=vr, Xx3=-25, X4=258, Xs=1, X¢=
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which we can then rewrite in vector form as
homogeneous —> (X1, X2, X3, X4, X5, Xg) = (—3r —4s — 2t,r, —25,5,1,0)
nonhomogeneous —> (xl, X2, X3, X4, X5, x6) = ( —3r —4s — 2[, r, —2S, s, 1, %)

By splitting the vectors on the right apart and collecting terms with like parameters, we
can rewrite these equations as

homogeneous —> (X1, X2, X3, X4, X5) = r(—3,1,0,0,0) + s(—4,0,-2,1,0,0) +#(—2,0,0,0, 1, 0) (20)
nonhomogeneous —> (X1, X2, X3, X4, x5) =7r(=3,1,0,0,0) + s(—4,0, -2, 1,0, 0)

Ax=b

Xo Ax=0

Figure 3.4.7 The solution set
of Ax = b is a translation of the
solution space of Ax = 0.

Exercise Set 3.4

+1(=2,0,0,0,1,0) +(0,0,0,0,0,3) (21

Formulas (20) and (21) reveal that each solution of the nonhomogeneous system can be
obtained by adding the fixed vector (0, 0,0,0,0, %) to the corresponding solution of the
homogeneous system. This is a special case of the following general result.

THEOREM 3.4.4 The general solution of a consistent linear system AX =b can be
obtained by adding any specific solution of Ax = b to the general solution of Ax = 0.

Proof Let x( be any specific solution of Ax = b, let W denote the solution set of Ax = 0,
and let xg + W denote the set of all vectors that result by adding x, to each vector in
W. We must show that if x is a vector in xo + W, then x is a solution of Ax = b, and
conversely that every solution of Ax = b is in the set xo + W.

Assume first that x is a vector in Xy + W. This implies that x is expressible in the
form x = xy + w, where Axo = band Aw = 0. Thus,

AX=AXo+WwW) =Axg+ Aw=b+0=D>

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set x) + W we
must show that x is expressible in the form

X =Xy+ W (22)

where wisin W (i.e., Aw = 0). We can do this by taking w = x — x¢. This vector obvi-
ously satisfies (22), and it is in W since

Aw=A(x—Xx9) = Ax—Axg=b—-b=0

Remark Theorem 3.4.4 has a useful geometric interpretation that is illustrated in Figure 3.4.7.
If, as discussed in Section 3.1, we interpret vector addition as translation, then the theorem states
that if xq is any specific solution of Ax = b, then the entire solution set of Ax = b can be obtained
by translating the solution space of Ax = 0 by the vector Xy.

In Exercises 1-4, find vector and parametric equations of the In Exercises 5-8, use the given equation of a line to find a point
line containing the point and parallel to the vector. on the line and a vector parallel to the line.
1. Point: (—4, 1); vector: v = (0, —8) 5.x=03-5,—-6—1)
2. Point: (2, —1); vector: v = (—4, —2) 6. (x,y,2) = (4t,7,4+31)
3. Point: (0, 0, 0); vector: v=(—3,0,1) T.x=(1—-1)4,6)+1t(—2,0)

4. Point: (-9, 3, 4); vector: v= (—1,6,0) 8. x=(1—-1)(0,-51)



In Exercises 9-12, find vector and parametric equations of
the plane that contains the given point and is parallel to the two
vectors.

9. Point: (-3, 1, 0); vectors: v; = (0, —3, 6) and

v, =(=512)

10. Point: (0, 6, —2); vectors: v; = (0,9, —1) and

v, = (0,-3,0)

11. Point: (—1, 1, 4); vectors: v; = (6, —1, 0) and
= (131

12. Point: (0, 5, —4); vectors: v; = (0, 0, —5) and
v =(1,-3,-2)

In Exercises 13-14, find vector and parametric equations of
the line in R? that passes through the origin and is orthogonal
tov.

13.v=(=2,3) 14.v=(1,—-4)

In Exercises 15-16, find vector and parametric equations of
the plane in R? that passes through the origin and is orthogonal
tov.

15. v= (4,0, —5) [Hint: Construct two nonparallel vectors or-
thogonal to vin R?].

16. v= (3,1, —-6)

In Exercises 17-20, find the general solution to the linear sys-
tem and confirm that the row vectors of the coefficient matrix are
orthogonal to the solution vectors.

17. X1+ x+ X3=0
2X1+2X2+2X3:0
3X1+3X2+3X3:0

18. X1 +3X2 —4X3 =0
2X1 +6X2 — 8X3 =0

19.X1+5X2+X3+2X4— X5:0
X1—2X2—X3+3X4+2X5:0

20. X1+3X2—4X3:0
X1+2X2+3X3:0

21. (a) Theequationx + y + z = 1 can be viewed as a linear sys-
tem of one equation in three unknowns. Express a general
solution of this equation as a particular solution plus a
general solution of the associated homogeneous equation.

(b) Give a geometric interpretation of the result in part (a).

22. (a) The equation x + y = 1 can be viewed as a linear system
of one equation in two unknowns. Express a general solu-
tion of this equation as a particular solution plus a general
solution of the associated homogeneous system.

(b) Give a geometric interpretation of the result in part (a).
23. (a) Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those

vectors in R3 that are orthogonal to a = (1,1, 1) and
b=(-2,3,0).

(b) What kind of geometric object is the solution space?
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(¢) Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

24. (a) Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those
vectors in R> that are orthogonal to a = (=3, 2, —1) and
b= (0, -2, —-2).

(b) What kind of geometric object is the solution space?

(¢) Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

25. Consider the linear systems

3 2 —1 X1 0
6 4 -2 Xy | = 0
-3 =2 1] |x 0
and
32 —17[x 2
6 4 2| |x|= 4
-3 =2 1 X3 -2

(a) Find a general solution of the homogeneous system.

(b) Confirm that x; = 1, x, = 0, x3 = 1 is a solution of the
nonhomogeneous system.

(c) Usetheresultsin parts(a)and (b) to find a general solution
of the nonhomogeneous system.

(d) Check your result in part (c) by solving the nonhomoge-
neous system directly.

26. Consider the linear systems

1 -2 37 [x

and
1 =2 37 [x 2
2 1 41| x| = 7
1 -7 51 [x3 —1

(a) Find a general solution of the homogeneous system.

(b) Confirm that x; = 1, x, = 1, x3 = 1 is a solution of the
nonhomogeneous system.

(¢) Usetheresultsin parts(a)and (b) to find a general solution
of the nonhomogeneous system.

(d) Check your result in part (c) by solving the nonhomoge-
neous system directly.

In Exercises 27-28, find a general solution of the system, and
use that solution to find a general solution of the associated homo-
geneous system and a particular solution of the given system.

3 4 1 2 3

7. l6 8 2 5||P|=]7
X3

9 12 3 10 13
X4
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9 _3 5 6 X1 (e) The general solution of the nonhomogeneous linear system
8. |6 —2 3 ] = 5 Ax = b can be obtained by adding b to the general solution
3 1 - X3 _3 of the homogeneous linear system Ax = 0.
X4

29. Letx = Xy +tvbealinein R", andlet T: R — R" beama- (f) If x; and x, are two solutions of the nonhomogeneous linear

trix operator on R". What kind of geometric object is the system Ax = b, then X; — X, isa solution of the corresponding
image of this line under the operator 7? Explain your reason- homogeneous linear system.
ing.

True-False Exercises Working with Technology

TF. In parts (a)~(f) determine whether the statement is true or T1. Find the general solution of the homogeneous linear system

false, and justify your answer.

(a) The vectorequation of a line can be determined from any point X1
lying on the line and a nonzero vector parallel to the line. 6 —4 0 4 07 | x2
X3

(b) The vector equation of a plane can be determined from any
point lying in the plane and a nonzero vector parallel to the
plane.

18 —-15 -6 12 =9 | x4
3 0 4 2 94| x5

(c) The points lying on a line through the origin in R? or R* are | X6 |
all scalar multiples of any nonzero vector on the line.

— o o
S
—_
)
o
W
|

© o o o

(d) All solution vectors of the linear system Ax = b are orthogo- ~ and confirm that each solution vector is orthogonal to every row
nal to the row vectors of the matrix A if and only if b = 0. vector of the coefficient matrix in accordance with Theorem 3.4.3.

3.5 Cross Product

This optional section is concerned with properties of vectors in 3-space that are important
to physicists and engineers. It can be omitted, if desired, since subsequent sections do not
depend on its content. Among other things, we define an operation that provides a way of
constructing a vector in 3-space that is perpendicular to two given vectors, and we give a
geometric interpretation of 3 x 3 determinants.

Cross Product of Vectors  In Section 3.2 we defined the dot product of two vectorsuand vin n-space. That operation
produced a scalar as its result. We will now define a type of vector multiplication that
produces a vector as the result but which is applicable only to vectors in 3-space.

DEFINITION 1 If u = (uy, us, u3) and v = (vy, v, v3) are vectors in 3-space, then
the cross product u x v is the vector defined by

u X V= (Ua03 — U3V, U3V] — U1V3, U1V — UV])
or, in determinant notation,

uxv:( ) ()

Remark Instead of memorizing (1), you can obtain the components of u x v as follows:

Uy Uj up uz| (U Up

) ’

Uy U3 vp U3 vy

. Tuy u
* Form the 2 x 3 matrix [ ! 2
v U

second row contains the components of v.

u .
v3] whose first row contains the components of u and whose
3



The formulas for the vector
triple products in parts (d)
and (e) of Theorem 3.5.1 are
useful because they allow us
to use dot products and scalar
multiplications to perform cal-
culations that would other-
wise require determinants to
calculate the required cross
products.
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+ To find the first component of u x v, delete the first column and take the determinant; to find
the second component, delete the second column and take the negative of the determinant; and
to find the third component, delete the third column and take the determinant.

» EXAMPLE 1 Calculating a Cross Product
Findu x v, whereu = (1,2, —2) and v = (3,0, 1).
Solution From either (1) or the mnemonic in the preceding remark, we have
2 =2 I =2 |1 2
uxyv= .= )
0 1 3 11"[3 0
=2,-7,—6) d

The following theorem gives some important relationships between the dot product
and cross product and also shows that u x v is orthogonal to both u and v.

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

Ifu, v, and w are vectors in 3-space, then

(a) u-(uxv)=0 [u x v is orthogonal to u|
®) ve(uxv)y=0 [u x v is orthogonal to v]
(C) [la x V||2 = ||ll||2||V||2 — (u- V)2 | Lagrange’s identity|

(d) ux (vxw) = @-wyv—(u-v)w [ vector triple product]

() (wxv)xw=u-w)v—(v.-wu [vector triple product |

Proof(a) Letu = (uy, up, uz) and v= (vy, vy, v3). Then
u-(uxv) = (ur,uz, uz) « (UaV3 — U3V, U3V| — UV3, U V2 — UV])

= uy(Uv3 — u3v2) + uz(u3vy — ugv3) + uz(uvy — usvy) =0

Proof (b) Similar to (a).
Proof (¢) Since
lux vII> = (uav3 — u3v2)* + (uzvy — u1v3)” + (v — Uzv1)? (2
and
Il VI = @+ w)® = ] + u3 +u3) (0] +v3 +v3) = @y +usvy +uzvs)* (3

the proof can be completed by “multiplying out” the right sides of (2) and (3) and
verifying their equality.

Proof (d) and (e) See Exercises 40 and 41.

Historical Note The cross product notation A x B was introduced by the American physicist and
mathematician J. Willard Gibbs, (see p. 146) in a series of unpublished lecture notes for his students
atVYale University. It appeared in a published work for the first time in the second edition of the book
Vector Analysis, by Edwin Wilson (1879-1964), a student of Gibbs. Gibbs originally referredto A x B
as the “skew product.”



174 Chapter 3 Euclidean Vector Spaces

Joseph Louis Lagrange
(1736-1813)

> u x Vv Is Perpendicular to u and to v
Consider the vectors
u=(1,2,-2) and v=(3,0,1)

In Example 1 we showed that
uxv=(2,-7,-6)

Since
u-uxv)=1Q2)+ (=7 + (=2)(=6) =0
and
ve(uxv)=3)2)+ O)(=7) + (1)(=6) =0

u x v is orthogonal to both u and v, as guaranteed by Theorem 3.5.1. <

The main arithmetic properties of the cross product are listed in the next theorem.

THEOREM 3.5.2 Properties of Cross Product

Ifu, v, and w are any vectors in 3-space and k is any scalar, then:
(@ uxv=—(vxu)

B) ux (v+w)=@xvVv)+ (uxw)

() (u+v)xw=@uxw)+ (vxw

(d) k(axv)=(ku) x v=ux (kv)

() ux0=0xu=0

(f) uxu=0

The proofs follow immediately from Formula (1) and properties of determinants; for
example, part () can be proved as follows.

Proof (a) Interchanging u and v in (1) interchanges the rows of the three determinants
on the right side of (1) and hence changes the sign of each component in the cross pro-
duct. Thusu x v = —(v x u).

The proofs of the remaining parts are left as exercises.

Historical Note Joseph Louis Lagrange was a French-Italian mathematician and astronomer. Although his
father wanted him to become a lawyer, Lagrange was attracted to mathematics and astronomy after reading
a memoir by the astronomer Halley. At age 16 he began to study mathematics on his own and by age 19
was appointed to a professorship at the Royal Artillery School in Turin. The following year he solved some
famous problems using new methods that eventually blossomed into a branch of mathematics called the
calculus of variations. These methods and Lagrange’s applications of them to problems in celestial mechanics
were so monumental that by age 25 he was regarded by many of his contemporaries as the greatest living
mathematician. One of Lagrange’s most famous works is a memoir, Mécanique Analytique, in which he
reduced the theory of mechanics to a few general formulas from which all other necessary equations could
be derived. Napoleon was a great admirer of Lagrange and showered him with many honors. In spite of his
fame, Lagrange was a shy and modest man. On his death, he was buried with honor in the Pantheon.
[Image: © traveler1116/iStockphotol]



Figure 3.5.1 The standard
unit vectors.

j

Figure 3.5.2

Determinant Form of Cross
Product
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P EXAMPLE 3 Cross Products of the Standard Unit Vectors
Recall from Section 3.2 that the standard unit vectors in 3-space are

i=(1,0,0), j=(0,1,0), k=1(0,0,1)

These vectors each have length 1 and lie along the coordinate axes (Figure 3.5.1). Every
vector v = (v, v2, v3) in 3-space is expressible in terms of i, j, and k since we can write

v = (v1, v2, v3) = v1(1, 0,0) +v2(0, 1, 0) + v3(0, 0, 1) = vii + vaj + v3k

For example,
(2,-3,4) =2i — 3j+ 4k

From (1) we obtain
C . 0 0
IXj=
1 0

You should have no trouble obtaining the following results:

1 0
0 1

1 0
10 0

D:(0,0,l):k <

’

ixi=0 ixi=0 kxk=0

ixj=k ixk=i kxi=j

ixi=—-k kxj=—i ixk=—j
Figure 3.5.2 is helpful for remembering these results. Referring to this diagram, the cross
product of two consecutive vectors going clockwise is the next vector around, and the

cross product of two consecutive vectors going counterclockwise is the negative of the
next vector around.

It is also worth noting that a cross product can be represented symbolically in the form

i j k

Uuxyv=|uy uU; us|l=

u u u u
1 3j+1 2k (4)

vp U3 v v

Vi Uy U3

For example, ifu = (1, 2, —2) and v = (3, 0, 1), then

i j k
uxv=|1 2 =-2|=2i—7j—6k
30 1

which agrees with the result obtained in Example 1.

WARNING It is not true in general that u x (v x w) = (u X v) x w. For example,
ix(jxj)=ix0=0

and
ixjp)xj=kxj=—i

SO
i (D) # () x
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uxy

Figure 3.5.3

Geometric Interpretation of
Cross Product

|[v]| sin &

(Jull
Figure 3.5.4

Py-1,0.2) P50, 4, 3)

4

Pi(2,2,0)
Figure 3.5.5

We know from Theorem 3.5.1 that u x v is orthogonal to both u and v. If u and
v are nonzero vectors, it can be shown that the direction of u x v can be determined
using the following “right-hand rule” (Figure 3.5.3): Let 6 be the angle between u and
v, and suppose u is rotated through the angle 6 until it coincides with v. If the fingers of
the right hand are cupped so that they point in the direction of rotation, then the thumb
indicates (roughly) the direction of u x v.

You may find it instructive to practice this rule with the products

ixj=k, jxk=i, kxi=j

If uwand v are vectors in 3-space, then the norm of u x v has a useful geometric interpre-
tation. Lagrange’s identity, given in Theorem 3.5.1, states that

lu x v]I* = [lu]Iv]* = (u - v)? Q)

If 6 denotes the angle between u and v, thenu - v = |Jul|||v]| cos 8, so (5) can be rewritten
as
[l v[I> = [ll[Ivl]* = [[ull*[Iv]]* cos* 6

= [lull?[Iv|>(1 — cos® )
= |Jul?||v||* sin® 6

Since 0 < 6 < 7, it follows that sin & > 0, so this can be rewritten as
[lu > v|| = [[a]|[|v]| sin® (6)

But ||v| sin @ is the altitude of the parallelogram determined by u and v (Figure 3.5.4).
Thus, from (6), the area A of this parallelogram is given by

A = (base)(altitude) = [[u]|[|v]sin@ = [lu x V]|

This result is even correct if u and v are collinear, since the parallelogram determined by
u and v has zero area and from (6) we have u x v = 0 because 8 = 0 in this case. Thus
we have the following theorem.

THEOREM 3.5.3 Area of a Parallelogram

If uw and v are vectors in 3-space, then ||\u X v|| is equal to the area of the parallelogram
determined by u and v.

P> EXAMPLE 4 Area of aTriangle

Find the area of the triangle determined by the points P;(2, 2,0), P,(—1, 0, 2), and
P5(0, 4, 3).

Solution The area A of the triangle is % the area of the parallelogram determined by
— —

the vectors P; P> and P; P; (Figure 3.5.5). Using the method discussed in Example 1 of
— —

Section 3.1, Py P, = (=3, —=2,2) and P, P; = (-2, 2, 3). It follows that

—_— —
P1P2 X P1P3 = (—10, 5, —10)
(verify) and consequently that

—> —
A= 3PPy x PP = 5(15) = 3 <
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DEFINITION 2 Ifu, v, and w are vectors in 3-space, then
u-(vxXw)
is called the scalar triple product of u, v, and w.

The scalar triple product of u = (uy, uz, u3), v= (vy, v2, v3), and w = (wy, w,, ws3)
can be calculated from the formula

Uy ux Us
u-(vxw) =|vy vy 3 @)
w; Wy w3

This follows from Formula (4) since

Uy V3|, v U3 v Uz
u-(vxw) =u- i— j k
Wy W3 wp w3 wp W2
1% U3 VU1 U3 V1 1%
= up — up + us3
wy W3 w1 w3 w1 wso

Uy Uz U3
= |V UV U3

wp w2 w3

» EXAMPLE 5 Calculating a ScalarTriple Product
Calculate the scalar triple product u - (v x w) of the vectors

u=3i—2j—5k v=i+4j—4k, w=3j+2k

Solution From (7),

3 -2 =5
u-(vxw =|1 4 —4
0o 3 2

_34—4 (2)1—4+(5)14

T3 2 0 2 0 3

—60+4—15=49 <

Remark The symbol (u - v) x w makes no sense because we cannot form the cross product of
a scalar and a vector. Thus, no ambiguity arises if we write u - v x w rather than u- (v x w).
However, for clarity we will usually keep the parentheses.

u It follows from (7) that
u-(vxw)=w-mxv)=v-.(wxu)

since the 3 x 3 determinants that represent these products can be obtained from one
x v another by rwo row interchanges. (Verify.) These relationships can be remembered by
Figure 3.5.6 moving the vectorsu, v, and w clockwise around the vertices of the triangle in Figure 3.5.6.



178 Chapter 3 Euclidean Vector Spaces

Geometric Interpretation of  The next theorem provides a useful geometric interpretation of 2 x 2 and 3 x 3 deter-
Determinants minants.

THEOREM 3.5.4

(a) The absolute value of the determinant

U, u
det|: ! 2]
U1 (%)
is equal to the area of the parallelogram in 2-space determined by the vectors
u= (uy, up) andv = (vy, v2). (See Figure 3.5.7a.)
(b) The absolute value of the determinant
ui 175) us
det|v; vy w3
w; Wy W3
is equal to the volume of the parallelepiped in 3-space determined by the vectors
u= (uy, uy, uz), v= (vy, v, v3), and w = (wy, wy, wz). (See Figure 3.5.7b.)

y z Z
/
(v}, v2) /
(uy, uy, u3)
// y
v u / [
_— (1.0, 0)
(uy, 1) (wla wo, w3)
u X Wo—r (v 03) »
N (uy, up, 0)
(a) (b) (c)

Figure 3.5.7

Proof (a) The key to the proof is to use Theorem 3.5.3. However, that theorem applies

to vectors in 3-space, whereas u = (u1, u») and v = (vy, vy) are vectors in 2-space. To

circumvent this “dimension problem,” we will view u and v as vectors in the xy-plane of

an xyz-coordinate system (Figure 3.5.7¢), in which case these vectors are expressed as

u= (u, ur,0) and v= (v, v2, 0). Thus
i

up U
uxv=|u u 0=

k = det [“‘ ”2} K

v 2 v

v vy, O

It now follows from Theorem 3.5.3 and the fact that ||k|| = 1 that the area A of the

parallelogram determined by u and v is
uy u u, u
det |: ! 2i| det |: : 2]
v v 0

uf; -
V1 1%)

which completes the proof.

Proof (b) Asshown in Figure 3.5.8, take the base of the parallelepiped determined by u,
v v, and w to be the parallelogram determined by v and w. It follows from Theorem 3.5.3
' that the area of the base is ||v x w| and, as illustrated in Figure 3.5.8, the height & of
I = llprojyyul the parallelepiped is the length of the orthogonal projection of u on v x w. Therefore,
Figure 3.5.8 by Formula (12) of Section 3.3,

A=uxy|= Ikl =

(
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h = lIprojyyul] = X W
v x wil
It follows that the volume V of the parallelepiped is
V = (area of base) - height = ||v x w||M =|u-(vxw]
v x wil
so from (7),
Uy ux us
V=ldet|vy, vy w3 (®)
wp Wy W3

which completes the proof.

Remark If V denotes the volume of the parallelepiped determined by vectors u, v, and w, then
it follows from Formulas (7) and (8) that

= ©)

volume of parallelepiped
= = Ju- (v x W)

determined by u, v, and w

From this result and the discussion immediately following Definition 3 of Section 3.2, we can
conclude that
u-(vxw) ==+V

where the + or — results depending on whether u makes an acute or an obtuse angle with v x w.

Formula (9) leads to a useful test for ascertaining whether three given vectors lie in
the same plane. Since three vectors not in the same plane determine a parallelepiped of
positive volume, it follows from (9) that |u - (v x w)| = 0 if and only if the vectors u, v,

and w lie in the same plane. Thus we have the following result.

THEOREM 3.5.5 [f'the vectorsu = (uy, uy, us3), v= (vy, va, v3), and
w = (w, wy, ws) have the same initial point, then they lie in the same plane if and only

if

up Uy us
u-(vxw)=|vy vy wv3|=0
w; Wy W3

Exercise Set 3.5

In Exercises 1-2, letu = (3,2, —1), v= (0,2, —3), and
w = (2, 6, 7). Compute the indicated vectors.

1. (a) vxw (b)) wxv ©) (u+v) xw
(d)v-(vxw () vxv ) (u—3w) X (u—3w)

2. (a) uxyv (b) —(u xv) (©) ux (v+w)
(d) w-(wxv) () wxw (f) (7v—3u) x (7v — 3u)

In Exercises 3-4, let u, v, and w be the vectors in Exercises 1-2.
Use Lagrange’s identity to rewrite the expression using only dot
products and scalar multiplications, and then confirm your result
by evaluating both sides of the identity.

3. |ju x w|? 4. ||v x u|]?

In Exercises 5-6, let u, v, and w be the vectors in Exercises 1-2.
Compute the vector triple product directly, and check your result
by using parts (d) and (e) of Theorem 3.5.1.

5.ux (vxw) 6. (uxXV)XW

In Exercises 7-8, use the cross product to find a vector that is
orthogonal to both u and v.

T.u=(=6,4,2), v=,1,5)

S u=(,1,-2), v=(2,—1,2)

In Exercises 9-10, find the area of the parallelogram deter-
mined by the given vectors u and v.

9.u=(1,-1,2), v=1(0,3,1)
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10. u= (3, —1,4), v=(6,-2,8)

In Exercises 11-12, find the area of the parallelogram with the
given vertices.

11. P(1,2), (4,4, P(1,5), P44,3)
12. P1(3,2), P54, P09,4), Pu(7,2)

In Exercises 13-14, find the area of the triangle with the given
vertices.
13. A(2,0), B(3,4), C(-1,2)

14. A(1,1), B(2,2), C(3,-3)

In Exercises 15-16, find the area of the triangle in 3-space that
has the given vertices.

15. (2,6, -1), P (1,1,1), P5(4,6,2)
16. P(1,-1,2), Q(0,3,4), R(6,1,8)

In Exercises 17-18, find the volume of the parallelepiped with
sides u, v, and w.

17.u=(2,-6,2), v=(0,4,—2), w= (2,2, —4)
18.u=(3,1,2), v= (4,51, w=(1,2,4)

In Exercises 19-20, determine whether u, v, and w lie in the
same plane when positioned so that their initial points coincide.

19.u=(—1,-2,1), v=(3,0,—2), w= (5 —4,0)
20.u=(5-2,1),v=4—1,1), w=(1,-1,0)

In Exercises 21-24, compute the scalar triple product
u-(vxw).

21.u=(=2,0,6), v=(1,-3,1), w=(=5,—1,1)
2. u=(—1,2,4), v=(3,4,-2), w=(—1,2,5)
23.u=(a,0,0), v=(0,b,0), w=(0,0,c)

24. u=i

In Exercises 25-26, suppose that u - (v x w) = 3. Find

25. (a) u- (wxv) (b) (vxw)-u (c) we (uxv)

26. (a) v- (u X W) (b) (uxw)-v ©) ve(wxw)

27. (a) Find the area of the triangle having vertices A(1, 0, 1),
B(0,2,3),and C(2, 1, 0).

(b) Use the result of part (a) to find the length of the altitude
from vertex C to side AB.

28. Use the cross product to find the sine of the angle between the
vectorsu = (2,3, —6) and v = (2, 3, 6).

29. Simplify (u 4+ v) X (u —v).

30. Let a = (a;, az,a3), b= (by, by, b3), ¢=(c1,c3,¢3), and
d= (d] , dz, d3) Show that

(a+d-(bxec)=a-(bxc)+d-(bxc)

Exercises 31-32  You know from your own experience that
the tendency for a force to cause a rotation about an axis depends
on the amount of force applied and its distance from the axis of
rotation. For example, it is easier to close a door by pushing on
its outer edge than close to its hinges. Moreover, the harder you
push, the faster the door will close. In physics, the tendency for a
force vector F to cause rotational motion is a vector called torque
(denoted by 7). It is defined as

T=Fxd
where d is the vector from the axis of rotation to the point at which
the force is applied. It follows from Formula (6) that
Izl = IIF x d|| = [[F[/||d]| sin6
where 6 is the angle between the vectors F and d. This is called the

scalar moment of F about the axis of rotation and is typically mea-
sured in units of Newton-meters (Nm) or foot pounds (ft-1b).

31. The accompanying figure shows a force F of 1000 N applied
to the corner of a box.

(a) Find the scalar moment of F about the point P.
(b) Find the direction angles of the vector moment of F about

the point P to the nearest degree. [See directions for Ex-
ercises 21-25 of Section 3.2.]

z

1 N
. 00
1m Im
2m 0
Y Figure Ex-31

32. Asshown in the accompanying figure, a force of 200 N is ap-
plied at an angle of 18° to a point near the end of a monkey
wrench. Find the scalar moment of the force about the center
of the bolt. [Note: Treat the wrench as two-dimensional.]

«— 200 mm ——>

el o
30 inmk WY

\
Figure Ex-32

Working with Proofs

33. Let u, v, and w be nonzero vectors in 3-space with the same
initial point, but such that no two of them are collinear. Prove
that

(a) u x (v x w) lies in the plane determined by v and w.

(b) (u x v) x wlies in the plane determined by u and v.
34. Prove the following identities.

(@) (u+kv) xv=uxyv

b)u-(vxz)=—(ux1z)-v



35. Prove: If a, b, ¢, and d lie in the same plane, then
(axb)x(ecxd =0.

36. Prove: If 0 is the angle between u and v and u - v # 0, then
tan® = |lu x v||/(u - v).

37. Prove that if u, v, and w are vectors in R?, no two of which are
collinear, then u x (v x w) lies in the plane determined by v
and w.

38. It is a theorem of solid geometry that the volume of a tetra-
hedron is %(area of base) - (height). Use this result to prove
that the volume of a tetrahedron whose sides are the vectors
a,b,and cis éla - (b x ¢)| (see accompanying figure).

Figure Ex-38

39. Use the result of Exercise 38 to find the volume of the tetra-
hedron with vertices P, Q, R, S.

(a) P(—1,2,0), Q,1,-3), R(1,1,1), §(3,-2,3)
(b) P(0,0,0), QO(1,2,—1), R(3,4,0), S(—1,-3,4)

40. Prove part (d) of Theorem 3.5.1. [Hint: First prove the
result in the case where w=1i=(1,0,0), then when
w=j=(0,1,0), and then when w = k = (0, 0, 1). Finally,
prove it for an arbitrary vector w = (w;, w,, w3) by writing
w = wii+ wyj + wsk.]

41. Prove part (e) of Theorem 3.5.1. [Hint: Apply part (a) of
Theorem 3.5.2 to the result in part (d) of Theorem 3.5.1.]

42. Prove:
(a) Prove (b) of Theorem 3.5.2.
(b) Prove (c¢) of Theorem 3.5.2.

Chapter 3 Supplementary Exercises

1. Let u=(-2,0,4), v=(3,—-1,6), and w= (2, -5, =5).
Compute
(a) 3v—2u ®) lu+v+w|

(c) the distance between —3u and v + 5w

(d) proj,u (&) u- (vxw
) (=5v+w) x ((u-v)w)

2. Repeat Exercise 1 for the vectors u = 3i — 5j + k,
v=—=2i+ 2k, and w = —j + 4k.

3. Repeat parts (a)—(d) of Exercise 1 for the vectors
u=(-2,6,2,1),v=(-3,0,8,0), and
w=(9,1,—6,—6).

4. (a) Thesetofall vectorsin R? that are orthogonal to a nonzero
vector is what kind of geometric object?
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(¢) Prove (d) of Theorem 3.5.2.
(d) Prove (e) of Theorem 3.5.2.
(e) Prove (f) of Theorem 3.5.2.

True-False Exercises

TF. In parts (a)—(f) determine whether the statement is true or
false, and justify your answer.

(a) The cross product of two nonzero vectors u and v is a nonzero
vector if and only if u and v are not parallel.

normal vector to a plane can be obtained by taking the cross

b) A 1 vector t 1 be obtained by taking th
product of two nonzero and noncollinear vectors lying in the
plane.

(¢) The scalar triple product of u, v, and w determines a vector
whose length is equal to the volume of the parallelepiped de-
termined by u, v, and w.

(d) If u and v are vectors in 3-space, then ||v x ul| is equal to the
area of the parallelogram determined by u and v.

(e) For all vectors u, v, and w in 3-space, the vectors (u X v) X w
and u x (v X w) are the same.

(f) If u, v, and w are vectors in R3, where u is nonzero and
uxXv=uxw,thenv=w.

Working with Technology

T1. As stated in Exercise 23 above, the distance d in 3-space from
a point P to the line L through points A and B is given by the
formula
—  —
|IAP x AB]||
d= I
lAB]|

Find the distance between the point P(1, 3, 1) and the line through
the points A(2, —3,4) and B(4, 7, —2).

(b) Theset ofall vectorsin R* that are orthogonal to a nonzero
vector is what kind of geometric object?

(c) The set of all vectors in R” that are orthogonal to two
noncollinear vectors is what kind of geometric object?

(d) The set of all vectors in R3 that are orthogonal to two
noncollinear vectors is what kind of geometric object?

5. Let A, B, and C be three distinct noncollinear points in 3-
space. Describe the set of all points P that satisfy the vector

= = —
equation AP + (AB x AC) = 0.

6. Let A, B, C, and D be four distinct noncollinear points in
- = — = — )
3-space. If AB x CD # 0 and AC - (AB x CD) = 0, explain
why the line through A and B must intersect the line through
C and D.
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7. Consider the points P(3, —1,4), Q(6,0,2), and R(5,1, 1).
Find the point S in R® whose first component is —1 and such
— —
that PQ is parallel to RS.
8. Consider the points P(—3,1,0,6), Q(0,5,1,—-2), and
R(—4,1,4,0). Find the point S in R* whose third compo-
— —>
nent is 6 and such that PQ is parallel to RS.

9. Using the points in Exercise 7, find the cosine of the angle

— —
between the vectors PQ and PR.

10. Using the points in Exercise 8, find the cosine of the angle
— —
between the vectors PQ and PR.

11. Find the distance between the point P(—3, 1, 3) and the plane
5x +z=3y—4.

12. Show that the planes 3x — y 4+ 6z = 7 and
—6x + 2y — 12z = 1 are parallel, and find the distance be-
tween them.

In Exercises 13-18, find vector and parametric equations for
the line or plane in question.

13. The plane in R® that contains the points P(—2,1,3),
Q(—1,—1,1),and R(3,0, —2).

14. The line in R? that contains the point P(—1, 6, 0) and is or-
thogonal to the plane 4x — z = 5.

15. The line in R? that is parallel to the vector v = (8, —1) and
contains the point P (0, —3).

16. The plane in R? that contains the point P(—2,1,0) and is
parallel to the plane —8x + 6y — 7z = 4.

17. The line in R? with equation y = 3x — 5.
18. The plane in R* with equation 2x — 6y + 3z = 5.

In Exercises 19-21, find a point-normal equation for the given
plane.

19. The plane that is represented by the vector equation
(x,y,2) =(—1,56)+1,(0,—1,3) + (2, -1, 0).

20. The plane that contains the point P (-5, 1, 0) and is orthogo-
nal to the line with parametric equations x = 3 — 5¢, y = 2t,
andz =17.

21. The plane that passes through the points P (9, 0, 4),
Q(—1,4,3),and R(0, 6, —2).

22. Suppose that V = {v{, v, v3} and W = {w,, w,} are two sets
of vectors such that each vector in V is orthogonal to each vec-
tor in W. Prove that if a;, a,, a3, b, b, are any scalars, then
the vectors v = a;v; + a,v, + azvz and w = byw, + b,w, are
orthogonal.

23. Show that in 3-space the distance d from a point P to the line
L through points A and B can be expressed as

— >
|AP x AB||
d = =~
IAB]|
24. Prove that |ju + v|| = |Ju]| + ||v|| if and only if one of the vec-

tors is a scalar multiple of the other.

25. The equation Ax + By = 0 represents a line through the ori-
ginin R?if A and B are not both zero. What does this equation
represent in R* if you think of it as Ax + By + 0z = 0? Ex-
plain.
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INTRODUCTION Recall that we began our study of vectors by viewing them as directed line segments
(arrows). We then extended this idea by introducing rectangular coordinate systems,
which enabled us to view vectors as ordered pairs and ordered triples of real numbers.
As we developed properties of these vectors we noticed patterns in various formulas
that enabled us to extend the notion of a vector to an n-tuple of real numbers.
Although n-tuples took us outside the realm of our “visual experience,” it gave us a
valuable tool for understanding and studying systems of linear equations. In this
chapter we will extend the concept of a vector yet again by using the most important
algebraic properties of vectors in R” as axioms. These axioms, if satisfied by a set of
objects, will enable us to think of those objects as vectors.

4.1 Real Vector Spaces

In this section we will extend the concept of a vector by using the basic properties of vectors
in R" as axioms, which if satisfied by a set of objects, guarantee that those objects behave
like familiar vectors.

Vector Space Axioms  The following definition consists of ten axioms, eight of which are properties of vectors
in R" that were stated in Theorem 3.1.1. It is important to keep in mind that one does
not prove axioms; rather, they are assumptions that serve as the starting point for proving
theorems.

183



184 Chapter 4 General Vector Spaces

DEFINITION 1 Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u + v,
called the sum of u and v; by scalar multiplication we mean a rule for associating with

In this text scalars will be ei- each scalar k and each object uin V an object ku, called the scalar multiple of u by k.
ther real numbers or complex If the following axioms are satisfied by all objects u, v, w in V and all scalars k and
numbers. Vector spaces with m, then we call V a vector space and we call the objects in V vectors.

real scalars will be called real

vector spaces and those with 1. Ifuandvare objectsin V, thenu+visin V.

complex scalars will be called 2. u+v=v+u

.complex vector spaces. There 3ou+(v+w=(u+v)+w

ge:tgossaizﬁfigzﬁzzaig 4. Thereis .an object 0in V, called a zero vector for V, suchthat0 +u=u+0=1u
can come from a mathematical foralluin V.

structure known as a “field,” 5. For each u in V, there is an object —u in V, called a negative of u, such that

but we will not be concerned u+ (—u) = (—u) +u=0.
with that level of generality.

. 6. If k is any scalar and u is any object in V, then kuisin V.
For now, we will focus exclu-
sively on real vector spaces, 7. k(u+4v) =ku+ kv
which we will refer to sim- 8. (k4 m)u=ku+ mu
ly as “vector spaces.” We
\I?Vi}lll consider corlrjlplex vector 9. k(mu) = (km)(u)
spaces later. 10. lu=u

Observe that the definition of a vector space does not specify the nature of the vectors
or the operations. Any kind of object can be a vector, and the operations of addition
and scalar multiplication need not have any relationship to those on R". The only
requirement is that the ten vector space axioms be satisfied. In the examples that follow
we will use four basic steps to show that a set with two operations is a vector space.

To Show That a Set with Two Operations Is a Vector Space
Step 1. Identify the set V of objects that will become vectors.
Step 2. Identify the addition and scalar multiplication operations on V.

Step 3. Verify Axioms 1 and 6; that is, adding two vectors in V produces a vector
in V, and multiplying a vector in V by a scalar also produces a vector in V.
Axiom 1 is called closure under addition, and Axiom 6 is called closure under
scalar multiplication.

Step 4. Confirm that Axioms 2, 3,4, 5,7, 8,9, and 10 hold.

Historical Note The notion of an “abstract vector
space” evolved over many years and had many
contributors. The idea crystallized with the work
of the German mathematician H. G. Grassmann,
who published a paper in 1862 in which he con-
sidered abstract systems of unspecified elements
on which he defined formal operations of addi-
tion and scalar multiplication. Grassmann’s work
was controversial, and others, including Augustin
Cauchy (p. 121), laid reasonable claim to the idea.
[Image: © Sueddeutsche Zeitung Photo/The
Image Works]

Hermann Giinther
Grassmann
(1809-1877)
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Our first example is the simplest of all vector spaces in that it contains only one
object. Since Axiom 4 requires that every vector space contain a zero vector, the object
will have to be that vector.

» EXAMPLE 1 The Zero Vector Space

Let V consist of a single object, which we denote by 0, and define
0+0=0 and k0=0

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call
this the zero vector space. 4

Our second example is one of the most important of all vector spaces—the familiar
space R". It should not be surprising that the operations on R" satisfy the vector space
axioms because those axioms were based on known properties of operations on R”.

» EXAMPLE 2 R"Is aVector Space

Let V = R", and define the vector space operations on V to be the usual operations of
addition and scalar multiplication of n-tuples; that is,

U+v= Uy, ..., uy) + WLV, V) = (U VL U V2, Uy U)
ku = (kuy, kuy, ..., ku,)

Theset V = R" is closed under addition and scalar multiplication because the foregoing
operations produce n-tuples as their end result, and these operations satisfy Axioms 2,
3,4,5,7,8,9, and 10 by virtue of Theorem 3.1.1. <«

Our next example is a generalization of R” in which we allow vectors to have infinitely
many components.

P EXAMPLE 3 The Vector Space of Infinite Sequences of Real Numbers
Let V consist of objects of the form

u= (U, s, ..., Uy,...)

in which uy, us, ..., u,, ... is an infinite sequence of real numbers. We define two infi-
nite sequences to be equal if their corresponding components are equal, and we define
addition and scalar multiplication componentwise by

u+v=(up,uy,...,uy,...)+ W1, 0,...,0,,...)
=W +vi, U+ v, .. Uy F Uy, )
kua = (kuy, kus, ..., ku,,...)

In the exercises we ask you to confirm that V with these operations is a vector space. We
will denote this vector space by the symbol R*. <«

Vector spaces of the type in Example 3 arise when a transmitted signal of indefinite
duration is digitized by sampling its values at discrete time intervals (Figure 4.1.1).

In the next example our vectors will be matrices. This may be a little confusing at
first because matrices are composed of rows and columns, which are themselves vectors
(row vectors and column vectors). However, from the vector space viewpoint we are not



186 Chapter 4 General Vector Spaces

Note that Equation (1) in-
volves three different addition
operations: the addition op-
eration on vectors, the ad-
dition operation on matrices,
and the addition operation on
real numbers.

concerned with the individual rows and columns but rather with the properties of the
matrix operations as they relate to the matrix as a whole.

P EXAMPLE 4 The Vector Space of 2 x 2 Matrices

Let V be the set of 2 x 2 matrices with real entries, and take the vector space operations
on V to be the usual operations of matrix addition and scalar multiplication; that is,

utv— |:M11 M12i| n |:U11 Ulz] _ |:M11 + vy u12+v12] (1)

Uy uUx U2 U Up + v Uxp + v

u u ku ku
ku:k[ 11 12]:|: 1 12}
Uy U kuz  kua
The set V is closed under addition and scalar multiplication because the foregoing oper-
ations produce 2 x 2 matrices as the end result. Thus, it remains to confirm that Axioms

2,3,4,5,7,8,9,and 10 hold. Some of these are standard properties of matrix operations.
For example, Axiom 2 follows from Theorem 1.4.1(«a) since

utv= |:M11 Mlz] + |:U11 012:| _ |:v11 012:| i [Mll M12:| —v4u
Uz Uy U1 U2 U1 U2 Uz U
Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), (j), and (e), respectively, of
that theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 x 2 matrix 0 in V for which
u+ 0 =04 uforall 2 x 2 matrices in V. We can do this by taking

0= 0 0
100
With this definition,

0 0
0+u=[ ]+[M11 Mlz]:[ldll M12i|:u
0 0 ury Ux» Uz Uy

and similarly w 4+ 0 = u. To verify that Axiom 5 holds we must show that each object
uin V has a negative —u in V such that u 4+ (—u) = 0 and (—u) 4+ u = 0. This can be
done by defining the negative of u to be

[—Mn —M12:|
—u=

—Ux —uUxn
With this definition,

u u —u —u 0 0
u+(—u)=|:11 12}4_[ 1 12]2[ }:0
Uz U —uz  —Up 00

and similarly (—u) + u = 0. Finally, Axiom 10 holds because
lu=1 |:ull M12j| _ |:M11 Mlz] —u
Uz U Uzr U

» EXAMPLE 5 The Vector Space of m x n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have
no trouble adapting the argument used in that example to show that the set V of all
m x n matrices with the usual matrix operations of addition and scalar multiplication is
a vector space. We will denote this vector space by the symbol M,,,,. Thus, for example,
the vector space in Example 4 is denoted as M»,.



In Example 6 the functions
were defined on the entire in-
terval (—oo, o0). However, the
arguments used in that exam-
ple apply as well on all subin-
tervals of (—o, ), such as
a closed interval [a, b] or an
open interval (a, b). We will
denote the vector spaces of
functions on these intervals by
Fla, b] and F(a, b), respec-
tively.

f+g
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> The Vector Space of Real-Valued Functions

Let V be the set of real-valued functions that are defined at each x in the interval (—oo, ).
If f = f(x) and g = g(x) are two functions in V and if k is any scalar, then define the
operations of addition and scalar multiplication by

f+g) = flx)+gx) 2
(kf)(x) = kf(x) 3)

One way to think about these operations is to view the numbers f(x) and g(x) as “com-
ponents” of f and g at the point x, in which case Equations (2) and (3) state that two
functions are added by adding corresponding components, and a function is multiplied
by a scalar by multiplying each component by that scalar—exactly asin R” and R”. This
idea is illustrated in parts (a) and (b) of Figure 4.1.2. The set V with these operations is
denoted by the symbol F(—oo, ). We can prove that this is a vector space as follows:

Axioms 1 and 6: These closure axioms require that if we add two functions that are
defined at each x in the interval (—oo, ), then sums and scalar multiples of those func-
tions must also be defined at each x in the interval (—oo, ). This follows from Formulas
(2) and (3).

Axiom 4: This axiom requires that there exists a function 0 in F(—oo, ), which when
added to any other function f in F(—c0, ) produces f back again as the result. The
function whose value at every point x in the interval (—oo, ) is zero has this property.
Geometrically, the graph of the function 0 is the line that coincides with the x-axis.

Axiom 5: This axiom requires that for each function fin F(—o0, o) there exists a function
—fin F(—oo, ©), which when added to f produces the function 0. The function defined
by —f(x) = — f(x) has this property. The graph of —f can be obtained by reflecting the
graph of f about the x-axis (Figure 4.1.2¢).

Axioms 2, 3,7, 8,9, 10: The validity of each of these axioms follows from properties of
real numbers. For example, if f and g are functions in F(—oe, ), then Axiom 2 requires
that f + g = g + f. This follows from the computation

(f+g)(x) =f(x) +g(x) = g(x) +f(x) = (g +H(x)

in which the first and last equalities follow from (2), and the middle equality is a property
of real numbers. We will leave the proofs of the remaining parts as exercises.

y y y
g
kf(x) f /ﬂ\x
f -~ f T f(x) 0 ' >
| R § —f(x) {
X
(a) (b) (c)
Figure 4.1.2

It is important to recognize that you cannot impose any two operations on any set
V and expect the vector space axioms to hold. For example, if V is the set of n-tuples
with positive components, and if the standard operations from R” are used, then V is not
closed under scalar multiplication, because if u is a nonzero n-tuple in V, then (—1)u has
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Some Properties of Vectors

at least one negative component and hence is not in V. The following is a less obvious
example in which only one of the ten vector space axioms fails to hold.

P EXAMPLE 7 A Set That Is Not a Vector Space
Let V = R? and define addition and scalar multiplication operations as follows: If
u = (u, ) and v = (vy, v»), then define
u+v=(uy+ v, u+ )
and if k is any real number, then define
ku = (kuy, 0)

For example, ifu = (2,4),v= (-3, 5), and k = 7, then

u+v=(2+(=-3),4+5 =(-19)

ku="7a=(7-2,0)=(14,0)
The addition operation is the standard one from R?, but the scalar multiplication is not.
In the exercises we will ask you to show that the first nine vector space axioms are satisfied.
However, Axiom 10 fails to hold for certain vectors. For example, ifu = (u;, u;) is such
that u, # 0, then

lu=1(uy,uz) = (1-uy,0) = (u1,0) #u

Thus, V is not a vector space with the stated operations. <

Our final example will be an unusual vector space that we have included to illustrate
how varied vector spaces can be. Since the vectors in this space will be real numbers,
it will be important for you to keep track of which operations are intended as vector
operations and which ones as ordinary operations on real numbers.

» EXAMPLE 8 An Unusual Vector Space

Let V be the set of positive real numbers, letu = © and v = v be any vectors (i.e., positive
real numbers) in V, and let k£ be any scalar. Define the operations on V to be

U+ vV = uv [Vector addition is numerical multiplication. |

k

ku =u [ Scalar multiplication is numerical exponentiation. |

Thus, for example, 1 +1 =1 and (2)(1) = 1> = 1—strange indeed, but nevertheless
the set V with these operations satisfies the ten vector space axioms and hence is a vector
space. We will confirm Axioms 4, 5, and 7, and leave the others as exercises.

*  Axiom 4—The zero vector in this space is the number 1 (i.e., 0 = 1) since
u+l=u-1=u

*  Axiom 5—The negative of a vector u is its reciprocal (i.e., —u = 1/u) since

1 1
u+—=u<—>=1(=0)
u u

« Axiom 7—k(u + v) = wv)* = u*v* = (ku) + (kv). <

The following is our first theorem about vector spaces. The proof is very formal with
each step being justified by a vector space axiom or a known property of real numbers.
There will not be many rigidly formal proofs of this type in the text, but we have included
this one to reinforce the idea that the familiar properties of vectors can all be derived
from the vector space axioms.
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THEOREM 4.1.1 Let V be a vector space, u a vector in 'V, and k a scalar; then:

(@) Ou=0
b)) k0=0
(¢) (—Du= —u

d) Ifku=0, thenk =0oru=0.

We will prove parts (a) and (¢) and leave proofs of the remaining parts as exercises.

Proof (a) We can write

Ou+ Ou= (0 + O)u [Axiom 8]
= Ou | Property of the number 0]
By Axiom 5 the vector Ou has a negative, —O0u. Adding this negative to both sides above
yields
[Ou + Ou] + (—0u) = Ou + (—Ou)

or
Ou+ [Ou+ (—0Ou)] = Ou + (—Ou) [Axiom 3]

ou+0=0 [ Axiom 5]

Ou=20 [Axiom 4]

Proof (¢) To prove that (—1)u = —u, we must show that u + (—1)u = 0. The proof is
as follows:
u+ (—u=lu+ (—1)u [Axiom 10]
= {1+ (=1))u [Axiom 8]
= Ou | Property of numbers]
=0 [ Part (a) of this theorem |

This section of the text is important to the overall plan of linear algebra in that it estab-
lishes a common thread among such diverse mathematical objects as geometric vectors,
vectors in R”", infinite sequences, matrices, and real-valued functions, to name a few.
As a result, whenever we discover a new theorem about general vector spaces, we will
at the same time be discovering a theorem about geometric vectors, vectors in R”", se-
quences, matrices, real-valued functions, and about any new kinds of vectors that we
might discover.

To illustrate this idea, consider what the rather innocent-looking result in part (a)
of Theorem 4.1.1 says about the vector space in Example 8. Keeping in mind that the
vectors in that space are positive real numbers, that scalar multiplication means numerical
exponentiation, and that the zero vector is the number 1, the equation

Ou=20
is really a statement of the familiar fact that if u is a positive real number, then

u’ =1
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Exercise Set 4.1

1

. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (uy, uy) and v = (v, vy):

u+v=(u +v,u+vy), ku=(0,ku,)

(a) Compute u+ v and ku for u = (—1,2),v=(3,4), and
k=3.

(b) In words, explain why V is closed under addition and
scalar multiplication.

(c) Since addition on V is the standard addition operation on
R?, certain vector space axioms hold for V because they
are known to hold for R2. Which axioms are they?

(d) Show that Axioms 7, 8, and 9 hold.

(e) Show that Axiom 10 fails and hence that V is not a vector
space under the given operations.

. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (u, u,) and v = (v, v5):

u+v=_(u +vi+1Lu +v,+1), ku= (ku,ku,)

(a) Compute u+ v and ku for u = (0,4),v= (1, —3), and
k=2.

(b) Show that (0, 0) # 0.

(c) Show that (—1,—1) =0.

(d) Show that Axiom 5 holds by producing an ordered pair
—u such that u + (—u) = 0 foru = (uy, uy).

(e) Find two vector space axioms that fail to hold.

In Exercises 312, determine whether each set equipped with

the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

3

. The set of all real numbers with the standard operations of
addition and multiplication.

. The set of all pairs of real numbers of the form (x, 0) with the
standard operations on R?.

. The set of all pairs of real numbers of the form (x, y), where
x > 0, with the standard operations on R.

. The set of all n-tuples of real numbers that have the form
(x, x, ..., x) with the standard operations on R".

. The set of all triples of real numbers with the standard vector
addition but with scalar multiplication defined by

k(x,y,2) = (K*x, K>y, k*z)

. The set of all 2 x 2 invertible matrices with the standard ma-
trix addition and scalar multiplication.

10.

11

12.

13.

14.

15.

16.

17.

18.

. The set of all 2 x 2 matrices of the form

a 0
0 b
with the standard matrix addition and scalar multiplication.

The set of all real-valued functions f defined everywhere on
the real line and such that f(1) = 0 with the operations used
in Example 6.

. The set of all pairs of real numbers of the form (1, x) with the

operations
L)+, y)=0,y+y) and k(1,y) = (1, ky)

The set of polynomials of the form ay + a;x with the opera-
tions

(a() + alx) + (bo + blx) = (ao + b()) + (dl + bl)x

and
k(ap + ax) = (kap) + (ka))x

Verify Axioms 3, 7, 8, and 9 for the vector space given in Ex-
ample 4.

Verify Axioms 1, 2, 3,7, 8,9, and 10 for the vector space given
in Example 6.

With the addition and scalar multiplication operations defined
in Example 7, show that V = R? satisfies Axioms 1-9.

Verify Axioms 1, 2, 3, 6, 8,9, and 10 for the vector space given
in Example 8.

Show that the set of all points in R? lying on a line is a vector
space with respect to the standard operations of vector ad-
dition and scalar multiplication if and only if the line passes
through the origin.

Show that the set of all points in R? lying in a plane is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the plane passes
through the origin.

In Exercises 19-20, let V be the vector space of positive real

numbers with the vector space operations given in Example 8. Let
u = u be any vector in V, and rewrite the vector statement as a
statement about real numbers.

19.

20.

—u=(—1u

ku=0if and onlyif k =0 oru=0.

Working with Proofs

21.

The argument that follows proves that if u, v, and w are vectors
in a vector space V such that u +w = v 4 w, then u = v (the
cancellation law for vector addition). Asillustrated, justify the
steps by filling in the blanks.



ut+w=v+w Hypothesis

(u+w)+ (—w) = (v+w) + (—w) Add —w to both sides.
u+ w4+ (—w)] = v+ [w+ (—w)]
u+0=v+0

u=yv

22. Below is a seven-step proof of part (b) of Theorem 4.1.1.
Justify each step either by stating that it is true by hypothesis
or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be
the zero vector in V, and let k be a scalar.

Conclusion: Then k0 = 0.

Proof: (1) k0 4 ku = k(0 + u)
2) = ku
(3) Since kuisin V, —kuisin V.
(4) Therefore, (k0 + ku) 4+ (—ku) = ku + (—ku).

5 k0 + (ku + (—kw)) = ku + (—ku)
(6) k0+0=0
@) k=0

In Exercises 23-24, let u be any vector in a vector space V.
Give a step-by-step proof of the stated result using Exercises 21
and 22 as models for your presentation.

23. ou=0 24. —u=(—Du

In Exercises 25-27, prove that the given set with the stated
operations is a vector space.

4.2 Subspaces
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25. The set V = {0} with the operations of addition and scalar
multiplication given in Example 1.

26. The set R* of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex-
ample 3.

27. The set M,,, of all m x n matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If uis a vector in a vector space V and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k # 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts (a)—(f) determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.
(b) A vector space must contain at least two vectors.

(c) Ifuisa vector and k is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space if vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (—1)u and —u are the same.

(f) Inthevectorspace F(—ce, ») any function whose graph passes
through the origin is a zero vector.

It is often the case that some vector space of interest is contained within a larger vector space

whose properties are known. In this section we will show how to recognize when this is the

case, we will explain how the properties of the larger vector space can be used to obtain

properties of the smaller vector space, and we will give a variety of important examples.

We begin with some terminology.

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one
must verify the ten vector space axioms. However, if W is a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited” from V.
For example, it is not necessary to verify that u + v = v 4 u holds in W because it holds
for all vectors in V including those in W. On the other hand, it is necessary to verify
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Theorem 4.2.1 states that W is
a subspace of V if and only if
it is closed under addition and
scalar multiplication.

Note that every vector space
has at least two subspaces, it-
self and its zero subspace.

that W is closed under addition and scalar multiplication since it is possible that adding
two vectors in W or multiplying a vector in W by a scalar produces a vector in V that is
outside of W (Figure 4.2.1). Those axioms that are not inherited by W are

Axiom 1—Closure of W under addition
Axiom 4—Existence of a zero vector in W
Axiom 5—Existence of a negative in W for every vector in W
Axiom 6—Closure of W under scalar multiplication
so these must be verified to prove that it is a subspace of V. However, the next theorem

shows that if Axiom 1 and Axiom 6 hold in W, then Axioms 4 and 5 hold in W as a
consequence and hence need not be verified.

Figure 4.2.1 The vectors u
and v are in W, but the vectors
u + v and ku are not.

THEOREM 4.2.1 If' W is a set of one or more vectors in a vector space V, then W is a
subspace of V if and only if the following conditions are satisfied.

(a) Ifuandv arevectorsin W, thenu+ visin W.

(b) If kis a scalar andu is a vector in W, then ku is in W.

Proof If W is a subspace of V, then all the vector space axioms hold in W, including
Axioms 1 and 6, which are precisely conditions (a) and (b).

Conversely, assume that conditions («) and (b) hold. Since these are Axioms 1 and
6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from V, we only need to show
that Axioms 4 and 5 hold in W. For this purpose, let u be any vector in W. It follows
from condition (b) that ku is a vector in W for every scalar k. In particular, Ou = 0 and
(—1)u = —uare in W, which shows that Axioms 4 and 5 hold in W.

» EXAMPLE 1 The Zero Subspace

If V is any vector space, and if W = {0} is the subset of V that consists of the zero vector
only, then W is closed under addition and scalar multiplication since

0+0=0 and k0=0

for any scalar k. We call W the zero subspace of V.

» EXAMPLE 2 LinesThrough the Origin Are Subspaces of R? and of R®

If W is a line through the origin of either R? or R?, then adding two vectors on the line
or multiplying a vector on the line by a scalar produces another vector on the line, so
W is closed under addition and scalar multiplication (see Figure 4.2.2 for an illustration
in R%).



Figure 4.2.2

Figure 4.2.3 The vectors
u + v and ku both lie in the same
plane as u and v.

<

wo (LD

1.-1)

Figure 4.2.4 W is not closed
under scalar multiplication.
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w w
utv
ku
v
u u
(a) Wis closed under addition. (b) Wis closed under scalar
multiplication.

» EXAMPLE 3 Planes Through the Origin Are Subspaces of R3

Ifuand vare vectors in a plane W through the origin of R*, then it is evident geometrically
that u 4 v and ku also lie in the same plane W for any scalar k (Figure 4.2.3). Thus W
is closed under addition and scalar multiplication. <

Table 1 below gives a list of subspaces of R? and of R? that we have encountered thus
far. We will see later that these are the only subspaces of R? and of R

Table 1
Subspaces of R? Subspaces of R3
o {0} e {0}
e Lines through the origin e  Lines through the origin
e R? e  Planes through the origin
e R?

P> EXAMPLE 4 A Subset of R2 That Is Not a Subspace

Let W be the set of all points (x, y) in R? for which x > 0 and y > 0 (the shaded region
in Figure 4.2.4). This set is not a subspace of R? because it is not closed under scalar
multiplication. For example, v = (1, 1) is a vector in W, but (—1)v = (—1, —1) is not.

» EXAMPLE 5 Subspaces of M,

We know from Theorem 1.7.2 that the sum of two symmetric# X n matrices is symmetric
and that a scalar multiple of a symmetric n x n matrix is symmetric. Thus, the set of
symmetric n X n matrices is closed under addition and scalar multiplication and hence
is a subspace of M,,,. Similarly, the sets of upper triangular matrices, lower triangular
matrices, and diagonal matrices are subspaces of M,,,,.

» EXAMPLE 6 A Subset of M,, That Is Not a Subspace

The set W of invertible n x n matrices is not a subspace of M,,,, failing on two counts—it
isnot closed under addition and not closed under scalar multiplication. We willillustrate
this with an example in M>, that you can readily adapt to M,,,,. Consider the matrices

1 2 -1 2
U_|:2 5] and V—[_z 5]
The matrix OU is the 2 x 2 zero matrix and hence is not invertible, and the matrix U + V
has a column of zeros so it also is not invertible.
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CALCULUS REQUIRED

CALCULUS REQUIRED

In this text we regard all con-
stants to be polynomials of de-
gree zero. Be aware, however,
that some authors do not as-
sign a degree to the constant 0.

The Hierarchy of Function
Spaces

» EXAMPLE 7 The Subspace C(—x, x)

There is a theorem in calculus which states that a sum of continuous functions is con-
tinuous and that a constant times a continuous function is continuous. Rephrased in
vector language, the set of continuous functions on (—e, ) is a subspace of F'(—o, ©).
We will denote this subspace by C(—ce, ).

P> EXAMPLE 8 Functions with Continuous Derivatives

A function with a continuous derivative is said to be continuously differentiable. There
is a theorem in calculus which states that the sum of two continuously differentiable
functions is continuously differentiable and that a constant times a continuously differ-
entiable function is continuously differentiable. Thus, the functions that are continuously
differentiable on (—oo, o) form a subspace of F(—ce, «0). We will denote this subspace
by C' (—o0, ©0), where the superscript emphasizes that the first derivatives are continuous.
To take this a step further, the set of functions with m continuous derivatives on (—co, )
is a subspace of F(—c, ) as is the set of functions with derivatives of all orders on
(—o0, ). We will denote these subspaces by C™ (—oo, o) and C*(—o0, ), respectively.

» EXAMPLE 9 The Subspace of All Polynomials
Recall that a polynomial is a function that can be expressed in the form

p(x) =ao+aix + -+ ax" (M

where ay, ay, ..., a, are constants. It is evident that the sum of two polynomials is a
polynomial and that a constant times a polynomial is a polynomial. Thus, the set W of all
polynomials is closed under addition and scalar multiplication and hence is a subspace
of F(—o0, 0). We will denote this space by P..

P EXAMPLE 10 The Subspace of Polynomials of Degree < n

Recall that the degree of a polynomial is the highest power of the variable that occurs with
a nonzero coefficient. Thus, for example, if a,, # 0 in Formula (1), then that polynomial
has degree n. It is not true that the set W of polynomials with positive degree n is a
subspace of F(—oo, o) because that set is not closed under addition. For example, the
polynomials

142x +3x* and 54 7x — 3x?

both have degree 2, but their sum has degree 1. What is true, however, is that for each
nonnegative integer n the polynomials of degree n or less form a subspace of F (—o, ©).
We will denote this space by P,. <

It is proved in calculus that polynomials are continuous functions and have continuous
derivatives of all orders on (—o, ). Thus, it follows that P, is not only a subspace of
F(—o0, ), as previously observed, but is also a subspace of C*(—o, »). We leave it
for you to convince yourself that the vector spaces discussed in Examples 7 to 10 are
“nested” one inside the other as illustrated in Figure 4.2.5.

Remark 1In our previous examples we considered functions that were defined at all points of the
interval (—oe, o). Sometimes we will want to consider functions that are only defined on some
subinterval of (—o, c0), say the closed interval [a, b] or the open interval (a, b). In such cases
we will make an appropriate notation change. For example, C|a, b] is the space of continuous
functions on [a, b] and C (a, b) is the space of continuous functions on (a, b).
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Note that the first step in
proving Theorem 4.2.2 was
to establish that W contained
at least one vector. This is im-
portant, for otherwise the sub-
sequent argument might be
logically correct but meaning-
less.

Ifk = 1, then Equation (2) has
the form w = k;v,, in which
case the linear combination is
just a scalar multiple of v;.
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Wi

The following theorem provides a useful way of creating a new subspace from known
subspaces.

C"l(—(xl X OO)
C'(con, )
o, )
F( e, )

Figure 4.2.5

THEOREM 4.2.2 If Wy, W, ..., W, are subspaces of a vector space V, then the inter-
section of these subspaces is also a subspace of V.

Proof Let W be the intersection of the subspaces Wi, W,, ..., W,. This set is not
empty because each of these subspaces contains the zero vector of V, and hence so does
their intersection. Thus, it remains to show that W is closed under addition and scalar
multiplication.

To prove closure under addition, let u and v be vectors in W. Since W is the inter-
section of Wy, W, ..., W,, it follows that u and v also lie in each of these subspaces.
Moreover, since these subspaces are closed under addition and scalar multiplication, they
also all contain the vectors u 4+ v and ku for every scalar k, and hence so does their inter-
section W. This proves that W is closed under addition and scalar multiplication.

Sometimes we will want to find the “smallest” subspace of a vector space V' that con-
tains all of the vectors in some set of interest. The following definition, which generalizes
Definition 4 of Section 3.1, will help us to do that.

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear
combination of the vectors vi, v, ..., v, in V if w can be expressed in the form

w=kvi+kv+--+ kv, 2

where k1, ky, ..., k, are scalars. These scalars are called the coefficients of the linear

combination.

THEOREM 4.2.3 If'S = {wi, Wa, ..
V, then:

(a) The set W of all possible linear combinations of the vectors in S is a subspace of V.

., W, } is a nonempty set of vectors in a vector space

(b) Theset W inpart (a) is the “smallest” subspace of V that contains all of the vectors
in S in the sense that any other subspace that contains those vectors contains W.

Proof (a) Let W be the set of all possible linear combinations of the vectors in S. We
must show that W is closed under addition and scalar multiplication. To prove closure

under addition, let
u=cw +cw,+---+cw,. and v=kw +kw +---+kw,
be two vectors in W. It follows that their sum can be written as

u+v=_(c+k)w+ (2 +k)wo+---+ (¢, +k)w,
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In the case where S is the
empty set, it will be convenient
to agree that span(d) = {0}.

which is a linear combination of the vectors in S. Thus, W is closed under addition. We
leave it for you to prove that W is also closed under scalar multiplication and hence is a
subspace of V.

Proof (b) Let W’ be any subspace of V that contains all of the vectors in S. Since W’
is closed under addition and scalar multiplication, it contains all linear combinations of
the vectors in S and hence contains W.

The following definition gives some important notation and terminology related to
Theorem 4.2.3.

DEFINITION 3 If S = {wy, wa, ..., w,} is a nonempty set of vectors in a vector space
V, then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V generated by S, and we say that the vectors
Wi, Wa, ..., W, span W. We denote this subspace as

W = span{w;, w,, ..., w,} or W = span(S)

P EXAMPLE 11 The Standard Unit Vectors Span R"

Recall that the standard unit vectors in R” are
e =(1,0,0,...,0), e=1(0,1,0,...,0),..., € =(0,0,0,...,1)
These vectors span R” since every vector v = (vy, v, ..., V,) in R” can be expressed as
V=vie; + e+ --- 4+ v,e,
which is a linear combination of e, e, ..., e,. Thus, for example, the vectors
i=(1,0,0), j=(0,1,0), k=(0,0,1)
span R3 since every vector v = (a, b, c) in this space can be expressed as

v=(a,b,c)=a(l,0,0) +b0,1,0) +c(0,0,1) = ai + bj + ck

» EXAMPLE 12 A Geometric View of Spanning in R? and R®

(a) Ifvisanonzerovectorin R? or R that hasitsinitial point at the origin, then span{v},
which is the set of all scalar multiples of v, is the line through the origin determined
by v. You should be able to visualize this from Figure 4.2.6a by observing that the
tip of the vector kv can be made to fall at any point on the line by choosing the
value of k to lengthen, shorten, or reverse the direction of v appropriately.

Historical Note The term linear combination is due to the American
mathematician G.W. Hill, who introduced it in a research paper on plan-
etary motion published in 1900. Hill was a “loner” who preferred to
work out of his home inWest Nyack, NewYork, rather than in academia,
though he did try lecturing at Columbia University for a few years. In-
terestingly, he apparently returned the teaching salary, indicating that
he did not need the money and did not want to be bothered looking
after it. Although technically a mathematician, Hill had little interest in
modern developments of mathematics and worked almost entirely on

the theory of planetary orbits.
[Image: Courtesy of the American Mathematical Society
www.ams.org]

George William Hill
(1838-1914)
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(b) If v, and v, are nonzero vectors in R> that have their initial points at the origin,
then span{vy, v,}, which consists of all linear combinations of v; and v,, is the plane
through the origin determined by these two vectors. You should be able to visualize
this from Figure 4.2.6b by observing that the tip of the vector k;v; + kv, can be
made to fall at any point in the plane by adjusting the scalars k; and &, to lengthen,
shorten, or reverse the directions of the vectors kv, and k,v, appropriately.

span {v} span {vy, v,}

kv + kov
v 11 V2

(a) Span {v} is the line through the (b) Span{v,, v,} is the plane through the
origin determined by v. origin determined by v, and v,.

» EXAMPLE 13 A Spanning Set for P,

The polynomials 1, x, X2 x" span the vector space P, defined in Example 10 since

each polynomial p in P, can be written as
p=ao+ax+---+ax"

which is a linear combination of 1, x, x2, ..., x". We can denote this by writing

P, = span{l, x,x?, ..., x"} <

The next two examples are concerned with two important types of problems:

+ Given a nonempty set S of vectors in R” and a vector vin R", determine whether v is
a linear combination of the vectors in S.

+ Given a nonempty set S of vectors in R”, determine whether the vectors span R".

P> EXAMPLE 14 Linear Combinations

Consider the vectors u = (1,2, —1) and v = (6, 4, 2) in R>. Show that w = (9, 2, 7) is
a linear combination of u and v and that w' = (4, —1, 8) is not a linear combination of
uandyv.

Solution In order for w to be a linear combination of u and v, there must be scalars k;
and k» such that w = kju + k,v; that is,

9,2,7) =ki(1,2, —1) + k2(6, 4, 2) = (k1 + 6ka, 2k; + 4ky, —ki + 2k2)

Equating corresponding components gives

ki 4+ 6k, =9
2ky + 4k, =2
—ky +2ky =7
Solving this system using Gaussian elimination yields k; = —3, k; = 2, so

w = —3u+2v
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Solution Spaces of
Homogeneous Systems

Similarly, for w’ to be a linear combination of u and v, there must be scalars k; and
k> such that w = kju + kyv; that is,

4, —1,8) = ki(1,2, =1) + k2(6, 4, 2) = (k| + 6k, 2k1 + 4ka, —k1 + 2k»)

Equating corresponding components gives

ki + 6k, = 4
2ky + 4k, = —1
—k; + 2k, = 8

This system of equations is inconsistent (verify), so no such scalars k; and k; exist.
Consequently, w’ is not a linear combination of u and v.

P> EXAMPLE 15 Testing for Spanning
Determine whether the vectorsv; = (1, 1, 2), v, = (1,0, 1), and v3 = (2, 1, 3) span the
vector space R>.

Solution 'We must determine whether an arbitrary vector b = (b1, b», b3) in R® can be
expressed as a linear combination

b = kivi + kovy + k3vs
of the vectors vy, v,, and v3. Expressing this equation in terms of components gives
(b1,b2,b3) = ki1 (1,1,2) + k»(1,0, 1) + k3(2, 1, 3)
or

(b1, by, b3) = (ky + ko + 2k3, ky + k3, 2ki + ko + 3k3)

or
ki + ky + 2ky = by

ki + k3 =b,
2ky + ky + 3k; = b;

Thus, our problem reduces to ascertaining whether this system is consistent for all values
of by, by, and b;. One way of doing this is to use parts (¢) and (g) of Theorem 2.3.8,
which state that the system is consistent if and only if its coefficient matrix

1 1 2
A=1|1 0 1
2 1 3

has a nonzero determinant. But this is not the case here since det(A) = 0 (verify), so vy,
v,, and v3 do not span R3. <

The solutions of a homogeneous linear system Ax = 0 of m equations in n unknowns
can be viewed as vectors in R". The following theorem provides a useful insight into the
geometric structure of the solution set.

THEOREM 4.2.4 The solution set of a homogeneous linear system Ax = 0 of m equa-
tions in n unknowns is a subspace of R".

Proof Let W be the solution set of the system. The set W is not empty because it
contains at least the trivial solution x = 0.
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To show that W is a subspace of R", we must show that it is closed under addition
and scalar multiplication. To do this, let x; and x, be vectors in W. Since these vectors
are solutions of Ax = 0, we have

Ax; =0 and Ax, =0

It follows from these equations and the distributive property of matrix multiplication
that
A(X] —|—X2) = AXI +AX2 =0+0=0

so W is closed under addition. Similarly, if k is any scalar then
A(kx)) = kAx; =k0=0
so W is also closed under scalar multiplication.

Because the solution set of a homogeneous system in n unknowns is actually a
subspace of R", we will generally refer to it as the solution space of the system.

» EXAMPLE 16 Solution Spaces of Homogeneous Systems

In each part, solve the system by any method and then give a geometric description of
the solution set.

1 -2 3 X 0 1 -2 3 X 0
(@ |2 —4 6||y|l=]0 ® |-3 7 =8||y|=]0
3 —6 9 z 0 -2 —6 z 0
1 -2 3] [« 0 [0 0 0] x 0
© (-3 7 =8||y|=|0 (d [0 0 O||[y|=1]0
4 1 2 z 0 0 0 O Z 0
Solution

(a) The solutions are
x=2s—3t, y=s, z=t
from which it follows that

x=2y—3z or x—2y+3z=0

This is the equation of a plane through the origin that has n = (1, —2,3) as a
normal.

(b) The solutions are
x=-=5%, y=—t, z=t

which are parametric equations for the line through the origin that is parallel to the
vectorv = (=5, —1, 1).

(¢) Theonlysolutionisx = 0,y = 0, z = 0, so the solution space consists of the single
point {0}.

(d) This linear system is satisfied by all real values of x, y, and z, so the solution space
isall of R®. <

Remark Whereas the solution set of every homogeneous system of m equations in n unknowns is
a subspace of R", it is never true that the solution set of a nonhomogeneous system of m equations
in n unknowns is a subspace of R". There are two possible scenarios: first, the system may not
have any solutions at all, and second, if there are solutions, then the solution set will not be closed
either under addition or under scalar multiplication (Exercise 18).
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The Linear Transformation
Viewpoint

A Concluding Observation

Exercise Set 4.2

1. Use Theorem 4.2.1 to determine which of the following are

subspaces of R.

Theorem 4.2.4 can be viewed as a statement about matrix transformations by letting
Ta: R — R™ be multiplication by the coefficient matrix A. From this point of view
the solution space of Ax = 0 is the set of vectors in R" that T4 maps into the zero
vector in R™. This set is sometimes called the kernel of the transformation, so with this
terminology Theorem 4.2.4 can be rephrased as follows.

THEOREM 4.2.5 [f Aisanm X n matrix, then the kernel of the matrix transformation
Ta: R" — R™ is a subspace of R".

Itis important to recognize that spanning sets are not unique. For example, any nonzero
vector on the line in Figure 4.2.6a will span that line, and any two noncollinear vectors
in the plane in Figure 4.2.65 will span that plane. The following theorem, whose proof
is left as an exercise, states conditions under which two sets of vectors will span the same
space.

THEOREM 4.2.6 If S = {v{,Va,...,V,} and 8" = {w(, wy, .
of vectors in a vector space V, then

.., Wi} are nonempty sets

span{vy, va, ..., V. } = span{wy, wp, ..., Wi}

if and only if each vector in S is a linear combination of those in S', and each vector in
S’ is a linear combination of those in S.

3. Use Theorem 4.2.1 to determine which of the following are
subspaces of P;.

(a) All vectors of the form (a, 0, 0).

(b) All vectors of the form (a, 1, 1).

(c) All vectors of the form (a, b, ¢), where b = a + c.

(d) All vectors of the form (a, b, ¢), where b =a +c + 1.
(e) All vectors of the form (a, b, 0).

. Use Theorem 4.2.1 to determine which of the following are
subspaces of M,,,,.

(a) The set of all diagonal n x n matrices.

(b) The set of all n x n matrices A such that det(A) = 0.
(c) The set of all n x n matrices A such that tr(4) = 0.
(d) The set of all symmetric n X n matrices.

(e) Theset of all n x n matrices A such that AT = —A.

(f) Theset of all n x n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of all n x n matrices A such that AB = BA for
some fixed n x n matrix B.

(a) All polynomials ay + a,x + a,x? + azx> for which
ay = 0.

(b) All polynomials ay + a,x + a,x? 4 a;x* for which
ap+a; +a; + a3 =0.

(c) All polynomials of the form ay + a;x + a,x?> + a3x* in
which ay, a;, a,, and a; are rational numbers.

(d) All polynomials of the form ao + a;x, where ay and a, are
real numbers.

4. Which of the following are subspaces of F (—o, ©)?

(a) All functions f in F(—oe, o) for which f(0) = 0.

(b) All functions f in F'(—ox, o) for which f(0) = 1.

(c) All functions f in F(—o, ) for which f(—x) = f(x).
(d) All polynomials of degree 2.

. Which of the following are subspaces of R*?

(a) All sequences vin R” of the form
v=(v,0,v,0,v,0,...).



10.

11.

12.

13.

14.

15.

(b) All sequences vin R* of the form
v=(v,1,v,1,v,1,...).

(c) All sequences vin R* of the form
v = (v, 2v, 4v, 8v, 16w, ...).

(d) All sequences in R* whose components are 0 from some
point on.

. A line L through the origin in R* can be represented by para-

metric equations of the form x = at, y = bt,and z = ct. Use
these equations to show that L is a subspace of R* by showing
that if vi = (x1, y1, 21) and v, = (X2, ¥», 2p) are points on L
and k is any real number, then kv, and v + v, are also points
on L.

. Which of the following are linear combinations of

u=(0,-2,2)andv=(1,3,-1)?

(@ 2,2,2) (b) (0,4,5) () (0,0,0

. Express the following as linear combinations of u = (2, 1, 4),

v=(1,—1,3),andw = (3, 2, 5).

(@) (=9,-7,-15) (b) (6,11,6) (c) (0,0,0)

. Which of the following are linear combinations of

4 0 1 -1 0 2
S I H R
6 -8 0 0 -1 5
O I Y @]

In each part express the vector as a linear combination of
p=2+x+4xp,=1—x+3x% and
p; = 3+ 2x + 5x°.
(a) =9 — 7x — 15x2
© 0

(b) 6 + 11x + 6x?
(d) 7+ 8x +9x2

In each part, determine whether the vectors span R*.
(&) vi=(2,2,2), v,=1(0,0,3), vy =(0,1,1)
®)vi=02,-1,3), vw=(4,1,2), v;=(8,-1,8)
Suppose thatv; = (2,1,0,3),v, = (3, —1,5,2), and

v; = (—1,0,2,1). Which of the following vectors are in
span{vy, va, v3}?

(@ (2,3,-7,3) (b) (0,0,0,0)
(© (I, L LD (d) (—4,6,-13,4)
Determine whether the following polynomials span P;.

P =1—x42x2,
p3=5—x+4x2,

p2=3+X,
p, = —2 — 2x + 2x?

Let f = cos>x and g = sin’ x. Which of the following lie in
the space spanned by fand g?

(a) cos2x  (b) 3+ x?

© 1 e 0

Determine whether the solution space of the system Ax = 0
is a line through the origin, a plane through the origin, or the

(d) sinx

16.

17.

18.

19.

20.

21.

22.

23.
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origin only. If it is a plane, find an equation for it. Ifitis a
line, find parametric equations for it.

(-1 1 1 1 2 3
(a) A= 3 -1 0 byA=|2 5 3
2 -4 =5 0 8
1 =3 1 1 -1 1
© A= —6 2 (d) A= -1 4
3 -9 3 3 1 11
(Calculus required) Show that the following sets of functions

are subspaces of F(—o0, ).
(a) All continuous functions on (—oo, ).
(b) All differentiable functions on (—o, ©).

(c) All differentiable functions on (—oo, o) that satisfy
f'+2f=0.

(Calculus required) Show that the set of continuous functions
f = f(x) on [a, b] such that

b
/ f(x)dx =0
is a subspace of Cla, b].

Show that the solution vectors of a consistent nonhomoge-
neous system of m linear equations in n unknowns do not
form a subspace of R".

In each part, let T4: R> — R?> be multiplication by A, and
let u; = (1, 2) and u, = (—1, 1). Determine whether the set
{T4(uy), Ta(u)} spans R2.

Ao |t 1 mao| 1 1
@A=1 -, o A=)

In each part, let T4: R® — R? be multiplication by A, and let
uy =(0,1,1)and u, = (2, —1,1) and u3 = (1, 1, —=2). De-
termine whether the set {T4 (), T4 (uy), T4 (u3)} spans R2.

e S L B
@A=1y 1 ®A=1

If Ty is multiplication by a matrix A with three columns, then
the kernel of T is one of four possible geometric objects. What
are they? Explain how you reached your conclusion.

Let vy =(1,6,4), v»=(2,4,—-1), vs=(-1,2,5), and
w; = (1, -2, =5),w, = (0, 8,9). Use Theorem 4.2.6 to show
that span{v, v,, v3} = span{w;, w}.

The accompanying figure shows a mass-spring system in which
a block of mass m is set into vibratory motion by pulling the
block beyond its natural position at x = 0 and releasing it at
time ¢ = 0. If friction and air resistance are ignored, then the
x-coordinate x (¢) of the block at time 7 is given by a function
of the form

x(t) = ¢j cos wt + ¢, sin wt
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where w is a fixed constant that depends on the mass of the
block and the stiffness of the spring and ¢, and ¢, are arbi-
trary. Show that this set of functions forms a subspace of
C”(—o0, ).

Natural position ~

=
0
Stretched
VWV o 2N
«:uu,«(\ X
0
Released
| \’@1 —_—
-< > N
0
Figure Ex-23

Working with Proofs
24. Prove Theorem 4.2.6.

True-False Exercises

TF. In parts (a)—(k) determine whether the statement is true or
false, and justify your answer.

(a) Every subspace of a vector space is itself a vector space.
(b) Every vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation 74: R" — R™ is a sub-
space of R™.

(e) The solution set of a consistent linear system Ax = b of m
equations in n unknowns is a subspace of R".

(f) The span of any finite set of vectors in a vector space is closed
under addition and scalar multiplication.

(g) The intersection of any two subspaces of a vector space V is a
subspace of V.

(h) The union of any two subspaces of a vector space V is a sub-
space of V.

(1) Two subsets of a vector space V that span the same subspace
of V must be equal.

(j) Theset of upper triangular n X n matrices is a subspace of the
vector space of all n x n matrices.

(k) The polynomials x — 1, (x — 1)?, and (x — 1)3 span P;.

Working with Technology

T1. Recall from Theorem 1.3.1 that a product Ax can be expressed
as a linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica-
tion to compute

v=06(8,-2,1,—4)+17(=3,9, 11,6) — 9(13, —1, 2, 4)

T2. Use the idea in Exercise T1 and matrix multiplication to de-
termine whether the polynomial

p=1+x+x>4+x°
is in the span of
p1:8—2x+x2—4x3, p2=—3+9x—|—11x2—|—6x3,
p; = 13 — x +2x2 4 4x3

T3. For the vectors that follow, determine whether

span{vy, v, v3} = span{w;, wy, w3}

vi=(-1,2013), v»=(746-31),
v;=1(-531,2,4)
w =(-6,5,1,3,7),

wy=(2,7,7,-1,5)

wy =(6,6,6,—2,4),

4.3 Linear Independence

In this section we will consider the question of whether the vectors in a given set are

interrelated in the sense that one or more of them can be expressed as a linear combination

of the others. This is important to know in applications because the existence of such

relationships often signals that some kind of complication is likely to occur.

Linear Independence and
Dependence

In a rectangular xy-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors. For example, the

only way to express the vector (3, 2) as a linear combination of i = (1, 0) and j = (0, 1)

1S

(3,2) = 3(1,0) +2(0, 1) = 3i + 2j

(M



Figure 4.3.1

Figure 4.3.2

In the case where the set S in
Definition 1 has only one vec-
tor, we will agree that S is lin-
early independent if and only
if that vector is nonzero.
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(Figure 4.3.1). Suppose, however, that we were to introduce a third coordinate axis that
makes an angle of 45° with the x-axis. Call it the w-axis. As illustrated in Figure 4.3.2,
the unit vector along the w-axis is

I 1
"= <_ ' _>
V2 V2
Whereas Formula (1) shows the only way to express the vector (3, 2) as a linear combina-

tion of i and j, there are infinitely many ways to express this vector as a linear combination
of'i, j, and w. Three possibilities are

1 1
(3,2) =3(1,00 +2(0,1) +0 (— —
V2' 2
1 1 )

V2' 2

1 1
(3,2) = 4(1,0) 4+ 3(0, 1) — «/5(—, —> =4i+3j— V2w
722 !
In short, by introducing a superfluous axis we created the complication of having mul-
tiple ways of assigning coordinates to points in the plane. What makes the vector w
superfluous is the fact that it can be expressed as a linear combination of the vectors i
and j, namely,

)=3i+2j+0w

(3,2)=2(1,0)+(0,1)+¢§< 3t it /I

This leads to the following definition.

DEFINITION 1 If S = {vy, v2, ..., v, } is a set of two or more vectors in a vector space
V, then S is said to be a linearly independent set if no vector in S can be expressed as
a linear combination of the others. A set that is not linearly independent is said to be
linearly dependent.

In general, the most efficient way to determine whether a set is linearly independent
or not is to use the following theorem whose proof is given at the end of this section.

THEOREM 4.3.1 A nonempty set S = {vy, Va, ..., V,} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

kivi +kavo+ -+ kv, =0
arek; =0,k, =0,...,k =0.

P> EXAMPLE 1 Linear Independence of the Standard Unit Vectors in R"”

The most basic linearly independent set in R” is the set of standard unit vectors
e =(1,0,0,...,0), e=1(0,1,0,...,0),..., ¢, =(0,0,0,...,1)
To illustrate this in R?, consider the standard unit vectors

i=(1,0,0), j=1(0,1,0), k=1(0,0,1)
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To prove linear independence we must show that the only coefficients satisfying the vector
equation
kli + kz] + k}k =0

are k; = 0,k; =0, k3 = 0. But this becomes evident by writing this equation in its
component form

(klv k29 k3) = (Os 07 O)
You should have no trouble adapting this argument to establish the linear independence
of the standard unit vectors in R”.

> Linear Independence in R®

Determine whether the vectors
vV = (15 _2a 3)5 V) = (53 6? _1)7 V3 = (3? 2’ 1) (2)

are linearly independent or linearly dependent in R>.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

kivi + kavy + k3v3 = 0 3)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (3) in the component form

kl(la _27 3) +k2(57 65 _1) +k3(37 25 1) = (07 07 0)

Equating corresponding components on the two sides yields the homogeneous linear
system
ki + 5k, + 3k =0
—2k; + 6ky 4+ 2k3 =0 4
3ki — ky+ k3=0

Thus, our problem reduces to determining whether this system has nontrivial solutions.
There are various ways to do this; one possibility is to simply solve the system, which
yields

ky Z—%t, kz:—%t, k3=t

(we omit the details). This shows that the system has nontrivial solutions and hence
that the vectors are linearly dependent. A second method for establishing the linear
dependence is to take advantage of the fact that the coefficient matrix

1 5 3
A=|-2 6 2
3 -1 1

is square and compute its determinant. We leave it for you to show that det(A) = 0 from
which it follows that (4) has nontrivial solutions by parts (b) and (g) of Theorem 2.3.8.

Because we have established that the vectors vy, v,, and v3 in (2) are linearly depen-
dent, we know that at least one of them is a linear combination of the others. We leave
it for you to confirm, for example, that

1 1
V3 = Evl + EVQ
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» EXAMPLE 3 Linear Independence in R*

Determine whether the vectors
Vi =(1725 27_1)7 V2=(4, 91 97 _4)5 V3=(5, 85 97 _5)
in R* are linearly dependent or linearly independent.

Solution The linear independence or linear dependence of these vectors is determined
by whether there exist nontrivial solutions of the vector equation

kivi + kv + k3vs =0
or, equivalently, of
ki(1,2,2, =1) + k2(4,9,9, —4) + k3(5, 8,9, —=5) = (0,0, 0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system
ki +4ky + Skz =0
2k + 9k, + 8ks; =0
2ky 4+ 9%k, +9%; =0
—ky —4ky — Sk; =0

We leave it for you to show that this system has only the trivial solution
ky=0, k=0, k3=0

from which you can conclude that vy, v,, and v are linearly independent.

» EXAMPLE 4 AnImportant Linearly Independent Set in P,
Show that the polynomials

1, x, x> ..., x"
form a linearly independent set in P,.

Solution For convenience, let us denote the polynomials as

p=1 p=x p2=x2,-.., p, =x"

We must show that the only coefficients satisfying the vector equation
aopy +aip; +apy +--- +ayp, =0 ©)
are
ayp = ay :a2:~'~=an:0
But (5) is equivalent to the statement that
ao+aix +ax’+ -+ ax" =0 (6)

for all x in (—o0, ), so we must show that this is true if and only if each coefficient in
(6) is zero. To see that this is so, recall from algebra that a nonzero polynomial of degree
n has at most n distinct roots. That being the case, each coefficient in (6) must be zero,
for otherwise the left side of the equation would be a nonzero polynomial with infinitely
many roots. Thus, (5) has only the trivial solution. <

The following example shows that the problem of determining whether a given set of
vectorsin P, is linearly independent or linearly dependent can be reduced to determining
whether a certain set of vectors in R” is linearly dependent or independent.
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In Example 5, what rela-
tionship do you see between
the coefficients of the given
polynomials and the column
vectors of the coefficient ma-
trix of system (9)?

Sets with One or Two
Vectors

» EXAMPLE 5 Linear Independence of Polynomials
Determine whether the polynomials
pp=1—x, pp=5+3x—2x% py=1+3x—x?
are linearly dependent or linearly independent in P;.
Solution The linear independence or dependence of these vectors is determined by
whether the vector equation
kipy + kap, + k3p; =0 @)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (7) in its polynomial form

k(1 —x)+k(G+3x —2x) + k(1 +3x —x?) =0 (8)
or, equivalently, as
(ky + 5ks + k3) + (—ki + 3k + 3k3)x + (=2k, — k3)x> = 0
Since this equation must be satisfied by all x in (—oo, ), each coefficient must be zero
(as explained in the previous example). Thus, the linear dependence or independence

of the given polynomials hinges on whether the following linear system has a nontrivial

solution:
ki + 5k + k3=0

—ki + 3ky +3k3 =0 €]
—2ky — k3 =0
We leave it for you to show that this linear system has nontrivial solutions either by

solving it directly or by showing that the coefficient matrix has determinant zero. Thus,
the set {p;, p,, p3} is linearly dependent. <

The following useful theorem is concerned with the linear independence and linear de-
pendence of sets with one or two vectors and sets that contain the zero vector.

THEOREM 4.3.2
(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not 0.

(¢) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.

We will prove part (a) and leave the rest as exercises.

Proof(a) For any vectors vy, va, ..., V,, theset S = {vy, va, ..., v,, 0} is linearly depen-
dent since the equation
Ovi +0va+ -+ 0v, +1(0) =0

expresses 0 as a linear combination of the vectors in S with coefficients that are not
all zero.

» EXAMPLE 6 Linear Independence of Two Functions

The functions f; = x and f, = sin x are linearly independent vectors in F'(—o, o) since
neither function is a scalar multiple of the other. On the other hand, the two functions
g, = sin2x and g, = sin x cos x are linearly dependent because the trigonometric iden-
tity sin 2x = 2 sin x cos x reveals that g, and g, are scalar multiples of each other. <«
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A Geometric Interpretation  Linear independence has the following useful geometric interpretations in R> and R*:
of Linear Independence . Two vectors in R? or R? are linearly independent if and only if they do not lie on the
same line when they have their initial points at the origin. Otherwise one would be a
scalar multiple of the other (Figure 4.3.3).

Figure 4.3.3 (a) Linearly dependent (b) Linearly dependent (¢) Linearly independent

+ Three vectors in R? are linearly independent if and only if they do not lie in the same
plane when they have their initial points at the origin. Otherwise at least one would
be a linear combination of the other two (Figure 4.3.4).

Figure 4.3.4 (a) Linearly dependent (b) Linearly dependent (¢) Linearly independent

At the beginning of this section we observed that a third coordinate axis in R? is
superfluous by showing that a unit vector along such an axis would have to be expressible
as a linear combination of unit vectors along the positive x- and y-axis. That result is
a consequence of the next theorem, which shows that there can be at most n vectors in
any linearly independent set R”.

THEOREM 4.3.3 Let S = {vy, V2, ..., V,} be a set of vectors in R". Ifr > n, then S is
linearly dependent.

Proof Suppose that

Vi = (Vi1, V12, .., Vin)
Vo = (V21, V22, + -+, V2p)
V= (vrla Ur2y ooy Urn)

and consider the equation

k1v1 +k2V2 + .- +krV,- =0
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It follows from Theorem 4.3.3
that a set in R? with more than
two vectors is linearly depen-
dent and a set in R?® with more
than three vectors is linearly
dependent.

CALCULUS REQUIRED
Linear Independence of
Functions

If we express both sides of this equation in terms of components and then equate the
corresponding components, we obtain the system

Ullkl + v21k2 + -+ Urlkr =0
vioky + vnky + -+ vk, =0

ikt + voko + -+ vk, =0

This is a homogeneous system of n equations in the r unknowns ki, ..., k,. Since
r > n, it follows from Theorem 1.2.2 that the system has nontrivial solutions. Therefore,
S = {v1, va, ..., v, }isa linearly dependent set.

Sometimes linear dependence of functions can be deduced from known identities. For

example, the functions

f; =sin’x, f,=cos’x, and f; =5

form a linearly dependent set in F(—o, ), since the equation

5f, 4+ 5f, — f; = 5sin’x + 5cos’x — 5

= 5(sin’x + cos?x) —5=10

expresses 0 as a linear combination of f;, f», and f3 with coefficients that are not all zero.

However, it is relatively rare that linear independence or dependence of functions can
be ascertained by algebraic or trigonometric methods. To make matters worse, there is
no general method for doing that either. That said, there does exist a theorem that can
be useful for that purpose in certain cases. The following definition is needed for that

theorem.

DEFINITION 2 If f;

= fikx), = for(x),....f, = f,(x) are functions that are

n — 1 times differentiable on the interval (—o, ), then the determinant

W(x) =

J1(x) f2(x) e fu(x)
i) f3(x) s fu(x)

I I )

is called the Wronskian of fi, f>, ..., fu.

Jozef Hoéné de Wronski
(1778-1853)

Historical Note The Polish-French mathematician Jozef Hoéné de
Wronski was born Jozef Hoéné and adopted the name Wronski after
he married. Wronski’s life was fraught with controversy and conflict,
which some say was due to psychopathic tendencies and his exag-
geration of the importance of his own work. Although Wronski’s work
was dismissed as rubbish for many years, and much of it was indeed
erroneous, some of his ideas contained hidden brilliance and have sur-
vived. Among other things, Wronski designed a caterpillar vehicle to
compete with trains (though it was never manufactured) and did re-
search on the famous problem of determining the longitude of a ship
at sea. His final years were spent in poverty.

[Image: © TopFoto/The Image Works]



WARNING The converse of
Theorem 4.3.4 is false. If the
Wronskian of fi, f;,...,f, is
identically zero on (—oo, o),
then no conclusion can be
reached about the linear inde-
pendence of {f;,f,, ..., f,}—
this set of vectors may be lin-
early independent or linearly
dependent.
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Suppose for the moment that f; = f1(x), f, = fL(x),...,f, = f,(x) are linearly
dependent vectors in C"~D(—oo, 00). This implies that the vector equation
kify +kfy +-- -+ k£, =0

is satisfied by values of the coefficients &y, ks, . . ., k, that are not all zero, and for these
coefficients the equation

kifix) +kafo(x) + -+ ky fu(x) =0

is satisfied for all x in (—oo, o). Using this equation together with those that result by
differentiating it n — 1 times we obtain the linear system

ki fi(x) + ka f>(x) 4tk fu(x) =0
ki f{(x) + ky f5(x) + Ak fy (%) =0

ki) + k00 - k[ () =0

Thus, the linear dependence of f}, f5, . . ., f, implies that the linear system
fikx) Hx) e fax) ki 0
fi() fr(x) s fr(x) k> 0
: . . l=1. (10)
MA@ B e S0 | | e 0

has a nontrivial solution for every x in the interval (—oo, ), and this in turn implies
that the determinant of the coefficient matrix of (10) is zero for every such x. Since this
determinant is the Wronskian of fi, f», ..., f,, we have established the following result.

THEOREM 4.3.4 If the functions f,f,,...,f, have n—1 continuous derivatives
on the interval (—o, »), and if the Wronskian of these functions is not identically

zero on (—oo, ), then these functions form a linearly independent set of vectors in
C =D (—co, ).

In Example 6 we showed that x and sinx are linearly independent functions by
observing that neither is a scalar multiple of the other. The following example illustrates
how to obtain the same result using the Wronskian (though it is a more complicated
procedure in this particular case).

P EXAMPLE 7 Linear Independence Using the Wronskian

Use the Wronskian to show that f; = x and f, = sin x are linearly independent vectors
in C*(—o0, ).

Solution The Wronskian is

X sinx

Wkx) = = XCcosx —sinx

1 cosx

This function is not identically zero on the interval (—oo, ) since, for example,

0(3)=Fen(D) ()5

Thus, the functions are linearly independent.
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OPTIONAL

Exercise Set 4.3

» EXAMPLE 8 Linear Independence Using the Wronskian

Use the Wronskian to show that f; = 1, f, = ¢*, and f; = ¢?* are linearly independent
vectors in C*(—o, ).

Solution The Wronskian is

1 e e2x

Wx)=[0 e 2| =2¢*
0 e 4e¥

This function is obviously not identically zero on (—o0, =), so f1, f,, and f; form a linearly
independent set. <

We will close this section by proving Theorem 4.3.1.

Proof of Theorem 4.3.1 We will prove this theorem in the case where the set S has two
or more vectors, and leave the case where S has only one vector as an exercise. Assume
first that S is linearly independent. We will show that if the equation

kivi+kavo+ -+ kv, =0 (11)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
S must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific, suppose that k; = 0. Then we can

rewrite (11) as
k> R k,
vi=|——)vVv —— | v
1 3 2 3

which expresses v; as a linear combination of the other vectors in S.
Conversely, we must show that if the only coefficients satisfying (11) are

ki =0, kp=0,..., k. =0

then the vectors in § must be linearly independent. But if this were true of the coeffi-
cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

Vi=CVa+ -+ GV,
which we can rewrite as
Vit (=)ot 4 (=¢)v, =0

But this contradicts our assumption that (11) can only be satisfied by coefficients that
are all zero. Thus, the vectors in S must be linearly independent.

1. Explain why the following form linearly dependent sets of vec- 2. In each part, determine whether the vectors are linearly inde-
tors. (Solve this problem by inspection.) pendent or are linearly dependent in R*.
(@) u = (—1,2,4) and u, = (5, —10, —20) in R? @ (=3,0.4), 6,-1,2), 0, 1.3

(b) (=2,0,1), (3,2,95), (6,—1,1), (7,0, =2)

b)yu =G, -1, u,=4,5), u3 = (—4,7) in R?

3. In each part, determine whether the vectors are linearly inde-

© p=3-2x+x’andp,=6—4x +2x’in P, pendent or are linearly dependent in R*.

3 4 3 _4 (@ (3.8.7.-3), (15,3, ~1), 2.-1.2.6). (4.2.6.4)
(d)A=|: 5 O:|andB=|: 5 j|inM22

0 () 3,0,-3,6), (0,2,3, 1), (0,-2,-2,0), (=2,1,2,1)



4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in P;.

(@) 2 —x +4x2, 34 6x +2x2, 24 10x — 4x2
(b) 14 3x +3x%, x +4x2, 54 6x +3x%, 74 2x — x?

5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

10 12 o 1]
O Y N P R PR
o1 oo 0 0 1 00 o]
® 1o 0 0l" [0 0 o [0 1 o ™M=

6. Determine all values of k for which the following matrices are
linearly independent in M>;.

1 0 -1 0 2 0
1 k|’ k1] |1 3
7. In each part, determine whether the three vectors lie in a plane
in R3.
@ vi=2,-2,0), v»=(6,1,4), v =(2,0,-4)
) vi=(-6,7,2), v»=(3,2,4), ;=(04,-1,2)
8. In each part, determine whether the three vectors lie on the
same line in R3.
@ vi=(=1,23), »=(2,-4,-6), v =(-3,6,0)
) vi=Q2,-14), v>=0423), v;=(2,7,-6)
© vi=4,6,8), v»=(2,3,4), s=(-2,-3,-4
9. (a) Show that the three vectors v; = (0, 3, 1, —1),

v, =(6,0,5,1), and v; = (4, -7, 1, 3) form a linearly
dependent set in R*.

(b) Express each vector in part (a) as a linear combination of
the other two.
10. (a) Show that the vectorsv; = (1,2, 3,4),v, = (0, 1,0, —1),
and v; = (1, 3, 3, 3) form a linearly dependent set in R*.
(b) Express each vector in part (a) as a linear combination of

the other two.

11. For which real values of A do the following vectors form a
linearly dependent set in R3?

M= Gomhod) = (Chaed) v bk

12. Under what conditions is a set with one vector linearly inde-

pendent?

13. In each part, let T4: R — R’ be multiplication by A, and
let u; = (1, 2) and u, = (—1, 1). Determine whether the set
{T4(w), T4 (uy)} is linearly independent in R2.

Lot Ao 1
@Aa=1 , o A=),

14. In each part, let T4: R* — R® be multiplication by A, and let
u = (1,0,0),u, = (2,—1,1),and u; = (0, 1, 1). Determine

4.3 Linear Independence 211

whether the set {T4(uy), T4 (uy), T4 (u3)} is linearly indepen-
dentin R.

11 2 111
@A=|1 0 =3 bA=|1 1 =3
2 2 0 2 2 0

15. Are the vectors vy, v,, and v; in part (a) of the accompany-
ing figure linearly independent? What about those in part (b)?
Explain.

V V3

V3

Vi
X/ X
(a) (b)
Figure Ex-15

16. By using appropriate identities, where required, determine
which of the following sets of vectors in F(—oo, ) are lin-

early dependent.
(a) 6, 3sin’x, 2cos?x (b) x, cosx
(c) 1, sinx, sin2x (d) cos2x, sin’x, cos®x

(e) 3—x)%, x>—6x,5 (f) 0, cos® mx, sin’ 37x

17. (Calculus required) The functions
filx) =x and f>(x) =cosx

are linearly independent in F (—oo, o0) because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

18. (Calculus required) The functions
fikx) =sinx and f>(x) =cosx

are linearly independentin F (—oo, o0) because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

19. (Calculus required) Use the Wronskian to show that the fol-
lowing sets of vectors are linearly independent.

@ 1, x, e ®) 1, x, x?

20. (Calculus required) Use the Wronskian to show that the func-
tions fi(x) = e*, fo(x) = xe*, and f3(x) = x2e* are linearly
independent vectors in C*(—oe, ).

21. (Calculus required) Use the Wronskian to show that the func-
tions f)(x) =sinx, f>(x) =cosx, and f3(x) = x cosx are
linearly independent vectors in C*(—, ).
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22. Show that for any vectors u, v, and w in a vector space V, the
vectorsu — v, v — w, and w — u form a linearly dependent set.

23. (a) In Example 1 we showed that the mutually orthogonal vec-
torsi, j, and k form a linearly independent set of vectors in
R3. Do you think that every set of three nonzero mutually
orthogonal vectors in R? is linearly independent? Justify
your conclusion with a geometric argument.

(b) Justify your conclusion with an algebraic argument. [Hint:
Use dot products.]

Working with Proofs

24. Prove that if {v, v,, v3} is a linearly independent set of vectors,
then so are {v, >}, {vi, v3}, {¥2, v}, (v}, {2}, and {v3}.

25. Prove that if S = {v, v, ..., v, } is a linearly independent set
of vectors, then so is every nonempty subset of S.

26. Prove that if S = {v|, v,, v3} is a linearly dependent set of vec-
tors in a vector space V, and v, is any vector in V that is not
in S, then {vy, v, v3, v4} is also linearly dependent.

27. Prove thatif S = {v, v5, ..., v,} is a linearly dependent set of
vectors in a vector space V, and if v, 4, ..., v, are any vectors
in V that are notin S, then {vy, v,, . ., V,}isalso
linearly dependent.

s Ve Vg, e

28. Prove that in P, every set with more than three vectors is lin-
early dependent.

29. Prove that if {v|, v,} is linearly independent and v; does not li
in span{vy, v,}, then {vy, v, v3} is linearly independent.

30. Use part («) of Theorem 4.3.1 to prove part (b).
31. Prove part (b) of Theorem 4.3.2.
32. Prove part (¢) of Theorem 4.3.2.

True-False Exercises

TF. In parts (a)-(h) determine whether the statement is true or
false, and justify your answer.

4.4

(a) A set containing a single vector is linearly independent.

(b) The set of vectors {v, kv} is linearly dependent for every
scalar k.

(c) Every linearly dependent set contains the zero vector.

(d) If the set of vectors {v;, v», v3} is linearly independent, then
{kvy, kv,, kv3} is also linearly independent for every nonzero
scalar k.

(e) If vy, ..., v, are linearly dependent nonzero vectors, then
at least one vector v, is a unique linear combination of
Vis ooy Vi1

(f) The set of 2 x 2 matrices that contain exactly two 1’s and two
0’s is a linearly independent set in M»;.

(g) The three polynomials (x — 1)(x + 2), x(x + 2), and
x(x — 1) are linearly independent.

(h) The functions f; and f; are linearly dependent if there is a real
number x such that k| f(x) + k, f2(x) = 0 for some scalars k;
and k.

Working with Technology

T1. Devise three different methods for using your technology util-
ity to determine whether a set of vectors in R”" is linearly indepen-
dent, and then use each of those methods to determine whether
the following vectors are linearly independent.

vi =4, -52,6),
v3 =(6,-3,3,9),

v.=(2,-213),
vs=(4,-1,56)

T2. Show that S = {cost, sint, cos2t, sin2¢} is a linearly inde-
pendent set in C (—oe, o) by evaluating the left side of the equation

c1cost + cysint + ¢3c0s2t 4+ ¢4 8in2t =0

at sufficiently many values of ¢ to obtain a linear system whose
only solutionisc¢; = c; =¢; = ¢4 = 0.

Coordinates and Basis

We usually think of a line as being one-dimensional, a plane as two-dimensional, and the

space around us as three-dimensional. It is the primary goal of this section and the next to

make this intuitive notion of dimension precise. In this section we will discuss coordinate

systems in general vector spaces and lay the groundwork for a precise definition of

dimension in the next section.

Coordinate Systems in
Linear Algebra

In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between

points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan-
gular coordinate systems are common, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not

mutually perpendicular.
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y
P(a, b)
L -
\
\
\
e
o a
Coordinates of P in a rectangular Coordinates of P in a rectangular
. coordinate system in 2-space. coordinate system in 3-space.
Figure 4.4.1
y
P(a, b
[ "
/
/
/
//
/ X
0/ a
Coordinates of P in a nonrectangular Coordinates of P in a nonrectangular
. coordinate system in 2-space. coordinate system in 3-space.
Figure 4.4.2

In linear algebra coordinate systems are commonly specified using vectors rather
than coordinate axes. For example, in Figure 4.4.3 we have re-created the coordinate
systems in Figure 4.4.2 by using unit vectors to identify the positive directions and then
attaching coordinates to a point P using the scalar coefficients in the equations

— —
OP = au; +buy, and OP = au; + bu, + cus

Figure 4.4.3 %

Units of measurement are essential ingredients of any coordinate system. In ge-
ometry problems one tries to use the same unit of measurement on all axes to avoid
distorting the shapes of figures. This is less important in applications where coordinates
represent physical quantities with diverse units (for example, time in seconds on one axis
and temperature in degrees Celsius on another axis). To allow for this level of generality,
we will relax the requirement that unit vectors be used to identify the positive directions
and require only that those vectors be linearly independent. We will refer to these as the
“basis vectors” for the coordinate system. In summary, it is the directions of the basis
vectors that establish the positive directions, and it is the lengths of the basis vectors that
establish the spacing between the integer points on the axes (Figure 4.4.4).
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y y
4 2
3
2 1
1 X X
-3 2 —171 1 2 3 -3 -2 -1 1 2 3
-2 —1
-3
4 -2
Equal spacing Unequal spacing Equal spacing Unequal spacing
Perpendicular axes Perpendicular axes Skew axes Skew axes

Figure 4.4.4

Basis for a Vector Space

Our next goal is to extend the concepts of “basis vectors” and “coordinate systems” to
general vector spaces, and for that purpose we will need some definitions. Vector spaces
fall into two categories: A vector space V is said to be finite-dimensional if there is a
finite set of vectors in V' that spans V and is said to be infinite-dimensional if no such set
exists.

DEFINITION 1 If S = {vi, vo, ..., v,} is a set of vectors in a finite-dimensional vector
space V, then S is called a basis for V if:

(a) SspansV.
(b) S is linearly independent.

If you think of a basis as describing a coordinate system for a finite-dimensional
vector space V, then part (a) of this definition guarantees that there are enough basis
vectors to provide coordinates for all vectors in V, and part (b) guarantees that there is
no interrelationship between the basis vectors. Here are some examples.

P EXAMPLE 1 The Standard Basis for R"
Recall from Example 11 of Section 4.2 that the standard unit vectors
e =(1,0,0,...,0), e=(0,1,0,...,0),..., e =(0,0,0,...,1)

span R" and from Example 1 of Section 4.3 that they are linearly independent. Thus,
they form a basis for R” that we call the standard basis for R". In particular,

i=(1,0,0), j=(0,1,0), k=1(0,0,1)

is the standard basis for R>.

» EXAMPLE 2 The Standard Basis for P,
Show that § = {1, x,x2, ..., x"} is a basis for the vector space P, of polynomials of

degree n or less.

Solution We must show that the polynomials in S are linearly independent and span
P,. Let us denote these polynomials by

p=1 p=ux Pzzxz:--w p, = x"
We showed in Example 13 of Section 4.2 that these vectors span P, and in Example 4

of Section 4.3 that they are linearly independent. Thus, they form a basis for P, that we
call the standard basis for P,.



From Examples 1 and 3 you
can see that a vector space can
have more than one basis.
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P EXAMPLE 3 Another Basis for R®
Show that the vectorsv; = (1,2, 1), v» = (2,9, 0), and v5 = (3, 3, 4) form a basis for R>.
Solution We must show that these vectors are linearly independent and span R>. To
prove linear independence we must show that the vector equation

c1vi + cavo + c3v3 = 0 (1)

has only the trivial solution; and to prove that the vectors span R? we must show that
every vector b = (b1, by, b3) in R? can be expressed as

civi+cva+cv3=b 2

By equating corresponding components on the two sides, these two equations can be
expressed as the linear systems

ci+2c4+3¢c3=0 c1 + 2¢p 4+ 3¢3 = by
2c1 +9¢; +3c3=0 and 2c¢; +9¢; + 3¢c3 =by 3)
C1 + 4C3 =0 C1 + 4C3 = b3

(verify). Thus, we have reduced the problem to showing that in (3) the homogeneous
system has only the trivial solution and that the nonhomogeneous system is consistent
for all values of by, by, and b3. But the two systems have the same coefficient matrix

1 23
A=12 9 3
1 0 4

so it follows from parts (), (e), and (g) of Theorem 2.3.8 that we can prove both results
at the same time by showing that det(A) # 0. We leave it for you to confirm that
det(A) = —1, which proves that the vectors vy, v», and v; form a basis for R>.

» EXAMPLE 4 The Standard Basis for M,

Show that the matrices

1 0 0 1 0 0 0 0
M, = , My = , Mz = , My =
0 0 0 0 1 0 0 1

form a basis for the vector space M»; of 2 x 2 matrices.

Solution 'We must show that the matrices are linearly independent and span M»,. To
prove linear independence we must show that the equation

oM+ cxMy+ c3Ms + caMy =0 4)

has only the trivial solution, where 0 is the 2 x 2 zero matrix; and to prove that the
matrices span M,; we must show that every 2 x 2 matrix

5= 1]

oMy 4+ My +c3Ms +c4sMy = B ®)
The matrix forms of Equations (4) and (5) are
0 0
o o

Lo], o 1], o 0], [0 o
Mo ol "0 o T o] T Mo 1
Lo], o 17, o 0], [0 0] _[a b
““To ol "%o o] "1 o "o 1 ¢ d

can be expressed as

and
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Coordinates Relative to a
Basis

which can be rewritten as
0 0 0 ¢ o a b
= and =
3 0 0 3 ¢ c d
Since the first equation has only the trivial solution
C1 =6‘2=C3=C4=0
the matrices are linearly independent, and since the second equation has the solution

co=a, ca=b, c3=c¢, c4y=d

the matrices span M,,. This proves that the matrices M, M,, M5, M, form a basis for
My,. More generally, the mn different matrices whose entries are zero except for a single
entry of 1 form a basis for M,,, called the standard basis for M,,,,. <4

The simplest of all vector spaces is the zero vector space V = {0}. This space is
finite-dimensional because it is spanned by the vector 0. However, it has no basis in the
sense of Definition 1 because {0} is not a linearly independent set (why?). However, we
will find it useful to define the empty set @ to be a basis for this vector space.

» EXAMPLE 5 An Infinite-Dimensional Vector Space

Show that the vector space of P, of all polynomials with real coefficients is infinite-
dimensional by showing that it has no finite spanning set.

Solution If there were a finite spanning set, say S = {p;, p», - - -, P, }, then the degrees
of the polynomials in S would have a maximum value, say n; and this in turn would
imply that any linear combination of the polynomials in S would have degree at most n.
Thus, there would be no way to express the polynomial x” ! as a linear combination of
the polynomials in S, contradicting the fact that the vectors in S span P..

» EXAMPLE 6 Some Finite- and Infinite-Dimensional Spaces

In Examples 1, 2, and 4 we found bases for R", P,, and M,,,, so these vector spaces
are finite-dimensional. We showed in Example 5 that the vector space P, is not spanned
by finitely many vectors and hence is infinite-dimensional. Some other examples of
infinite-dimensional vector spaces are R”, F(—o, ), C(—x, x), C"(—», ), and
C*(—o,x).

Earlier in this section we drew an informal analogy between basis vectors and coordinate
systems. Our next goal is to make this informal idea precise by defining the notion of a
coordinate system in a general vector space. The following theorem will be our first step
in that direction.

THEOREM 4.4.1 Uniqueness of Basis Representation

If S = {vi,va, ..., V,} is a basis for a vector space V, then every vector v in 'V can be
expressed in the form v = c1vy + cavy + - - - + ¢, V,, in exactly one way.

Proof Since S spans V, it follows from the definition of a spanning set that every vector
in V is expressible as a linear combination of the vectors in S. To see that there is only
one way to express a vector as a linear combination of the vectors in S, suppose that
some vector v can be written as

vV=civit+cva+ -+ vy



Figure 4.4.5

Sometimes it will be desirable
to write a coordinate vector as
a column matrix or row ma-
trix, in which case we will de-
note it with square brackets as
[v]s. We will refer to this as the
matrix form of the coordinate
vector and (6) as the comma-
delimited form.
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and also as
v:k1v1 +k2V2+~-~+ann
Subtracting the second equation from the first gives

0=(c1 —kpvi+(ca—k)va+ -+ (cn — kn)Vy

Since the right side of this equation is a linear combination of vectors in §, the linear
independence of § implies that

cl—k1:0, Cz—kzzo,..., Cn—kn:()

that is,
o=k, ca=ky,..., cpn=k,

Thus, the two expressions for v are the same.

We now have all of the ingredients required to define the notion of “coordinates” in a
general vector space V. For motivation, observe that in R?, for example, the coordinates
(a, b, c) of a vector v are precisely the coefficients in the formula

v =ai+ bj+ ck

that expresses v as a linear combination of the standard basis vectors for R? (see Fig-
ure 4.4.5). The following definition generalizes this idea.

DEFINITION 2 If § = {vy, V2, ..., V,} is a basis for a vector space V, and
vV=ciVi + Vo + -+ vy,

is the expression for a vector v in terms of the basis S, then the scalars ¢y, ¢, ..., ¢,
are called the coordinates of v relative to the basis S. The vector (¢, ¢3, ..., ¢,) In
R" constructed from these coordinates is called the coordinate vector of v relative to
S it is denoted by

Ms = (c1,¢2, ..., ) (6)

Remark Tt is standard to regard two sets to be the same if they have the same members, even if
those members are written in a different order. In particular, in a basis for a vector space V, which
is a set of linearly independent vectors that span V, the order in which those vectors are listed
does not generally matter. However, the order in which they are listed is critical for coordinate
vectors, since changing the order of the basis vectors changes the coordinate vectors [for example,
in R? the coordinate pair (1, 2) is not the same as the coordinate pair (2, 1)]. To deal with this
complication, many authors define an ordered basis to be one in which the listing order of the
basis vectors remains fixed. In all discussions involving coordinate vectors we will assume that the
underlying basis is ordered, even though we may not say so explicitly.

Observe that (v)g is a vector in R", so that once an ordered basis § is given for a
vector space V, Theorem 4.4.1 establishes a one-to-one correspondence between vectors
in V and vectors in R" (Figure 4.4.6).

A one-to-one correspondence

T

[ ®
\4 s

Figure 4.4.6 vV R"
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P> EXAMPLE 7 Coordinates Relative to the Standard Basis for R"

In the special case where V = R" and S is the standard basis, the coordinate vector (v)g
and the vector v are the same; that is,

v=(V)s

For example, in R3 the representation of a vector v = (a, b, ¢) as a linear combination
of the vectors in the standard basis S = {i, j, k} is

v =ai+ bj+ ck

so the coordinate vector relative to this basis is (v)s = (a, b, ¢), which is the same as the
vector v.

P> EXAMPLE 8 Coordinate Vectors Relative to Standard Bases

(a) Find the coordinate vector for the polynomial
p(x) =co+c1x -|-sz2 e

relative to the standard basis for the vector space P,.

5= 7]

relative to the standard basis for M»,.

(b) Find the coordinate vector of

Solution (a) The given formula for p(x) expresses this polynomial as a linear combina-
tion of the standard basis vectors S = {1, x, x2, ..., x"}. Thus, the coordinate vector
for p relative to S is

(P)s = (co, €1, €2, -+, Cn)
Solution (b) 'We showed in Example 4 that the representation of a vector
B |:a b]
c d
as a linear combination of the standard basis vectors is
B |:a b:| =a[1 0:|+b|:0 1]+c|:0 0]+d|:0 0:|

c d 0 0 0 0 1 0 0 1

so the coordinate vector of B relative to S is

(B)s =(a,b,c,d)

P> EXAMPLE 9 Coordinates in R®
(a) We showed in Example 3 that the vectors
vi=(1,21, v»w=1(2,90, v;=03,3,4

form a basis for R3. Find the coordinate vector of v = (5, —1, 9) relative to the
basis S = {v{, v, v3}.

(b) Find the vector vin R® whose coordinate vector relative to S is (v)s = (—1, 3, 2).

Solution (a) To find (v)s we must first express v as a linear combination of the vectors
in §; that is, we must find values of ¢, ¢,, and c3 such that

V=cC1V] + C2V2 + C3V3
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or, in terms of components,
(5,-1,9) =c(1,2,1) +¢2(2,9,0) +¢3(3,3,4)
Equating corresponding components gives
ci+2c,4+3¢;= 5
2¢1 + 9¢y + 3¢c3 = —1

Cq +4c3= 9
Solving this system we obtain ¢; = 1, ¢; = —1, ¢3 = 2 (verify). Therefore,
s =(@1,-1,2)

Solution (b) Using the definition of (v)g, we obtain

v=(=1)v; + 3vy, + 2v;3
=(=D(1,2,1) +3(2,9,0) +2(3,3,4 =(11,31,7) 4
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1. Use the method of Example 3 to show that the following set 9. Show that the following matrices do not form a basis for M,.

of vectors forms a basis for R2.

1ol 2 —2] [t =1 [o -1
{@D,3 0} L1 (3 2 [t o |1 1

2. Use the method of Example 3 to show that the following set 10

of vectors forms a basis for R>.

. Let V be the space spanned by v; = cos® x, v, = sin” x,
V3 = cos 2x.

{(3, 1,—-4),(2,5,6), (1, 4, 8)} (a) Show that § = {v;, v,, v3} is not a basis for V.

3. Show that the following polynomials form a basis for P,.

X411, xP—1, 2x—1

(b) Find a basis for V.

11. Find the coordinate vector of w relative to the basis
S = {u;, w} for R%.

4. Show that the following polynomials form a basis for P;. @u=02,-4),u,=G3,8;w=(,1)

14+x, 1—x,

5. Show that the following matrices form a basis for M»,.

A

I -y ® w = (1.1, wy=(0.2): w=(a,b)

12. Find the coordinate vector of w relative to the basis
S = {u;, w} for R%.

[ 0 —8} [1 0} @ u = (1,=1), uy = (I, 1); w=(1,0)

-2 4 b2 () w = (1, —1), wy= (1, ); w= (0, 1)
6. Show that the following matrices form a basis for M»,. 13. Find the coordinate vector of v relative to the basis
S = {v, v, v3} for R3.
[1 1} [1 _1} [O _1} [1 0} (@ v=(2,—1,3) (1,0,0) 2,2,0)
> s , a) v=10,—L3) vi=(LU0), v, =1(s40),
1 1 0 0 1 0 0 0 v, =(3,3,3)
7. In each part, show that the set of vectors is not a basis for R>. (b) v=(5-12,3); vi = (1,2,3), v, = (—4,5,6),
(@ {2 —3.1), @ 1,1), 0, =7, 1)} v =0.-89)

(b) {(1, 6,4),(2,4,-1),(—1,2, 5)} 14. Find the coordinate vector of p relative to the basis

8. Show that the following vectors do not form a basis for P;.

S = {py, p2, p;} for P.
(@p=4-3x+xp=1p=ux p=x

1 —3x+2x%, 14+x+4x>, 1—-7x byp=2—x+xp=1+x,p=1+x% py=x+x>
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In Exercises 15-16, first show that theset S = {A,, A,, Az, A4}

is a basis for My, then express A as a linear combination of the
vectors in S, and then find the coordinate vector of A relative

to S.
17 0 1 0 0
15. A, = , Ay = , A3 = ,
1 1] 11 11
[0 0] 1 0
Ay = . A=
0 1] 10
a0 L[t o
P o) P lo oo TP loo1f”
[0 0] 6 2
A4: ; A:
1 0] 5 3

In Exercises 1718, first show that the set S = {p,, p,, p;} isa

basis for P,, then express p as a linear combination of the vectors
in S, and then find the coordinate vector of p relative to S.

17.

18.

19.

20.

21.

22.

23.

p=1+x+x py=x+x% py=x%
p=7—x+2x2

pr=1+2x+x% p, =249, p; =3+ 3x +4x%;
p=2+17x — 3x?

In words, explain why the sets of vectors in parts (a) to (d) are
not bases for the indicated vector spaces.
(@) w = (1,2), uy = (0,3), uy = (1, 5) for R?
(b) u; = (—1,3,2), u, = (6,1, 1) for R?
() p=1+x+x% p,=xfor P,

1 0 6 0 3.0
A= ., B= , C= ,

2 3 -1 4 1 7

D = >0 for M
Tla 2| M2

In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

In each part, let T4: R® — R? be multiplication by A, and let
{e1, e, €3} be the standard basis for R®. Determine whether
the set {T4(e;), T4(es), T4(e3)} is linearly independent in R2.

11 11 2
@A=| 0 1 -3 A=| 0 1 1
-1 2 0 -1 2 1

In each part, let T4: R® — R? be multiplication by A, and let
u = (1, —2, —1). Find the coordinate vector of T (u) relative
to the basis S = {(1, 1, 0), (0, 1, 1), (1, 1, 1)} for R>.

2 -1 0 01 0
@A=|1 1 1 b A=|1 0 1
0 -1 2 0 0 1

The accompanying figure shows a rectangular xy-coordin-
ate system determined by the unit basis vectors i and j and
an x'y’-coordinate system determined by unit basis vectors u;

24.

25.

26.

and w,. Find the x'y’-coordinates of the points whose xy-
coordinates are given.

@ 31 ® 1,00 © O @ (ab)
yand)y'
»\Jjandu, ‘
u
30° x
i Figure Ex-23

The accompanying figure shows a rectangular xy-coordinate
system and an x’y’-coordinate system with skewed axes. As-
suming that 1-unit scales are used on all the axes, find the x"y’-
coordinates of the points whose xy-coordinates are given.

@ O, G 1,0 © O (@ (@b
Y y
| 4‘50 ‘xandx'
Figure Ex-24

The first four Hermite polynomials [named for the French
mathematician Charles Hermite (1822-1901)] are

1, 2¢, —2+44r%, —12t +8¢°

These polynomials have a wide variety of applications in
physics and engineering.

(a) Show that the first four Hermite polynomials form a basis
for P;.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = —1 — 41 4+ 82 + 83
relative to B.

The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834-1886)] are

1, 1—¢t, 2—4r+1* 6—18t+9>—1¢

(a) Show that the first four Laguerre polynomials form a basis
for P;.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = —10t + 9> — 13

relative to B.



27. Consider the coordinate vectors

—8

6 3 7

Wls=|-1|, [dls=|0]|, [Bls= 6
4 4

3

(a) Find w if S is the basis in Exercise 2.
(b) Find q if S is the basis in Exercise 3.
(c) Find B if S is the basis in Exercise 5.
28. The basis that we gave for M5, in Example 4 consisted of non-

invertible matrices. Do you think that there is a basis for M»,
consisting of invertible matrices? Justify your answer.

Working with Proofs
29. Prove that R” is an infinite-dimensional vector space.
30. Let T4: R" — R" be multiplication by an invertible matrix

A, and let {uj,u,,...,u,} be a basis for R". Prove that
{Ta(uy), Ty(us), ..., To(u,)}is also a basis for R".

31. Prove that if V is a subspace of a vector space W and if V is
infinite-dimensional, then so is W.

True-False Exercises
TF. In parts (a)-(e) determine whether the statement is true or
false, and justify your answer.

(a) If V = span{vy, ..., v,}, then {v;, ..., v,}is a basis for V.

(b) Every linearly independent subset of a vector space V is a
basis for V.

4.5 Dimension
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(c) If {vi,vs,...,V,} is a basis for a vector space V, then ev-
ery vector in V can be expressed as a linear combination of
Vi, Vo, ..., V.

(d) The coordinate vector of a vector x in R" relative to the stan-
dard basis for R" is x.

(e) Every basis of P, contains at least one polynomial of degree 3
or less.
Working with Technology
T1. Let V be the subspace of P; spanned by the vectors
py=1+45x—3x>—11x3, p, =7+ 4x — x2 + 2x7,
P =5+ x +9x% + 2473,
(a) Find a basis S for V.

(b) Find the coordinate vector of p = 19 4 18x — 13x? — 10x?
relative to the basis § you obtained in part (a).

ps =3 —x +7x? 4 5x°

T2. Let V be the subspace of C*(—ox, ) spanned by the vectors
in the set

B = {1, cosx, cos® x, cos’ x, cos* x, cos’ x}

and accept without proof that B is a basis for V. Confirm that

the following vectors are in V, and find their coordinate vectors

relative to B.
fo=1, f; =cosx,

f, = cos2x, f3 =cos3x,

fy = cosdx, f5=cos5x

We showed in the previous section that the standard basis for R” has n vectors and hence

that the standard basis for R? has three vectors, the standard basis for R? has two vectors, and

the standard basis for R! (= R) has one vector. Since we think of space as three-dimensional,

a plane as two-dimensional, and a line as one-dimensional, there seems to be a link between

the number of vectors in a basis and the dimension of a vector space. We will develop this

idea in this section.

Number of Vectors in a
Basis

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number

of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.
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Engineers often use the term
degrees of fireedom as a syn-
onym for dimension.

THEOREM 4.5.2 Let V be an n-dimensional vector space, and let {vi, v, ...,V,} be
any basis.

(a) IfasetinV has more than n vectors, then it is linearly dependent.

(b) IfasetinV has fewer than n vectors, then it does not span V.

We can now see rather easily why Theorem 4.5.1 is true; for if
S={vi,va,...,V,}

is an arbitrary basis for V, then the linear independence of S implies that any set in V
with more than n vectors is linearly dependent and any set in V with fewer than n vectors
does not span V. Thus, unless a set in V has exactly n vectors it cannot be a basis.

We noted in the introduction to this section that for certain familiar vector spaces
the intuitive notion of dimension coincides with the number of vectors in a basis. The
following definition makes this idea precise.

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

» EXAMPLE 1 Dimensions of Some Familiar Vector Spaces
dim(R") =n [ The standard basis has n vectors.|
dim(P,) =n + 1 [The standard basis has n + 1 vectors. |

dim(M,,,,) = mn [The standard basis has mn vectors. |

» EXAMPLE 2 Dimension of Span(S)

If § = {v, va, ..., v,} then every vector in span(S§) is expressible as a linear combination
of the vectors in S. Thus, if the vectors in S are linearly independent, they automatically
form a basis for span(S), from which we can conclude that

dim[span{vy, v, ..., v, }] =71

In words, the dimension of the space spanned by a linearly independent set of vectors is
equal to the number of vectors in that set.

» EXAMPLE 3 Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

X1+ 3x — 2x3 + 2x5 =0
2x1 + 6xy — 5x3 — 2x4 +4x5 — 3x6=0
Sx3 + 10x4 + 15x¢ =0

2x1 + 6x» + 8x4 4+ 4xs5 + 18x =0

Solution In Example 6 of Section 1.2 we found the solution of this system to be
X1 =-3r—4s —2t, xo=r, x3=-25, x4=358, Xs=1, x¢=0
which can be written in vector form as

(x1, X2, X3, X4, X5, X6) = (=3r —4s —2t,r, =2s,5,1,0)
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or, alternatively, as
(x1, X2, X3, X4, X5, X6) =1r(—=3,1,0,0,0,0) + s(—4,0,-2,1,0,0) +#-2,0,0,0, 1, 0)
This shows that the vectors

vy =(-3,1,0,0,0,0), v,=1(—4,0,-2,1,0,0), v3=1(-2,0,0,0,1,0)

span the solution space. We leave it for you to check that these vectors are linearly
independent by showing that none of them is a linear combination of the other two (but
see the remark that follows). Thus, the solution space has dimension 3. <

Remark It can be shown that for any homogeneous linear system, the method of the last example
always produces a basis for the solution space of the system. We omit the formal proof.

We will devote the remainder of this section to a series of theorems that reveal the subtle
interrelationships among the concepts of linear independence, spanning sets, basis, and
dimension. These theorems are not simply exercises in mathematical theory—they are
essential to the understanding of vector spaces and the applications that build on them.

We will start with a theorem (proved at the end of this section) that is concerned with
the effect on linear independence and spanning if a vector is added to or removed from
a nonempty set of vectors. Informally stated, if you start with a linearly independent set
S and adjoin to it a vector that is not a linear combination of those already in S, then
the enlarged set will still be linearly independent. Also, if you start with a set S of two
or more vectors in which one of the vectors is a linear combination of the others, then
that vector can be removed from S without affecting span(S) (Figure 4.5.1).

The vector outside the plane Any of the vectors can Either of the collinear
can be adjoined to the other be removed, and the vectors can be removed,
two without affecting their remaining two will still and the remaining two
linear independence. span the plane. will still span the plane.

Figure 4.5.1

THEOREM 4.5.3 Plus/Minus Theorem
Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S U {v} that results by inserting v into S is still linearly
independent.

(b) Ifvis avector in S that is expressible as a linear combination of other vectors
in S, and if S — {v} denotes the set obtained by removing v from S, then S and
S — {v} span the same space; that is,

span(S) = span(S — {v})
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» EXAMPLE 4 Applying the Plus/Minus Theorem

Show that p; = 1 — x2, p, = 2 — x2, and p; = x? are linearly independent vectors.

Solution Theset S = {p,, p,} is linearly independent since neither vector in S is a scalar
multiple of the other. Since the vector p; cannot be expressed as a linear combination
of the vectors in S (why?), it can be adjoined to S to produce a linearly independent set

SU{p;} = {p1 p2: P3}- <

In general, to show that a set of vectors {vy, v», . . ., v, } is a basis for a vector space V,
one must show that the vectors are linearly independent and span V. However, if we
happen to know that V has dimension n (so that {v{, v,, ..., v,} contains the right
number of vectors for a basis), then it suffices to check either linear independence or
spanning—the remaining condition will hold automatically. This is the content of the
following theorem.

THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V
with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

Proof Assume that S has exactly n vectors and spans V. To prove that S is a basis, we
must show that S is a linearly independent set. But if this is not so, then some vector v in
S is a linear combination of the remaining vectors. If we remove this vector from §, then
it follows from Theorem 4.5.3(b) that the remaining set of n — 1 vectors still spans V.
But this is impossible since Theorem 4.5.2(b) states that no set with fewer than n vectors
can span an n-dimensional vector space. Thus S is linearly independent.

Assume that S has exactly n vectors and is a linearly independent set. To prove
that S is a basis, we must show that S spans V. But if this is not so, then there is
some vector v in V that is not in span(S). If we insert this vector into S, then it fol-
lows from Theorem 4.5.3(a) that this set of n + 1 vectors is still linearly independent.
But this is impossible, since Theorem 4.5.2(«) states that no set with more than n vec-
tors in an n-dimensional vector space can be linearly independent. Thus § spans V.

P EXAMPLE 5 Bases by Inspection
(a) Explain why the vectors v; = (=3, 7) and v, = (5, 5) form a basis for R?.

(b) Explain why the vectorsv; = (2,0, —1),v, = (4,0, 7),and v = (—1, 1, 4) form a
basis for R3.

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form
a linearly independent set in the two-dimensional space R?, and hence they form a basis
by Theorem 4.5.4.

Solution (b) The vectors vy and v, form a linearly independent set in the xz-plane (why?).
The vector v; is outside of the xz-plane, so the set {v;, v,, v3} is also linearly independent.
Since R? is three-dimensional, Theorem 4.5.4 implies that {v;, v, v3} is a basis for the
vector space R®. <

The next theorem (whose proof is deferred to the end of this section) reveals two
important facts about the vectors in a finite-dimensional vector space V:
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1. Every spanning set for a subspace is either a basis for that subspace or has a basis
as a subset.

2. Every linearly independent set in a subspace is either a basis for that subspace or
can be extended to a basis for it.

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

We conclude this section with a theorem that relates the dimension of a vector space
to the dimensions of its subspaces.

THEOREM 4.5.6 If' W is a subspace of a finite-dimensional vector space V, then:
(a) W is finite-dimensional.

(h) dim(W) < dim(V).

(¢) W =V ifandonly if dim(W) = dim(V).

Proof (a) We will leave the proof of this part as an exercise.
Proof (b) Part (a) shows that W is finite-dimensional, so it has a basis
S={wi,wa, ..., w,]}

Either S is also a basis for V or it is not. If so, then dim(V) = m, which means that
dim(V) = dim(W). Ifnot, then because S is a linearly independent set it can be enlarged
to a basis for V by part (b) of Theorem 4.5.5. But this implies that dim(W) < dim(V),
so we have shown that dim(W) < dim(V) in all cases.

Proof (¢) Assume that dim(W) = dim(V) and that
S= {wlaWZa"'awm}

is a basis for W. If S is not also a basis for V, then being linearly independent S can
be extended to a basis for V by part (b) of Theorem 4.5.5. But this would mean that
dim(V) > dim(W), which contradicts our hypothesis. Thus § must also be a basis for
V, which means that W = V. The converse is obvious.

Figure 4.5.2 illustrates the geometric relationship between the subspaces of R? in

order of increasing dimension.
Line through the origin
(1-dimensional)

Plane through
the origin
(2-dimensional)

R
Figure 4.5.2 (3-dimensional)
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OPTIONAL

We conclude this section with optional proofs of Theorems 4.5.2, 4.5.3, and 4.5.5.

Proof of Theorem 4.5.2(a) Let S’ = {wy, wa, ..., W, } be any set of m vectors in V, where
m > n. We want to show that S’ is linearly dependent. Since S = {v{,v,,...,v,}isa
basis, each w; can be expressed as a linear combination of the vectors in §, say

Wi = ap vy + anve +---+ anva

Wy = apvi + anva +- -+ dpvy (1)
Wy = AiV1 + QpV2 + -+ QuuVn
To show that S’ is linearly dependent, we must find scalars ki, ks, .. ., k,,, not all zero,
such that
kiw, +kowy +-- -+ kpw,, =0 2

We leave it for you to verify that the equations in (1) can be rewritten in the partitioned
form

ag as| cre dml
dajpp dxp - am2
(wilwa |- [wul=1[vi|va]---|v]| . . ) 3)
aip Ao st Qmp
Since m > n, the linear system
app  dzr v dmi X1
ap axp o dm Xo
=1. “)
Aiyp  An - Amn Xm 0

has more equations than unknowns and hence has a nontrivial solution
X1 =k1, X2=k2,..., Xm ka

Creating a column vector from this solution and multiplying both sides of (3) on the
right by this vector yields

k1 ay dr - Qi kl
k> ap axn o Am2 k>
(Wi lwo |- lwul| | =ilval-|Val
km djp dp - Amp km
By (4), this simplifies to
ki
k>
(Wi lwa |- |wul| | =
ki, 0

which we can rewrite as
kiwi + kowy + -+ - + kpywy, =0

Since the scalar coefficients in this equation are not all zero, we have proved that
S’ = {wy, wy, ..., w,} is linearly independent.
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The proof of Theorem 4.5.2(b) closely parallels that of Theorem 4.5.2(a) and will be
omitted.

Proof of Theorem 4.5.3(a) Assume that S = {v;, va,...,V,} is a linearly independent
set of vectors in V, and v is a vector in V that is outside of span(S). To show that
S"={v1, Vs, ..., V., v}is alinearly independent set, we must show that the only scalars
that satisfy

kivi+kavo+ -+ kv +kv=0 Q)
are k) =k, = --- =k, = k,; = 0. But it must be true that k,,; = 0 for otherwise we

could solve (5) for v as a linear combination of vy, v,, . .., v,, contradicting the assump-
tion that v is outside of span(S). Thus, (5) simplifies to

kivi+kvo+---+kv, =0 6)
which, by the linear independence of {v;, v», ..., v,}, implies that
ki=ky=---=k. =0
Proof of Theorem 4.5.3(b) Assume that S = {v;, v, ..., V,}isaset of vectorsin V, and
(to be specific) suppose that v, is a linear combination of v{, v, ..., v,_1, say
Ve =cCViF Vo 4+ Crmi Ve (7
We want to show that if v, is removed from S, then the remaining set of vectors
{vi, va, ..., v,_1} still spans S; that is, we must show that every vector w in span(S)
is expressible as a linear combination of {v, va, ..., v,_;}. Butif wis in span(S), then

w is expressible in the form
w=kvi+kv+-+k_ v+ kv,
or, on substituting (7),
w=kivi+kvo+- -+ kv Fhk(Cvi+ovat o oo1veon)

which expresses w as a linear combination of vi, v5, ..., Vv,_1.

Proof of Theorem 4.5.5(a) 1If § is a set of vectors that spans V but is not a basis for V,
then S is a linearly dependent set. Thus some vector v in § is expressible as a linear
combination of the other vectors in S. By the Plus/Minus Theorem (4.5.3b), we can
remove v from S, and the resulting set S” will still span V. If §’ is linearly independent,
then S’ is a basis for V, and we are done. If S’ is linearly dependent, then we can remove
some appropriate vector from S’ to produce a set S” that still spans V. We can continue
removing vectors in this way until we finally arrive at a set of vectors in S that is linearly
independent and spans V. This subset of S is a basis for V.

Proof of Theorem 4.5.5(b) Suppose that dim(V) = n. If S is a linearly independent set
that is not already a basis for V, then S fails to span V, so there is some vector v in V
that is not in span(S). By the Plus/Minus Theorem (4.5.3a), we can insert v into S, and
the resulting set S’ will still be linearly independent. If S’ spans V, then S’ is a basis for
V, and we are finished. If §” does not span V, then we can insert an appropriate vector
into S’ to produce a set S” that is still linearly independent. We can continue inserting
vectors in this way until we reach a set with n linearly independent vectors in V. This set
will be a basis for V by Theorem 4.5.4.
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Exercise Set 4.5

In Exercises 1-6, find a basis for the solution space of the ho-

mogeneous linear system, and find the dimension of that space.

10.

11.

12.

13.

x|+ x, — .X3=O
—le —X2+2X3:0

2. 3X1+X2+X3+X4=O
SX|—X2+X3—X4:0

—X1 + X3=0

.2X1+X2+3X3:0 4. X1—4X2+3X3— X4:0

X + 5x3=0 2x1 — 8xy + 6x3 —2x4 =0
X+ x3=0

x1—3x 4+ x3=0 6. x4+ y+ z=0

2x1 — 6xy +2x3 =0 3x4+2y—2z=0

3x1 = 9%+ 3x; =0 4x +3y— z=0

6x +5y+ z=0

. In each part, find a basis for the given subspace of R3, and

state its dimension.

(a) The plane 3x — 2y 4+ 5z = 0.

(b) The plane x — y = 0.

(¢c) Theline x = 2t,y = —t, z = 4t.

(d) All vectors of the form (a, b, ¢), where b = a + c.

. In each part, find a basis for the given subspace of R*, and

state its dimension.
(a) All vectors of the form (a, b, c, 0).

(b) All vectors of the form (a, b, ¢, d), where d = a + b and
c=a—b.

(c) Allvectors of the form (a, b, ¢, d), wherea = b = c = d.

. Find the dimension of each of the following vector spaces.

(a) The vector space of all diagonal n x n matrices.
(b) The vector space of all symmetric n X n matrices.

(¢) The vector space of all upper triangular n X n matrices.

Find the dimension of the subspace of P; consisting of all
polynomials ay + a;x + a>x* + asx3 for which ay = 0.

(a) Show that the set W of all polynomials in P, such that
p(1) = 01is a subspace of P;.

(b) Make a conjecture about the dimension of W.

(c) Confirm your conjecture by finding a basis for W.

Find a standard basis vector for R? that can be added to the

set {v, v»} to produce a basis for R>.

@ vi=(-1223),vw=(1,-2-2)

®vi=(1,-1,0), vw=(31-2)

Find standard basis vectors for R* that can be added to the
set {v, v»} to produce a basis for R*.

vi=(1,—-4,2,-3), v,=(-3,8—4,06)

14.

15.

16.

17.

v

18.

19.

20.

Let {v{, v5, v3} be a basis for a vector space V. Show that
{uy, w, w3} is also a basis, where u; = vy, u, = v; + v,, and
us = V] +Vy + V3.

The vectors v; = (1, =2, 3) and v, = (0, 5, —3) are linearly
independent. Enlarge {v|, v,} to a basis for R.

The vectors vi = (1,0, 0,0) and v, = (1, 1, 0, 0) are linearly
independent. Enlarge {v,, v,} to a basis for R*.

Find a basis for the subspace of R® that is spanned by the
vectors

=(1,0,0), v»=(1,0,1), vs=(2,0,1), va=(0,0,-1)
Find a basis for the subspace of R* that is spanned by the

vectors

» 2=1(2,2,2,0), vs=1(0,0,0,3),

In each part, let Ty: R® — R? be multiplication by A and find
the dimension of the subspace of R* consisting of all vectors
x for which T4 (x) = 0.

1 1 0 1 20
@A=|1 0 1 b)yA=|1 2 0
|10 1 1 20
1 0 0
¢ A=|-1 1 0
11

In each part, let 74, be multiplication by A and find the dimen-
sion of the subspace R* consisting of all vectors x for which
Ty(x) = 0.

0 0
10 2 -1
(a)A=|: } b A=|-1 1

1 1
0 0

-1 4 0 0
1 0 0 1

Working with Proofs

21

22.

. (a) Prove that for every positive integer n, one can find n + 1

linearly independent vectors in F(—oo, ). [Hint: Look
for polynomials.]

(b) Usetheresultin part (a) to prove that F (—oe, o) is infinite-
dimensional.

(¢) Prove that C(—o, ), C"(—», =), and C*(—w, «) are
infinite-dimensional.

Let S be a basis for an n-dimensional vector space V. Prove
thatifvy, v, ..., v, form a linearly independent set of vectors
in V, then the coordinate vectors (v{)s, (V2)s, ..., (v,)s form
a linearly independent set in R”, and conversely.



23.

24.
25.

26.
27.

Let S = {vy, v2,...,v,} be a nonempty set of vectors in an
n-dimensional vector space V. Prove that if the vectors in
S span V, then the coordinate vectors (vi)s, (V2)s, ..., (V;)s
span R", and conversely.

Prove part («) of Theorem 4.5.6.

Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

State the two parts of Theorem 4.5.2 in contrapositive form.

In each part, let S be the standard basis for P,. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of P, spanned by the given vectors.

(@) =1 4+x —2x% 34+3x+6x% 9
(b) 14+ x, x2, 24 2x +3x2
(c) 14+ x —3x% 2+2x —6x2, 34 3x — 9x?

True-False Exercises

TF. In parts (a)-(k) determine whether the statement is true or
false, and justify your answer.

(a) The zero vector space has dimension zero.

(b) There is a set of 17 linearly independent vectors in R'.

(c) Thereis a set of 11 vectors that span R'7.

(d) Every linearly independent set of five vectors in R is a basis

for R>.

(e) Every set of five vectors that spans R’ is a basis for R>.

(f) Every set of vectors that spans R" contains a basis for R".
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(g) Every linearly independent set of vectors in R” is contained in
some basis for R".

(h) There is a basis for M;, consisting of invertible matrices.

() IfAhassizen x nand I,, A, A, ..., A" are distinct matri-
ces, then {I,,, A, A2, ..., A"Z} is a linearly dependent set.

(j) There are at least two distinct three-dimensional subspaces
of P, 2.

(k) There are only three distinct two-dimensional subspaces of P,.

Working with Technology

T1. Devise three different procedures for using your technology
utility to determine the dimension of the subspace spanned by a
set of vectors in R", and then use each of those procedures to
determine the dimension of the subspace of R® spanned by the
vectors

vi=(2,2-101,
vs=(1,1,-2,0,—1),

v=(-1,-1,2,-31),
vy=(0,0,1,1,1)
T2. Find a basis for the row space of A by starting at the top and

successively removing each row that is a linear combination of its
predecessors.

3.4 2.2 1.0 —138
2.1 3.6 40 34
A=1]89 8.0 6.0 7.0
7.6 9.4 9.0 8.6
1.0 2.2 0.0 2.2

A basis that is suitable for one problem may not be suitable for another, so it is a common

process in the study of vector

spaces to change from one basis to another. Because a basis is

the vector space generalization of a coordinate system, changing bases is akin to changing

. . bl 2
coordinate axes in R and R”.

bases.

Coordinate Maps If S = {vi,v,, ...

In this section we will study problems related to changing

, V,} is a basis for a finite-dimensional vector space V, and if

(Vs = (c1,¢2, ..., Cn)

is the coordinate vector of v relative to S, then, as illustrated in Figure 4.4.6, the mapping

v — (V)s

(M

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space R". We call (1) the coordinate map
relative to S from V to R". In this section we will find it convenient to express coordinate
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Vv

Coordinate map

[s o

V./\ Gp)

[ ]
Ci’l
Rn
Figure 4.6.1
Change of Basis

vectors in the matrix form
Cl
(&)

Ms=| . @)

Cn

where the square brackets emphasize the matrix notation (Figure 4.6.1).

There are many applications in which it is necessary to work with more than one coor-
dinate system. In such cases it becomes important to know how the coordinates of a
fixed vector relative to each coordinate system are related. This leads to the following
problem.

The Change-of-Basis Problem If v is a vector in a finite-dimensional vector space V,
and if we change the basis for V from a basis B to a basis B’, how are the coordinate
vectors [v]p and [v]z related?

Remark To solve this problem, it will be convenient to refer to B as the “old basis” and B’ as
the “new basis.” Thus, our objective is to find a relationship between the old and new coordinates
of a fixed vector vin V.

For simplicity, we will solve this problem for two-dimensional spaces. The solution
for n-dimensional spaces is similar. Let

B ={u;,w} and B’ = {u},uy}

be the old and new bases, respectively. We will need the coordinate vectors for the new
basis vectors relative to the old basis. Suppose they are

[ua]Bz[Z] and [u’213=m (3)

That is,
v, = au; + bu
/1 1 2 (4)
u, = cu; +duy
Now let v be any vector in V, and let
vy = | )
Vg = kz
be the new coordinate vector, so that
v = kju| + ku) (6)

In order to find the old coordinates of v, we must express v in terms of the old basis B.
To do this, we substitute (4) into (6). This yields
v = ki(au; + buy) + ky(cu; + duy)
or
v = (kia + kyo)uy + (kib + krd)uy
Thus, the old coordinate vector for v is

vl kia + kyc
Vv =
B kib + k,d
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which, by using (5), can be written as

_ackl_ac
[V]B—b dll! = b d[V]B’

This equation states that the old coordinate vector [v]  results when we multiply the new
coordinate vector [v]g on the left by the matrix

p_ a c
b d
Since the columns of this matrix are the coordinates of the new basis vectors relative to
the old basis [see (3)], we have the following solution of the change-of-basis problem.

Solution of the Change-of-Basis Problem If we change the basis for a vector space V
from an old basis B = {u;, uy, ..., u,} to a new basis B’ = {u}, u}, ..., u,}, then for
each vector v in V, the old coordinate vector [v]p is related to the new coordinate
vector [v] g by the equation

[vlzg = Plvlp (7
where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are

[Wls, [Wyls,..., [W,]s 8

The matrix P in Equation (7) is called the transition matrix from B’ to B. For emphasis,
we will often denote it by Pg _, . It follows from (8) that this matrix can be expressed
in terms of its column vectors as

Pyp = [[uilp | [Wls | --- | [w,]5] &)

Similarly, the transition matrix from B to B’ can be expressed in terms of its column
vectors as

Py g = [[wlp | [wlp || [u]p] (10)

Remark There is a simple way to remember both of these formulas using the terms “old basis”
and “new basis” defined earlier in this section: In Formula (9) the old basis is B” and the new basis
is B, whereas in Formula (10) the old basis is B and the new basis is B’. Thus, both formulas can
be restated as follows:

The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.

» EXAMPLE 1 FindingTransition Matrices

Consider the bases B = {u;, u} and B’ = {u}, u,} for R*, where
u=(1,0), wu=(01, uy=(,1, v,=(21)

(a) Find the transition matrix Pg_, g from B’ to B.

(b) Find the transition matrix Pg_, 3 from B to B’'.
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Invertibility of Transition
Matrices

Solution (a) Here the old basis vectors are uj and u) and the new basis vectors are u;
and u;. We want to find the coordinate matrices of the old basis vectors u} and ) relative
to the new basis vectors u; and u,. To do this, observe that

U =u +w
uw, = 2u; +wp

’ _ 1 d ’ _ 2
[ul]B = |:1:| an [“2]3 = [1]

1 2
Py _.p = L1

Solution (b) Here the old basis vectors are u; and u, and the new basis vectors are u|
and uj. Asin part (a), we want to find the coordinate matrices of the old basis vectors
u; and uj relative to the new basis vectors u; and u,. To do this, observe that

from which it follows that

and hence that

/ /
u = —u; +u
W= 2u| —u

from which it follows that

11T T2
[ul]B’—[ 1i| an [“2]3’—[_1]

—1 2
PB—>B/=|: ) _1] <

and hence that

Suppose now that B and B’ are bases for a finite-dimensional vector space V. Since
multiplication by Pp/_, g maps coordinate vectors relative to the basis B’ into coordinate
vectors relative to a basis B, and Pp_, g maps coordinate vectors relative to B into
coordinate vectors relative to B’, it follows that for every vector vin V we have

[Vl = Pp—glvlp (11)

[vle = Pp—p/[Vlp (12)

P> EXAMPLE 2 Computing Coordinate Vectors
Let B and B’ be the bases in Example 1. Use an appropriate formula to find [v]p given

that
Vg = [_3}
B=1 5

Solution To find [v]p we need to make the transition from B’ to B. It follows from
Formula (11) and part (a) of Example 1 that

1 273 7
e[ 100

If B and B’ are bases for a finite-dimensional vector space V, then

(Pp—p)(Pp—p) = Pp_p



An Efficient Method for
Computing Transition
Matrices for R"
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because multiplication by the product (Pg _, ) (Pp_, p’) first maps the B-coordinates of a
vector into its B’-coordinates, and then maps those B’-coordinates back into the original
B-coordinates. Since the net effect of the two operations s to leave each coordinate vector
unchanged, we are led to conclude that Pg_, 5 must be the identity matrix, that is,

(Ppp)(Ppp) =1 (13)

(we omit the formal proof). For example, for the transition matrices obtained in Example

1 we have
(P )P - 1 27[-1 21 1 0 _ 7
B—p)(F—p) =1, L —11T 1o 117

It follows from (13) that Pp/_, p is invertible and that its inverse is Pg_, g-. Thus, we
have the following theorem.

THEOREM 4.6.1 If P is the transition matrix from a basis B’ to a basis B for a finite-
dimensional vector space V, then P is invertible and P~" is the transition matrix from
B to B

Our next objective is to develop an efficient procedure for computing transition matrices
between bases for R". As illustrated in Example 1, the first step in computing a transition
matrix is to express each new basis vector as a linear combination of the old basis vectors.
For R" this involves solving n linear systems of n equations in n unknowns, each of which
has the same coefficient matrix (why?). An efficient way to do this is by the method
illustrated in Example 2 of Section 1.6, which is as follows:

A Procedure for Computing Pjy_, p/
Step 1. Form the matrix [B’ | B].

Step 2. Use elementary row operations to reduce the matrix in Step 1 to reduced row
echelon form.

Step 3. The resulting matrix will be [/ | Pg_ p/].
Step 4. Extract the matrix Pg_, g from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

row operations
—

[new basis | old basis] [/ | transition from old to new] (14)

» EXAMPLE 3 Example 1 Revisited

In Example | we considered the bases B = {u;, u,} and B’ = {uj, uj}} for R?, where
uy=(1,0, wu=(01, uy=(,1), v=(@2,1)

(a) Use Formula (14) to find the transition matrix from B’ to B.
(b) Use Formula (14) to find the transition matrix from B to B’.

Solution (a) Here B’ is the old basis and B is the new basis, so

. . 1 01 2
[new basis | old basis] =
0 1]1 1
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Transition to the Standard
Basis for R"

Since the left side is already the identity matrix, no reduction is needed. We see by
inspection that the transition matrix is

1 2
Pp_p = L1

which agrees with the result in Example 1.

Solution (b) Here B is the old basis and B’ is the new basis, so

. . 1 2010
[new basis | old basis] =
1 1]0 1

By reducing this matrix, so the left side becomes the identity, we obtain (verify)

- 1 0)-1 2
[/ | transition from old to new] = 0 1 ) |

—1 2
Pp_.p = 1 -1

which also agrees with the result in Example 1. <

so the transition matrix is

Note that in part (a) of the last example the column vectors of the matrix that made
the transition from the basis B’ to the standard basis turned out to be the vectors in B’
written in column form. This illustrates the following general result.

THEOREM 4.6.2 Let B’ = {uy, uy, ..., u,} be any basis for the vector space R" and
let S = {e|, e, ..., e,} be the standard basis for R". If the vectors in these bases are
written in column form, then

Pp_s=1lu|uy|---|u,] (15)

It follows from this theorem that if
A:[ul |u2| |ll,1]

is any invertible n X n matrix, then A can be viewed as the transition matrix from the

basis {u, up, ..., u,} for R" to the standard basis for R". Thus, for example, the matrix
1 2 3
A=12 5 3
1 0 8

which was shown to be invertible in Example 4 of Section 1.5, is the transition matrix
from the basis

= (1,21, uu,=(@2,50), u=(@33,9)
to the basis
e =(1,0,0), e=(0,1,0), e =(0,0,1)
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1. Consider the bases B = {u;, w;} and B’ = {u], u}} for R?
where

o[ < L

(a) Find the transition matrix from B’ to B.
(b) Find the transition matrix from B to B’'.

(c) Compute the coordinate vector [w]z, where

[

and use (12) to compute [w]p.
(d) Check your work by computing [w]p directly.

. Repeat the directions of Exercise 1 with the same vector w but
with

o[} o[} o[ <[

. Consider the bases B = {u;, w, u3} and B’ = {u}, u}, u}} for
R3, where

2 2 1
uy= |1, m=|-=-1{, w3=1|2

R 1 1

[ 3 1 -1
w=| 1|, p,=| 1|, uy=

|5 -3 2

(a) Find the transition matrix B to B’.
(b) Compute the coordinate vector [w]g, where
=5
w= 8
=5
and use (12) to compute [w]g.
(c) Check your work by computing [w]p directly.

. Repeat the directions of Exercise 3 with the same vector w, but
with

[—37] [—37] 1]
u = 0f, wm= 21, u= 6
_—3_ _—1_ _—1_
[—6] —2] =3
w=|—6| uwu=|—-6| u=|-3
L 0_ L 4_ L 7_

. Let V be the space spanned by f; = sinx and f, = cosx.

(a) Show that g, = 2sinx 4 cosx and g, = 3cosx form a
basis for V.
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(b) Find the transition matrix from B’ = {g,, g,} to
B = {fi, f,}.

(¢) Find the transition matrix from B to B'.

(d) Compute the coordinate vector [h]z, where
h = 2sinx — 5cos x, and use (12) to obtain [h]p .

(e) Check your work by computing [h]p: directly.

. Consider the bases B = {p,, p,} and B’ ={q,, q,} for Py,

where
pp=6+3x, p,=104+2x, q =2, q=3+2x
(a) Find the transition matrix from B’ to B.

(b) Find the transition matrix from B to B'.

(c) Compute the coordinate vector [p], where p = —4 + x,
and use (12) to compute [p]p.

(d) Check your work by computing [p]p’ directly.

. Let B, = {u;, w,} and B, = {v|, v»} be the bases for R? in

whichu; = (1,2),u, = (2,3),v; = (1, 3), and v, = (1, 4).
(a) Use Formula (14) to find the transition matrix Pg,, p, .
(b) Use Formula (14) to find the transition matrix Pg,_, 3, .

(c) Confirm that Pg,_,p and P, p, are inverses of one
another.

(d) Letw = (0, 1). Find [w], and then use the matrix Pg, _, 3,
to compute [w], from [w]g,.

(e) Letw = (2, 5). Find [w], and then use the matrix Pg,_, g,
to compute [w]g, from [w]g,.

. Let S be the standard basis for R?, and let B = {v;, v»} be the

basis in which vi = (2, 1) and v, = (-3, 4).

(a) Find the transition matrix Pg_, g by inspection.

(b) Use Formula (14) to find the transition matrix Ps_, p.

(¢) Confirmthat Pg_, s and Ps_,  are inverses of one another.

(d) Letw = (5, —3). Find [w]3 and then use Formula (11) to
compute [w].

(e) Letw = (3, —5). Find [w]s and then use Formula (12) to
compute [w]p.

. Let S be the standard basis for R, and let B = {v, v, v3}

be the basis in which v; = (1,2, 1), v, = (2, 5,0), and
v; = (3,3, 9).

(a) Find the transition matrix Pg_, g by inspection.
(b) Use Formula (14) to find the transition matrix Ps_, p.
(c) Confirm that Pg_, 5 and Ps_, g are inverses of one another.

(d) Letw = (5, =3, 1). Find [w]p and then use Formula (11)
to compute [w]g.

(e) Letw = (3, —5,0). Find [w]s and then use Formula (12)
to compute [w]p.
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10. Let S = {e,, e} be the standard basis for R?, and let
B = {vi, v»} be the basis that results when the vectors in S are
reflected about the line y = x.

(a) Find the transition matrix Pp_g.
(b) Let P = Pg_,g and show that P” = Pg_, 5.

11. Let S = {e,, e} be the standard basis for R?, and let
B = {vy, v»} be the basis that results when the vectors in S are
reflected about the line that makes an angle 6 with the positive
X-axis.

(a) Find the transition matrix Pg_,g.

(b) Let P = Pg_, 5 and show that PT = Pg_, 5.
12. If By, B,, and B; are bases for R?, and if

3 1 7 2
Pp, .5, = 5 9 and Pp,.p, = 4

then PB3_,31 =

13. If P is the transition matrix from a basis B’ to a basis B, and
Q is the transition matrix from B to a basis C, what is the
transition matrix from B’ to C? What is the transition matrix
from C to B"?

14. To write the coordinate vector for a vector, it is necessary to
specify an order for the vectors in the basis. If P is the tran-
sition matrix from a basis B’ to a basis B, what is the effect
on P if we reverse the order of vectorsin B from vy, ..., v, to
Vu, ..., v1? What is the effect on P if we reverse the order of
vectors in both B” and B?

15. Consider the matrix

~

I
S = -
oo =
—_ N O

(a) P is the transition matrix from what basis B to the stan-
dard basis S = {e,, e, 3} for R>?

(b) P is the transition matrix from the standard basis
S = {e}, e,, e;} to what basis B for R3?

16. The matrix
1 0 0
P=10 3 2
0 1 1

is the transition matrix from what basis B to the basis
{1, 1,1, (1,1,0), (1,0,0)} for R*?

17. Let S = {e,, e,} be the standard basis for R?, and let
B = {vi, v»} be the basis that results when the linear transfor-
mation defined by
T(x1,x3) = (2x; + 3x2, 5x1 — x)
isapplied to each vectorin S. Find the transition matrix Pp_, s.
18. Let S = {ey, e, 3} be the standard basis for R, and let

B = {v, v5, v3} be the basis that results when the linear trans-
formation defined by

T (x1, X2, X3) = (%1 + X2, 2x1 — X2 + 4x3, X2 + 3x3)
isapplied to each vectorin S. Find the transition matrix Pg_, s.

19. If [w]p = w holds for all vectors w in R", what can you say
about the basis B?

Working with Proofs

20. Let B be a basis for R". Prove that the vectors vy, vo, ..., v
span R" if and only if the vectors [vi]z, [V2ls, ..., [Vils
span R".

21. Let B be a basis for R". Prove that the vectors vi, vo, ..., v;

form a linearly independent set in R" if and only if the vectors
[vils, [v2]B, - - ., [vk]s form a linearly independent set in R".

True-False Exercises

TF. In parts (a)—(f) determine whether the statement is true or
false, and justify your answer.

(a) If B; and B, are bases for a vector space V, then there exists a
transition matrix from B, to B,.

(b) Transition matrices are invertible.

(c) If B is a basis for a vector space R", then Pp_, p is the identity
matrix.

(d) If Pp,_ 5, is a diagonal matrix, then each vector in B, is a
scalar multiple of some vector in B;.

(e) If each vector in B, is a scalar multiple of some vector in By,
then Pg, _, 5, is a diagonal matrix.

(f) If A is a square matrix, then A = Pg,_, 5, for some bases B,
and B, for R".

Working with Technology

T1. Let
5 8 6 —13
3 -1 0 -9
P =
0 1 -1 0
2 4 3 =5
and
vi=(2,4,3,-5, wvww=(01-1,0),

vi3=0,-1,0,-9), vy=(5,8,6-13)

Find a basis B = {u;, u, us, us} for R* for which P is the transi-
tion matrix from B to B’ = {v, v, v3, V4}.

T2. Given that the matrix for a linear transformation 7: R* — R*
relative to the standard basis B = {e,, e,, es, €4} for R* is

1 2 0 1
3 0 -1 2
2 5 3 1
1 2 1 3

find the matrix for T relative to the basis

B ={ej,e; +e,e +e+e; e +e+e;+eq)
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4.7 Row Space, Column Space, and Null Space

In this section we will study some important vector spaces that are associated with matrices.
Our work here will provide us with a deeper understanding of the relationships between the
solutions of a linear system and properties of its coefficient matrix.

Row Space, Column Space, Recall that vectors can be written in comma-delimited form or in matrix form as either
and Null Space  row vectors or column vectors. In this section we will use the latter two.

DEFINITION 1 For an m X n matrix

apg ap - A
axy dxn - Ay
A= ; .
a1 am2 Tt Amn
the vectors
r=[ay ap - ayl
n=[ay ap»n - ayl
Iy, = [aml Amy - amn]
in R" that are formed from the rows of A are called the row vectors of A, and the
vectors
aj ap Aain
as) ann Aop
¢ = . , €= . yeees Cp = .
a1 Am?2 Amn

in R™ formed from the columns of A are called the column vectors of A.
P> EXAMPLE 1 Row and Column Vectors of a 2 x 3 Matrix

Let
2 1 0
A=
3 -1 4
The row vectors of A are

rr=[2 10 and rn=[3 —1 4]

and the column vectors of A are

2 1 0
c1=|:31|, c2=|:_li|, and C3=[4] <

The following definition defines three important vector spaces associated with a
matrix.

We will sometimes denote the DEFINITION 2 If A is an m x n matrix, then the subspace of R" spanned by the

row space of A, the column row vectors of A is called the row space of A, and the subspace of R™ spanned by
space of A, and the null space the column vectors of A is called the column space of A. The solution space of the
of A by row(A), col(A), and homogeneous system of equations Ax = 0, which is a subspace of R", is called the

null(A), respectively. null space of A.
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In this section and the next we will be concerned with two general questions:

Question 1. What relationships exist among the solutions of a linear system Ax = b
and the row space, column space, and null space of the coefficient matrix A?

Question 2. What relationships exist among the row space, column space, and null
space of a matrix?

Starting with the first question, suppose that

apn  ap s A X1
a a - a X
A= ,21 .22 2" and x = .2
a1 am? e Amn Xn
It follows from Formula (10) of Section 1.3 that if ¢;, ¢, ..., ¢, denote the column

vectors of A, then the product Ax can be expressed as a linear combination of these
vectors with coefficients from x; that is,

AX = x1¢; + x2€2 + - - - + X,C, (1)
Thus, a linear system, Ax = b, of m equations in n unknowns can be written as
xi¢p + x4+ +x,6,=Db 2)

from which we conclude that Ax = b s consistent if and only if b is expressible as a linear
combination of the column vectors of A. This yields the following theorem.

THEOREM 4.7.1 A system of linear equations Ax = b is consistent if and only if b is in
the column space of A.

» EXAMPLE 2 AVector b in the Column Space of A
Let Ax = b be the linear system

-1 3 2][x 1
1 2 3||lx|l=]-9
2 1 =2||x -3

Show that b is in the column space of A by expressing it as a linear combination of the
column vectors of A.

Solution Solving the system by Gaussian elimination yields (verify)

x1=2, xx=-—1, x3=3
It follows from this and Formula (2) that
—1 3 2 1
2 I{—(2]|+3]|-3|=|-9| «
2 1 -2 -3

Recall from Theorem 3.4.4 that the general solution of a consistent linear system
Ax = b can be obtained by adding any specific solution of the system to the general
solution of the corresponding homogeneous system Ax = (. Keeping in mind that the
null space of A is the same as the solution space of Ax = 0, we can rephrase that theorem
in the following vector form.
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THEOREM 4.7.2 If x is any solution of a consistent linear system Ax =b, and if
S = {vi,Va, ..., Vi} is a basis for the null space of A, then every solution of Ax = b can
be expressed in the form

X =Xo+c1vi +cava + - v (3)

Conversely, for all choices of scalars ci, ca, ..., ck, the vector X in this formula is a
solution of Ax = b.

The vector x( in Formula (3) is called a particular solution of Ax = b, and the remain-
ing part of the formula is called the general solution of Ax = 0. With this terminology
Theorem 4.7.2 can be rephrased as:

The general solution of a consistent linear system can be expressed as the sum of a partic-
ular solution of that system and the general solution of the corresponding homogeneous
system.

Geometrically, the solution set of Ax = b can be viewed as the translation by x, of the
solution space of Ax = 0 (Figure 4.7.1).

y
> X+ x
//
///
X X x
Solution set
of Ax=Db
Solution space
Figure 4.7.1 of Ax=0

P EXAMPLE 3 General Solution of a Linear System Ax = b

In the concluding subsection of Section 3.4 we compared solutions of the linear systems

X1 X1
0 2 0] [ x, 0 1 3 =2 0 2 0] [ x2 0
-2 4 -3 X3 0 2 6 ) -2 4 -3 X3 —1
= and =
10 0 15| | x4 0 0 0 5 10 0 15| x4 5
8 4 18| | xs 0 2 6 0 8 4 18|]xs 6
LX6_] L X6

and deduced that the general solution x of the nonhomogeneous system and the general
solution x;, of the corresponding homogeneous system (when written in column-vector
form) are related by
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Bases for Row Spaces,
Column Spaces, and Null
Spaces

Tx;] [=3r—4s—2r7 [07] r—37 m—47] m—27]
X r 0 1 0 0
X3 —2s 0 0 -2 0
wl ™ s ot ol T o
Xs t 0 0 0 1
[xl L 3 4 L3 L 0 L 0 [ 0
e 7 .~ <

Recall from the Remark following Example 3 of Section 4.5 that the vectors in xy
form a basis for the solution space of Ax = 0.

We know that performing elementary row operations on the augmented matrix [A | b]
of a linear system does not change the solution set of that system. This is true, in
particular, if the system is homogeneous, in which case the augmented matrix is [A | 0].
But elementary row operations have no effect on the column of zeros, so it follows that
the solution set of Ax = 0 is unaffected by performing elementary row operations on A
itself. Thus, we have the following theorem.

THEOREM 4.7.3 Elementary row operations do not change the null space of a matrix.

The following theorem, whose proof is left as an exercise, is a companion to Theo-
rem 4.7.3.

THEOREM 4.7.4 Elementary row operations do not change the row space of a matrix.

Theorems 4.7.3 and 4.7.4 might tempt you into incorrectly believing that elementary
row operations do not change the column space of a matrix. To see why this is not true,

compare the matrices
A 3] d B 1 3
26 770 o

The matrix B can be obtained from A by adding —2 times the first row to the second.
However, this operation has changed the column space of A, since that column space
consists of all scalar multiples of

1

H

whereas the column space of B consists of all scalar multiples of
1
0

P EXAMPLE 4 Finding a Basis for the Null Space of a Matrix

Find a basis for the null space of the matrix

and the two are different spaces.

1 3 =2 0 2 0

2 6 -5 =2 4 -3
A=

0 0 5 10 0 15

2 6 8 4 18
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Solution The null space of A is the solution space of the homogeneous linear system
Ax = 0, which, as shown in Example 3, has the basis

=37 =47 [ —27]
1 0 0
0 -2 0
Vi = ol V2= 1l V3= 0 <
0 0 1
L 0 L 0] L 0]

Remark Observe that the basis vectors vi, v, and v; in the last example are the vectors that result
by successively setting one of the parameters in the general solution equal to 1 and the others equal
to 0.

The following theorem makes it possible to find bases for the row and column spaces
of a matrix in row echelon form by inspection.

THEOREM 4.75 If a matrix R is in row echelon form, then the row vectors with the
leading 1's (the nonzero row vectors) form a basis for the row space of R, and the column
vectors with the leading 1s of the row vectors form a basis for the column space of R.

The proof essentially involves an analysis of the positions of the 0’s and 1's of R. We
omit the details.

P> EXAMPLE 5 Bases for the Row and Column Spaces of a Matrix in Row
Echelon Form

Find bases for the row and column spaces of the matrix

1 -2 5 0 3

0 3 0 0
R =

0 0 0 1 0

0 0 0 0 0

Solution Since the matrix R is in row echelon form, it follows from Theorem 4.7.5 that
the vectors

r, =[0 1 3 0 0]
p=[0 0 0 1 0]

form a basis for the row space of R, and the vectors

1 =2 0
0 1 0
¢ = 0 , €= 0 , € = 1
0 0 0

form a basis for the column space of R.
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Basis for the Column
Space of a Matrix

Although elementary row op-
erations can change the col-
umn space of a matrix, it
follows from Theorem 4.7.6(b)
that they do not change the
dimension of its column space.

P EXAMPLE 6 Basis for a Row Space by Row Reduction

Find a basis for the row space of the matrix

1 -3 4 =2 5 4
2 —6 9 —1 8 2
2 —6 9 —1 9 7
—1 3 —4 2 -5 —4
Solution Since elementary row operations do not change the row space of a matrix, we

can find a basis for the row space of A by finding a basis for the row space of any row
echelon form of A. Reducing A to row echelon form, we obtain (verify)

-3 4 =2 5 4
0 1 3 -2 —6
o 0 0 1 5
0 0 0 0 0

[

By Theorem 4.7.5, the nonzero row vectors of R form a basis for the row space of R and
hence form a basis for the row space of A. These basis vectors are

n=[ -3 4 -2 5 4]
=[O0 0 1 3 —2 —¢
=0 0 0 0 1 5 <«

The problem of finding a basis for the column space of a matrix A in Example 6 is
complicated by the fact that an elementary row operation can alter its column space.
However, the good news is that elementary row operations do not alter dependence relation-
ships among the column vectors. To make this more precise, suppose that wy, wa, ..., Wi
are linearly dependent column vectors of A, so there are scalars ¢y, ¢, .. ., ¢ that are
not all zero and such that

ciwr+ oW + -+ W =0 “)

If we perform an elementary row operation on A, then these vectors will be changed
into new column vectors wi, w5, ..., w;. At first glance it would seem possible that the
transformed vectors might be linearly independent. However, this is not so, since it can
be proved that these new column vectors are linearly dependent and, in fact, related by
an equation
W) F oWy + -+ aw, =0

that has exactly the same coefficients as (4). It can also be proved that elementary row
operations do not alter the linear independence of a set of column vectors. All of these
results are summarized in the following theorem.

THEOREM 4.7.6 If'A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-
sponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of A if and
only if the corresponding column vectors of B form a basis for the column space

of B.
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P EXAMPLE 7 Basis for a Column Space by Row Reduction
Find a basis for the column space of the matrix
1 -3 4 =2 5 4
2 —6 9 —1 8 2
2 -6 9 -1 9 7
—1 3 —4 2 -5 —4
that consists of column vectors of A.

Solution 'We observed in Example 6 that the matrix

1 -3 4 =2 5 4
0 0 1 3 -2 -6
0 0 0 0 1 5
0 0 0 0

(=)
o

is a row echelon form of A. Keeping in mind that A and R can have different column
spaces, we cannot find a basis for the column space of A directly from the
column vectors of R. However, it follows from Theorem 4.7.6(b) that if we can find
a set of column vectors of R that forms a basis for the column space of R, then the
corresponding column vectors of A will form a basis for the column space of A.

Since the first, third, and fifth columns of R contain the leading 1I’s of the row vectors,
the vectors

1 4 5
’ 0 / 1 / —2
a=ly S=|o|" S=|
0 0 0

form a basis for the column space of R. Thus, the corresponding column vectors of A,
which are

1 4
2 9
c = > |’ C3 = 9 Cs =
—1 —4 -5

form a basis for the column space of A.

Up to now we have focused on methods for finding bases associated with matrices.
Those methods can readily be adapted to the more general problem of finding a basis
for the subspace spanned by a set of vectors in R".

P> EXAMPLE 8 Basis for the Space Spanned by a Set of Vectors

The following vectors span a subspace of R*. Find a subset of these vectors that forms
a basis of this subspace.

vi=(1,2,2,-1), v,=(-3,-6,-6,3),

v;=04,9,9,—4), v=(-2,-1-1,2),

vs =(5,8,9,-5), v¢=(4,2,7,—4%)
Solution If we rewrite these vectors in column form and construct the matrix that has
those vectors as its successive columns, then we obtain the matrix A in Example 7 (verify).

Thus,
span{vy, v2, v3, V4, Vs, Vg} = col(A)
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Bases Formed from Row
and Column Vectors of a
Matrix

Proceeding as in that example (and adjusting the notation appropriately), we see that
the vectors vy, v3, and vs form a basis for

span{vi, v, v3, V4, Vs, Vs} @

In Example 6, we found a basis for the row space of a matrix by reducing that matrix
to row echelon form. However, the basis vectors produced by that method were not all
row vectors of the original matrix. The following adaptation of the technique used in
Example 7 shows how to find a basis for the row space of a matrix that consists entirely
of row vectors of that matrix.

P EXAMPLE 9 Basis for the Row Space of a Matrix

Find a basis for the row space of

1 -2 0 0 3

2 =5 =3 =2 6
A=

0 5 15 10 0

2 6 18 8 6

consisting entirely of row vectors from A.

Solution We will transpose A, thereby converting the row space of A into the column
space of AT; then we will use the method of Example 7 to find a basis for the column
space of AT; and then we will transpose again to convert column vectors back to row
vectors.

Transposing A yields

3 6 0 6
and then reducing this matrix to row echelon form we obtain
1 20 2

0 1 =5 —10
0 0 0 1
0 0 0 0
0 0 0 0

The first, second, and fourth columns contain the leading I’s, so the corresponding
column vectors in AT form a basis for the column space of AT; these are

1 2 2

-2 ) 6

¢ = 0], eca=|-3]|, and ¢ = |18
0 -2 8

3 6 6

Transposing again and adjusting the notation appropriately yields the basis vectors
n=[1 -2 0 0 3, n=[[2 -5 -3 -2 6]
rn=1[2 6 18 8 0]
for the row space of A. <«



Had we only been interested
in part (a) of this example, it
would have sufficed to reduce
the matrix to row echelon
form. It is for part (b) that
the reduced row echelon form
is most useful.
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Next we will give an example that adapts the method of Example 7 to solve the
following general problem in R":

Problem Given a set of vectors S = {vi, v, ..., v} in R", find a subset of these
vectors that forms a basis for span(S), and express each vector that is not in that basis
as a linear combination of the basis vectors.

P> EXAMPLE 10 Basis and Linear Combinations
(a) Find a subset of the vectors
vi=(1,-2,0,3), v, =(2,-5,-3,6),
v;=1(0,1,3,0), vy=(2,-1,4,=-7), vs=(5-8,1,2)
that forms a basis for the subspace of R* spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution (a) We begin by constructing a matrix that has vy, v, ..., vs as its column
vectors:
1 2 0 2 5
-2 =5 1 -1 -8 (35)
0 -3 3 4 1
3 6 0o -7 2
T T 1 T
Vi V2 V3 V4 Vs

The first part of our problem can be solved by finding a basis for the column space of
this matrix. Reducing the matrix to reduced row echelon form and denoting the column
vectors of the resulting matrix by wy, w,, w3, wy, and ws yields

1 0 2 0 1

0 I -1 0 1

0 (©)

— O O

0 1 1
0 0 0
Tt

1 W2 W3 W4 Ws

=

The leading I’s occur in columns 1, 2, and 4, so by Theorem 4.7.5,
{wi, wo, wa}

is a basis for the column space of (6), and consequently,
{vi, v2, va}

is a basis for the column space of (5).

Solution (b) We will start by expressing wz and ws as linear combinations of the basis
vectors wi, Wy, wy. The simplest way of doing this is to express w3 and ws in terms
of basis vectors with smaller subscripts. Accordingly, we will express w3 as a linear
combination of w; and w,, and we will express ws as a linear combination of w;, wy,
and wy. By inspection of (6), these linear combinations are

W3 = 2W1 — Wy

Ws = W[ + W) + Wy
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We call these the dependency equations. The corresponding relationships in (5) are

V3=2V1 — V2
Vs=vi+va+vy d

The following is a summary of the steps that we followed in our last example to solve

the problem posed above.

Basis for the Space Spanned by a Set of Vectors

Step 1. Form the matrix A whose columns are the vectorsintheset S = {vy, v,, ...

) Vi)

Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by wi, wa, ...

> Wk

Step 4. Identify the columns of R that contain the leading 1’s. The corresponding
column vectors of A form a basis for span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors wy, wy, ..

-y Wi

of R by successively expressing each w; that does not contain a leading 1 of
R as a linear combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vector w; by the
vectory; fori =1,2,...,k.

This completes the second part of the problem.

Exercise Set 4.7

In Exercises 1-2, express the product Ax as a linear combina-
tion of the column vectors of A.

_ (4 0o —1][-2
1. () 2 3] H ® |3 6 2 3
) —1 4|2
L 0 -1 4 5
-3 6

s —4 of| ! m 1 s 3

2. 21 (b 0

@1, 3 ® 1 5 —8} S

1 8 3

In Exercises 3-4, determine whether b is in the column space
of A, and if so, express b as a linear combination of the column
vectors of A

11 2 ~1
3.@A=]|1 0 1|; b=| 0
2 1 3 2

1 - 1 5]
MA=[9 3 1f; b=

1 1 -1

1 -1 1 2]

4. A=|-1 1 —=1|; b=]0

B 0

1 2 0 1 4
(b) A= 0 1 2 1| b= 3
N O U B R
o1 2 2 7
5. Suppose that x; = 3, x, = 0, x3 = —1, x4 = Sis a solution of

a nonhomogeneous linear system Ax = b and that the solu-
tion set of the homogeneous system Ax = 0 is given by the
formulas

X, =5r—2s, x,=s,

X3 =8+t x4=t

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

6. Suppose that x; = —1, x, = 2, x3 = 4, x4 = —3 is a solution
of a nonhomogeneous linear system Ax = b and that the so-
lution set of the homogeneous system Ax = 0 is given by the
formulas

Xy =-3r+4s, X, =r—5, X3=F, X3=3S

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

In Exercises 