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P R E F A C E

This textbook is an expanded version ofElementary Linear Algebra, eleventh edition, by
Howard Anton. The first nine chapters of this book are identical to the first nine chapters
of that text; the tenth chapter consists of twenty applications of linear algebra drawn
from business, economics, engineering, physics, computer science, approximation theory,
ecology, demography, and genetics. The applications are largely independent of each
other, and each includes a list of mathematical prerequisites. Thus, each instructor has
the flexibility to choose those applications that are suitable for his or her students and to
incorporate each application anywhere in the course after the mathematical prerequisites
have been satisfied. Chapters 1–9 include simpler treatments of some of the applications
covered in more depth in Chapter 10.

This edition gives an introductory treatment of linear algebra that is suitable for a
first undergraduate course. Its aim is to present the fundamentals of linear algebra in the
clearest possible way—sound pedagogy is the main consideration. Although calculus
is not a prerequisite, there is some optional material that is clearly marked for students
with a calculus background. If desired, that material can be omitted without loss of
continuity.

Technology is not required to use this text, but for instructors who would like to
use MATLAB, Mathematica, Maple, or calculators with linear algebra capabilities, we
have posted some supporting material that can be accessed at either of the following
companion websites:

www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in
This Edition

Many parts of the text have been revised based on an extensive set of reviews. Here are
the primary changes:
• Earlier Linear Transformations Linear transformations are introduced earlier (starting

in Section 1.8). Many exercise sets, as well as parts of Chapters 4 and 8, have been
revised in keeping with the earlier introduction of linear transformations.

• New Exercises Hundreds of new exercises of all types have been added throughout
the text.

• Technology Exercises requiring technology such as MATLAB, Mathematica, or Maple
have been added and supporting data sets have been posted on the companion websites
for this text. The use of technology is not essential, and these exercises can be omitted
without affecting the flow of the text.

• Exercise Sets Reorganized Many multiple-part exercises have been subdivided to create
a better balance between odd and even exercise types. To simplify the instructor’s task
of creating assignments, exercise sets have been arranged in clearly defined categories.

• Reorganization In addition to the earlier introduction of linear transformations, the
old Section 4.12 on Dynamical Systems and Markov Chains has been moved to Chap-
ter 5 in order to incorporate material on eigenvalues and eigenvectors.

• Rewriting Section 9.3 on Internet Search Engines from the previous edition has been
rewritten to reflect more accurately how the Google PageRank algorithm works in
practice. That section is now Section 10.20 of the applications version of this text.

• Appendix A Rewritten The appendix on reading and writing proofs has been expanded
and revised to better support courses that focus on proving theorems.

• Web Materials Supplementary web materials now include various applications mod-
ules, three modules on linear programming, and an alternative presentation of deter-
minants based on permutations.

• Applications Chapter Section 10.2 of the previous edition has been moved to the
websites that accompany this text, so it is now part of a three-module set on Linear

www.wiley.com/college/anton
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Programming. A new section on Internet search engines has been added that explains
the PageRank algorithm used by Google.

Hallmark Features • Relationships Among Concepts One of our main pedagogical goals is to convey to the
student that linear algebra is a cohesive subject and not simply a collection of isolated
definitions and techniques. One way in which we do this is by using a crescendo of
Equivalent Statements theorems that continually revisit relationships among systems
of equations, matrices, determinants, vectors, linear transformations, and eigenvalues.
To get a general sense of how we use this technique see Theorems 1.5.3, 1.6.4, 2.3.8,
4.8.8, and then Theorem 5.1.5, for example.

• Smooth Transition to Abstraction Because the transition from Rn to general vector
spaces is difficult for many students, considerable effort is devoted to explaining the
purpose of abstraction and helping the student to “visualize” abstract ideas by drawing
analogies to familiar geometric ideas.

• Mathematical Precision When reasonable, we try to be mathematically precise. In
keeping with the level of student audience, proofs are presented in a patient style that
is tailored for beginners.

• Suitability for a Diverse Audience This text is designed to serve the needs of students
in engineering, computer science, biology, physics, business, and economics as well as
those majoring in mathematics.

• Historical Notes To give the students a sense of mathematical history and to convey
that real people created the mathematical theorems and equations they are studying, we
have included numerous Historical Notes that put the topic being studied in historical
perspective.

About the Exercises • Graded Exercise Sets Each exercise set in the first nine chapters begins with routine
drill problems and progresses to problems with more substance. These are followed
by three categories of exercises, the first focusing on proofs, the second on true/false
exercises, and the third on problems requiring technology. This compartmentalization
is designed to simplify the instructor’s task of selecting exercises for homework.

• Proof Exercises Linear algebra courses vary widely in their emphasis on proofs, so
exercises involving proofs have been grouped and compartmentalized for easy identifi-
cation. Appendix A has been rewritten to provide students more guidance on proving
theorems.

• True/False Exercises The True/False exercises are designed to check conceptual un-
derstanding and logical reasoning. To avoid pure guesswork, the students are required
to justify their responses in some way.

• Technology Exercises Exercises that require technology have also been grouped. To
avoid burdening the student with keyboarding, the relevant data files have been posted
on the websites that accompany this text.

• Supplementary Exercises Each of the first nine chapters ends with a set of supplemen-
tary exercises that draw on all topics in the chapter. These tend to be more challenging.

Supplementary Materials
for Students

• Student Solutions Manual This supplement provides detailed solutions to most odd-
numbered exercises (ISBN 978-1-118-464427).

• Data Files Data files for the technology exercises are posted on the companion websites
that accompany this text.

• MATLAB Manual and Linear Algebra Labs This supplement contains a set of MATLAB

laboratory projects written by Dan Seth of West Texas A&M University. It is designed
to help students learn key linear algebra concepts by using MATLAB and is available in
PDF form without charge to students at schools adopting the 11th edition of the text.

• Videos A complete set of Daniel Solow’sHow toRead andDoProofs videos is available
to students through WileyPLUS as well as the companion websites that accompany
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this text. Those materials include a guide to help students locate the lecture videos
appropriate for specific proofs in the text.

Supplementary Materials
for Instructors

• Instructor’s Solutions Manual This supplement provides worked-out solutions to most
exercises in the text (ISBN 978-1-118-434482).

• PowerPoint Presentations PowerPoint slides are provided that display important def-
initions, examples, graphics, and theorems in the book. These can also be distributed
to students as review materials or to simplify note taking.

• Test Bank Test questions and sample exams are available in PDF or LATEX form.
• WileyPLUS An online environment for effective teaching and learning. WileyPLUS

builds student confidence by taking the guesswork out of studying and by providing a
clear roadmap of what to do, how to do it, and whether it was done right. Its purpose is
to motivate and foster initiative so instructors can have a greater impact on classroom
achievement and beyond.

A Guide for the Instructor Although linear algebra courses vary widely in content and philosophy, most courses
fall into two categories—those with about 40 lectures and those with about 30 lectures.
Accordingly, we have created long and short templates as possible starting points for
constructing a course outline. Of course, these are just guides, and you will certainly
want to customize them to fit your local interests and requirements. Neither of these
sample templates includes applications or the numerical methods in Chapter 9. Those
can be added, if desired, and as time permits.

Long Template Short Template

Chapter 1: Systems of Linear Equations and Matrices 8 lectures 6 lectures

Chapter 2: Determinants 3 lectures 2 lectures

Chapter 3: Euclidean Vector Spaces 4 lectures 3 lectures

Chapter 4: General Vector Spaces 10 lectures 9 lectures

Chapter 5: Eigenvalues and Eigenvectors 3 lectures 3 lectures

Chapter 6: Inner Product Spaces 3 lectures 1 lecture

Chapter 7: Diagonalization and Quadratic Forms 4 lectures 3 lectures

Chapter 8: General Linear Transformations 4 lectures 3 lectures

Total: 39 lectures 30 lectures

Reviewers The following people reviewed the plans for this edition, critiqued much of the content,
and provided me with insightful pedagogical advice:

John Alongi, Northwestern University
Jiu Ding, University of Southern Mississippi
Eugene Don, City University of New York at Queens
John Gilbert, University of Texas Austin
Danrun Huang, St. Cloud State University
Craig Jensen, University of New Orleans
Steve Kahan, City University of New York at Queens
Harihar Khanal, Embry-Riddle Aeronautical University
Firooz Khosraviyani, Texas A&M International University
Y. George Lai, Wilfred Laurier University
Kouok Law, Georgia Perimeter College
Mark MacLean, Seattle University
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Vasileios Maroulas, University of Tennessee, Knoxville
Daniel Reynolds, Southern Methodist University
Qin Sheng, Baylor University
Laura Smithies, Kent State University
Larry Susanka, Bellevue College
Cristina Tone, University of Louisville
Yvonne Yaz, Milwaukee School of Engineering
Ruhan Zhao, State University of New York at Brockport

Exercise Contributions Special thanks are due to three talented people who worked on various aspects of the
exercises:

Przemyslaw Bogacki, Old Dominion University – who solved the exercises and created
the solutions manuals.

Roger Lipsett, Brandeis University – who proofread the manuscript and exercise solu-
tions for mathematical accuracy.

Daniel Solow,CaseWesternReserveUniversity – author of “How toRead andDoProofs,”
for providing videos on techniques of proof and a key to using those videos in coordi-
nation with this text.

Sky Pelletier Waterpeace – who critiqued the technology exercises, suggested improve-
ments, and provided the data sets.

Special Contributions I would also like to express my deep appreciation to the following people with whom I
worked on a daily basis:

Anton Kaul – who worked closely with me at every stage of the project and helped to write
some new text material and exercises. On the many occasions that I needed mathematical
or pedagogical advice, he was the person I turned to. I cannot thank him enough for his
guidance and the many contributions he has made to this edition.

David Dietz – my editor, for his patience, sound judgment, and dedication to producing
a quality book.

Anne Scanlan-Rohrer – of Two Ravens Editorial, who coordinated the entire project and
brought all of the pieces together.

Jacqueline Sinacori – who managed many aspects of the content and was always there
to answer my often obscure questions.

Carol Sawyer – ofThePerfectProof, who managed the myriad of details in the production
process and helped with proofreading.

Maddy Lesure – with whom I have worked for many years and whose elegant sense of
design is apparent in the pages of this book.

Lilian Brady – my copy editor for almost 25 years. I feel fortunate to have been the ben-
eficiary of her remarkable knowledge of typography, style, grammar, and mathematics.

Pat Anton – of Anton Textbooks, Inc., who helped with the mundane chores duplicating,
shipping, accuracy checking, and tasks too numerous to mention.

John Rogosich – of Techsetters, Inc., who programmed the design, managed the compo-
sition, and resolved many difficult technical issues.

Brian Haughwout – of Techsetters, Inc., for his careful and accurate work on the illustra-
tions.

Josh Elkan – for providing valuable assistance in accuracy checking.

Howard Anton
Chris Rorres
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C H A P T E R 1

Systems of Linear
Equations and Matrices

CHAPTER CONTENTS 1.1 Introduction to Systems of Linear Equations 2

1.2 Gaussian Elimination 11

1.3 Matrices and Matrix Operations 25

1.4 Inverses; Algebraic Properties of Matrices 39

1.5 Elementary Matrices and a Method for Finding A−1 52

1.6 More on Linear Systems and Invertible Matrices 61

1.7 Diagonal,Triangular, and Symmetric Matrices 67

1.8 MatrixTransformations 75

1.9 Applications of Linear Systems 84

• Network Analysis (Traffic Flow) 84

• Electrical Circuits 86

• Balancing Chemical Equations 88

• Polynomial Interpolation 91

1.10 Leontief Input-Output Models 96

INTRODUCTION Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices
often appear as tables of numerical data that arise from physical observations, but they
occur in various mathematical contexts as well. For example, we will see in this chapter
that all of the information required to solve a system of equations such as

5x + y = 3

2x − y = 4

is embodied in the matrix [
5

2

1

−1

3

4

]
and that the solution of the system can be obtained by performing appropriate
operations on this matrix. This is particularly important in developing computer
programs for solving systems of equations because computers are well suited for
manipulating arrays of numerical information. However, matrices are not simply a
notational tool for solving systems of equations; they can be viewed as mathematical
objects in their own right, and there is a rich and important theory associated with
them that has a multitude of practical applications. It is the study of matrices and
related topics that forms the mathematical field that we call “linear algebra.” In this
chapter we will begin our study of matrices.
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1.1 Introduction to Systems of Linear Equations
Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology and
discuss a method for solving such systems.

Linear Equations Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)

and in three dimensions a plane in a rectangular xyz-coordinate system can be repre-
sented by an equation of the form

ax + by + cz = d (a, b, c not all 0)

These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + · · · + anxn = b (1)

where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, we will often use variables without subscripts and write linear
equations as

a1x + a2y = b (a1, a2 not both 0) (2)

a1x + a2y + a3z = b (a1, a2, a3 not all 0) (3)

In the special case where b = 0, Equation (1) has the form

a1x1 + a2x2 + · · · + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All
variables occur only to the first power and do not appear, for example, as arguments of
trigonometric, logarithmic, or exponential functions. The following are linear equations:

x + 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x − y + 3z = −1 x1 + x2 + · · · + xn = 1

The following are not linear equations:

x + 3y2 = 4 3x + 2y − xy = 5

sin x + y = 0
√

x1 + 2x2 + x3 = 1

A finite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4

(5–6)
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A general linear system of m equations in the n unknowns x1, x2, . . . , xn can be written
The double subscripting on
the coefficients aij of the un-
knowns gives their location
in the system—the first sub-
script indicates the equation
in which the coefficient occurs,
and the second indicates which
unknown it multiplies. Thus,
a12 is in the first equation and
multiplies x2.

as
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn

makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1,−2) and (1, 2,−1)

in which the names of the variables are omitted. This notation allows us to interpret
these solutions geometrically as points in two-dimensional and three-dimensional space.
More generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn

of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems inTwo and
Three Unknowns

Linear systems in two unknowns arise in connection with intersections of lines. For
example, consider the linear system

a1x + b1y = c1

a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and
consequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.

In general, we say that a linear system is consistent if it has at least one solution and
inconsistent if it has no solutions. Thus, a consistent linear systemof two equations in
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Figure 1.1.1

x

y

No solution

x

y

One solution
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(coincident lines)

two unknowns has either one solution or infinitely many solutions—there are no other
possibilities. The same is true for a linear system of three equations in three unknowns

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any,
correspond to points where all three planes intersect, so again we see that there are only
three possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions

(three parallel planes;

no common intersection)

No solutions

(two parallel planes;

no common intersection)

No solutions

(no common intersection)

Infinitely many solutions

(planes are all coincident;

intersection is a plane)

Infinitely many solutions

(intersection is a line)

One solution

(intersection is a point)

No solutions

(two coincident planes

parallel to the third;

no common intersection)

Infinitely many solutions

(two coincident planes;

intersection is a line)

Figure 1.1.2

We will prove later that our observations about the number of solutions of linear
systems of two equations in two unknowns and linear systems of three equations in
three unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.
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EXAMPLE 2 A Linear System with One Solution

Solve the linear system
x − y = 1

2x + y = 6

Solution We can eliminate x from the second equation by adding −2 times the first
equation to the second. This yields the simplified system

x − y = 1

3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first

equation we obtain x = 1 + y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system
intersect at the single point

(
7
3 , 4

3

)
. We leave it for you to check this by graphing the

lines.

EXAMPLE 3 A Linear System with No Solutions

Solve the linear system
x + y = 4

3x + 3y = 6

Solution We can eliminate x from the second equation by adding −3 times the first
equation to the second equation. This yields the simplified system

x + y = 4

0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that
they have the same slope but different y-intercepts.

EXAMPLE 4 A Linear System with Infinitely Many Solutions

Solve the linear system
4x − 2y = 1

16x − 8y = 4

Solution We can eliminate x from the second equation by adding −4 times the first
equation to the second. This yields the simplified system

4x − 2y = 1

0 = 0

The second equation does not impose any restrictions on x and y and hence can be
omitted. Thus, the solutions of the system are those values of x and y that satisfy the
single equation

4x − 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original
system coincide. One way to describe the solution set is to solve this equation for x in
terms of y to obtain x = 1

4 + 1
2 y and then assign an arbitrary value t (called a parameter)
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to y. This allows us to express the solution by the pair of equations (called parametric
equations)

x = 1
4 + 1

2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numer-

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x = t be
the parameter. The resulting
parametric equations would
look different but would
define the same solution set.

ical values for the parameter t . For example, t = 0 yields the solution
(

1
4 , 0

)
, t = 1

yields the solution
(

3
4 , 1

)
, and t = −1 yields the solution

(− 1
4 ,−1

)
. You can confirm

that these are solutions by substituting their coordinates into the given equations.

EXAMPLE 5 A Linear System with Infinitely Many Solutions

Solve the linear system
x − y + 2z = 5

2x − 2y + 4z = 10

3x − 3y + 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and
that those values of x, y, and z that satisfy the equation

x − y + 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9).
We can do this by first solving this equation for x in terms of y and z, then assigning
arbitrary values r and s (parameters) to these two variables, and then expressing the
solution by the three parametric equations

x = 5 + r − 2s, y = r, z = s

Specific solutions can be obtained by choosing numerical values for the parameters r

and s. For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and
Elementary Row Operations

As the number of equations and unknowns in a linear system increases, so does the
complexity of the algebra involved in finding solutions. The required computations can
be made more manageable by simplifying notation and standardizing procedures. For
example, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the
linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...
am1x1 + am2x2 + · · ·+ amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...
am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦

This is called the augmented matrix for the system. For example, the augmented matrix

As noted in the introduction
to this chapter, the term “ma-
trix” is used in mathematics to
denote a rectangular array of
numbers. In a later section
we will study matrices in de-
tail, but for now we will only
be concerned with augmented
matrices for linear systems.

for the system of equations

x1 + x2 + 2x3 = 9

2x1 + 4x2 − 3x3 = 1

3x1 + 6x2 − 5x3 = 0

is

⎡
⎢⎣1 1 2 9

2 4 −3 1

3 6 −5 0

⎤
⎥⎦
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The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.

2. Interchange two equations.

3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.

2. Interchange two rows.

3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations and

an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply
to understand the computations.

EXAMPLE 6 Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in
the system, and in the right column we solve the same system by operating on the rows
of the augmented matrix.

x + y + 2z = 9

2x + 4y − 3z = 1

3x + 6y − 5z = 0

⎡
⎢⎣1 1 2 9

2 4 −3 1

3 6 −5 0

⎤
⎥⎦

Add −2 times the first equation to the second
to obtain

x + y + 2z = 9

2y − 7z = −17

3x + 6y − 5z = 0

Add −2 times the first row to the second to
obtain ⎡

⎢⎣1 1 2 9

0 2 −7 −17

3 6 −5 0

⎤
⎥⎦

Maxime Bôcher
(1867–1918)

Historical Note The first known use of augmented matrices appeared
between 200 B.C. and 100 B.C. in a Chinese manuscript entitled Nine
Chapters of Mathematical Art. The coefficients were arranged in
columns rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns. The
actual use of the term augmented matrix appears to have been intro-
duced by the American mathematician Maxime Bôcher in his book In-
troduction to HigherAlgebra, published in 1907. In addition to being an
outstanding research mathematician and an expert in Latin, chemistry,
philosophy, zoology, geography, meteorology, art, and music, Bôcher
was an outstanding expositor of mathematics whose elementary text-
books were greatly appreciated by students and are still in demand
today.

[Image: Courtesy of the American Mathematical Society
www.ams.org]
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Add −3 times the first equation to the third to
obtain

x + y + 2z = 9

2y − 7z = −17

3y − 11z = −27

Add−3 times the first row to the third to obtain

⎡
⎢⎣1 1 2 9

0 2 −7 −17

0 3 −11 −27

⎤
⎥⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

3y − 11z = −27

Multiply the second row by 1
2 to obtain⎡

⎢⎣1 1 2 9

0 1 − 7
2 − 17

2

0 3 −11 −27

⎤
⎥⎦

Add −3 times the second equation to the third
to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

− 1
2z = − 3

2

Add −3 times the second row to the third to
obtain ⎡

⎢⎢⎣
1 1 2 9

0 1 − 7
2 − 17

2

0 0 − 1
2 − 3

2

⎤
⎥⎥⎦

Multiply the third equation by −2 to obtain

x + y + 2z = 9

y − 7
2z = − 17

2

z = 3

Multiply the third row by −2 to obtain⎡
⎢⎣1 1 2 9

0 1 − 7
2 − 17

2

0 0 1 3

⎤
⎥⎦

Add −1 times the second equation to the first
to obtain

x + 11
2 z = 35

2

y − 7
2z = − 17

2

z = 3

Add −1 times the second row to the first to
obtain ⎡

⎢⎢⎣
1 0 11

2
35
2

0 1 − 7
2 − 17

2

0 0 1 3

⎤
⎥⎥⎦

Add −11
2 times the third equation to the first

and 7
2 times the third equation to the second to

obtain
x = 1

y = 2

z = 3

Add − 11
2 times the third row to the first and 7

2

times the third row to the second to obtain⎡
⎢⎣1 0 0 1

0 1 0 2

0 0 1 3

⎤
⎥⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as the or-
dered triple (1, 2, 3) with the
understanding that the num-
bers in the triple are in the
same order as the variables in
the system, namely, x, y, z.

Exercise Set 1.1
1. In each part, determine whether the equation is linear in x1,

x2, and x3.

(a) x1 + 5x2 − √
2 x3 = 1 (b) x1 + 3x2 + x1x3 = 2

(c) x1 = −7x2 + 3x3 (d) x−2
1 + x2 + 8x3 = 5

(e) x
3/5
1 − 2x2 + x3 = 4 (f ) πx1 −

√
2 x2 = 71/3

2. In each part, determine whether the equation is linear in x

and y.

(a) 21/3x +√
3y = 1 (b) 2x1/3 + 3

√
y = 1

(c) cos
(

π

7

)
x − 4y = log 3 (d) π

7 cos x − 4y = 0

(e) xy = 1 (f ) y + 7 = x



1.1 Introduction to Systems of Linear Equations 9

3. Using the notation of Formula (7), write down a general linear
system of

(a) two equations in two unknowns.

(b) three equations in three unknowns.

(c) two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a linear system in the un-
knowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. (a)

⎡
⎢⎣2 0 0

3 −4 0

0 1 1

⎤
⎥⎦ (b)

⎡
⎢⎣3 0 −2 5

7 1 4 −3

0 −2 1 7

⎤
⎥⎦

6. (a)

[
0 3 −1 −1 −1

5 2 0 −3 −6

]

(b)

⎡
⎢⎢⎢⎣

3 0 1 −4 3

−4 0 4 1 −3

−1 3 0 −2 −9

0 0 0 −1 −2

⎤
⎥⎥⎥⎦

In each part of Exercises 7–8, find the augmented matrix for
the linear system.

7. (a) −2x1 = 6
3x1 = 8
9x1 = −3

(b) 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

(c) 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1

6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. (a) 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

(b) 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

(c) x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1

3x1 − 5x2 − 3x3 = 1

(a) (3, 1, 1) (b) (3,−1, 1) (c) (13, 5, 2)

(d)
(

13
2 , 5

2 , 2
)

(e) (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

(a)
(

5
7 ,

8
7 , 1

)
(b)

(
5
7 ,

8
7 , 0

)
(c) (5, 8, 1)

(d)
(

5
7 ,

10
7 , 2

7

)
(e)

(
5
7 ,

22
7 , 2

)
11. In each part, solve the linear system, if possible, and use the

result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

(a) 3x − 2y = 4
6x − 4y = 9

(b) 2x − 4y = 1
4x − 8y = 2

(c) x − 2y = 0
x − 4y = 8

12. Under what conditions on a and b will the following linear
system have no solutions, one solution, infinitely many solu-
tions?

2x − 3y = a

4x − 6y = b

In each part of Exercises 13–14, use parametric equations to
describe the solution set of the linear equation.

13. (a) 7x − 5y = 3

(b) 3x1 − 5x2 + 4x3 = 7

(c) −8x1 + 2x2 − 5x3 + 6x4 = 1

(d) 3v − 8w + 2x − y + 4z = 0

14. (a) x + 10y = 2

(b) x1 + 3x2 − 12x3 = 3

(c) 4x1 + 2x2 + 3x3 + x4 = 20

(d) v + w + x − 5y + 7z = 0

In Exercises 15–16, each linear system has infinitely many so-
lutions. Use parametric equations to describe its solution set.

15. (a) 2x − 3y = 1
6x − 9y = 3

(b) x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. (a) 6x1 + 2x2 = −8
3x1 + x2 = −4

(b) 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that
will create a 1 in the upper left corner of the given augmented ma-
trix and will not create any fractions in its first row.

17. (a)

⎡
⎣−3 −1 2 4

2 −3 3 2
0 2 −3 1

⎤
⎦ (b)

⎡
⎣0 −1 −5 0

2 −9 3 2
1 4 −3 3

⎤
⎦

18. (a)

⎡
⎣ 2 4 −6 8

7 1 4 3
−5 4 2 7

⎤
⎦ (b)

⎡
⎣ 7 −4 −2 2

3 −1 8 1
−6 3 −1 4

⎤
⎦
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In Exercises 19–20, find all values of k for which the given
augmented matrix corresponds to a consistent linear system.

19. (a)

[
1 k −4
4 8 2

]
(b)

[
1 k −1
4 8 −4

]

20. (a)

[
3 −4 k

−6 8 5

]
(b)

[
k 1 −2
4 −1 2

]
21. The curve y = ax2 + bx + c shown in the accompanying fig-

ure passes through the points (x1, y1), (x2, y2), and (x3, y3).
Show that the coefficients a, b, and c form a solution of the
system of linear equations whose augmented matrix is⎡

⎢⎣
x2

1 x1 1 y1

x2
2 x2 1 y2

x2
3 x3 1 y3

⎤
⎥⎦

y

x

y = ax2 + bx + c

(x1, y1)

(x3, y3)

(x2, y2)

Figure Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations

x1 + kx2 = c and x1 + lx2 = d

have the same solution set, then the two equations are identical
(i.e., k = l and c = d).

24. Consider the system of equations

ax + by = k

cx + dy = l

ex + fy = m

Discuss the relative positions of the lines ax + by = k,
cx + dy = l, and ex + fy = m when

(a) the system has no solutions.

(b) the system has exactly one solution.

(c) the system has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat, 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food 1: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, 1 unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains 1 unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Let x, y, and z denote the number of ounces of the first, sec-
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in x, y, and z

whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and c such that
the parabola y = ax2 + bx + c passes through the points
(1, 1), (2, 4), and (−1, 1). Find (but do not solve) a system
of linear equations whose solutions provide values for a, b,

and c. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that the
sum of the numbers is 12, the sum of two times the first plus
the second plus two times the third is 5, and the third number
is one more than the first. Find (but do not solve) a linear
system whose equations describe the three conditions.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) A linear system whose equations are all homogeneous must
be consistent.

(b) Multiplying a row of an augmented matrix through by zero is
an acceptable elementary row operation.

(c) The linear system
x − y = 3

2x − 2y = k

cannot have a unique solution, regardless of the value of k.

(d) A single linear equation with two or more unknowns must
have infinitely many solutions.

(e) If the number of equations in a linear system exceeds the num-
ber of unknowns, then the system must be inconsistent.

(f ) If each equation in a consistent linear system is multiplied
through by a constant c, then all solutions to the new system
can be obtained by multiplying solutions from the original
system by c.

(g) Elementary row operations permit one row of an augmented
matrix to be subtracted from another.

(h) The linear system with corresponding augmented matrix[
2 −1 4
0 0 −1

]
is consistent.

Working withTechnology

T1. Solve the linear systems in Examples 2, 3, and 4 to see how
your technology utility handles the three types of systems.

T2. Use the result in Exercise 21 to find values of a, b, and c

for which the curve y = ax2 + bx + c passes through the points
(−1, 1, 4), (0, 0, 8), and (1, 1, 7).
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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear
equations. The procedure is based on the idea of performing certain operations on the rows
of the augmented matrix that simplify it to a form from which the solution of the system
can be ascertained by inspection.

Considerations in Solving
Linear Systems

When considering methods for solving systems of linear equations, it is important to
distinguish between large systems that must be solved by computer and small systems
that can be solved by hand. For example, there are many applications that lead to
linear systems in thousands or even millions of unknowns. Large systems require special
techniques to deal with issues of memory size, roundoff errors, solution time, and so
forth. Such techniques are studied in the field of numerical analysis and will only be
touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

Echelon Forms In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z

by reducing the augmented matrix to the form⎡
⎢⎣1 0 0 1

0 1 0 2

0 0 1 3

⎤
⎥⎦

from which the solution x = 1, y = 2, z = 3 became evident. This is an example of a
matrix that is in reduced row echelon form. To be of this form, a matrix must have the
following properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.⎡
⎢⎣1 0 0 4

0 1 0 7

0 0 1 −1

⎤
⎥⎦ ,

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

0 1 −2 0 1

0 0 0 1 3

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

[
0 0

0 0

]

The following matrices are in row echelon form but not reduced row echelon form.⎡
⎢⎣1 4 −3 7

0 1 6 2

0 0 1 5

⎤
⎥⎦ ,

⎡
⎢⎣1 1 0

0 1 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣0 1 2 6 0

0 0 1 −1 0

0 0 0 0 1

⎤
⎥⎦
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EXAMPLE 2 More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading
1. Thus, with any real numbers substituted for the ∗’s, all matrices of the following types
are in row echelon form:⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥⎥⎥⎥⎥⎦

All matrices of the following types are in reduced row echelon form:

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥⎥⎥⎥⎥⎦

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and
x4 has been reduced by elementary row operations to⎡

⎢⎢⎢⎣
1 0 0 0 3

0 1 0 0 −1

0 0 1 0 0

0 0 0 1 5

⎤
⎥⎥⎥⎦

This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3

x2 = −1

x3 = 0

x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5.

In Example 3 we could, if
desired, express the solution
more succinctly as the 4-tuple
(3,−1, 0, 5).

EXAMPLE 4 Linear Systems inThree Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns
x, y, and z has been reduced by elementary row operations to the given reduced row
echelon form. Solve the system.

(a)

⎡
⎢⎣1 0 0 0

0 1 2 0

0 0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 3 −1

0 1 −4 2

0 0 0 0

⎤
⎥⎦ (c)

⎡
⎢⎣1 −5 1 4

0 0 0 0

0 0 0 0

⎤
⎥⎦
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Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x + 0y + 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the
linear system corresponding to the augmented matrix is

x + 3z = −1

y − 4z = 2

Since x and y correspond to the leading 1’s in the augmented matrix, we call these
the leading variables. The remaining variables (in this case z) are called free variables.
Solving for the leading variables in terms of the free variables gives

x = −1 − 3z

y = 2 + 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t , which then determines values for x and y. Thus, the
solution set can be represented by the parametric equations

x = −1 − 3t, y = 2 + 4t, z = t

By substituting various values for t in these equations we can obtain various solutions
of the system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the
zero rows, in which case the linear system associated with the augmented matrix consists
of the single equation

x − 5y + z = 4 (1)

from which we see that the solution set is a plane in three-dimensional space. Although
(1) is a valid form of the solution set, there are many applications in which it is preferable
to express the solution set in parametric form. We can convert (1) to parametric form

We will usually denote pa-
rameters in a general solution
by the letters r, s, t, . . . , but
any letters that do not con-
flict with the names of the
unknowns can be used. For
systems with more than three
unknowns, subscripted letters
such as t1, t2, t3, . . . are conve-
nient.

by solving for the leading variable x in terms of the free variables y and z to obtain

x = 4 + 5y − z

From this equation we see that the free variables can be assigned arbitrary values, say
y = s and z = t , which then determine the value of x. Thus, the solution set can be
expressed parametrically as

x = 4 + 5s − t, y = s, z = t (2)

Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

DEFINITION1 If a linear system has infinitely many solutions, then a set of parametric
equations from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.
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Elimination Methods We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step elimination
procedure that can be used to reduce any matrix to reduced row echelon form. As we
state each step in the procedure, we illustrate the idea by reducing the following matrix
to reduced row echelon form.⎡

⎢⎣0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1

⎤
⎥⎦

Step 1. Locate the leftmost column that does not consist entirely of zeros.

⎡
⎢⎣

0 0 2 0 7 12
2 4 10 6 12 28
2 4 5 6 5 1

⎤
⎥⎦

Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.⎡

⎢⎣2 4 −10 6 12 28

0 0 −2 0 7 12

2 4 −5 6 −5 −1

⎤
⎥⎦ The first and second rows in the preceding

matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply
the first row by 1/a in order to introduce a leading 1.⎡

⎢⎣1 2 −5 3 6 14

0 0 −2 0 7 12

2 4 −5 6 −5 −1

⎤
⎥⎦ The first row of the preceding matrix was

multiplied by 1
2 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.⎡

⎢⎣1 2 −5 3 6 14

0 0 −2 0 7 12

0 0 5 0 −17 −29

⎤
⎥⎦ −2 times the first row of the preceding

matrix was added to the third row.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 5 0 17 29

⎤
⎥⎦ The first row in the submatrix was

multiplied by 1
2

                              to introduce a
leading 1.

⎡
⎢⎣

1 2 5 3 6 14

0 0 2 0 7 12

0 0 5 0 17 29

⎤
⎥⎦

Leftmost nonzero column
in the submatrix
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⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

⎤
⎥⎦ The top row in the submatrix was

covered, and we returned again to
Step 1.

Leftmost nonzero column
in the new submatrix

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

⎤
⎥⎦ –5 times the first row of the submatrix

was added to the second row of the
submatrix to introduce a zero below
the leading 1.

⎡
⎢⎣

1 2 5 3 6 14

0 0 1 0 7
2

6
0 0 0 0 1 2

⎤
⎥⎦ The first (and only) row in the new

submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon form we
need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.⎡

⎢⎣1 2 −5 3 6 14

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ 7

2 times the third row of the preceding
matrix was added to the second row.

⎡
⎢⎣1 2 −5 3 0 2

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ −6 times the third row was added to the

first row.

⎡
⎢⎣1 2 0 3 0 7

0 0 1 0 0 1

0 0 0 0 1 2

⎤
⎥⎦ 5 times the second row was added to the

first row.

The last matrix is in reduced row echelon form.
The procedure (or algorithm) we have just described for reducing a matrix to reduced

row echelon form is called Gauss–Jordan elimination. This algorithm consists of two
parts, a forward phase in which zeros are introduced below the leading 1’s and a backward
phase in which zeros are introduced above the leading 1’s. If only theforward phase is

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Historical Note Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear when the great
German mathematician Carl Friedrich Gauss used it to help compute the orbit
of the asteroid Ceres from limited data. What happened was this: On January 1,
1801 the Sicilian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations
but then lost the object as it neared the Sun. Gauss, then only 24 years old,
undertook the problem of computing the orbit of Ceres from the limited data
using a technique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work of Gauss cre-
ated a sensation when Ceres reappeared a year later in the constellation Virgo
at almost the precise position that he predicted! The basic idea of the method
was further popularized by the German engineer Wilhelm Jordan in his book
on geodesy (the science of measuring Earth shapes) entitled Handbuch derVer-
messungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
Leemage/Universal Images Group/Getty Images (Jordan)]
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used, then the procedure produces a row echelon form and is called Gaussian elimination.
For example, in the preceding computations a row echelon form was obtained at the end
of Step 5.

EXAMPLE 5 Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 −1

0 0 5 10 0 15 5

2 6 0 8 4 18 6

⎤
⎥⎥⎥⎦

Adding −2 times the first row to the second and fourth rows gives⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 −1 −2 0 −3 −1

0 0 5 10 0 15 5

0 0 4 8 0 18 6

⎤
⎥⎥⎥⎦

Multiplying the second row by −1 and then adding −5 times the new second row to the
third row and −4 times the new second row to the fourth row gives⎡

⎢⎢⎢⎣
1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 0 0

0 0 0 0 0 6 2

⎤
⎥⎥⎥⎦

Interchanging the third and fourth rows and then multiplying the third row of the re-
sulting matrix by 1

6 gives the row echelon form⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ This completes the forward phase since

there are zeros below the leading 1’s.

Adding −3 times the third row to the second row and then adding 2 times the second
row of the resulting matrix to the first row yields the reduced row echelon form⎡

⎢⎢⎢⎣
1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ This completes the backward phase since

there are zeros above the leading 1’s.

The corresponding system of equations isNote that in constructing the
linear system in (3) we ignored
the row of zeros in the corre-
sponding augmented matrix.
Why is this justified?

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 1
3

(3)
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Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Finally, we express the general solution of the system parametrically by assigning the
free variables x2, x4, and x5 arbitrary values r, s, and t , respectively. This yields

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Homogeneous Linear
Systems

A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = 0

Every homogeneous system of linear equations is consistent because all such systems
have x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution;
if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.

• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 (a1, b1 not both zero)

a2x + b2y = 0 (a2, b2 not both zero)

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).

Figure 1.2.1

x

y

Only the trivial solution

x

y

Infinitely many

solutions

a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2y = 0

a2x + b2y = 0

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.
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EXAMPLE 6 A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe first that the coefficients of the unknowns in this system are the same
as those in Example 5; that is, the two systems differ only in the constants on the right
side. The augmented matrix for the given homogeneous system is⎡

⎢⎢⎢⎣
1 3 −2 0 2 0 0

2 6 −5 −2 4 −3 0

0 0 5 10 0 15 0
2 6 0 8 4 18 0

⎤
⎥⎥⎥⎦ (5)

which is the same as the augmented matrix for the system in Example 5, except for zeros
in the last column. Thus, the reduced row echelon form of this matrix will be the same
as that of the augmented matrix in Example 5, except for the last column. However,
a moment’s reflection will make it evident that a column of zeros is not changed by an
elementary row operation, so the reduced row echelon form of (5) is⎡

⎢⎢⎢⎣
1 3 0 4 2 0 0

0 0 1 2 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦ (6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0

x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 0
(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r , s, and t , respectively,
then we can express the solution set parametrically as

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.

FreeVariables in
Homogeneous Linear

Systems

Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.
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2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous linear
system has any rows of zero, the linear system corresponding to that reduced row
echelon form will either have the same number of equations as the original system
or it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading
variable, the homogeneous system corresponding to the reduced row echelon form of
the augmented matrix must have r leading variables and n − r free variables. Thus, this
system is of the form

xk1 +∑
( ) = 0

xk2 +∑
( ) = 0

. . .
...

xkr
+∑

( ) = 0

(8)

where in each equation the expression
∑

( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

THEOREM 1.2.1 FreeVariableTheorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form
of its augmented matrix has r nonzero rows, then the system has n − r free variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2 ap-
plies only to homogeneous
systems—a nonhomogeneous
system with more unknowns
than equations need not be
consistent. However, we will
prove later that if a nonho-
mogeneous system with more
unknowns then equations is
consistent, then it has in-
finitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system has m

equations in n unknowns, and if m < n, then it must also be true that r < n (why?).
This being the case, the theorem implies that there is at least one free variable, and this
implies that the system has infinitely many solutions. Thus, we have the following result.

THEOREM 1.2.2 A homogeneous linear system with more unknowns than equations has
infinitely many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.

Gaussian Elimination and
Back-Substitution

For small linear systems that are solved by hand (such as most of those in this text),
Gauss–Jordan elimination (reduction to reduced row echelon form) is a good procedure
to use. However, for large linear systems that require a computer solution, it is generally
more efficient to use Gaussian elimination (reduction to row echelon form) followed by
a technique known as back-substitution to complete the process of solving the system.
The next example illustrates this technique.
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EXAMPLE 7 Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is⎡
⎢⎢⎢⎣

1 3 −2 0 2 0 0

0 0 1 2 0 3 1

0 0 0 0 0 1 1
3

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎦

To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0

x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:

Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5

x3 = 1 − 2x4 − 3x6

x6 = 1
3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5

x3 = −2x4

x6 = 1
3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5

x3 = −2x4

x6 = 1
3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r , s, and t , respectively, the
general solution is given by the formulas

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.

EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the un-
knowns x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row
echelon form. Discuss the existence and uniqueness of solutions to the corresponding
linear systems
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(a)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 1

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 0 0

⎤
⎥⎥⎥⎦ (c)

⎡
⎢⎢⎢⎣

1 −3 7 2 5

0 1 2 −4 1

0 0 1 6 9

0 0 0 1 0

⎤
⎥⎥⎥⎦

Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables
x1, x2, and x3 correspond to leading 1’s and hence are leading variables. The variable x4

is a free variable. With a little algebra, the leading variables can be expressed in terms
of the free variable, and the free variable can be assigned an arbitrary value. Thus, the
system must have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9

we obtain x3 = 9. You should now be able to see that if we continue this process and
substitute the known values of x3 and x4 into the equation corresponding to the second
row, we will obtain a unique numerical value for x2; and if, finally, we substitute the
known values of x4, x3, and x2 into the equation corresponding to the first row, we will
produce a unique numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon
Forms

There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row oper-
ations, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix A have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of A. A
column that contains a pivot position is called a pivot column of A.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A
Simple Proof,” by Thomas Yuster, Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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EXAMPLE 9 Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

A =
⎡
⎢⎣0 0 −2 0 7 12

2 4 −10 6 12 28

2 4 −5 6 −5 −1

⎤
⎥⎦

to be ⎡
⎢⎣1 2 −5 3 6 14

0 0 1 0 − 7
2 −6

0 0 0 0 1 2

⎤
⎥⎦

The leading 1’s occur in positions (row 1, column 1), (row 2, column 3), and (row 3,
column 5). These are the pivot positions. The pivot columns are columns 1, 3, and 5.

If A is the augmented ma-
trix for a linear system, then
the pivot columns identify the
leading variables. As an illus-
tration, in Example 5 the pivot
columns are 1, 3, and 6, and
the leading variables arex1, x3,
and x6.

Roundoff Error and
Instability

There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculations may degrade an answer to a
degree that makes it useless. Algorithms (procedures) in which this happens are called
unstable. There are various techniques for minimizing roundoff error and instability.
For example, it can be shown that for large linear systems Gauss–Jordan elimination
involves roughly 50% more operations than Gaussian elimination, so most computer
algorithms are based on the latter method. Some of these matters will be considered in
Chapter 9.

Exercise Set 1.2

In Exercises 1–2, determine whether the matrix is in row ech-
elon form, reduced row echelon form, both, or neither.

1. (a)

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 0

0 1 0

0 0 0

⎤
⎥⎦ (c)

⎡
⎢⎣0 1 0

0 0 1

0 0 0

⎤
⎥⎦

(d)

[
1 0 3 1

0 1 2 4

]
(e)

⎡
⎢⎢⎢⎣

1 2 0 3 0

0 0 1 1 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦

(f )

⎡
⎢⎣0 0

0 0

0 0

⎤
⎥⎦ (g)

[
1 −7 5 5

0 1 3 2

]

2. (a)

⎡
⎢⎣1 2 0

0 1 0

0 0 0

⎤
⎥⎦ (b)

⎡
⎢⎣1 0 0

0 1 0

0 2 0

⎤
⎥⎦ (c)

⎡
⎢⎣1 3 4

0 0 1

0 0 0

⎤
⎥⎦

(d)

⎡
⎢⎣1 5 −3

0 1 1

0 0 0

⎤
⎥⎦ (e)

⎡
⎢⎣1 2 3

0 0 0

0 0 1

⎤
⎥⎦

(f )

⎡
⎢⎢⎢⎣

1 2 3 4 5

1 0 7 1 3

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎦ (g)

[
1 −2 0 1

0 0 1 −2

]

In Exercises 3–4, suppose that the augmented matrix for a lin-
ear system has been reduced by row operations to the given row
echelon form. Solve the system.

3. (a)

⎡
⎢⎣1 −3 4 7

0 1 2 2

0 0 1 5

⎤
⎥⎦

(b)

⎡
⎢⎣1 0 8 −5 6

0 1 4 −9 3

0 0 1 1 2

⎤
⎥⎦

(c)

⎡
⎢⎢⎢⎣

1 7 −2 0 −8 −3

0 0 1 1 6 5

0 0 0 1 3 9

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

(d)

⎡
⎢⎣1 −3 7 1

0 1 4 0

0 0 0 1

⎤
⎥⎦
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4. (a)

⎡
⎢⎣1 0 0 −3

0 1 0 0

0 0 1 7

⎤
⎥⎦

(b)

⎡
⎢⎣1 0 0 −7 8

0 1 0 3 2

0 0 1 1 −5

⎤
⎥⎦

(c)

⎡
⎢⎢⎢⎣

1 −6 0 0 3 −2

0 0 1 0 4 7

0 0 0 1 5 8

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

(d)

⎡
⎢⎣1 −3 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎦

In Exercises 5–8, solve the linear system by Gaussian elimi-
nation.

5. x1 + x2 + 2x3 = 8

−x1 − 2x2 + 3x3 = 1

3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0

−2x1 + 5x2 + 2x3 = 1

8x1 + x2 + 4x3 = −1

7. x − y + 2z − w = −1

2x + y − 2z − 2w = −2

−x + 2y − 4z + w = 1

3x − 3w = −3

8. − 2b + 3c = 1

3a + 6b − 3c = −2

6a + 6b + 3c = 5

In Exercises 9–12, solve the linear system by Gauss–Jordan
elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous sys-
tem has nontrivial solutions by inspection (without pencil and
paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0

7x1 + x2 − 8x3 + 9x4 = 0

2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0

x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any
method.

15. 2x1 + x2 + 3x3 = 0

x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0

−x + 2y − 3z = 0

x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0

5x1 − x2 + x3 − x4 = 0

18. v + 3w − 2x = 0

2u + v − 4w + 3x = 0

2u + 3v + 2w − x = 0

−4u − 3v + 5w − 4x = 0

19. 2x + 2y + 4z = 0

w − y − 3z = 0

2w + 3x + y + z = 0

−2w + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0

x1 + 4x2 + 2x3 = 0

− 2x2 − 2x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0

x1 − 2x2 − x3 + x4 = 0

21. 2I1 − I2 + 3I3 + 4I4 = 9

I1 − 2I3 + 7I4 = 11

3I1 − 3I2 + I3 + 5I4 = 8

2I1 + I2 + 4I3 + 4I4 = 10

22. Z3 + Z4 + Z5 = 0

−Z1 − Z2 + 2Z3 − 3Z4 + Z5 = 0

Z1 + Z2 − 2Z3 − Z5 = 0

2Z1 + 2Z2 − Z3 + Z5 = 0

In each part of Exercises 23–24, the augmented matrix for a
linear system is given in which the asterisk represents an unspec-
ified real number. Determine whether the system is consistent,
and if so whether the solution is unique. Answer “inconclusive” if
there is not enough information to make a decision.

23. (a)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 ∗

⎤
⎦ (b)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 0 0

⎤
⎦

(c)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 0 1

⎤
⎦ (d)

⎡
⎣1 ∗ ∗ ∗

0 0 ∗ 0
0 0 1 ∗

⎤
⎦

24. (a)

⎡
⎣1 ∗ ∗ ∗

0 1 ∗ ∗
0 0 1 1

⎤
⎦ (b)

⎡
⎣1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗

⎤
⎦

(c)

⎡
⎣1 0 0 0

1 0 0 1
1 ∗ ∗ ∗

⎤
⎦ (d)

⎡
⎣1 ∗ ∗ ∗

1 0 0 1
1 0 0 1

⎤
⎦

In Exercises 25–26, determine the values of a for which the
system has no solutions, exactly one solution, or infinitely many
solutions.

25. x + 2y − 3z = 4

3x − y + 5z = 2

4x + y + (a2 − 14)z = a + 2
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26. x + 2y + z = 2

2x − 2y + 3z = 1

x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c

satisfy for the linear system to be consistent?

27. x + 3y − z = a

x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a

−x − 2y + z = b

3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b,
and c are constants.

29. 2x + y = a

3x + 6y = b

30. x1 + x2 + x3 = a

2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of[
1 3

2 7

]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce ⎡
⎢⎣2 1 3

0 −2 −29

3 4 5

⎤
⎥⎦

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π , and 0 ≤ γ ≤ 2π .

sin α + 2 cos β + 3 tan γ = 0

2 sin α + 5 cos β + 3 tan γ = 0

− sin α − 5 cos β + 5 tan γ = 0

[Hint: Begin by making the substitutions x = sin α,
y = cos β, and z = tan γ .]

34. Solve the following system of nonlinear equations for the un-
known angles α, β, and γ , where 0 ≤ α ≤ 2π , 0 ≤ β ≤ 2π ,
and 0 ≤ γ < π .

2 sin α − cos β + 3 tan γ = 3

4 sin α + 2 cos β − 2 tan γ = 2

6 sin α − 3 cos β + tan γ = 9

35. Solve the following system of nonlinear equations for x, y,

and z.

x2 + y2 + z2 = 6

x2 − y2 + 2z2 = 2

2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions X = x2, Y = y2,

Z = z2.]

36. Solve the following system for x, y, and z.

1

x
+ 2

y
− 4

z
= 1

2

x
+ 3

y
+ 8

z
= 0

− 1

x
+ 9

y
+ 10

z
= 5

37. Find the coefficients a, b, c, and d so that the curve shown
in the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx + d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11) (4, –14)

Figure Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx + cy + d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

Figure Ex-38

39. If the linear system

a1x + b1y + c1z = 0

a2x − b2y + c2z = 0

a3x + b3y − c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x + b1y + c1z = 3

a2x − b2y + c2z = 7

a3x + b3y − c3z = 11

40. (a) If A is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

(b) If B is a matrix with three rows and six columns, then
what is the maximum possible number of parameters in
the general solution of the linear system with augmented
matrix B?

(c) If C is a matrix with five rows and three columns, then
what is the minimum possible number of rows of zeros in
any row echelon form of C?
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41. Describe all possible reduced row echelon forms of

(a)

⎡
⎢⎣a b c

d e f

g h i

⎤
⎥⎦ (b)

⎡
⎢⎢⎢⎣

a b c d

e f g h

i j k l

m n p q

⎤
⎥⎥⎥⎦

42. Consider the system of equations

ax + by = 0

cx + dy = 0

ex + fy = 0

Discuss the relative positions of the lines ax + by = 0,
cx + dy = 0, and ex + fy = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. (a) Prove that if ad − bc �= 0, then the reduced row echelon
form of [

a b

c d

]
is

[
1 0

0 1

]

(b) Use the result in part (a) to prove that if ad − bc �= 0, then
the linear system

ax + by = k

cx + dy = l

has exactly one solution.

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in
row echelon form.

(b) If an elementary row operation is applied to a matrix that is
in row echelon form, the resulting matrix will still be in row
echelon form.

(c) Every matrix has a unique row echelon form.

(d) A homogeneous linear system in n unknowns whose corre-
sponding augmented matrix has a reduced row echelon form
with r leading 1’s has n − r free variables.

(e) All leading 1’s in a matrix in row echelon form must occur in
different columns.

(f ) If every column of a matrix in row echelon form has a leading
1, then all entries that are not leading 1’s are zero.

(g) If a homogeneous linear system of n equations in n unknowns
has a corresponding augmented matrix with a reduced row
echelon form containing n leading 1’s, then the linear system
has only the trivial solution.

(h) If the reduced row echelon form of the augmented matrix for
a linear system has a row of zeros, then the system must have
infinitely many solutions.

(i) If a linear system has more unknowns than equations, then it
must have infinitely many solutions.

Working withTechnology

T1. Find the reduced row echelon form of the augmented matrix
for the linear system:

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1

7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent and,
if so, find its solution.

T2. Find values of the constants A, B, C, and D that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x

(x2 + 2x + 2)(x2 − 1)
= Ax + B

x2 + 2x + 2
+ C

x − 1
+ D

x + 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this as a
problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices for
linear systems. In this section we will begin to study matrices as objects in their own right
by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and
Terminology

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, to
abbreviate systems of linear equations. However, rectangular arrays of numbers occur
in other contexts as well. For example, the following rectangular array with three rows
and seven columns might describe the number of hours that a student spent studying
three subjects during a certain week:
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2
0
4

3
3
1

2
1
3

4
4
1

1
3
0

4
2
0

2
2
2

Mon.

Math
History
Language

Tues. Wed. Thurs. Fri. Sat. Sun.

If we suppress the headings, then we are left with the following rectangular array of
numbers with three rows and seven columns, called a “matrix”:

⎡
⎢⎣2 3 2 4 1 4 2

0 3 1 4 3 2 2

4 1 3 1 0 0 2

⎤
⎥⎦

More generally, we make the following definition.

DEFINITION 1 A matrix is a rectangular array of numbers. The numbers in the array
are called the entries in the matrix.

EXAMPLE 1 Examples of Matrices

Some examples of matrices are
Matrix brackets are often
omitted from 1 × 1 matri-
ces, making it impossible to
tell, for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from the
context.

⎡
⎣ 1 2

3 0
−1 4

⎤
⎦, [2 1 0 − 3],

⎡
⎢⎣e π −√

2

0 1
2 1

0 0 0

⎤
⎥⎦,

[
1

3

]
, [4]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 × 2). In a size description,
the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes 1 × 4, 3 × 3, 2 × 1, and
1 × 1, respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a row matrix), and a matrix with only one column, such as the fourth in that example,
is called a column vector (or a column matrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

A =
[

2 1 7

3 4 2

]
or C =

[
a b c

d e f

]
When discussing matrices, it is common to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.

The entry that occurs in row i and column j of a matrix A will be denoted by aij .
Thus a general 3 × 4 matrix might be written as
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A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦

and a general m × n matrix as

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ (1)

When a compact notation is desired, the preceding matrix can be written as
A matrix with n rows and n

columns is said to be a square
matrix of order n.

[aij ]m×n or [aij ]
the first notation being used when it is important in the discussion to know the size,
and the second when the size need not be emphasized. Usually, we will match the letter
denoting a matrix with the letter denoting its entries; thus, for a matrix B we would
generally use bij for the entry in row i and column j , and for a matrix C we would use
the notation cij .

The entry in row i and column j of a matrix A is also commonly denoted by the
symbol (A)ij . Thus, for matrix (1) above, we have

(A)ij = aij

and for the matrix

A =
[

2 −3

7 0

]
we have (A)11 = 2, (A)12 = −3, (A)21 = 7, and (A)22 = 0.

Row and column vectors are of special importance, and it is common practice to
denote them by boldface lowercase letters rather than capital letters. For such matrices,
double subscripting of the entries is unnecessary. Thus a general 1 × n row vector a and
a general m × 1 column vector b would be written as

a = [a1 a2 · · · an] and b =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

A matrix A with n rows and n columns is called a square matrix of order n, and the
shaded entries a11, a22, . . . , ann in (2) are said to be on the main diagonal of A.

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦ (2)

Operations on Matrices So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of ma-
trices” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

DEFINITION 2 Two matrices are defined to be equal if they have the same size and
their corresponding entries are equal.
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EXAMPLE 2 Equality of Matrices

Consider the matrices
The equality of two matrices

A = [aij ] and B = [bij ]
of the same size can be ex-
pressed either by writing

(A)ij = (B)ij

or by writing

aij = bij

where it is understood that the
equalities hold for all values of
i and j .

A =
[

2 1

3 x

]
, B =

[
2 1

3 5

]
, C =

[
2 1 0

3 4 0

]
If x = 5, then A = B, but for all other values of x the matrices A and B are not equal,
since not all of their corresponding entries are equal. There is no value of x for which
A = C since A and C have different sizes.

DEFINITION 3 If A and B are matrices of the same size, then the sum A + B is the
matrix obtained by adding the entries of B to the corresponding entries of A, and
the difference A − B is the matrix obtained by subtracting the entries of B from the
corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if A = [aij ] and B = [bij ] have the same size, then

(A + B)ij = (A)ij + (B)ij = aij + bij and (A − B)ij = (A)ij − (B)ij = aij − bij

EXAMPLE 3 Addition and Subtraction

Consider the matrices

A =
⎡
⎢⎣ 2 1 0 3
−1 0 2 4

4 −2 7 0

⎤
⎥⎦, B =

⎡
⎢⎣−4 3 5 1

2 2 0 −1
3 2 −4 5

⎤
⎥⎦, C =

[
1 1
2 2

]

Then

A + B =
⎡
⎢⎣−2 4 5 4

1 2 2 3
7 0 3 5

⎤
⎥⎦ and A − B =

⎡
⎢⎣ 6 −2 −5 2
−3 −2 2 5

1 −4 11 −5

⎤
⎥⎦

The expressions A + C, B + C, A − C, and B − C are undefined.

DEFINITION 4 If A is any matrix and c is any scalar, then the product cA is the matrix
obtained by multiplying each entry of the matrix A by c. The matrix cA is said to be
a scalar multiple of A.

In matrix notation, if A = [aij ], then

(cA)ij = c(A)ij = caij

EXAMPLE 4 Scalar Multiples

For the matrices

A =
[

2 3 4
1 3 1

]
, B =

[
0 2 7

−1 3 −5

]
, C =

[
9 −6 3
3 0 12

]
we have

2A =
[

4 6 8
2 6 2

]
, (−1)B =

[
0 −2 −7
1 −3 5

]
, 1

3C =
[

3 −2 1
1 0 4

]
It is common practice to denote (−1)B by −B.
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Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries
and subtracted by subtracting corresponding entries, it would seem natural to define
multiplication of matrices by multiplying corresponding entries. However, it turns out
that such a definition would not be very useful for most problems. Experience has led
mathematicians to the following more useful definition of matrix multiplication.

DEFINITION 5 If A is an m × r matrix and B is an r × n matrix, then the product
AB is the m × n matrix whose entries are determined as follows: To find the entry in
row i and column j of AB, single out row i from the matrix A and column j from
the matrix B. Multiply the corresponding entries from the row and column together,
and then add up the resulting products.

EXAMPLE 5 Multiplying Matrices

Consider the matrices

A =
[

1 2 4

2 6 0

]
, B =

⎡
⎢⎣4 1 4 3

0 −1 3 1

2 7 5 2

⎤
⎥⎦

Since A is a 2 × 3 matrix and B is a 3 × 4 matrix, the product AB is a 2 × 4 matrix.
To determine, for example, the entry in row 2 and column 3 of AB, we single out row 2
from A and column 3 from B. Then, as illustrated below, we multiply corresponding
entries together and add up these products.

[
1 2 4
2 6 0

]⎡⎢⎣
4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ =

⎡
⎢⎣

26

⎤
⎥⎦

(2 · 4) + (6 · 3) + (0 · 5) = 26

The entry in row 1 and column 4 of AB is computed as follows:

[
1 2 4
2 6 0

]⎡⎢⎣
4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ =

⎡
⎢⎣ 13

⎤
⎥⎦

(1 · 3) + (2 · 1) + (4 · 2) = 13

The computations for the remaining entries are

(1 · 4) + (2 · 0) + (4 · 2) = 12
(1 · 1) − (2 · 1) + (4 · 7) = 27
(1 · 4) + (2 · 3) + (4 · 5) = 30
(2 · 4) + (6 · 0) + (0 · 2) = 8
(2 · 1) − (6 · 1) + (0 · 7) = −4
(2 · 3) + (6 · 1) + (0 · 2) = 12

AB =
[

12 27 30 13
8 −4 26 12

]

The definition of matrix multiplication requires that the number of columns of the
first factor A be the same as the number of rows of the second factor B in order to form
the product AB. If this condition is not satisfied, the product is undefined. A convenient
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way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.

A
m × r

Inside

Outside

B
r × n =

AB
m × n

(3)

EXAMPLE 6 DeterminingWhether a Product Is Defined

Suppose that A, B, and C are matrices with the following sizes:

A B C

3 × 4 4 × 7 7 × 3

Then by (3), AB is defined and is a 3 × 7 matrix; BC is defined and is a 4 × 3 matrix; and
CA is defined and is a 7 × 4 matrix. The products AC, CB, and BA are all undefined.

In general, if A = [aij ] is an m × r matrix and B = [bij ] is an r × n matrix, then, as
illustrated by the shading in the following display,

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1r

a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn

⎤
⎥⎥⎥⎦ (4)

the entry (AB)ij in row i and column j of AB is given by

(AB)ij = ai1b1j + ai2b2j + ai3b3j + · · · + airbrj (5)

Formula (5) is called the row-column rule for matrix multiplication.

Partitioned Matrices A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are
three possible partitions of a general 3 × 4 matrix A—the first is a partition of A into

Gotthold Eisenstein
(1823–1852)

Historical Note The concept of matrix multiplica-
tion is due to the German mathematician Gotthold
Eisenstein, who introduced the idea around 1844 to
simplify the process of making substitutions in lin-
ear systems. The idea was then expanded on and
formalized by Cayley in his Memoir on the Theory
of Matrices that was published in 1858. Eisenstein
was a pupil of Gauss, who ranked him as the equal
of Isaac Newton and Archimedes. However, Eisen-
stein, suffering from bad health his entire life, died
at age 30, so his potential was never realized.
[Image: http://www-history.mcs.st-andrews.ac.uk/

Biographies/Eisenstein.html]
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four submatrices A11, A12, A21, and A22; the second is a partition of A into its row vectors
r1, r2, and r3; and the third is a partition of A into its column vectors c1, c2, c3, and c4:

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ =

[
A11 A12

A21 A22

]

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ =

⎡
⎢⎣r1

r2

r3

⎤
⎥⎦

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ = [c1 c2 c3 c4]

Matrix Multiplication by
Columns and by Rows

Partitioning has many uses, one of which is for finding particular rows or columns of a
matrix product AB without computing the entire product. Specifically, the following for-
mulas, whose proofs are left as exercises, show how individual column vectors of AB can
be obtained by partitioning B into column vectors and how individual row vectors of
AB can be obtained by partitioning A into row vectors.

AB = A[b1 b2 · · · bn] = [Ab1 Ab2 · · · Abn] (6)

(AB computed column by column)

AB =

⎡
⎢⎢⎢⎣

a1

a2
...

am

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣

a1B

a2B
...

amB

⎤
⎥⎥⎥⎦ (7)

(AB computed row by row)

In words, these formulas state that
We now have three methods
for computing a product of
two matrices, entry by entry
using Definition 5, column
by column using Formula (8),
and row by row using For-
mula (9). We will call these the
entry method , the row method ,
and the column method , re-
spectively.

j th column vector of AB = A[j th column vector of B] (8)

ith row vector of AB = [ith row vector of A]B (9)

EXAMPLE 7 Example 5 Revisited

If A and B are the matrices in Example 5, then from (8) the second column vector of
AB can be obtained by the computation

[
1 2 4

2 6 0

]⎡⎢⎣ 1

−1

7

⎤
⎥⎦ =

[
27

−4

]

�

Second column
of B

�

Second column
of AB
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and from (9) the first row vector of AB can be obtained by the computation

1 2 4

⎡
⎢⎣

4 1 4 3
0 1 3 1
2 7 5 2

⎤
⎥⎦ = 12 27 30 13

First row of A First row of AB

[ ][ ]

Matrix Products as Linear
Combinations

The following definition provides yet another way of thinking about matrix multipli-
cation.

Definition 6 is applicable, in
particular, to row and column
vectors. Thus, for example, a
linear combination of column
vectors x1, x2, . . . , xr of the
same size is an expression of
the form

c1x1 + c2x2 + · · · + crxr

DEFINITION 6 If A1, A2, . . . , Ar are matrices of the same size, and if c1, c2, . . . , cr

are scalars, then an expression of the form

c1A1 + c2A2 + · · · + crAr

is called a linear combination of A1, A2, . . . , Ar with coefficients c1, c2, . . . , cr .

To see how matrix products can be viewed as linear combinations, let A be an m × n

matrix and x an n × 1 column vector, say

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ and x =

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦

Then

Ax =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

...
...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦= x1

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦+ x2

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦+ · · · + xn

⎡
⎢⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎥⎦

(10)
This proves the following theorem.

THEOREM 1.3.1 If A is an m × n matrix, and if x is an n × 1 column vector, then the
productAx can be expressed as a linear combination of the column vectors ofA in which
the coefficients are the entries of x.

EXAMPLE 8 Matrix Products as Linear Combinations

The matrix product ⎡
⎢⎣−1 3 2

1 2 −3

2 1 −2

⎤
⎥⎦
⎡
⎢⎣ 2

−1

3

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦

can be written as the following linear combination of column vectors:

2

⎡
⎢⎣−1

1

2

⎤
⎥⎦− 1

⎡
⎢⎣3

2

1

⎤
⎥⎦+ 3

⎡
⎢⎣ 2

−3

−2

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦
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EXAMPLE 9 Columns of a ProductAB as Linear Combinations

We showed in Example 5 that

AB =
[

1 2 4

2 6 0

]⎡⎢⎣4 1 4 3

0 −1 3 1

2 7 5 2

⎤
⎥⎦ =

[
12 27 30 13

8 −4 26 12

]

It follows from Formula (6) and Theorem 1.3.1 that the j th column vector of AB can be
expressed as a linear combination of the column vectors of A in which the coefficients
in the linear combination are the entries from the j th column of B. The computations
are as follows: [

12

8

]
= 4

[
1

2

]
+ 0

[
2

6

]
+ 2

[
4

0

]
[

27

−4

]
=

[
1

2

]
−

[
2

6

]
+ 7

[
4

0

]
[

30

26

]
= 4

[
1

2

]
+ 3

[
2

6

]
+ 5

[
4

0

]
[

13

12

]
= 3

[
1

2

]
+

[
2

6

]
+ 2

[
4

0

]

Column-Row Expansion Partitioning provides yet another way to view matrix multiplication. Specifically, sup-
pose that an m × r matrix A is partitioned into its r column vectors c1, c2, . . . , cr (each
of size m × 1) and an r × n matrix B is partitioned into its r row vectors r1, r2, . . . , rr

(each of size 1 × n). Each term in the sum

c1r1 + c2r2 + · · · + crrr

has size m × n so the sum itself is an m × n matrix. We leave it as an exercise for you to
verify that the entry in row i and column j of the sum is given by the expression on the
right side of Formula (5), from which it follows that

AB = c1r1 + c2r2 + · · · + crrr (11)

We call (11) the column-row expansion of AB.

EXAMPLE 10 Column-Row Expansion

Find the column-row expansion of the product

AB =
[

1 3

2 −1

][
2 0 4

−3 5 1

]
(12)

Solution The column vectors of A and the row vectors of B are, respectively,

c1 =
[

1

2

]
, c2 =

[
3

−1

]
; r1 = [

2 0 4
]
, r2 = [−3 5 1

]
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Thus, it follows from (11) that the column-row expansion of AB is

AB =
[

1

2

] [
2 0 4

]+
[

3

−1

] [−3 5 1
]

=
[

2 0 4

4 0 8

]
+
[
−9 15 3

3 −5 −1

] (13)

As a check, we leave it for you to confirm that the product in (12) and the sum in (13)
The main use of the column-
row expansion is for develop-
ing theoretical results rather
than for numerical computa-
tions.

both yield

AB =
[
−7 15 7

7 −5 7

]

Matrix Form of a Linear
System

Matrix multiplication has an important application to systems of linear equations. Con-
sider a system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Since two matrices are equal if and only if their corresponding entries are equal, we can
replace the m equations in this system by the single matrix equation⎡

⎢⎢⎢⎣
a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn
...

...
...

am1x1 + am2x2 + · · ·+ amnxn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

The m × 1 matrix on the left side of this equation can be written as a product to give⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

If we designate these matrices by A, x, and b, respectively, then we can replace the original
system of m equations in n unknowns by the single matrix equation

Ax = b

The matrix A in this equation is called the coefficient matrix of the system. The aug-
mented matrix for the system is obtained by adjoining b to A as the last column; thus

The vertical partition line in
the augmented matrix [A | b]
is optional, but is a useful way
of visually separating the coef-
ficient matrix A from the col-
umn vector b.

the augmented matrix is

[A | b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
...

...

am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦

Transpose of a Matrix We conclude this section by defining two matrix operations that have no analogs in the
arithmetic of real numbers.
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DEFINITION 7 If A is any m × n matrix, then the transpose of A, denoted by AT , is
defined to be the n × m matrix that results by interchanging the rows and columns
of A; that is, the first column of AT is the first row of A, the second column of AT is
the second row of A, and so forth.

EXAMPLE 11 SomeTransposes

The following are some examples of matrices and their transposes.

A =
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦, B =

⎡
⎢⎣2 3

1 4

5 6

⎤
⎥⎦, C = [1 3 5], D = [4]

AT =

⎡
⎢⎢⎢⎣

a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34

⎤
⎥⎥⎥⎦, BT =

[
2 1 5

3 4 6

]
, CT =

⎡
⎢⎣1

3

5

⎤
⎥⎦, DT = [4]

Observe that not only are the columns of AT the rows of A, but the rows of AT are
the columns of A. Thus the entry in row i and column j of AT is the entry in row j and
column i of A; that is,

(AT )ij = (A)ji (14)

Note the reversal of the subscripts.
In the special case where A is a square matrix, the transpose of A can be obtained

by interchanging entries that are symmetrically positioned about the main diagonal. In
(15) we see that AT can also be obtained by “reflecting” A about its main diagonal.

A =

⎡
⎢⎣

1 2 4
3 7 0
5 8 6

⎤
⎥⎦

⎡
⎢⎣

1 2 4
3 7 0
5 8 6

⎤
⎥⎦ AT

⎡
⎢⎣

1 3 5
2 7 8
4 0 6

⎤
⎥⎦

Interchange entries that are
symmetrically positioned
about the main diagonal.

(15)

James Sylvester
(1814–1897)

Arthur Cayley
(1821–1895)

Historical Note The term matrix was first used by the English mathematician
James Sylvester, who defined the term in 1850 to be an “oblong arrangement
of terms.” Sylvester communicated his work on matrices to a fellow English
mathematician and lawyer named Arthur Cayley, who then introduced some of
the basic operations on matrices in a book entitled Memoir on the Theory of
Matrices that was published in 1858. As a matter of interest, Sylvester, who was
Jewish, did not get his college degree because he refused to sign a required
oath to the Church of England. He was appointed to a chair at the University of
Virginia in the United States but resigned after swatting a student with a stick
because he was reading a newspaper in class. Sylvester, thinking he had killed
the student, fled back to England on the first available ship. Fortunately, the
student was not dead, just in shock!

[Images: © Bettmann/CORBIS (Sylvester );
Photo Researchers/Getty Images (Cayley )]
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Trace of a Matrix DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is defined
to be the sum of the entries on the main diagonal of A. The trace of A is undefined
if A is not a square matrix.

EXAMPLE 12 Trace

The following are examples of matrices and their traces.

A =
⎡
⎢⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦, B =

⎡
⎢⎢⎢⎣
−1 2 7 0

3 5 −8 4

1 2 7 −3

4 −2 1 0

⎤
⎥⎥⎥⎦

tr(A) = a11 + a22 + a33 tr(B) = −1 + 5 + 7 + 0 = 11

In the exercises you will have some practice working with the transpose and trace
operations.

Exercise Set 1.3

In Exercises 1–2, suppose that A, B, C, D, and E are matrices
with the following sizes:

A B C D E

(4 × 5) (4 × 5) (5 × 2) (4 × 2) (5 × 4)

In each part, determine whether the given matrix expression is
defined. For those that are defined, give the size of the resulting
matrix.

1. (a) BA (b) ABT (c) AC + D

(d) E(AC) (e) A − 3ET (f ) E(5B + A)

2. (a) CDT (b) DC (c) BC − 3D

(d) DT (BE) (e) BTD + ED (f ) BAT + D

In Exercises 3–6, use the following matrices to compute the
indicated expression if it is defined.

A =
⎡
⎢⎣ 3 0

−1 2

1 1

⎤
⎥⎦, B =

[
4 −1

0 2

]
, C =

[
1 4 2

3 1 5

]
,

D =
⎡
⎢⎣ 1 5 2

−1 0 1

3 2 4

⎤
⎥⎦, E =

⎡
⎢⎣ 6 1 3

−1 1 2

4 1 3

⎤
⎥⎦

3. (a) D + E (b) D − E (c) 5A

(d) −7C (e) 2B − C (f ) 4E − 2D

(g) −3(D + 2E) (h) A − A (i) tr(D)

( j) tr(D − 3E) (k) 4 tr(7B) (l) tr(A)

4. (a) 2AT + C (b) DT − ET (c) (D − E)T

(d) BT + 5CT (e) 1
2 C

T − 1
4 A (f ) B − BT

(g) 2ET − 3DT (h) (2ET − 3DT )T (i) (CD)E

( j) C(BA) (k) tr(DET ) (l) tr(BC)

5. (a) AB (b) BA (c) (3E)D

(d) (AB)C (e) A(BC) (f ) CCT

(g) (DA)T (h) (CTB)AT (i) tr(DDT )

( j) tr(4ET − D) (k) tr(CTAT + 2ET ) (l) tr((ECT )TA)

6. (a) (2DT − E)A (b) (4B)C + 2B

(c) (−AC)T + 5DT (d) (BAT − 2C)T

(e) BT(CCT − ATA) (f ) DTET − (ED)T

In Exercises 7–8, use the following matrices and either the row
method or the column method, as appropriate, to find the indi-
cated row or column.

A =
⎡
⎢⎣3 −2 7

6 5 4

0 4 9

⎤
⎥⎦ and B =

⎡
⎢⎣6 −2 4

0 1 3

7 7 5

⎤
⎥⎦

7. (a) the first row of AB (b) the third row of AB

(c) the second column of AB (d) the first column of BA

(e) the third row of AA (f ) the third column of AA
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8. (a) the first column of AB (b) the third column of BB

(c) the second row of BB (d) the first column of AA

(e) the third column of AB (f ) the first row of BA

In Exercises 9–10, use matrices A and B from Exercises 7–8.

9. (a) Express each column vector of AA as a linear combination
of the column vectors of A.

(b) Express each column vector of BB as a linear combination
of the column vectors of B.

10. (a) Express each column vector of AB as a linear combination
of the column vectors of A.

(b) Express each column vector of BA as a linear combination
of the column vectors of B.

In each part of Exercises 11–12, find matrices A, x, and b that
express the given linear system as a single matrix equation Ax = b,
and write out this matrix equation.

11. (a) 2x1 − 3x2 + 5x3 = 7
9x1 − x2 + x3 = −1
x1 + 5x2 + 4x3 = 0

(b) 4x1 − 3x3 + x4 = 1
5x1 + x2 − 8x4 = 3
2x1 − 5x2 + 9x3 − x4 = 0

3x2 − x3 + 7x4 = 2

12. (a) x1 − 2x2 + 3x3 = −3
2x1 + x2 = 0

− 3x2 + 4x3 = 1
x1 + x3 = 5

(b) 3x1 + 3x2 + 3x3 = −3
−x1 − 5x2 − 2x3 = 3

− 4x2 + x3 = 0

In each part of Exercises 13–14, express the matrix equation
as a system of linear equations.

13. (a)

⎡
⎢⎣ 5 6 −7

−1 −2 3

0 4 −1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣2

0

3

⎤
⎥⎦

(b)

⎡
⎢⎣1 1 1

2 3 0

5 −3 −6

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣ 2

2

−9

⎤
⎥⎦

14. (a)

⎡
⎢⎣ 3 −1 2

4 3 7

−2 1 5

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 2

−1

4

⎤
⎥⎦

(b)

⎡
⎢⎢⎢⎣

3 −2 0 1

5 0 2 −2

3 1 4 7

−2 5 1 6

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

w

x

y

z

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

In Exercises 15–16, find all values of k, if any, that satisfy the
equation.

15.
[
k 1 1

]⎡⎢⎣1 1 0

1 0 2

0 2 −3

⎤
⎥⎦
⎡
⎢⎣k

1

1

⎤
⎥⎦ = 0

16.
[
2 2 k

]⎡⎢⎣1 2 0

2 0 3

0 3 1

⎤
⎥⎦
⎡
⎢⎣2

2

k

⎤
⎥⎦ = 0

In Exercises 17–20, use the column-row expansion of AB to
express this product as a sum of matrices.

17. A =
[

4 −3

2 −1

]
, B =

[
0 1 2

−2 3 1

]

18. A =
[

0 −2

4 −3

]
, B =

[
1 4 1

−3 0 2

]

19. A =
[

1 2 3

4 5 6

]
, B =

⎡
⎢⎣

1 2

3 4

5 6

⎤
⎥⎦

20. A =
[

0 4 2

1 −2 5

]
, B =

⎡
⎢⎣

2 −1

4 0

1 −1

⎤
⎥⎦

21. For the linear system in Example 5 of Section 1.2, express the
general solution that we obtained in that example as a linear
combination of column vectors that contain only numerical
entries. [Suggestion: Rewrite the general solution as a single
column vector, then write that column vector as a sum of col-
umn vectors each of which contains at most one parameter,
and then factor out the parameters.]

22. Follow the directions of Exercise 21 for the linear system in
Example 6 of Section 1.2.

In Exercises 23–24, solve the matrix equation for a, b, c,
and d.

23.
[

a 3

−1 a + b

]
=
[

4 d − 2c

d + 2c −2

]

24.
[

a − b b + a

3d + c 2d − c

]
=
[

8 1

7 6

]

25. (a) Show that if A has a row of zeros and B is any matrix for
which AB is defined, then AB also has a row of zeros.

(b) Find a similar result involving a column of zeros.

26. In each part, find a 6 × 6 matrix [aij ] that satisfies the stated
condition. Make your answers as general as possible by using
letters rather than specific numbers for the nonzero entries.

(a) aij = 0 if i �= j (b) aij = 0 if i > j

(c) aij = 0 if i < j (d) aij = 0 if |i − j | > 1
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In Exercises 27–28, how many 3 × 3 matrices A can you find
for which the equation is satisfied for all choices of x, y, and z?

27. A

⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣x + y

x − y

0

⎤
⎥⎦ 28. A

⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣xy

0

0

⎤
⎥⎦

29. A matrix B is said to be a square root of a matrix A if BB = A.

(a) Find two square roots of A =
[

2 2

2 2

]
.

(b) How many different square roots can you find of

A =
[

5 0

0 9

]
?

(c) Do you think that every 2 × 2 matrix has at least one
square root? Explain your reasoning.

30. Let 0 denote a 2 × 2 matrix, each of whose entries is zero.

(a) Is there a 2 × 2 matrix A such that A �= 0 and AA = 0 ?
Justify your answer.

(b) Is there a 2 × 2 matrix A such that A �= 0 and AA = A?
Justify your answer.

31. Establish Formula (11) by using Formula (5) to show that

(AB)ij = (c1r1 + c2r2 + · · · + crrr )ij

32. Find a 4 × 4 matrix A = [aij ] whose entries satisfy the stated
condition.

(a) aij = i + j (b) aij = ij−1

(c) aij =
{

1 if |i − j | > 1

−1 if |i − j | ≤ 1

33. Suppose that type I items cost $1 each, type II items cost $2
each, and type III items cost $3 each. Also, suppose that the
accompanying table describes the number of items of each
type purchased during the first four months of the year.

Table Ex-33

Type I Type II Type III

Jan. 3 4 3

Feb. 5 6 0

Mar. 2 9 4

Apr. 1 1 7

What information is represented by the following product?

⎡
⎢⎢⎢⎣

3 4 3

5 6 0

2 9 4

1 1 7

⎤
⎥⎥⎥⎦
⎡
⎢⎣1

2

3

⎤
⎥⎦

34. The accompanying table shows a record of May and June unit
sales for a clothing store. Let M denote the 4 × 3 matrix of
May sales and J the 4 × 3 matrix of June sales.

(a) What does the matrix M + J represent?

(b) What does the matrix M − J represent?

(c) Find a column vector x for which Mx provides a list of the
number of shirts, jeans, suits, and raincoats sold in May.

(d) Find a row vector y for which yM provides a list of the
number of small, medium, and large items sold in May.

(e) Using the matrices x and y that you found in parts (c) and
(d), what does yMx represent?

Table Ex-34
May Sales

Small Medium Large

Shirts 45 60 75

Jeans 30 30 40

Suits 12 65 45

Raincoats 15 40 35

June Sales

Small Medium Large

Shirts 30 33 40

Jeans 21 23 25

Suits 9 12 11

Raincoats 8 10 9

Working with Proofs

35. Prove: If A and B are n × n matrices, then

tr(A + B) = tr(A) + tr(B)

36. (a) Prove: If AB and BA are both defined, then AB and BA

are square matrices.

(b) Prove: If A is an m × n matrix and A(BA) is defined, then
B is an n × m matrix.

True-False Exercises

TF. In parts (a)–(o) determine whether the statement is true or
false, and justify your answer.

(a) The matrix

[
1 2 3
4 5 6

]
has no main diagonal.

(b) An m × n matrix has m column vectors and n row vectors.

(c) If A and B are 2 × 2 matrices, then AB = BA.

(d) The ith row vector of a matrix product AB can be computed
by multiplying A by the ith row vector of B.



1.4 Inverses; Algebraic Properties of Matrices 39

(e) For every matrix A, it is true that (AT )T = A.

(f ) If A and B are square matrices of the same order, then

tr(AB) = tr(A)tr(B)

(g) If A and B are square matrices of the same order, then

(AB)T = ATBT

(h) For every square matrix A, it is true that tr(AT ) = tr(A).

(i) If A is a 6 × 4 matrix and B is an m × n matrix such that BTAT

is a 2 × 6 matrix, then m = 4 and n = 2.

( j) If A is an n × n matrix and c is a scalar, then tr(cA) = c tr(A).

(k) If A, B, and C are matrices of the same size such that
A − C = B − C, then A = B.

(l) If A, B, and C are square matrices of the same order such that
AC = BC, then A = B.

(m) If AB + BA is defined, then A and B are square matrices of
the same size.

(n) If B has a column of zeros, then so does AB if this product is
defined.

(o) If B has a column of zeros, then so does BA if this product is
defined.

Working withTechnology

T1. (a) Compute the product AB of the matrices in Example 5,
and compare your answer to that in the text.

(b) Use your technology utility to extract the columns of A

and the rows of B, and then calculate the product AB by
a column-row expansion.

T2. Suppose that a manufacturer uses Type I items at $1.35 each,
Type II items at $2.15 each, and Type III items at $3.95 each. Sup-
pose also that the accompanying table describes the purchases of
those items (in thousands of units) for the first quarter of the year.
Write down a matrix product, the computation of which produces
a matrix that lists the manufacturer’s expenditure in each month
of the first quarter. Compute that product.

Type I Type II Type III

Jan. 3.1 4.2 3.5

Feb. 5.1 6.8 0

Mar. 2.2 9.5 4.0

Apr. 1.0 1.0 7.4

1.4 Inverses; Algebraic Properties of Matrices
In this section we will discuss some of the algebraic properties of matrix operations. We will
see that many of the basic rules of arithmetic for real numbers hold for matrices, but we will
also see that some do not.

Properties of Matrix
Addition and Scalar

Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

THEOREM 1.4.1 Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be
performed, the following rules of matrix arithmetic are valid.

(a) A + B = B + A [Commutative law for matrix addition]

(b) A + (B + C) = (A + B) + C [Associative law for matrix addition]

(c) A(BC) = (AB)C [Associative law for matrix multiplication]

(d ) A(B + C) = AB + AC [Left distributive law]

(e) (B + C)A = BA + CA [Right distributive law]

( f ) A(B − C) = AB − AC

(g) (B − C)A = BA − CA

(h) a(B + C) = aB + aC

(i ) a(B − C) = aB − aC

( j ) (a + b)C = aC + bC

(k) (a − b)C = aC − bC

(l ) a(bC) = (ab)C

(m) a(BC) = (aB)C = B(aC)
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To prove any of the equalities in this theorem we must show that the matrix on the left
side has the same size as that on the right and that the corresponding entries on the two
sides are the same. Most of the proofs follow the same pattern, so we will prove part
(d ) as a sample. The proof of the associative law for multiplication is more complicated
than the rest and is outlined in the exercises.

Proof (d) We must show that A(B + C) and AB + AC have the same size and that
corresponding entries are equal. To form A(B + C), the matrices B and C must have
the same size, say m × n, and the matrix A must then have m columns, so its size must
be of the form r × m. This makes A(B + C) an r × n matrix. It follows that AB + AC

is also an r × n matrix and, consequently, A(B + C) and AB + AC have the same size.
Suppose that A = [aij ], B = [bij ], and C = [cij ]. We want to show that correspond-

ing entries of A(B + C) and AB + AC are equal; that is,(
A(B + C)

)
ij
= (AB + AC)ij

for all values of i and j . But from the definitions of matrix addition and matrix multi-

There are three basic ways
to prove that two matrices
of the same size are equal—
prove that corresponding en-
tries are the same, prove that
corresponding row vectors are
the same, or prove that corre-
sponding column vectors are
the same.

plication, we have(
A(B + C)

)
ij
= ai1(b1j + c1j ) + ai2(b2j + c2j ) + · · · + aim(bmj + cmj )

= (ai1b1j + ai2b2j + · · · + aimbmj ) + (ai1c1j + ai2c2j + · · · + aimcmj )

= (AB)ij + (AC)ij = (AB + AC)ij

Remark Although the operations of matrix addition and matrix multiplication were defined for
pairs of matrices, associative laws (b) and (c) enable us to denote sums and products of three
matrices as A + B + C and ABC without inserting any parentheses. This is justified by the fact
that no matter how parentheses are inserted, the associative laws guarantee that the same end
result will be obtained. In general, given any sum or any product of matrices, pairs of parentheses
can be inserted or deleted anywhere within the expression without affecting the end result.

EXAMPLE 1 Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

A =
⎡
⎢⎣1 2

3 4

0 1

⎤
⎥⎦, B =

[
4 3

2 1

]
, C =

[
1 0

2 3

]

Then

AB =
⎡
⎢⎣1 2

3 4

0 1

⎤
⎥⎦[4 3

2 1

]
=
⎡
⎢⎣ 8 5

20 13

2 1

⎤
⎥⎦ and BC =

[
4 3

2 1

] [
1 0

2 3

]
=
[

10 9

4 3

]

Thus

(AB)C =
⎡
⎢⎣ 8 5

20 13

2 1

⎤
⎥⎦[1 0

2 3

]
=
⎡
⎢⎣18 15

46 39

4 3

⎤
⎥⎦

and

A(BC) =
⎡
⎢⎣1 2

3 4

0 1

⎤
⎥⎦[10 9

4 3

]
=
⎡
⎢⎣18 15

46 39

4 3

⎤
⎥⎦

so (AB)C = A(BC), as guaranteed by Theorem 1.4.1(c).
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Properties of Matrix
Multiplication

Do not let Theorem 1.4.1 lull you into believing that all laws of real arithmetic carry over
to matrix arithmetic. For example, you know that in real arithmetic it is always true that
ab = ba, which is called the commutative law for multiplication. In matrix arithmetic,
however, the equality of AB and BA can fail for three possible reasons:

1. AB may be defined and BA may not (for example, if A is 2 × 3 and B is 3 × 4).

2. AB and BA may both be defined, but they may have different sizes (for example, if
A is 2 × 3 and B is 3 × 2).

3. AB and BA may both be defined and have the same size, but the two products may
be different (as illustrated in the next example).

EXAMPLE 2 Order Matters in Matrix Multiplication

Consider the matrices
Do not read too much into Ex-
ample 2—it does not rule out
the possibility that AB and BA

may be equal in certain cases,
just that they are not equal in
all cases. If it so happens that
AB = BA, then we say that
AB and BA commute.

A =
[−1 0

2 3

]
and B =

[
1 2

3 0

]
Multiplying gives

AB =
[−1 −2

11 4

]
and BA =

[
3 6

−3 0

]
Thus, AB �= BA.

Zero Matrices A matrix whose entries are all zero is called a zero matrix. Some examples are

[
0 0

0 0

]
,

⎡
⎢⎣0 0 0

0 0 0

0 0 0

⎤
⎥⎦ ,

[
0 0 0 0

0 0 0 0

]
,

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦ , [0]

We will denote a zero matrix by 0 unless it is important to specify its size, in which case
we will denote the m × n zero matrix by 0m×n.

It should be evident that if A and 0 are matrices with the same size, then

A + 0 = 0+ A = A

Thus, 0 plays the same role in this matrix equation that the number 0 plays in the
numerical equation a + 0 = 0 + a = a.

The following theorem lists the basic properties of zero matrices. Since the results
should be self-evident, we will omit the formal proofs.

THEOREM 1.4.2 Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be
perfomed, then:

(a) A + 0 = 0+ A = A

(b) A − 0 = A

(c) A − A = A + (−A) = 0

(d ) 0A = 0

(e) If cA = 0, then c = 0 or A = 0.
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Since we know that the commutative law of real arithmetic is not valid in matrix
arithmetic, it should not be surprising that there are other rules that fail as well. For
example, consider the following two laws of real arithmetic:

• If ab = ac and a �= 0, then b = c. [The cancellation law]

• If ab = 0, then at least one of the factors on the left is 0.

The next two examples show that these laws are not true in matrix arithmetic.

EXAMPLE 3 Failure of the Cancellation Law

Consider the matrices

A =
[

0 1

0 2

]
, B =

[
1 1

3 4

]
, C =

[
2 5

3 4

]

We leave it for you to confirm that

AB = AC =
[

3 4

6 8

]

Although A �= 0, canceling A from both sides of the equation AB = AC would lead
to the incorrect conclusion that B = C. Thus, the cancellation law does not hold, in
general, for matrix multiplication (though there may be particular cases where it is true).

EXAMPLE 4 A Zero Product with Nonzero Factors

Here are two matrices for which AB = 0, but A �= 0 and B �= 0:

A =
[

0 1

0 2

]
, B =

[
3 7

0 0

]

Identity Matrices A square matrix with 1’s on the main diagonal and zeros elsewhere is called an identity
matrix. Some examples are

[1],
[

1 0

0 1

]
,

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

An identity matrix is denoted by the letter I . If it is important to emphasize the size, we
will write In for the n × n identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect
of multiplying a general 2 × 3 matrix A on each side by an identity matrix. Multiplying
on the right by the 3 × 3 identity matrix yields

AI3 =
[
a11 a12 a13

a21 a22 a23

]⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ =

[
a11 a12 a13

a21 a22 a23

]
= A

and multiplying on the left by the 2 × 2 identity matrix yields

I2A =
[

1 0

0 1

][
a11 a12 a13

a21 a22 a23

]
=
[
a11 a12 a13

a21 a22 a23

]
= A
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The same result holds in general; that is, if A is any m × n matrix, then

AIn = A and ImA = A

Thus, the identity matrices play the same role in matrix arithmetic that the number 1
plays in the numerical equation a · 1 = 1 · a = a.

As the next theorem shows, identity matrices arise naturally in studying reduced row
echelon forms of square matrices.

THEOREM 1.4.3 IfR is the reduced row echelon form of an n × nmatrixA, then either
R has a row of zeros or R is the identity matrix In.

Proof Suppose that the reduced row echelon form of A is

R =

⎡
⎢⎢⎢⎣

r11 r12 · · · r1n

r21 r22 · · · r2n
...

...
...

rn1 rn2 · · · rnn

⎤
⎥⎥⎥⎦

Either the last row in this matrix consists entirely of zeros or it does not. If not, the
matrix contains no zero rows, and consequently each of the n rows has a leading entry
of 1. Since these leading 1’s occur progressively farther to the right as we move down
the matrix, each of these 1’s must occur on the main diagonal. Since the other entries in
the same column as one of these 1’s are zero, R must be In. Thus, either R has a row of
zeros or R = In.

Inverse of a Matrix In real arithmetic every nonzero number a has a reciprocal a−1(= 1/a) with the property

a · a−1 = a−1 · a = 1

The number a−1 is sometimes called the multiplicative inverse of a. Our next objective is
to develop an analog of this result for matrix arithmetic. For this purpose we make the
following definition.

DEFINITION 1 If A is a square matrix, and if a matrix B of the same size can be
found such that AB = BA = I , then A is said to be invertible (or nonsingular) and
B is called an inverse of A. If no such matrix B can be found, then A is said to be
singular.

Remark The relationship AB = BA = I is not changed by interchanging A and B, so if A is
invertible and B is an inverse of A, then it is also true that B is invertible, and A is an inverse of
B. Thus, when

AB = BA = I

we say that A and B are inverses of one another.

EXAMPLE 5 An Invertible Matrix

Let

A =
[

2 −5
−1 3

]
and B =

[
3 5
1 2

]



44 Chapter 1 Systems of Linear Equations and Matrices

Then

AB =
[

2 −5
−1 3

] [
3 5
1 2

]
=
[

1 0
0 1

]
= I

BA =
[

3 5
1 2

] [
2 −5

−1 3

]
=
[

1 0
0 1

]
= I

Thus, A and B are invertible and each is an inverse of the other.

EXAMPLE 6 A Class of Singular Matrices

A square matrix with a row or column of zeros is singular. To help understand why this
is so, consider the matrix

A =
⎡
⎢⎣1 4 0

2 5 0
3 6 0

⎤
⎥⎦

To prove that A is singular we must show that there is no 3 × 3 matrix B such that
As in Example 6, we will fre-
quently denote a zero matrix
with one row or one column
by a boldface zero.

AB = BA = I. For this purpose let c1, c2, 0 be the column vectors of A. Thus, for any
3 × 3 matrix B we can express the product BA as

BA = B[c1 c2 0] = [Bc1 Bc2 0] [Formula (6) of Section 1.3]

The column of zeros shows that BA �= I and hence that A is singular.

Properties of Inverses It is reasonable to ask whether an invertible matrix can have more than one inverse. The
next theorem shows that the answer is no—an invertible matrix has exactly one inverse.

THEOREM 1.4.4 If B and C are both inverses of the matrix A, then B = C.

Proof Since B is an inverse of A, we have BA = I. Multiplying both sides on the right
by C gives (BA)C = IC = C. But it is also true that (BA)C = B(AC) = BI = B, so
C = B.

As a consequence of this important result, we can now speak of “the” inverse of an
WARNING The symbol A−1

should not be interpreted as
1/A. Division by matrices will
not be a defined operation in
this text.

invertible matrix. If A is invertible, then its inverse will be denoted by the symbol A−1.

Thus,

AA−1 = I and A−1A = I (1)

The inverse of A plays much the same role in matrix arithmetic that the reciprocal a−1

plays in the numerical relationships aa−1 = 1 and a−1a = 1.
In the next section we will develop a method for computing the inverse of an invertible

matrix of any size. For now we give the following theorem that specifies conditions under
which a 2 × 2 matrix is invertible and provides a simple formula for its inverse.

Historical Note The formula for A−1 given inTheorem 1.4.5 first appeared (in a more general form)

in Arthur Cayley’s 1858 Memoir on the Theory of Matrices. The more general result that Cayley

discovered will be studied later.
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THEOREM 1.4.5 The matrix

A =
[
a b

c d

]
is invertible if and only if ad − bc �= 0, in which case the inverse is given by the formula

A−1 = 1

ad − bc

[
d −b

−c a

]
(2)

We will omit the proof, because we will study a more general version of this theorem

The quantity ad − bc in The-
orem 1.4.5 is called the deter-
minant of the 2 × 2 matrix A

and is denoted by

det(A) = ad − bc

or alternatively by∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

later. For now, you should at least confirm the validity of Formula (2) by showing that
AA−1 = A−1A = I .

Remark Figure 1.4.1 illustrates that the determinant of a 2 × 2 matrix A is the product of the
det(A) =               = ad – bca    b

c    d

Figure 1.4.1

entries on its main diagonal minus the product of the entries off its main diagonal.

EXAMPLE 7 Calculating the Inverse of a 2 × 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.

(a) A =
[

6 1
5 2

]
(b) A =

[−1 2
3 −6

]
Solution (a) The determinant of A is det(A) = (6)(2) − (1)(5) = 7, which is nonzero.
Thus, A is invertible, and its inverse is

A−1 = 1

7

[
2 −1

−5 6

]
=
[

2
7 − 1

7

− 5
7

6
7

]

We leave it for you to confirm that AA−1 = A−1A = I.

Solution (b) The matrix is not invertible since det(A) = (−1)(−6) − (2)(3) = 0.

EXAMPLE 8 Solution of a Linear System by Matrix Inversion

A problem that arises in many applications is to solve a pair of equations of the form

u = ax + by

v = cx + dy

for x and y in terms of u and v. One approach is to treat this as a linear system of
two equations in the unknowns x and y and use Gauss–Jordan elimination to solve
for x and y. However, because the coefficients of the unknowns are literal rather than
numerical, this procedure is a little clumsy. As an alternative approach, let us replace the
two equations by the single matrix equation[

u

v

]
=
[
ax + by

cx + dy

]
which we can rewrite as [

u

v

]
=
[
a b

c d

] [
x

y

]
If we assume that the 2 × 2 matrix is invertible (i.e., ad − bc �= 0), then we can multiply
through on the left by the inverse and rewrite the equation as[

a b

c d

]−1 [
u

v

]
=
[
a b

c d

]−1 [
a b

c d

] [
x

y

]
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which simplifies to [
a b

c d

]−1 [
u

v

]
=
[
x

y

]
Using Theorem 1.4.5, we can rewrite this equation as

1

ad − bc

[
d −b

−c a

] [
u

v

]
=
[
x

y

]
from which we obtain

x = du − bv

ad − bc
, y = av − cu

ad − bc

The next theorem is concerned with inverses of matrix products.

THEOREM 1.4.6 If A and B are invertible matrices with the same size, then AB is
invertible and

(AB)−1 = B−1A−1

Proof We can establish the invertibility and obtain the stated formula at the same time
by showing that

(AB)(B−1A−1) = (B−1A−1)(AB) = I

But
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly, (B−1A−1)(AB) = I.

Although we will not prove it, this result can be extended to three or more factors:

Aproduct of any number of invertiblematrices is invertible, and the inverse of the product
is the product of the inverses in the reverse order.

EXAMPLE 9 The Inverse of a Product

Consider the matrices

A =
[

1 2
1 3

]
, B =

[
3 2
2 2

]
We leave it for you to show that

AB =
[

7 6
9 8

]
, (AB)−1 =

[
4 −3

− 9
2

7
2

]

and also that

A−1 =
[

3 −2
−1 1

]
, B−1 =

[
1 −1

−1 3
2

]
, B−1A−1 =

[
1 −1

−1 3
2

][
3 −2

−1 1

]
=
[

4 −3

− 9
2

7
2

]

Thus, (AB)−1 = B−1A−1 as guaranteed by Theorem 1.4.6.

If a product of matrices is
singular, then at least one of
the factors must be singular.
Why?

Powers of a Matrix If A is a square matrix, then we define the nonnegative integer powers of A to be

A0 = I and An = AA · · ·A [n factors]

and if A is invertible, then we define the negative integer powers of A to be

A−n = (A−1)n = A−1A−1 · · ·A−1 [n factors]
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Because these definitions parallel those for real numbers, the usual laws of nonnegative
exponents hold; for example,

ArAs = Ar+s and (Ar)s = Ars

In addition, we have the following properties of negative exponents.

THEOREM 1.4.7 If A is invertible and n is a nonnegative integer, then:

(a) A−1 is invertible and (A−1)−1 = A.

(b) An is invertible and (An)−1 = A−n = (A−1)n.

(c) kA is invertible for any nonzero scalar k, and (kA)−1 = k−1A−1.

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c) Properties (m) and (l) of Theorem 1.4.1 imply that

(kA)(k−1A−1) = k−1(kA)A−1 = (k−1k)AA−1 = (1)I = I

and similarly, (k−1A−1)(kA) = I. Thus, kA is invertible and (kA)−1 = k−1A−1.

EXAMPLE 10 Properties of Exponents

Let A and A−1 be the matrices in Example 9; that is,

A =
[

1 2

1 3

]
and A−1 =

[
3 −2

−1 1

]
Then

A−3 = (A−1)3 =
[

3 −2

−1 1

] [
3 −2

−1 1

] [
3 −2

−1 1

]
=
[

41 −30

−15 11

]
Also,

A3 =
[

1 2

1 3

] [
1 2

1 3

] [
1 2

1 3

]
=
[

11 30

15 41

]
so, as expected from Theorem 1.4.7(b),

(A3)−1 = 1

(11)(41) − (30)(15)

[
41 −30

−15 11

]
=
[

41 −30

−15 11

]
= (A−1)3

EXAMPLE 11 The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

(a + b)2 = a2 + ab + ba + b2 = a2 + ab + ab + b2 = a2 + 2ab + b2

However, in matrix arithmetic, where we have no commutative law for multiplication,
the best we can do is to write

(A + B)2 = A2 + AB + BA + B2

It is only in the special case where A and B commute (i.e., AB = BA) that we can go a
step further and write

(A + B)2 = A2 + 2AB + B2

Matrix Polynomials If A is a square matrix, say n × n, and if

p(x) = a0 + a1x + a2x
2 + · · · + amxm
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is any polynomial, then we define the n × n matrix p(A) to be

p(A) = a0I + a1A + a2A
2 + · · · + amAm (3)

where I is the n × n identity matrix; that is, p(A) is obtained by substituting A for x

and replacing the constant term a0 by the matrix a0I. An expression of form (3) is called
a matrix polynomial in A.

EXAMPLE 12 A Matrix Polynomial

Find p(A) for

p(x) = x2 − 2x − 3 and A =
[−1 2

0 3

]

Solution
p(A) = A2 − 2A − 3I

=
[−1 2

0 3

]2

− 2

[−1 2

0 3

]
− 3

[
1 0

0 1

]

=
[

1 4

0 9

]
−
[−2 4

0 6

]
−
[

3 0

0 3

]
=
[

0 0

0 0

]
or more briefly, p(A) = 0.

Remark It follows from the fact that ArAs = Ar+s = As+r = AsAr that powers of a square
matrix commute, and since a matrix polynomial in A is built up from powers of A, any two matrix
polynomials in A also commute; that is, for any polynomials p1 and p2 we have

p1(A)p2(A) = p2(A)p1(A) (4)

Properties of theTranspose The following theorem lists the main properties of the transpose.

THEOREM 1.4.8 If the sizes of the matrices are such that the stated operations can be
performed, then:

(a) (AT )T = A

(b) (A + B)T = AT + BT

(c) (A − B)T = AT − BT

(d ) (kA)T = kAT

(e) (AB)T = BTAT

If you keep in mind that transposing a matrix interchanges its rows and columns, then
you should have little trouble visualizing the results in parts (a)–(d ). For example, part
(a) states the obvious fact that interchanging rows and columns twice leaves a matrix
unchanged; and part (b) states that adding two matrices and then interchanging the
rows and columns produces the same result as interchanging the rows and columns
before adding. We will omit the formal proofs. Part (e) is less obvious, but for brevity
we will omit its proof as well. The result in that part can be extended to three or more
factors and restated as:

The transpose of a product of any number of matrices is the product of the transposes
in the reverse order.
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The following theorem establishes a relationship between the inverse of a matrix and
the inverse of its transpose.

THEOREM 1.4.9 If A is an invertible matrix, then AT is also invertible and

(AT )−1 = (A−1)T

Proof We can establish the invertibility and obtain the formula at the same time by
showing that

AT(A−1)T = (A−1)TAT = I

But from part (e) of Theorem 1.4.8 and the fact that I T = I, we have

AT(A−1)T = (A−1A)T = I T = I

(A−1)TAT = (AA−1)T = I T = I

which completes the proof.

EXAMPLE 13 Inverse of aTranspose

Consider a general 2 × 2 invertible matrix and its transpose:

A =
[
a b

c d

]
and AT =

[
a c

b d

]
Since A is invertible, its determinant ad − bc is nonzero. But the determinant of AT is
also ad − bc (verify), so AT is also invertible. It follows from Theorem 1.4.5 that

(AT )−1 =

⎡
⎢⎢⎣

d

ad − bc
− c

ad − bc

− b

ad − bc

a

ad − bc

⎤
⎥⎥⎦

which is the same matrix that results if A−1 is transposed (verify). Thus,

(AT )−1 = (A−1)T

as guaranteed by Theorem 1.4.9.

Exercise Set 1.4
In Exercises 1–2, verify that the following matrices and scalars

satisfy the stated properties of Theorem 1.4.1.

A =
[

3 −1

2 4

]
, B =

[
0 2

1 −4

]
,

C =
[

4 1

−3 −2

]
, a = 4, b = −7

1. (a) The associative law for matrix addition.

(b) The associative law for matrix multiplication.

(c) The left distributive law.

(d) (a + b)C = aC + bC

2. (a) a(BC) = (aB)C = B(aC)

(b) A(B − C) = AB − AC (c) (B + C)A = BA + CA

(d) a(bC) = (ab)C

In Exercises 3–4, verify that the matrices and scalars in Exer-
cise 1 satisfy the stated properties.

3. (a) (AT )T = A (b) (AB)T = BTAT

4. (a) (A + B)T = AT + BT (b) (aC)T = aCT

In Exercises 5–8, use Theorem 1.4.5 to compute the inverse of
the matrix.

5. A =
[

2 −3

4 4

]
6. B =

[
3 1

5 2

]
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7. C =
[

2 0

0 3

]
8. D =

[
6 4

−2 −1

]

9. Find the inverse of⎡
⎣ 1

2 (e
x + e−x) 1

2 (e
x − e−x)

1
2 (e

x − e−x) 1
2 (e

x + e−x)

⎤
⎦

10. Find the inverse of [
cos θ sin θ

− sin θ cos θ

]

In Exercises 11–14, verify that the equations are valid for the
matrices in Exercises 5–8.

11. (AT )−1 = (A−1)T 12. (A−1)−1 = A

13. (ABC)−1 = C−1B−1A−1 14. (ABC)T = CTBTAT

In Exercises 15–18, use the given information to find A.

15. (7A)−1 =
[−3 7

1 −2

]
16. (5AT )−1 =

[−3 −1

5 2

]

17. (I + 2A)−1 =
[−1 2

4 5

]
18. A−1 =

[
2 −1

3 5

]

In Exercises 19–20, compute the following using the given ma-
trix A.

(a) A3 (b) A−3 (c) A2 − 2A + I

19. A =
[

3 1

2 1

]
20. A =

[
2 0

4 1

]

In Exercises 21–22, compute p(A) for the given matrix A and
the following polynomials.

(a) p(x) = x − 2

(b) p(x) = 2x2 − x + 1

(c) p(x) = x3 − 2x + 1

21. A =
[

3 1

2 1

]
22. A =

[
2 0

4 1

]

In Exercises 23–24, let

A =
[
a b

c d

]
, B =

[
0 1

0 0

]
, C =

[
0 0

1 0

]

23. Find all values of a, b, c, and d (if any) for which the matrices
A and B commute.

24. Find all values of a, b, c, and d (if any) for which the matrices
A and C commute.

In Exercises 25–28, use the method of Example 8 to find the
unique solution of the given linear system.

25. 3x1 − 2x2 = −1

4x1 + 5x2 = 3

26. −x1 + 5x2 = 4

−x1 − 3x2 = 1

27. 6x1 + x2 = 0

4x1 − 3x2 = −2

28. 2x1 − 2x2 = 4

x1 + 4x2 = 4

If a polynomial p(x) can be factored as a product of lower
degree polynomials, say

p(x) = p1(x)p2(x)

and if A is a square matrix, then it can be proved that

p(A) = p1(A)p2(A)

In Exercises 29–30, verify this statement for the stated matrix A

and polynomials

p(x) = x2 − 9, p1(x) = x + 3, p2(x) = x − 3

29. The matrix A in Exercise 21.

30. An arbitrary square matrix A.

31. (a) Give an example of two 2 × 2 matrices such that

(A + B)(A − B) �= A2 − B2

(b) State a valid formula for multiplying out

(A + B)(A − B)

(c) What condition can you impose on A and B that will allow
you to write (A + B)(A − B) = A2 − B2?

32. The numerical equation a2 = 1 has exactly two solutions.
Find at least eight solutions of the matrix equation A2 = I3.
[Hint: Look for solutions in which all entries off the main
diagonal are zero.]

33. (a) Show that if a square matrix A satisfies the equation
A2 + 2A + I = 0, then A must be invertible. What is the
inverse?

(b) Show that if p(x) is a polynomial with a nonzero constant
term, and if A is a square matrix for which p(A) = 0, then
A is invertible.

34. Is it possible for A3 to be an identity matrix without A being
invertible? Explain.

35. Can a matrix with a row of zeros or a column of zeros have an
inverse? Explain.

36. Can a matrix with two identical rows or two identical columns
have an inverse? Explain.
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In Exercises 37–38, determine whether A is invertible, and if
so, find the inverse. [Hint: Solve AX = I for X by equating cor-
responding entries on the two sides.]

37. A =
⎡
⎢⎣1 0 1

1 1 0

0 1 1

⎤
⎥⎦ 38. A =

⎡
⎢⎣1 1 1

1 0 0

0 1 1

⎤
⎥⎦

In Exercises 39–40, simplify the expression assuming that A,
B, C, and D are invertible.

39. (AB)−1(AC−1)(D−1C−1)−1D−1

40. (AC−1)−1(AC−1)(AC−1)−1AD−1

41. Show that if R is a 1 × n matrix and C is an n × 1 matrix,
then RC = tr(CR).

42. If A is a square matrix and n is a positive integer, is it true that
(An)T = (AT )n? Justify your answer.

43. (a) Show that if A is invertible and AB = AC, then B = C.

(b) Explain why part (a) and Example 3 do not contradict one
another.

44. Show that if A is invertible and k is any nonzero scalar, then
(kA)n = knAn for all integer values of n.

45. (a) Show that if A, B, and A + B are invertible matrices with
the same size, then

A(A−1 + B−1)B(A + B)−1 = I

(b) What does the result in part (a) tell you about the matrix
A−1 + B−1?

46. A square matrix A is said to be idempotent if A2 = A.

(a) Show that if A is idempotent, then so is I − A.

(b) Show that if A is idempotent, then 2A − I is invertible
and is its own inverse.

47. Show that if A is a square matrix such that Ak = 0 for some
positive integer k, then the matrix I − A is invertible and

(I − A)−1 = I + A + A2 + · · · + Ak−1

48. Show that the matrix

A =
[
a b

c d

]

satisfies the equation

A2 − (a + d)A + (ad − bc)I = 0

49. Assuming that all matrices are n × n and invertible, solve
for D.

CT B−1A2BAC−1DA−2BT C−2 = CT

50. Assuming that all matrices are n × n and invertible, solve
for D.

ABCTDBAT C = ABT

Working with Proofs

In Exercises 51–58, prove the stated result.

51. Theorem 1.4.1(a) 52. Theorem 1.4.1(b)

53. Theorem 1.4.1( f ) 54. Theorem 1.4.1(c)

55. Theorem 1.4.2(c) 56. Theorem 1.4.2(b)

57. Theorem 1.4.8(d) 58. Theorem 1.4.8(e)

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Two n × n matrices, A and B, are inverses of one another if
and only if AB = BA = 0.

(b) For all square matrices A and B of the same size, it is true that
(A + B)2 = A2 + 2AB + B2.

(c) For all square matrices A and B of the same size, it is true that
A2 − B2 = (A − B)(A + B).

(d) If A and B are invertible matrices of the same size, then AB is
invertible and (AB)−1 = A−1B−1.

(e) If A and B are matrices such that AB is defined, then it is true
that (AB)T = ATBT .

(f ) The matrix

A =
[
a b

c d

]
is invertible if and only if ad − bc �= 0.

(g) If A and B are matrices of the same size and k is a constant,
then (kA + B)T = kAT + BT .

(h) If A is an invertible matrix, then so is AT .

(i) If p(x) = a0 + a1x + a2x
2 + · · · + amxm and I is an identity

matrix, then p(I) = a0 + a1 + a2 + · · · + am.

( j) A square matrix containing a row or column of zeros cannot
be invertible.

(k) The sum of two invertible matrices of the same size must be
invertible.
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Working withTechnology

T1. Let A be the matrix

A =

⎡
⎢⎢⎣

0 1
2

1
3

1
4 0 1

5

1
6

1
7 0

⎤
⎥⎥⎦

Discuss the behavior of Ak as k increases indefinitely, that is, as
k→�.

T2. In each part use your technology utility to make a conjecture
about the form of An for positive integer powers of n.

(a) A =
[
a 1

0 a

]
(b) A =

[
cos θ sin θ

− sin θ cos θ

]

T3. The Fibonacci sequence (named for the Italian mathematician
Leonardo Fibonacci 1170–1250) is

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

the terms of which are commonly denoted as

F0, F1, F2, F3, . . . , Fn, . . .

After the initial terms F0 = 0 and F1 = 1, each term is the sum of
the previous two; that is,

Fn = Fn−1 + Fn−2

Confirm that if

Q =
[
F2 F1

F1 F0

]
=
[

1 1

1 0

]

then

Qn =
[
Fn+1 Fn

Fn F0

]

1.5 Elementary Matrices and a Method for FindingA−1

In this section we will develop an algorithm for finding the inverse of a matrix, and we will
discuss some of the basic properties of invertible matrices.

In Section 1.1 we defined three elementary row operations on a matrix A:

1. Multiply a row by a nonzero constant c.

2. Interchange two rows.

3. Add a constant c times one row to another.

It should be evident that if we let B be the matrix that results from A by performing one
of the operations in this list, then the matrix A can be recovered from B by performing
the corresponding operation in the following list:

1. Multiply the same row by 1/c.

2. Interchange the same two rows.

3. If B resulted by adding c times row ri of A to row rj , then add −c times rj to ri .

It follows that if B is obtained from A by performing a sequence of elementary row
operations, then there is a second sequence of elementary row operations, which when
applied to B recovers A (Exercise 33). Accordingly, we make the following definition.

DEFINITION 1 Matrices A and B are said to be row equivalent if either (hence each)
can be obtained from the other by a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an
elementary row operation.

DEFINITION 2 A matrix E is called an elementary matrix if it can be obtained from
an identity matrix by performing a single elementary row operation.



1.5 Elementary Matrices and a Method for FindingA−1 53

EXAMPLE 1 Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.

[
1 0

0 −3

] ⎡
⎢⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎣1 0 3

0 1 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

�

Multiply the
second row of
I2 by −3.

�

Interchange the
second and fourth
rows of I4.

�
Add 3 times
the third row of
I3 to the first row.

�

Multiply the
first row of
I3 by 1.

The following theorem, whose proof is left as an exercise, shows that when a matrix A

is multiplied on the left by an elementary matrix E, the effect is to perform an elementary
row operation on A.

THEOREM 1.5.1 Row Operations by Matrix Multiplication

If the elementary matrix E results from performing a certain row operation on Im and
if A is an m × n matrix, then the product EA is the matrix that results when this same
row operation is performed on A.

EXAMPLE 2 Using Elementary Matrices

Consider the matrix

A =
⎡
⎢⎣1 0 2 3

2 −1 3 6

1 4 4 0

⎤
⎥⎦

and consider the elementary matrix

E =
⎡
⎢⎣1 0 0

0 1 0

3 0 1

⎤
⎥⎦

which results from adding 3 times the first row of I3 to the third row. The product EA is

Theorem 1.5.1 will be a use-
ful tool for developing new re-
sults about matrices, but as a
practical matter it is usually
preferable to perform row op-
erations directly.

EA =
⎡
⎢⎣1 0 2 3

2 −1 3 6

4 4 10 9

⎤
⎥⎦

which is precisely the matrix that results when we add 3 times the first row of A to the
third row.

We know from the discussion at the beginning of this section that if E is an elementary
matrix that results from performing an elementary row operation on an identity matrix
I , then there is a second elementary row operation, which when applied to E produces
I back again. Table 1 lists these operations. The operations on the right side of the table
are called the inverse operations of the corresponding operations on the left.
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Table 1

Row Operation on I Row Operation on E
That Produces E That Reproduces I

Multiply row i by c �= 0 Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c time row i to row j Add −c times row i to row j

EXAMPLE 3 Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the 2 × 2 identity
matrix to obtain an elementary matrix E, then E is restored to the identity matrix by
applying the inverse row operation.[

1 0
0 1

]
−→

[
1 0
0 7

]
−→

[
1 0
0 1

]
�

Multiply the second
row by 7.

�

Multiply the second
row by 1

7 .[
1 0
0 1

]
−→

[
0 1
1 0

]
−→

[
1 0
0 1

]

�

Interchange the first
and second rows.

�

Interchange the first
and second rows.[

1 0
0 1

]
−→

[
1 5
0 1

]
−→

[
1 0
0 1

]

�

Add 5 times the
second row to the
first.

�

Add −5 times the
second row to the
first.

The next theorem is a key result about invertibility of elementary matrices. It will be
a building block for many results that follow.

THEOREM 1.5.2 Every elementary matrix is invertible, and the inverse is also an ele-
mentary matrix.

Proof If E is an elementary matrix, then E results by performing some row operation
on I . Let E0 be the matrix that results when the inverse of this operation is performed
on I . Applying Theorem 1.5.1 and using the fact that inverse row operations cancel the
effect of each other, it follows that

E0E = I and EE0 = I

Thus, the elementary matrix E0 is the inverse of E.

EquivalenceTheorem One of our objectives as we progress through this text is to show how seemingly diverse
ideas in linear algebra are related. The following theorem, which relates results we
have obtained about invertibility of matrices, homogeneous linear systems, reduced row
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echelon forms, and elementary matrices, is our first step in that direction. As we study
new topics, more statements will be added to this theorem.

THEOREM 1.5.3 Equivalent Statements

IfA is an n × nmatrix, then the following statements are equivalent, that is, all true or
all false.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

Proof We will prove the equivalence by establishing the chain of implications:
The following figure illustrates
visually that from the se-
quence of implications

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a)

we can conclude that

(d) ⇒ (c) ⇒ (b) ⇒ (a)

and hence that

(a) ⇔ (b) ⇔ (c) ⇔ (d)

(see Appendix A).

(a)

(c)

(d) (b)

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a).

(a)⇒ (b) Assume A is invertible and let x0 be any solution of Ax = 0. Multiplying both
sides of this equation by the matrix A−1 gives A−1(Ax0) = A−10, or (A−1A)x0 = 0, or
Ix0 = 0, or x0 = 0. Thus, Ax = 0 has only the trivial solution.

(b) ⇒ (c) Let Ax = 0 be the matrix form of the system

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0
...

...
...

...
an1x1 + an2x2 + · · ·+ annxn = 0

(1)

and assume that the system has only the trivial solution. If we solve by Gauss–Jordan
elimination, then the system of equations corresponding to the reduced row echelon
form of the augmented matrix will be

x1 = 0

x2 = 0
. . .

xn = 0

(2)

Thus the augmented matrix ⎡
⎢⎢⎢⎣

a11 a12 · · · a1n 0

a21 a22 · · · a2n 0
...

...
...

...
an1 an2 · · · ann 0

⎤
⎥⎥⎥⎦

for (1) can be reduced to the augmented matrix⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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for (2) by a sequence of elementary row operations. If we disregard the last column (all
zeros) in each of these matrices, we can conclude that the reduced row echelon form of
A is In.

(c)⇒ (d ) Assume that the reduced row echelon form of A is In, so that A can be reduced
to In by a finite sequence of elementary row operations. By Theorem 1.5.1, each of these
operations can be accomplished by multiplying on the left by an appropriate elementary
matrix. Thus we can find elementary matrices E1, E2, . . . , Ek such that

Ek · · ·E2E1A = In (3)

By Theorem 1.5.2, E1, E2, . . . , Ek are invertible. Multiplying both sides of Equation (3)
on the left successively by E−1

k , . . . , E−1
2 , E−1

1 we obtain

A = E−1
1 E−1

2 · · ·E−1
k In = E−1

1 E−1
2 · · ·E−1

k (4)

By Theorem 1.5.2, this equation expresses A as a product of elementary matrices.

(d ) ⇒ (a) If A is a product of elementary matrices, then from Theorems 1.4.7 and 1.5.2,
the matrix A is a product of invertible matrices and hence is invertible.

A Method for Inverting
Matrices

As a first application of Theorem 1.5.3, we will develop a procedure (or algorithm) that
can be used to tell whether a given matrix is invertible, and if so, produce its inverse. To
derive this algorithm, assume for the moment, that A is an invertible n × n matrix. In
Equation (3), the elementary matrices execute a sequence of row operations that reduce
A to In. If we multiply both sides of this equation on the right by A−1 and simplify, we
obtain

A−1 = Ek · · ·E2E1In

But this equation tells us that the same sequence of row operations that reduces A to In

will transform In to A−1. Thus, we have established the following result.

Inversion Algorithm To find the inverse of an invertible matrix A, find a sequence of
elementary row operations that reduces A to the identity and then perform that same
sequence of operations on In to obtain A−1.

A simple method for carrying out this procedure is given in the following example.

EXAMPLE 4 Using Row Operations to FindA−1

Find the inverse of

A =
⎡
⎢⎣1 2 3

2 5 3

1 0 8

⎤
⎥⎦

Solution We want to reduce A to the identity matrix by row operations and simultane-
ously apply these operations to I to produce A−1. To accomplish this we will adjoin the
identity matrix to the right side of A, thereby producing a partitioned matrix of the form

[A | I ]



1.5 Elementary Matrices and a Method for FindingA−1 57

Then we will apply row operations to this matrix until the left side is reduced to I ; these
operations will convert the right side to A−1, so the final matrix will have the form

[I | A−1]
The computations are as follows:⎡

⎢⎣1 2 3 1 0 0

2 5 3 0 1 0

1 0 8 0 0 1

⎤
⎥⎦

⎡
⎢⎣1 2 3 1 0 0

0 1 −3 −2 1 0

0 −2 5 −1 0 1

⎤
⎥⎦ We added −2 times the first

row to the second and −1 times
the first row to the third.

⎡
⎢⎣1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 −1 −5 2 1

⎤
⎥⎦ We added 2 times the

second row to the third.

⎡
⎢⎣1 2 3 1 0 0

0 1 −3 −2 1 0

0 0 1 5 −2 −1

⎤
⎥⎦ We multiplied the

third row by −1.

⎡
⎢⎣1 2 0 −14 6 3

0 1 0 13 −5 −3

0 0 1 5 −2 −1

⎤
⎥⎦ We added 3 times the third

row to the second and −3 times
the third row to the first.

⎡
⎢⎣1 0 0 −40 16 9

0 1 0 13 −5 −3

0 0 1 5 −2 −1

⎤
⎥⎦ We added −2 times the

second row to the first.

Thus,

A−1 =
⎡
⎢⎣−40 16 9

13 −5 −3

5 −2 −1

⎤
⎥⎦

Often it will not be known in advance if a given n × n matrix A is invertible. However,
if it is not, then by parts (a) and (c) of Theorem 1.5.3 it will be impossible to reduce A

to In by elementary row operations. This will be signaled by a row of zeros appearing
on the left side of the partition at some stage of the inversion algorithm. If this occurs,
then you can stop the computations and conclude that A is not invertible.

EXAMPLE 5 ShowingThat a Matrix Is Not Invertible

Consider the matrix

A =
⎡
⎢⎣ 1 6 4

2 4 −1

−1 2 5

⎤
⎥⎦
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Applying the procedure of Example 4 yields⎡
⎢⎣ 1 6 4 1 0 0

2 4 −1 0 1 0

−1 2 5 0 0 1

⎤
⎥⎦

⎡
⎢⎣ 1 6 4 1 0 0

0 −8 −9 −2 1 0

0 8 9 1 0 1

⎤
⎥⎦ We added −2 times the first

row to the second and added
the first row to the third.⎡

⎢⎣ 1 6 4 1 0 0

0 −8 −9 −2 1 0

0 0 0 −1 1 1

⎤
⎥⎦ We added the second

row to the third.

Since we have obtained a row of zeros on the left side, A is not invertible.

EXAMPLE 6 Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial
solutions.

(a) x1 + 2x2 + 3x3 = 0

2x1 + 5x2 + 3x3 = 0

x1 + 8x3 = 0

(b) x1 + 6x2 + 4x3 = 0

2x1 + 4x2 − x3 = 0

−x1 + 2x2 + 5x3 = 0

Solution From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has
only the trivial solution if and only if its coefficient matrix is invertible. From Examples 4
and 5 the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus,
system (a) has only the trivial solution while system (b) has nontrivial solutions.

Exercise Set 1.5
In Exercises 1–2, determine whether the given matrix is ele-

mentary.

1. (a)

[
1 0

−5 1

]
(b)

[
−5 1

1 0

]

(c)

⎡
⎢⎣1 1 0

0 0 1

0 0 0

⎤
⎥⎦ (d)

⎡
⎢⎢⎢⎣

2 0 0 2

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

2. (a)

[
1 0

0
√

3

]
(b)

⎡
⎢⎣0 0 1

0 1 0

1 0 0

⎤
⎥⎦

(c)

⎡
⎢⎣1 0 0

0 1 9

0 0 1

⎤
⎥⎦ (d)

⎡
⎢⎣−1 0 0

0 0 1

0 1 0

⎤
⎥⎦

In Exercises 3–4, find a row operation and the corresponding
elementary matrix that will restore the given elementary matrix to
the identity matrix.

3. (a)

[
1 −3

0 1

]
(b)

⎡
⎢⎣−7 0 0

0 1 0

0 0 1

⎤
⎥⎦

(c)

⎡
⎢⎣ 1 0 0

0 1 0

−5 0 1

⎤
⎥⎦ (d)

⎡
⎢⎢⎢⎣

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

4. (a)

[
1 0

−3 1

]
(b)

⎡
⎢⎣1 0 0

0 1 0

0 0 3

⎤
⎥⎦

(c)

⎡
⎢⎢⎢⎣

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

⎤
⎥⎥⎥⎦ (d)

⎡
⎢⎢⎢⎣

1 0 − 1
7 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦
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In Exercises 5–6 an elementary matrix E and a matrix A are
given. Identify the row operation corresponding to E and ver-
ify that the product EA results from applying the row operation
to A.

5. (a) E =
[

0 1

1 0

]
, A =

[
−1 −2 5 −1

3 −6 −6 −6

]

(b) E =
⎡
⎢⎣1 0 0

0 1 0

0 −3 1

⎤
⎥⎦ , A =

⎡
⎢⎣2 −1 0 −4 −4

1 −3 −1 5 3

2 0 1 3 −1

⎤
⎥⎦

(c) E =
⎡
⎢⎣1 0 4

0 1 0

0 0 1

⎤
⎥⎦ , A =

⎡
⎢⎣1 4

2 5

3 6

⎤
⎥⎦

6. (a) E =
[
−6 0

0 1

]
, A =

[
−1 −2 5 −1

3 −6 −6 −6

]

(b) E =
⎡
⎢⎣ 1 0 0

−4 1 0

0 0 1

⎤
⎥⎦ , A =

⎡
⎢⎣2 −1 0 −4 −4

1 −3 −1 5 3

2 0 1 3 −1

⎤
⎥⎦

(c) E =
⎡
⎢⎣1 0 0

0 5 0

0 0 1

⎤
⎥⎦ , A =

⎡
⎢⎣1 4

2 5

3 6

⎤
⎥⎦

In Exercises 7–8, use the following matrices and find an ele-
mentary matrix E that satisfies the stated equation.

A =
⎡
⎢⎣3 4 1

2 −7 −1

8 1 5

⎤
⎥⎦ , B =

⎡
⎢⎣8 1 5

2 −7 −1

3 4 1

⎤
⎥⎦

C =
⎡
⎢⎣3 4 1

2 −7 −1

2 −7 3

⎤
⎥⎦ , D =

⎡
⎢⎣ 8 1 5

−6 21 3

3 4 1

⎤
⎥⎦

F =
⎡
⎢⎣8 1 5

8 1 1

3 4 1

⎤
⎥⎦

7. (a) EA = B (b) EB = A

(c) EA = C (d) EC = A

8. (a) EB = D (b) ED = B

(c) EB = F (d) EF = B

In Exercises 9–10, first use Theorem 1.4.5 and then use the
inversion algorithm to find A−1, if it exists.

9. (a) A =
[

1 4

2 7

]
(b) A =

[
2 −4

−4 8

]

10. (a) A =
[

1 −5

3 −16

]
(b) A =

[
6 4

−3 −2

]

In Exercises 11–12, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

11. (a)

⎡
⎢⎣

1 2 3

2 5 3

1 0 8

⎤
⎥⎦ (b)

⎡
⎢⎣
−1 3 −4

2 4 1

−4 2 −9

⎤
⎥⎦

12. (a)

⎡
⎢⎣

1
5

1
5 − 2

5
1
5

1
5

1
10

1
5 − 4

5
1
10

⎤
⎥⎦ (b)

⎡
⎢⎣

1
5

1
5 − 2

5
2
5 − 3

5 − 3
10

1
5 − 4

5
1
10

⎤
⎥⎦

In Exercises 13–18, use the inversion algorithm to find the in-
verse of the matrix (if the inverse exists).

13.

⎡
⎢⎣1 0 1

0 1 1

1 1 0

⎤
⎥⎦ 14.

⎡
⎢⎣

√
2 3

√
2 0

−4
√

2
√

2 0

0 0 1

⎤
⎥⎦

15.

⎡
⎢⎣2 6 6

2 7 6

2 7 7

⎤
⎥⎦ 16.

⎡
⎢⎢⎢⎣

1 0 0 0

1 3 0 0

1 3 5 0

1 3 5 7

⎤
⎥⎥⎥⎦

17.

⎡
⎢⎢⎢⎣

2 −4 0 0

1 2 12 0

0 0 2 0

0 −1 −4 −5

⎤
⎥⎥⎥⎦ 18.

⎡
⎢⎢⎢⎣

0 0 2 0

1 0 0 1

0 −1 3 0

2 1 5 −3

⎤
⎥⎥⎥⎦

In Exercises 19–20, find the inverse of each of the following
4 × 4 matrices, where k1, k2, k3, k4, and k are all nonzero.

19. (a)

⎡
⎢⎢⎢⎣

k1 0 0 0

0 k2 0 0

0 0 k3 0

0 0 0 k4

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

k 1 0 0

0 1 0 0

0 0 k 1

0 0 0 1

⎤
⎥⎥⎥⎦

20. (a)

⎡
⎢⎢⎢⎣

0 0 0 k1

0 0 k2 0

0 k3 0 0

k4 0 0 0

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

k 0 0 0

1 k 0 0

0 1 k 0

0 0 1 k

⎤
⎥⎥⎥⎦

In Exercises 21–22, find all values of c, if any, for which the
given matrix is invertible.

21.

⎡
⎢⎣c c c

1 c c

1 1 c

⎤
⎥⎦ 22.

⎡
⎢⎣c 1 0

1 c 1

0 1 c

⎤
⎥⎦
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In Exercises 23–26, express the matrix and its inverse as prod-
ucts of elementary matrices.

23.
[−3 1

2 2

]
24.

[
1 0

−5 2

]

25.

⎡
⎢⎣1 0 −2

0 4 3

0 0 1

⎤
⎥⎦ 26.

⎡
⎢⎣1 1 0

1 1 1

0 1 1

⎤
⎥⎦

In Exercises 27–28, show that the matrices A and B are row
equivalent by finding a sequence of elementary row operations
that produces B from A, and then use that result to find a matrix
C such that CA = B.

27. A =
⎡
⎢⎣1 2 3

1 4 1

2 1 9

⎤
⎥⎦, B =

⎡
⎢⎣1 0 5

0 2 −2

1 1 4

⎤
⎥⎦

28. A =
⎡
⎢⎣ 2 1 0

−1 1 0

3 0 −1

⎤
⎥⎦, B =

⎡
⎢⎣ 6 9 4

−5 −1 0

−1 −2 −1

⎤
⎥⎦

29. Show that if

A =
⎡
⎢⎣1 0 0

0 1 0

a b c

⎤
⎥⎦

is an elementary matrix, then at least one entry in the third
row must be zero.

30. Show that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a 0 0 0

b 0 c 0 0

0 d 0 e 0

0 0 f 0 g

0 0 0 h 0

⎤
⎥⎥⎥⎥⎥⎥⎦

is not invertible for any values of the entries.

Working with Proofs

31. Prove that if A and B are m × n matrices, then A and B are
row equivalent if and only if A and B have the same reduced
row echelon form.

32. Prove that if A is an invertible matrix and B is row equivalent
to A, then B is also invertible.

33. Prove that if B is obtained from A by performing a sequence
of elementary row operations, then there is a second sequence
of elementary row operations, which when applied to B recov-
ers A.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The product of two elementary matrices of the same size must
be an elementary matrix.

(b) Every elementary matrix is invertible.

(c) If A and B are row equivalent, and if B and C are row equiv-
alent, then A and C are row equivalent.

(d) If A is an n × n matrix that is not invertible, then the linear
system Ax = 0 has infinitely many solutions.

(e) If A is an n × n matrix that is not invertible, then the matrix
obtained by interchanging two rows of A cannot be invertible.

(f ) If A is invertible and a multiple of the first row of A is added
to the second row, then the resulting matrix is invertible.

(g) An expression of an invertible matrix A as a product of ele-
mentary matrices is unique.

Working withTechnology

T1. It can be proved that if the partitioned matrix[
A B

C D

]

is invertible, then its inverse is[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

provided that all of the inverses on the right side exist. Use this
result to find the inverse of the matrix⎡

⎢⎢⎢⎣
1 2 1 0

0 −1 0 1

0 0 2 0

0 0 3 3

⎤
⎥⎥⎥⎦
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1.6 More on Linear Systems and Invertible Matrices
In this section we will show how the inverse of a matrix can be used to solve a linear system
and we will develop some more results about invertible matrices.

Number of Solutions of a
Linear System

In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear
system either has no solutions, has exactly one solution, or has infinitely many solutions.
We are now in a position to prove this fundamental result.

THEOREM1.6.1 A system of linear equations has zero, one, or infinitelymany solutions.
There are no other possibilities.

Proof If Ax = b is a system of linear equations, exactly one of the following is true:
(a) the system has no solutions, (b) the system has exactly one solution, or (c) the system
has more than one solution. The proof will be complete if we can show that the system
has infinitely many solutions in case (c).

Assume that Ax = b has more than one solution, and let x0 = x1 − x2, where x1

and x2 are any two distinct solutions. Because x1 and x2 are distinct, the matrix x0 is
nonzero; moreover,

Ax0 = A(x1 − x2) = Ax1 − Ax2 = b − b = 0

If we now let k be any scalar, then

A(x1 + kx0) = Ax1 + A(kx0) = Ax1 + k(Ax0)

= b + k0 = b + 0 = b

But this says that x1 + kx0 is a solution of Ax = b. Since x0 is nonzero and there are
infinitely many choices for k, the system Ax = b has infinitely many solutions.

Solving Linear Systems by
Matrix Inversion

Thus far we have studied two procedures for solving linear systems—Gauss–Jordan
elimination and Gaussian elimination. The following theorem provides an actual formula
for the solution of a linear system of n equations in n unknowns in the case where the
coefficient matrix is invertible.

THEOREM 1.6.2 If A is an invertible n × n matrix, then for each n × 1 matrix b, the
system of equations Ax = b has exactly one solution, namely, x = A−1b.

Proof Since A(A−1b) = b, it follows that x = A−1b is a solution of Ax = b. To show
that this is the only solution, we will assume that x0 is an arbitrary solution and then
show that x0 must be the solution A−1b.

If x0 is any solution of Ax = b, then Ax0 = b. Multiplying both sides of this equa-
tion by A−1, we obtain x0 = A−1b.

EXAMPLE 1 Solution of a Linear System UsingA−1

Consider the system of linear equations

x1 + 2x2 + 3x3 = 5

2x1 + 5x2 + 3x3 = 3

x1 + 8x3 = 17
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In matrix form this system can be written as Ax = b, where

A =
⎡
⎢⎣1 2 3

2 5 3

1 0 8

⎤
⎥⎦, x =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦, b =

⎡
⎢⎣ 5

3

17

⎤
⎥⎦

In Example 4 of the preceding section, we showed that A is invertible and

A−1 =
⎡
⎢⎣−40 16 9

13 −5 −3

5 −2 −1

⎤
⎥⎦

By Theorem 1.6.2, the solution of the system isKeep in mind that the method
of Example 1 only applies
when the system has as many
equations as unknowns and
the coefficient matrix is invert-
ible.

x = A−1b =
⎡
⎢⎣−40 16 9

13 −5 −3

5 −2 −1

⎤
⎥⎦
⎡
⎢⎣ 5

3

17

⎤
⎥⎦ =

⎡
⎢⎣ 1

−1

2

⎤
⎥⎦

or x1 = 1, x2 = −1, x3 = 2.

Linear Systems with a
Common Coefficient Matrix

Frequently, one is concerned with solving a sequence of systems

Ax = b1, Ax = b2, Ax = b3, . . . , Ax = bk

each of which has the same square coefficient matrix A. If A is invertible, then the
solutions

x1 = A−1b1, x2 = A−1b2, x3 = A−1b3, . . . , xk = A−1bk

can be obtained with one matrix inversion and k matrix multiplications. An efficient
way to do this is to form the partitioned matrix

[A | b1 | b2 | · · · | bk] (1)

in which the coefficient matrix A is “augmented” by all k of the matrices b1, b2, . . . , bk ,
and then reduce (1) to reduced row echelon form by Gauss–Jordan elimination. In this
way we can solve all k systems at once. This method has the added advantage that it
applies even when A is not invertible.

EXAMPLE 2 SolvingTwo Linear Systems at Once

Solve the systems

(a) x1 + 2x2 + 3x3 = 4

2x1 + 5x2 + 3x3 = 5

x1 + 8x3 = 9

(b) x1 + 2x2 + 3x3 = 1

2x1 + 5x2 + 3x3 = 6

x1 + 8x3 = −6

Solution The two systems have the same coefficient matrix. If we augment this co-
efficient matrix with the columns of constants on the right sides of these systems, we
obtain ⎡

⎢⎣1 2 3 4 1

2 5 3 5 6

1 0 8 9 −6

⎤
⎥⎦

Reducing this matrix to reduced row echelon form yields (verify)⎡
⎢⎣1 0 0 1 2

0 1 0 0 1

0 0 1 1 −1

⎤
⎥⎦
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It follows from the last two columns that the solution of system (a) is x1 = 1, x2 = 0,
x3 = 1 and the solution of system (b) is x1 = 2, x2 = 1, x3 = −1.

Properties of Invertible
Matrices

Up to now, to show that an n × n matrix A is invertible, it has been necessary to find an
n × n matrix B such that

AB = I and BA = I

The next theorem shows that if we produce an n × n matrix B satisfying either condition,
then the other condition will hold automatically.

THEOREM 1.6.3 Let A be a square matrix.

(a) If B is a square matrix satisfying BA = I, then B = A−1.

(b) If B is a square matrix satisfying AB = I, then B = A−1.

We will prove part (a) and leave part (b) as an exercise.

Proof (a) Assume that BA = I . If we can show that A is invertible, the proof can be
completed by multiplying BA = I on both sides by A−1 to obtain

BAA−1 = IA−1 or BI = IA−1 or B = A−1

To show that A is invertible, it suffices to show that the system Ax = 0 has only the trivial
solution (see Theorem 1.5.3). Let x0 be any solution of this system. If we multiply both
sides of Ax0 = 0 on the left by B, we obtain BAx0 = B0 or Ix0 = 0 or x0 = 0. Thus,
the system of equations Ax = 0 has only the trivial solution.

EquivalenceTheorem We are now in a position to add two more statements to the four given in Theorem 1.5.3.

THEOREM 1.6.4 Equivalent Statements

If A is an n × n matrix, then the following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

Proof Since we proved in Theorem 1.5.3 that (a), (b), (c), and (d ) are equivalent, it will
be sufficient to prove that (a) ⇒ ( f ) ⇒ (e) ⇒ (a).

(a) ⇒ (f ) This was already proved in Theorem 1.6.2.

(f ) ⇒ (e) This is almost self-evident, for if Ax = b has exactly one solution for every
n × 1 matrix b, then Ax = b is consistent for every n × 1 matrix b.
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(e) ⇒ (a) If the system Ax = b is consistent for every n × 1 matrix b, then, in particular,
this is so for the systems

Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦, Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦, . . . , Ax =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦

Let x1, x2, . . . , xn be solutions of the respective systems, and let us form an n × n ma-
trix C having these solutions as columns. Thus C has the form

C = [x1 | x2 | · · · | xn]
As discussed in Section 1.3, the successive columns of the product AC will be

Ax1, Ax2, . . . , Axn

[see Formula (8) of Section 1.3]. Thus,

AC = [Ax1 | Ax2 | · · · | Axn] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦ = I

By part (b) of Theorem 1.6.3, it follows that C = A−1. Thus, A is invertible.

It follows from the equiva-
lency of parts (e) and ( f ) that
if you can show that Ax = b
has at least one solution for ev-
ery n × 1 matrix b, then you
can conclude that it has ex-
actly one solution for every
n × 1 matrix b.

We know from earlier work that invertible matrix factors produce an invertible prod-
uct. Conversely, the following theorem shows that if the product of square matrices is
invertible, then the factors themselves must be invertible.

THEOREM 1.6.5 Let A and B be square matrices of the same size. If AB is invertible,
then A and B must also be invertible.

Proof We will show first that B is invertible by showing that the homogeneous system
Bx = 0 has only the trivial solution. If we assume that x0 is any solution of this system,
then

(AB)x0 = A(Bx0) = A0 = 0

so x0 = 0 by parts (a) and (b) of Theorem 1.6.4 applied to the invertible matrix AB.
But the invertibility of B implies the invertibility of B−1 (Theorem 1.4.7), which in turn
implies that

(AB)B−1 = A(BB−1) = AI = A

is invertible since the left side is a product of invertible matrices. This completes the
proof.

In our later work the following fundamental problem will occur frequently in various
contexts.

A Fundamental Problem Let A be a fixed m × n matrix. Find all m × 1 matrices b
such that the system of equations Ax = b is consistent.
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If A is an invertible matrix, Theorem 1.6.2 completely solves this problem by assert-
ing that for every m × 1 matrix b, the linear system Ax = b has the unique solution
x = A−1b. If A is not square, or if A is square but not invertible, then Theorem 1.6.2
does not apply. In these cases b must usually satisfy certain conditions in
order for Ax = b to be consistent. The following example illustrates how the methods
of Section 1.2 can be used to determine such conditions.

EXAMPLE 3 Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + x2 + 2x3 = b1

x1 + x3 = b2

2x1 + x2 + 3x3 = b3

to be consistent?

Solution The augmented matrix is⎡
⎢⎣1 1 2 b1

1 0 1 b2

2 1 3 b3

⎤
⎥⎦

which can be reduced to row echelon form as follows:⎡
⎢⎣1 1 2 b1

0 −1 −1 b1 − b2

0 −1 −1 b3 − 2b1

⎤
⎥⎦ −1 times the first row was added

to the second and −2 times the
first row was added to the third.⎡

⎢⎣1 1 2 b1

0 1 1 b1 − b2

0 −1 −1 b3 − 2b1

⎤
⎥⎦ The second row was

multiplied by −1.

⎡
⎢⎣1 1 2 b1

0 1 1 b1 − b2

0 0 0 b3 − b2 − b1

⎤
⎥⎦ The second row was added

to the third.

It is now evident from the third row in the matrix that the system has a solution if and
only if b1, b2, and b3 satisfy the condition

b3 − b2 − b1 = 0 or b3 = b1 + b2

To express this condition another way, Ax = b is consistent if and only if b is a matrix
of the form

b =
⎡
⎢⎣ b1

b2

b1 + b2

⎤
⎥⎦

where b1 and b2 are arbitrary.

EXAMPLE 4 Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 3x3 = b2

x1 + 8x3 = b3

to be consistent?
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Solution The augmented matrix is⎡
⎢⎣1 2 3 b1

2 5 3 b2

1 0 8 b3

⎤
⎥⎦

Reducing this to reduced row echelon form yields (verify)⎡
⎢⎣1 0 0 −40b1 + 16b2 + 9b3

0 1 0 13b1 − 5b2 − 3b3

0 0 1 5b1 − 2b2 − b3

⎤
⎥⎦ (2)

In this case there are no restrictions on b1, b2, and b3, so the system has the unique
What does the result in Exam-
ple 4 tell you about the coeffi-
cient matrix of the system?

solution

x1 = −40b1 + 16b2 + 9b3, x2 = 13b1 − 5b2 − 3b3, x3 = 5b1 − 2b2 − b3 (3)

for all values of b1, b2, and b3.

Exercise Set 1.6
In Exercises 1–8, solve the system by inverting the coefficient

matrix and using Theorem 1.6.2.

1. x1 + x2 = 2
5x1 + 6x2 = 9

2. 4x1 − 3x2 = −3
2x1 − 5x2 = 9

3. x1 + 3x2 + x3 = 4
2x1 + 2x2 + x3 = −1
2x1 + 3x2 + x3 = 3

4. 5x1 + 3x2 + 2x3 = 4
3x1 + 3x2 + 2x3 = 2

x2 + x3 = 5

5. x + y + z = 5
x + y − 4z = 10

−4x + y + z = 0

6. − x − 2y − 3z = 0
w + x + 4y + 4z = 7
w + 3x + 7y + 9z = 4

−w − 2x − 4y − 6z = 6

7. 3x1 + 5x2 = b1

x1 + 2x2 = b2

8. x1 + 2x2 + 3x3 = b1

2x1 + 5x2 + 5x3 = b2

3x1 + 5x2 + 8x3 = b3

In Exercises 9–12, solve the linear systems together by reducing
the appropriate augmented matrix.

9. x1 − 5x2 = b1

3x1 + 2x2 = b2

(i) b1 = 1, b2 = 4 (ii) b1 = −2, b2 = 5

10. −x1 + 4x2 + x3 = b1

x1 + 9x2 − 2x3 = b2

6x1 + 4x2 − 8x3 = b3

(i) b1 = 0, b2 = 1, b3 = 0
(ii) b1 = −3, b2 = 4, b3 = −5

11. 4x1 − 7x2 = b1

x1 + 2x2 = b2

(i) b1 = 0, b2 = 1 (ii) b1 = −4, b2 = 6
(iii) b1 = −1, b2 = 3 (iv) b1 = −5, b2 = 1

12. x1 + 3x2 + 5x3 = b1

−x1 − 2x2 = b2

2x1 + 5x2 + 4x3 = b3

(i) b1 = 1, b2 = 0, b3 = −1
(ii) b1 = 0, b2 = 1, b3 = 1

(iii) b1 = −1, b2 = −1, b3 = 0

In Exercises 13–17, determine conditions on the bi ’s, if any, in
order to guarantee that the linear system is consistent.

13. x1 + 3x2 = b1

−2x1 + x2 = b2

14. 6x1 − 4x2 = b1

3x1 − 2x2 = b2

15. x1 − 2x2 + 5x3 = b1

4x1 − 5x2 + 8x3 = b2

−3x1 + 3x2 − 3x3 = b3

16. x1 − 2x2 − x3 = b1

−4x1 + 5x2 + 2x3 = b2

−4x1 + 7x2 + 4x3 = b3

17. x1 − x2 + 3x3 + 2x4 = b1

−2x1 + x2 + 5x3 + x4 = b2

−3x1 + 2x2 + 2x3 − x4 = b3

4x1 − 3x2 + x3 + 3x4 = b4

18. Consider the matrices

A =
⎡
⎢⎣2 1 2

2 2 −2

3 1 1

⎤
⎥⎦ and x =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

(a) Show that the equation Ax = x can be rewritten as
(A − I )x = 0 and use this result to solve Ax = x for x.

(b) Solve Ax = 4x.

In Exercises 19–20, solve the matrix equation for X.

19.

⎡
⎢⎣1 −1 1

2 3 0

0 2 −1

⎤
⎥⎦X =

⎡
⎢⎣2 −1 5 7 8

4 0 −3 0 1

3 5 −7 2 1

⎤
⎥⎦
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20.

⎡
⎢⎣−2 0 1

0 −1 −1

1 1 −4

⎤
⎥⎦X =

⎡
⎢⎣4 3 2 1

6 7 8 9

1 3 7 9

⎤
⎥⎦

Working with Proofs

21. Let Ax = 0 be a homogeneous system of n linear equations in
n unknowns that has only the trivial solution. Prove that if k

is any positive integer, then the system Akx = 0 also has only
the trivial solution.

22. Let Ax = 0 be a homogeneous system of n linear equations
in n unknowns, and let Q be an invertible n × n matrix.
Prove that Ax = 0 has only the trivial solution if and only
if (QA)x = 0 has only the trivial solution.

23. Let Ax = b be any consistent system of linear equations, and
let x1 be a fixed solution. Prove that every solution to the
system can be written in the form x = x1 + x0, where x0 is a
solution to Ax = 0. Prove also that every matrix of this form
is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) It is impossible for a system of linear equations to have exactly
two solutions.

(b) If A is a square matrix, and if the linear system Ax = b has a
unique solution, then the linear system Ax = c also must have
a unique solution.

(c) If A and B are n × n matrices such that AB = In, then
BA = In.

(d) If A and B are row equivalent matrices, then the linear systems
Ax = 0 and Bx = 0 have the same solution set.

(e) Let A be an n × n matrix and S is an n × n invertible matrix.
If x is a solution to the linear system (S−1AS)x = b, then Sx
is a solution to the linear system Ay = Sb.

(f ) Let A be an n × n matrix. The linear system Ax = 4x has a
unique solution if and only if A − 4I is an invertible matrix.

(g) Let A and B be n × n matrices. If A or B (or both) are not
invertible, then neither is AB.

Working withTechnology

T1. Colors in print media, on computer monitors, and on televi-
sion screens are implemented using what are called “color mod-
els”. For example, in the RGB model, colors are created by mixing
percentages of red (R), green (G), and blue (B), and in the YIQ
model (used in TV broadcasting), colors are created by mixing
percentages of luminescence (Y) with percentages of a chromi-
nance factor (I) and a chrominance factor (Q). The conversion
from the RGB model to the YIQ model is accomplished by the
matrix equation⎡

⎢⎣
Y

I

Q

⎤
⎥⎦ =

⎡
⎢⎣

.299 .587 .114

.596 −.275 −.321

.212 −.523 .311

⎤
⎥⎦
⎡
⎢⎣

R

G

B

⎤
⎥⎦

What matrix would you use to convert the YIQ model to the RGB
model?

T2. Let

A =
⎡
⎢⎣

1 −2 2

4 5 1

0 3 −1

⎤
⎥⎦ , B1 =

⎡
⎢⎣

0

1

7

⎤
⎥⎦ , B2 =

⎡
⎢⎣

11

5

3

⎤
⎥⎦ , B3 =

⎡
⎢⎣

1

−4

2

⎤
⎥⎦

Solve the linear systems Ax = B1, Ax = B2, Ax = B3 using the
method of Example 2.

1.7 Diagonal,Triangular, and Symmetric Matrices
In this section we will discuss matrices that have various special forms. These matrices arise
in a wide variety of applications and will play an important role in our subsequent work.

Diagonal Matrices A square matrix in which all the entries off the main diagonal are zero is called a diagonal
matrix. Here are some examples:

[
2 0

0 −5

]
,

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦,

⎡
⎢⎢⎢⎣

6 0 0 0

0 −4 0 0

0 0 0 0

0 0 0 8

⎤
⎥⎥⎥⎦,

[
0 0

0 0

]
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A general n × n diagonal matrix D can be written as

D =

⎡
⎢⎢⎢⎣

d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dn

⎤
⎥⎥⎥⎦ (1)

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in
Confirm Formula (2) by show-
ing that

DD−1 = D−1D = I

this case the inverse of (1) is

D−1 =

⎡
⎢⎢⎢⎣

1/d1 0 · · · 0
0 1/d2 · · · 0
...

...
...

0 0 · · · 1/dn

⎤
⎥⎥⎥⎦ (2)

You can verify that this is so by multiplying (1) and (2).
Powers of diagonal matrices are easy to compute; we leave it for you to verify that if

D is the diagonal matrix (1) and k is a positive integer, then

Dk =

⎡
⎢⎢⎢⎢⎣

dk
1 0 · · · 0

0 dk
2 · · · 0

...
...

...

0 0 · · · dk
n

⎤
⎥⎥⎥⎥⎦ (3)

EXAMPLE 1 Inverses and Powers of Diagonal Matrices

If

A =
⎡
⎣1 0 0

0 −3 0
0 0 2

⎤
⎦

then

A−1 =
⎡
⎢⎣1 0 0

0 − 1
3 0

0 0 1
2

⎤
⎥⎦, A5 =

⎡
⎢⎣1 0 0

0 −243 0

0 0 32

⎤
⎥⎦, A−5 =

⎡
⎢⎣1 0 0

0 − 1
243 0

0 0 1
32

⎤
⎥⎦

Matrix products that involve diagonal factors are especially easy to compute. For
example,⎡

⎢⎣d1 0 0

0 d2 0

0 0 d3

⎤
⎥⎦
⎡
⎢⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎥⎦ =

⎡
⎢⎣d1a11 d1a12 d1a13 d1a14

d2a21 d2a22 d2a23 d2a24

d3a31 d3a32 d3a33 d3a34

⎤
⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

⎤
⎥⎥⎥⎦
⎡
⎢⎣d1 0 0

0 d2 0

0 0 d3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

d1a11 d2a12 d3a13

d1a21 d2a22 d3a23

d1a31 d2a32 d3a33

d1a41 d2a42 d3a43

⎤
⎥⎥⎥⎦

In words, to multiply a matrixA on the left by a diagonal matrixD,multiply successive
rows of A by the successive diagonal entries ofD, and to multiply A on the right byD,

multiply successive columns of A by the successive diagonal entries of D.
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Triangular Matrices A square matrix in which all the entries above the main diagonal are zero is called lower
triangular, and a square matrix in which all the entries below the main diagonal are zero
is called upper triangular. A matrix that is either upper triangular or lower triangular is
called triangular.

EXAMPLE 2 Upper and LowerTriangular Matrices

⎡
⎢⎢⎢⎣
a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

⎤
⎥⎥⎥⎦

A general 4     4 upper
triangular matrix

A general 4    4 lower
triangular matrix

× ×  

Remark Observe that diagonal matrices are both upper triangular and lower triangular since
they have zeros below and above the main diagonal. Observe also that a square matrix in row
echelon form is upper triangular since it has zeros below the main diagonal.

Properties ofTriangular
Matrices

Example 2 illustrates the following four facts about triangular matrices that we will state
without formal proof:

• A square matrix A = [aij ] is upper triangular if and only if all entries to the left of

i > j

i < j

Figure 1.7.1

the main diagonal are zero; that is, aij = 0 if i > j (Figure 1.7.1).

• A square matrix A = [aij ] is lower triangular if and only if all entries to the right of
the main diagonal are zero; that is, aij = 0 if i < j (Figure 1.7.1).

• A square matrix A = [aij ] is upper triangular if and only if the ith row starts with at
least i − 1 zeros for every i.

• A square matrix A = [aij ] is lower triangular if and only if the j th column starts with
at least j − 1 zeros for every j.

The following theorem lists some of the basic properties of triangular matrices.

THEOREM 1.7.1

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose
of an upper triangular matrix is lower triangular.

(b) The product of lower triangular matrices is lower triangular, and the product of
upper triangular matrices is upper triangular.

(c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.

(d ) The inverse of an invertible lower triangular matrix is lower triangular, and the
inverse of an invertible upper triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by
reflecting the entries about the main diagonal; we omit the formal proof. We will prove
(b), but we will defer the proofs of (c) and (d ) to the next chapter, where we will have the
tools to prove those results more efficiently.

Proof (b) We will prove the result for lower triangular matrices; the proof for upper trian-
gular matrices is similar. Let A = [aij ] and B = [bij ] be lower triangular n × n matrices,
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and let C = [cij ] be the product C = AB. We can prove that C is lower triangular by
showing that cij = 0 for i < j . But from the definition of matrix multiplication,

cij = ai1b1j + ai2b2j + · · · + ainbnj

If we assume that i < j , then the terms in this expression can be grouped as follows:

cij = ai1b1j + ai2b2j + · · · + ai(j−1)b(j−1)j︸ ︷︷ ︸
Terms in which the row
number of b is less than
the column number of b

+ aij bjj + · · · + ainbnj︸ ︷︷ ︸
Terms in which the row
number of a is less than
the column number of a

In the first grouping all of the b factors are zero since B is lower triangular, and in the
second grouping all of the a factors are zero since A is lower triangular. Thus, cij = 0,
which is what we wanted to prove.

EXAMPLE 3 Computations withTriangular Matrices

Consider the upper triangular matrices

A =
⎡
⎢⎣1 3 −1

0 2 4
0 0 5

⎤
⎥⎦, B =

⎡
⎢⎣3 −2 2

0 0 −1
0 0 1

⎤
⎥⎦

It follows from part (c) of Theorem 1.7.1 that the matrix A is invertible but the matrix
B is not. Moreover, the theorem also tells us that A−1, AB, and BA must be upper
triangular. We leave it for you to confirm these three statements by showing that

Observe that in Example 3 the
diagonal entries of AB and
BA are the same, and in both
cases they are the products
of the corresponding diagonal
entries of A and B. In the
exercises we will ask you to
prove that this happens when-
ever two upper triangular ma-
trices or two lower triangular
matrices are multiplied. A−1 =

⎡
⎢⎢⎣

1 − 3
2

7
5

0 1
2 − 2

5

0 0 1
5

⎤
⎥⎥⎦ , AB =

⎡
⎢⎣3 −2 −2

0 0 2

0 0 5

⎤
⎥⎦ , BA =

⎡
⎢⎣3 5 −1

0 0 −5

0 0 5

⎤
⎥⎦

Symmetric Matrices
DEFINITION 1 A square matrix A is said to be symmetric if A = AT .

EXAMPLE 4 Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).

It is easy to recognize a sym-
metric matrix by inspection:
The entries on the main diag-
onal have no restrictions, but
mirror images of entries across
the main diagonal must be
equal. Here is a picture using
the second matrix in Exam-
ple 4:

⎡
⎢⎣

1 4 5
4 3 0
5 0 7

⎤
⎥⎦

[
7 −3

−3 5

]
,

⎡
⎢⎣1 4 5

4 −3 0

5 0 7

⎤
⎥⎦,

⎡
⎢⎢⎢⎣

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

⎤
⎥⎥⎥⎦

Remark It follows from Formula (14) of Section 1.3 that a square matrix A is symmetric if and
only if

(A)ij = (A)ji (4)

for all values of i and j .

The following theorem lists the main algebraic properties of symmetric matrices. The
proofs are direct consequences of Theorem 1.4.8 and are omitted.
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THEOREM 1.7.2 If A and B are symmetric matrices with the same size, and if k is any
scalar, then:

(a) AT is symmetric.

(b) A + B and A − B are symmetric.

(c) kA is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To
see why this is so, let A and B be symmetric matrices with the same size. Then it follows
from part (e) of Theorem 1.4.8 and the symmetry of A and B that

(AB)T = BTAT = BA

Thus, (AB)T = AB if and only if AB = BA, that is, if and only if A and B commute. In
summary, we have the following result.

THEOREM 1.7.3 The product of two symmetric matrices is symmetric if and only if the
matrices commute.

EXAMPLE 5 Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not
symmetric, and the second shows a product of symmetric matrices that is symmetric. We
conclude that the factors in the first equation do not commute, but those in the second
equation do. We leave it for you to verify that this is so.[

1 2

2 3

] [−4 1

1 0

]
=
[−2 1
−5 2

]
[

1 2

2 3

] [−4 3

3 −1

]
=
[

2 1
1 3

]

Invertibility of Symmetric
Matrices

In general, a symmetric matrix need not be invertible. For example, a diagonal matrix
with a zero on the main diagonal is symmetric but not invertible. However, the following
theorem shows that if a symmetric matrix happens to be invertible, then its inverse must
also be symmetric.

THEOREM 1.7.4 If A is an invertible symmetric matrix, then A−1 is symmetric.

Proof Assume that A is symmetric and invertible. From Theorem 1.4.9 and the fact
that A = AT , we have

(A−1)T = (AT )−1 = A−1

which proves that A−1 is symmetric.

Products AAT and ATA
are Symmetric

Matrix products of the form AAT and ATA arise in a variety of applications. If A is
an m × n matrix, then AT is an n × m matrix, so the products AAT and ATA are both
square matrices—the matrix AAT has size m × m, and the matrix ATA has size n × n.
Such products are always symmetric since

(AAT )T = (AT )TAT = AAT and (ATA)T = AT(AT )T = ATA
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EXAMPLE 6 The Product of a Matrix and ItsTranspose Is Symmetric

Let A be the 2 × 3 matrix

A =
[

1 −2 4

3 0 −5

]
Then

ATA =
⎡
⎢⎣ 1 3

−2 0

4 −5

⎤
⎥⎦[1 −2 4

3 0 −5

]
=
⎡
⎢⎣ 10 −2 −11

−2 4 −8

−11 −8 41

⎤
⎥⎦

AAT =
[

1 −2 4

3 0 −5

]⎡⎢⎣ 1 3

−2 0

4 −5

⎤
⎥⎦ =

[
21 −17

−17 34

]

Observe that ATA and AAT are symmetric as expected.

Later in this text, we will obtain general conditions on A under which AAT and ATA

are invertible. However, in the special case where A is square, we have the following
result.

THEOREM 1.7.5 If A is an invertible matrix, then AAT and ATA are also invertible.

Proof SinceA is invertible, so isAT by Theorem 1.4.9. ThusAAT andATAare invertible,
since they are the products of invertible matrices.

Exercise Set 1.7
In Exercises 1–2, classify the matrix as upper triangular, lower

triangular, or diagonal, and decide by inspection whether the ma-
trix is invertible. [Note: Recall that a diagonal matrix is both up-
per and lower triangular, so there may be more than one answer
in some parts.]

1. (a)

[
2 1

0 3

]
(b)

[
0 0

4 0

]

(c)

⎡
⎢⎣
−1 0 0

0 2 0

0 0 1
5

⎤
⎥⎦ (d)

⎡
⎢⎣

3 −2 7

0 0 3

0 0 8

⎤
⎥⎦

2. (a)

[
4 0

1 7

]
(b)

[
0 −3

0 0

]

(c)

⎡
⎢⎣

4 0 0

0 3
5 0

0 0 −2

⎤
⎥⎦ (d)

⎡
⎢⎣

3 0 0

3 1 0

7 0 0

⎤
⎥⎦

In Exercises 3–6, find the product by inspection.

3.

⎡
⎣3 0 0

0 −1 0
0 0 2

⎤
⎦
⎡
⎣ 2 1
−4 1

2 5

⎤
⎦

4.
[

1 2 −5
−3 −1 0

]⎡⎣−4 0 0
0 3 0
0 0 2

⎤
⎦

5.

⎡
⎣5 0 0

0 2 0
0 0 −3

⎤
⎦
⎡
⎣−3 2 0 4 −4

1 −5 3 0 3
−6 2 2 2 2

⎤
⎦

6.

⎡
⎢⎣2 0 0

0 −1 0

0 0 4

⎤
⎥⎦
⎡
⎢⎣ 4 −1 3

1 2 0

−5 1 −2

⎤
⎥⎦
⎡
⎢⎣−3 0 0

0 5 0

0 0 2

⎤
⎥⎦

In Exercises 7–10, find A2, A−2, and A−k (where k is any inte-
ger) by inspection.

7. A =
[

1 0

0 −2

]
8. A =

⎡
⎢⎣−6 0 0

0 3 0

0 0 5

⎤
⎥⎦

9. A =
⎡
⎢⎣

1
2 0 0

0 1
3 0

0 0 1
4

⎤
⎥⎦ 10. A =

⎡
⎢⎢⎢⎣
−2 0 0 0

0 −4 0 0

0 0 −3 0

0 0 0 2

⎤
⎥⎥⎥⎦
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In Exercises 11–12, compute the product by inspection.

11.

⎡
⎢⎣

1 0 0

0 0 0

0 0 3

⎤
⎥⎦
⎡
⎢⎣

2 0 0

0 5 0

0 0 0

⎤
⎥⎦
⎡
⎢⎣

0 0 0

0 2 0

0 0 1

⎤
⎥⎦

12.

⎡
⎢⎣
−1 0 0

0 2 0

0 0 4

⎤
⎥⎦
⎡
⎢⎣

3 0 0

0 5 0

0 0 7

⎤
⎥⎦
⎡
⎢⎣

5 0 0

0 −2 0

0 0 3

⎤
⎥⎦

In Exercises 13–14, compute the indicated quantity.

13.

[
1 0

0 −1

]39

14.

[
1 0

0 −1

]1000

In Exercises 15–16, use what you have learned in this section
about multiplying by diagonal matrices to compute the product
by inspection.

15. (a)

⎡
⎢⎣

a 0 0

0 b 0

0 0 c

⎤
⎥⎦
⎡
⎢⎣

u v

w x

y z

⎤
⎥⎦ (b)

⎡
⎢⎣

r s t

u v w

x y z

⎤
⎥⎦
⎡
⎢⎣

a 0 0

0 b 0

0 0 c

⎤
⎥⎦

16. (a)

⎡
⎢⎣

u v

w x

y z

⎤
⎥⎦
[
a 0

0 b

]
(b)

⎡
⎢⎣

a 0 0

0 b 0

0 0 c

⎤
⎥⎦
⎡
⎢⎣

r s t

u v w

x y z

⎤
⎥⎦

In Exercises 17–18, create a symmetric matrix by substituting
appropriate numbers for the ×’s.

17. (a)

[
2 −1

× 3

]
(b)

⎡
⎢⎢⎢⎣

1 × × ×
3 1 × ×
7 −8 0 ×
2 −3 9 0

⎤
⎥⎥⎥⎦

18. (a)

[
0 ×
3 0

]
(b)

⎡
⎢⎢⎢⎣

1 7 −3 2

× 4 5 −7

× × 1 −6

× × × 3

⎤
⎥⎥⎥⎦

In Exercises 19–22, determine by inspection whether the ma-
trix is invertible.

19.

⎡
⎢⎣0 6 −1

0 7 −4

0 0 −2

⎤
⎥⎦ 20.

⎡
⎢⎣−1 2 4

0 3 0

0 0 5

⎤
⎥⎦

21.

⎡
⎢⎢⎢⎣

1 0 0 0

2 −5 0 0

4 −3 4 0

1 −2 1 3

⎤
⎥⎥⎥⎦ 22.

⎡
⎢⎢⎢⎣

2 0 0 0

−3 −1 0 0

−4 −6 0 0

0 3 8 −5

⎤
⎥⎥⎥⎦

In Exercises 23–24, find the diagonal entries of AB by inspec-
tion.

23. A =
⎡
⎢⎣3 2 6

0 1 −2

0 0 −1

⎤
⎥⎦ , B =

⎡
⎢⎣−1 2 7

0 5 3

0 0 6

⎤
⎥⎦

24. A =
⎡
⎢⎣ 4 0 0

−2 0 0

−3 0 7

⎤
⎥⎦ , B =

⎡
⎢⎣6 0 0

1 5 0

3 2 6

⎤
⎥⎦

In Exercises 25–26, find all values of the unknown constant(s)
for which A is symmetric.

25. A =
[

4 −3

a + 5 −1

]

26. A =
⎡
⎢⎣2 a − 2b + 2c 2a + b + c

3 5 a + c

0 −2 7

⎤
⎥⎦

In Exercises 27–28, find all values of x for which A is invertible.

27. A =
⎡
⎢⎣x − 1 x2 x4

0 x + 2 x3

0 0 x − 4

⎤
⎥⎦

28. A =

⎡
⎢⎢⎣

x − 1
2 0 0

x x − 1
3 0

x2 x3 x + 1
4

⎤
⎥⎥⎦

29. If A is an invertible upper triangular or lower triangular ma-
trix, what can you say about the diagonal entries of A−1?

30. Show that if A is a symmetric n × n matrix and B is any n × m

matrix, then the following products are symmetric:

BTB, BBT , BTAB

In Exercises 31–32, find a diagonal matrix A that satisfies the
given condition.

31. A5 =
⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ 32. A−2 =

⎡
⎣9 0 0

0 4 0
0 0 1

⎤
⎦

33. Verify Theorem 1.7.1(b) for the matrix product AB and The-
orem 1.7.1(d) for the matrix A, where

A =
⎡
⎢⎣−1 2 5

0 1 3

0 0 −4

⎤
⎥⎦, B =

⎡
⎢⎣2 −8 0

0 2 1

0 0 3

⎤
⎥⎦

34. Let A be an n × n symmetric matrix.

(a) Show that A2 is symmetric.

(b) Show that 2A2 − 3A + I is symmetric.
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35. Verify Theorem 1.7.4 for the given matrix A.

(a) A =
[

2 −1

−1 3

]
(b) A =

⎡
⎢⎣ 1 −2 3

−2 1 −7

3 −7 4

⎤
⎥⎦

36. Find all 3 × 3 diagonal matrices A that satisfy
A2 − 3A − 4I = 0.

37. Let A = [aij ] be an n × n matrix. Determine whether A is
symmetric.

(a) aij = i2 + j 2 (b) aij = i2 − j 2

(c) aij = 2i + 2j (d) aij = 2i2 + 2j 3

38. On the basis of your experience with Exercise 37, devise a gen-
eral test that can be applied to a formula for aij to determine
whether A = [aij ] is symmetric.

39. Find an upper triangular matrix that satisfies

A3 =
[

1 30

0 −8

]

40. If the n × n matrix A can be expressed as A = LU , where L is
a lower triangular matrix and U is an upper triangular matrix,
then the linear system Ax = b can be expressed as LUx = b
and can be solved in two steps:

Step 1. Let Ux = y, so that LUx = b can be expressed as
Ly = b. Solve this system.

Step 2. Solve the system Ux = y for x.

In each part, use this two-step method to solve the given
system.

(a)

⎡
⎢⎣ 1 0 0

−2 3 0

2 4 1

⎤
⎥⎦
⎡
⎢⎣2 −1 3

0 1 2

0 0 4

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1

−2

0

⎤
⎥⎦

(b)

⎡
⎢⎣ 2 0 0

4 1 0

−3 −2 3

⎤
⎥⎦
⎡
⎢⎣3 −5 2

0 4 1

0 0 2

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 4

−5

2

⎤
⎥⎦

In the text we defined a matrix A to be symmetric if AT = A.
Analogously, a matrix A is said to be skew-symmetric if AT = −A.
Exercises 41–45 are concerned with matrices of this type.

41. Fill in the missing entries (marked with ×) so the matrix A is
skew-symmetric.

(a) A =
⎡
⎢⎣× × 4

0 × ×
× −1 ×

⎤
⎥⎦ (b) A =

⎡
⎢⎣× 0 ×
× × −4

8 × ×

⎤
⎥⎦

42. Find all values of a, b, c, and d for which A is skew-symmetric.

A =
⎡
⎢⎣ 0 2a − 3b + c 3a − 5b + 5c

−2 0 5a − 8b + 6c

−3 −5 d

⎤
⎥⎦

43. We showed in the text that the product of symmetric matrices
is symmetric if and only if the matrices commute. Is the prod-
uct of commuting skew-symmetric matrices skew-symmetric?
Explain.

Working with Proofs

44. Prove that every square matrix A can be expressed as the sum
of a symmetric matrix and a skew-symmetric matrix. [Hint:
Note the identity A = 1

2 (A + AT ) + 1
2 (A − AT ).]

45. Prove the following facts about skew-symmetric matrices.

(a) If A is an invertible skew-symmetric matrix, then A−1 is
skew-symmetric.

(b) If A and B are skew-symmetric matrices, then so are AT ,
A + B, A − B, and kA for any scalar k.

46. Prove: If the matrices A and B are both upper triangular or
both lower triangular, then the diagonal entries of both AB

and BA are the products of the diagonal entries of A and B.

47. Prove: If ATA = A, then A is symmetric and A = A2.

True-False Exercises

TF. In parts (a)–(m) determine whether the statement is true or
false, and justify your answer.

(a) The transpose of a diagonal matrix is a diagonal matrix.

(b) The transpose of an upper triangular matrix is an upper tri-
angular matrix.

(c) The sum of an upper triangular matrix and a lower triangular
matrix is a diagonal matrix.

(d) All entries of a symmetric matrix are determined by the entries
occurring on and above the main diagonal.

(e) All entries of an upper triangular matrix are determined by
the entries occurring on and above the main diagonal.

(f ) The inverse of an invertible lower triangular matrix is an upper
triangular matrix.

(g) A diagonal matrix is invertible if and only if all of its diagonal
entries are positive.

(h) The sum of a diagonal matrix and a lower triangular matrix is
a lower triangular matrix.

(i) A matrix that is both symmetric and upper triangular must be
a diagonal matrix.

( j) If A and B are n × n matrices such that A + B is symmetric,
then A and B are symmetric.

(k) If A and B are n × n matrices such that A + B is upper trian-
gular, then A and B are upper triangular.

(l) If A2 is a symmetric matrix, then A is a symmetric matrix.

(m) If kA is a symmetric matrix for some k �= 0, then A is a sym-
metric matrix.
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Working withTechnology

T1. Starting with the formula stated in Exercise T1 of Section 1.5,
derive a formula for the inverse of the “block diagonal” matrix[

D1 0

0 D2

]

in which D1 and D2 are invertible, and use your result to compute
the inverse of the matrix

M =

⎡
⎢⎢⎢⎣

1.24 2.37 0 0

3.08 −1.01 0 0

0 0 2.76 4.92

0 0 3.23 5.54

⎤
⎥⎥⎥⎦

1.8 MatrixTransformations
In this section we will introduce a special class of functions that arise from matrix
multiplication. Such functions, called “matrix transformations,” are fundamental in the
study of linear algebra and have important applications in physics, engineering, social
sciences, and various branches of mathematics.

Recall that in Section 1.1 we defined an “ordered n-tuple” to be a sequence of n real
numbers, and we observed that a solution of a linear system in n unknowns, say

x1 = s1, x2 = s2, . . . , xn = sn

can be expressed as the ordered n-tuple

(s1, s2, . . . , sn) (1)

Recall also that if n = 2, then the n-tuple is called an “ordered pair,” and if n = 3, it is
called an “ordered triple.” For two ordered n-tuples to be regarded as the same, they
must list the same numbers in the same order. Thus, for example, (1, 2) and (2, 1) are
different ordered pairs.

The set of all ordered n-tuples of real numbers is denoted by the symbol Rn. The
The term “vector” is used in
various ways in mathemat-
ics, physics, engineering, and
other applications. The idea
of viewing n-tuples as vectors
will be discussed in more detail
in Chapter 3, at which point we
will also explain how this idea
relates to more familiar notion
of a vector.

elements of Rn are called vectors and are denoted in boldface type, such as a, b, v, w,
and x. When convenient, ordered n-tuples can be denoted in matrix notation as column
vectors. For example, the matrix ⎡

⎢⎢⎢⎢⎣
s1

s2

...

sn

⎤
⎥⎥⎥⎥⎦ (2)

can be used as an alternative to (1). We call (1) the comma-delimited form of a vector
and (2) the column-vector form. For each i = 1, 2, . . . , n, let ei denote the vector in Rn

with a 1 in the ith position and zeros elsewhere. In column form these vectors are

e1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, e2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, . . . , en =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We call the vectors e1, e2, . . . , en the standard basis vectors for Rn. For example, the
vectors

e1 =
⎡
⎢⎣1

0

0

⎤
⎥⎦ , e2 =

⎡
⎢⎣0

1

0

⎤
⎥⎦ , e3 =

⎡
⎢⎣0

0

1

⎤
⎥⎦

are the standard basis vectors for R3.
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The vectors e1, e2, . . . , en in Rn are termed “basis vectors” because all other vectors
in Rn are expressible in exactly one way as a linear combination of them. For example,
if

x =

⎡
⎢⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎥⎦

then we can express x as
x = x1e1 + x2e2 + · · · + xnen

Functions and
Transformations

Recall that a function is a rule that associates with each element of a set A one and only
one element in a set B. If f associates the element b with the element a, then we write

b = f(a)

and we say that b is the image of a under f or that f(a) is the value of f at a. The set
A is called the domain of f and the set B the codomain of f (Figure 1.8.1). The subseta

b = f (a)

f

Domain

A
Codomain

B

Figure 1.8.1

of the codomain that consists of all images of elements in the domain is called the range
of f .

In many applications the domain and codomain of a function are sets of real numbers,
but in this text we will be concerned with functions for which the domain is Rn and the
codomain is Rm for some positive integers m and n.

DEFINITION 1 If f is a function with domain Rn and codomain Rm, then we say that
f is a transformation from Rn to Rm or that f maps from Rn to Rm, which we denote
by writing

f : Rn →Rm

In the special case where m = n, a transformation is sometimes called an operator on
Rn.

MatrixTransformations In this section we will be concerned with the class of transformations from Rn to Rm

that arise from linear systems. Specifically, suppose that we have the system of linear

It is common in linear algebra
to use the letter T to denote
a transformation. In keeping
with this usage, we will usually
denote a transformation from
Rn to Rm by writing

T : Rn →Rm

equations
w1 = a11x1 + a12x2 + · · · + a1nxn

w2 = a21x1 + a22x2 + · · · + a2nxn
...

...
...

...

wm = am1x1 + am2x2 + · · · + amnxn

(3)

which we can write in matrix notation as⎡
⎢⎢⎢⎣

w1

w2
...

wm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ (4)

or more briefly as
w = Ax (5)

Although we could view (5) as a compact way of writing linear system (3), we will view
it instead as a transformation that maps a vector x in Rn into thevector w in Rm by
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multiplying x on the left by A. We call this a matrix transformation (or matrix operator
in the special case where m = n). We denote it by

TA: Rn → Rm

(see Figure 1.8.2). This notation is useful when it is important to make the domain

x

TA : R
n → Rm

TA(x)

TA

Rn Rm

Figure 1.8.2

and codomain clear. The subscript on TA serves as a reminder that the transformation
results from multiplying vectors in Rn by the matrix A. In situations where specifying
the domain and codomain is not essential, we will express (4) as

w = TA(x) (6)

We call the transformation TA multiplication by A. On occasion we will find it convenient
to express (6) in the schematic form

x
TA−→ w (7)

which is read “TA maps x into w.”

EXAMPLE 1 A MatrixTransformation from R4 to R3

The transformation from R4 to R3 defined by the equations

w1 = 2x1 − 3x2 + x3 − 5x4

w2 = 4x1 + x2 − 2x3 + x4

w3 = 5x1 − x2 + 4x3

(8)

can be expressed in matrix form as⎡
⎢⎣w1

w2

w3

⎤
⎥⎦ =

⎡
⎢⎣2 −3 1 −5

4 1 −2 1

5 −1 4 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦

from which we see that the transformation can be interpreted as multiplication by

A =
⎡
⎢⎣2 −3 1 −5

4 1 −2 1

5 −1 4 0

⎤
⎥⎦ (9)

Although the image under the transformation TA of any vector

x =

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦

in R4 could be computed directly from the defining equations in (8), we will find it
preferable to use the matrix in (9). For example, if

x =

⎡
⎢⎢⎢⎣

1

−3

0

2

⎤
⎥⎥⎥⎦

then it follows from (9) that⎡
⎢⎣w1

w2

w3

⎤
⎥⎦ = TA(x) = Ax =

⎡
⎢⎣2 −3 1 −5

4 1 −2 1

5 −1 4 0

⎤
⎥⎦
⎡
⎢⎢⎢⎣

1

−3

0

2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣1

3

8

⎤
⎥⎦
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EXAMPLE 2 ZeroTransformations

If 0 is the m × n zero matrix, then

T0(x) = 0x = 0

so multiplication by zero maps every vector in Rn into the zero vector in Rm. We call T0
the zero transformation from Rn to Rm.

EXAMPLE 3 Identity Operators

If I is the n × n identity matrix, then

TI (x) = Ix = x

so multiplication by I maps every vector in Rn to itself. We call TI the identity operator
on Rn.

Properties of Matrix
Transformations

The following theorem lists four basic properties of matrix transformations that follow
from properties of matrix multiplication.

THEOREM 1.8.1 For every matrix A the matrix transformation TA: Rn →Rm has the
following properties for all vectors u and v and for every scalar k:

(a) TA(0) = 0

(b) TA(ku) = kTA(u) [Homogeneity property]

(c) TA(u + v) = TA(u) + TA(v) [Additivity property]

(d ) TA(u − v) = TA(u) − TA(v)

Proof All four parts are restatements of the following properties of matrix arithmetic
given in Theorem 1.4.1:

A0 = 0, A(ku) = k(Au), A(u + v) = Au + Av, A(u − v) = Au − Av

It follows from parts (b) and (c) of Theorem 1.8.1 that a matrix transformation maps
a linear combination of vectors in Rn into the corresponding linear combination of
vectors in Rm in the sense that

TA(k1u1 + k2u2 + · · · + krur ) = k1TA(u1) + k2TA(u2) + · · · + krTA(ur ) (10)

Matrix transformations are not the only kinds of transformations. For example, if

w1 = x2
1 + x2

2

w2 = x1x2
(11)

then there are no constants a, b, c, and d for which[
w1

w2

]
=
[
a b

c d

][
x1

x2

]
=
[
x2

1 + x2
2

x1x2

]

so that the equations in (11) do not define a matrix transformation from R2 to R2.
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This leads us to the following two questions.

Question 1. Are there algebraic properties of a transformation T : Rn →Rm that can
be used to determine whether T is a matrix transformation?

Question 2. If we discover that a transformation T : Rn →Rm is a matrix transfor-
mation, how can we find a matrix for it?

The following theorem and its proof will provide the answers.

THEOREM 1.8.2 T : Rn →Rm is a matrix transformation if and only if the following
relationships hold for all vectors u and v in Rn and for every scalar k:

(i) T (u + v) = T (u) + T (v) [Additivity property]

(ii) T (ku) = kT (u) [Homogeneity property]

Proof If T is a matrix transformation, then properties (i) and (ii) follow respectively
from parts (c) and (b) of Theorem 1.8.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there exists
an m × n matrix A such that

T (x) = Ax

for every vector x in Rn. Recall that the derivation of Formula (10) used only the
additivity and homogeneity properties of TA. Since we are assuming that T has those
properties, it must be true that

T (k1u1 + k2u2 + · · · + krur ) = k1T (u1) + k2T (u2) + · · · + krT (ur ) (12)

for all scalars k1, k2, . . . , kr and all vectors u1, u2, . . . , ur in Rn. Let A be the matrix

A = [T (e1) | T (e2) | · · · | T (en)] (13)

where e1, e2, . . . , en are the standard basis vectors for Rn. It follows from Theorem 1.3.1
that Ax is a linear combination of the columns of A in which the successive coefficients
are the entries x1, x2, . . . , xn of x. That is,

Ax = x1T (e1) + x2T (e2) + · · · + xnT (en)

Using Formula (10) we can rewrite this as

Ax = T (x1e1 + x2e2 + · · · + xnen) = T (x)

which completes the proof.

The additivity and homogeneity properties in Theorem 1.8.2 are called linearity
conditions, and a transformation that satisfies these conditions is called a linear transfor-
mation. Using this terminology Theorem 1.8.2 can be restated as follows.

Theorem 1.8.3 tells us that
for transformations from Rn to
Rm, the terms “matrix trans-
formation” and “linear trans-
formation” are synonymous.

THEOREM1.8.3 Every linear transformation fromRn toRm is amatrix transformation,
and conversely, every matrix transformation from Rn to Rm is a linear transformation.
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Depending on whether n-tuples and m-tuples are regarded as vectors or points, the
geometric effect of a matrix transformation TA: Rn →Rm is to map each vector (point)
in Rn into a vector (point) in Rm (Figure 1.8.3).

Figure 1.8.3

x
TA(x)

Rn Rm

0 0

TA maps points to points.

x
TA(x)

Rn Rm

0
0

TA maps vectors to vectors.

The following theorem states that if two matrix transformations from Rn to Rm have
the same image at each point of Rn, then the matrices themselves must be the same.

THEOREM 1.8.4 If TA: Rn →Rm and TB : Rn →Rm are matrix transformations, and if
TA(x) = TB(x) for every vector x in Rn, then A = B.

Proof To say that TA(x) = TB(x) for every vector in Rn is the same as saying that

Ax = Bx

for every vector x in Rn. This will be true, in particular, if x is any of the standard basis
vectors e1, e2, . . . , en for Rn; that is,

Aej = Bej (j = 1, 2, . . . , n) (14)

Since every entry of ej is 0 except for the j th, which is 1, it follows from Theorem 1.3.1
that Aej is the j th column of A and Bej is the j th column of B. Thus, (14) implies that
corresponding columns of A and B are the same, and hence that A = B.

Theorem 1.8.4 is significant because it tells us that there is aone-to-one correspondence
between m × n matrices and matrix transformations from Rn to Rm in the sense that
every m × n matrix A produces exactly one matrix transformation (multiplication by A)
and every matrix transformation from Rn to Rm arises from exactly one m × n matrix;
we call that matrix the standard matrix for the transformation.

A Procedure for Finding
Standard Matrices

In the course of proving Theorem 1.8.2 we showed in Formula (13) that if e1, e2, . . . , en

are the standard basis vectors for Rn (in column form), then the standard matrix for a
linear transformation T : Rn →Rm is given by the formula

A = [T (e1) | T (e2) | · · · | T (en)] (15)

This suggests the following procedure for finding standard matrices.

Finding the Standard Matrix for a Matrix Transformation

Step 1. Find the images of the standard basis vectors e1, e2, . . . , en for Rn.

Step 2. Construct the matrix that has the images obtained in Step 1 as its successive
columns. This matrix is the standard matrix for the transformation.
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EXAMPLE 4 Finding a Standard Matrix

Find the standard matrix A for the linear transformation T : R2 →R2 defined by the
formula

T

([
x1

x2

])
=
⎡
⎢⎣ 2x1 + x2

x1 − 3x2

−x1 + x2

⎤
⎥⎦ (16)

Solution We leave it for you to verify that

T (e1) = T

([
1

0

])
=
⎡
⎢⎣ 2

1

−1

⎤
⎥⎦ and T (e2) = T

([
0

1

])
=
⎡
⎢⎣ 1

−3

1

⎤
⎥⎦

Thus, it follows from Formulas (15) and (16) that the standard matrix is

A = [T (e1) | T (e2)] =
⎡
⎢⎣ 2 1

1 −3

−1 1

⎤
⎥⎦

EXAMPLE 5 Computing with Standard Matrices

For the linear transformation in Example 4, use the standard matrix A obtained in that
example to find

T

([
1

4

])

Solution The transformation is multiplication by A, so
Although we could have ob-
tained the result in Example 5
by substituting values for the
variables in (13), the method
used in Example 5 is preferable
for large-scale problems in that
matrix multiplication is better
suited for computer computa-
tions.

T

([
1

4

])
=
⎡
⎢⎣ 2 1

1 −3

−1 1

⎤
⎥⎦
[

1

4

]
=
⎡
⎢⎣ 6

−11

3

⎤
⎥⎦

For transformation problems posed in comma-delimited form, a good procedure is
to rewrite the problem in column-vector form and use the methods previously illustrated.

EXAMPLE 6 Finding a Standard Matrix

Rewrite the transformation T (x1, x2) = (3x1 + x2, 2x1 − 4x2) in column-vector form
and find its standard matrix.

Solution

T

([
x1

x2

])
=
[

3x1 + x2

2x1 − 4x2

]
=
[

3 1

2 −2

][
x1

x2

]
Thus, the standard matrix is [

3 1

2 −2

]

Remark This section is but a first step in the study of linear transformations, which is one of the
major themes in this text. We will delve deeper into this topic in Chapter 4, at which point we will
have more background and a richer source of examples to work with.
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Exercise Set 1.8
In Exercises 1–2, find the domain and codomain of the trans-

formation TA(x) = Ax.

1. (a) A has size 3 × 2. (b) A has size 2 × 3.

(c) A has size 3 × 3. (d) A has size 1 × 6.

2. (a) A has size 4 × 5. (b) A has size 5 × 4.

(c) A has size 4 × 4. (d) A has size 3 × 1.

In Exercises 3–4, find the domain and codomain of the trans-
formation defined by the equations.

3. (a) w1 = 4x1 + 5x2

w2 = x1 − 8x2

(b) w1 = 5x1 − 7x2

w2 = 6x1 + x2

w3 = 2x1 + 3x2

4. (a) w1 = x1 − 4x2 + 8x3

w2 = −x1 + 4x2 + 2x3

w3 = −3x1 + 2x2 − 5x3

(b) w1 = 2x1 + 7x2 − 4x3

w2 = 4x1 − 3x2 + 2x3

In Exercises 5–6, find the domain and codomain of the trans-
formation defined by the matrix product.

5. (a)

[
3 1 2

6 7 1

]⎡⎢⎣x1

x2

x3

⎤
⎥⎦ (b)

⎡
⎢⎣2 −1

4 3

2 −5

⎤
⎥⎦
[
x1

x2

]

6. (a)

[
6 3

−1 7

][
x1

x2

]
(b)

⎡
⎢⎣2 1 −6

3 7 −4

1 0 3

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

In Exercises 7–8, find the domain and codomain of the trans-
formation T defined by the formula.

7. (a) T (x1, x2) = (2x1 − x2, x1 + x2)

(b) T (x1, x2, x3) = (4x1 + x2, x1 + x2)

8. (a) T (x1, x2, x3, x4) = (x1, x2)

(b) T (x1, x2, x3) = (x1, x2 − x3, x2)

In Exercises 9–10, find the domain and codomain of the trans-
formation T defined by the formula.

9. T

([
x1

x2

])
=
⎡
⎢⎣ 4x1

x1 − x2

3x2

⎤
⎥⎦ 10. T

⎛
⎜⎝
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎣

x1

x2

x1 − x3

0

⎤
⎥⎥⎥⎦

In Exercises 11–12, find the standard matrix for the transfor-
mation defined by the equations.

11. (a) w1 = 2x1 − 3x2 + x3

w2 = 3x1 + 5x2 − x3

(b) w1 = 7x1 + 2x2 − 8x3

w2 = − x2 + 5x3

w3 = 4x1 + 7x2 − x3

12. (a) w1 = −x1 + x2

w2 = 3x1 − 2x2

w3 = 5x1 − 7x2

(b) w1 = x1

w2 = x1 + x2

w3 = x1 + x2 + x3

w4 = x1 + x2 + x3 + x4

13. Find the standard matrix for the transformation T defined by
the formula.

(a) T (x1, x2) = (x2,−x1, x1 + 3x2, x1 − x2)

(b) T (x1, x2, x3, x4) = (7x1 + 2x2 − x3 + x4, x2 + x3,−x1)

(c) T (x1, x2, x3) = (0, 0, 0, 0, 0)

(d) T (x1, x2, x3, x4) = (x4, x1, x3, x2, x1 − x3)

14. Find the standard matrix for the operator T defined by the
formula.

(a) T (x1, x2) = (2x1 − x2, x1 + x2)

(b) T (x1, x2) = (x1, x2)

(c) T (x1, x2, x3) = (x1 + 2x2 + x3, x1 + 5x2, x3)

(d) T (x1, x2, x3) = (4x1, 7x2,−8x3)

15. Find the standard matrix for the operator T : R3 →R3 defined
by

w1 = 3x1 + 5x2 − x3

w2 = 4x1 − x2 + x3

w3 = 3x1 + 2x2 − x3

and then compute T (−1, 2, 4) by directly substituting in the
equations and then by matrix multiplication.

16. Find the standard matrix for the transformation T : R4 →R2

defined by
w1 = 2x1 + 3x2 − 5x3 − x4

w2 = x1 − 5x2 + 2x3 − 3x4

and then compute T (1,−1, 2, 4) by directly substituting in
the equations and then by matrix multiplication.

In Exercises 17–18, find the standard matrix for the transfor-
mation and use it to compute T (x). Check your result by substi-
tuting directly in the formula for T .

17. (a) T (x1, x2) = (−x1 + x2, x2); x = (−1, 4)

(b) T (x1, x2, x3) = (2x1 − x2 + x3, x2 + x3, 0);
x = (2, 1,−3)

18. (a) T (x1, x2) = (2x1 − x2, x1 + x2); x = (−2, 2)

(b) T (x1, x2, x3) = (x1, x2 − x3, x2); x = (1, 0, 5)

In Exercises 19–20, find TA(x), and express your answer in
matrix form.

19. (a) A =
[

1 2

3 4

]
; x =

[
3

−2

]

(b) A =
[−1 2 0

3 1 5

]
; x =

⎡
⎢⎣−1

1

3

⎤
⎥⎦
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20. (a) A =
⎡
⎢⎣−2 1 4

3 5 7

6 0 −1

⎤
⎥⎦; x =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

(b) A =
⎡
⎢⎣−1 1

2 4

7 8

⎤
⎥⎦; x =

[
x1

x2

]

In Exercises 21–22, use Theorem 1.8.2 to show that T is a
matrix transformation.
21. (a) T (x, y) = (2x + y, x − y)

(b) T (x1, x2, x3) = (x1, x3, x1 + x2)

22. (a) T (x, y, z) = (x + y, y + z, x)

(b) T (x1, x2) = (x2, x1)

In Exercises 23–24, use Theorem 1.8.2 to show that T is not a
matrix transformation.

23. (a) T (x, y) = (x2, y)

(b) T (x, y, z) = (x, y, xz)

24. (a) T (x, y) = (x, y + 1)

(b) T (x1, x2, x3) = (
x1, x2,

√
x3

)
25. A function of the form f(x) = mx + b is commonly called a

“linear function” because the graph of y = mx + b is a line.
Is f a matrix transformation on R?

26. Show that T (x, y) = (0, 0) defines a matrix operator on R2

but T (x, y) = (1, 1) does not.

In Exercises 27–28, the images of the standard basis vec-
tors for R3 are given for a linear transformation T : R3 →R3.
Find the standard matrix for the transformation, and find
T (x).

27. T (e1) =
⎡
⎢⎣1

3

0

⎤
⎥⎦ , T (e2) =

⎡
⎢⎣0

0

1

⎤
⎥⎦ , T (e3) =

⎡
⎢⎣ 4

−3

−1

⎤
⎥⎦ ; x =

⎡
⎢⎣2

1

0

⎤
⎥⎦

28. T (e1) =
⎡
⎢⎣2

1

3

⎤
⎥⎦ , T (e2) =

⎡
⎢⎣−3

−1

0

⎤
⎥⎦ , T (e3) =

⎡
⎢⎣1

0

2

⎤
⎥⎦ ; x =

⎡
⎢⎣3

2

1

⎤
⎥⎦

29. Let T : R2 →R2 be a linear operator for which the images
of the standard basis vectors for R2 are T (e1) = (a, b) and
T (e2) = (c, d). Find T (1, 1).

30. We proved in the text that if T : Rn →Rm is a matrix transfor-
mation, then T (0) = 0. Show that the converse of this result
is false by finding a mapping T : Rn →Rm that is not a matrix
transformation but for which T (0) = 0.

31. Let TA: R3 →R3 be multiplication by

A =
⎡
⎢⎣−1 3 0

2 1 2

4 5 −3

⎤
⎥⎦

and let e1, e2, and e3 be the standard basis vectors for R3. Find
the following vectors by inspection.

(a) TA(e1), TA(e2), and TA(e3)

(b) TA(e1 + e2 + e3) (c) TA(7e3)

Working with Proofs

32. (a) Prove: If T : Rn →Rm is a matrix transformation, then
T (0) = 0; that is, T maps the zero vector in Rn into the
zero vector in Rm.

(b) The converse of this is not true. Find an example of a
function T for which T (0) = 0 but which is not a matrix
transformation.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 2 × 3 matrix, then the domain of the transformation
TA is R2.

(b) If A is an m × n matrix, then the codomain of the transfor-
mation TA is Rn.

(c) There is at least one linear transformation T : Rn →Rm for
which T (2x) = 4T (x) for some vector x in Rn.

(d) There are linear transformations from Rn to Rm that are not
matrix transformations.

(e) If TA: Rn →Rn and if TA(x) = 0 for every vector x in Rn, then
A is the n × n zero matrix.

(f ) There is only one matrix transformation T : Rn →Rm such that
T (−x) = −T (x) for every vector x in Rn.

(g) If b is a nonzero vector in Rn, then T (x) = x + b is a matrix
operator on Rn.
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1.9 Applications of Linear Systems
In this section we will discuss some brief applications of linear systems. These are but a
small sample of the wide variety of real-world problems to which our study of linear
systems is applicable.

Network Analysis The concept of a network appears in a variety of applications. Loosely stated, a network
is a set of branches through which something “flows.” For example, the branches might
be electrical wires through which electricity flows, pipes through which water or oil flows,
traffic lanes through which vehicular traffic flows, or economic linkages through which
money flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the
flow divides. For example, in an electrical network, nodes occur where three or more wires
join, in a traffic network they occur at street intersections, and in a financial network
they occur at banking centers where incoming money is distributed to individuals or
other institutions.

In the study of networks, there is generally some numerical measure of the rate at
which the medium flows through a branch. For example, the flow rate of electricity is
often measured in amperes, the flow rate of water or oil in gallons per minute, the flow rate
of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros
per day. We will restrict our attention to networks in which there is flow conservation at
each node, by which we mean that the rate of flow into any node is equal to the rate of flow
out of that node. This ensures that the flow medium does not build up at the nodes and
block the free movement of the medium through the network.

A common problem in network analysis is to use known flow rates in certain branches
to find the flow rates in all of the branches. Here is an example.

EXAMPLE 1 Network Analysis Using Linear Systems

Figure 1.9.1 shows a network with four nodes in which the flow rate and direction of

35

30

55

60

15

Figure 1.9.1

flow in certain branches are known. Find the flow rates and directions of flow in the
remaining branches.

Solution As illustrated in Figure 1.9.2, we have assigned arbitrary directions to the

35

30

55

60

15

x1x2

x3

B

A

D

C

Figure 1.9.2

unknown flow rates x1, x2, and x3. We need not be concerned if some of the directions
are incorrect, since an incorrect direction will be signaled by a negative value for the flow
rate when we solve for the unknowns.

It follows from the conservation of flow at node A that

x1 + x2 = 30

Similarly, at the other nodes we have

x2 + x3 = 35 (node B)

x3 + 15 = 60 (node C)

x1 + 15 = 55 (node D)

These four conditions produce the linear system

x1 + x2 = 30

x2 + x3 = 35

x3 = 45

x1 = 40
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which we can now try to solve for the unknown flow rates. In this particular case the
system is sufficiently simple that it can be solved by inspection (work from the bottom
up). We leave it for you to confirm that the solution is

x1 = 40, x2 = −10, x3 = 45

The fact that x2 is negative tells us that the direction assigned to that flow in Figure 1.9.2
is incorrect; that is, the flow in that branch is into node A.

EXAMPLE 2 Design ofTraffic Patterns

The network in Figure 1.9.3 shows a proposed plan for the traffic flow around a new
park that will house the Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a
computerized traffic light at the north exit on Fifth Street, and the diagram indicates the
average number of vehicles per hour that are expected to flow in and out of the streets
that border the complex. All streets are one-way.

(a) How many vehicles per hour should the traffic light let through to ensure that the
average number of vehicles per hour flowing into the complex is the same as the
average number of vehicles flowing out?

(b) Assuming that the traffic light has been set to balance the total flow in and out of
the complex, what can you say about the average number of vehicles per hour that
will flow along the streets that border the complex?

Figure 1.9.3
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Solution (a) If, as indicated in Figure 1.9.3b, we let x denote the number of vehicles per
hour that the traffic light must let through, then the total number of vehicles per hour
that flow in and out of the complex will be

Flowing in: 500 + 400 + 600 + 200 = 1700

Flowing out: x + 700 + 400

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per
hour pass through.

Solution (b) To avoid traffic congestion, the flow in must equal the flow out at each
intersection. For this to happen, the following conditions must be satisfied:

Intersection Flow In Flow Out

A 400 + 600 = x1 + x2

B x2 + x3 = 400 + x

C 500 + 200 = x3 + x4

D x1 + x4 = 700
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Thus, with x = 600, as computed in part (a), we obtain the following linear system:

x1 + x2 = 1000

x2 + x3 = 1000

x3 + x4 = 700

x1 + x4 = 700

We leave it for you to show that the system has infinitely many solutions and that these
are given by the parametric equations

x1 = 700 − t, x2 = 300 + t, x3 = 700 − t, x4 = t (1)

However, the parameter t is not completely arbitrary here, since there are physical con-
straints to be considered. For example, the average flow rates must be nonnegative since
we have assumed the streets to be one-way, and a negative flow rate would indicate a flow
in the wrong direction. This being the case, we see from (1) that t can be any real number
that satisfies 0 ≤ t ≤ 700, which implies that the average flow rates along the streets will
fall in the ranges

0 ≤ x1 ≤ 700, 300 ≤ x2 ≤ 1000, 0 ≤ x3 ≤ 700, 0 ≤ x4 ≤ 700

Electrical Circuits Next we will show how network analysis can be used to analyze electrical circuits con-
sisting of batteries and resistors. A battery is a source of electric energy, and a resistor,
such as a lightbulb, is an element that dissipates electric energy. Figure 1.9.4 shows a+ –

Switch

Figure 1.9.4

schematic diagram of a circuit with one battery (represented by the symbol ), one
resistor (represented by the symbol ), and a switch. The battery has a positive pole
(+) and a negative pole (−). When the switch is closed, electrical current is considered to
flow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhead in the figure).

Electrical current, which is a flow of electrons through wires, behaves much like the
flow of water through pipes. A battery acts like a pump that creates “electrical pressure”
to increase the flow rate of electrons, and a resistor acts like a restriction in a pipe that
reduces the flow rate of electrons. The technical term for electrical pressure is electrical
potential ; it is commonly measured in volts (V). The degree to which a resistor reduces the
electrical potential is called its resistance and is commonly measured in ohms (�). The
rate of flow of electrons in a wire is called current and is commonly measured in amperes
(also called amps) (A). The precise effect of a resistor is given by the following law:

Ohm’s Law If a current of I amperes passes through a resistor with a resistance of
R ohms, then there is a resulting drop of E volts in electrical potential that is the
product of the current and resistance; that is,

E = IR

A typical electrical network will have multiple batteries and resistors joined by some
configuration of wires. A point at which three or more wires in a network are joined is
called a node (or junction point). A branch is a wire connecting two nodes, and a closed
loop is a succession of connected branches that begin and end at the same node. For
example, the electrical network in Figure 1.9.5 has two nodes and three closed loops—

+ – + –

Figure 1.9.5

two inner loops and one outer loop. As current flows through an electrical network, it
undergoes increases and decreases in electrical potential, called voltage rises and voltage
drops, respectively. The behavior of the current at the nodes and around closed loops is
governed by two fundamental laws:



1.9 Applications of Linear Systems 87

Kirchhoff’s Current Law The sum of the currents flowing into any node is equal to the
sum of the currents flowing out.

Kirchhoff’s Voltage Law In one traversal of any closed loop, the sum of the voltage
rises equals the sum of the voltage drops.

Kirchhoff’s current law is a restatement of the principle of flow conservation at a node
that was stated for general networks. Thus, for example, the currents at the top node in
Figure 1.9.6 satisfy the equation I1 = I2 + I3.

I3

I2

I1

Figure 1.9.6

In circuits with multiple loops and batteries there is usually no way to tell in advance
which way the currents are flowing, so the usual procedure in circuit analysis is to as-
sign arbitrary directions to the current flows in the branches and let the mathematical
computations determine whether the assignments are correct. In addition to assigning
directions to the current flows, Kirchhoff’s voltage law requires a direction of travel for
each closed loop. The choice is arbitrary, but for consistency we will always take this
direction to be clockwise (Figure 1.9.7).We also make the following conventions:

• A voltage drop occurs at a resistor if the direction assigned to the current through the
resistor is the same as the direction assigned to the loop, and a voltage rise occurs at

+ – + –

Clockwise closed-loop

convention with arbitrary

direction assignments to

currents in the branches

Figure 1.9.7

a resistor if the direction assigned to the current through the resistor is the opposite
to that assigned to the loop.

• A voltage rise occurs at a battery if the direction assigned to the loop is from − to +
through the battery, and a voltage drop occurs at a battery if the direction assigned
to the loop is from + to − through the battery.

If you follow these conventions when calculating currents, then those currents whose
directions were assigned correctly will have positive values and those whose directions
were assigned incorrectly will have negative values.

EXAMPLE 3 A Circuit with One Closed Loop

Determine the current I in the circuit shown in Figure 1.9.8.

+
– 3 �6 V

I

Figure 1.9.8

Solution Since the direction assigned to the current through the resistor is the same
as the direction of the loop, there is a voltage drop at the resistor. By Ohm’s law this
voltage drop is E = IR = 3I . Also, since the direction assigned to the loop is from −
to + through the battery, there is a voltage rise of 6 volts at the battery. Thus, it follows
from Kirchhoff’s voltage law that

3I = 6

from which we conclude that the current is I = 2 A. Since I is positive, the direction
assigned to the current flow is correct.

EXAMPLE 4 A Circuit withThree Closed Loops

Determine the currents I1, I2, and I3 in the circuit shown in Figure 1.9.9.

+ – + –

5 � 20 � 10 �

50 V 30 V

AI1 I2

I3

B

Figure 1.9.9

Solution Using the assigned directions for the currents, Kirchhoff’s current law provides
one equation for each node:

Node Current In Current Out
A I1 + I2 = I3

B I3 = I1 + I2
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However, these equations are really the same, since both can be expressed as

I1 + I2 − I3 = 0 (2)

To find unique values for the currents we will need two more equations, which we will
obtain from Kirchhoff’s voltage law. We can see from the network diagram that there
are three closed loops, a left inner loop containing the 50 V battery, a right inner loop
containing the 30 V battery, and an outer loop that contains both batteries. Thus,
Kirchhoff’s voltage law will actually produce three equations. With a clockwise traversal
of the loops, the voltage rises and drops in these loops are as follows:

Voltage Rises Voltage Drops

Left Inside Loop 50 5I1 + 20I3

Right Inside Loop 30 + 10I2 + 20I3 0

Outside Loop 30 + 50 + 10I2 5I1

These conditions can be rewritten as

5I1 + 20I3 = 50

10I2 + 20I3 = −30

5I1 − 10I2 = 80

(3)

However, the last equation is superfluous, since it is the difference of the first two. Thus,
if we combine (2) and the first two equations in (3), we obtain the following linear system
of three equations in the three unknown currents:

I1 + I2 − I3 = 0

5I1 + 20I3 = 50

10I2 + 20I3 = −30

We leave it for you to show that the solution of this system in amps is I1 = 6, I2 = −5,
and I3 = 1. The fact that I2 is negative tells us that the direction of this current is opposite
to that indicated in Figure 1.9.9.

Balancing Chemical
Equations

Chemical compounds are represented by chemical formulas that describe the atomic
makeup of their molecules. For example, water is composed of two hydrogen atoms and
one oxygen atom, so its chemical formula is H2O; and stable oxygen is composed of two
oxygen atoms, so its chemical formula is O2.

When chemical compounds are combined under the right conditions, the atoms in
their molecules rearrange to form new compounds. For example, when methane burns,

Gustav Kirchhoff
(1824–1887)

Historical Note The Ger-
man physicist Gustav Kirch-
hoff was a student of Gauss.
His work on Kirchhoff’s laws,
announced in 1854, was a
major advance in the calcu-
lation of currents, voltages,
and resistances of electri-
cal circuits. Kirchhoff was
severely disabled and spent
most of his life on crutches
or in a wheelchair.

[Image: ullstein bild -
histopics/akg-im]
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the methane (CH4) and stable oxygen (O2) react to form carbon dioxide (CO2) and water
(H2O). This is indicated by the chemical equation

CH4 + O2 −→ CO2 + H2O (4)

The molecules to the left of the arrow are called the reactants and those to the right
the products. In this equation the plus signs serve to separate the molecules and are
not intended as algebraic operations. However, this equation does not tell the whole
story, since it fails to account for the proportions of molecules required for a complete
reaction (no reactants left over). For example, we can see from the right side of (4) that
to produce one molecule of carbon dioxide and one molecule of water, one needs three
oxygen atoms for each carbon atom. However, from the left side of (4) we see that one
molecule of methane and one molecule of stable oxygen have only two oxygen atoms
for each carbon atom. Thus, on the reactant side the ratio of methane to stable oxygen
cannot be one-to-one in a complete reaction.

A chemical equation is said to be balanced if for each type of atom in the reaction,
the same number of atoms appears on each side of the arrow. For example, the balanced
version of Equation (4) is

CH4 + 2O2 −→ CO2 + 2H2O (5)

by which we mean that one methane molecule combines with two stable oxygen molecules
to produce one carbon dioxide molecule and two water molecules. In theory, one could
multiply this equation through by any positive integer. For example, multiplying through
by 2 yields the balanced chemical equation

2CH4 + 4O2 −→ 2CO2 + 4H2O

However, the standard convention is to use the smallest positive integers that will balance
the equation.

Equation (4) is sufficiently simple that it could have been balanced by trial and error,
but for more complicated chemical equations we will need a systematic method. There
are various methods that can be used, but we will give one that uses systems of linear
equations. To illustrate the method let us reexamine Equation (4). To balance this
equation we must find positive integers, x1, x2, x3, and x4 such that

x1 (CH4) + x2 (O2) −→ x3 (CO2) + x4 (H2O) (6)

For each of the atoms in the equation, the number of atoms on the left must be equal to
the number of atoms on the right. Expressing this in tabular form we have

Left Side Right Side
Carbon x1 = x3

Hydrogen 4x1 = 2x4

Oxygen 2x2 = 2x3 + x4

from which we obtain the homogeneous linear system

x1 − x3 = 0

4x1 − 2x4 = 0

2x2 − 2x3 − x4 = 0

The augmented matrix for this system is⎡
⎢⎣1 0 −1 0 0

4 0 0 −2 0

0 2 −2 −1 0

⎤
⎥⎦
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We leave it for you to show that the reduced row echelon form of this matrix is⎡
⎢⎣

1 0 0 − 1
2 0

0 1 0 −1 0

0 0 1 − 1
2 0

⎤
⎥⎦

from which we conclude that the general solution of the system is

x1 = t/2, x2 = t, x3 = t/2, x4 = t

where t is arbitrary. The smallest positive integer values for the unknowns occur when
we let t = 2, so the equation can be balanced by letting x1 = 1, x2 = 2, x3 = 1, x4 = 2.
This agrees with our earlier conclusions, since substituting these values into Equation (6)
yields Equation (5).

EXAMPLE 5 Balancing Chemical Equations Using Linear Systems

Balance the chemical equation

HCl + Na3PO4 −→ H3PO4 + NaCl

[hydrochloric acid] + [sodium phosphate] −→ [phosphoric acid] + [sodium chloride]

Solution Let x1, x2, x3, and x4 be positive integers that balance the equation

x1 (HCl) + x2 (Na3PO4) −→ x3 (H3PO4) + x4 (NaCl) (7)

Equating the number of atoms of each type on the two sides yields

1x1 = 3x3 Hydrogen (H)

1x1 = 1x4 Chlorine (Cl)

3x2 = 1x4 Sodium (Na)

1x2 = 1x3 Phosphorus (P)

4x2 = 4x3 Oxygen (O)

from which we obtain the homogeneous linear system

x1 − 3x3 = 0

x1 − x4 = 0

3x2 − x4 = 0

x2 − x3 = 0

4x2 − 4x3 = 0

We leave it for you to show that the reduced row echelon form of the augmented matrix
for this system is ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0

0 1 0 − 1
3 0

0 0 1 − 1
3 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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from which we conclude that the general solution of the system is

x1 = t, x2 = t/3, x3 = t/3, x4 = t

where t is arbitrary. To obtain the smallest positive integers that balance the equation,
we let t = 3, in which case we obtain x1 = 3, x2 = 1, x3 = 1, and x4 = 3. Substituting
these values in (7) produces the balanced equation

3HCl + Na3PO4 −→ H3PO4 + 3NaCl

Polynomial Interpolation An important problem in various applications is to find a polynomial whose graph passes
through a specified set of points in the plane; this is called an interpolating polynomial
for the points. The simplest example of such a problem is to find a linear polynomial

p(x) = ax + b (8)

whose graph passes through two known distinct points, (x1, y1) and (x2, y2), in the
xy-plane (Figure 1.9.10). You have probably encountered various methods in analytic
geometry for finding the equation of a line through two points, but here we will give a
method based on linear systems that can be adapted to general polynomial interpolation.

The graph of (8) is the line y = ax + b, and for this line to pass through the points
x

y

(x2, y2)

(x1, y1)

y = ax + b

Figure 1.9.10

(x1, y1) and (x2, y2), we must have

y1 = ax1 + b and y2 = ax2 + b

Therefore, the unknown coefficients a and b can be obtained by solving the linear system

ax1 + b = y1

ax2 + b = y2

We don’t need any fancy methods to solve this system—the value of a can be obtained
by subtracting the equations to eliminate b, and then the value of a can be substituted
into either equation to find b. We leave it as an exercise for you to find a and b and then
show that they can be expressed in the form

a = y2 − y1

x2 − x1
and b = y1x2 − y2x1

x2 − x1
(9)

provided x1 �= x2. Thus, for example, the line y = ax + b that passes through the points

(2, 1) and (5, 4)

can be obtained by taking (x1, y1) = (2, 1) and (x2, y2) = (5, 4), in which case (9) yields

a = 4 − 1

5 − 2
= 1 and b = (1)(5) − (4)(2)

5 − 2
= −1

Therefore, the equation of the line is

y = x − 1

(Figure 1.9.11).

y = x – 1

x

y

(2, 1)

(5, 4)

Figure 1.9.11
Now let us consider the more general problem of finding a polynomial whose graph

passes through n points with distinct x-coordinates

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) (10)

Since there are n conditions to be satisfied, intuition suggests that we should begin by
looking for a polynomial of the form

p(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 (11)
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since a polynomial of this form has n coefficients that are at our disposal to satisfy the
n conditions. However, we want to allow for cases where the points may lie on a line or
have some other configuration that would make it possible to use a polynomial whose
degree is less than n − 1; thus, we allow for the possibility that an−1 and other coefficients
in (11) may be zero.

The following theorem, which we will prove later in the text, is the basic result on
polynomial interpolation.

THEOREM 1.9.1 Polynomial Interpolation

Given any n points in the xy-plane that have distinct x-coordinates, there is a unique
polynomial of degree n − 1 or less whose graph passes through those points.

Let us now consider how we might go about finding the interpolating polynomial
(11) whose graph passes through the points in (10). Since the graph of this polynomial
is the graph of the equation

y = a0 + a1x + a2x
2 + · · · + an−1x

n−1 (12)

it follows that the coordinates of the points must satisfy

a0 + a1x1 + a2x
2
1 + · · ·+ an−1x

n−1
1 = y1

a0 + a1x2 + a2x
2
2 + · · ·+ an−1x

n−1
2 = y2

...
...

...
...

...

a0 + a1xn + a2x
2
n + · · ·+ an−1x

n−1
n = yn

(13)

In these equations the values of x’s and y’s are assumed to be known, so we can view
this as a linear system in the unknowns a0, a1, . . . , an−1. From this point of view the
augmented matrix for the system is⎡

⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 · · · xn−1

1 y1

1 x2 x2
2 · · · xn−1

2 y2
...

...
...

...
...

1 xn x2
n · · · xn−1

n yn

⎤
⎥⎥⎥⎥⎥⎥⎦ (14)

and hence the interpolating polynomial can be found by reducing this matrix to reduced
row echelon form (Gauss–Jordan elimination).

EXAMPLE 6 Polynomial Interpolation by Gauss–Jordan Elimination

Find a cubic polynomial whose graph passes through the points

(1, 3), (2,−2), (3,−5), (4, 0)

Solution Since there are four points, we will use an interpolating polynomial of degree
n = 3. Denote this polynomial by

p(x) = a0 + a1x + a2x
2 + a3x

3

and denote the x- and y-coordinates of the given points by

x1 = 1, x2 = 2, x3 = 3, x4 = 4 and y1 = 3, y2 = −2, y3 = −5, y4 = 0
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Thus, it follows from (14) that the augmented matrix for the linear system in the un-
knowns a0, a1, a2, and a3 is⎡

⎢⎢⎢⎢⎢⎢⎣

1 x1 x2
1 x3

1 y1

1 x2 x2
2 x3

2 y2

1 x3 x2
3 x3

3 y3

1 x4 x2
4 x3

4 y4

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 1 1 1 3

1 2 4 8 −2

1 3 9 27 −5

1 4 16 64 0

⎤
⎥⎥⎥⎦

We leave it for you to confirm that the reduced row echelon form of this matrix is⎡
⎢⎢⎢⎢⎣

1 0 0 0 4

0 1 0 0 3

0 0 1 0 −5

0 0 0 1 1

⎤
⎥⎥⎥⎥⎦

from which it follows that a0 = 4, a1 = 3, a2 = −5, a3 = 1. Thus, the interpolating
polynomial is

p(x) = 4 + 3x − 5x2 + x3

The graph of this polynomial and the given points are shown in Figure 1.9.12.
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x
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Figure 1.9.12

Remark Later we will give a more efficient method for finding interpolating polynomials that is
better suited for problems in which the number of data points is large.

EXAMPLE 7 Approximate IntegrationCA L C U L U S A N D
CA L C U LAT I N G UT I L ITY
R E Q U I R E D There is no way to evaluate the integral∫ 1

0
sin

(
πx2

2

)
dx

directly since there is no way to express an antiderivative of the integrand in terms of
elementary functions. This integral could be approximated by Simpson’s rule or some
comparable method, but an alternative approach is to approximate the integrand by an
interpolating polynomial and integrate the approximating polynomial. For example, let
us consider the five points

x0 = 0, x1 = 0.25, x2 = 0.5, x3 = 0.75, x4 = 1

that divide the interval [0, 1] into four equally spaced subintervals (Figure 1.9.13). The

0.250 0.5 0.75 1 1.25

0.5

1

x

y

sin (πx2/2)
p(x)

Figure 1.9.13

values of

f(x) = sin

(
πx2

2

)
at these points are approximately

f(0) = 0, f(0.25) = 0.098017, f(0.5) = 0.382683,

f(0.75) = 0.77301, f(1) = 1

The interpolating polynomial is (verify)

p(x) = 0.098796x + 0.762356x2 + 2.14429x3 − 2.00544x4 (15)

and ∫ 1

0
p(x) dx ≈ 0.438501 (16)

As shown in Figure 1.9.13, the graphs of f and p match very closely over the interval
[0, 1], so the approximation is quite good.
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Exercise Set 1.9
1. The accompanying figure shows a network in which the flow

rate and direction of flow in certain branches are known. Find
the flow rates and directions of flow in the remaining branches.

30

50

60

40

50

Figure Ex-1

2. The accompanying figure shows known flow rates of hydro-
carbons into and out of a network of pipes at an oil refinery.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c) Find the flow rates and directions of flow if x4 = 50 and
x6 = 0.

200

25 200
175

150

x1 x4
x5

x6

x3

x2 Figure Ex-2

3. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c) If the flow along the road from A to B must be reduced for
construction, what is the minimum flow that is required to
keep traffic flowing on all roads?

300

400 200

250

750

300

400

100

x2 x4

x3

x1

A

B

Figure Ex-3

4. The accompanying figure shows a network of one-way streets
with traffic flowing in the directions indicated. The flow rates
along the streets are measured as the average number of vehi-
cles per hour.

(a) Set up a linear system whose solution provides the un-
known flow rates.

(b) Solve the system for the unknown flow rates.

(c) Is it possible to close the road from A to B for construction
and keep traffic flowing on the other streets? Explain.
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Figure Ex-4

In Exercises 5–8, analyze the given electrical circuits by finding
the unknown currents.

5.
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+–
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In Exercises 9–12, write a balanced equation for the given
chemical reaction.

9. C3H8 + O2 → CO2 + H2O (propane combustion)

10. C6H12O6 → CO2 + C2H5OH (fermentation of sugar)

11. CH3COF + H2O → CH3COOH + HF

12. CO2 + H2O → C6H12O6 + O2 (photosynthesis)

13. Find the quadratic polynomial whose graph passes through
the points (1, 1), (2, 2), and (3, 5).

14. Find the quadratic polynomial whose graph passes through
the points (0, 0), (−1, 1), and (1, 1).

15. Find the cubic polynomial whose graph passes through the
points (−1,−1), (0, 1), (1, 3), (4,−1).

16. The accompanying figure shows the graph of a cubic polyno-
mial. Find the polynomial.

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10

Figure Ex-16

17. (a) Find an equation that represents the family of all second-
degree polynomials that pass through the points (0, 1)
and (1, 2). [Hint: The equation will involve one arbi-
trary parameter that produces the members of the family
when varied.]

(b) By hand, or with the help of a graphing utility, sketch
four curves in the family.

18. In this section we have selected only a few applications of lin-
ear systems. Using the Internet as a search tool, try to find
some more real-world applications of such systems. Select one
that is of interest to you, and write a paragraph about it.

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) In any network, the sum of the flows out of a node must equal
the sum of the flows into a node.

(b) When a current passes through a resistor, there is an increase
in the electrical potential in a circuit.

(c) Kirchhoff’s current law states that the sum of the currents
flowing into a node equals the sum of the currents flowing out
of the node.

(d) A chemical equation is called balanced if the total number of
atoms on each side of the equation is the same.

(e) Given any n points in the xy-plane, there is a unique polyno-
mial of degree n − 1 or less whose graph passes through those
points.

Working withTechnology

T1. The following table shows the lifting force on an aircraft wing
measured in a wind tunnel at various wind velocities. Model the
data with an interpolating polynomial of degree 5, and use that
polynomial to estimate the lifting force at 2000 ft/s.

Velocity
(100 ft/s)

1 2 4 8 16 32

Lifting Force
(100 lb)

0 3.12 15.86 33.7 81.5 123.0

T2. (Calculus required ) Use the method of Example 7 to approx-
imate the integral ∫ 1

0
ex2

dx

by subdividing the interval of integration into five equal parts and
using an interpolating polynomial to approximate the integrand.
Compare your answer to that obtained using the numerical inte-
gration capability of your technology utility.

T3. Use the method of Example 5 to balance the chemical equa-
tion

Fe2O3 + Al→Al2O3 + Fe

(Fe = iron, Al = aluminum, O = oxygen)

T4. Determine the currents in the accompanying circuit.

+ –

–+

3 �

2 �

470 �

12 V

20 V

I2

I1

I2

I1

I3I3



96 Chapter 1 Systems of Linear Equations and Matrices

1.10 Leontief Input-Output Models
In 1973 the economist Wassily Leontief was awarded the Nobel prize for his work on
economic modeling in which he used matrix methods to study the relationships among
different sectors in an economy. In this section we will discuss some of the ideas developed
by Leontief.

Inputs and Outputs in an
Economy

One way to analyze an economy is to divide it into sectors and study how the sectors
interact with one another. For example, a simple economy might be divided into three
sectors—manufacturing, agriculture, and utilities. Typically, a sector will produce cer-
tain outputs but will require inputs from the other sectors and itself. For example, the
agricultural sector may produce wheat as an output but will require inputs of farm ma-
chinery from the manufacturing sector, electrical power from the utilities sector, and food
from its own sector to feed its workers. Thus, we can imagine an economy to be a net-
work in which inputs and outputs flow in and out of the sectors; the study of such flows
is called input-output analysis. Inputs and outputs are commonly measured in monetary
units (dollars or millions of dollars, for example) but other units of measurement are
also possible.

The flows between sectors of a real economy are not always obvious. For example,

Manufacturing Agriculture

Utilities

Open

Sector

Figure 1.10.1

in World War II the United States had a demand for 50,000 new airplanes that required
the construction of many new aluminum manufacturing plants. This produced an unex-
pectedly large demand for certain copper electrical components, which in turn produced
a copper shortage. The problem was eventually resolved by using silver borrowed from
Fort Knox as a copper substitute. In all likelihood modern input-output analysis would
have anticipated the copper shortage.

Most sectors of an economy will produce outputs, but there may exist sectors that
consume outputs without producing anything themselves (the consumer market, for
example). Those sectors that do not produce outputs are called open sectors. Economies
with no open sectors are called closed economies, and economies with one or more open
sectors are called open economies (Figure 1.10.1). In this section we will be concerned with
economies with one open sector, and our primary goal will be to determine the output
levels that are required for the productive sectors to sustain themselves and satisfy the
demand of the open sector.

Leontief Model of an Open
Economy

Let us consider a simple open economy with one open sector and three product-producing
sectors: manufacturing, agriculture, and utilities. Assume that inputs and outputs are
measured in dollars and that the inputs required by the productive sectors to produce
one dollar’s worth of output are in accordance with Table 1.

Wassily Leontief
(1906–1999)

Historical Note It is somewhat ironic that it was
the Russian-born Wassily Leontief who won the No-
bel prize in 1973 for pioneering the modern meth-
ods for analyzing free-market economies. Leontief
was a precocious student who entered the University
of Leningrad at age 15. Bothered by the intellectual
restrictions of the Soviet system, he was put in jail
for anti-Communist activities, after which he headed
for the University of Berlin, receiving his Ph.D. there
in 1928. He came to the United States in 1931, where
he held professorships at Harvard and then NewYork
University.

[Image: © Bettmann/CORBIS]
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Table 1

P
ro

vi
de

r

Input Required per Dollar Output

Manufacturing Agriculture Utilities

Manufacturing $ 0.50 $ 0.10 $ 0.10

Agriculture $ 0.20 $ 0.50 $ 0.30

Utilities $ 0.10 $ 0.30 $ 0.40

Usually, one would suppress the labeling and express this matrix as

C =
⎡
⎣0.5 0.1 0.1

0.2 0.5 0.3

0.1 0.3 0.4

⎤
⎦ (1)

This is called the consumption matrix (or sometimes the technology matrix) for the econ-
omy. The column vectors

c1 =
⎡
⎣0.5

0.2

0.1

⎤
⎦ , c2 =

⎡
⎣0.1

0.5

0.3

⎤
⎦ , c3 =

⎡
⎣0.1

0.3

0.4

⎤
⎦

in C list the inputs required by the manufacturing, agricultural, and utilities sectors,
respectively, to produce $1.00 worth of output. These are called the consumption vectors
of the sectors. For example, c1 tells us that to produce $1.00 worth of output the manu-
facturing sector needs $0.50 worth of manufacturing output, $0.20 worth of agricultural
output, and $0.10 worth of utilities output.

Continuing with the above example, suppose that the open sector wants the economy

What is the economic signifi-
cance of the row sums of the
consumption matrix?

to supply it manufactured goods, agricultural products, and utilities with dollar values:

d1 dollars of manufactured goods

d2 dollars of agricultural products

d3 dollars of utilities

The column vector d that has these numbers as successive components is called the outside
demand vector. Since the product-producing sectors consume some of their own output,
the dollar value of their output must cover their own needs plus the outside demand.
Suppose that the dollar values required to do this are

x1 dollars of manufactured goods

x2 dollars of agricultural products

x3 dollars of utilities

The column vector x that has these numbers as successive components is called the
production vector for the economy. For the economy with consumption matrix (1), that
portion of the production vector x that will be consumed by the three productive sectors is

x1

⎡
⎢⎣0.5

0.2

0.1

⎤
⎥⎦ + x2

⎡
⎢⎣0.1

0.5

0.3

⎤
⎥⎦ + x3

⎡
⎢⎣0.1

0.3

0.4

⎤
⎥⎦ =

⎡
⎢⎣0.5 0.1 0.1

0.2 0.5 0.3

0.1 0.3 0.4

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ = Cx

Fractions
consumed by
manufacturing

Fractions
consumed by
agriculture

Fractions
consumed
by utilities
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The vector Cx is called the intermediate demand vector for the economy. Once the
intermediate demand is met, the portion of the production that is left to satisfy the
outside demand is x − Cx. Thus, if the outside demand vector is d, then x must satisfy
the equation

x − Cx = d
Amount
produced

Intermediate
demand

Outside
demand

which we will find convenient to rewrite as

(I − C)x = d (2)

The matrix I − C is called the Leontief matrix and (2) is called the Leontief equation.

EXAMPLE 1 Satisfying Outside Demand

Consider the economy described in Table 1. Suppose that the open sector has a demand
for $7900 worth of manufacturing products, $3950 worth of agricultural products, and
$1975 worth of utilities.

(a) Can the economy meet this demand?

(b) If so, find a production vector x that will meet it exactly.

Solution The consumption matrix, production vector, and outside demand vector are

C =
⎡
⎢⎣0.5 0.1 0.1

0.2 0.5 0.3

0.1 0.3 0.4

⎤
⎥⎦ , x =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ , d =

⎡
⎢⎣7900

3950

1975

⎤
⎥⎦ (3)

To meet the outside demand, the vector x must satisfy the Leontief equation (2), so the
problem reduces to solving the linear system⎡

⎢⎣ 0.5 −0.1 −0.1

−0.2 0.5 −0.3

−0.1 −0.3 0.6

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣7900

3950

1975

⎤
⎥⎦

I − C x d

(4)

(if consistent). We leave it for you to show that the reduced row echelon form of the
augmented matrix for this system is⎡

⎢⎣1 0 0 27,500

0 1 0 33,750

0 0 1 24,750

⎤
⎥⎦

This tells us that (4) is consistent, and the economy can satisfy the demand of the open
sector exactly by producing $27,500 worth of manufacturing output, $33,750 worth of
agricultural output, and $24,750 worth of utilities output.

Productive Open
Economies

In the preceding discussion we considered an open economy with three product-producing
sectors; the same ideas apply to an open economy with n product-producing sectors. In
this case, the consumption matrix, production vector, and outside demand vector have
the form

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

d1

d2
...

dn

⎤
⎥⎥⎥⎦
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where all entries are nonnegative and

cij = the monetary value of the output of the ith sector that is needed by the j th
sector to produce one unit of output

xi = the monetary value of the output of the ith sector

di = the monetary value of the output of the ith sector that is required to meet
the demand of the open sector

Remark Note that the j th column vector of C contains the monetary values that the j th sector
requires of the other sectors to produce one monetary unit of output, and the ith row vector of C

contains the monetary values required of the ith sector by the other sectors for each of them to
produce one monetary unit of output.

As discussed in our example above, a production vector x that meets the demand d
of the outside sector must satisfy the Leontief equation

(I − C)x = d

If the matrix I − C is invertible, then this equation has the unique solution

x = (I − C)−1d (5)

for every demand vector d. However, for x to be a valid production vector it must
have nonnegative entries, so the problem of importance in economics is to determine
conditions under which the Leontief equation has a solution with nonnegative entries.

It is evident from the form of (5) that if I − C is invertible, and if (I − C)−1 has non-
negative entries, then for every demand vector d the corresponding x will also have non-
negative entries, and hence will be a valid production vector for the economy. Economies
for which (I − C)−1 has nonnegative entries are said to be productive. Such economies
are desirable because demand can always be met by some level of production. The follow-
ing theorem, whose proof can be found in many books on economics, gives conditions
under which open economies are productive.

THEOREM 1.10.1 If C is the consumption matrix for an open economy, and if all of
the column sums are less than 1, then the matrix I − C is invertible, the entries of
(I − C)−1 are nonnegative, and the economy is productive.

Remark The j th column sum of C represents the total dollar value of input that the j th sector
requires to produce $1 of output, so if the j th column sum is less than 1, then the j th sector
requires less than $1 of input to produce $1 of output; in this case we say that the j th sector is
profitable. Thus, Theorem 1.10.1 states that if all product-producing sectors of an open economy
are profitable, then the economy is productive. In the exercises we will ask you to show that an
open economy is productive if all of the row sums of C are less than 1 (Exercise 11). Thus, an open
economy is productive if either all of the column sums or all of the row sums of C are less than 1.

EXAMPLE 2 An Open EconomyWhose Sectors Are All Profitable

The column sums of the consumption matrix C in (1) are less than 1, so (I − C)−1 exists
and has nonnegative entries. Use a calculating utility to confirm this, and use this inverse
to solve Equation (4) in Example 1.



100 Chapter 1 Systems of Linear Equations and Matrices

Solution We leave it for you to show that

(I − C)−1 ≈
⎡
⎣2.65823 1.13924 1.01266

1.89873 3.67089 2.15190

1.39241 2.02532 2.91139

⎤
⎦

This matrix has nonnegative entries, and

x = (I − C)−1d ≈
⎡
⎣2.65823 1.13924 1.01266

1.89873 3.67089 2.15190

1.39241 2.02532 2.91139

⎤
⎦
⎡
⎣7900

3950

1975

⎤
⎦ ≈

⎡
⎣27,500

33,750

24,750

⎤
⎦

which is consistent with the solution in Example 1.

Exercise Set 1.10
1. An automobile mechanic (M) and a body shop (B) use each

other’s services. For each $1.00 of business that M does, it
uses $0.50 of its own services and $0.25 of B’s services, and
for each $1.00 of business that B does it uses $0.10 of its own
services and $0.25 of M ’s services.

(a) Construct a consumption matrix for this economy.

(b) How much must M and B each produce to provide cus-
tomers with $7000 worth of mechanical work and $14,000
worth of body work?

2. A simple economy produces food (F ) and housing (H ). The
production of $1.00 worth of food requires $0.30 worth of
food and $0.10 worth of housing, and the production of $1.00
worth of housing requires $0.20 worth of food and $0.60 worth
of housing.

(a) Construct a consumption matrix for this economy.

(b) What dollar value of food and housing must be produced
for the economy to provide consumers $130,000 worth of
food and $130,000 worth of housing?

3. Consider the open economy described by the accompanying
table, where the input is in dollars needed for $1.00 of output.

(a) Find the consumption matrix for the economy.

(b) Suppose that the open sector has a demand for $1930
worth of housing, $3860 worth of food, and $5790 worth
of utilities. Use row reduction to find a production vector
that will meet this demand exactly.

Table Ex-3

P
ro

vi
de

r

Input Required per Dollar Output

Housing Food Utilities

Housing $ 0.10 $ 0.60 $ 0.40

Food $ 0.30 $ 0.20 $ 0.30

Utilities $ 0.40 $ 0.10 $ 0.20

4. A company produces Web design, software, and networking
services. View the company as an open economy described by
the accompanying table, where input is in dollars needed for
$1.00 of output.

(a) Find the consumption matrix for the company.

(b) Suppose that the customers (the open sector) have a de-
mand for $5400 worth of Web design, $2700 worth of soft-
ware, and $900 worth of networking. Use row reduction
to find a production vector that will meet this demand
exactly.

Table Ex-4

P
ro

vi
de

r

Input Required per Dollar Output

Web Design Software Networking

Web Design $ 0.40 $ 0.20 $ 0.45

Software $ 0.30 $ 0.35 $ 0.30

Networking $ 0.15 $ 0.10 $ 0.20

In Exercises 5–6, use matrix inversion to find the production
vector x that meets the demand d for the consumption matrix C.

5. C =
[

0.1 0.3

0.5 0.4

]
; d =

[
50

60

]

6. C =
[

0.3 0.1

0.3 0.7

]
; d =

[
22
14

]
7. Consider an open economy with consumption matrix

C =
[

1
2 0

0 1

]

(a) Show that the economy can meet a demand of d1 = 2 units
from the first sector and d2 = 0 units from the second sec-
tor, but it cannot meet a demand of d1 = 2 units from the
first sector and d2 = 1 unit from the second sector.

(b) Give both a mathematical and an economic explanation
of the result in part (a).
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8. Consider an open economy with consumption matrix

C =

⎡
⎢⎢⎣

1
2

1
4

1
4

1
2

1
8

1
4

1
2

1
4

1
8

⎤
⎥⎥⎦

If the open sector demands the same dollar value from each
product-producing sector, which such sector must produce the
greatest dollar value to meet the demand? Is the economy pro-
ductive?

9. Consider an open economy with consumption matrix

C =
[
c11 c12

c21 0

]

Show that the Leontief equation x − Cx = d has a unique
solution for every demand vector d if c21c12 < 1 − c11.

Working with Proofs

10. (a) Consider an open economy with a consumption matrix
C whose column sums are less than 1, and let x be the
production vector that satisfies an outside demand d; that
is, (I − C)−1d = x. Let dj be the demand vector that is
obtained by increasing the j th entry of d by 1 and leaving
the other entries fixed. Prove that the production vector
xj that meets this demand is

xj = x + j th column vector of (I − C)−1

(b) In words, what is the economic significance of the j th col-
umn vector of (I − C)−1? [Hint: Look at xj − x.]

11. Prove: If C is an n × n matrix whose entries are nonnegative
and whose row sums are less than 1, then I − C is invertible
and has nonnegative entries. [Hint: (AT )−1 = (A−1)T for any
invertible matrix A.]

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) Sectors of an economy that produce outputs are called open
sectors.

(b) A closed economy is an economy that has no open sectors.

(c) The rows of a consumption matrix represent the outputs in a
sector of an economy.

(d) If the column sums of the consumption matrix are all less than
1, then the Leontief matrix is invertible.

(e) The Leontief equation relates the production vector for an
economy to the outside demand vector.

Working withTechnology

T1. The following table describes an open economy with three sec-
tors in which the table entries are the dollar inputs required to pro-
duce one dollar of output. The outside demand during a 1-week
period if $50,000 of coal, $75,000 of electricity, and $1,250,000
of manufacturing. Determine whether the economy can meet the
demand.

P
ro

vi
de

r

Input Required per Dollar Output

Electricity Coal Manufacturing

Electricity $ 0.1 $ 0.25 $ 0.2

Coal $ 0.3 $ 0.4 $ 0.5

Manufacturing $ 0.1 $ 0.15 $ 0.1

Chapter 1 Supplementary Exercises

In Exercises 1–4 the given matrix represents an augmented
matrix for a linear system. Write the corresponding set of linear
equations for the system, and use Gaussian elimination to solve
the linear system. Introduce free parameters as necessary.

1.

[
3 −1 0 4 1

2 0 3 3 −1

]
2.

⎡
⎢⎢⎢⎣

1 4 −1

−2 −8 2

3 12 −3

0 0 0

⎤
⎥⎥⎥⎦

3.

⎡
⎢⎣ 2 −4 1 6

−4 0 3 −1

0 1 −1 3

⎤
⎥⎦ 4.

⎡
⎢⎣ 3 1 −2

−9 −3 6

6 2 1

⎤
⎥⎦

5. Use Gauss–Jordan elimination to solve for x ′ and y ′ in terms
of x and y.

x = 3
5 x

′ − 4
5 y

′

y = 4
5 x

′ + 3
5 y

′

6. Use Gauss–Jordan elimination to solve for x ′ and y ′ in terms
of x and y.

x = x ′ cos θ − y ′ sin θ

y = x ′ sin θ + y ′ cos θ

7. Find positive integers that satisfy

x + y + z = 9

x + 5y + 10z = 44
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8. A box containing pennies, nickels, and dimes has 13 coins with
a total value of 83 cents. How many coins of each type are in
the box? Is the economy productive?

9. Let ⎡
⎢⎣a 0 b 2

a a 4 4

0 a 2 b

⎤
⎥⎦

be the augmented matrix for a linear system. Find for what
values of a and b the system has

(a) a unique solution.

(b) a one-parameter solution.

(c) a two-parameter solution. (d) no solution.

10. For which value(s) of a does the following system have zero
solutions? One solution? Infinitely many solutions?

x1 + x2 + x3 = 4

x3 = 2

(a2 − 4)x3 = a − 2

11. Find a matrix K such that AKB = C given that

A =
⎡
⎢⎣ 1 4

−2 3

1 −2

⎤
⎥⎦, B =

[
2 0 0

0 1 −1

]
,

C =
⎡
⎢⎣ 8 6 −6

6 −1 1

−4 0 0

⎤
⎥⎦

12. How should the coefficients a, b, and c be chosen so that the
system

ax + by − 3z = −3

−2x − by + cz = −1

ax + 3y − cz = −3

has the solution x = 1, y = −1, and z = 2?

13. In each part, solve the matrix equation for X.

(a) X

⎡
⎢⎣−1 0 1

1 1 0

3 1 −1

⎤
⎥⎦ =

[
1 2 0

−3 1 5

]

(b) X

[
1 −1 2

3 0 1

]
=
[
−5 −1 0

6 −3 7

]

(c)

[
3 1

−1 2

]
X − X

[
1 4

2 0

]
=
[

2 −2

5 4

]

14. Let A be a square matrix.

(a) Show that (I − A)−1 = I + A + A2 + A3 if A4 = 0.

(b) Show that

(I − A)−1 = I + A + A2 + · · · + An

if An+1 = 0.

15. Find values of a, b, and c such that the graph of the polyno-
mial p(x) = ax2 + bx + c passes through the points (1, 2),
(−1, 6), and (2, 3).

16. (Calculus required ) Find values of a, b, and c such that
the graph of p(x) = ax2 + bx + c passes through the point
(−1, 0) and has a horizontal tangent at (2,−9).

17. Let Jn be the n × n matrix each of whose entries is 1. Show
that if n > 1, then

(I − Jn)
−1 = I − 1

n − 1
Jn

18. Show that if a square matrix A satisfies

A3 + 4A2 − 2A + 7I = 0

then so does AT .

19. Prove: If B is invertible, then AB−1 = B−1A if and only if
AB = BA.

20. Prove: If A is invertible, then A + B and I + BA−1 are both
invertible or both not invertible.

21. Prove: If A is an m × n matrix and B is the n × 1 matrix each
of whose entries is 1/n, then

AB =

⎡
⎢⎢⎢⎣

r1

r2
...

rm

⎤
⎥⎥⎥⎦

where ri is the average of the entries in the ith row of A.

22. (Calculus required ) If the entries of the matrix

C =

⎡
⎢⎢⎢⎣

c11(x) c12(x) · · · c1n(x)

c21(x) c22(x) · · · c2n(x)
...

...
...

cm1(x) cm2(x) · · · cmn(x)

⎤
⎥⎥⎥⎦

are differentiable functions of x, then we define

dC

dx
=

⎡
⎢⎢⎢⎣

c′
11(x) c′

12(x) · · · c′
1n(x)

c′
21(x) c′

22(x) · · · c′
2n(x)

...
...

...

c′
m1(x) c′

m2(x) · · · c′
mn(x)

⎤
⎥⎥⎥⎦

Show that if the entries in A and B are differentiable func-
tions of x and the sizes of the matrices are such that the stated
operations can be performed, then

(a)
d

dx
(kA) = k

dA

dx

(b)
d

dx
(A + B) = dA

dx
+ dB

dx

(c)
d

dx
(AB) = dA

dx
B + A

dB

dx
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23. (Calculus required ) Use part (c) of Exercise 22 to show that

dA−1

dx
= −A−1 dA

dx
A−1

State all the assumptions you make in obtaining this formula.

24. Assuming that the stated inverses exist, prove the following
equalities.

(a) (C−1 + D−1)−1 = C(C + D)−1D

(b) (I + CD)−1C = C(I + DC)−1

(c) (C + DDT )−1D = C−1D(I + DT C−1D)−1

Partitioned matrices can be multiplied by the row-column rule
just as if the matrix entries were numbers provided that the sizes
of all matrices are such that the necessary operations can be per-
formed. Thus, for example, if A is partitioned into a 2 × 2 matrix
and B into a 2 × 1 matrix, then

AB =
[
A11 A12

A21 A22

][
B1

B2

]
=
[
A11B1 + A12B2

A21B1 + A22B2

]
(*)

provided that the sizes are such that AB, the two sums, and the
four products are all defined.

25. Let A and B be the following partitioned matrices.

A =

⎡
⎢⎢⎣

1 0 2 1 4

4 1 0 3 −1

0 −3 4 2 −2

⎤
⎥⎥⎦ =

[
A11 A12

A21 A22

]

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 0

2 1

4 −1

0 3

2 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
B1

B2

]

(a) Confirm that the sizes of all matrices are such that the
product AB can be obtained using Formula (∗).

(b) Confirm that the result obtained using Formula (∗) agrees
with that obtained using ordinary matrix multiplication.

26. Suppose that an invertible matrix A is partitioned as

A =
[
A11 A12

A21 A22

]

Show that

A−1 =
[
B11 B12

B21 B22

]

where

B11 = (A11 − A12A
−1
22 A21)

−1, B12 = −B11A12A
−1
22

B21 = −A−1
22 A21B11, B22 = (A22 − A21A

−1
11 A12)

−1

provided all the inverses in these formulas exist.

27. In the special case where matrix A21 in Exercise 26 is zero, the
matrix A simplifies to

A =
[
A11 A12

0 A22

]

which is said to be in block upper triangular form. Use the
result of Exercise 26 to show that in this case

A−1 =
[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]

28. A linear system whose coefficient matrix has a pivot position
in every row must be consistent. Explain why this must be so.

29. What can you say about the consistency or inconsistency of
a linear system of three equations in five unknowns whose
coefficient matrix has three pivot columns?
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Determinants
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2.2 Evaluating Determinants by Row Reduction 113

2.3 Properties of Determinants; Cramer’s Rule 118

INTRODUCTION In this chapter we will study “determinants” or, more precisely, “determinant
functions.” Unlike real-valued functions, such as f(x) = x2, that assign a real number
to a real variable x, determinant functions assign a real number f(A) to a matrix
variable A. Although determinants first arose in the context of solving systems of
linear equations, they are rarely used for that purpose in real-world applications. While
they can be useful for solving very small linear systems (say two or three unknowns),
our main interest in them stems from the fact that they link together various concepts
in linear algebra and provide a useful formula for the inverse of a matrix.

2.1 Determinants by Cofactor Expansion
In this section we will define the notion of a “determinant.” This will enable us to develop a
specific formula for the inverse of an invertible matrix, whereas up to now we have had only
a computational procedure for finding it. This, in turn, will eventually provide us with a
formula for solutions of certain kinds of linear systems.

Recall from Theorem 1.4.5 that the 2 × 2 matrix

A =
[
a b

c d

]
is invertible if and only if ad − bc �= 0 and that the expression ad − bc is called the

WARNING It is important to
keep in mind that det(A) is a
number, whereas A is amatrix.

determinant of the matrix A. Recall also that this determinant is denoted by writing

det(A) = ad − bc or

∣∣∣∣a b

c d

∣∣∣∣ = ad − bc (1)

and that the inverse of A can be expressed in terms of the determinant as

A−1 = 1

det(A)

[
d −b

−c a

]
(2)

Minors and Cofactors One of our main goals in this chapter is to obtain an analog of Formula (2) that is
applicable to square matrices of all orders. For this purpose we will find it convenient
to use subscripted entries when writing matrices or determinants. Thus, if we denote a
2 × 2 matrix as

A =
[
a11 a12

a21 a22

]
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then the two equations in (1) take the form

det(A) =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 (3)

In situations where it is inconvenient to assign a name to the matrix, we can express this
formula as

det

[
a11 a12

a21 a22

]
= a11a22 − a12a21 (4)

There are various methods for defining determinants of higher-order square matrices.
In this text, we will us an “inductive definition” by which we mean that the determinant
of a square matrix of a given order will be defined in terms of determinants of square
matrices of the next lower order. To start the process, let us define the determinant of a
1 × 1 matrix [a11] as

det [a11] = a11 (5)

from which it follows that Formula (4) can be expressed as

det

[
a11 a12

a21 a22

]
= det[a11] det[a22] − det[a12] det[a21]

Now that we have established a starting point, we can define determinants of 3 × 3
matrices in terms of determinants of 2 × 2 matrices, then determinants of 4 × 4 matrices
in terms of determinants of 3 × 3 matrices, and so forth, ad infinitum. The following
terminology and notation will help to make this inductive process more efficient.

DEFINITION 1 If A is a square matrix, then the minor of entry aij is denoted by Mij

and is defined to be the determinant of the submatrix that remains after the ith row
and j th column are deleted from A. The number (−1)i+jMij is denoted by Cij and
is called the cofactor of entry aij .

EXAMPLE 1 Finding Minors and Cofactors

Let

A =
⎡
⎢⎣3 1 −4

2 5 6

1 4 8

⎤
⎥⎦

The minor of entry a11 is
WARNING We have followed
the standard convention of us-
ing capital letters to denote
minors and cofactors even
though they are numbers, not
matrices.

M11 =
3 1 4
2 5 6
1 4 8

= 5 6
4 8

= 16

The cofactor of a11 is
C11 = (−1)1+1M11 = M11 = 16

Historical Note The term determinant was first introduced by the German mathematician Carl

Friedrich Gauss in 1801 (see p. 15), who used them to “determine” properties of certain kinds of

functions. Interestingly, the term matrix is derived from a Latin word for “womb” because it was

viewed as a container of determinants.



2.1 Determinants by Cofactor Expansion 107

Similarly, the minor of entry a32 is

M32 =

∣∣∣∣∣∣∣
3 1 4
2 5 6
1 4 8

∣∣∣∣∣∣∣
=
∣∣∣∣3 4
2 6

∣∣∣∣ = 26

The cofactor of a32 is
C32 = (−1)3+2M32 = −M32 = −26

Remark Note that a minor Mij and its corresponding cofactor Cij are either the same or negatives
of each other and that the relating sign (−1)i+j is either +1 or −1 in accordance with the pattern
in the “checkerboard” array ⎡

⎢⎢⎢⎢⎢⎢⎣

+ − + − + · · ·
− + − + − · · ·
+ − + − + · · ·
− + − + − · · ·
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎦

For example,
C11 = M11, C21 = −M21, C22 = M22

and so forth. Thus, it is never really necessary to calculate (−1)i+j to calculate Cij —you can simply
compute the minor Mij and then adjust the sign in accordance with the checkerboard pattern. Try
this in Example 1.

EXAMPLE 2 Cofactor Expansions of a 2 × 2 Matrix

The checkerboard pattern for a 2 × 2 matrix A = [aij ] is[+ −
− +

]
so that

C11 = M11 = a22 C12 = −M12 = −a21

C21 = −M21 = −a12 C22 = M22 = a11

We leave it for you to use Formula (3) to verify that det(A) can be expressed in terms of
cofactors in the following four ways:

det(A) =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣
= a11C11 + a12C12

= a21C21 + a22C22

= a11C11 + a21C21

= a12C12 + a22C22

(6)

Each of the last four equations is called a cofactor expansion of det(A). In each cofactor
expansion the entries and cofactors all come from the same row or same column of A.

Historical Note The termminor is apparently due to the Englishmathematician James Sylvester (see

p. 35), whowrote the following in a paper published in 1850: “Now conceive any one line and any one

column be struck out, we get…a square, one term less in breadth and depth than the original square;

and by varying in every possible selection of the line and column excluded, we obtain, supposing

the original square to consist of n lines and n columns, n2 such minor squares, each of which will

represent what I term a “First Minor Determinant” relative to the principal or complete determinant.”
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For example, in the first equation the entries and cofactors all come from the first row of
A, in the second they all come from the second row of A, in the third they all come from
the first column of A, and in the fourth they all come from the second column of A.

Definition of a General
Determinant

Formula (6) is a special case of the following general result, which we will state without
proof.

THEOREM 2.1.1 If A is an n × n matrix, then regardless of which row or column of A
is chosen, the number obtained by multiplying the entries in that row or column by the
corresponding cofactors and adding the resulting products is always the same.

This result allows us to make the following definition.

DEFINITION 2 If A is an n × n matrix, then the number obtained by multiplying the
entries in any row or column of A by the corresponding cofactors and adding the
resulting products is called the determinant of A, and the sums themselves are called
cofactor expansions of A. That is,

det(A) = a1jC1j + a2jC2j + · · · + anjCnj

[cofactor expansion along the jth column]

(7)

and
det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin

[cofactor expansion along the ith row]

(8)

EXAMPLE 3 Cofactor Expansion Along the First Row

Find the determinant of the matrix

A =
⎡
⎣ 3 1 0
−2 −4 3

5 4 −2

⎤
⎦

by cofactor expansion along the first row.

Charles Lutwidge Dodgson
(Lewis Carroll)
(1832–1898)

Historical Note Cofactor expansion is not
the only method for expressing the determi-
nant of a matrix in terms of determinants
of lower order. For example, although it is
not well known, the English mathematician
Charles Dodgson, who was the author of Al-
ice’s Adventures in Wonderland andThrough
the Looking Glass under the pen name of
Lewis Carroll, invented such a method, called
condensation. That method has recently been
resurrected from obscurity because of its suit-
ability for parallel processing on computers.

[Image: Oscar G. Rejlander/
Time & Life Pictures/Getty Images]
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Solution

det(A) =
∣∣∣∣∣∣

3 1 0
−2 −4 3

5 4 −2

∣∣∣∣∣∣ = 3

∣∣∣∣−4 3
4 −2

∣∣∣∣− 1

∣∣∣∣−2 3
5 −2

∣∣∣∣+ 0

∣∣∣∣−2 −4
5 4

∣∣∣∣
= 3(−4) − (1)(−11) + 0 = −1

EXAMPLE 4 Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate det(A) by cofactor expansion along the
first column of A.

Solution

det(A) =
∣∣∣∣∣∣

3 1 0
−2 −4 3

5 4 −2

∣∣∣∣∣∣ = 3

∣∣∣∣−4 3
4 −2

∣∣∣∣− (−2)

∣∣∣∣1 0
4 −2

∣∣∣∣+ 5

∣∣∣∣ 1 0
−4 3

∣∣∣∣
= 3(−4) − (−2)(−2) + 5(3) = −1

This agrees with the result obtained in Example 3.

Note that in Example 4 we had
to compute three cofactors,
whereas in Example 3 only two
were needed because the third
was multiplied by zero. As a
rule, the best strategy for co-
factor expansion is to expand
along a row or column with the
most zeros.

EXAMPLE 5 Smart Choice of Row or Column

If A is the 4 × 4 matrix

A =

⎡
⎢⎢⎢⎣

1 0 0 −1

3 1 2 2

1 0 −2 1

2 0 0 1

⎤
⎥⎥⎥⎦

then to find det(A) it will be easiest to use cofactor expansion along the second column,
since it has the most zeros:

det(A) = 1 ·

∣∣∣∣∣∣∣
1 0 −1

1 −2 1

2 0 1

∣∣∣∣∣∣∣
For the 3 × 3 determinant, it will be easiest to use cofactor expansion along its second
column, since it has the most zeros:

det(A) = 1 · −2 ·
∣∣∣∣1 −1

2 1

∣∣∣∣
= −2(1 + 2)

= −6

EXAMPLE 6 Determinant of a LowerTriangular Matrix

The following computation shows that the determinant of a 4 × 4 lower triangular matrix
is the product of its diagonal entries. Each part of the computation uses a cofactor
expansion along the first row.∣∣∣∣∣∣∣∣∣

a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a44

∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣
a22 0 0

a32 a33 0

a42 a43 a44

∣∣∣∣∣∣∣
= a11a22

∣∣∣∣a33 0

a43 a44

∣∣∣∣
= a11a22a33|a44| = a11a22a33a44
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The method illustrated in Example 6 can be easily adapted to prove the following
general result.

THEOREM 2.1.2 If A is an n × n triangular matrix (upper triangular, lower trian-
gular, or diagonal ), then det(A) is the product of the entries on the main diagonal of
the matrix; that is, det(A) = a11a22 · · · ann.

A UsefulTechnique for
Evaluating 2 × 2 and 3 × 3

Determinants

Determinants of 2 × 2 and 3 × 3 matrices can be evaluated very efficiently using the
pattern suggested in Figure 2.1.1.

Figure 2.1.1

a11
a21
a31

a12
a22
a32

a11
a21
a31

a12
a22
a32

a13
a23
a33

a11
a21

a12
a22

In the 2 × 2 case, the determinant can be computed by forming the product of the entries
on the rightward arrow and subtracting the product of the entries on the leftward arrow.
In the 3 × 3 case we first recopy the first and second columns as shown in the figure,
after which we can compute the determinant by summing the products of the entries
on the rightward arrows and subtracting the products on the leftward arrows. These

WARNING The arrow tech-
nique works only for deter-
minants of 2 × 2 and 3 × 3
matrices. It does not work
for matrices of size 4 × 4 or
higher.

procedures execute the computations∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32

which agrees with the cofactor expansions along the first row.

EXAMPLE 7 ATechnique for Evaluating 2 × 2 and 3 × 3 Determinants

1 2 3
4 5 6
7 8 9

1 2
4 5
7 8

1 2 3
4 5 6
7 8 9

= [45 + 84 + 96] � [105 � 48 � 72] = 240 

=

= 3 1
4 2

= (3)(�2) � (1)(4) = �10
3 1
4 2
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Exercise Set 2.1
In Exercises 1–2, find all the minors and cofactors of the ma-

trix A.

1. A =
⎡
⎢⎣ 1 −2 3

6 7 −1

−3 1 4

⎤
⎥⎦ 2. A =

⎡
⎢⎣1 1 2

3 3 6

0 1 4

⎤
⎥⎦

3. Let

A =

⎡
⎢⎢⎢⎣

4 −1 1 6

0 0 −3 3

4 1 0 14

4 1 3 2

⎤
⎥⎥⎥⎦

Find

(a) M13 and C13. (b) M23 and C23.

(c) M22 and C22. (d) M21 and C21.

4. Let

A =

⎡
⎢⎢⎢⎣

2 3 −1 1

−3 2 0 3

3 −2 1 0

3 −2 1 4

⎤
⎥⎥⎥⎦

Find

(a) M32 and C32. (b) M44 and C44.

(c) M41 and C41. (d) M24 and C24.

In Exercises 5–8, evaluate the determinant of the given matrix.
If the matrix is invertible, use Equation (2) to find its inverse.

5.
[

3 5

−2 4

]
6.
[

4 1

8 2

]
7.
[−5 7

−7 −2

]
8.

[√
2

√
6

4
√

3

]

In Exercises 9–14, use the arrow technique to evaluate the de-
terminant.

9.

∣∣∣∣a − 3 5

−3 a − 2

∣∣∣∣ 10.

∣∣∣∣∣∣∣
−2 7 6

5 1 −2

3 8 4

∣∣∣∣∣∣∣

11.

∣∣∣∣∣∣∣
−2 1 4

3 5 −7

1 6 2

∣∣∣∣∣∣∣ 12.

∣∣∣∣∣∣∣
−1 1 2

3 0 −5

1 7 2

∣∣∣∣∣∣∣

13.

∣∣∣∣∣∣∣
3 0 0

2 −1 5

1 9 −4

∣∣∣∣∣∣∣ 14.

∣∣∣∣∣∣∣
c −4 3

2 1 c2

4 c − 1 2

∣∣∣∣∣∣∣
In Exercises 15–18, find all values of λ for which det(A) = 0.

15. A =
[
λ − 2 1

−5 λ + 4

]
16. A =

⎡
⎢⎣λ − 4 0 0

0 λ 2

0 3 λ − 1

⎤
⎥⎦

17. A =
[
λ − 1 0

2 λ + 1

]
18. A =

⎡
⎢⎣λ − 4 4 0

−1 λ 0

0 0 λ − 5

⎤
⎥⎦

19. Evaluate the determinant in Exercise 13 by a cofactor expan-
sion along

(a) the first row. (b) the first column.

(c) the second row. (d) the second column.

(e) the third row. (f ) the third column.

20. Evaluate the determinant in Exercise 12 by a cofactor expan-
sion along

(a) the first row. (b) the first column.

(c) the second row. (d) the second column.

(e) the third row. (f ) the third column.

In Exercises 21–26, evaluate det(A) by a cofactor expansion
along a row or column of your choice.

21. A =
⎡
⎢⎣−3 0 7

2 5 1

−1 0 5

⎤
⎥⎦ 22. A =

⎡
⎢⎣3 3 1

1 0 −4

1 −3 5

⎤
⎥⎦

23. A =
⎡
⎢⎣1 k k2

1 k k2

1 k k2

⎤
⎥⎦ 24. A =

⎡
⎢⎣k + 1 k − 1 7

2 k − 3 4

5 k + 1 k

⎤
⎥⎦

25. A =

⎡
⎢⎢⎢⎣

3 3 0 5

2 2 0 −2

4 1 −3 0

2 10 3 2

⎤
⎥⎥⎥⎦

26. A =

⎡
⎢⎢⎢⎢⎢⎣

4 0 0 1 0

3 3 3 −1 0

1 2 4 2 3

9 4 6 2 3

2 2 4 2 3

⎤
⎥⎥⎥⎥⎥⎦

In Exercises 27–32, evaluate the determinant of the given ma-
trix by inspection.

27.

⎡
⎢⎣1 0 0

0 −1 0

0 0 1

⎤
⎥⎦ 28.

⎡
⎢⎣2 0 0

0 2 0

0 0 2

⎤
⎥⎦

29.

⎡
⎢⎢⎢⎣

0 0 0 0

1 2 0 0

0 4 3 0

1 2 3 8

⎤
⎥⎥⎥⎦ 30.

⎡
⎢⎢⎢⎣

1 1 1 1

0 2 2 2

0 0 3 3

0 0 0 4

⎤
⎥⎥⎥⎦
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31.

⎡
⎢⎢⎢⎣

1 2 7 −3

0 1 −4 1

0 0 2 7

0 0 0 3

⎤
⎥⎥⎥⎦ 32.

⎡
⎢⎢⎢⎣

−3 0 0 0

1 2 0 0

40 10 −1 0

100 200 −23 3

⎤
⎥⎥⎥⎦

33. In each part, show that the value of the determinant is inde-
pendent of θ .

(a)

∣∣∣∣∣ sin θ cos θ

− cos θ sin θ

∣∣∣∣∣
(b)

∣∣∣∣∣∣∣
sin θ cos θ 0

− cos θ sin θ 0

sin θ − cos θ sin θ + cos θ 1

∣∣∣∣∣∣∣
34. Show that the matrices

A =
[
a b

0 c

]
and B =

[
d e

0 f

]

commute if and only if

∣∣∣∣∣b a − c

e d − f

∣∣∣∣∣ = 0

35. By inspection, what is the relationship between the following
determinants?

d1 =

∣∣∣∣∣∣∣
a b c

d 1 f

g 0 1

∣∣∣∣∣∣∣ and d2 =

∣∣∣∣∣∣∣
a + λ b c

d 1 f

g 0 1

∣∣∣∣∣∣∣
36. Show that

det(A) = 1

2

∣∣∣∣ tr(A) 1

tr(A2) tr(A)

∣∣∣∣
for every 2 × 2 matrix A.

37. What can you say about an nth-order determinant all of whose
entries are 1? Explain.

38. What is the maximum number of zeros that a 3 × 3 matrix can
have without having a zero determinant? Explain.

39. Explain why the determinant of a matrix with integer entries
must be an integer.

Working with Proofs

40. Prove that (x1, y1), (x2, y2), and (x3, y3) are collinear points
if and only if ∣∣∣∣∣∣∣

x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣ = 0

41. Prove that the equation of the line through the distinct points
(a1, b1) and (a2, b2) can be written as∣∣∣∣∣∣∣

x y 1

a1 b1 1

a2 b2 1

∣∣∣∣∣∣∣ = 0

42. Prove that if A is upper triangular and Bij is the matrix that
results when the ith row and j th column of A are deleted, then
Bij is upper triangular if i < j .

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) The determinant of the 2 × 2 matrix

[
a b

c d

]
is ad + bc.

(b) Two square matrices that have the same determinant must have
the same size.

(c) The minor Mij is the same as the cofactor Cij if i + j is even.

(d) If A is a 3 × 3 symmetric matrix, then Cij = Cji for all i and j .

(e) The number obtained by a cofactor expansion of a matrix A is
independent of the row or column chosen for the expansion.

(f ) If A is a square matrix whose minors are all zero, then
det(A) = 0.

(g) The determinant of a lower triangular matrix is the sum of the
entries along the main diagonal.

(h) For every square matrix A and every scalar c, it is true that
det(cA) = c det(A).

(i) For all square matrices A and B, it is true that

det(A + B) = det(A) + det(B)

( j) For every 2 × 2 matrix A it is true that det(A2) = (det(A))2.

Working withTechnology

T1. (a) Use the determinant capability of your technology utility
to find the determinant of the matrix

A =

⎡
⎢⎢⎢⎣

4.2 −1.3 1.1 6.0

0.0 0.0 −3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3

⎤
⎥⎥⎥⎦

(b) Compare the result obtained in part (a) to that obtained by a
cofactor expansion along the second row of A.

T2. Let An be the n × n matrix with 2’s along the main diagonal,
1’s along the diagonal lines immediately above and below the main
diagonal, and zeros everywhere else. Make a conjecture about the
relationship between n and det(An).
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2.2 Evaluating Determinants by Row Reduction
In this section we will show how to evaluate a determinant by reducing the associated
matrix to row echelon form. In general, this method requires less computation than
cofactor expansion and hence is the method of choice for large matrices.

A BasicTheorem We begin with a fundamental theorem that will lead us to an efficient procedure for
evaluating the determinant of a square matrix of any size.

THEOREM 2.2.1 Let A be a square matrix. If A has a row of zeros or a column of
zeros, then det(A) = 0.

Proof Since the determinant of A can be found by a cofactor expansion along any row
or column, we can use the row or column of zeros. Thus, if we let C1, C2, . . . , Cn denote
the cofactors of A along that row or column, then it follows from Formula (7) or (8) in
Section 2.1 that

det(A) = 0 · C1 + 0 · C2 + · · · + 0 · Cn = 0

The following useful theorem relates the determinant of a matrix and the determinant
of its transpose.

THEOREM 2.2.2 Let A be a square matrix. Then det(A) = det(AT ).

Proof Since transposing a matrix changes its columns to rows and its rows to columns,

Because transposing a matrix
changes its columns to rows
and its rows to columns, al-
most every theorem about the
rows of a determinant has
a companion version about
columns, and vice versa.

the cofactor expansion of A along any row is the same as the cofactor expansion of AT

along the corresponding column. Thus, both have the same determinant.

Elementary Row
Operations

The next theorem shows how an elementary row operation on a square matrix affects the
value of its determinant. In place of a formal proof we have provided a table to illustrate
the ideas in the 3 × 3 case (see Table 1).

The first panel of Table 1
shows that you can bring a
common factor from any row
(column) of a determinant
through the determinant sign.
This is a slightly different way
of thinking about part (a) of
Theorem 2.2.3.

Table 1

Relationship Operation∣∣∣∣∣∣∣
ka11 ka12 ka13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = k

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
det(B) = k det(A)

In the matrix B the first
row of A was multiplied
by k.

∣∣∣∣∣∣∣
a21 a22 a23

a11 a12 a13

a31 a32 a33

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
det(B) = − det(A)

In the matrix B the first and
second rows of A were
interchanged.

∣∣∣∣∣∣∣
a11 + ka21 a12 + ka22 a13 + ka23

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
det(B) = det(A)

In the matrix B a multiple of
the second row of A was
added to the first row.
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THEOREM 2.2.3 Let A be an n × n matrix.

(a) If B is the matrix that results when a single row or single column ofA is multiplied
by a scalar k, then det(B) = k det(A).

(b) IfB is the matrix that results when two rows or two columns ofA are interchanged,
then det(B) = − det(A).

(c) If B is the matrix that results when a multiple of one row of A is added to another
or when a multiple of one column is added to another, then det(B) = det(A).

We will verify the first equation in Table 1 and leave the other two for you. To start,
note that the determinants on the two sides of the equation differ only in the first row, so
these determinants have the same cofactors, C11, C12, C13, along that row (since those
cofactors depend only on the entries in the second two rows). Thus, expanding the left
side by cofactors along the first row yields∣∣∣∣∣∣

ka11 ka12 ka13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = ka11C11 + ka12C12 + ka13C13

= k(a11C11 + a12C12 + a13C13)

= k

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
Elementary Matrices It will be useful to consider the special case of Theorem 2.2.3 in which A = In is the

n × n identity matrix and E (rather than B) denotes the elementary matrix that results
when the row operation is performed on In. In this special case Theorem 2.2.3 implies
the following result.

THEOREM 2.2.4 Let E be an n × n elementary matrix.

(a) IfE results from multiplying a row of In by a nonzero number k, then det(E) = k.

(b) If E results from interchanging two rows of In, then det(E) = −1.

(c) If E results from adding a multiple of one row of In to another, then det(E) = 1.

EXAMPLE 1 Determinants of Elementary Matrices

The following determinants of elementary matrices, which are evaluated by inspection,
Observe that the determinant
of an elementary matrix can-
not be zero.

illustrate Theorem 2.2.4.∣∣∣∣∣∣∣∣∣
1 0 0 0

0 3 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
= 3,

∣∣∣∣∣∣∣∣∣
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

∣∣∣∣∣∣∣∣∣
= −1,

∣∣∣∣∣∣∣∣∣

1 0 0 7

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
= 1

The second row of I4
was multiplied by 3.

The first and last rows of
I4 were interchanged.

7 times the last row of I4
was added to the first row.

Matrices with Proportional
Rows or Columns

If a square matrix A has two proportional rows, then a row of zeros can be introduced
by adding a suitable multiple of one of the rows to the other. Similarly for columns. But
adding a multiple of one row or column to another does not change the determinant, so
from Theorem 2.2.1, we must have det(A) = 0. This proves the following theorem.
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THEOREM 2.2.5 IfA is a square matrix with two proportional rows or two proportional
columns, then det(A) = 0.

EXAMPLE 2 Proportional Rows or Columns

Each of the following matrices has two proportional rows or columns; thus, each has a
determinant of zero.

[−1 4

−2 8

]
,

⎡
⎢⎣ 1 −2 7

−4 8 5

2 −4 3

⎤
⎥⎦,

⎡
⎢⎢⎢⎣

3 −1 4 −5

6 −2 5 2

5 8 1 4

−9 3 −12 15

⎤
⎥⎥⎥⎦

Evaluating Determinants
by Row Reduction

We will now give a method for evaluating determinants that involves substantially less
computation than cofactor expansion. The idea of the method is to reduce the given
matrix to upper triangular form by elementary row operations, then compute the de-
terminant of the upper triangular matrix (an easy computation), and then relate that
determinant to that of the original matrix. Here is an example.

EXAMPLE 3 Using Row Reduction to Evaluate a Determinant

Evaluate det(A) where

A =
⎡
⎢⎣0 1 5

3 −6 9

2 6 1

⎤
⎥⎦

Solution We will reduce A to row echelon form (which is upper triangular) and then

Even with today’s fastest com-
puters it would take millions of
years to calculate a 25 × 25 de-
terminant by cofactor expan-
sion, so methods based on row
reduction are often used for
large determinants. For deter-
minants of small size (such as
those in this text), cofactor ex-
pansion is often a reasonable
choice.

apply Theorem 2.1.2.

det(A) =

∣∣∣∣∣∣∣
0 1 5

3 −6 9

2 6 1

∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣
3 −6 9

0 1 5

2 6 1

∣∣∣∣∣∣∣ The first and second rows of
A were interchanged.

= −3

∣∣∣∣∣∣∣
1 −2 3

0 1 5

2 6 1

∣∣∣∣∣∣∣ A common factor of 3 from
the first row was taken
through the determinant sign.

= −3

∣∣∣∣∣∣∣
1 −2 3

0 1 5

0 10 −5

∣∣∣∣∣∣∣ −2 times the first row was
added to the third row.

= −3

∣∣∣∣∣∣∣
1 −2 3

0 1 5

0 0 −55

∣∣∣∣∣∣∣ −10 times the second row
was added to the third row.

= (−3)(−55)

∣∣∣∣∣∣∣
1 −2 3

0 1 5

0 0 1

∣∣∣∣∣∣∣ A common factor of −55
from the last row was taken
through the determinant sign.

= (−3)(−55)(1) = 165
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EXAMPLE 4 Using Column Operations to Evaluate a Determinant

Compute the determinant of

A =

⎡
⎢⎢⎢⎣

1 0 0 3

2 7 0 6

0 6 3 0

7 3 1 −5

⎤
⎥⎥⎥⎦

Solution This determinant could be computed as above by using elementary row oper-
ations to reduce A to row echelon form, but we can put A in lower triangular form in
one step by adding −3 times the first column to the fourth to obtain

det(A) = det

⎡
⎢⎢⎢⎣

1 0 0 0

2 7 0 0

0 6 3 0

7 3 1 −26

⎤
⎥⎥⎥⎦ = (1)(7)(3)(−26) = −546

Cofactor expansion and row or column operations can sometimes be used in com-

Example 4 points out that it
is always wise to keep an eye
open for column operations
that can shorten computa-
tions.

bination to provide an effective method for evaluating determinants. The following
example illustrates this idea.

EXAMPLE 5 Row Operations and Cofactor Expansion

Evaluate det(A) where

A =

⎡
⎢⎢⎢⎣

3 5 −2 6

1 2 −1 1

2 4 1 5

3 7 5 3

⎤
⎥⎥⎥⎦

Solution By adding suitable multiples of the second row to the remaining rows, we
obtain

det(A) =

∣∣∣∣∣∣∣∣∣
0 −1 1 3

1 2 −1 1

0 0 3 3

0 1 8 0

∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣
−1 1 3

0 3 3

1 8 0

∣∣∣∣∣∣∣ Cofactor expansion along
the first column

= −

∣∣∣∣∣∣∣
−1 1 3

0 3 3

0 9 3

∣∣∣∣∣∣∣ We added the first row to the
third row.

= −(−1)

∣∣∣∣3 3

9 3

∣∣∣∣ Cofactor expansion along
the first column

= −18



2.2 Evaluating Determinants by Row Reduction 117

Exercise Set 2.2
In Exercises 1–4, verify that det(A) = det(AT ).

1. A =
[−2 3

1 4

]
2. A =

[−6 1

2 −2

]

3. A =
⎡
⎢⎣2 −1 3

1 2 4

5 −3 6

⎤
⎥⎦ 4. A =

⎡
⎢⎣ 4 2 −1

0 2 −3

−1 1 5

⎤
⎥⎦

In Exercises 5–8, find the determinant of the given elementary
matrix by inspection.

5.

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 −5 0

0 0 0 1

⎤
⎥⎥⎥⎦ 6.

⎡
⎢⎣ 1 0 0

0 1 0

−5 0 1

⎤
⎥⎦

7.

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ 8.

⎡
⎢⎢⎢⎣

1 0 0 0

0 − 1
3 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

In Exercises 9–14, evaluate the determinant of the matrix
by first reducing the matrix to row echelon form and then using
some combination of row operations and cofactor expansion.

9.

⎡
⎢⎣ 3 −6 9

−2 7 −2

0 1 5

⎤
⎥⎦ 10.

⎡
⎢⎣ 3 6 −9

0 0 −2

−2 1 5

⎤
⎥⎦

11.

⎡
⎢⎢⎢⎣

2 1 3 1

1 0 1 1

0 2 1 0

0 1 2 3

⎤
⎥⎥⎥⎦ 12.

⎡
⎢⎣ 1 −3 0

−2 4 1

5 −2 2

⎤
⎥⎦

13.

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 1 5 3

−2 −7 0 −4 2

0 0 1 0 1

0 0 2 1 1

0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

14.

⎡
⎢⎢⎢⎣

1 −2 3 1

5 −9 6 3

−1 2 −6 −2

2 8 6 1

⎤
⎥⎥⎥⎦

In Exercises 15–22, evaluate the determinant, given that∣∣∣∣∣∣
a b c

d e f

g h i

∣∣∣∣∣∣ = −6

15.

∣∣∣∣∣∣∣
d e f

g h i

a b c

∣∣∣∣∣∣∣ 16.

∣∣∣∣∣∣∣
g h i

d e f

a b c

∣∣∣∣∣∣∣

17.

∣∣∣∣∣∣∣
3a 3b 3c

−d −e −f

4g 4h 4i

∣∣∣∣∣∣∣ 18.

∣∣∣∣∣∣∣
a + d b + e c + f

−d −e −f

g h i

∣∣∣∣∣∣∣

19.

∣∣∣∣∣∣∣
a + g b + h c + i

d e f

g h i

∣∣∣∣∣∣∣ 20.

∣∣∣∣∣∣∣
a b c

2d 2e 2f

g + 3a h + 3b i + 3c

∣∣∣∣∣∣∣
21.

∣∣∣∣∣∣∣
−3a −3b −3c

d e f

g − 4d h − 4e i − 4f

∣∣∣∣∣∣∣ 22.

∣∣∣∣∣∣∣
a b c

d e f

2a 2b 2c

∣∣∣∣∣∣∣
23. Use row reduction to show that∣∣∣∣∣∣∣

1 1 1

a b c

a2 b2 c2

∣∣∣∣∣∣∣ = (b − a)(c − a)(c − b)

24. Verify the formulas in parts (a) and (b) and then make a con-
jecture about a general result of which these results are special
cases.

(a) det

⎡
⎢⎣0 0 a13

0 a22 a23

a31 a32 a33

⎤
⎥⎦ = −a13a22a31

(b) det

⎡
⎢⎢⎢⎣

0 0 0 a14

0 0 a23 a24

0 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦ = a14a23a32a41

In Exercises 25–28, confirm the identities without evaluating
the determinants directly.

25.

∣∣∣∣∣∣∣
a1 b1 a1 + b1 + c1

a2 b2 a2 + b2 + c2

a3 b3 a3 + b3 + c3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
26.

∣∣∣∣∣∣∣
a1 + b1t a2 + b2t a3 + b3t

a1t + b1 a2t + b2 a3t + b3

c1 c2 c3

∣∣∣∣∣∣∣ = (1 − t2)

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
27.

∣∣∣∣∣∣∣
a1 + b1 a1 − b1 c1

a2 + b2 a2 − b2 c2

a3 + b3 a3 − b3 c3

∣∣∣∣∣∣∣ = −2

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
28.

∣∣∣∣∣∣∣
a1 b1 + ta1 c1 + rb1 + sa1

a2 b2 + ta2 c2 + rb2 + sa2

a3 b3 + ta3 c3 + rb3 + sa3

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
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In Exercises 29–30, show that det(A) = 0 without directly eval-
uating the determinant.

29. A =

⎡
⎢⎢⎣
−2 8 1 4

3 2 5 1
1 10 6 5
4 −6 4 −3

⎤
⎥⎥⎦

30. A =

⎡
⎢⎢⎢⎢⎢⎣
−4 1 1 1 1

1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
1 1 1 1 −4

⎤
⎥⎥⎥⎥⎥⎦

It can be proved that if a square matrix M is partitioned into
block triangular form as

M =
[
A 0

C B

]
or M =

[
A C

0 B

]

in which A and B are square, then det(M) = det(A) det(B). Use
this result to compute the determinants of the matrices in Exer-
cises 31 and 32.

31. M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 8 6 −9

2 5 0 4 7 5

−1 3 2 6 9 −2

0 0 0 3 0 0

0 0 0 2 1 0

0 0 0 −3 8 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

32. M =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 0 0 0

0 1 2 0 0

0 0 1 0 0

0 0 0 1 2

2 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

33. Let A be an n × n matrix, and let B be the matrix that re-
sults when the rows of A are written in reverse order. State a
theorem that describes how det(A) and det(B) are related.

34. Find the determinant of the following matrix.

⎡
⎢⎢⎢⎣

a b b b

b a b b

b b a b

b b b a

⎤
⎥⎥⎥⎦

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 4 × 4 matrix and B is obtained from A by interchang-
ing the first two rows and then interchanging the last two rows,
then det(B) = det(A).

(b) If A is a 3 × 3 matrix and B is obtained from A by multiplying
the first column by 4 and multiplying the third column by 3

4 ,
then det(B) = 3 det(A).

(c) If A is a 3 × 3 matrix and B is obtained from A by adding 5
times the first row to each of the second and third rows, then
det(B) = 25 det(A).

(d) If A is an n × n matrix and B is obtained from A by multiply-
ing each row of A by its row number, then

det(B) = n(n + 1)

2
det(A)

(e) If A is a square matrix with two identical columns, then
det(A) = 0.

(f ) If the sum of the second and fourth row vectors of a 6 × 6
matrix A is equal to the last row vector, then det(A) = 0.

Working withTechnology

T1. Find the determinant of

A =

⎡
⎢⎢⎢⎣

4.2 −1.3 1.1 6.0

0.0 0.0 −3.2 3.4

4.5 1.3 0.0 14.8

4.7 1.0 3.4 2.3

⎤
⎥⎥⎥⎦

by reducing the matrix to reduced row echelon form, and compare
the result obtained in this way to that obtained in Exercise T1 of
Section 2.1.

2.3 Properties of Determinants; Cramer’s Rule
In this section we will develop some fundamental properties of matrices, and we will use
these results to derive a formula for the inverse of an invertible matrix and formulas for the
solutions of certain kinds of linear systems.

Basic Properties of
Determinants

Suppose that A and B are n × n matrices and k is any scalar. We begin by considering
possible relationships among det(A), det(B), and

det(kA), det(A + B), and det(AB)

Since a common factor of any row of a matrix can be moved through the determinant
sign, and since each of the n rows in kA has a common factor of k, it follows that
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det(kA) = kn det(A) (1)

For example, ∣∣∣∣∣∣∣
ka11 ka12 ka13

ka21 ka22 ka23

ka31 ka32 ka33

∣∣∣∣∣∣∣ = k3

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
Unfortunately, no simple relationship exists among det(A), det(B), and det(A+B).

In particular, det(A + B) will usually not be equal to det(A) + det(B). The following
example illustrates this fact.

EXAMPLE 1 det(A + B) �= det(A) + det(B)

Consider

A =
[

1 2

2 5

]
, B =

[
3 1

1 3

]
, A + B =

[
4 3
3 8

]
We have det(A) = 1, det(B) = 8, and det(A + B) = 23; thus

det(A + B) �= det(A) + det(B)

In spite of the previous example, there is a useful relationship concerning sums of
determinants that is applicable when the matrices involved are the same except for one
row (column). For example, consider the following two matrices that differ only in the
second row:

A =
[
a11 a12

a21 a22

]
and B =

[
a11 a12

b21 b22

]
Calculating the determinants of A and B, we obtain

det(A) + det(B) = (a11a22 − a12a21) + (a11b22 − a12b21)

= a11(a22 + b22) − a12(a21 + b21)

= det

[
a11 a12

a21 + b21 a22 + b22

]
Thus

det

[
a11 a12

a21 a22

]
+ det

[
a11 a12

b21 b22

]
= det

[
a11 a12

a21 + b21 a22 + b22

]
This is a special case of the following general result.

THEOREM 2.3.1 Let A, B, and C be n × n matrices that differ only in a single row,

say the rth, and assume that the rth row of C can be obtained by adding corresponding
entries in the rth rows of A and B. Then

det(C) = det(A) + det(B)

The same result holds for columns.

EXAMPLE 2 Sums of Determinants

We leave it to you to confirm the following equality by evaluating the determinants.

det

⎡
⎢⎣ 1 7 5

2 0 3

1 + 0 4 + 1 7 + (−1)

⎤
⎥⎦ = det

⎡
⎢⎣1 7 5

2 0 3

1 4 7

⎤
⎥⎦+ det

⎡
⎢⎣1 7 5

2 0 3

0 1 −1

⎤
⎥⎦
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Determinant of a Matrix
Product

Considering the complexity of the formulas for determinants and matrix multiplication,
it would seem unlikely that a simple relationship should exist between them. This is what
makes the simplicity of our next result so surprising. We will show that if A and B are
square matrices of the same size, then

det(AB) = det(A) det(B) (2)

The proof of this theorem is fairly intricate, so we will have to develop some preliminary
results first. We begin with the special case of (2) in which A is an elementary matrix.
Because this special case is only a prelude to (2), we call it a lemma.

LEMMA 2.3.2 If B is an n × n matrix and E is an n × n elementary matrix, then

det(EB) = det(E)det(B)

Proof We will consider three cases, each in accordance with the row operation that
produces the matrix E.

Case 1 If E results from multiplying a row of In by k, then by Theorem 1.5.1, EB results
from B by multiplying the corresponding row by k; so from Theorem 2.2.3(a) we have

det(EB) = k det(B)

But from Theorem 2.2.4(a) we have det(E) = k, so

det(EB) = det(E) det(B)

Cases 2 and 3 The proofs of the cases where E results from interchanging two rows of
In or from adding a multiple of one row to another follow the same pattern as Case 1
and are left as exercises.

Remark It follows by repeated applications of Lemma 2.3.2 that if B is an n × n matrix and
E1, E2, . . . , Er are n × n elementary matrices, then

det(E1E2 · · ·ErB) = det(E1) det(E2) · · · det(Er) det(B) (3)

DeterminantTest for
Invertibility

Our next theorem provides an important criterion for determining whether a matrix is
invertible. It also takes us a step closer to establishing Formula (2).

THEOREM 2.3.3 A square matrix A is invertible if and only if det(A) �= 0.

Proof Let R be the reduced row echelon form of A. As a preliminary step, we will
show that det(A) and det(R) are both zero or both nonzero: Let E1, E2, . . . , Er be the
elementary matrices that correspond to the elementary row operations that produce R

from A. Thus
R = Er · · ·E2E1A

and from (3),
det(R) = det(Er) · · · det(E2) det(E1) det(A) (4)

We pointed out in the margin note that accompanies Theorem 2.2.4 that the determinant
of an elementary matrix is nonzero. Thus, it follows from Formula (4) that det(A) and
det(R) are either both zero or both nonzero, which sets the stage for the main part of
the proof. If we assume first that A is invertible, then it follows from Theorem 1.6.4 that
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R = I and hence that det(R) = 1 (�= 0). This, in turn, implies that det(A) �= 0, which
is what we wanted to show.

Conversely, assume that det(A) �= 0. It follows from this that det(R) �= 0, which

It follows from Theorems 2.3.3
and 2.2.5 that a square matrix
with two proportional rows or
two proportional columns is
not invertible.

tells us that R cannot have a row of zeros. Thus, it follows from Theorem 1.4.3 that
R = I and hence that A is invertible by Theorem 1.6.4.

EXAMPLE 3 DeterminantTest for Invertibility

Since the first and third rows of

A =
⎡
⎢⎣1 2 3

1 0 1

2 4 6

⎤
⎥⎦

are proportional, det(A) = 0. Thus A is not invertible.

We are now ready for the main result concerning products of matrices.

THEOREM 2.3.4 If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

Proof We divide the proof into two cases that depend on whether or not A is invertible.

Augustin Louis Cauchy
(1789–1857)

Historical Note In 1815 the great
French mathematician Augustin
Cauchy published a landmark pa-
per in which he gave the first sys-
tematic and modern treatment of
determinants. It was in that pa-
per thatTheorem 2.3.4 was stated
and proved in full generality for
the first time. Special cases of
the theorem had been stated and
proved earlier, but it was Cauchy
who made the final jump.

[Image: © Bettmann/CORBIS]

If the matrix A is not invertible, then by Theorem 1.6.5 neither is the product AB.
Thus, from Theorem 2.3.3, we have det(AB) = 0 and det(A) = 0, so it follows that
det(AB) = det(A) det(B).

Now assume that A is invertible. By Theorem 1.6.4, the matrix A is expressible as a
product of elementary matrices, say

A = E1E2 · · ·Er (5)

so
AB = E1E2 · · ·ErB

Applying (3) to this equation yields

det(AB) = det(E1) det(E2) · · · det(Er) det(B)

and applying (3) again yields

det(AB) = det(E1E2 · · ·Er) det(B)

which, from (5), can be written as det(AB) = det(A) det(B).

EXAMPLE 4 Verifying that det(AB) = det(A) det(B)

Consider the matrices

A =
[

3 1

2 1

]
, B =

[−1 3

5 8

]
, AB =

[
2 17

3 14

]
We leave it for you to verify that

det(A) = 1, det(B) = −23, and det(AB) = −23

Thus det(AB) = det(A) det(B), as guaranteed by Theorem 2.3.4.

The following theorem gives a useful relationship between the determinant of an
invertible matrix and the determinant of its inverse.
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THEOREM 2.3.5 If A is invertible, then

det(A−1) = 1

det(A)

Proof Since A−1A = I , it follows that det(A−1A) = det(I). Therefore, we must have
det(A−1) det(A) = 1. Since det(A) �= 0, the proof can be completed by dividing through
by det(A).

Adjoint of a Matrix In a cofactor expansion we compute det(A) by multiplying the entries in a row or column
by their cofactors and adding the resulting products. It turns out that if one multiplies
the entries in any row by the corresponding cofactors from a different row, the sum of
these products is always zero. (This result also holds for columns.) Although we omit
the general proof, the next example illustrates this fact.

EXAMPLE 5 Entries and Cofactors from Different Rows

Let

A =
⎡
⎢⎣3 2 −1

1 6 3

2 −4 0

⎤
⎥⎦

We leave it for you to verify that the cofactors of A are

C11 = 12 C12 = 6 C13 = −16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = −10 C33 = 16

so, for example, the cofactor expansion of det(A) along the first row is

det(A) = 3C11 + 2C12 + (−1)C13 = 36 + 12 + 16 = 64

and along the first column is

det(A) = 3C11 + C21 + 2C31 = 36 + 4 + 24 = 64

Suppose, however, we multiply the entries in the first row by the corresponding cofactors
from the second row and add the resulting products. The result is

3C21 + 2C22 + (−1)C23 = 12 + 4 − 16 = 0

Or suppose we multiply the entries in the first column by the corresponding cofactors
from the second column and add the resulting products. The result is again zero since

Leonard Eugene
Dickson
(1874–1954)

Historical Note The use of the
term adjoint for the transpose
of the matrix of cofactors ap-
pears to have been introduced by
the American mathematician L. E.
Dickson in a research paper that he
published in 1902.
[Image: Courtesy of the American

Mathematical Society
www.ams.org]

3C12 + 1C22 + 2C32 = 18 + 2 − 20 = 0

DEFINITION 1 If A is any n × n matrix and Cij is the cofactor of aij , then the matrix⎡
⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n
...

...
...

Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎥⎦

is called the matrix of cofactors from A. The transpose of this matrix is called the
adjoint of A and is denoted by adj(A).
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EXAMPLE 6 Adjoint of a 3 × 3 Matrix

Let

A =
⎡
⎣3 2 −1

1 6 3
2 −4 0

⎤
⎦

As noted in Example 5, the cofactors of A are

C11 = 12 C12 = 6 C13 = −16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = −10 C33 = 16

so the matrix of cofactors is ⎡
⎣12 6 −16

4 2 16
12 −10 16

⎤
⎦

and the adjoint of A is

adj(A) =
⎡
⎣ 12 4 12

6 2 −10
−16 16 16

⎤
⎦

In Theorem 1.4.5 we gave a formula for the inverse of a 2 × 2 invertible matrix. Our

It follows from Theorems 2.3.5
and 2.1.2 that if A is an invert-
ible triangular matrix, then

det(A−1) = 1

a11

1

a22
· · · 1

ann

Moreover, by using the adjoint
formula it is possible to show
that

1

a11
,

1

a22
, . . . ,

1

ann

are actually the successive di-
agonal entries of A−1 (com-
pare A and A−1 in Example 3
of Section 1.7).

next theorem extends that result to n × n invertible matrices.

THEOREM 2.3.6 Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

A−1 = 1

det(A)
adj(A) (6)

Proof We show first that
A adj(A) = det(A)I

Consider the product

Aadj(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

ai1 ai2 . . . ain

...
...

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

C11 C21 . . . Cj1 . . . Cn1

C12 C22 . . . Cj2 . . . Cn2
...

...
...

...

C1n C2n . . . Cjn . . . Cnn

⎤
⎥⎥⎥⎦

The entry in the ith row and j th column of the product A adj(A) is

ai1Cj1 + ai2Cj2 + · · · + ainCjn (7)

(see the shaded lines above).
If i = j , then (7) is the cofactor expansion of det(A) along the ith row of A (Theo-

rem 2.1.1), and if i �= j , then the a’s and the cofactors come from different rows of A,
so the value of (7) is zero (as illustrated in Example 5). Therefore,
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A adj(A) =

⎡
⎢⎢⎢⎢⎣

det(A) 0 · · · 0

0 det(A) · · · 0
...

...
...

0 0 · · · det(A)

⎤
⎥⎥⎥⎥⎦ = det(A)I (8)

Since A is invertible, det(A) �= 0. Therefore, Equation (8) can be rewritten as

1

det(A)
[A adj(A)] = I or A

[
1

det(A)
adj(A)

]
= I

Multiplying both sides on the left by A−1 yields

A−1 = 1

det(A)
adj(A)

EXAMPLE 7 Using the Adjoint to Find an Inverse Matrix

Use Formula (6) to find the inverse of the matrix A in Example 6.

Solution We showed in Example 5 that det(A) = 64. Thus,

A−1 = 1

det(A)
adj(A) = 1

64

⎡
⎢⎣ 12 4 12

6 2 −10

−16 16 16

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

12
64

4
64

12
64

6
64

2
64 − 10

64

− 16
64

16
64

16
64

⎤
⎥⎥⎥⎦

Cramer’s Rule Our next theorem uses the formula for the inverse of an invertible matrix to produce a
formula, called Cramer’s rule, for the solution of a linear system Ax = b of n equations
in n unknowns in the case where the coefficient matrix A is invertible (or, equivalently,
when det(A) �= 0).

Gabriel Cramer
(1704–1752)

Historical Note Variations of
Cramer’s rule were fairly well
known before the Swiss mathe-
matician discussed it in work he
published in 1750. It was Cramer’s
superior notation that popularized
the method and led mathemati-
cians to attach his name to it.

[Image: Science Source/Photo
Researchers]

THEOREM 2.3.7 Cramer’s Rule

If Ax = b is a system of n linear equations in n unknowns such that det(A) �= 0, then
the system has a unique solution. This solution is

x1 = det(A1)

det(A)
, x2 = det(A2)

det(A)
, . . . , xn = det(An)

det(A)

where Aj is the matrix obtained by replacing the entries in the j th column of A by the
entries in the matrix

b =

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦

Proof If det(A) �= 0, then A is invertible, and by Theorem 1.6.2, x = A−1b is the unique
solution of Ax = b. Therefore, by Theorem 2.3.6 we have

x = A−1b = 1

det(A)
adj(A)b = 1

det(A)

⎡
⎢⎢⎢⎣

C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦
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Multiplying the matrices out gives

x = 1

det(A)

⎡
⎢⎢⎢⎣

b1C11 + b2C21 + · · · + bnCn1

b1C12 + b2C22 + · · · + bnCn2
...

...
...

b1C1n + b2C2n + · · · + bnCnn

⎤
⎥⎥⎥⎦

The entry in the j th row of x is therefore

xj = b1C1j + b2C2j + · · · + bnCnj

det(A)
(9)

Now let

Aj =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1j−1 b1 a1j+1 · · · a1n

a21 a22 · · · a2j−1 b2 a2j+1 · · · a2n
...

...
...

...
...

...

an1 an2 · · · anj−1 bn anj+1 · · · ann

⎤
⎥⎥⎥⎦

Since Aj differs from A only in the j th column, it follows that the cofactors of entries
b1, b2, . . . , bn in Aj are the same as the cofactors of the corresponding entries in the j th
column of A. The cofactor expansion of det(Aj ) along the j th column is therefore

det(Aj ) = b1C1j + b2C2j + · · · + bnCnj

Substituting this result in (9) gives

xj = det(Aj )

det(A)

EXAMPLE 8 Using Cramer’s Rule to Solve a Linear System

Use Cramer’s rule to solve

x1 + + 2x3 = 6

−3x1 + 4x2 + 6x3 = 30

−x1 − 2x2 + 3x3 = 8

Solution

A =
⎡
⎢⎣ 1 0 2

−3 4 6

−1 −2 3

⎤
⎥⎦, A1 =

⎡
⎢⎣ 6 0 2

30 4 6

8 −2 3

⎤
⎥⎦,

A2 =
⎡
⎢⎣ 1 6 2

−3 30 6

−1 8 3

⎤
⎥⎦, A3 =

⎡
⎢⎣ 1 0 6

−3 4 30

−1 −2 8

⎤
⎥⎦

Therefore,

For n > 3, it is usually more
efficient to solve a linear sys-
tem with n equations in n

unknowns by Gauss–Jordan
elimination than by Cramer’s
rule. Its main use is for obtain-
ing properties of solutions of a
linear system without actually
solving the system.

x1 = det(A1)

det(A)
= −40

44
= −10

11
, x2 = det(A2)

det(A)
= 72

44
= 18

11
,

x3 = det(A3)

det(A)
= 152

44
= 38

11

EquivalenceTheorem In Theorem 1.6.4 we listed five results that are equivalent to the invertibility of a matrix
A. We conclude this section by merging Theorem 2.3.3 with that list to produce the
following theorem that relates all of the major topics we have studied thus far.
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THEOREM 2.3.8 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A can be expressed as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) �= 0.

We now have all of the machinery necessary to prove the following two results, which weO PT I O NA L

stated without proof in Theorem 1.7.1:

• Theorem 1.7.1(c) A triangular matrix is invertible if and only if its diagonal entries
are all nonzero.

• Theorem 1.7.1(d ) The inverse of an invertible lower triangular matrix is lower trian-
gular, and the inverse of an invertible upper triangular matrix is upper triangular.

Proof of Theorem 1.7.1(c) Let A = [aij ] be a triangular matrix, so that its diagonal
entries are

a11, a22, . . . , ann

From Theorem 2.1.2, the matrix A is invertible if and only if

det(A) = a11a22 · · · ann

is nonzero, which is true if and only if the diagonal entries are all nonzero.

Proof of Theorem 1.7.1(d) We will prove the result for upper triangular matrices and
leave the lower triangular case for you. Assume that A is upper triangular and invertible.
Since

A−1 = 1

det(A)
adj(A)

we can prove that A−1 is upper triangular by showing that adj(A) is upper triangular or,
equivalently, that the matrix of cofactors is lower triangular. We can do this by showing
that every cofactor Cij with i < j (i.e., above the main diagonal) is zero. Since

Cij = (−1)i+jMij

it suffices to show that each minor Mij with i < j is zero. For this purpose, let Bij be the
matrix that results when the ith row and j th column of A are deleted, so

Mij = det(Bij ) (10)

From the assumption that i < j , it follows that Bij is upper triangular (see Figure 1.7.1).
Since A is upper triangular, its (i + 1)-st row begins with at least i zeros. But the ith row
of Bij is the (i + 1)-st row of A with the entry in the j th column removed. Since i < j ,
none of the first i zeros is removed by deleting the j th column; thus the ith row of Bij

starts with at least i zeros, which implies that this row has a zero on the main diagonal.
It now follows from Theorem 2.1.2 that det(Bij ) = 0 and from (10) that Mij = 0.
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Exercise Set 2.3
In Exercises 1–4, verify that det(kA) = kn det(A).

1. A =
[
−1 2

3 4

]
; k = 2 2. A =

[
2 2

5 −2

]
; k = −4

3. A =
⎡
⎢⎣2 −1 3

3 2 1

1 4 5

⎤
⎥⎦; k = −2

4. A =
⎡
⎢⎣1 1 1

0 2 3

0 1 −2

⎤
⎥⎦; k = 3

In Exercises 5–6, verify that det(AB) = det(BA) and deter-
mine whether the equality det(A + B) = det(A) + det(B) holds.

5. A =
⎡
⎢⎣2 1 0

3 4 0

0 0 2

⎤
⎥⎦ and B =

⎡
⎢⎣1 −1 3

7 1 2

5 0 1

⎤
⎥⎦

6. A =
⎡
⎢⎣−1 8 2

1 0 −1

−2 2 2

⎤
⎥⎦ and B =

⎡
⎢⎣2 −1 −4

1 1 3

0 3 −1

⎤
⎥⎦

In Exercises 7–14, use determinants to decide whether the given
matrix is invertible.

7. A =
⎡
⎢⎣ 2 5 5

−1 −1 0

2 4 3

⎤
⎥⎦ 8. A =

⎡
⎢⎣ 2 0 3

0 3 2

−2 0 −4

⎤
⎥⎦

9. A =
⎡
⎢⎣2 −3 5

0 1 −3

0 0 2

⎤
⎥⎦ 10. A =

⎡
⎢⎣−3 0 1

5 0 6

8 0 3

⎤
⎥⎦

11. A =
⎡
⎢⎣ 4 2 8

−2 1 −4

3 1 6

⎤
⎥⎦ 12. A =

⎡
⎢⎣1 0 −1

9 −1 4

8 9 −1

⎤
⎥⎦

13. A =
⎡
⎢⎣ 2 0 0

8 1 0

−5 3 6

⎤
⎥⎦ 14. A =

⎡
⎢⎢⎣

√
2 −√

7 0

3
√

2 −3
√

7 0

5 −9 0

⎤
⎥⎥⎦

In Exercises 15–18, find the values of k for which the matrix A

is invertible.

15. A =
[
k − 3 −2

−2 k − 2

]
16. A =

[
k 2

2 k

]

17. A =
⎡
⎢⎣1 2 4

3 1 6

k 3 2

⎤
⎥⎦ 18. A =

⎡
⎢⎣1 2 0

k 1 k

0 2 1

⎤
⎥⎦

In Exercises 19–23, decide whether the matrix is invertible, and
if so, use the adjoint method to find its inverse.

19. A =
⎡
⎢⎣ 2 5 5

−1 −1 0

2 4 3

⎤
⎥⎦ 20. A =

⎡
⎢⎣ 2 0 3

0 3 2

−2 0 −4

⎤
⎥⎦

21. A =
⎡
⎢⎣2 −3 5

0 1 −3

0 0 2

⎤
⎥⎦ 22. A =

⎡
⎢⎣ 2 0 0

8 1 0

−5 3 6

⎤
⎥⎦

23. A =

⎡
⎢⎢⎢⎣

1 3 1 1

2 5 2 2

1 3 8 9

1 3 2 2

⎤
⎥⎥⎥⎦

In Exercises 24–29, solve by Cramer’s rule, where it applies.

24. 7x1 − 2x2 = 3
3x1 + x2 = 5

25. 4x + 5y = 2
11x + y + 2z = 3

x + 5y + 2z = 1

26. x − 4y + z = 6
4x − y + 2z = −1
2x + 2y − 3z = −20

27. x1 − 3x2 + x3 = 4
2x1 − x2 = −2
4x1 − 3x3 = 0

28. −x1 − 4x2 + 2x3 + x4 = −32
2x1 − x2 + 7x3 + 9x4 = 14
−x1 + x2 + 3x3 + x4 = 11

x1 − 2x2 + x3 − 4x4 = −4

29. 3x1 − x2 + x3 = 4
−x1 + 7x2 − 2x3 = 1
2x1 + 6x2 − x3 = 5

30. Show that the matrix

A =
⎡
⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦

is invertible for all values of θ ; then find A−1 using Theo-
rem 2.3.6.

31. Use Cramer’s rule to solve for y without solving for the un-
knowns x, z, and w.

4x + y + z + w = 6

3x + 7y − z + w = 1

7x + 3y − 5z + 8w = −3

x + y + z + 2w = 3

32. Let Ax = b be the system in Exercise 31.

(a) Solve by Cramer’s rule.

(b) Solve by Gauss–Jordan elimination.

(c) Which method involves fewer computations?



128 Chapter 2 Determinants

33. Let

A =
⎡
⎢⎣a b c

d e f

g h i

⎤
⎥⎦

Assuming that det(A) = −7, find

(a) det(3A) (b) det(A−1) (c) det(2A−1)

(d) det((2A)−1) (e) det

⎡
⎢⎣a g d

b h e

c i f

⎤
⎥⎦

34. In each part, find the determinant given that A is a 4 × 4 ma-
trix for which det(A) = −2.

(a) det(−A) (b) det(A−1) (c) det(2AT ) (d) det(A3)

35. In each part, find the determinant given that A is a 3 × 3 ma-
trix for which det(A) = 7.

(a) det(3A) (b) det(A−1)

(c) det(2A−1) (d) det((2A)−1)

Working with Proofs

36. Prove that a square matrix A is invertible if and only if ATA is
invertible.

37. Prove that if A is a square matrix, then det(ATA) = det(AAT ).

38. Let Ax = b be a system of n linear equations in n unknowns
with integer coefficients and integer constants. Prove that if
det(A) = 1, the solution x has integer entries.

39. Prove that if det(A) = 1 and all the entries in A are integers,
then all the entries in A−1 are integers.

True-False Exercises

TF. In parts (a)–(l) determine whether the statement is true or
false, and justify your answer.

(a) If A is a 3 × 3 matrix, then det(2A) = 2 det(A).

(b) If A and B are square matrices of the same size such that
det(A) = det(B), then det(A + B) = 2 det(A).

(c) If A and B are square matrices of the same size and A is in-
vertible, then

det(A−1BA) = det(B)

(d) A square matrix A is invertible if and only if det(A) = 0.

(e) The matrix of cofactors of A is precisely [adj(A)]T .

(f ) For every n × n matrix A, we have

A · adj(A) = (det(A))In

(g) If A is a square matrix and the linear system Ax = 0 has mul-
tiple solutions for x, then det(A) = 0.

(h) If A is an n × n matrix and there exists an n × 1 matrix b
such that the linear system Ax = b has no solutions, then the
reduced row echelon form of A cannot be In.

(i) If E is an elementary matrix, then Ex = 0 has only the trivial
solution.

( j) If A is an invertible matrix, then the linear system Ax = 0
has only the trivial solution if and only if the linear system
A−1x = 0 has only the trivial solution.

(k) If A is invertible, then adj(A) must also be invertible.

(l) If A has a row of zeros, then so does adj(A).

Working withTechnology

T1. Consider the matrix

A =
[

1 1

1 1 + ε

]

in which ε > 0. Since det(A) = ε �= 0, it follows from The-
orem 2.3.8 that A is invertible. Compute det(A) for various
small nonzero values of ε until you find a value that produces
det(A) = 0, thereby leading you to conclude erroneously that A

is not invertible. Discuss the cause of this.

T2. We know from Exercise 39 that if A is a square matrix then
det(ATA) = det(AAT ). By experimenting, make a conjecture as
to whether this is true if A is not square.

T3. The French mathematician Jacques Hadamard (1865–1963)
proved that if A is an n × n matrix each of whose entries satisfies
the condition |aij | ≤ M , then

| det(A)| ≤ √
nnMn

(Hadamard’s inequality). For the following matrix A, use this re-
sult to find an interval of possible values for det(A), and then
use your technology utility to show that the value of det(A) falls
within this interval.

A =

⎡
⎢⎢⎢⎣

0.3 −2.4 −1.7 2.5

0.2 −0.3 −1.2 1.4

2.5 2.3 0.0 1.8

1.7 1.0 −2.1 2.3

⎤
⎥⎥⎥⎦
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Chapter 2 Supplementary Exercises

In Exercises 1–8, evaluate the determinant of the given matrix
by (a) cofactor expansion and (b) using elementary row operations
to introduce zeros into the matrix.

1.

[
−4 2

3 3

]
2.

[
7 −1

−2 −6

]

3.

⎡
⎢⎣−1 5 2

0 2 −1

−3 1 1

⎤
⎥⎦ 4.

⎡
⎢⎣−1 −2 −3

−4 −5 −6

−7 −8 −9

⎤
⎥⎦

5.

⎡
⎢⎣3 0 −1

1 1 1

0 4 2

⎤
⎥⎦ 6.

⎡
⎢⎣−5 1 4

3 0 2

1 −2 2

⎤
⎥⎦

7.

⎡
⎢⎢⎢⎣

3 6 0 1

−2 3 1 4

1 0 −1 1

−9 2 −2 2

⎤
⎥⎥⎥⎦ 8.

⎡
⎢⎢⎢⎣
−1 −2 −3 −4

4 3 2 1

1 2 3 4
−4 −3 −2 −1

⎤
⎥⎥⎥⎦

9. Evaluate the determinants in Exercises 3–6 by using the arrow
technique (see Example 7 in Section 2.1).

10. (a) Construct a 4 × 4 matrix whose determinant is easy to
compute using cofactor expansion but hard to evaluate
using elementary row operations.

(b) Construct a 4 × 4 matrix whose determinant is easy to
compute using elementary row operations but hard to
evaluate using cofactor expansion.

11. Use the determinant to decide whether the matrices in Exer-
cises 1–4 are invertible.

12. Use the determinant to decide whether the matrices in Exer-
cises 5–8 are invertible.

In Exercises 13–15, find the given determinant by any me-
thod.

13.

∣∣∣∣∣ 5 b − 3

b − 2 −3

∣∣∣∣∣ 14.

∣∣∣∣∣∣∣
3 −4 a

a2 1 2

2 a − 1 4

∣∣∣∣∣∣∣

15.

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 −3

0 0 0 −4 0

0 0 −1 0 0

0 2 0 0 0

5 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣
16. Solve for x. ∣∣∣∣∣x −1

3 1 − x

∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 0 −3

2 x −6

1 3 x − 5

∣∣∣∣∣∣∣

In Exercises 17–24, use the adjoint method (Theorem 2.3.6) to
find the inverse of the given matrix, if it exists.
17. The matrix in Exercise 1. 18. The matrix in Exercise 2.

19. The matrix in Exercise 3. 20. The matrix in Exercise 4.

21. The matrix in Exercise 5. 22. The matrix in Exercise 6.

23. The matrix in Exercise 7. 24. The matrix in Exercise 8.

25. Use Cramer’s rule to solve for x ′ and y ′ in terms of x and y.

x = 3
5 x

′ − 4
5 y

′

y = 4
5 x

′ + 3
5 y

′

26. Use Cramer’s rule to solve for x ′ and y ′ in terms of x and y.

x = x ′ cos θ − y ′ sin θ

y = x ′ sin θ + y ′ cos θ

27. By examining the determinant of the coefficient matrix, show
that the following system has a nontrivial solution if and only
if α = β.

x + y + αz = 0

x + y + βz = 0

αx + βy + z = 0

28. Let A be a 3 × 3 matrix, each of whose entries is 1 or 0. What
is the largest possible value for det(A)?

29. (a) For the triangle in the accompanying figure, use trigonom-
etry to show that

b cos γ + c cos β = a

c cos α + a cos γ = b

a cos β + b cos α = c

and then apply Cramer’s rule to show that

cos α = b2 + c2 − a2

2bc

(b) Use Cramer’s rule to obtain similar formulas for cos β and
cos γ .

a

c

b

α β

γ

Figure Ex-29

30. Use determinants to show that for all real values of λ, the only
solution of

x − 2y = λx

x − y = λy

is x = 0, y = 0.

31. Prove: If A is invertible, then adj(A) is invertible and

[adj(A)]−1 = 1

det(A)
A = adj(A−1)
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32. Prove: If A is an n × n matrix, then

det[adj(A)] = [det(A)]n−1

33. Prove: If the entries in each row of an n × n matrix A add up
to zero, then the determinant of A is zero. [Hint: Consider
the product Ax, where x is the n × 1 matrix, each of whose
entries is one.]

34. (a) In the accompanying figure, the area of the triangle ABC

can be expressed as

area ABC = area ADEC + area CEFB − area ADFB

Use this and the fact that the area of a trapezoid equals
1
2 the altitude times the sum of the parallel sides to show
that

area ABC = 1

2

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣
[Note: In the derivation of this formula, the vertices are
labeled such that the triangle is traced counterclockwise
proceeding from (x1, y1) to (x2, y2) to (x3, y3). For a
clockwise orientation, the determinant above yields the
negative of the area.]

(b) Use the result in (a) to find the area of the triangle with
vertices (3, 3), (4, 0), (−2,−1).

A(x1, y1)

B(x2, y2)

C(x3, y3)

D E F Figure Ex-34

35. Use the fact that

21375, 38798, 34162, 40223, 79154

are all divisible by 19 to show that∣∣∣∣∣∣∣∣∣∣∣

2 1 3 7 5

3 8 7 9 8

3 4 1 6 2

4 0 2 2 3

7 9 1 5 4

∣∣∣∣∣∣∣∣∣∣∣
is divisible by 19 without directly evaluating the determinant.

36. Without directly evaluating the determinant, show that∣∣∣∣∣∣∣
sin α cos α sin(α + δ)

sin β cos β sin(β + δ)

sin γ cos γ sin(γ + δ)

∣∣∣∣∣∣∣ = 0
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INTRODUCTION Engineers and physicists distinguish between two types of physical quantities—
scalars, which are quantities that can be described by a numerical value alone, and
vectors, which are quantities that require both a number and a direction for their
complete physical description. For example, temperature, length, and speed are scalars
because they can be fully described by a number that tells “how much”—a temperature
of 20◦C, a length of 5 cm, or a speed of 75 km/h. In contrast, velocity and force are
vectors because they require a number that tells “how much” and a direction that tells
“which way”—say, a boat moving at 10 knots in a direction 45◦ northeast, or a force of
100 lb acting vertically. Although the notions of vectors and scalars that we will study
in this text have their origins in physics and engineering, we will be more concerned
with using them to build mathematical structures and then applying those structures to
such diverse fields as genetics, computer science, economics, telecommunications, and
environmental science.

3.1 Vectors in 2-Space, 3-Space, and n-Space
Linear algebra is primarily concerned with two types of mathematical objects, “matrices”
and “vectors.” In Chapter 1 we discussed the basic properties of matrices, we introduced
the idea of viewing n-tuples of real numbers as vectors, and we denoted the set of all such
n-tuples as Rn. In this section we will review the basic properties of vectors in two and three
dimensions with the goal of extending these properties to vectors in Rn.

Geometric Vectors Engineers and physicists represent vectors in two dimensions (also called 2-space) or
in three dimensions (also called 3-space) by arrows. The direction of the arrowhead
specifies the direction of the vector and the length of the arrow specifies the magnitude.
Mathematicians call these geometric vectors. The tail of the arrow is called the initial
point of the vector and the tip the terminal point (Figure 3.1.1).

Terminal point

Initial point

Figure 3.1.1

In this text we will denote vectors in boldface type such as a, b, v, w, and x, and we
will denote scalars in lowercase italic type such as a, k, v, w, and x. When we want
to indicate that a vector v has initial point A and terminal point B, then, as shown in
Figure 3.1.2, we will write

v = −→
AB
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Vectors with the same length and direction, such as those in Figure 3.1.3, are said to
be equivalent. Since we want a vector to be determined solely by its length and direction,
equivalent vectors are regarded as the same vector even though they may be in different
positions. Equivalent vectors are also said to be equal , which we indicate by writing

v = w

v = AB

v

B

A

Figure 3.1.2

Equivalent vectors

Figure 3.1.3

The vector whose initial and terminal points coincide has length zero, so we call this
the zero vector and denote it by 0. The zero vector has no natural direction, so we will
agree that it can be assigned any direction that is convenient for the problem at hand.

Vector Addition There are a number of important algebraic operations on vectors, all of which have their
origin in laws of physics.

Parallelogram Rule for Vector Addition If v and w are vectors in 2-space or 3-space
that are positioned so their initial points coincide, then the two vectors form adjacent
sides of a parallelogram, and the sum v + w is the vector represented by the arrow
from the common initial point of v and w to the opposite vertex of the parallelogram
(Figure 3.1.4a).

Here is another way to form the sum of two vectors.

Triangle Rule forVector Addition If v and w are vectors in 2-space or 3-space that are
positioned so the initial point of w is at the terminal point of v, then the sum v + w
is represented by the arrow from the initial point of v to the terminal point of w
(Figure 3.1.4b).

In Figure 3.1.4c we have constructed the sums v + w and w + v by the triangle rule.
This construction makes it evident that

v + w = w + v (1)

and that the sum obtained by the triangle rule is the same as the sum obtained by the
parallelogram rule.

Figure 3.1.4

v
v + w

w

(b)

v vw + v
v + w

w

w

(c)

v v + w

w

(a)

Vector addition can also be viewed as a process of translating points.

VectorAdditionViewed asTranslation If v, w, and v + w are positioned so their initial
points coincide, then the terminal point of v + w can be viewed in two ways:

1. The terminal point of v + w is the point that results when the terminal point
of v is translated in the direction of w by a distance equal to the length of w
(Figure 3.1.5a).

2. The terminal point of v + w is the point that results when the terminal point
of w is translated in the direction of v by a distance equal to the length of v
(Figure 3.1.5b).

Accordingly, we say that v + w is the translation of v by w or, alternatively, the
translation of w by v.
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Figure 3.1.5

v v + w

w
(b)

v v + w

w
(a)

Vector Subtraction In ordinary arithmetic we can write a − b = a + (−b), which expresses subtraction in
terms of addition. There is an analogous idea in vector arithmetic.

Vector Subtraction The negative of a vector v, denoted by −v, is the vector that has
the same length as v but is oppositely directed (Figure 3.1.6a), and the difference of v
from w, denoted by w − v, is taken to be the sum

w − v = w + (−v) (2)

The difference of v from w can be obtained geometrically by the parallelogram
method shown in Figure 3.1.6b, or more directly by positioning w and v so their ini-
tial points coincide and drawing the vector from the terminal point of v to the terminal
point of w (Figure 3.1.6c).

Figure 3.1.6

–v

v

–v v

ww – v

(b)(a)
v

w
w – v

(c)

Scalar Multiplication Sometimes there is a need to change the length of a vector or change its length and
reverse its direction. This is accomplished by a type of multiplication in which vectors
are multiplied by scalars. As an example, the product 2v denotes the vector that has the
same direction as v but twice the length, and the product −2v denotes the vector that is
oppositely directed to v and has twice the length. Here is the general result.

Scalar Multiplication If v is a nonzero vector in 2-space or 3-space, and if k is a
nonzero scalar, then we define the scalar product of v by k to be the vector whose
length is |k| times the length of v and whose direction is the same as that of v if k is
positive and opposite to that of v if k is negative. If k = 0 or v = 0, then we define kv
to be 0.

Figure 3.1.7 shows the geometric relationship between a vector v and some of its scalar
multiples. In particular, observe that (−1)v has the same length as v but is oppositely
directed; therefore,

(−1)v = −v (3)

v

2v

(–1)v

(–3)v

v1
2

Figure 3.1.7

Parallel and Collinear
Vectors

Suppose that v and w are vectors in 2-space or 3-space with a common initial point. If
one of the vectors is a scalar multiple of the other, then the vectors lie on a common line,
so it is reasonable to say that they are collinear (Figure 3.1.8a). However, if we trans-
late one of the vectors, as indicated in Figure 3.1.8b, then the vectors are parallel but
no longer collinear. This creates a linguistic problem because translating a vector does
not change it. The only way to resolve this problem is to agree that the terms parallel and



134 Chapter 3 EuclideanVector Spaces

collinear mean the same thing when applied to vectors. Although the vector 0 has no
clearly defined direction, we will regard it as parallel to all vectors when convenient.

Figure 3.1.8

v

kv

v

kv

(a) (b)

Sums ofThree or More
Vectors

Vector addition satisfies the associative law for addition, meaning that when we add three
vectors, say u, v, and w, it does not matter which two we add first; that is,

u + (v + w) = (u + v) + w

It follows from this that there is no ambiguity in the expression u + v + w because the
same result is obtained no matter how the vectors are grouped.

A simple way to construct u + v + w is to place the vectors “tip to tail” in succession
and then draw the vector from the initial point of u to the terminal point of w (Figure
3.1.9a). The tip-to-tail method also works for four or more vectors (Figure 3.1.9b).
The tip-to-tail method makes it evident that if u, v, and w are vectors in 3-space with a
common initial point, then u + v + w is the diagonal of the parallelepiped that has the
three vectors as adjacent sides (Figure 3.1.9c).

Figure 3.1.9

u
v

x

wu +
 v 

+ w
 +

 x
u

v

w

u + v

v + wu + (v + w)
(u + v) + w u

u + v + w

v w

(a) (b) (c)

Vectors in Coordinate
Systems

Up until now we have discussed vectors without reference to a coordinate system. How-
ever, as we will soon see, computations with vectors are much simpler to perform if a
coordinate system is present to work with.

If a vector v in 2-space or 3-space is positioned with its initial point at the origin of
a rectangular coordinate system, then the vector is completely determined by the coor-
dinates of its terminal point (Figure 3.1.10). We call these coordinates the components

The component forms of the
zero vector are 0 = (0, 0) in
2-space and 0 = (0, 0, 0) in 3-
space.

of v relative to the coordinate system. We will write v = (v1, v2) to denote a vector v in
2-space with components (v1, v2), and v = (v1, v2, v3) to denote a vector v in 3-space
with components (v1, v2, v3).

Figure 3.1.10

y

z

x

v
(v1, v2, v3)

v

(v1, v2)

x

y
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It should be evident geometrically that two vectors in 2-space or 3-space are equiv-
alent if and only if they have the same terminal point when their initial points are at
the origin. Algebraically, this means that two vectors are equivalent if and only if their
corresponding components are equal. Thus, for example, the vectors

v = (v1, v2, v3) and w = (w1, w2, w3)

in 3-space are equivalent if and only if

v1 = w1, v2 = w2, v3 = w3

Remark It may have occurred to you that an ordered pair (v1, v2) can represent either a vector
with components v1 and v2 or a point with coordinates v1 and v2 (and similarly for ordered triples).

x

y

(v1, v2)

Figure 3.1.11 The ordered
pair (v1, v2) can represent a
point or a vector.

Both are valid geometric interpretations, so the appropriate choice will depend on the geometric
viewpoint that we want to emphasize (Figure 3.1.11).

VectorsWhose Initial Point
Is Not at the Origin

It is sometimes necessary to consider vectors whose initial points are not at the origin.

If
−−→
P1P2 denotes the vector with initial point P1(x1, y1) and terminal point P2(x2, y2),

then the components of this vector are given by the formula

−−→
P1P2 = (x2 − x1, y2 − y1) (4)

That is, the components of
−−→
P1P2 are obtained by subtracting the coordinates of the

initial point from the coordinates of the terminal point. For example, in Figure 3.1.12

v = P1P2  = OP2 –  OP1

x

y

v

OP2
OP1

P1(x1, y1)
P2(x2, y2)

Figure 3.1.12

the vector
−−→
P1P2 is the difference of vectors

−−→
OP2 and

−−→
OP1, so

−−→
P1P2 = −−→

OP2 −−−→
OP1 = (x2, y2) − (x1, y1) = (x2 − x1, y2 − y1)

As you might expect, the components of a vector in 3-space that has initial point
P1(x1, y1, z1) and terminal point P2(x2, y2, z2) are given by

−−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1) (5)

EXAMPLE 1 Finding the Components of aVector

The components of the vector v = −−→
P1P2 with initial point P1(2,−1, 4) and terminal

point P2(7, 5,−8) are

v = (7 − 2, 5 − (−1), (−8) − 4) = (5, 6,−12)

n-Space The idea of using ordered pairs and triples of real numbers to represent points in two-
dimensional space and three-dimensional space was well known in the eighteenth and
nineteenth centuries. By the dawn of the twentieth century, mathematicians and physi-
cists were exploring the use of “higher dimensional” spaces in mathematics and physics.
Today, even the layman is familiar with the notion of time as a fourth dimension, an idea
used by Albert Einstein in developing the general theory of relativity. Today, physicists
working in the field of “string theory” commonly use 11-dimensional space in their quest
for a unified theory that will explain how the fundamental forces of nature work. Much
of the remaining work in this section is concerned with extending the notion of space to
n dimensions.

To explore these ideas further, we start with some terminology and notation. The
set of all real numbers can be viewed geometrically as a line. It is called the real line and
is denoted by R or R1. The superscript reinforces the intuitive idea that a line is one-
dimensional. The set of all ordered pairs of real numbers (called 2-tuples) and the set of all
ordered triples of real numbers (called 3-tuples) are denoted by R2 and R3, respectively.
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The superscript reinforces the idea that the ordered pairs correspond to points in the
plane (two-dimensional) and ordered triples to points in space (three-dimensional). The
following definition extends this idea.

DEFINITION 1 If n is a positive integer, then an ordered n-tuple is a sequence of n

real numbers (v1, v2, . . . , vn). The set of all ordered n-tuples is called n-space and is
denoted by Rn.

Remark You can think of the numbers in an n-tuple (v1, v2, . . . , vn) as either the coordinates of
a generalized point or the components of a generalized vector, depending on the geometric image
you want to bring to mind—the choice makes no difference mathematically, since it is the algebraic
properties of n-tuples that are of concern.

Here are some typical applications that lead to n-tuples.

• Experimental Data—A scientist performs an experiment and makes n numerical
measurements each time the experiment is performed. The result of each experiment
can be regarded as a vector y = (y1, y2, . . . , yn) in Rn in which y1, y2, . . . , yn are
the measured values.

• Storage and Warehousing—A national trucking company has 15 depots for storing
and servicing its trucks. At each point in time the distribution of trucks in the service
depots can be described by a 15-tuple x = (x1, x2, . . . , x15) in which x1 is the number
of trucks in the first depot, x2 is the number in the second depot, and so forth.

• Electrical Circuits—A certain kind of processing chip is designed to receive four
input voltages and produce three output voltages in response. The input voltages
can be regarded as vectors in R4 and the output voltages as vectors in R3. Thus, the
chip can be viewed as a device that transforms an input vector v = (v1, v2, v3, v4) in
R4 into an output vector w = (w1, w2, w3) in R3.

• Graphical Images—One way in which color images are created on computer screens
is by assigning each pixel (an addressable point on the screen) three numbers that
describe the hue, saturation, and brightness of the pixel. Thus, a complete color image
can be viewed as a set of 5-tuples of the form v = (x, y, h, s, b) in which x and y are
the screen coordinates of a pixel and h, s, and b are its hue, saturation, and brightness.

• Economics—One approach to economic analysis is to divide an economy into sectors
(manufacturing, services, utilities, and so forth) and measure the output of each sector
by a dollar value. Thus, in an economy with 10 sectors the economic output of the
entire economy can be represented by a 10-tuple s = (s1, s2, . . . , s10) in which the
numbers s1, s2, . . . , s10 are the outputs of the individual sectors.

Albert Einstein
(1879–1955)

Historical Note The German-born physicist Albert Einstein
immigrated to the United States in 1935, where he settled at
Princeton University. Einstein spent the last three decades
of his lifeworking unsuccessfully at producing aunifiedfield
theory that would establish an underlying link between the
forces of gravity and electromagnetism. Recently, physi-
cists have made progress on the problem using a frame-
work known as string theory. In this theory the smallest,
indivisible components of the Universe are not particles but
loops that behave like vibrating strings. Whereas Einstein’s
space-time universe was four-dimensional, strings reside in
an 11-dimensional world that is the focus of current re-
search.

[Image: © Bettmann/CORBIS]
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• Mechanical Systems—Suppose that six particles move along the same coordinate
line so that at time t their coordinates are x1, x2, . . . , x6 and their velocities are
v1, v2, . . . , v6, respectively. This information can be represented by the vector

v = (x1, x2, x3, x4, x5, x6, v1, v2, v3, v4, v5, v6, t)

in R13. This vector is called the state of the particle system at time t .

Operations onVectors in Rn Our next goal is to define useful operations on vectors in Rn. These operations will all
be natural extensions of the familiar operations on vectors in R2 and R3. We will denote
a vector v in Rn using the notation

v = (v1, v2, . . . , vn)

and we will call 0 = (0, 0, . . . , 0) the zero vector.
We noted earlier that in R2 and R3 two vectors are equivalent (equal) if and only if

their corresponding components are the same. Thus, we make the following definition.

DEFINITION 2 Vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) in Rn are said
to be equivalent (also called equal) if

v1 = w1, v2 = w2, . . . , vn = wn

We indicate this by writing v = w.

EXAMPLE 2 Equality ofVectors

(a, b, c, d) = (1,−4, 2, 7)

if and only if a = 1, b = −4, c = 2, and d = 7.

Our next objective is to define the operations of addition, subtraction, and scalar
multiplication for vectors in Rn. To motivate these ideas, we will consider how these op-
erations can be performed on vectors in R2 using components. By studying Figure 3.1.13
you should be able to deduce that if v = (v1, v2) and w = (w1, w2), then

v + w = (v1 + w1, v2 + w2) (6)

kv = (kv1, kv2) (7)

In particular, it follows from (7) that

−v = (−1)v = (−v1,−v2) (8)

Figure 3.1.13
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and hence that
w − v = w + (−v) = (w1 − v1, w2 − v2) (9)

Motivated by Formulas (6)–(9), we make the following definition.

DEFINITION 3 If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) are vectors in Rn,
and if k is any scalar, then we define

v + w = (v1 + w1, v2 + w2, . . . , vn + wn) (10)

kv = (kv1, kv2, . . . , kvn) (11)

−v = (−v1,−v2, . . . ,−vn) (12)

w − v = w + (−v) = (w1 − v1, w2 − v2, . . . , wn − vn) (13)

EXAMPLE 3 Algebraic Operations Using Components

If v = (1,−3, 2) and w = (4, 2, 1), then
In words, vectors are added (or
subtracted) by adding (or sub-
tracting) their corresponding
components, and a vector is
multiplied by a scalar by multi-
plying each component by that
scalar.

v + w = (5,−1, 3), 2v = (2,−6, 4)

−w = (−4,−2,−1), v − w = v + (−w) = (−3,−5, 1)

The following theorem summarizes the most important properties of vector opera-
tions.

THEOREM 3.1.1 If u, v, and w are vectors in Rn, and if k and m are scalars, then:

(a) u + v = v + u

(b) (u + v) + w = u + (v + w)

(c) u + 0 = 0 + u = u

(d ) u + (−u) = 0

(e) k(u + v) = ku + kv

( f ) (k + m)u = ku + mu

(g) k(mu) = (km)u

(h) 1u = u

We will prove part (b) and leave some of the other proofs as exercises.

Proof (b) Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn), and w = (w1, w2, . . . , wn).
Then

(u + v) + w = (
(u1, u2, . . . , un) + (v1, v2, . . . , vn)

)+ (w1, w2, . . . , wn)

= (u1 + v1, u2 + v2, . . . , un + vn) + (w1, w2, . . . , wn) [Vector addition]

= (
(u1 + v1) + w1, (u2 + v2) + w2, . . . , (un + vn) + wn

)
[Vector addition]

= (
u1 + (v1 + w1), u2 + (v2 + w2), . . . , un + (vn + wn)

)
[Regroup]

= (u1, u2, . . . , un) + (v1 + w1, v2 + w2, . . . , vn + wn) [Vector addition]

= u + (v + w)

The following additional properties of vectors in Rn can be deduced easily by ex-
pressing the vectors in terms of components (verify).
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THEOREM 3.1.2 If v is a vector in Rn and k is a scalar, then:

(a) 0v = 0

(b) k0 = 0

(c) (−1)v = −v

CalculatingWithout
Components

One of the powerful consequences of Theorems 3.1.1 and 3.1.2 is that they allow cal-
culations to be performed without expressing the vectors in terms of components. For
example, suppose that x, a, and b are vectors in Rn, and we want to solve the vector
equation x + a = b for the vector x without using components. We could proceed as
follows:

x + a = b [ Given ]

(x + a) + (−a) = b + (−a) [ Add the negative of a to both sides ]

x + (a + (−a)) = b − a [ Part (b) of Theorem 3.1.1 ]

x + 0 = b − a [ Part (d ) of Theorem 3.1.1 ]

x = b − a [ Part (c) of Theorem 3.1.1 ]

While this method is obviously more cumbersome than computing with components in
Rn, it will become important later in the text where we will encounter more general kinds
of vectors.

Linear Combinations Addition, subtraction, and scalar multiplication are frequently used in combination to
form new vectors. For example, if v1, v2, and v3 are vectors in Rn, then the vectors

u = 2v1 + 3v2 + v3 and w = 7v1 − 6v2 + 8v3

are formed in this way. In general, we make the following definition.

Note that this definition of a
linear combination is consis-
tent with that given in the con-
text of matrices (see Definition
6 in Section 1.3).

DEFINITION 4 If w is a vector in Rn, then w is said to be a linear combination of the
vectors v1, v2, . . . , vr in Rn if it can be expressed in the form

w = k1v1 + k2v2 + · · · + krvr (14)

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the linear
combination. In the case where r = 1, Formula (14) becomes w = k1v1, so that a
linear combination of a single vector is just a scalar multiple of that vector.

Alternative Notations for
Vectors

Up to now we have been writing vectors in Rn using the notation

v = (v1, v2, . . . , vn) (15)

We call this the comma-delimited form. However, since a vector in Rn is just a list of
its n components in a specific order, any notation that displays those components in the
correct order is a valid way of representing the vector. For example, the vector in (15)
can be written as

v = [v1 v2 · · · vn] (16)

which is called row-vector form, or as

v =

⎡
⎢⎢⎢⎢⎣

v1

v2

...

vn

⎤
⎥⎥⎥⎥⎦ (17)
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which is called column-vector form. The choice of notation is often a matter of taste or
convenience, but sometimes the nature of a problem will suggest a preferred notation.
Notations (15), (16), and (17) will all be used at various places in this text.

Application of Linear Combinations to Color Models

Colors on computer monitors are commonly based on what is called
the RGB color model . Colors in this system are created by adding
together percentages of the primary colors red (R), green (G), and
blue (B). One way to do this is to identify the primary colors with
the vectors

r = (1, 0, 0) (pure red),
g = (0, 1, 0) (pure green),
b = (0, 0, 1) (pure blue)

in R3 and to create all other colors by forming linear combinations
of r, g, and b using coefficients between 0 and 1, inclusive; these
coefficients represent the percentage of each pure color in the mix.

The set of all such color vectors is called RGB space or the RGB
color cube (Figure 3.1.14). Thus, each color vector c in this cube is
expressible as a linear combination of the form

c = k1r + k2g + k3b
= k1(1, 0, 0) + k2(0, 1, 0) + k3(0, 0, 1)
= (k1, k2, k3)

where 0 ≤ ki ≤ 1. As indicated in the figure, the corners of the cube
represent the pure primary colors together with the colors black,
white, magenta, cyan, and yellow. The vectors along the diagonal
running from black to white correspond to shades of gray.

Figure 3.1.14
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Exercise Set 3.1
In Exercises 1–2, find the components of the vector.

1.

y

z

x

y

(1, 5)

(4, 1)

(a)
(0, 0, 4)

(2, 3, 0)

(b)

x

2.

x

(2, 3)(–3, 3)

(a)
(0, 4, 4)

(3, 0, 4)

(b)y

y

z

x

In Exercises 3–4, find the components of the vector
−−→
P1P2.

3. (a) P1(3, 5), P2(2, 8) (b) P1(5,−2, 1), P2(2, 4, 2)

4. (a) P1(−6, 2), P2(−4,−1) (b) P1(0, 0, 0), P2(−1, 6, 1)

5. (a) Find the terminal point of the vector that is equivalent to
u = (1, 2) and whose initial point is A(1, 1).

(b) Find the initial point of the vector that is equivalent to
u = (1, 1, 3) and whose terminal point is B(−1,−1, 2).

6. (a) Find the initial point of the vector that is equivalent to
u = (1, 2) and whose terminal point is B(2, 0).

(b) Find the terminal point of the vector that is equivalent to
u = (1, 1, 3) and whose initial point is A(0, 2, 0).

7. Find an initial point P of a nonzero vector u = −→
PQ with ter-

minal point Q(3, 0,−5) and such that

(a) u has the same direction as v = (4,−2,−1).

(b) u is oppositely directed to v = (4,−2,−1).
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8. Find a terminal point Q of a nonzero vector u = −→
PQ with

initial point P(−1, 3,−5) and such that

(a) u has the same direction as v = (6, 7,−3).

(b) u is oppositely directed to v = (6, 7,−3).

9. Let u = (4,−1), v = (0, 5), and w = (−3,−3). Find the
components of

(a) u + w (b) v − 3u

(c) 2(u − 5w) (d) 3v − 2(u + 2w)

10. Let u = (−3, 1, 2), v = (4, 0,−8), and w = (6,−1,−4).
Find the components of

(a) v − w (b) 6u + 2v

(c) −3(v − 8w) (d) (2u − 7w) − (8v + u)

11. Let u = (−3, 2, 1, 0), v = (4, 7,−3, 2), and
w = (5,−2, 8, 1). Find the components of

(a) v − w (b) −u + (v − 4w)

(c) 6(u − 3v) (d) (6v − w) − (4u + v)

12. Let u = (1, 2,−3, 5, 0), v = (0, 4,−1, 1, 2), and
w = (7, 1,−4,−2, 3). Find the components of

(a) v + w (b) 3(2u − v)

(c) (3u − v) − (2u + 4w) (d) 1
2 (w − 5v + 2u) + v

13. Let u, v, and w be the vectors in Exercise 11. Find the com-
ponents of the vector x that satisfies the equation
3u + v − 2w = 3x + 2w.

14. Let u, v, and w be the vectors in Exercise 12. Find the com-
ponents of the vector x that satisfies the equation
2u − v + x = 7x + w.

15. Which of the following vectors in R6, if any, are parallel to
u = (−2, 1, 0, 3, 5, 1)?

(a) (4, 2, 0, 6, 10, 2)

(b) (4,−2, 0,−6,−10,−2)

(c) (0, 0, 0, 0, 0, 0)

16. For what value(s) of t, if any, is the given vector parallel to
u = (4,−1)?

(a) (8t,−2) (b) (8t, 2t) (c) (1, t2)

17. Let u = (1,−1, 3, 5) and v = (2, 1, 0,−3). Find scalars a and
b so that au + bv = (1,−4, 9, 18).

18. Let u = (2, 1, 0, 1,−1) and v = (−2, 3, 1, 0, 2). Find scalars
a and b so that au + bv = (−8, 8, 3,−1, 7).

In Exercises 19–20, find scalars c1, c2, and c3 for which the
equation is satisfied.

19. c1(1,−1, 0) + c2(3, 2, 1) + c3(0, 1, 4) = (−1, 1, 19)

20. c1(−1, 0, 2) + c2(2, 2,−2) + c3(1,−2, 1) = (−6, 12, 4)

21. Show that there do not exist scalars c1, c2, and c3 such that

c1(−2, 9, 6) + c2(−3, 2, 1) + c3(1, 7, 5) = (0, 5, 4)

22. Show that there do not exist scalars c1, c2, and c3 such that

c1(1, 0, 1, 0) + c2(1, 0,−2, 1) + c3(2, 0, 1, 2) = (1,−2, 2, 3)

23. Let P be the point (2, 3,−2) and Q the point (7,−4, 1).

(a) Find the midpoint of the line segment connecting the
points P and Q.

(b) Find the point on the line segment connecting the points
P and Q that is 3

4 of the way from P to Q.

24. In relation to the points P1 and P2 in Figure 3.1.12, what can
you say about the terminal point of the following vector if its
initial point is at the origin?

u = −−→
OP1 + 1

2 (
−−→
OP2 −−−→

OP1)

25. In each part, find the components of the vector u + v + w.

x

y

w

v

u

x

y

w

v

u

(a) (b)

26. Referring to the vectors pictured in Exercise 25, find the com-
ponents of the vector u − v + w.

27. Let P be the point (1, 3, 7). If the point (4, 0,−6) is the mid-
point of the line segment connecting P and Q, what is Q?

28. If the sum of three vectors in R3 is zero, must they lie in the
same plane? Explain.

29. Consider the regular hexagon shown in the accompanying fig-
ure.

(a) What is the sum of the six radial vectors that run from the
center to the vertices?

(b) How is the sum affected if each radial vector is multiplied
by 1

2 ?

(c) What is the sum of the five radial vectors that remain if a
is removed?

(d) Discuss some variations and generalizations of the result
in part (c).

a

b

c

d

e

f

Figure Ex-29

30. What is the sum of all radial vectors of a regular n-sided poly-
gon? (See Exercise 29.)
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Working with Proofs

31. Prove parts (a), (c), and (d) of Theorem 3.1.1.

32. Prove parts (e)–(h) of Theorem 3.1.1.

33. Prove parts (a)–(c) of Theorem 3.1.2.

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Two equivalent vectors must have the same initial point.

(b) The vectors (a, b) and (a, b, 0) are equivalent.

(c) If k is a scalar and v is a vector, then v and kv are parallel if
and only if k ≥ 0.

(d) The vectors v + (u + w) and (w + v) + u are the same.

(e) If u + v = u + w, then v = w.

(f ) If a and b are scalars such that au + bv = 0, then u and v are
parallel vectors.

(g) Collinear vectors with the same length are equal.

(h) If (a, b, c) + (x, y, z) = (x, y, z), then (a, b, c) must be the
zero vector.

(i) If k and m are scalars and u and v are vectors, then

(k + m)(u + v) = ku + mv

( j) If the vectors v and w are given, then the vector equation

3(2v − x) = 5x − 4w + v

can be solved for x.

(k) The linear combinations a1v1 + a2v2 and b1v1 + b2v2 can only
be equal if a1 = b1 and a2 = b2.

3.2 Norm, Dot Product, and Distance in Rn

In this section we will be concerned with the notions of length and distance as they relate to
vectors. We will first discuss these ideas in R2 and R3 and then extend them algebraically
to Rn.

Norm of aVector In this text we will denote the length of a vector v by the symbol ‖v‖, which is read as
the norm of v, the length of v, or the magnitude of v (the term “norm” being a common
mathematical synonym for length). As suggested in Figure 3.2.1a, it follows from the

x

y

||v||

||v||

(v1, v2)

v1

v2

P(v1, v2, v3)

y

z

x

O

(a)

(b)

Q
R

S

Figure 3.2.1

Theorem of Pythagoras that the norm of a vector (v1, v2) in R2 is

‖v‖ =
√

v2
1 + v2

2 (1)

Similarly, for a vector (v1, v2, v3) in R3, it follows from Figure 3.2.1b and two applica-
tions of the Theorem of Pythagoras that

‖v‖2 = (OR)2 + (RP )2 = (OQ)2 + (QR)2 + (RP )2 = v2
1 + v2

2 + v2
3

and hence that
‖v‖ =

√
v2

1 + v2
2 + v2

3 (2)

Motivated by the pattern of Formulas (1) and (2), we make the following definition.

DEFINITION 1 If v = (v1, v2, . . . , vn) is a vector in Rn, then the norm of v (also called
the length of v or the magnitude of v) is denoted by ‖v‖, and is defined by the formula

‖v‖ =
√

v2
1 + v2

2 + · · · + v2
n (3)
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EXAMPLE 1 Calculating Norms

It follows from Formula (2) that the norm of the vector v = (−3, 2, 1) in R3 is

‖v‖ =
√

(−3)2 + 22 + 12 = √
14

and it follows from Formula (3) that the norm of the vector v = (2,−1, 3,−5) in R4 is

‖v‖ =
√

22 + (−1)2 + 32 + (−5)2 = √
39

Our first theorem in this section will generalize to Rn the following three familiar
facts about vectors in R2 and R3:

• Distances are nonnegative.

• The zero vector is the only vector of length zero.

• Multiplying a vector by a scalar multiplies its length by the absolute value of that
scalar.

It is important to recognize that just because these results hold in R2 and R3 does not
guarantee that they hold in Rn—their validity in Rn must be proved using algebraic
properties of n-tuples.

THEOREM 3.2.1 If v is a vector in Rn, and if k is any scalar, then:

(a) ‖v‖ ≥ 0

(b) ‖v‖ = 0 if and only if v = 0

(c) ‖kv‖ = |k|‖v‖

We will prove part (c) and leave (a) and (b) as exercises.

Proof (c) If v = (v1, v2, . . . , vn), then kv = (kv1, kv2, . . . , kvn), so

‖kv‖ = √
(kv1)2 + (kv2)2 + · · · + (kvn)2

=
√

(k2)(v2
1 + v2

2 + · · · + v2
n)

= |k|
√

v2
1 + v2

2 + · · · + v2
n

= |k|‖v‖

Unit Vectors A vector of norm 1 is called a unit vector. Such vectors are useful for specifying a
direction when length is not relevant to the problem at hand. You can obtain a unit vector
in a desired direction by choosing any nonzero vector v in that direction and multiplying
v by the reciprocal of its length. For example, if v is a vector of length 2 in R2 or R3,
then 1

2 v is a unit vector in the same direction as v. More generally, if v is any nonzero
vector in Rn, then

u = 1

‖v‖v (4)

defines a unit vector that is in the same direction as v. We can confirm that (4) is a unit

WARNING Sometimes you will
see Formula (4) expressed as

u = v
‖v‖

This is just a more compact
way of writing that formula
and is not intended to convey
that v is being divided by ‖v‖.

vector by applying part (c) of Theorem 3.2.1 with k = 1/‖v‖ to obtain

‖u‖ = ‖kv‖ = |k|‖v‖ = k‖v‖ = 1

‖v‖‖v‖ = 1
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The process of multiplying a nonzero vector by the reciprocal of its length to obtain a
unit vector is called normalizing v.

EXAMPLE 2 Normalizing aVector

Find the unit vector u that has the same direction as v = (2, 2,−1).

Solution The vector v has length

‖v‖ =
√

22 + 22 + (−1)2 = 3

Thus, from (4)

u = 1
3 (2, 2,−1) = (

2
3 , 2

3 ,− 1
3

)
As a check, you may want to confirm that ‖u‖ = 1.

The Standard Unit Vectors When a rectangular coordinate system is introduced in R2 or R3, the unit vectors in the
positive directions of the coordinate axes are called the standard unit vectors. In R2 these
vectors are denoted by

i = (1, 0) and j = (0, 1)

and in R3 by

i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1)

(Figure 3.2.2). Every vector v = (v1, v2) in R2 and every vector v = (v1, v2, v3) in R3
x

y

(0, 1)

(1, 0)i

j

(a)

(b)

x

y

z

(0, 1, 0)
(1, 0, 0)

(0, 0, 1)

j

i

k

Figure 3.2.2

can be expressed as a linear combination of standard unit vectors by writing

v = (v1, v2) = v1(1, 0) + v2(0, 1) = v1i + v2 j (5)

v = (v1, v2, v3) = v1(1, 0, 0) + v2(0, 1, 0) + v3(0, 0, 1) = v1i + v2 j + v3k (6)

Moreover, we can generalize these formulas to Rn by defining the standard unit vectors
in Rn to be

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1) (7)

in which case every vector v = (v1, v2, . . . , vn) in Rn can be expressed as

v = (v1, v2, . . . , vn) = v1e1 + v2e2 + · · · + vnen (8)

EXAMPLE 3 Linear Combinations of Standard UnitVectors

(2,−3, 4) = 2i − 3j + 4k
(7, 3,−4, 5) = 7e1 + 3e2 − 4e3 + 5e4

Distance in Rn If P1 and P2 are points in R2 or R3, then the length of the vector
−−→
P1P2 is equal to the

distance d between the two points (Figure 3.2.3). Specifically, if P1(x1, y1) and P2(x2, y2)

are points in R2, then Formula (4) of Section 3.1 implies that

d = ‖−−→P1P2‖ =
√

(x2 − x1)2 + (y2 − y1)2 (9)
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This is the familiar distance formula from analytic geometry. Similarly, the distance
between the points P1(x1, y1, z1) and P2(x2, y2, z2) in 3-space is

d = ||P1P2||

P2
d

P1

Figure 3.2.3

d(u, v) = ‖−−→P1P2‖ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (10)

Motivated by Formulas (9) and (10), we make the following definition.

DEFINITION 2 If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are points in Rn, then
we denote the distance between u and v by d(u, v) and define it to be

d(u, v) = ‖u − v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2 (11)
We noted in the previous
section that n-tuples can be
viewed either as vectors or
points in Rn. In Definition
2 we chose to describe them
as points, as that seemed the
more natural interpretation.

EXAMPLE 4 Calculating Distance in Rn

If
u = (1, 3,−2, 7) and v = (0, 7, 2, 2)

then the distance between u and v is

d(u, v) =
√

(1 − 0)2 + (3 − 7)2 + (−2 − 2)2 + (7 − 2)2 = √
58

Dot Product Our next objective is to define a useful multiplication operation on vectors in R2 and R3

and then extend that operation to Rn. To do this we will first need to define exactly what
we mean by the “angle” between two vectors in R2 or R3. For this purpose, let u and
v be nonzero vectors in R2 or R3 that have been positioned so that their initial points
coincide. We define the angle between u and v to be the angle θ determined by u and v
that satisfies the inequalities 0 ≤ θ ≤ π (Figure 3.2.4).

Figure 3.2.4
The angle θ between u and v satisfies 0 ≤ θ ≤ π.

θ

v

u
θ

v

u
θ

vu

θ

v

u

DEFINITION 3 If u and v are nonzero vectors in R2 or R3, and if θ is the angle between
u and v, then the dot product (also called the Euclidean inner product) of u and v is
denoted by u · v and is defined as

u · v = ‖u‖‖v‖ cos θ (12)

If u = 0 or v = 0, then we define u · v to be 0.

The sign of the dot product reveals information about the angle θ that we can obtain
by rewriting Formula (12) as

cos θ = u · v
‖u‖‖v‖ (13)

Since 0 ≤ θ ≤ π , it follows from Formula (13) and properties of the cosine function
studied in trigonometry that

• θ is acute if u · v > 0. • θ is obtuse if u · v < 0. • θ = π/2 if u · v = 0.
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EXAMPLE 5 Dot Product

Find the dot product of the vectors shown in Figure 3.2.5.

z

y

x

(0, 0, 1)

(0, 2, 2)
v

u θ = 45°

Figure 3.2.5

Solution The lengths of the vectors are

‖u‖ = 1 and ‖v‖ = √
8 = 2

√
2

and the cosine of the angle θ between them is

cos(45◦) = 1/
√

2

Thus, it follows from Formula (12) that

u · v = ‖u‖‖v‖ cos θ = (1)(2
√

2)(1/
√

2) = 2

Component Form of the
Dot Product

For computational purposes it is desirable to have a formula that expresses the dot
product of two vectors in terms of components. We will derive such a formula for
vectors in 3-space; the derivation for vectors in 2-space is similar.

Let u = (u1, u2, u3) and v = (v1, v2, v3) be two nonzero vectors. If, as shown in
Figure 3.2.6, θ is the angle between u and v, then the law of cosines yields

v

u

θ

z

y

x

P(u1, u2, u3)

Q(v1, v2, v3)

Figure 3.2.6

‖−→PQ‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ (14)

Since
−→
PQ = v − u, we can rewrite (14) as

‖u‖‖v‖ cos θ = 1
2 (‖u‖2 + ‖v‖2 − ‖v − u‖2)

or
u · v = 1

2 (‖u‖2 + ‖v‖2 − ‖v − u‖2)

Substituting
‖u‖2 = u2

1 + u2
2 + u2

3, ‖v‖2 = v2
1 + v2

2 + v2
3

and
‖v − u‖2 = (v1 − u1)

2 + (v2 − u2)
2 + (v3 − u3)

2

we obtain, after simplifying,

u · v = u1v1 + u2v2 + u3v3 (15)

The companion formula for vectors in 2-space is

Although we derived Formula
(15) and its 2-space compan-
ion under the assumption that
u and v are nonzero, it turned
out that these formulas are
also applicable if u = 0 or
v = 0 (verify).

u · v = u1v1 + u2v2 (16)

Motivated by the pattern in Formulas (15) and (16), we make the following definition.

Josiah Willard Gibbs
(1839–1903)

Historical Note The dot product notation was first in-
troduced by the American physicist and mathemati-
cian J. Willard Gibbs in a pamphlet distributed to his
students at Yale University in the 1880s. The prod-
uct was originally written on the baseline, rather than
centered as today, and was referred to as the direct
product. Gibbs’s pamphlet was eventually incorpo-
rated into a book entitledVectorAnalysis that was pub-
lished in 1901 and coauthoredwith one of his students.
Gibbs made major contributions to the fields of ther-
modynamics and electromagnetic theory and is gen-
erally regarded as the greatest American physicist of
the nineteenth century.

[Image: SCIENCE SOURCE/Photo Researchers/
Getty Images]
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DEFINITION4 If u = (u1, u2, . . . , un)and v = (v1, v2, . . . , vn)are vectors inRn, then
the dot product (also called the Euclidean inner product) of u and v is denoted by u · v
and is defined by

u · v = u1v1 + u2v2 + · · · + unvn (17)

In words, to calculate the
dot product (Euclidean inner
product) multiply correspond-
ing components and add the
resulting products.

EXAMPLE 6 Calculating Dot Products Using Components

(a) Use Formula (15) to compute the dot product of the vectors u and v in Example 5.

(b) Calculate u · v for the following vectors in R4:

u = (−1, 3, 5, 7), v = (−3,−4, 1, 0)

Solution (a) The component forms of the vectors are u = (0, 0, 1) and v = (0, 2, 2).
Thus,

u · v = (0)(0) + (0)(2) + (1)(2) = 2
which agrees with the result obtained geometrically in Example 5.

Solution (b)
u · v = (−1)(−3) + (3)(−4) + (5)(1) + (7)(0) = −4

EXAMPLE 7 A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.

Solution Let k be the length of an edge and introduce a coordinate system as shown in
Figure 3.2.7. If we let u1 = (k, 0, 0), u2 = (0, k, 0), and u3 = (0, 0, k), then the vector

u3

u2

u1 (0, k, 0)

(k, k, k)

(k, 0, 0)

(0, 0, k)

d

θ

z

y

x

Figure 3.2.7
d = (k, k, k) = u1 + u2 + u3

is a diagonal of the cube. It follows from Formula (13) that the angle θ between d and
the edge u1 satisfies

cos θ = u1 · d
‖u1‖‖d‖ = k2

(k)(
√

3k2)
= 1√

3
With the help of a calculator we obtain

Note that the angle θ obtained
in Example 7 does not involve
k. Why was this to be ex-
pected?

θ = cos−1

(
1√
3

)
≈ 54.74◦

Algebraic Properties of the
Dot Product

In the special case where u = v in Definition 4, we obtain the relationship

v · v = v2
1 + v2

2 + · · · + v2
n = ‖v‖2 (18)

This yields the following formula for expressing the length of a vector in terms of a dot
product:

‖v‖ = √
v · v (19)

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2 If u, v, and w are vectors in Rn, and if k is a scalar, then:

(a) u · v = v · u [ Symmetry property ]

(b) u · (v + w) = u · v + u · w [ Distributive property ]

(c) k(u · v) = (ku) · v [ Homogeneity property ]

(d ) v · v ≥ 0 and v · v = 0 if and only if v = 0 [ Positivity property ]

We will prove parts (c) and (d) and leave the other proofs as exercises.
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Proof (c) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Then

k(u · v) = k(u1v1 + u2v2 + · · · + unvn)

= (ku1)v1 + (ku2)v2 + · · · + (kun)vn = (ku) · v

Proof (d) The result follows from parts (a) and (b) of Theorem 3.2.1 and the fact that

v · v = v1v1 + v2v2 + · · · + vnvn = v2
1 + v2

2 + · · · + v2
n = ‖v‖2

The next theorem gives additional properties of dot products. The proofs can be
obtained either by expressing the vectors in terms of components or by using the algebraic
properties established in Theorem 3.2.2.

THEOREM 3.2.3 If u, v, and w are vectors in Rn, and if k is a scalar, then:

(a) 0 · v = v · 0 = 0

(b) (u + v) · w = u · w + v · w

(c) u · (v − w) = u · v − u · w

(d ) (u − v) · w = u · w − v · w

(e) k(u · v) = u · (kv)

We will show how Theorem 3.2.2 can be used to prove part (b) without breaking the
vectors into components. The other proofs are left as exercises.

Proof (b)
(u + v) · w = w · (u + v) [By symmetry]

= w · u + w · v [By distributivity]

= u · w + v · w [By symmetry]

Formulas (18) and (19) together with Theorems 3.2.2 and 3.2.3 make it possible to
manipulate expressions involving dot products using familiar algebraic techniques.

EXAMPLE 8 Calculating with Dot Products

(u − 2v) · (3u + 4v) = u · (3u + 4v) − 2v · (3u + 4v)

= 3(u · u) + 4(u · v) − 6(v · u) − 8(v · v)

= 3‖u‖2 − 2(u · v) − 8‖v‖2

Cauchy–Schwarz Inequality
and Angles in Rn

Our next objective is to extend to Rn the notion of “angle” between nonzero vectors u
and v. We will do this by starting with the formula

θ = cos−1

(
u · v

‖u‖‖v‖
)

(20)

which we previously derived for nonzero vectors in R2 and R3. Since dot products and
norms have been defined for vectors in Rn, it would seem that this formula has all the
ingredients to serve as a definition of the angle θ between two vectors, u and v, in Rn.
However, there is a fly in the ointment, the problem being that the inverse cosine in
Formula (20) is not defined unless its argument satisfies the inequalities

−1 ≤ u · v
‖u‖‖v‖ ≤ 1 (21)

Fortunately, these inequalities do hold for all nonzero vectors in Rn as a result of the
following fundamental result known as the Cauchy–Schwarz inequality.
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THEOREM 3.2.4 Cauchy–Schwarz Inequality

If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are vectors in Rn, then

|u · v| ≤ ‖u‖‖v‖ (22)

or in terms of components

|u1v1 + u2v2 + · · · + unvn| ≤ (u2
1 + u2

2 + · · · + u2
n)

1/2(v2
1 + v2

2 + · · · + v2
n)

1/2

(23)

We will omit the proof of this theorem because later in the text we will prove a more
general version of which this will be a special case. Our goal for now will be to use this
theorem to prove that the inequalities in (21) hold for all nonzero vectors in Rn. Once
that is done we will have established all the results required to use Formula (20) as our
definition of the angle between nonzero vectors u and v in Rn.

To prove that the inequalities in (21) hold for all nonzero vectors in Rn, divide both
sides of Formula (22) by the product ‖u‖‖v‖ to obtain

|u · v|
‖u‖‖v‖ ≤ 1 or equivalently

∣∣∣∣ u · v
‖u‖‖v‖

∣∣∣∣ ≤ 1

from which (21) follows.

Geometry in Rn Earlier in this section we extended various concepts to Rn with the idea that familiar
results that we can visualize in R2 and R3 might be valid in Rn as well. Here are two
fundamental theorems from plane geometry whose validity extends to Rn:

• The sum of the lengths of two side of a triangle is at least as large as the third (Figure
3.2.8).

||u + v|| ≤ ||u|| + ||v||

v

u

u + v

Figure 3.2.8

• The shortest distance between two points is a straight line (Figure 3.2.9).

The following theorem generalizes these theorems to Rn.

d(u, v) ≤ d(u, w) + d(w, v)

u

w

v

Figure 3.2.9

THEOREM 3.2.5 If u, v, and w are vectors in Rn, then:

(a) ‖u + v‖ ≤ ‖u‖ + ‖v‖ [ Triangle inequality for vectors ]

(b) d(u, v) ≤ d(u, w) + d(w, v) [ Triangle inequality for distances ]

Hermann Amandus
Schwarz
(1843–1921)

Viktor Yakovlevich
Bunyakovsky
(1804–1889)

Historical Note The Cauchy–Schwarz in-
equality is named in honor of the
French mathematician Augustin Cauchy
(see p. 121) and the German mathemati-
cian Hermann Schwarz. Variations of this
inequality occur in many different settings
and under various names. Depending on
the context in which the inequality occurs,
you may find it called Cauchy’s inequal-
ity, the Schwarz inequality, or sometimes
even the Bunyakovsky inequality, in recog-
nition of the Russian mathematician who
published his version of the inequality in
1859, about 25 years before Schwarz.

[Images: © Rudolph Duehrkoop/
ullstein bild/The ImageWorks (Schwarz);

http://www-history.mcs.st-and.ac.uk/
Biographies/Bunyakovsky.html

(Bunyakovsky)]
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Proof (a)

‖u + v‖2 = (u + v) · (u + v) = (u · u) + 2(u · v) + (v · v)

= ‖u‖2 + 2(u · v) + ‖v‖2

≤ ‖u‖2 + 2|u · v| + ‖v‖2 Property of absolute value

≤ ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2 Cauchy–Schwarz inequality

= (‖u‖ + ‖v‖)2

This completes the proof since both sides of the inequality in part (a) are nonnegative.

Proof (b) It follows from part (a) and Formula (11) that

d(u, v) = ‖u − v‖ = ‖(u − w) + (w − v)‖
≤ ‖u − w‖ + ‖w − v‖ = d(u, w) + d(w, v)

It is proved in plane geometry that for any parallelogram the sum of the squares of
the diagonals is equal to the sum of the squares of the four sides (Figure 3.2.10). The
following theorem generalizes that result to Rn.

v

u

u – v

u + v

Figure 3.2.10 THEOREM 3.2.6 Parallelogram Equation forVectors

If u and v are vectors in Rn, then

‖u + v‖2 + ‖u − v‖2 = 2
(‖u‖2 + ‖v‖2

)
(24)

Proof
‖u + v‖2 + ‖u − v‖2 = (u + v) · (u + v) + (u − v) · (u − v)

= 2(u · u) + 2(v · v)

= 2
(‖u‖2 + ‖v‖2

)
We could state and prove many more theorems from plane geometry that generalize

to Rn, but the ones already given should suffice to convince you that Rn is not so different
from R2 and R3 even though we cannot visualize it directly. The next theorem establishes
a fundamental relationship between the dot product and norm in Rn.

THEOREM 3.2.7 If u and v are vectors in Rn with the Euclidean inner product, then

u · v = 1
4‖u + v‖2 − 1

4‖u − v‖2 (25)

Proof
‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2

‖u − v‖2 = (u − v) · (u − v) = ‖u‖2 − 2(u · v) + ‖v‖2

from which (25) follows by simple algebra.

Note that Formula (25) ex-
presses the dot product in
terms of norms.

Dot Products as Matrix
Multiplication

There are various ways to express the dot product of vectors using matrix notation.
The formulas depend on whether the vectors are expressed as row matrices or column
matrices. Table 1 shows the possibilities.
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Table 1

Form Dot Product Example

u a column
matrix and v a
column matrix

u · v = uT v = vT u

u =
⎡
⎣ 1
−3

5

⎤
⎦

v =
⎡
⎣5

4
0

⎤
⎦

uT v = [1 −3 5]
⎡
⎣5

4
0

⎤
⎦ = −7

vT u = [5 4 0]
⎡
⎣ 1
−3

5

⎤
⎦ = −7

u a row matrix
and v a column
matrix

u · v = uv = vT uT

u = [1 −3 5]

v =
⎡
⎣5

4
0

⎤
⎦

uv = [1 −3 5]
⎡
⎣5

4
0

⎤
⎦ = −7

vT uT = [5 4 0]
⎡
⎣ 1
−3

5

⎤
⎦ = −7

u a column
matrix and v a
row matrix

u · v = vu = uT vT
u =

⎡
⎣ 1
−3

5

⎤
⎦

v = [5 4 0]

vu = [5 4 0]
⎡
⎣ 1
−3

5

⎤
⎦ = −7

uT vT = [1 −3 5]
⎡
⎣5

4
0

⎤
⎦ = −7

u a row matrix
and v a row
matrix

u · v = uvT = vuT
u = [1 −3 5]
v = [5 4 0]

uvT = [1 −3 5]
⎡
⎣5

4
0

⎤
⎦ = −7

vuT = [5 4 0]
⎡
⎣ 1
−3

5

⎤
⎦ = −7

Application of Dot Products to ISBN Numbers

Although the system has recently changed, most older books have
been assigned a unique 10-digit number called an International Stan-
dard Book Number or ISBN. The first nine digits of this number are
split into three groups—the first group representing the country or
group of countries in which the book originates, the second iden-
tifying the publisher, and the third assigned to the book title itself.
The tenth and final digit, called a check digit, is computed from the
first nine digits and is used to ensure that an electronic transmission
of the ISBN, say over the Internet, occurs without error.

To explain how this is done, regard the first nine digits of the
ISBN as a vector b in R9, and let a be the vector

a = (1, 2, 3, 4, 5, 6, 7, 8, 9)

Then the check digit c is computed using the following procedure:

1. Form the dot product a · b.

2. Divide a · b by 11, thereby producing a remainder c that is an
integer between 0 and 10, inclusive. The check digit is taken to
be c, with the proviso that c = 10 is written as X to avoid double
digits.

For example, the ISBN of the brief edition ofCalculus, sixth edition,
by Howard Anton is

0-471-15307-9

which has a check digit of 9. This is consistent with the first nine
digits of the ISBN, since

a · b = (1, 2, 3, 4, 5, 6, 7, 8, 9) · (0, 4, 7, 1, 1, 5, 3, 0, 7) = 152

Dividing 152 by 11 produces a quotient of 13 and a remainder of
9, so the check digit is c = 9. If an electronic order is placed for a
book with a certain ISBN, then the warehouse can use the above
procedure to verify that the check digit is consistent with the first
nine digits, thereby reducing the possibility of a costly shipping error.
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If A is an n × n matrix and u and v are n × 1 matrices, then it follows from the first
row in Table 1 and properties of the transpose that

Au · v = vT(Au) = (vTA)u = (ATv)T u = u · ATv

u · Av = (Av)Tu = (vTAT )u = vT(ATu) = ATu · v

The resulting formulas

Au · v = u · ATv (26)

u · Av = ATu · v (27)

provide an important link between multiplication by an n × n matrix A and multiplica-
tion by AT .

EXAMPLE 9 Verifying thatAu · v = u ·ATv
Suppose that

A =
⎡
⎢⎣ 1 −2 3

2 4 1

−1 0 1

⎤
⎥⎦, u =

⎡
⎢⎣−1

2

4

⎤
⎥⎦, v =

⎡
⎢⎣−2

0

5

⎤
⎥⎦

Then

Au =
⎡
⎢⎣ 1 −2 3

2 4 1

−1 0 1

⎤
⎥⎦
⎡
⎢⎣−1

2

4

⎤
⎥⎦ =

⎡
⎢⎣ 7

10

5

⎤
⎥⎦

ATv =
⎡
⎢⎣ 1 2 −1

−2 4 0

3 1 1

⎤
⎥⎦
⎡
⎢⎣−2

0

5

⎤
⎥⎦ =

⎡
⎢⎣−7

4

−1

⎤
⎥⎦

from which we obtain

Au · v = 7(−2) + 10(0) + 5(5) = 11

u · ATv = (−1)(−7) + 2(4) + 4(−1) = 11

Thus, Au · v = u · ATv as guaranteed by Formula (26). We leave it for you to verify
that Formula (27) also holds.

A Dot Product View of
Matrix Multiplication

Dot products provide another way of thinking about matrix multiplication. Recall that
if A = [aij ] is an m × r matrix and B = [bij ] is an r × n matrix, then the ij th entry of
AB is

ai1b1j + ai2b2j + · · · + airbrj

which is the dot product of the ith row vector of A

[ai1 ai2 · · · air ]
and the j th column vector of B ⎡

⎢⎢⎢⎢⎣
b1j

b2j

...

brj

⎤
⎥⎥⎥⎥⎦
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Thus, if the row vectors of A are r1, r2, . . . , rm and the column vectors of B are c1,

c2, . . . , cn, then the matrix product AB can be expressed as

AB =

⎡
⎢⎢⎢⎣

r1 · c1 r1 · c2 · · · r1 · cn

r2 · c1 r2 · c2 · · · r2 · cn
...

...
...

rm · c1 rm · c2 · · · rm · cn

⎤
⎥⎥⎥⎦ (28)

Exercise Set 3.2
In Exercises 1–2, find the norm of v, and a unit vector that is

oppositely directed to v.

1. (a) v = (2, 2, 2) (b) v = (1, 0, 2, 1, 3)

2. (a) v = (1,−1, 2) (b) v = (−2, 3, 3,−1)

In Exercises 3–4, evaluate the given expression with
u = (2,−2, 3), v = (1,−3, 4), and w = (3, 6,−4).

3. (a) ‖u + v‖ (b) ‖u‖ + ‖v‖
(c) ‖−2u + 2v‖ (d) ‖3u − 5v + w‖

4. (a) ‖u + v + w‖ (b) ‖u − v‖
(c) ‖3v‖ − 3‖v‖ (d) ‖u‖ − ‖v‖
In Exercises 5–6, evaluate the given expression with

u = (−2,−1,4,5), v = (3,1,−5,7), and w = (−6,2,1,1).

5. (a) ‖3u − 5v + w‖ (b) ‖3u‖ − 5‖v‖ + ‖w‖
(c) ‖−‖u‖v‖

6. (a) ‖u‖ + ‖−2v‖ + ‖−3w‖ (b)
∥∥‖u − v‖w

∥∥
7. Let v = (−2, 3, 0, 6). Find all scalars k such that ‖kv‖ = 5.

8. Let v = (1, 1, 2,−3, 1). Find all scalars k such that
‖kv‖ = 4.

In Exercises 9–10, find u · v, u · u, and v · v.

9. (a) u = (3, 1, 4), v = (2, 2,−4)

(b) u = (1, 1, 4, 6), v = (2,−2, 3,−2)

10. (a) u = (1, 1,−2, 3), v = (−1, 0, 5, 1)

(b) u = (2,−1, 1, 0,−2), v = (1, 2, 2, 2, 1)

In Exercises 11–12, find the Euclidean distance between u and v
and the cosine of the angle between those vectors. State whether
that angle is acute, obtuse, or 90◦.

11. (a) u = (3, 3, 3), v = (1, 0, 4)

(b) u = (0,−2,−1, 1), v = (−3, 2, 4, 4)

12. (a) u = (1, 2,−3, 0), v = (5, 1, 2,−2)

(b) u = (0, 1, 1, 1, 2), v = (2, 1, 0,−1, 3)

13. Suppose that a vector a in the xy-plane has a length of 9 units
and points in a direction that is 120◦ counterclockwise from

the positive x-axis, and a vector b in that plane has a length of
5 units and points in the positive y-direction. Find a · b.

14. Suppose that a vector a in the xy-plane points in a direction
that is 47◦ counterclockwise from the positive x-axis, and a
vector b in that plane points in a direction that is 43◦ clock-
wise from the positive x-axis. What can you say about the
value of a · b?

In Exercises 15–16, determine whether the expression makes
sense mathematically. If not, explain why.

15. (a) u · (v · w) (b) u · (v + w)

(c) ‖u · v‖ (d) (u · v) − ‖u‖

16. (a) ‖u‖ · ‖v‖ (b) (u · v) − w

(c) (u · v) − k (d) k · u

In Exercises 17–18, verify that the Cauchy–Schwarz inequality
holds.

17. (a) u = (−3, 1, 0), v = (2,−1, 3)

(b) u = (0, 2, 2, 1), v = (1, 1, 1, 1)

18. (a) u = (4, 1, 1), v = (1, 2, 3)

(b) u = (1, 2, 1, 2, 3), v = (0, 1, 1, 5,−2)

19. Let r0 = (x0, y0) be a fixed vector in R2. In each part, describe
in words the set of all vectors r = (x, y) that satisfy the stated
condition.

(a) ‖r − r0‖ = 1 (b) ‖r − r0‖ ≤ 1 (c) ‖r − r0‖ > 1

20. Repeat the directions of Exercise 19 for vectors r = (x, y, z)

and r0 = (x0, y0, z0) in R3.

Exercises 21–25 The direction of a nonzero vector v in an xyz-
coordinate system is completely determined by the angles α, β,
and γ between v and the standard unit vectors i, j, and k (Fig-
ure Ex-21). These are called the direction angles of v, and their
cosines are called the direction cosines of v.

21. Use Formula (13) to show that the direction cosines of a vector
v = (v1, v2, v3) in R3 are

cos α = v1

‖v‖ , cos β = v2

‖v‖ , cos γ = v3

‖v‖
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v

α

β
γ

y

z

j

i

k

x
Figure Ex-21

22. Use the result in Exercise 21 to show that

cos2 α + cos2 β + cos2 γ = 1

23. Show that two nonzero vectors v1 and v2 in R3 are orthogonal
if and only if their direction cosines satisfy

cos α1 cos α2 + cos β1 cos β2 + cos γ1 cos γ2 = 0

24. The accompanying figure shows a cube.

(a) Find the angle between the vectors d and u to the nearest
degree.

(b) Make a conjecture about the angle between the vectors
d and v, and confirm your conjecture by computing the
angle.

d

u

v

z

x

y

Figure Ex-24

25. Estimate, to the nearest degree, the angles that a diagonal of a
box with dimensions 10 cm × 15 cm × 25 cm makes with the
edges of the box.

26. If ‖v‖ = 2 and ‖w‖ = 3, what are the largest and smallest val-
ues possible for ‖v − w‖? Give a geometric explanation of
your results.

27. What can you say about two nonzero vectors, u and v, that
satisfy the equation ‖u + v‖ = ‖u‖ + ‖v‖?

28. (a) What relationship must hold for the point p = (a, b, c)

to be equidistant from the origin and the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

(b) What relationship must hold for the point p = (a, b, c) to
be farther from the origin than from the xz-plane? Make
sure that the relationship you state is valid for positive and
negative values of a, b, and c.

29. State a procedure for finding a vector of a specified length m

that points in the same direction as a given vector v.

30. Under what conditions will the triangle inequality (Theo-
rem 3.2.5a) be an equality? Explain your answer geometri-
cally.

Exercises 31–32 The effect that a force has on an object de-
pends on the magnitude of the force and the direction in which it is
applied. Thus, forces can be regarded as vectors and represented
as arrows in which the length of the arrow specifies the magnitude
of the force, and the direction of the arrow specifies the direction in
which the force is applied. It is a fact of physics that force vectors
obey the parallelogram law in the sense that if two force vectors
F1 and F2 are applied at a point on an object, then the effect is
the same as if the single force F1 + F2 (called the resultant) were
applied at that point (see accompanying figure). Forces are com-
monly measured in units called pounds-force (abbreviated lbf) or
Newtons (abbreviated N).

F1

F1 + F2

F2

The single force

F1 + F2 has the

same effect as the

two forces F1 and F2.

31. A particle is said to be in static equilibrium if the resultant of
all forces applied to it is zero. For the forces in the accompa-
nying figure, find the resultant F that must be applied to the
indicated point to produce static equilibrium. Describe F by
giving its magnitude and the angle in degrees that it makes
with the positive x-axis.

32. Follow the directions of Exercise 31.

x

y

60°

10 lb

8 lb

Figure Ex-31

x

y

75°

45°

150 N120 N

100 N

Figure Ex-32

Working with Proofs

33. Prove parts (a) and (b) of Theorem 3.2.1.

34. Prove parts (a) and (c) of Theorem 3.2.3.

35. Prove parts (d) and (e) of Theorem 3.2.3.

True-False Exercises

TF. In parts (a)–(j) determine whether the statement is true or
false, and justify your answer.
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(a) If each component of a vector in R3 is doubled, the norm of
that vector is doubled.

(b) In R2, the vectors of norm 5 whose initial points are at the ori-
gin have terminal points lying on a circle of radius 5 centered
at the origin.

(c) Every vector in Rn has a positive norm.

(d) If v is a nonzero vector in Rn, there are exactly two unit vectors
that are parallel to v.

(e) If ‖u‖ = 2, ‖v‖ = 1, and u · v = 1, then the angle between u
and v is π/3 radians.

(f ) The expressions (u · v) + w and u · (v + w) are both meaning-
ful and equal to each other.

(g) If u · v = u · w, then v = w.

(h) If u · v = 0, then either u = 0 or v = 0.

(i) In R2, if u lies in the first quadrant and v lies in the third
quadrant, then u · v cannot be positive.

( j) For all vectors u, v, and w in Rn, we have

‖u + v + w‖ ≤ ‖u‖ + ‖v‖ + ‖w‖

Working withTechnology

T1. Let u be a vector in R100 whose ith component is i, and let v
be the vector in R100 whose ith component is 1/(i + 1). Find the
dot product of u and v.

T2. Find, to the nearest degree, the angles that a diagonal of a box
with dimensions 10 cm × 11 cm × 25 cm makes with the edges of
the box.

3.3 Orthogonality
In the last section we defined the notion of “angle” between vectors in Rn. In this section
we will focus on the notion of “perpendicularity.” Perpendicular vectors in Rn play an
important role in a wide variety of applications.

Orthogonal Vectors Recall from Formula (20) in the previous section that the angle θ between two nonzero
vectors u and v in Rn is defined by the formula

θ = cos−1

(
u · v

‖u‖‖v‖
)

It follows from this that θ = π/2 if and only if u · v = 0. Thus, we make the following
definition.

DEFINITION 1 Two nonzero vectors u and v in Rn are said to be orthogonal (or
perpendicular) if u · v = 0. We will also agree that the zero vector in Rn is orthogonal
to every vector in Rn.

EXAMPLE 1 OrthogonalVectors

(a) Show that u = (−2, 3, 1, 4) and v = (1, 2, 0,−1) are orthogonal vectors in R4.

(b) Let S = {i, j, k} be the set of standard unit vectors in R3. Show that each ordered
pair of vectors in S is orthogonal.

Solution (a) The vectors are orthogonal since

u · v = (−2)(1) + (3)(2) + (1)(0) + (4)(−1) = 0

Solution (b) It suffices to show that

i · j = i · k = j · k = 0
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because it will follow automatically from the symmetry property of the dot product that
Using the computations in R3

as a model, you should be able
to see that each ordered pair of
standard unit vectors in Rn is
orthogonal.

j · i = k · i = k · j = 0

Although the orthogonality of the vectors in S is evident geometrically from Figure 3.2.2,
it is confirmed algebraically by the computations

i · j = (1, 0, 0) · (0, 1, 0) = 0

i · k = (1, 0, 0) · (0, 0, 1) = 0

j · k = (0, 1, 0) · (0, 0, 1) = 0

Lines and Planes
Determined by Points and

Normals

One learns in analytic geometry that a line in R2 is determined uniquely by its slope and

Formula (1) is called the point-
normal form of a line or plane
and Formulas (2) and (3) the
component forms.

one of its points, and that a plane in R3 is determined uniquely by its “inclination” and
one of its points. One way of specifying slope and inclination is to use a nonzero vector
n, called a normal , that is orthogonal to the line or plane in question. For example,
Figure 3.3.1 shows the line through the point P0(x0, y0) that has normal n = (a, b) and
the plane through the point P0(x0, y0, z0) that has normal n = (a, b, c). Both the line
and the plane are represented by the vector equation

n · −−→P0P = 0 (1)

where P is either an arbitrary point (x, y) on the line or an arbitrary point (x, y, z) in

the plane. The vector
−−→
P0P can be expressed in terms of components as
−−→
P0P = (x − x0, y − y0) [ line ]
−−→
P0P = (x − x0, y − y0, z − z0) [ plane ]

Thus, Equation (1) can be written as

a(x − x0) + b(y − y0) = 0 [ line ] (2)

a(x − x0) + b(y − y0) + c(z − z0) = 0 [ plane ] (3)

These are called the point-normal equations of the line and plane.

Figure 3.3.1

P(x, y, z)

(a, b, c)
P(x, y)

(a, b)

P0(x0, y0, z0)
P0(x0, y0)

n

z

y

x

n

x

y

EXAMPLE 2 Point-Normal Equations

It follows from (2) that in R2 the equation

6(x − 3) + (y + 7) = 0

represents the line through the point (3,−7) with normal n = (6, 1); and it follows from
(3) that in R3 the equation

4(x − 3) + 2y − 5(z − 7) = 0

represents the plane through the point (3, 0, 7) with normal n = (4, 2,−5).
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When convenient, the terms in Equations (2) and (3) can be multiplied out and the
constants combined. This leads to the following theorem.

THEOREM 3.3.1

(a) If a and b are constants that are not both zero, then an equation of the form

ax + by + c = 0 (4)

represents a line in R2 with normal n = (a, b).

(b) If a, b, and c are constants that are not all zero, then an equation of the form

ax + by + cz + d = 0 (5)

represents a plane in R3 with normal n = (a, b, c).

EXAMPLE 3 Vectors Orthogonal to Lines and PlanesThrough the Origin

(a) The equation ax + by = 0 represents a line through the origin in R2. Show that
the vector n1 = (a, b) formed from the coefficients of the equation is orthogonal to
the line, that is, orthogonal to every vector along the line.

(b) The equation ax + by + cz = 0 represents a plane through the origin in R3. Show
that the vector n2 = (a, b, c) formed from the coefficients of the equation is orthog-
onal to the plane, that is, orthogonal to every vector that lies in the plane.

Solution We will solve both problems together. The two equations can be written as

(a, b) · (x, y) = 0 and (a, b, c) · (x, y, z) = 0

or, alternatively, as
n1 · (x, y) = 0 and n2 · (x, y, z) = 0

These equations show that n1 is orthogonal to every vector (x, y) on the line and that n2

is orthogonal to every vector (x, y, z) in the plane (Figure 3.3.1).

Recall that
ax + by = 0 and ax + by + cz = 0

are called homogeneous equations. Example 3 illustrates that homogeneous equations
Referring to Table 1 of Sec-
tion 3.2, in what other ways
can you write (6) if n and x are
expressed in matrix form?

in two or three unknowns can be written in the vector form

n · x = 0 (6)

where n is the vector of coefficients and x is the vector of unknowns. In R2 this is called
the vector form of a line through the origin, and in R3 it is called the vector form of a
plane through the origin.

Orthogonal Projections In many applications it is necessary to “decompose” a vector u into a sum of two terms,
one term being a scalar multiple of a specified nonzero vector a and the other term being
orthogonal to a. For example, if u and a are vectors in R2 that are positioned so their
initial points coincide at a point Q, then we can create such a decomposition as follows
(Figure 3.3.2):
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• Drop a perpendicular from the tip of u to the line through a.

• Construct the vector w1 from Q to the foot of the perpendicular.

• Construct the vector w2 = u − w1.

Since
w1 + w2 = w1 + (u − w1) = u

we have decomposed u into a sum of two orthogonal vectors, the first term being a scalar
multiple of a and the second being orthogonal to a.

Q

u

aw1

w2

Q

u

a w1

w2

Q

u

aw1

w2

(a) (b) (c)

Figure 3.3.2 Three possible cases.

The following theorem shows that the foregoing results, which we illustrated using
vectors in R2, apply as well in Rn.

THEOREM 3.3.2 ProjectionTheorem

If u and a are vectors in Rn, and if a �= 0, then u can be expressed in exactly one way
in the form u = w1 + w2, where w1 is a scalar multiple of a and w2 is orthogonal to a.

Proof Since the vector w1 is to be a scalar multiple of a, it must have the form

w1 = ka (7)

Our goal is to find a value of the scalar k and a vector w2 that is orthogonal to a such
that

u = w1 + w2 (8)

We can determine k by using (7) to rewrite (8) as

u = w1 + w2 = ka + w2

and then applying Theorems 3.2.2 and 3.2.3 to obtain

u · a = (ka + w2) · a = k‖a‖2 + (w2 · a) (9)

Since w2 is to be orthogonal to a, the last term in (9) must be 0, and hence k must satisfy
the equation

u · a = k‖a‖2

from which we obtain
k = u · a

‖a‖2

as the only possible value for k. The proof can be completed by rewriting (8) as

w2 = u − w1 = u − ka = u − u · a
‖a‖2

a

and then confirming that w2 is orthogonal to a by showing that w2 · a = 0 (we leave the
details for you).
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The vectors w1 and w2 in the Projection Theorem have associated names—the vector
w1 is called the orthogonal projection of u on a or sometimes the vector component of
u along a, and the vector w2 is called the vector component of u orthogonal to a. The
vector w1 is commonly denoted by the symbol projau, in which case it follows from (8)
that w2 = u − projau. In summary,

projau = u · a
‖a‖2

a (vector component of u along a) (10)

u − projau = u − u · a
‖a‖2

a (vector component of u orthogonal to a) (11)

EXAMPLE 4 Orthogonal Projection on a Line

Find the orthogonal projections of the vectors e1 = (1, 0) and e2 = (0, 1) on the line L

that makes an angle θ with the positive x-axis in R2.

Solution As illustrated in Figure 3.3.3, a = (cos θ, sin θ) is a unit vector along the line

x

L

y

e2 = (0, 1)

1

cos θ

(cos θ, sin θ)

sin θ

e1 = (1, 0)

θ

Figure 3.3.3

L, so our first problem is to find the orthogonal projection of e1 along a. Since

‖a‖ =
√

sin2 θ + cos2 θ = 1 and e1 · a = (1, 0) · (cos θ, sin θ) = cos θ

it follows from Formula (10) that this projection is

projae1 = e1 · a
‖a‖2

a = (cos θ)(cos θ, sin θ) = (cos2 θ, sin θ cos θ)

Similarly, since e2 · a = (0, 1) · (cos θ, sin θ) = sin θ , it follows from Formula (10) that

projae2 = e2 · a
‖a‖2

a = (sin θ)(cos θ, sin θ) = (sin θ cos θ, sin2 θ)

EXAMPLE 5 Vector Component of u Along a

Let u = (2,−1, 3) and a = (4,−1, 2). Find the vector component of u along a and the
vector component of u orthogonal to a.

Solution
u · a = (2)(4) + (−1)(−1) + (3)(2) = 15

‖a‖2 = 42 + (−1)2 + 22 = 21

Thus the vector component of u along a is

projau = u · a
‖a‖2

a = 15
21 (4,−1, 2) = (

20
7 ,− 5

7 ,
10
7

)
and the vector component of u orthogonal to a is

u − projau = (2,−1, 3) − (
20
7 ,− 5

7 ,
10
7

) = (− 6
7 ,− 2

7 ,
11
7

)
As a check, you may wish to verify that the vectors u − projau and a are perpendicular
by showing that their dot product is zero.



160 Chapter 3 EuclideanVector Spaces

Sometimes we will be more interested in the norm of the vector component of u
along a than in the vector component itself. A formula for this norm can be derived as
follows:

‖projau‖ =
∥∥∥∥ u · a
‖a‖2

a

∥∥∥∥ =
∣∣∣∣ u · a
‖a‖2

∣∣∣∣ ‖a‖ = |u · a|
‖a‖2

‖a‖

where the second equality follows from part (c) of Theorem 3.2.1 and the third from the
fact that ‖a‖2 > 0. Thus,

‖projau‖ = |u · a|
‖a‖ (12)

If θ denotes the angle between u and a, then u · a = ‖u‖‖a‖ cos θ , so (12) can also be
written as

‖projau‖ = ‖u‖| cos θ | (13)

(Verify.) A geometric interpretation of this result is given in Figure 3.3.4.

a

u

||u||

||u|| cos θ

θ

(a)  0 ≤ θ < π

2

a

u

(b)       < θ ≤ π

||u||

– ||u|| cos θ

θ

π

2

Figure 3.3.4

TheTheorem of Pythagoras In Section 3.2 we found that many theorems about vectors in R2 and R3 also hold in Rn.
Another example of this is the following generalization of the Theorem of Pythagoras
(Figure 3.3.5).

v

u

u + v

Figure 3.3.5

THEOREM 3.3.3 Theorem of Pythagoras in Rn

If u and v are orthogonal vectors in Rn with the Euclidean inner product, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 (14)

Proof Since u and v are orthogonal, we have u · v = 0, from which it follows that

‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2 = ‖u‖2 + ‖v‖2

EXAMPLE 6 Theorem of Pythagoras in R4

We showed in Example 1 that the vectors

u = (−2, 3, 1, 4) and v = (1, 2, 0,−1)

are orthogonal. Verify the Theorem of Pythagoras for these vectors.

Solution We leave it for you to confirm that

u + v = (−1, 5, 1, 3)

‖u + v‖2 = 36

‖u‖2 + ‖v‖2 = 30 + 6

Thus, ‖u + v‖2 = ‖u‖2 + ‖v‖2

Distance Problems
We will now show how orthogonal projections can be used to solve the following threeO PT I O NA L

distance problems:

Problem 1. Find the distance between a point and a line in R2.

Problem 2. Find the distance between a point and a plane in R3.

Problem 3. Find the distance between two parallel planes in R3.
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A method for solving the first two problems is provided by the next theorem. Since the
proofs of the two parts are similar, we will prove part (b) and leave part (a) as an exercise.

THEOREM 3.3.4

(a) In R2 the distance D between the point P0(x0, y0) and the line ax + by + c = 0
is

D = |ax0 + by0 + c|√
a2 + b2

(15)

(b) In R3 the distance D between the point P0(x0, y0, z0) and the plane
ax + by + cz + d = 0 is

D = |ax0 + by0 + cz0 + d|√
a2 + b2 + c2

(16)

Proof (b) The underlying idea of the proof is illustrated in Figure 3.3.6. As shown in
that figure, let Q(x1, y1, z1) be any point in the plane, and let n = (a, b, c) be a normal
vector to the plane that is positioned with its initial point at Q. It is now evident that the
distance D between P0 and the plane is simply the length (or norm) of the orthogonal

Distance from P0 to plane.

D D

P0(x0, y0, z0)

Q(x1, y1, z1)

n = (a, b, c)

projn QP0

Figure 3.3.6

projection of the vector
−−→
QP0 on n, which by Formula (12) is

D = ‖projn
−−→
QP0‖ = |−−→QP0 · n|

‖n‖
But −−→

QP0 = (x0 − x1, y0 − y1, z0 − z1)

−−→
QP0 · n = a(x0 − x1) + b(y0 − y1) + c(z0 − z1)

‖n‖ =
√

a2 + b2 + c2

Thus

D = |a(x0 − x1) + b(y0 − y1) + c(z0 − z1)|√
a2 + b2 + c2

(17)

Since the point Q(x1, y1, z1) lies in the given plane, its coordinates satisfy the equation
of that plane; thus

ax1 + by1 + cz1 + d = 0

or
d = −ax1 − by1 − cz1

Substituting this expression in (17) yields (16).

EXAMPLE 7 Distance Between a Point and a Plane

Find the distance D between the point (1,−4,−3) and the plane 2x − 3y + 6z = −1.

Solution Since the distance formulas in Theorem 3.3.4 require that the equations of the
line and plane be written with zero on the right side, we first need to rewrite the equation
of the plane as

2x − 3y + 6z + 1 = 0

from which we obtain

D = |2(1) + (−3)(−4) + 6(−3) + 1|√
22 + (−3)2 + 62

= |−3|
7

= 3

7
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The third distance problem posed above is to find the distance between two parallel
planes in R3. As suggested in Figure 3.3.7, the distance between a plane V and a plane

V

W

P0

Figure 3.3.7 The distance
between the parallel planes V
and W is equal to the distance
between P0 and W .

W can be obtained by finding any point P0 in one of the planes, and computing the
distance between that point and the other plane. Here is an example.

EXAMPLE 8 Distance Between Parallel Planes

The planes
x + 2y − 2z = 3 and 2x + 4y − 4z = 7

are parallel since their normals, (1, 2,−2) and (2, 4,−4), are parallel vectors. Find the
distance between these planes.

Solution To find the distance D between the planes, we can select an arbitrary point in
one of the planes and compute its distance to the other plane. By setting y = z = 0 in
the equation x + 2y − 2z = 3, we obtain the point P0(3, 0, 0) in this plane. From (16),
the distance between P0 and the plane 2x + 4y − 4z = 7 is

D = |2(3) + 4(0) + (−4)(0) − 7|√
22 + 42 + (−4)2

= 1

6

Exercise Set 3.3
In Exercises 1–2, determine whether u and v are orthogonal

vectors.

1. (a) u = (6, 1, 4), v = (2, 0,−3)

(b) u = (0, 0,−1), v = (1, 1, 1)

(c) u = (3,−2, 1, 3), v = (−4, 1,−3, 7)

(d) u = (5,−4, 0, 3), v = (−4, 1,−3, 7)

2. (a) u = (2, 3), v = (5,−7)

(b) u = (1, 1, 1), v = (0, 0, 0)

(c) u = (1,−5, 4), v = (3, 3, 3)

(d) u = (4, 1,−2, 5), v = (−1, 5, 3, 1)

In Exercises 3–6, find a point-normal form of the equation of
the plane passing through P and having n as a normal.

3. P(−1, 3,−2); n = (−2, 1,−1)

4. P(1, 1, 4); n = (1, 9, 8) 5. P(2, 0, 0); n = (0, 0, 2)

6. P(0, 0, 0); n = (1, 2, 3)

In Exercises 7–10, determine whether the given planes are
parallel.

7. 4x − y + 2z = 5 and 7x − 3y + 4z = 8

8. x − 4y − 3z − 2 = 0 and 3x − 12y − 9z − 7 = 0

9. 2y = 8x − 4z + 5 and x = 1
2 z + 1

4 y

10. (−4, 1, 2) · (x, y, z) = 0 and (8,−2,−4) · (x, y, z) = 0

In Exercises 11–12, determine whether the given planes are
perpendicular.

11. 3x − y + z − 4 = 0, x + 2z = −1

12. x − 2y + 3z = 4, −2x + 5y + 4z = −1

In Exercises 13–14, find ‖projau‖.

13. (a) u = (1,−2), a = (−4,−3)

(b) u = (3, 0, 4), a = (2, 3, 3)

14. (a) u = (5, 6), a = (2,−1)

(b) u = (3,−2, 6), a = (1, 2,−7)

In Exercises 15–20, find the vector component of u along a and
the vector component of u orthogonal to a.

15. u = (6, 2), a = (3,−9) 16. u = (−1,−2), a = (−2, 3)

17. u = (3, 1,−7), a = (1, 0, 5)

18. u = (2, 0, 1), a = (1, 2, 3)

19. u = (2, 1, 1, 2), a = (4,−4, 2,−2)

20. u = (5, 0,−3, 7), a = (2, 1,−1,−1)

In Exercises 21–24, find the distance between the point and the
line.
21. (−3, 1); 4x + 3y + 4 = 0

22. (−1, 4); x − 3y + 2 = 0

23. (2,−5); y = −4x + 2

24. (1, 8); 3x + y = 5

In Exercises 25–26, find the distance between the point and the
plane.

25. (3, 1,−2); x + 2y − 2z = 4
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26. (−1,−1, 2); 2x + 5y − 6z = 4

In Exercises 27–28, find the distance between the given parallel
planes.

27. 2x − y − z = 5 and −4x + 2y + 2z = 12

28. 2x − y + z = 1 and 2x − y + z = −1

29. Find a unit vector that is orthogonal to both u = (1, 0, 1) and
v = (0, 1, 1).

30. (a) Show that v = (a, b) and w = (−b, a) are orthogonal
vectors.

(b) Use the result in part (a) to find two vectors that are or-
thogonal to v = (2,−3).

(c) Find two unit vectors that are orthogonal to v = (−3, 4).

31. Do the points A(1, 1, 1), B(−2, 0, 3), and C(−3,−1, 1) form
the vertices of a right triangle? Explain.

32. Repeat Exercise 31 for the points A(3, 0, 2), B(4, 3, 0), and
C(8, 1,−1).

33. Show that if v is orthogonal to both w1 and w2, then v is or-
thogonal to k1w1 + k2w2 for all scalars k1 and k2.

34. Is it possible to have projau = projua? Explain.

Exercises 35–37 In physics and engineering the work W per-
formed by a constant force F applied in the direction of motion to
an object moving a distance d on a straight line is defined to be

W = ‖F‖d (force magnitude times distance)

In the case where the applied force is constant but makes an angle
θ with the direction of motion, and where the object moves along

a line from a point P to a point Q, we call
−→
PQ the displacement

and define the work performed by the force to be

W = F �
−→
PQ = ‖F‖‖−→PQ‖ cos θ

(see accompanying figure). Common units of work are ft-lb (foot
pounds) or Nm (Newton meters).

||F|| F

||F|| cos θ
θ

||PQ||

Work = (||F|| cos θ) ||PQ||

35. Show that the work performed by a constant force (not nec-
essarily in the direction of motion) can be expressed as

W = ±‖−→PQ‖‖proj−→
PQ

F‖

and explain when the + sign should be used and when the −
sign should be used.

36. As illustrated in the accompanying figure, a wagon is pulled
horizontally by exerting a force of 10 lb on the handle at an
angle of 60◦ with the horizontal. How much work is done in
moving the wagon 50 ft?

10 lb
60°

F

50 ft

37. A sailboat travels 100 m due north while the wind exerts a
force of 500 N toward the northeast. How much work does
the wind do?

Working with Proofs

38. Let u and v be nonzero vectors in 2- or 3-space, and let k = ‖u‖
and l = ‖v‖. Prove that the vector w = lu + kv bisects the
angle between u and v.

39. Prove part (a) of Theorem 3.3.4.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The vectors (3,−1, 2) and (0, 0, 0) are orthogonal.

(b) If u and v are orthogonal vectors, then for all nonzero scalars
k and m, ku and mv are orthogonal vectors.

(c) The orthogonal projection of u on a is perpendicular to the
vector component of u orthogonal to a.

(d) If a and b are orthogonal vectors, then for every nonzero vector
u, we have

proja(projb(u)) = 0

(e) If a and u are nonzero vectors, then

proja(proja(u)) = proja(u)

(f ) If the relationship
projau = projav

holds for some nonzero vector a, then u = v.

(g) For all vectors u and v, it is true that

‖u + v‖ = ‖u‖ + ‖v‖

Working withTechnology

T1. Find the lengths of the sides and the interior angles of the
triangle in R4 whose vertices are

P(2, 4, 2, 4, 2), Q(6, 4, 4, 4, 6), R(5, 7, 5, 7, 2)

T2. Express the vector u = (2, 3, 1, 2) in the form u = w1 + w2,
where w1 is a scalar multiple of a = (−1, 0, 2, 1) and w2 is orthog-
onal to a.
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3.4 The Geometry of Linear Systems
In this section we will use parametric and vector methods to study general systems of linear
equations. This work will enable us to interpret solution sets of linear systems with n

unknowns as geometric objects in Rn just as we interpreted solution sets of linear systems
with two and three unknowns as points, lines, and planes in R2 and R3.

Vector and Parametric
Equations of Lines in R2

and R3

In the last section we derived equations of lines and planes that are determined by a
point and a normal vector. However, there are other useful ways of specifying lines and
planes. For example, a unique line in R2 or R3 is determined by a point x0 on the line and
a nonzero vector v parallel to the line, and a unique plane in R3 is determined by a point
x0 in the plane and two noncollinear vectors v1 and v2 parallel to the plane. The best way
to visualize this is to translate the vectors so their initial points are at x0 (Figure 3.4.1).

Figure 3.4.1

x

y

x0

v x0

v1

v2

z

y

x

Let us begin by deriving an equation for the line L that contains the point x0 and is

x

y

x0

x

v

L

x – x0

Figure 3.4.2

parallel to v. If x is a general point on such a line, then, as illustrated in Figure 3.4.2, the
vector x − x0 will be some scalar multiple of v, say

x − x0 = tv or equivalently x = x0 + tv

As the variable t (called a parameter) varies from −� to �, the point x traces out the
line L. Accordingly, we have the following result.

THEOREM 3.4.1 Let L be the line in R2 or R3 that contains the point x0 and is parallel
to the nonzero vector v. Then the equation of the line through x0 that is parallel to v is

x = x0 + tv (1)

If x0 = 0, then the line passes through the origin and the equation has the form

x = tv (2)

Although it is not stated ex-
plicitly, it is understood in
Formulas (1) and (2) that the
parameter t varies from −�
to �. This applies to all vec-
tor and parametric equations
in this text except where stated
otherwise.

Vector and Parametric
Equations of Planes in R3

Next we will derive an equation for the plane W that contains the point x0 and is parallel
to the noncollinear vectors v1 and v2. As shown in Figure 3.4.3, if x is any point in the
plane, then by forming suitable scalar multiples of v1 and v2, say t1v1 and t2v2, we can
create a parallelogram with diagonal x − x0 and adjacent sides t1v1 and t2v2. Thus, we
have

x − x0 = t1v1 + t2v2 or equivalently x = x0 + t1v1 + t2v2

As the variables t1 and t2 (called parameters) vary independently from −� to �, the
point x varies over the entire plane W . In summary, we have the following result.
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THEOREM 3.4.2 Let W be the plane in R3 that contains the point x0 and is parallel
to the noncollinear vectors v1 and v2. Then an equation of the plane through x0 that is
parallel to v1 and v2 is given by

x = x0 + t1v1 + t2v2 (3)

If x0 = 0, then the plane passes through the origin and the equation has the form

x = t1v1 + t2v2 (4)

Remark Observe that the line through x0 represented by Equation (1) is the translation by x0 of

x0

x

W

t2v2 t1v1

z

y

x

Figure 3.4.3

the line through the origin represented by Equation (2) and that the plane through x0 represented
by Equation (3) is the translation by x0 of the plane through the origin represented by Equation
(4) (Figure 3.4.4).

Figure 3.4.4

x0

v x

y

x = x0 + tv
x = x0 + t1v1 + t2v2

x = t1v1 + t2v2x = tv

x0

v2

v1

z

y

x

Motivated by the forms of Formulas (1) to (4), we can extend the notions of line and
plane to Rn by making the following definitions.

DEFINITION 1 If x0 and v are vectors in Rn, and if v is nonzero, then the equation

x = x0 + tv (5)

defines the line through x0 that is parallel to v. In the special case where x0 = 0, the
line is said to pass through the origin.

DEFINITION 2 If x0, v1, and v2 are vectors in Rn, and if v1 and v2 are not collinear,
then the equation

x = x0 + t1v1 + t2v2 (6)

defines the plane through x0 that is parallel to v1 and v2. In the special case where
x0 = 0, the plane is said to pass through the origin.

Equations (5) and (6) are called vector forms of a line and plane in Rn. If the vectors
in these equations are expressed in terms of their components and the corresponding
components on each side are equated, then the resulting equations are called parametric
equations of the line and plane. Here are some examples.

EXAMPLE 1 Vector and Parametric Equations of Lines in R2 and R3

(a) Find a vector equation and parametric equations of the line in R2 that passes
through the origin and is parallel to the vector v = (−2, 3).

(b) Find a vector equation and parametric equations of the line in R3 that passes
through the point P0(1, 2,−3) and is parallel to the vector v = (4,−5, 1).

(c) Use the vector equation obtained in part (b) to find two points on the line that are
different from P0.
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Solution (a) It follows from (5) with x0 = 0 that a vector equation of the line is x = tv.
If we let x = (x, y), then this equation can be expressed in vector form as

(x, y) = t(−2, 3)

Equating corresponding components on the two sides of this equation yields the para-
metric equations

x = −2t, y = 3t

Solution (b) It follows from (5) that a vector equation of the line is x = x0 + tv. If we
let x = (x, y, z), and if we take x0 = (1, 2,−3), then this equation can be expressed in
vector form as

(x, y, z) = (1, 2,−3) + t(4,−5, 1) (7)

Equating corresponding components on the two sides of this equation yields the para-
metric equations

x = 1 + 4t, y = 2 − 5t, z = −3 + t

Solution (c) A point on the line represented by Equation (7) can be obtained by sub-
stituting a specific numerical value for the parameter t . However, since t = 0 produces
(x, y, z) = (1, 2,−3), which is the point P0, this value of t does not serve our purpose.
Taking t = 1 produces the point (5,−3,−2) and taking t = −1 produces the point
(−3, 7,−4). Any other distinct values for t (except t = 0) would work just as well.

EXAMPLE 2 Vector and Parametric Equations of a Plane in R3

Find vector and parametric equations of the plane x − y + 2z = 5.

Solution We will find the parametric equations first. We can do this by solving the
equation for any one of the variables in terms of the other two and then using those two
variables as parameters. For example, solving for x in terms of y and z yields

x = 5 + y − 2z (8)

and then using y and z as parameters t1 and t2, respectively, yields the parametric equa-
tions

x = 5 + t1 − 2t2, y = t1, z = t2

To obtain a vector equation of the plane we rewrite these parametric equations as

We would have obtained dif-
ferent parametric and vector
equations in Example 2 had we
solved (8) for y or z rather than
x. However, one can show the
same plane results in all three
cases as the parameters vary
from −� to �.

(x, y, z) = (5 + t1 − 2t2, t1, t2)

or, equivalently, as

(x, y, z) = (5, 0, 0) + t1(1, 1, 0) + t2(−2, 0, 1)

EXAMPLE 3 Vector and Parametric Equations of Lines and Planes in R4

(a) Find vector and parametric equations of the line through the origin of R4 that is
parallel to the vector v = (5,−3, 6, 1).

(b) Find vector and parametric equations of the plane inR4 that passes through the point
x0 = (2,−1, 0, 3) and is parallel to both v1 = (1, 5, 2,−4) and v2 = (0, 7,−8, 6).

Solution (a) If we let x = (x1, x2, x3, x4), then the vector equation x = tv can be ex-
pressed as

(x1, x2, x3, x4) = t(5,−3, 6, 1)

Equating corresponding components yields the parametric equations

x1 = 5t, x2 = −3t, x3 = 6t, x4 = t
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Solution (b) The vector equation x = x0 + t1v1 + t2v2 can be expressed as

(x1, x2, x3, x4) = (2,−1, 0, 3) + t1(1, 5, 2,−4) + t2(0, 7,−8, 6)

which yields the parametric equations

x1 = 2 + t1

x2 = −1 + 5t1 + 7t2
x3 = 2t1 − 8t2
x4 = 3 − 4t1 + 6t2

LinesThroughTwo Points
in Rn

If x0 and x1 are distinct points in Rn, then the line determined by these points is parallel to
the vector v = x1 − x0 (Figure 3.4.5), so it follows from (5) that the line can be expressed

x0

x1
v

Figure 3.4.5

in vector form as

x = x0 + t(x1 − x0) (9)

or, equivalently, as

x = (1 − t)x0 + tx1 (10)

These are called the two-point vector equations of a line in Rn.

EXAMPLE 4 A LineThroughTwo Points in R2

Find vector and parametric equations for the line in R2 that passes through the points
P(0, 7) and Q(5, 0).

Solution We will see below that it does not matter which point we take to be x0 and
which we take to be x1, so let us choose x0 = (0, 7) and x1 = (5, 0). It follows that
x1 − x0 = (5,−7) and hence that

(x, y) = (0, 7) + t(5,−7) (11)

which we can rewrite in parametric form as

x = 5t, y = 7 − 7t

Had we reversed our choices and taken x0 = (5, 0) and x1 = (0, 7), then the resulting
vector equation would have been

(x, y) = (5, 0) + t(−5, 7) (12)

and the parametric equations would have been

x = 5 − 5t, y = 7t

(verify). Although (11) and (12) look different, they both represent the line whose equa-
tion in rectangular coordinates is

7x + 5y = 35

(Figure 3.4.6). This can be seen by eliminating the parameter t from the parametricx

y
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7x + 5y = 35

Figure 3.4.6

equations (verify).

The point x = (x, y) in Equations (9) and (10) traces an entire line in R2 as the
parameter t varies over the interval (−�, �). If, however, we restrict the parameter to
vary from t = 0 to t = 1, then x will not trace the entire line but rather just the line
segment joining the points x0 and x1. The point x will start at x0 when t = 0 and end at
x1 when t = 1. Accordingly, we make the following definition.
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DEFINITION 3 If x0 and x1 are vectors in Rn, then the equation

x = x0 + t(x1 − x0) (0 ≤ t ≤ 1) (13)

defines the line segment from x0 to x1. When convenient, Equation (13) can be written
as

x = (1 − t)x0 + tx1 (0 ≤ t ≤ 1) (14)

EXAMPLE 5 A Line Segment from One Point to Another in R2

It follows from (13) and (14) that the line segment in R2 from x0 = (1,−3) to x1 = (5, 6)
can be represented either by the equation

x = (1,−3) + t (4, 9) (0 ≤ t ≤ 1)

or by the equation
x = (1 − t)(1,−3) + t(5, 6) (0 ≤ t ≤ 1)

Dot Product Form of a
Linear System

Our next objective is to show how to express linear equations and linear systems in dot
product notation. This will lead us to some important results about orthogonality and
linear systems.

Recall that a linear equation in the variables x1, x2, . . . , xn has the form

a1x1 + a2x2 + · · · + anxn = b (a1, a2, . . . , an not all zero) (15)

and that the corresponding homogeneous equation is

a1x1 + a2x2 + · · · + anxn = 0 (a1, a2, . . . , an not all zero) (16)

These equations can be rewritten in vector form by letting

a = (a1, a2, . . . , an) and x = (x1, x2, . . . , xn)

in which case Formula (15) can be written as

a · x = b (17)

and Formula (16) as

a · x = 0 (18)

Except for a notational change from n to a, Formula (18) is the extension toRn of Formula
(6) in Section 3.3. This equation reveals that each solution vector x of a homogeneous
equation is orthogonal to the coefficient vector a. To take this geometric observation a
step further, consider the homogeneous system

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = 0

If we denote the successive row vectors of the coefficient matrix by r1, r2, . . . , rm, then
we can rewrite this system in dot product form as

r1 · x = 0
r2 · x = 0

...
...

rm · x = 0

(19)

from which we see that every solution vector x is orthogonal to every row vector of the
coefficient matrix. In summary, we have the following result.
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THEOREM 3.4.3 If A is an m × n matrix, then the solution set of the homogeneous
linear system Ax = 0 consists of all vectors in Rn that are orthogonal to every row
vector of A.

EXAMPLE 6 Orthogonality of RowVectors and SolutionVectors

We showed in Example 6 of Section 1.2 that the general solution of the homogeneous
linear system

⎡
⎢⎢⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

is
x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

which we can rewrite in vector form as

x = (−3r − 4s − 2t, r,−2s, s, t, 0)

According to Theorem 3.4.3, the vector x must be orthogonal to each of the row vectors

r1 = (1, 3,−2, 0, 2, 0)

r2 = (2, 6,−5,−2, 4,−3)

r3 = (0, 0, 5, 10, 0, 15)

r4 = (2, 6, 0, 8, 4, 18)

We will confirm that x is orthogonal to r1, and leave it for you to verify that x is orthogonal
to the other three row vectors as well. The dot product of r1 and x is

r1 · x = 1(−3r − 4s − 2t) + 3(r) + (−2)(−2s) + 0(s) + 2(t) + 0(0) = 0

which establishes the orthogonality.

The Relationship Between
Ax = 0 and Ax = b

We will conclude this section by exploring the relationship between the solutions of
a homogeneous linear system Ax = 0 and the solutions (if any) of a nonhomogeneous
linear system Ax = b that has the same coefficient matrix. These are called corresponding
linear systems.

To motivate the result we are seeking, let us compare the solutions of the correspond-
ing linear systems

⎡
⎢⎢⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0
−1

5
6

⎤
⎥⎥⎦

We showed in Examples 5 and 6 of Section 1.2 that the general solutions of these linear
systems can be written in parametric form as

homogeneous −→ x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

nonhomogeneous −→ x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3
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which we can then rewrite in vector form as

homogeneous −→ (x1, x2, x3, x4, x5, x6) = (−3r − 4s − 2t, r,−2s, s, t, 0)
nonhomogeneous −→ (x1, x2, x3, x4, x5, x6) = (− 3r − 4s − 2t, r,−2s, s, t, 1

3

)
By splitting the vectors on the right apart and collecting terms with like parameters, we
can rewrite these equations as

homogeneous −→ (x1, x2, x3, x4, x5) = r(−3, 1, 0, 0, 0) + s(−4, 0,−2, 1, 0, 0) + t(−2, 0, 0, 0, 1, 0) (20)

nonhomogeneous −→ (x1, x2, x3, x4, x5) = r(−3, 1, 0, 0, 0) + s(−4, 0,−2, 1, 0, 0)

+ t(−2, 0, 0, 0, 1, 0) + (
0, 0, 0, 0, 0, 1

3

)
(21)

Formulas (20) and (21) reveal that each solution of the nonhomogeneous system can be
obtained by adding the fixed vector

(
0, 0, 0, 0, 0, 1

3

)
to the corresponding solution of the

homogeneous system. This is a special case of the following general result.

THEOREM 3.4.4 The general solution of a consistent linear system Ax = b can be
obtained by adding any specific solution of Ax = b to the general solution of Ax = 0.

Proof Let x0 be any specific solution of Ax = b, let W denote the solution set of Ax = 0,
and let x0 + W denote the set of all vectors that result by adding x0 to each vector in
W . We must show that if x is a vector in x0 + W , then x is a solution of Ax = b, and
conversely that every solution of Ax = b is in the set x0 + W .

Assume first that x is a vector in x0 + W. This implies that x is expressible in the
form x = x0 + w, where Ax0 = b and Aw = 0. Thus,

Ax = A(x0 + w) = Ax0 + Aw = b + 0 = b

which shows that x is a solution of Ax = b.
Conversely, let x be any solution of Ax = b. To show that x is in the set x0 + W we

must show that x is expressible in the form

x = x0 + w (22)

where w is in W (i.e., Aw = 0). We can do this by taking w = x − x0. This vector obvi-
ously satisfies (22), and it is in W since

Aw = A(x − x0) = Ax − Ax0 = b − b = 0

Remark Theorem 3.4.4 has a useful geometric interpretation that is illustrated in Figure 3.4.7.

Ax = b

Ax = 0

0

x0

Figure 3.4.7 The solution set
of Ax = b is a translation of the
solution space of Ax = 0.

If, as discussed in Section 3.1, we interpret vector addition as translation, then the theorem states
that if x0 is any specific solution of Ax = b, then the entire solution set of Ax = b can be obtained
by translating the solution space of Ax = 0 by the vector x0.

Exercise Set 3.4
In Exercises 1–4, find vector and parametric equations of the

line containing the point and parallel to the vector.

1. Point: (−4, 1); vector: v = (0,−8)

2. Point: (2,−1); vector: v = (−4,−2)

3. Point: (0, 0, 0); vector: v = (−3, 0, 1)

4. Point: (−9, 3, 4); vector: v = (−1, 6, 0)

In Exercises 5–8, use the given equation of a line to find a point
on the line and a vector parallel to the line.

5. x = (3 − 5t,−6 − t)

6. (x, y, z) = (4t, 7, 4 + 3t)

7. x = (1 − t)(4, 6) + t(−2, 0)

8. x = (1 − t)(0,−5, 1)
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In Exercises 9–12, find vector and parametric equations of
the plane that contains the given point and is parallel to the two
vectors.

9. Point: (−3, 1, 0); vectors: v1 = (0,−3, 6) and
v2 = (−5, 1, 2)

10. Point: (0, 6,−2); vectors: v1 = (0, 9,−1) and
v2 = (0,−3, 0)

11. Point: (−1, 1, 4); vectors: v1 = (6,−1, 0) and
v2 = (−1, 3, 1)

12. Point: (0, 5,−4); vectors: v1 = (0, 0,−5) and
v2 = (1,−3,−2)

In Exercises 13–14, find vector and parametric equations of
the line in R2 that passes through the origin and is orthogonal
to v.

13. v = (−2, 3) 14. v = (1,−4)

In Exercises 15–16, find vector and parametric equations of
the plane in R3 that passes through the origin and is orthogonal
to v.
15. v = (4, 0,−5) [Hint: Construct two nonparallel vectors or-

thogonal to v in R3].

16. v = (3, 1,−6)

In Exercises 17–20, find the general solution to the linear sys-
tem and confirm that the row vectors of the coefficient matrix are
orthogonal to the solution vectors.

17. x1 + x2 + x3 = 0

2x1 + 2x2 + 2x3 = 0

3x1 + 3x2 + 3x3 = 0

18. x1 + 3x2 − 4x3 = 0

2x1 + 6x2 − 8x3 = 0

19. x1 + 5x2 + x3 + 2x4 − x5 = 0

x1 − 2x2 − x3 + 3x4 + 2x5 = 0

20. x1 + 3x2 − 4x3 = 0

x1 + 2x2 + 3x3 = 0

21. (a) The equation x + y + z = 1 can be viewed as a linear sys-
tem of one equation in three unknowns. Express a general
solution of this equation as a particular solution plus a
general solution of the associated homogeneous equation.

(b) Give a geometric interpretation of the result in part (a).

22. (a) The equation x + y = 1 can be viewed as a linear system
of one equation in two unknowns. Express a general solu-
tion of this equation as a particular solution plus a general
solution of the associated homogeneous system.

(b) Give a geometric interpretation of the result in part (a).

23. (a) Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those
vectors in R3 that are orthogonal to a = (1, 1, 1) and
b = (−2, 3, 0).

(b) What kind of geometric object is the solution space?

(c) Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

24. (a) Find a homogeneous linear system of two equations in
three unknowns whose solution space consists of those
vectors in R3 that are orthogonal to a = (−3, 2,−1) and
b = (0,−2,−2).

(b) What kind of geometric object is the solution space?

(c) Find a general solution of the system obtained in part (a),
and confirm that Theorem 3.4.3 holds.

25. Consider the linear systems⎡
⎣ 3 2 −1

6 4 −2
−3 −2 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

and ⎡
⎣ 3 2 −1

6 4 −2
−3 −2 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

4
−2

⎤
⎦

(a) Find a general solution of the homogeneous system.

(b) Confirm that x1 = 1, x2 = 0, x3 = 1 is a solution of the
nonhomogeneous system.

(c) Use the results in parts (a) and (b) to find a general solution
of the nonhomogeneous system.

(d) Check your result in part (c) by solving the nonhomoge-
neous system directly.

26. Consider the linear systems⎡
⎣1 −2 3

2 1 4
1 −7 5

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

and ⎡
⎣1 −2 3

2 1 4
1 −7 5

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣ 2

7
−1

⎤
⎦

(a) Find a general solution of the homogeneous system.

(b) Confirm that x1 = 1, x2 = 1, x3 = 1 is a solution of the
nonhomogeneous system.

(c) Use the results in parts (a) and (b) to find a general solution
of the nonhomogeneous system.

(d) Check your result in part (c) by solving the nonhomoge-
neous system directly.

In Exercises 27–28, find a general solution of the system, and
use that solution to find a general solution of the associated homo-
geneous system and a particular solution of the given system.

27.

⎡
⎣3 4 1 2

6 8 2 5
9 12 3 10

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣ 3

7
13

⎤
⎦
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28.

⎡
⎣9 −3 5 6

6 −2 3 1
3 −1 3 14

⎤
⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎣ 4

5
−8

⎤
⎦

29. Let x = x0 + tv be a line in Rn, and let T : Rn → Rn be a ma-
trix operator on Rn. What kind of geometric object is the
image of this line under the operator T ? Explain your reason-
ing.

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) The vector equation of a line can be determined from any point
lying on the line and a nonzero vector parallel to the line.

(b) The vector equation of a plane can be determined from any
point lying in the plane and a nonzero vector parallel to the
plane.

(c) The points lying on a line through the origin in R2 or R3 are
all scalar multiples of any nonzero vector on the line.

(d) All solution vectors of the linear system Ax = b are orthogo-
nal to the row vectors of the matrix A if and only if b = 0.

(e) The general solution of the nonhomogeneous linear system
Ax = b can be obtained by adding b to the general solution
of the homogeneous linear system Ax = 0.

(f ) If x1 and x2 are two solutions of the nonhomogeneous linear
system Ax = b, then x1 − x2 is a solution of the corresponding
homogeneous linear system.

Working withTechnology

T1. Find the general solution of the homogeneous linear system

⎡
⎢⎢⎢⎣

2 6 −4 0 4 0

0 0 1 2 0 3

6 18 −15 −6 12 −9

1 3 0 4 2 9

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦

and confirm that each solution vector is orthogonal to every row
vector of the coefficient matrix in accordance with Theorem 3.4.3.

3.5 Cross Product
This optional section is concerned with properties of vectors in 3-space that are important
to physicists and engineers. It can be omitted, if desired, since subsequent sections do not
depend on its content. Among other things, we define an operation that provides a way of
constructing a vector in 3-space that is perpendicular to two given vectors, and we give a
geometric interpretation of 3 × 3 determinants.

Cross Product of Vectors In Section 3.2 we defined the dot product of two vectors u and v inn-space. That operation
produced a scalar as its result. We will now define a type of vector multiplication that
produces a vector as the result but which is applicable only to vectors in 3-space.

DEFINITION 1 If u = (u1, u2, u3) and v = (v1, v2, v3) are vectors in 3-space, then
the cross product u × v is the vector defined by

u × v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

or, in determinant notation,

u × v =
(∣∣∣∣u2 u3

v2 v3

∣∣∣∣ ,−
∣∣∣∣u1 u3

v1 v3

∣∣∣∣ ,
∣∣∣∣u1 u2

v1 v2

∣∣∣∣
)

(1)

Remark Instead of memorizing (1), you can obtain the components of u × v as follows:

• Form the 2 × 3 matrix
[
u1 u2 u3

v1 v2 v3

]
whose first row contains the components of u and whose

second row contains the components of v.
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• To find the first component of u × v, delete the first column and take the determinant; to find
the second component, delete the second column and take the negative of the determinant; and
to find the third component, delete the third column and take the determinant.

EXAMPLE 1 Calculating a Cross Product

Find u × v, where u = (1, 2,−2) and v = (3, 0, 1).

Solution From either (1) or the mnemonic in the preceding remark, we have

u × v =
(∣∣∣∣2 −2

0 1

∣∣∣∣,−
∣∣∣∣1 −2

3 1

∣∣∣∣,
∣∣∣∣1 2

3 0

∣∣∣∣
)

= (2,−7,−6)

The following theorem gives some important relationships between the dot product
and cross product and also shows that u × v is orthogonal to both u and v.

THEOREM 3.5.1 Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

(a) u · (u × v) = 0 [ u × v is orthogonal to u ]

(b) v · (u × v) = 0 [ u × v is orthogonal to v ]

(c) ‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2 [ Lagrange’s identity ]

(d ) u × (v × w) = (u · w)v − (u · v)w [ vector triple product ]

(e) (u × v) × w = (u · w)v − (v · w)u [ vector triple product ]

Proof (a) Let u = (u1, u2, u3) and v = (v1, v2, v3). Then

The formulas for the vector
triple products in parts (d)
and (e) of Theorem 3.5.1 are
useful because they allow us
to use dot products and scalar
multiplications to perform cal-
culations that would other-
wise require determinants to
calculate the required cross
products.

u · (u × v) = (u1, u2, u3) · (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

= u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1) = 0

Proof (b) Similar to (a).

Proof (c) Since

‖u × v‖2 = (u2v3 − u3v2)
2 + (u3v1 − u1v3)

2 + (u1v2 − u2v1)
2 (2)

and

‖u‖2‖v‖2 − (u · v)2 = (u2
1 + u2

2 + u2
3)(v

2
1 + v2

2 + v2
3) − (u1v1 + u2v2 + u3v3)

2 (3)

the proof can be completed by “multiplying out” the right sides of (2) and (3) and
verifying their equality.

Proof (d ) and (e) See Exercises 40 and 41.

Historical Note The cross product notation A × B was introduced by the American physicist and

mathematician J.Willard Gibbs, (see p. 146) in a series of unpublished lecture notes for his students

atYale University. It appeared in a published work for the first time in the second edition of the book

Vector Analysis, by EdwinWilson (1879–1964), a student of Gibbs. Gibbs originally referred to A × B

as the “skew product.”
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EXAMPLE 2 u × v Is Perpendicular to u and to v

Consider the vectors
u = (1, 2,−2) and v = (3, 0, 1)

In Example 1 we showed that

u × v = (2,−7,−6)

Since
u · (u × v) = (1)(2) + (2)(−7) + (−2)(−6) = 0

and
v · (u × v) = (3)(2) + (0)(−7) + (1)(−6) = 0

u × v is orthogonal to both u and v, as guaranteed by Theorem 3.5.1.

The main arithmetic properties of the cross product are listed in the next theorem.

THEOREM 3.5.2 Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:

(a) u × v = −(v × u)

(b) u × (v + w) = (u × v) + (u × w)

(c) (u + v) × w = (u × w) + (v × w)

(d ) k(u × v) = (ku) × v = u × (kv)

(e) u × 0 = 0 × u = 0

( f ) u × u = 0

The proofs follow immediately from Formula (1) and properties of determinants; for
example, part (a) can be proved as follows.

Proof (a) Interchanging u and v in (1) interchanges the rows of the three determinants
on the right side of (1) and hence changes the sign of each component in the cross pro-
duct. Thus u × v = −(v × u).

The proofs of the remaining parts are left as exercises.

Joseph Louis Lagrange
(1736–1813)

Historical Note Joseph Louis Lagrange was a French-Italian mathematician and astronomer. Although his
father wanted him to become a lawyer, Lagrange was attracted to mathematics and astronomy after reading
a memoir by the astronomer Halley. At age 16 he began to study mathematics on his own and by age 19
was appointed to a professorship at the Royal Artillery School inTurin. The following year he solved some
famous problems using new methods that eventually blossomed into a branch of mathematics called the
calculus of variations. Thesemethods and Lagrange’s applications of them to problems in celestialmechanics
were so monumental that by age 25 he was regarded by many of his contemporaries as the greatest living
mathematician. One of Lagrange’s most famous works is a memoir, Mécanique Analytique, in which he
reduced the theory of mechanics to a few general formulas from which all other necessary equations could
be derived. Napoleon was a great admirer of Lagrange and showered him with many honors. In spite of his
fame, Lagrange was a shy and modest man. On his death, he was buried with honor in the Pantheon.

[Image: © traveler1116/iStockphoto]
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EXAMPLE 3 Cross Products of the Standard UnitVectors

Recall from Section 3.2 that the standard unit vectors in 3-space are

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

These vectors each have length 1 and lie along the coordinate axes (Figure 3.5.1). Every

z

k

j

i

y

x

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

Figure 3.5.1 The standard
unit vectors.

vector v = (v1, v2, v3) in 3-space is expressible in terms of i, j, and k since we can write

v = (v1, v2, v3) = v1(1, 0, 0) + v2(0, 1, 0) + v3(0, 0, 1) = v1i + v2j + v3k

For example,
(2,−3, 4) = 2i − 3j + 4k

From (1) we obtain

i × j =
(∣∣∣∣0 0

1 0

∣∣∣∣,−
∣∣∣∣1 0

0 0

∣∣∣∣,
∣∣∣∣1 0

0 1

∣∣∣∣
)

= (0, 0, 1) = k

You should have no trouble obtaining the following results:

i × i = 0 j × j = 0 k × k = 0

i × j = k j × k = i k × i = j

j × i = −k k × j = −i i × k = −j

Figure 3.5.2 is helpful for remembering these results. Referring to this diagram, the cross

i

j
k

Figure 3.5.2 product of two consecutive vectors going clockwise is the next vector around, and the
cross product of two consecutive vectors going counterclockwise is the negative of the
next vector around.

Determinant Form of Cross
Product

It is also worth noting that a cross product can be represented symbolically in the form

u × v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣ =
∣∣∣∣u2 u3

v2 v3

∣∣∣∣ i −
∣∣∣∣u1 u3

v1 v3

∣∣∣∣ j +
∣∣∣∣u1 u2

v1 v2

∣∣∣∣ k (4)

For example, if u = (1, 2,−2) and v = (3, 0, 1), then

u × v =

∣∣∣∣∣∣∣
i j k
1 2 −2

3 0 1

∣∣∣∣∣∣∣ = 2i − 7j − 6k

which agrees with the result obtained in Example 1.

WARNING It is not true in general that u × (v × w) = (u × v) × w. For example,

i × ( j × j) = i × 0 = 0

and
(i × j) × j = k × j = −i

so
i × ( j × j) �= (i × j) × j
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We know from Theorem 3.5.1 that u × v is orthogonal to both u and v. If u and
v are nonzero vectors, it can be shown that the direction of u × v can be determined
using the following “right-hand rule” (Figure 3.5.3): Let θ be the angle between u and

u

v

u × v

θ

Figure 3.5.3

v, and suppose u is rotated through the angle θ until it coincides with v. If the fingers of
the right hand are cupped so that they point in the direction of rotation, then the thumb
indicates (roughly) the direction of u × v.

You may find it instructive to practice this rule with the products

i × j = k, j × k = i, k × i = j

Geometric Interpretation of
Cross Product

If u and v are vectors in 3-space, then the norm of u × v has a useful geometric interpre-
tation. Lagrange’s identity, given in Theorem 3.5.1, states that

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2 (5)

If θ denotes the angle between u and v, then u · v = ‖u‖‖v‖ cos θ , so (5) can be rewritten
as

‖u × v‖2 = ‖u‖2‖v‖2 − ‖u‖2‖v‖2 cos2 θ

= ‖u‖2‖v‖2(1 − cos2 θ)

= ‖u‖2‖v‖2 sin2 θ

Since 0 ≤ θ ≤ π , it follows that sin θ ≥ 0, so this can be rewritten as

‖u × v‖ = ‖u‖‖v‖ sin θ (6)

But ‖v‖ sin θ is the altitude of the parallelogram determined by u and v (Figure 3.5.4).

θ

||u||

||v||

v

u

||v|| sin θ

Figure 3.5.4

Thus, from (6), the area A of this parallelogram is given by

A = (base)(altitude) = ‖u‖‖v‖ sin θ = ‖u × v‖
This result is even correct if u and v are collinear, since the parallelogram determined by
u and v has zero area and from (6) we have u × v = 0 because θ = 0 in this case. Thus
we have the following theorem.

THEOREM 3.5.3 Area of a Parallelogram

If u and v are vectors in 3-space, then ‖u × v‖ is equal to the area of the parallelogram
determined by u and v.

EXAMPLE 4 Area of aTriangle

Find the area of the triangle determined by the points P1(2, 2, 0), P2(−1, 0, 2), and
P3(0, 4, 3).

Solution The area A of the triangle is 1
2 the area of the parallelogram determined by

the vectors
−−→
P1P2 and

−−→
P1P3 (Figure 3.5.5). Using the method discussed in Example 1 of

Section 3.1,
−−→
P1P2 = (−3,−2, 2) and

−−→
P1P3 = (−2, 2, 3). It follows that

z

y

x
P1(2, 2, 0)

P3(0, 4, 3)
P2(–1, 0, 2)

Figure 3.5.5

−−→
P1P2 ×−−→

P1P3 = (−10, 5,−10)

(verify) and consequently that

A = 1
2‖

−−→
P1P2 ×−−→

P1P3‖ = 1
2 (15) = 15

2
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DEFINITION 2 If u, v, and w are vectors in 3-space, then

u · (v × w)

is called the scalar triple product of u, v, and w.

The scalar triple product of u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3)

can be calculated from the formula

u · (v × w) =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ (7)

This follows from Formula (4) since

u · (v × w) = u ·
(∣∣∣∣v2 v3

w2 w3

∣∣∣∣ i −
∣∣∣∣v1 v3

w1 w3

∣∣∣∣ j +
∣∣∣∣v1 v2

w1 w2

∣∣∣∣ k
)

=
∣∣∣∣ v2 v3

w2 w3

∣∣∣∣ u1 −
∣∣∣∣v1 v3

w1 w3

∣∣∣∣ u2 +
∣∣∣∣v1 v2

w1 w2

∣∣∣∣ u3

=

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣
EXAMPLE 5 Calculating a ScalarTriple Product

Calculate the scalar triple product u · (v × w) of the vectors

u = 3i − 2j − 5k, v = i + 4j − 4k, w = 3j + 2k

Solution From (7),

u · (v × w) =

∣∣∣∣∣∣∣
3 −2 −5

1 4 −4

0 3 2

∣∣∣∣∣∣∣
= 3

∣∣∣∣4 −4

3 2

∣∣∣∣− (−2)

∣∣∣∣1 −4

0 2

∣∣∣∣+ (−5)

∣∣∣∣1 4

0 3

∣∣∣∣
= 60 + 4 − 15 = 49

Remark The symbol (u · v) × w makes no sense because we cannot form the cross product of
a scalar and a vector. Thus, no ambiguity arises if we write u · v × w rather than u · (v × w).
However, for clarity we will usually keep the parentheses.

It follows from (7) that

u · (v × w) = w · (u × v) = v · (w × u)

since the 3 × 3 determinants that represent these products can be obtained from one
another by two row interchanges. (Verify.) These relationships can be remembered by
moving the vectors u, v, and w clockwise around the vertices of the triangle in Figure 3.5.6.

w v

u

×

Figure 3.5.6
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Geometric Interpretation of
Determinants

The next theorem provides a useful geometric interpretation of 2 × 2 and 3 × 3 deter-
minants.

THEOREM 3.5.4

(a) The absolute value of the determinant

det

[
u1 u2

v1 v2

]
is equal to the area of the parallelogram in 2-space determined by the vectors
u = (u1, u2) and v = (v1, v2). (See Figure 3.5.7a.)

(b) The absolute value of the determinant

det

⎡
⎢⎣u1 u2 u3

v1 v2 v3

w1 w2 w3

⎤
⎥⎦

is equal to the volume of the parallelepiped in 3-space determined by the vectors
u = (u1, u2, u3), v = (v1, v2, v3), and w = (w1, w2, w3). (See Figure 3.5.7b.)

y

x

z

y

x

(v1, v2)

(u1, u2)
u

v

(u1, u2, u3)

(w1, w2, w3)

(v1, v2, v3)w

u

v

(a) (b)

u

v

(u1, u2, 0)

(v1, v2, 0)

(c)

z

y

x

Figure 3.5.7

Proof (a) The key to the proof is to use Theorem 3.5.3. However, that theorem applies
to vectors in 3-space, whereas u = (u1, u2) and v = (v1, v2) are vectors in 2-space. To
circumvent this “dimension problem,” we will view u and v as vectors in the xy-plane of
an xyz-coordinate system (Figure 3.5.7c), in which case these vectors are expressed as
u = (u1, u2, 0) and v = (v1, v2, 0). Thus

u × v =

∣∣∣∣∣∣∣
i j k

u1 u2 0

v1 v2 0

∣∣∣∣∣∣∣ =
∣∣∣∣u1 u2

v1 v2

∣∣∣∣ k = det

[
u1 u2

v1 v2

]
k

It now follows from Theorem 3.5.3 and the fact that ‖k‖ = 1 that the area A of the
parallelogram determined by u and v is

A = ‖u × v‖ =
∥∥∥∥det

[
u1 u2

v1 v2

]
k

∥∥∥∥ =
∣∣∣∣det

[
u1 u2

v1 v2

]∣∣∣∣ ‖k‖ =
∣∣∣∣det

[
u1 u2

v1 v2

]∣∣∣∣
which completes the proof.

Proof (b) As shown in Figure 3.5.8, take the base of the parallelepiped determined by u,

h = ||projv×wu||

u

v

v × w

w

Figure 3.5.8

v, and w to be the parallelogram determined by v and w. It follows from Theorem 3.5.3
that the area of the base is ‖v × w‖ and, as illustrated in Figure 3.5.8, the height h of
the parallelepiped is the length of the orthogonal projection of u on v × w. Therefore,
by Formula (12) of Section 3.3,
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h = ‖projv×wu‖ = |u · (v × w)|
‖v × w‖

It follows that the volume V of the parallelepiped is

V = (area of base) · height = ‖v × w‖ |u · (v × w)|
‖v × w‖ = |u · (v × w)|

so from (7),

V =

∣∣∣∣∣∣∣det

⎡
⎢⎣u1 u2 u3

v1 v2 v3

w1 w2 w3

⎤
⎥⎦
∣∣∣∣∣∣∣ (8)

which completes the proof.

Remark If V denotes the volume of the parallelepiped determined by vectors u, v, and w, then
it follows from Formulas (7) and (8) that

V =
[

volume of parallelepiped

determined by u, v, and w

]
= |u · (v × w)| (9)

From this result and the discussion immediately following Definition 3 of Section 3.2, we can
conclude that

u · (v × w) = ±V

where the + or − results depending on whether u makes an acute or an obtuse angle with v × w.

Formula (9) leads to a useful test for ascertaining whether three given vectors lie in
the same plane. Since three vectors not in the same plane determine a parallelepiped of
positive volume, it follows from (9) that |u · (v × w)| = 0 if and only if the vectors u, v,
and w lie in the same plane. Thus we have the following result.

THEOREM 3.5.5 If the vectors u = (u1, u2, u3), v = (v1, v2, v3), and
w = (w1, w2, w3) have the same initial point, then they lie in the same plane if and only
if

u · (v × w) =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ = 0

Exercise Set 3.5
In Exercises 1–2, let u = (3, 2,−1), v = (0, 2,−3), and

w = (2, 6, 7). Compute the indicated vectors.

1. (a) v × w (b) w × v (c) (u + v) × w

(d) v · (v × w) (e) v × v (f) (u − 3w) × (u − 3w)

2. (a) u × v (b) −(u × v) (c) u × (v + w)

(d) w · (w × v) (e) w × w (f ) (7v − 3u) × (7v − 3u)

In Exercises 3–4, let u, v, and w be the vectors in Exercises 1–2.
Use Lagrange’s identity to rewrite the expression using only dot
products and scalar multiplications, and then confirm your result
by evaluating both sides of the identity.

3. ‖u × w‖2 4. ‖v × u‖2

In Exercises 5–6, let u, v, and w be the vectors in Exercises 1–2.
Compute the vector triple product directly, and check your result
by using parts (d) and (e) of Theorem 3.5.1.

5. u × (v × w) 6. (u × v) × w

In Exercises 7–8, use the cross product to find a vector that is
orthogonal to both u and v.

7. u = (−6, 4, 2), v = (3, 1, 5)

8. u = (1, 1,−2), v = (2,−1, 2)

In Exercises 9–10, find the area of the parallelogram deter-
mined by the given vectors u and v.

9. u = (1,−1, 2), v = (0, 3, 1)
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10. u = (3,−1, 4), v = (6,−2, 8)

In Exercises 11–12, find the area of the parallelogram with the
given vertices.

11. P1(1, 2), P2(4, 4), P3(7, 5), P4(4, 3)

12. P1(3, 2), P2(5, 4), P3(9, 4), P4(7, 2)

In Exercises 13–14, find the area of the triangle with the given
vertices.
13. A(2, 0), B(3, 4), C(−1, 2)

14. A(1, 1), B(2, 2), C(3,−3)

In Exercises 15–16, find the area of the triangle in 3-space that
has the given vertices.

15. P1(2, 6,−1), P2(1, 1, 1), P3(4, 6, 2)

16. P(1,−1, 2), Q(0, 3, 4), R(6, 1, 8)

In Exercises 17–18, find the volume of the parallelepiped with
sides u, v, and w.

17. u = (2,−6, 2), v = (0, 4,−2), w = (2, 2,−4)

18. u = (3, 1, 2), v = (4, 5, 1), w = (1, 2, 4)

In Exercises 19–20, determine whether u, v, and w lie in the
same plane when positioned so that their initial points coincide.

19. u = (−1,−2, 1), v = (3, 0,−2), w = (5,−4, 0)

20. u = (5,−2, 1), v = (4,−1, 1), w = (1,−1, 0)

In Exercises 21–24, compute the scalar triple product
u · (v × w).

21. u = (−2, 0, 6), v = (1,−3, 1), w = (−5,−1, 1)

22. u = (−1, 2, 4), v = (3, 4,−2), w = (−1, 2, 5)

23. u = (a, 0, 0), v = (0, b, 0), w = (0, 0, c)

24. u = i, v = j, w = k

In Exercises 25–26, suppose that u · (v × w) = 3. Find

25. (a) u · (w × v) (b) (v × w) · u (c) w · (u × v)

26. (a) v · (u × w) (b) (u × w) · v (c) v · (w × w)

27. (a) Find the area of the triangle having vertices A(1, 0, 1),
B(0, 2, 3), and C(2, 1, 0).

(b) Use the result of part (a) to find the length of the altitude
from vertex C to side AB.

28. Use the cross product to find the sine of the angle between the
vectors u = (2, 3,−6) and v = (2, 3, 6).

29. Simplify (u + v) × (u − v).

30. Let a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), and
d = (d1, d2, d3). Show that

(a + d) · (b × c) = a · (b × c) + d · (b × c)

Exercises 31–32 You know from your own experience that
the tendency for a force to cause a rotation about an axis depends
on the amount of force applied and its distance from the axis of
rotation. For example, it is easier to close a door by pushing on
its outer edge than close to its hinges. Moreover, the harder you
push, the faster the door will close. In physics, the tendency for a
force vector F to cause rotational motion is a vector called torque
(denoted by τ ). It is defined as

τ = F × d

where d is the vector from the axis of rotation to the point at which
the force is applied. It follows from Formula (6) that

‖τ‖ = ‖F × d‖ = ‖F‖‖d‖ sin θ

where θ is the angle between the vectors F and d. This is called the
scalar moment of F about the axis of rotation and is typically mea-
sured in units of Newton-meters (Nm) or foot pounds (ft–lb).

31. The accompanying figure shows a force F of 1000 N applied
to the corner of a box.

(a) Find the scalar moment of F about the point P .

(b) Find the direction angles of the vector moment of F about
the point P to the nearest degree. [See directions for Ex-
ercises 21–25 of Section 3.2.]

2 m

1 m

1000 N

1 m

P

Q

z

x

y

Figure Ex-31

32. As shown in the accompanying figure, a force of 200 N is ap-
plied at an angle of 18◦ to a point near the end of a monkey
wrench. Find the scalar moment of the force about the center
of the bolt. [Note: Treat the wrench as two-dimensional.]

30 mm

200 mm 200 N

18°

Figure Ex-32

Working with Proofs

33. Let u, v, and w be nonzero vectors in 3-space with the same
initial point, but such that no two of them are collinear. Prove
that

(a) u × (v × w) lies in the plane determined by v and w.

(b) (u × v) × w lies in the plane determined by u and v.

34. Prove the following identities.

(a) (u + kv) × v = u × v

(b) u · (v × z) = −(u × z) · v
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35. Prove: If a, b, c, and d lie in the same plane, then
(a × b) × (c × d) = 0.

36. Prove: If θ is the angle between u and v and u · v �= 0, then
tan θ = ‖u × v‖/(u · v).

37. Prove that if u, v, and w are vectors in R3, no two of which are
collinear, then u × (v × w) lies in the plane determined by v
and w.

38. It is a theorem of solid geometry that the volume of a tetra-
hedron is 1

3 (area of base) · (height). Use this result to prove
that the volume of a tetrahedron whose sides are the vectors
a, b, and c is 1

6 |a · (b × c)| (see accompanying figure).

b
a

c

Figure Ex-38

39. Use the result of Exercise 38 to find the volume of the tetra-
hedron with vertices P , Q, R, S.

(a) P(−1, 2, 0), Q(2, 1,−3), R(1, 1, 1), S(3,−2, 3)

(b) P(0, 0, 0), Q(1, 2,−1), R(3, 4, 0), S(−1,−3, 4)

40. Prove part (d) of Theorem 3.5.1. [Hint: First prove the
result in the case where w = i = (1, 0, 0), then when
w = j = (0, 1, 0), and then when w = k = (0, 0, 1). Finally,
prove it for an arbitrary vector w = (w1, w2, w3) by writing
w = w1i + w2j + w3k.]

41. Prove part (e) of Theorem 3.5.1. [Hint: Apply part (a) of
Theorem 3.5.2 to the result in part (d ) of Theorem 3.5.1.]

42. Prove:

(a) Prove (b) of Theorem 3.5.2.

(b) Prove (c) of Theorem 3.5.2.

(c) Prove (d ) of Theorem 3.5.2.

(d) Prove (e) of Theorem 3.5.2.

(e) Prove ( f ) of Theorem 3.5.2.

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) The cross product of two nonzero vectors u and v is a nonzero
vector if and only if u and v are not parallel.

(b) A normal vector to a plane can be obtained by taking the cross
product of two nonzero and noncollinear vectors lying in the
plane.

(c) The scalar triple product of u, v, and w determines a vector
whose length is equal to the volume of the parallelepiped de-
termined by u, v, and w.

(d) If u and v are vectors in 3-space, then ‖v × u‖ is equal to the
area of the parallelogram determined by u and v.

(e) For all vectors u, v, and w in 3-space, the vectors (u × v) × w
and u × (v × w) are the same.

(f ) If u, v, and w are vectors in R3, where u is nonzero and
u × v = u × w, then v = w.

Working withTechnology

T1. As stated in Exercise 23 above, the distance d in 3-space from
a point P to the line L through points A and B is given by the
formula

d = ‖−→AP ×−→
AB‖

‖−→AB‖
Find the distance between the pointP(1, 3, 1) and the line through
the points A(2,−3, 4) and B(4, 7,−2).

Chapter 3 Supplementary Exercises

1. Let u = (−2, 0, 4), v = (3,−1, 6), and w = (2,−5,−5).
Compute

(a) 3v − 2u (b) ‖u + v + w‖
(c) the distance between −3u and v + 5w

(d) projwu (e) u · (v × w)

(f ) (−5v + w) × ((u · v)w)

2. Repeat Exercise 1 for the vectors u = 3i − 5j + k,
v = −2i + 2k, and w = −j + 4k.

3. Repeat parts (a)–(d) of Exercise 1 for the vectors
u = (−2, 6, 2, 1), v = (−3, 0, 8, 0), and
w = (9, 1,−6,−6).

4. (a) The set of all vectors inR2 that are orthogonal to a nonzero
vector is what kind of geometric object?

(b) The set of all vectors inR3 that are orthogonal to a nonzero
vector is what kind of geometric object?

(c) The set of all vectors in R2 that are orthogonal to two
noncollinear vectors is what kind of geometric object?

(d) The set of all vectors in R3 that are orthogonal to two
noncollinear vectors is what kind of geometric object?

5. Let A, B, and C be three distinct noncollinear points in 3-
space. Describe the set of all points P that satisfy the vector

equation
−→
AP � (

−→
AB ×−→

AC) = 0.

6. Let A, B, C, and D be four distinct noncollinear points in

3-space. If
−→
AB ×−→

CD �= 0 and
−→
AC � (

−→
AB ×−→

CD) = 0, explain
why the line through A and B must intersect the line through
C and D.
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7. Consider the points P(3,−1, 4), Q(6, 0, 2), and R(5, 1, 1).
Find the point S in R3 whose first component is −1 and such

that
−→
PQ is parallel to

−→
RS.

8. Consider the points P(−3, 1, 0, 6), Q(0, 5, 1,−2), and
R(−4, 1, 4, 0). Find the point S in R4 whose third compo-

nent is 6 and such that
−→
PQ is parallel to

−→
RS.

9. Using the points in Exercise 7, find the cosine of the angle

between the vectors
−→
PQ and

−→
PR.

10. Using the points in Exercise 8, find the cosine of the angle

between the vectors
−→
PQ and

−→
PR.

11. Find the distance between the point P(−3, 1, 3) and the plane
5x + z = 3y − 4.

12. Show that the planes 3x − y + 6z = 7 and
−6x + 2y − 12z = 1 are parallel, and find the distance be-
tween them.

In Exercises 13–18, find vector and parametric equations for
the line or plane in question.

13. The plane in R3 that contains the points P(−2, 1, 3),
Q(−1,−1, 1), and R(3, 0,−2).

14. The line in R3 that contains the point P(−1, 6, 0) and is or-
thogonal to the plane 4x − z = 5.

15. The line in R2 that is parallel to the vector v = (8,−1) and
contains the point P(0,−3).

16. The plane in R3 that contains the point P(−2, 1, 0) and is
parallel to the plane −8x + 6y − z = 4.

17. The line in R2 with equation y = 3x − 5.

18. The plane in R3 with equation 2x − 6y + 3z = 5.

In Exercises 19–21, find a point-normal equation for the given
plane.

19. The plane that is represented by the vector equation
(x, y, z) = (−1, 5, 6) + t1(0,−1, 3) + t2(2,−1, 0).

20. The plane that contains the point P(−5, 1, 0) and is orthogo-
nal to the line with parametric equations x = 3 − 5t , y = 2t ,
and z = 7.

21. The plane that passes through the points P(9, 0, 4),
Q(−1, 4, 3), and R(0, 6,−2).

22. Suppose that V = {v1, v2, v3} and W = {w1, w2} are two sets
of vectors such that each vector in V is orthogonal to each vec-
tor in W . Prove that if a1, a2, a3, b1, b2 are any scalars, then
the vectors v = a1v1 + a2v2 + a3v3 and w = b1w1 + b2w2 are
orthogonal.

23. Show that in 3-space the distance d from a point P to the line
L through points A and B can be expressed as

d = ‖−→AP ×−→
AB‖

‖−→AB‖
24. Prove that ‖u + v‖ = ‖u‖ + ‖v‖ if and only if one of the vec-

tors is a scalar multiple of the other.

25. The equation Ax + By = 0 represents a line through the ori-
gin in R2 if A and B are not both zero. What does this equation
represent in R3 if you think of it as Ax + By + 0z = 0? Ex-
plain.
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INTRODUCTION Recall that we began our study of vectors by viewing them as directed line segments
(arrows). We then extended this idea by introducing rectangular coordinate systems,
which enabled us to view vectors as ordered pairs and ordered triples of real numbers.
As we developed properties of these vectors we noticed patterns in various formulas
that enabled us to extend the notion of a vector to an n-tuple of real numbers.
Although n-tuples took us outside the realm of our “visual experience,” it gave us a
valuable tool for understanding and studying systems of linear equations. In this
chapter we will extend the concept of a vector yet again by using the most important
algebraic properties of vectors in Rn as axioms. These axioms, if satisfied by a set of
objects, will enable us to think of those objects as vectors.

4.1 Real Vector Spaces
In this section we will extend the concept of a vector by using the basic properties of vectors
in Rn as axioms, which if satisfied by a set of objects, guarantee that those objects behave
like familiar vectors.

Vector Space Axioms The following definition consists of ten axioms, eight of which are properties of vectors
in Rn that were stated in Theorem 3.1.1. It is important to keep in mind that one does
not prove axioms; rather, they are assumptions that serve as the starting point for proving
theorems.
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DEFINITION1 Let V be an arbitrary nonempty set of objects on which two operations
are defined: addition, and multiplication by numbers called scalars. By addition we
mean a rule for associating with each pair of objects u and v in V an object u + v,
called the sum of u and v; by scalar multiplication we mean a rule for associating with
each scalar k and each object u in V an object ku, called the scalar multiple of u by k.
If the following axioms are satisfied by all objects u, v, w in V and all scalars k and
m, then we call V a vector space and we call the objects in V vectors.

1. If u and v are objects in V, then u + v is in V.

2. u + v = v + u

3. u + (v + w) = (u + v) + w

4. There is an object 0 in V, called a zero vector for V, such that 0 + u = u + 0 = u
for all u in V.

5. For each u in V, there is an object −u in V, called a negative of u, such that
u + (−u) = (−u) + u = 0.

6. If k is any scalar and u is any object in V, then ku is in V.

7. k(u + v) = ku + kv

8. (k + m)u = ku + mu

9. k(mu) = (km)(u)

10. 1u = u

In this text scalars will be ei-
ther real numbers or complex
numbers. Vector spaces with
real scalars will be called real
vector spaces and those with
complex scalars will be called
complex vector spaces. There
is a more general notion of a
vector space in which scalars
can come from a mathematical
structure known as a “field,”
but we will not be concerned
with that level of generality.
For now, we will focus exclu-
sively on real vector spaces,
which we will refer to sim-
ply as “vector spaces.” We
will consider complex vector
spaces later.

Observe that the definition of a vector space does not specify the nature of the vectors
or the operations. Any kind of object can be a vector, and the operations of addition
and scalar multiplication need not have any relationship to those on Rn. The only
requirement is that the ten vector space axioms be satisfied. In the examples that follow
we will use four basic steps to show that a set with two operations is a vector space.

To Show That a Set with Two Operations Is a Vector Space

Step 1. Identify the set V of objects that will become vectors.

Step 2. Identify the addition and scalar multiplication operations on V.

Step 3. Verify Axioms 1 and 6; that is, adding two vectors in V produces a vector
in V, and multiplying a vector in V by a scalar also produces a vector in V.
Axiom 1 is called closure under addition, and Axiom 6 is called closure under
scalar multiplication.

Step 4. Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Hermann Günther
Grassmann
(1809–1877)

Historical Note The notion of an “abstract vector
space” evolved over many years and had many
contributors. The idea crystallized with the work
of the German mathematician H. G. Grassmann,
who published a paper in 1862 in which he con-
sidered abstract systems of unspecified elements
on which he defined formal operations of addi-
tion and scalar multiplication. Grassmann’s work
was controversial, and others, including Augustin
Cauchy (p. 121), laid reasonable claim to the idea.

[Image: © Sueddeutsche Zeitung Photo/The
ImageWorks]
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Our first example is the simplest of all vector spaces in that it contains only one
object. Since Axiom 4 requires that every vector space contain a zero vector, the object
will have to be that vector.

EXAMPLE 1 The ZeroVector Space

Let V consist of a single object, which we denote by 0, and define

0 + 0 = 0 and k0 = 0

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call
this the zero vector space.

Our second example is one of the most important of all vector spaces—the familiar
space Rn. It should not be surprising that the operations on Rn satisfy the vector space
axioms because those axioms were based on known properties of operations on Rn.

EXAMPLE 2 Rn Is aVector Space

Let V = Rn, and define the vector space operations on V to be the usual operations of
addition and scalar multiplication of n-tuples; that is,

u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn) = (u1 + v1, u2 + v2, . . . , un + vn)

ku = (ku1, ku2, . . . , kun)

The set V = Rn is closed under addition and scalar multiplication because the foregoing
operations produce n-tuples as their end result, and these operations satisfy Axioms 2,
3, 4, 5, 7, 8, 9, and 10 by virtue of Theorem 3.1.1.

Our next example is a generalization of Rn in which we allow vectors to have infinitely
many components.

EXAMPLE 3 TheVector Space of Infinite Sequences of Real Numbers

Let V consist of objects of the form

u = (u1, u2, . . . , un, . . .)

in which u1, u2, . . . , un, . . . is an infinite sequence of real numbers. We define two infi-
nite sequences to be equal if their corresponding components are equal, and we define
addition and scalar multiplication componentwise by

u + v = (u1, u2, . . . , un, . . .) + (v1, v2, . . . , vn, . . .)

= (u1 + v1, u2 + v2, . . . , un + vn, . . .)

ku = (ku1, ku2, . . . , kun, . . .)

In the exercises we ask you to confirm that V with these operations is a vector space. We
will denote this vector space by the symbol R�.

Vector spaces of the type in Example 3 arise when a transmitted signal of indefinite

E(t)
Voltage

Time

t
1

–1

Figure 4.1.1

duration is digitized by sampling its values at discrete time intervals (Figure 4.1.1).
In the next example our vectors will be matrices. This may be a little confusing at

first because matrices are composed of rows and columns, which are themselves vectors
(row vectors and column vectors). However, from the vector space viewpoint we are not
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concerned with the individual rows and columns but rather with the properties of the
matrix operations as they relate to the matrix as a whole.

EXAMPLE 4 TheVector Space of 2 × 2 Matrices

Let V be the set of 2 × 2 matrices with real entries, and take the vector space operations
on V to be the usual operations of matrix addition and scalar multiplication; that is,

Note that Equation (1) in-
volves three different addition
operations: the addition op-
eration on vectors, the ad-
dition operation on matrices,
and the addition operation on
real numbers.

u + v =
[
u11 u12

u21 u22

]
+
[
v11 v12

v21 v22

]
=
[
u11 + v11 u12 + v12

u21 + v21 u22 + v22

]

ku = k

[
u11 u12

u21 u22

]
=
[
ku11 ku12

ku21 ku22

]
(1)

The set V is closed under addition and scalar multiplication because the foregoing oper-
ations produce 2 × 2 matrices as the end result. Thus, it remains to confirm that Axioms
2, 3, 4, 5, 7, 8, 9, and 10 hold. Some of these are standard properties of matrix operations.
For example, Axiom 2 follows from Theorem 1.4.1(a) since

u + v =
[
u11 u12

u21 u22

]
+
[
v11 v12

v21 v22

]
=
[
v11 v12

v21 v22

]
+
[
u11 u12

u21 u22

]
= v + u

Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), ( j), and (e), respectively, of
that theorem (verify). This leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a 2 × 2 matrix 0 in V for which
u + 0 = 0 + u for all 2 × 2 matrices in V. We can do this by taking

0 =
[

0 0

0 0

]
With this definition,

0 + u =
[

0 0

0 0

]
+
[
u11 u12

u21 u22

]
=
[
u11 u12

u21 u22

]
= u

and similarly u + 0 = u. To verify that Axiom 5 holds we must show that each object
u in V has a negative −u in V such that u + (−u) = 0 and (−u) + u = 0. This can be
done by defining the negative of u to be

−u =
[−u11 −u12

−u21 −u22

]
With this definition,

u + (−u) =
[
u11 u12

u21 u22

]
+
[−u11 −u12

−u21 −u22

]
=
[

0 0

0 0

]
= 0

and similarly (−u) + u = 0. Finally, Axiom 10 holds because

1u = 1

[
u11 u12

u21 u22

]
=
[
u11 u12

u21 u22

]
= u

EXAMPLE 5 TheVector Space ofm × n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have
no trouble adapting the argument used in that example to show that the set V of all
m × n matrices with the usual matrix operations of addition and scalar multiplication is
a vector space. We will denote this vector space by the symbol Mmn. Thus, for example,
the vector space in Example 4 is denoted as M22.
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EXAMPLE 6 TheVector Space of Real-Valued Functions

Let V be the set of real-valued functions that are defined at each x in the interval (−�, �).
If f = f(x) and g = g(x) are two functions in V and if k is any scalar, then define the
operations of addition and scalar multiplication by

(f + g)(x) = f(x) + g(x) (2)

(kf)(x) = kf(x) (3)

One way to think about these operations is to view the numbers f(x) and g(x) as “com-
ponents” of f and g at the point x, in which case Equations (2) and (3) state that two
functions are added by adding corresponding components, and a function is multiplied
by a scalar by multiplying each component by that scalar—exactly as in Rn and R�. This
idea is illustrated in parts (a) and (b) of Figure 4.1.2. The set V with these operations is
denoted by the symbol F(−�, �). We can prove that this is a vector space as follows:

Axioms 1 and 6: These closure axioms require that if we add two functions that are
defined at each x in the interval (−�, �), then sums and scalar multiples of those func-
tions must also be defined at each x in the interval (−�, �). This follows from Formulas
(2) and (3).

Axiom 4: This axiom requires that there exists a function 0 in F(−�, �), which when
added to any other function f in F(−�, �) produces f back again as the result. The
function whose value at every point x in the interval (−�, �) is zero has this property.
Geometrically, the graph of the function 0 is the line that coincides with the x-axis.

Axiom 5: This axiom requires that for each function f in F(−�, �) there exists a function
−f in F(−�, �), which when added to f produces the function 0. The function defined
by −f(x) = −f(x) has this property. The graph of −f can be obtained by reflecting the
graph of f about the x-axis (Figure 4.1.2c).

Axioms 2, 3, 7, 8, 9, 10: The validity of each of these axioms follows from properties of
real numbers. For example, if f and g are functions in F(−�, �), then Axiom 2 requires
that f + g = g + f. This follows from the computation

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

in which the first and last equalities follow from (2), and the middle equality is a property

In Example 6 the functions
were defined on the entire in-
terval (−�, �). However, the
arguments used in that exam-
ple apply as well on all subin-
tervals of (−�, �), such as
a closed interval [a, b] or an
open interval (a, b). We will
denote the vector spaces of
functions on these intervals by
F [a, b] and F(a, b), respec-
tively.

of real numbers. We will leave the proofs of the remaining parts as exercises.

x
x

y
f + g

g

f f (x)

f (x) + g(x)
g(x)

x
x

y

f

kf

f (x)

kf (x)

(c)(b)(a)

0
x

y

f

–f

f (x)

–f (x)

Figure 4.1.2

It is important to recognize that you cannot impose any two operations on any set
V and expect the vector space axioms to hold. For example, if V is the set of n-tuples
with positive components, and if the standard operations from Rn are used, then V is not
closed under scalar multiplication, because if u is a nonzero n-tuple in V, then (−1)u has



188 Chapter 4 GeneralVector Spaces

at least one negative component and hence is not in V. The following is a less obvious
example in which only one of the ten vector space axioms fails to hold.

EXAMPLE 7 A Set That Is Not aVector Space

Let V = R2 and define addition and scalar multiplication operations as follows: If
u = (u1, u2) and v = (v1, v2), then define

u + v = (u1 + v1, u2 + v2)

and if k is any real number, then define

ku = (ku1, 0)

For example, if u = (2, 4), v = (−3, 5), and k = 7, then

u + v = (2 + (−3), 4 + 5) = (−1, 9)

ku = 7u = (7 · 2, 0) = (14, 0)

The addition operation is the standard one from R2, but the scalar multiplication is not.
In the exercises we will ask you to show that the first nine vector space axioms are satisfied.
However, Axiom 10 fails to hold for certain vectors. For example, if u = (u1, u2) is such
that u2 �= 0, then

1u = 1(u1, u2) = (1 · u1, 0) = (u1, 0) �= u
Thus, V is not a vector space with the stated operations.

Our final example will be an unusual vector space that we have included to illustrate
how varied vector spaces can be. Since the vectors in this space will be real numbers,
it will be important for you to keep track of which operations are intended as vector
operations and which ones as ordinary operations on real numbers.

EXAMPLE 8 An UnusualVector Space

Let V be the set of positive real numbers, let u = u and v = v be any vectors (i.e., positive
real numbers) in V , and let k be any scalar. Define the operations on V to be

u + v = uv [ Vector addition is numerical multiplication. ]

ku = uk [ Scalar multiplication is numerical exponentiation. ]

Thus, for example, 1 + 1 = 1 and (2)(1) = 12 = 1—strange indeed, but nevertheless
the set V with these operations satisfies the ten vector space axioms and hence is a vector
space. We will confirm Axioms 4, 5, and 7, and leave the others as exercises.

• Axiom 4—The zero vector in this space is the number 1 (i.e., 0 = 1) since

u + 1 = u · 1 = u

• Axiom 5—The negative of a vector u is its reciprocal (i.e., −u = 1/u) since

u + 1

u
= u

(
1

u

)
= 1 (= 0)

• Axiom 7—k(u + v) = (uv)k = ukvk = (ku) + (kv).

Some Properties of Vectors The following is our first theorem about vector spaces. The proof is very formal with
each step being justified by a vector space axiom or a known property of real numbers.
There will not be many rigidly formal proofs of this type in the text, but we have included
this one to reinforce the idea that the familiar properties of vectors can all be derived
from the vector space axioms.
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THEOREM 4.1.1 Let V be a vector space, u a vector in V, and k a scalar; then:

(a) 0u = 0

(b) k0 = 0

(c) (−1)u = −u

(d ) If ku = 0, then k = 0 or u = 0.

We will prove parts (a) and (c) and leave proofs of the remaining parts as exercises.

Proof (a) We can write

0u + 0u = (0 + 0)u [ Axiom 8 ]

= 0u [ Property of the number 0 ]

By Axiom 5 the vector 0u has a negative, −0u. Adding this negative to both sides above
yields

[0u + 0u] + (−0u) = 0u + (−0u)

or
0u + [0u + (−0u)] = 0u + (−0u) [ Axiom 3 ]

0u + 0 = 0 [ Axiom 5 ]

0u = 0 [ Axiom 4 ]

Proof (c) To prove that (−1)u = −u, we must show that u + (−1)u = 0. The proof is
as follows:

u + (−1)u = 1u + (−1)u [ Axiom 10 ]

= (1 + (−1))u [ Axiom 8 ]

= 0u [ Property of numbers ]

= 0 [ Part (a) of this theorem ]

A Closing Observation This section of the text is important to the overall plan of linear algebra in that it estab-
lishes a common thread among such diverse mathematical objects as geometric vectors,
vectors in Rn, infinite sequences, matrices, and real-valued functions, to name a few.
As a result, whenever we discover a new theorem about general vector spaces, we will
at the same time be discovering a theorem about geometric vectors, vectors in Rn, se-
quences, matrices, real-valued functions, and about any new kinds of vectors that we
might discover.

To illustrate this idea, consider what the rather innocent-looking result in part (a)
of Theorem 4.1.1 says about the vector space in Example 8. Keeping in mind that the
vectors in that space are positive real numbers, that scalar multiplication means numerical
exponentiation, and that the zero vector is the number 1, the equation

0u = 0

is really a statement of the familiar fact that if u is a positive real number, then

u0 = 1
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Exercise Set 4.1
1. Let V be the set of all ordered pairs of real numbers, and

consider the following addition and scalar multiplication op-
erations on u = (u1, u2) and v = (v1, v2):

u + v = (u1 + v1, u2 + v2), ku = (0, ku2)

(a) Compute u + v and ku for u = (−1, 2), v = (3, 4), and
k = 3.

(b) In words, explain why V is closed under addition and
scalar multiplication.

(c) Since addition on V is the standard addition operation on
R2, certain vector space axioms hold for V because they
are known to hold for R2. Which axioms are they?

(d) Show that Axioms 7, 8, and 9 hold.

(e) Show that Axiom 10 fails and hence that V is not a vector
space under the given operations.

2. Let V be the set of all ordered pairs of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (u1, u2) and v = (v1, v2):

u + v = (u1 + v1 + 1, u2 + v2 + 1), ku = (ku1, ku2)

(a) Compute u + v and ku for u = (0, 4), v = (1,−3), and
k = 2.

(b) Show that (0, 0) �= 0.

(c) Show that (−1,−1) = 0.

(d) Show that Axiom 5 holds by producing an ordered pair
−u such that u + (−u) = 0 for u = (u1, u2).

(e) Find two vector space axioms that fail to hold.

In Exercises 3–12, determine whether each set equipped with
the given operations is a vector space. For those that are not vector
spaces identify the vector space axioms that fail.

3. The set of all real numbers with the standard operations of
addition and multiplication.

4. The set of all pairs of real numbers of the form (x, 0) with the
standard operations on R2.

5. The set of all pairs of real numbers of the form (x, y), where
x ≥ 0, with the standard operations on R2.

6. The set of all n-tuples of real numbers that have the form
(x, x, . . . , x) with the standard operations on Rn.

7. The set of all triples of real numbers with the standard vector
addition but with scalar multiplication defined by

k(x, y, z) = (k2x, k2y, k2z)

8. The set of all 2 × 2 invertible matrices with the standard ma-
trix addition and scalar multiplication.

9. The set of all 2 × 2 matrices of the form[
a 0

0 b

]
with the standard matrix addition and scalar multiplication.

10. The set of all real-valued functions f defined everywhere on
the real line and such that f(1) = 0 with the operations used
in Example 6.

11. The set of all pairs of real numbers of the form (1, x) with the
operations

(1, y) + (1, y ′) = (1, y + y ′) and k(1, y) = (1, ky)

12. The set of polynomials of the form a0 + a1x with the opera-
tions

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x

and
k(a0 + a1x) = (ka0) + (ka1)x

13. Verify Axioms 3, 7, 8, and 9 for the vector space given in Ex-
ample 4.

14. Verify Axioms 1, 2, 3, 7, 8, 9, and 10 for the vector space given
in Example 6.

15. With the addition and scalar multiplication operations defined
in Example 7, show that V = R2 satisfies Axioms 1–9.

16. Verify Axioms 1, 2, 3, 6, 8, 9, and 10 for the vector space given
in Example 8.

17. Show that the set of all points in R2 lying on a line is a vector
space with respect to the standard operations of vector ad-
dition and scalar multiplication if and only if the line passes
through the origin.

18. Show that the set of all points in R3 lying in a plane is a vector
space with respect to the standard operations of vector addi-
tion and scalar multiplication if and only if the plane passes
through the origin.

In Exercises 19–20, let V be the vector space of positive real
numbers with the vector space operations given in Example 8. Let
u = u be any vector in V , and rewrite the vector statement as a
statement about real numbers.

19. −u = (−1)u

20. ku = 0 if and only if k = 0 or u = 0.

Working with Proofs

21. The argument that follows proves that if u, v, and w are vectors
in a vector space V such that u + w = v + w, then u = v (the
cancellation law for vector addition). As illustrated, justify the
steps by filling in the blanks.
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u + w = v + w Hypothesis

(u + w) + (−w) = (v + w) + (−w) Add −w to both sides.

u + [w + (−w)] = v + [w + (−w)]
u + 0 = v + 0
u = v

22. Below is a seven-step proof of part (b) of Theorem 4.1.1.
Justify each step either by stating that it is true by hypothesis
or by specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be
the zero vector in V, and let k be a scalar.

Conclusion: Then k0 = 0.

Proof: (1) k0 + ku = k(0 + u)

(2) = ku

(3) Since ku is in V, −ku is in V.

(4) Therefore, (k0 + ku) + (−ku) = ku + (−ku).

(5) k0 + (ku + (−ku)) = ku + (−ku)

(6) k0 + 0 = 0

(7) k0 = 0

In Exercises 23–24, let u be any vector in a vector space V .
Give a step-by-step proof of the stated result using Exercises 21
and 22 as models for your presentation.

23. 0u = 0 24. −u = (−1)u

In Exercises 25–27, prove that the given set with the stated
operations is a vector space.

25. The set V = {0} with the operations of addition and scalar
multiplication given in Example 1.

26. The set R� of all infinite sequences of real numbers with the
operations of addition and scalar multiplication given in Ex-
ample 3.

27. The set Mmn of all m × n matrices with the usual operations
of addition and scalar multiplication.

28. Prove: If u is a vector in a vector space V and k a scalar such
that ku = 0, then either k = 0 or u = 0. [Suggestion: Show
that if ku = 0 and k �= 0, then u = 0. The result then follows
as a logical consequence of this.]

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) A vector is any element of a vector space.

(b) A vector space must contain at least two vectors.

(c) If u is a vector and k is a scalar such that ku = 0, then it must
be true that k = 0.

(d) The set of positive real numbers is a vector space if vector
addition and scalar multiplication are the usual operations of
addition and multiplication of real numbers.

(e) In every vector space the vectors (−1)u and −u are the same.

(f ) In the vector space F(−�, �) any function whose graph passes
through the origin is a zero vector.

4.2 Subspaces
It is often the case that some vector space of interest is contained within a larger vector space
whose properties are known. In this section we will show how to recognize when this is the
case, we will explain how the properties of the larger vector space can be used to obtain
properties of the smaller vector space, and we will give a variety of important examples.

We begin with some terminology.

DEFINITION 1 A subset W of a vector space V is called a subspace of V if W is itself
a vector space under the addition and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one
must verify the ten vector space axioms. However, if W is a subspace of a known vector
space V, then certain axioms need not be verified because they are “inherited” from V.
For example, it is not necessary to verify that u + v = v + u holds in W because it holds
for all vectors in V including those in W . On the other hand, it is necessary to verify
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that W is closed under addition and scalar multiplication since it is possible that adding
two vectors in W or multiplying a vector in W by a scalar produces a vector in V that is
outside of W (Figure 4.2.1). Those axioms that are not inherited by W are

Axiom 1—Closure of W under addition

Axiom 4—Existence of a zero vector in W

Axiom 5—Existence of a negative in W for every vector in W

Axiom 6—Closure of W under scalar multiplication

so these must be verified to prove that it is a subspace of V. However, the next theorem
shows that if Axiom 1 and Axiom 6 hold in W , then Axioms 4 and 5 hold in W as a
consequence and hence need not be verified.

Figure 4.2.1 The vectors u
and v are in W , but the vectors
u + v and ku are not.

ku

W

V

u
v

u + v

THEOREM 4.2.1 If W is a set of one or more vectors in a vector space V, then W is a
subspace of V if and only if the following conditions are satisfied.

(a) If u and v are vectors in W, then u + v is in W .

(b) If k is a scalar and u is a vector in W, then ku is in W .

Proof If W is a subspace of V, then all the vector space axioms hold in W , including
Axioms 1 and 6, which are precisely conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since these are Axioms 1 and
Theorem 4.2.1 states that W is
a subspace of V if and only if
it is closed under addition and
scalar multiplication.

6, and since Axioms 2, 3, 7, 8, 9, and 10 are inherited from V, we only need to show
that Axioms 4 and 5 hold in W . For this purpose, let u be any vector in W . It follows
from condition (b) that ku is a vector in W for every scalar k. In particular, 0u = 0 and
(−1)u = −u are in W , which shows that Axioms 4 and 5 hold in W .

EXAMPLE 1 The Zero Subspace

If V is any vector space, and if W = {0} is the subset of V that consists of the zero vector
Note that every vector space
has at least two subspaces, it-
self and its zero subspace.

only, then W is closed under addition and scalar multiplication since

0 + 0 = 0 and k0 = 0

for any scalar k. We call W the zero subspace of V.

EXAMPLE 2 LinesThrough the Origin Are Subspaces of R2 and of R3

If W is a line through the origin of either R2 or R3, then adding two vectors on the line
or multiplying a vector on the line by a scalar produces another vector on the line, so
W is closed under addition and scalar multiplication (see Figure 4.2.2 for an illustration
in R3).
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Figure 4.2.2

u
v

u + v
W

(a)  W is closed under addition.

u

ku

W

(b)  W is closed under scalar
       multiplication.

EXAMPLE 3 Planes Through the Origin Are Subspaces of R3

If u and v are vectors in a planeW through the origin of R3, then it is evident geometrically

u

v

ku

u + v

W

Figure 4.2.3 The vectors
u + v and ku both lie in the same
plane as u and v.

that u + v and ku also lie in the same plane W for any scalar k (Figure 4.2.3). Thus W

is closed under addition and scalar multiplication.

Table 1 below gives a list of subspaces of R2 and of R3 that we have encountered thus
far. We will see later that these are the only subspaces of R2 and of R3.

Table 1

Subspaces of R2 Subspaces of R3

• {0} • {0}
• Lines through the origin • Lines through the origin
• R2 • Planes through the origin

• R3

EXAMPLE 4 A Subset of R2 That Is Not a Subspace

Let W be the set of all points (x, y) in R2 for which x ≥ 0 and y ≥ 0 (the shaded region
in Figure 4.2.4). This set is not a subspace of R2 because it is not closed under scalar
multiplication. For example, v = (1, 1) is a vector in W , but (−1)v = (−1,−1) is not.

y

x

W (1, 1)

(–1, –1)

Figure 4.2.4 W is not closed
under scalar multiplication.

EXAMPLE 5 Subspaces ofMnn

We know from Theorem 1.7.2 that the sum of two symmetric n × n matrices is symmetric
and that a scalar multiple of a symmetric n × n matrix is symmetric. Thus, the set of
symmetric n × n matrices is closed under addition and scalar multiplication and hence
is a subspace of Mnn. Similarly, the sets of upper triangular matrices, lower triangular
matrices, and diagonal matrices are subspaces of Mnn.

EXAMPLE 6 A Subset ofMnn That Is Not a Subspace

The set W of invertible n × n matrices is not a subspace of Mnn, failing on two counts—it
is not closed under addition and not closed under scalar multiplication. We will illustrate
this with an example in M22 that you can readily adapt to Mnn. Consider the matrices

U =
[

1 2
2 5

]
and V =

[−1 2
−2 5

]
The matrix 0U is the 2 × 2 zero matrix and hence is not invertible, and the matrix U + V

has a column of zeros so it also is not invertible.
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EXAMPLE 7 The Subspace C (−�, �)

There is a theorem in calculus which states that a sum of continuous functions is con-

CA L C U L U S R E Q U I R E D

tinuous and that a constant times a continuous function is continuous. Rephrased in
vector language, the set of continuous functions on (−�, �) is a subspace of F(−�, �).
We will denote this subspace by C(−�, �).

EXAMPLE 8 Functions with Continuous Derivatives

A function with a continuous derivative is said to be continuously differentiable. There

CA L C U L U S R E Q U I R E D

is a theorem in calculus which states that the sum of two continuously differentiable
functions is continuously differentiable and that a constant times a continuously differ-
entiable function is continuously differentiable. Thus, the functions that are continuously
differentiable on (−�, �) form a subspace of F(−�, �). We will denote this subspace
by C1(−�, �), where the superscript emphasizes that the first derivatives are continuous.
To take this a step further, the set of functions with m continuous derivatives on (−�, �)

is a subspace of F(−�, �) as is the set of functions with derivatives of all orders on
(−�, �). We will denote these subspaces by Cm(−�, �) and C�(−�, �), respectively.

EXAMPLE 9 The Subspace of All Polynomials

Recall that a polynomial is a function that can be expressed in the form

p(x) = a0 + a1x + · · · + anx
n (1)

where a0, a1, . . . , an are constants. It is evident that the sum of two polynomials is a
polynomial and that a constant times a polynomial is a polynomial. Thus, the set W of all
polynomials is closed under addition and scalar multiplication and hence is a subspace
of F(−�, �). We will denote this space by P�.

EXAMPLE 10 The Subspace of Polynomials of Degree ≤ n

Recall that the degree of a polynomial is the highest power of the variable that occurs with

In this text we regard all con-
stants to be polynomials of de-
gree zero. Be aware, however,
that some authors do not as-
sign a degree to the constant 0.

a nonzero coefficient. Thus, for example, if an �= 0 in Formula (1), then that polynomial
has degree n. It is not true that the set W of polynomials with positive degree n is a
subspace of F(−�, �) because that set is not closed under addition. For example, the
polynomials

1 + 2x + 3x2 and 5 + 7x − 3x2

both have degree 2, but their sum has degree 1. What is true, however, is that for each
nonnegative integer n the polynomials of degree n or less form a subspace of F(−�, �).
We will denote this space by Pn.

The Hierarchy of Function
Spaces

It is proved in calculus that polynomials are continuous functions and have continuous
derivatives of all orders on (−�, �). Thus, it follows that P� is not only a subspace of
F(−�, �), as previously observed, but is also a subspace of C�(−�, �). We leave it
for you to convince yourself that the vector spaces discussed in Examples 7 to 10 are
“nested” one inside the other as illustrated in Figure 4.2.5.

Remark In our previous examples we considered functions that were defined at all points of the
interval (−�, �). Sometimes we will want to consider functions that are only defined on some
subinterval of (−�, �), say the closed interval [a, b] or the open interval (a, b). In such cases
we will make an appropriate notation change. For example, C[a, b] is the space of continuous
functions on [a, b] and C(a, b) is the space of continuous functions on (a, b).
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Figure 4.2.5

Pn

C∞(–∞, ∞)
Cm(–∞, ∞)

C1(–∞, ∞)

F(–∞, ∞)
C(–∞, ∞)

Building Subspaces The following theorem provides a useful way of creating a new subspace from known
subspaces.

THEOREM 4.2.2 If W1, W2, . . . , Wr are subspaces of a vector space V, then the inter-
section of these subspaces is also a subspace of V.

Proof Let W be the intersection of the subspaces W1, W2, . . . , Wr . This set is not
empty because each of these subspaces contains the zero vector of V, and hence so does
their intersection. Thus, it remains to show that W is closed under addition and scalar
multiplication.

To prove closure under addition, let u and v be vectors in W . Since W is the inter-
Note that the first step in
proving Theorem 4.2.2 was
to establish that W contained
at least one vector. This is im-
portant, for otherwise the sub-
sequent argument might be
logically correct but meaning-
less.

section of W1, W2, . . . , Wr , it follows that u and v also lie in each of these subspaces.
Moreover, since these subspaces are closed under addition and scalar multiplication, they
also all contain the vectors u + v and ku for every scalar k, and hence so does their inter-
section W . This proves that W is closed under addition and scalar multiplication.

Sometimes we will want to find the “smallest” subspace of a vector space V that con-
tains all of the vectors in some set of interest. The following definition, which generalizes
Definition 4 of Section 3.1, will help us to do that.

If k = 1, then Equation (2) has
the form w = k1v1, in which
case the linear combination is
just a scalar multiple of v1.

DEFINITION 2 If w is a vector in a vector space V, then w is said to be a linear
combination of the vectors v1, v2, . . . , vr in V if w can be expressed in the form

w = k1v1 + k2v2 + · · · + krvr (2)

where k1, k2, . . . , kr are scalars. These scalars are called the coefficients of the linear
combination.

THEOREM 4.2.3 If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space
V, then:

(a) The setW of all possible linear combinations of the vectors in S is a subspace of V.

(b) The setW in part (a) is the “smallest” subspace ofV that contains all of the vectors
in S in the sense that any other subspace that contains those vectors contains W .

Proof (a) Let W be the set of all possible linear combinations of the vectors in S. We
must show that W is closed under addition and scalar multiplication. To prove closure
under addition, let

u = c1w1 + c2w2 + · · · + crwr and v = k1w1 + k2w2 + · · · + krwr

be two vectors in W . It follows that their sum can be written as

u + v = (c1 + k1)w1 + (c2 + k2)w2 + · · · + (cr + kr)wr
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which is a linear combination of the vectors in S. Thus, W is closed under addition. We
leave it for you to prove that W is also closed under scalar multiplication and hence is a
subspace of V.

Proof (b) Let W ′ be any subspace of V that contains all of the vectors in S. Since W ′
is closed under addition and scalar multiplication, it contains all linear combinations of
the vectors in S and hence contains W .

The following definition gives some important notation and terminology related to

In the case where S is the
empty set, it will be convenient
to agree that span(Ø) = {0}.

Theorem 4.2.3.

DEFINITION 3 If S = {w1, w2, . . . , wr} is a nonempty set of vectors in a vector space
V , then the subspace W of V that consists of all possible linear combinations of the
vectors in S is called the subspace of V generated by S, and we say that the vectors
w1, w2, . . . , wr span W . We denote this subspace as

W = span{w1, w2, . . . , wr} or W = span(S)

EXAMPLE 11 The Standard UnitVectors Span Rn

Recall that the standard unit vectors in Rn are

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

These vectors span Rn since every vector v = (v1, v2, . . . , vn) in Rn can be expressed as

v = v1e1 + v2e2 + · · · + vnen

which is a linear combination of e1, e2, . . . , en. Thus, for example, the vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

span R3 since every vector v = (a, b, c) in this space can be expressed as

v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck

EXAMPLE 12 A GeometricView of Spanning in R2 and R3

(a) If v is a nonzero vector in R2 or R3 that has its initial point at the origin, then span{v},
which is the set of all scalar multiples of v, is the line through the origin determined
by v. You should be able to visualize this from Figure 4.2.6a by observing that the
tip of the vector kv can be made to fall at any point on the line by choosing the
value of k to lengthen, shorten, or reverse the direction of v appropriately.

George William Hill
(1838–1914)

Historical Note The term linear combination is due to the American
mathematicianG.W.Hill, who introduced it in a research paper on plan-
etary motion published in 1900. Hill was a “loner” who preferred to
work out of his home inWest Nyack, NewYork, rather than in academia,
though he did try lecturing at Columbia University for a few years. In-
terestingly, he apparently returned the teaching salary, indicating that
he did not need the money and did not want to be bothered looking
after it. Although technically a mathematician, Hill had little interest in
modern developments of mathematics and worked almost entirely on
the theory of planetary orbits.

[Image: Courtesy of the American Mathematical Society
www.ams.org]
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(b) If v1 and v2 are nonzero vectors in R3 that have their initial points at the origin,
then span{v1, v2}, which consists of all linear combinations of v1 and v2, is the plane
through the origin determined by these two vectors. You should be able to visualize
this from Figure 4.2.6b by observing that the tip of the vector k1v1 + k2v2 can be
made to fall at any point in the plane by adjusting the scalars k1 and k2 to lengthen,
shorten, or reverse the directions of the vectors k1v1 and k2v2 appropriately.

Figure 4.2.6

z

y

x

v1
k1v1

span{v1, v2}

v2

k2v2

k1v1 + k2v2

(b)  Span{v1, v2} is the plane through the
       origin determined by v1 and v2.

z

y

x

v

kv

span{v}

(a)  Span{v} is the line through the
       origin determined by v.

EXAMPLE 13 A Spanning Set for Pn
The polynomials 1, x, x2, . . . , xn span the vector space Pn defined in Example 10 since
each polynomial p in Pn can be written as

p = a0 + a1x + · · · + anx
n

which is a linear combination of 1, x, x2, . . . , xn. We can denote this by writing

Pn = span{1, x, x2, . . . , xn}
The next two examples are concerned with two important types of problems:

• Given a nonempty set S of vectors in Rn and a vector v in Rn, determine whether v is
a linear combination of the vectors in S.

• Given a nonempty set S of vectors in Rn, determine whether the vectors span Rn.

EXAMPLE 14 Linear Combinations

Consider the vectors u = (1, 2,−1) and v = (6, 4, 2) in R3. Show that w = (9, 2, 7) is
a linear combination of u and v and that w′ = (4,−1, 8) is not a linear combination of
u and v.

Solution In order for w to be a linear combination of u and v, there must be scalars k1

and k2 such that w = k1u + k2v; that is,

(9, 2, 7) = k1(1, 2,−1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2,−k1 + 2k2)

Equating corresponding components gives

k1 + 6k2 = 9

2k1 + 4k2 = 2

−k1 + 2k2 = 7

Solving this system using Gaussian elimination yields k1 = −3, k2 = 2, so

w = −3u + 2v
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Similarly, for w′ to be a linear combination of u and v, there must be scalars k1 and
k2 such that w′ = k1u + k2v; that is,

(4,−1, 8) = k1(1, 2,−1) + k2(6, 4, 2) = (k1 + 6k2, 2k1 + 4k2,−k1 + 2k2)

Equating corresponding components gives

k1 + 6k2 = 4

2k1 + 4k2 = −1

−k1 + 2k2 = 8

This system of equations is inconsistent (verify), so no such scalars k1 and k2 exist.
Consequently, w′ is not a linear combination of u and v.

EXAMPLE 15 Testing for Spanning

Determine whether the vectors v1 = (1, 1, 2), v2 = (1, 0, 1), and v3 = (2, 1, 3) span the
vector space R3.

Solution We must determine whether an arbitrary vector b = (b1, b2, b3) in R3 can be
expressed as a linear combination

b = k1v1 + k2v2 + k3v3

of the vectors v1, v2, and v3. Expressing this equation in terms of components gives

(b1, b2, b3) = k1(1, 1, 2) + k2(1, 0, 1) + k3(2, 1, 3)

or
(b1, b2, b3) = (k1 + k2 + 2k3, k1 + k3, 2k1 + k2 + 3k3)

or
k1 + k2 + 2k3 = b1

k1 + k3 = b2

2k1 + k2 + 3k3 = b3

Thus, our problem reduces to ascertaining whether this system is consistent for all values
of b1, b2, and b3. One way of doing this is to use parts (e) and (g) of Theorem 2.3.8,
which state that the system is consistent if and only if its coefficient matrix

A =
⎡
⎢⎣1 1 2

1 0 1

2 1 3

⎤
⎥⎦

has a nonzero determinant. But this is not the case here since det(A) = 0 (verify), so v1,
v2, and v3 do not span R3.

Solution Spaces of
Homogeneous Systems

The solutions of a homogeneous linear system Ax = 0 of m equations in n unknowns
can be viewed as vectors in Rn. The following theorem provides a useful insight into the
geometric structure of the solution set.

THEOREM 4.2.4 The solution set of a homogeneous linear system Ax = 0 of m equa-
tions in n unknowns is a subspace of Rn.

Proof Let W be the solution set of the system. The set W is not empty because it
contains at least the trivial solution x = 0.
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To show that W is a subspace of Rn, we must show that it is closed under addition
and scalar multiplication. To do this, let x1 and x2 be vectors in W . Since these vectors
are solutions of Ax = 0, we have

Ax1 = 0 and Ax2 = 0

It follows from these equations and the distributive property of matrix multiplication
that

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0

so W is closed under addition. Similarly, if k is any scalar then

A(kx1) = kAx1 = k0 = 0

so W is also closed under scalar multiplication.

Because the solution set of a homogeneous system in n unknowns is actually a
subspace of Rn, we will generally refer to it as the solution space of the system.

EXAMPLE 16 Solution Spaces of Homogeneous Systems

In each part, solve the system by any method and then give a geometric description of
the solution set.

(a)

⎡
⎢⎣1 −2 3

2 −4 6

3 −6 9

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦ (b)

⎡
⎢⎣ 1 −2 3

−3 7 −8

−2 4 −6

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦

(c)

⎡
⎢⎣ 1 −2 3

−3 7 −8

4 1 2

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦ (d)

⎡
⎢⎣0 0 0

0 0 0

0 0 0

⎤
⎥⎦
⎡
⎣x

y

z

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

Solution

(a) The solutions are
x = 2s − 3t, y = s, z = t

from which it follows that

x = 2y − 3z or x − 2y + 3z = 0

This is the equation of a plane through the origin that has n = (1,−2, 3) as a
normal.

(b) The solutions are
x = −5t, y = −t, z = t

which are parametric equations for the line through the origin that is parallel to the
vector v = (−5,−1, 1).

(c) The only solution is x = 0, y = 0, z = 0, so the solution space consists of the single
point {0}.

(d) This linear system is satisfied by all real values of x, y, and z, so the solution space
is all of R3.

Remark Whereas the solution set of every homogeneous system of m equations in n unknowns is
a subspace of Rn, it is never true that the solution set of a nonhomogeneous system of m equations
in n unknowns is a subspace of Rn. There are two possible scenarios: first, the system may not
have any solutions at all, and second, if there are solutions, then the solution set will not be closed
either under addition or under scalar multiplication (Exercise 18).
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The LinearTransformation
Viewpoint

Theorem 4.2.4 can be viewed as a statement about matrix transformations by letting
TA: Rn →Rm be multiplication by the coefficient matrix A. From this point of view
the solution space of Ax = 0 is the set of vectors in Rn that TA maps into the zero
vector in Rm. This set is sometimes called the kernel of the transformation, so with this
terminology Theorem 4.2.4 can be rephrased as follows.

THEOREM 4.2.5 IfA is anm × nmatrix, then the kernel of the matrix transformation
TA: Rn →Rm is a subspace of Rn.

A Concluding Observation It is important to recognize that spanning sets are not unique. For example, any nonzero
vector on the line in Figure 4.2.6a will span that line, and any two noncollinear vectors
in the plane in Figure 4.2.6b will span that plane. The following theorem, whose proof
is left as an exercise, states conditions under which two sets of vectors will span the same
space.

THEOREM 4.2.6 If S = {v1, v2, . . . , vr} and S ′ = {w1, w2, . . . , wk} are nonempty sets
of vectors in a vector space V, then

span{v1, v2, . . . , vr} = span{w1, w2, . . . , wk}
if and only if each vector in S is a linear combination of those in S ′, and each vector in
S ′ is a linear combination of those in S.

Exercise Set 4.2
1. Use Theorem 4.2.1 to determine which of the following are

subspaces of R3.

(a) All vectors of the form (a, 0, 0).

(b) All vectors of the form (a, 1, 1).

(c) All vectors of the form (a, b, c), where b = a + c.

(d) All vectors of the form (a, b, c), where b = a + c + 1.

(e) All vectors of the form (a, b, 0).

2. Use Theorem 4.2.1 to determine which of the following are
subspaces of Mnn.

(a) The set of all diagonal n × n matrices.

(b) The set of all n × n matrices A such that det(A) = 0.

(c) The set of all n × n matrices A such that tr(A) = 0.

(d) The set of all symmetric n × n matrices.

(e) The set of all n × n matrices A such that AT = −A.

(f ) The set of all n × n matrices A for which Ax = 0 has only
the trivial solution.

(g) The set of all n × n matrices A such that AB = BA for
some fixed n × n matrix B.

3. Use Theorem 4.2.1 to determine which of the following are
subspaces of P3.

(a) All polynomials a0 + a1x + a2x
2 + a3x

3 for which
a0 = 0.

(b) All polynomials a0 + a1x + a2x
2 + a3x

3 for which
a0 + a1 + a2 + a3 = 0.

(c) All polynomials of the form a0 + a1x + a2x
2 + a3x

3 in
which a0, a1, a2, and a3 are rational numbers.

(d) All polynomials of the form a0 + a1x, where a0 and a1 are
real numbers.

4. Which of the following are subspaces of F(−�, �)?

(a) All functions f in F(−�, �) for which f(0) = 0.

(b) All functions f in F(−�, �) for which f(0) = 1.

(c) All functions f in F(−�, �) for which f(−x) = f(x).

(d) All polynomials of degree 2.

5. Which of the following are subspaces of R�?

(a) All sequences v in R� of the form
v = (v, 0, v, 0, v, 0, . . .).
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(b) All sequences v in R� of the form
v = (v, 1, v, 1, v, 1, . . .).

(c) All sequences v in R� of the form
v = (v, 2v, 4v, 8v, 16v, . . .).

(d) All sequences in R� whose components are 0 from some
point on.

6. A line L through the origin in R3 can be represented by para-
metric equations of the form x = at , y = bt , and z = ct . Use
these equations to show that L is a subspace of R3 by showing
that if v1 = (x1, y1, z1) and v2 = (x2, y2, z2) are points on L

and k is any real number, then kv1 and v1 + v2 are also points
on L.

7. Which of the following are linear combinations of
u = (0,−2, 2) and v = (1, 3,−1)?

(a) (2, 2, 2) (b) (0, 4, 5) (c) (0, 0, 0)

8. Express the following as linear combinations of u = (2, 1, 4),
v = (1,−1, 3), and w = (3, 2, 5).

(a) (−9,−7,−15) (b) (6, 11, 6) (c) (0, 0, 0)

9. Which of the following are linear combinations of

A =
[

4 0

−2 −2

]
, B =

[
1 −1

2 3

]
, C =

[
0 2

1 4

]
?

(a)

[
6 −8

−1 −8

]
(b)

[
0 0

0 0

]
(c)

[−1 5

7 1

]
10. In each part express the vector as a linear combination of

p1 = 2 + x + 4x2, p2 = 1 − x + 3x2, and
p3 = 3 + 2x + 5x2.

(a) −9 − 7x − 15x2 (b) 6 + 11x + 6x2

(c) 0 (d) 7 + 8x + 9x2

11. In each part, determine whether the vectors span R3.

(a) v1 = (2, 2, 2), v2 = (0, 0, 3), v3 = (0, 1, 1)

(b) v1 = (2,−1, 3), v2 = (4, 1, 2), v3 = (8,−1, 8)

12. Suppose that v1 = (2, 1, 0, 3), v2 = (3,−1, 5, 2), and
v3 = (−1, 0, 2, 1). Which of the following vectors are in
span{v1, v2, v3}?
(a) (2, 3,−7, 3) (b) (0, 0, 0, 0)

(c) (1, 1, 1, 1) (d) (−4, 6,−13, 4)

13. Determine whether the following polynomials span P2.

p1 = 1 − x + 2x2, p2 = 3 + x,

p3 = 5 − x + 4x2, p4 = −2 − 2x + 2x2

14. Let f = cos2 x and g = sin2 x. Which of the following lie in
the space spanned by f and g?

(a) cos 2x (b) 3 + x2 (c) 1 (d) sin x (e) 0

15. Determine whether the solution space of the system Ax = 0
is a line through the origin, a plane through the origin, or the

origin only. If it is a plane, find an equation for it. If it is a
line, find parametric equations for it.

(a) A =
⎡
⎢⎣−1 1 1

3 −1 0

2 −4 −5

⎤
⎥⎦ (b) A =

⎡
⎢⎣1 2 3

2 5 3

1 0 8

⎤
⎥⎦

(c) A =
⎡
⎢⎣1 −3 1

2 −6 2

3 −9 3

⎤
⎥⎦ (d) A =

⎡
⎢⎣1 −1 1

2 −1 4

3 1 11

⎤
⎥⎦

16. (Calculus required ) Show that the following sets of functions
are subspaces of F(−�, �).

(a) All continuous functions on (−�, �).

(b) All differentiable functions on (−�, �).

(c) All differentiable functions on (−�, �) that satisfy
f ′ + 2f = 0.

17. (Calculus required ) Show that the set of continuous functions
f = f(x) on [a, b] such that∫ b

a

f(x) dx = 0

is a subspace of C [a, b].

18. Show that the solution vectors of a consistent nonhomoge-
neous system of m linear equations in n unknowns do not
form a subspace of Rn.

19. In each part, let TA: R2 →R2 be multiplication by A, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{TA(u1), TA(u2)} spans R2.

(a) A =
[

1 −1

0 2

]
(b) A =

[
1 −1

−2 2

]

20. In each part, let TA: R3 →R2 be multiplication by A, and let
u1 = (0, 1, 1) and u2 = (2,−1, 1) and u3 = (1, 1,−2). De-
termine whether the set {TA(u1), TA(u2), TA(u3)} spans R2.

(a) A =
[

1 1 0

0 1 −1

]
(b) A =

[
0 1 0

1 1 −3

]

21. If TA is multiplication by a matrix A with three columns, then
the kernel ofTA is one of four possible geometric objects. What
are they? Explain how you reached your conclusion.

22. Let v1 = (1, 6, 4), v2 = (2, 4,−1), v3 = (−1, 2, 5), and
w1 = (1,−2,−5), w2 = (0, 8, 9). Use Theorem 4.2.6 to show
that span{v1, v2, v3} = span{w1, w2}.

23. The accompanying figure shows a mass-spring system in which
a block of mass m is set into vibratory motion by pulling the
block beyond its natural position at x = 0 and releasing it at
time t = 0. If friction and air resistance are ignored, then the
x-coordinate x(t) of the block at time t is given by a function
of the form

x(t) = c1 cos ωt + c2 sin ωt
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where ω is a fixed constant that depends on the mass of the
block and the stiffness of the spring and c1 and c2 are arbi-
trary. Show that this set of functions forms a subspace of
C�(−�, �).

Natural position

m

Released

m

Stretched

m

0

x

0

x

0

x

Figure Ex-23

Working with Proofs

24. Prove Theorem 4.2.6.

True-False Exercises

TF. In parts (a)–(k) determine whether the statement is true or
false, and justify your answer.

(a) Every subspace of a vector space is itself a vector space.

(b) Every vector space is a subspace of itself.

(c) Every subset of a vector space V that contains the zero vector
in V is a subspace of V.

(d) The kernel of a matrix transformation TA: Rn →Rm is a sub-
space of Rm.

(e) The solution set of a consistent linear system Ax = b of m

equations in n unknowns is a subspace of Rn.

(f ) The span of any finite set of vectors in a vector space is closed
under addition and scalar multiplication.

(g) The intersection of any two subspaces of a vector space V is a
subspace of V.

(h) The union of any two subspaces of a vector space V is a sub-
space of V.

(i) Two subsets of a vector space V that span the same subspace
of V must be equal.

( j) The set of upper triangular n × n matrices is a subspace of the
vector space of all n × n matrices.

(k) The polynomials x − 1, (x − 1)2, and (x − 1)3 span P3.

Working withTechnology

T1. Recall from Theorem 1.3.1 that a product Ax can be expressed
as a linear combination of the column vectors of the matrix A in
which the coefficients are the entries of x. Use matrix multiplica-
tion to compute

v = 6(8,−2, 1,−4) + 17(−3, 9, 11, 6) − 9(13,−1, 2, 4)

T2. Use the idea in Exercise T1 and matrix multiplication to de-
termine whether the polynomial

p = 1 + x + x2 + x3

is in the span of

p1 = 8 − 2x + x2 − 4x3, p2 = −3 + 9x + 11x2 + 6x3,

p3 = 13 − x + 2x2 + 4x3

T3. For the vectors that follow, determine whether

span{v1, v2, v3} = span{w1, w2, w3}

v1 = (−1, 2, 0, 1, 3), v2 = (7, 4, 6,−3, 1),

v3 = (−5, 3, 1, 2, 4)

w1 = (−6, 5, 1, 3, 7), w2 = (6, 6, 6,−2, 4),

w3 = (2, 7, 7,−1, 5)

4.3 Linear Independence
In this section we will consider the question of whether the vectors in a given set are
interrelated in the sense that one or more of them can be expressed as a linear combination
of the others. This is important to know in applications because the existence of such
relationships often signals that some kind of complication is likely to occur.

Linear Independence and
Dependence

In a rectangular xy-coordinate system every vector in the plane can be expressed in
exactly one way as a linear combination of the standard unit vectors. For example, the
only way to express the vector (3, 2) as a linear combination of i = (1, 0) and j = (0, 1)
is

(3, 2) = 3(1, 0) + 2(0, 1) = 3i + 2j (1)
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(Figure 4.3.1). Suppose, however, that we were to introduce a third coordinate axis thaty

2

x

3i

j
3i +

 2j

(3, 2)

Figure 4.3.1

makes an angle of 45◦ with the x-axis. Call it the w-axis. As illustrated in Figure 4.3.2,

y

x

w

45°

1

√2

1

√2( ),
w

Figure 4.3.2

the unit vector along the w-axis is

w =
(

1√
2
,

1√
2

)
Whereas Formula (1) shows the only way to express the vector (3, 2) as a linear combina-
tion of i and j, there are infinitely many ways to express this vector as a linear combination
of i, j, and w. Three possibilities are

(3, 2) = 3(1, 0) + 2(0, 1) + 0

(
1√
2
,

1√
2

)
= 3i + 2j + 0w

(3, 2) = 2(1, 0) + (0, 1) +√
2

(
1√
2
,

1√
2

)
= 3i + j +√

2w

(3, 2) = 4(1, 0) + 3(0, 1) −√
2

(
1√
2
,

1√
2

)
= 4i + 3j −√

2w

In short, by introducing a superfluous axis we created the complication of having mul-
tiple ways of assigning coordinates to points in the plane. What makes the vector w
superfluous is the fact that it can be expressed as a linear combination of the vectors i
and j, namely,

w =
(

1√
2
,

1√
2

)
= 1√

2
i + 1√

2
j

This leads to the following definition.

DEFINITION 1 If S = {v1, v2, . . . , vr} is a set of two or more vectors in a vector space
V , then S is said to be a linearly independent set if no vector in S can be expressed as
a linear combination of the others. A set that is not linearly independent is said to be
linearly dependent.

In general, the most efficient way to determine whether a set is linearly independent
In the case where the set S in
Definition 1 has only one vec-
tor, we will agree that S is lin-
early independent if and only
if that vector is nonzero.

or not is to use the following theorem whose proof is given at the end of this section.

THEOREM 4.3.1 A nonempty set S = {v1, v2, . . . , vr} in a vector space V is linearly
independent if and only if the only coefficients satisfying the vector equation

k1v1 + k2v2 + · · · + krvr = 0

are k1 = 0, k2 = 0, . . . , kr = 0.

EXAMPLE 1 Linear Independence of the Standard UnitVectors in Rn

The most basic linearly independent set in Rn is the set of standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

To illustrate this in R3, consider the standard unit vectors

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)
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To prove linear independence we must show that the only coefficients satisfying the vector
equation

k1i + k2j + k3k = 0

are k1 = 0, k2 = 0, k3 = 0. But this becomes evident by writing this equation in its
component form

(k1, k2, k3) = (0, 0, 0)

You should have no trouble adapting this argument to establish the linear independence
of the standard unit vectors in Rn.

EXAMPLE 2 Linear Independence in R3

Determine whether the vectors

v1 = (1,−2, 3), v2 = (5, 6,−1), v3 = (3, 2, 1) (2)

are linearly independent or linearly dependent in R3.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

k1v1 + k2v2 + k3v3 = 0 (3)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (3) in the component form

k1(1,−2, 3) + k2(5, 6,−1) + k3(3, 2, 1) = (0, 0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system

k1 + 5k2 + 3k3 = 0

−2k1 + 6k2 + 2k3 = 0

3k1 − k2 + k3 = 0

(4)

Thus, our problem reduces to determining whether this system has nontrivial solutions.
There are various ways to do this; one possibility is to simply solve the system, which
yields

k1 = − 1
2 t, k2 = − 1

2 t, k3 = t

(we omit the details). This shows that the system has nontrivial solutions and hence
that the vectors are linearly dependent. A second method for establishing the linear
dependence is to take advantage of the fact that the coefficient matrix

A =
⎡
⎣ 1 5 3
−2 6 2

3 −1 1

⎤
⎦

is square and compute its determinant. We leave it for you to show that det(A) = 0 from
which it follows that (4) has nontrivial solutions by parts (b) and (g) of Theorem 2.3.8.

Because we have established that the vectors v1, v2, and v3 in (2) are linearly depen-
dent, we know that at least one of them is a linear combination of the others. We leave
it for you to confirm, for example, that

v3 = 1
2 v1 + 1

2 v2
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EXAMPLE 3 Linear Independence in R4

Determine whether the vectors

v1 = (1, 2, 2,−1), v2 = (4, 9, 9,−4), v3 = (5, 8, 9,−5)

in R4 are linearly dependent or linearly independent.

Solution The linear independence or linear dependence of these vectors is determined
by whether there exist nontrivial solutions of the vector equation

k1v1 + k2v2 + k3v3 = 0

or, equivalently, of

k1(1, 2, 2,−1) + k2(4, 9, 9,−4) + k3(5, 8, 9,−5) = (0, 0, 0, 0)

Equating corresponding components on the two sides yields the homogeneous linear
system

k1 + 4k2 + 5k3 = 0

2k1 + 9k2 + 8k3 = 0

2k1 + 9k2 + 9k3 = 0

−k1 − 4k2 − 5k3 = 0

We leave it for you to show that this system has only the trivial solution

k1 = 0, k2 = 0, k3 = 0

from which you can conclude that v1, v2, and v3 are linearly independent.

EXAMPLE 4 An Important Linearly Independent Set in Pn
Show that the polynomials

1, x, x2, . . . , xn

form a linearly independent set in Pn.

Solution For convenience, let us denote the polynomials as

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We must show that the only coefficients satisfying the vector equation

a0p0 + a1p1 + a2p2 + · · · + anpn = 0 (5)

are
a0 = a1 = a2 = · · · = an = 0

But (5) is equivalent to the statement that

a0 + a1x + a2x
2 + · · · + anx

n = 0 (6)

for all x in (−�, �), so we must show that this is true if and only if each coefficient in
(6) is zero. To see that this is so, recall from algebra that a nonzero polynomial of degree
n has at most n distinct roots. That being the case, each coefficient in (6) must be zero,
for otherwise the left side of the equation would be a nonzero polynomial with infinitely
many roots. Thus, (5) has only the trivial solution.

The following example shows that the problem of determining whether a given set of
vectors in Pn is linearly independent or linearly dependent can be reduced to determining
whether a certain set of vectors in Rn is linearly dependent or independent.
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EXAMPLE 5 Linear Independence of Polynomials

Determine whether the polynomials

p1 = 1 − x, p2 = 5 + 3x − 2x2, p3 = 1 + 3x − x2

are linearly dependent or linearly independent in P2.

Solution The linear independence or dependence of these vectors is determined by
whether the vector equation

k1p1 + k2p2 + k3p3 = 0 (7)

can be satisfied with coefficients that are not all zero. To see whether this is so, let us
rewrite (7) in its polynomial form

k1(1 − x) + k2(5 + 3x − 2x2) + k3(1 + 3x − x2) = 0 (8)

or, equivalently, as

(k1 + 5k2 + k3) + (−k1 + 3k2 + 3k3)x + (−2k2 − k3)x
2 = 0

Since this equation must be satisfied by all x in (−�, �), each coefficient must be zero
(as explained in the previous example). Thus, the linear dependence or independence
of the given polynomials hinges on whether the following linear system has a nontrivial
solution:

k1 + 5k2 + k3 = 0

−k1 + 3k2 + 3k3 = 0

− 2k2 − k3 = 0

(9)

We leave it for you to show that this linear system has nontrivial solutions either by

In Example 5, what rela-
tionship do you see between
the coefficients of the given
polynomials and the column
vectors of the coefficient ma-
trix of system (9)? solving it directly or by showing that the coefficient matrix has determinant zero. Thus,

the set {p1, p2, p3} is linearly dependent.

Sets with One orTwo
Vectors

The following useful theorem is concerned with the linear independence and linear de-
pendence of sets with one or two vectors and sets that contain the zero vector.

THEOREM 4.3.2

(a) A finite set that contains 0 is linearly dependent.

(b) A set with exactly one vector is linearly independent if and only if that vector is
not 0.

(c) A set with exactly two vectors is linearly independent if and only if neither vector
is a scalar multiple of the other.

We will prove part (a) and leave the rest as exercises.

Proof (a) For any vectors v1, v2, . . . , vr , the set S = {v1, v2, . . . , vr , 0} is linearly depen-
dent since the equation

0v1 + 0v2 + · · · + 0vr + 1(0) = 0

expresses 0 as a linear combination of the vectors in S with coefficients that are not
all zero.

EXAMPLE 6 Linear Independence of Two Functions

The functions f1 = x and f2 = sin x are linearly independent vectors in F(−�, �) since
neither function is a scalar multiple of the other. On the other hand, the two functions
g1 = sin 2x and g2 = sin x cos x are linearly dependent because the trigonometric iden-
tity sin 2x = 2 sin x cos x reveals that g1 and g2 are scalar multiples of each other.
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A Geometric Interpretation
of Linear Independence

Linear independence has the following useful geometric interpretations in R2 and R3:

• Two vectors in R2 or R3 are linearly independent if and only if they do not lie on the
same line when they have their initial points at the origin. Otherwise one would be a
scalar multiple of the other (Figure 4.3.3).

Figure 4.3.3
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v2
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v2

(a)  Linearly dependent (b)  Linearly dependent (c)  Linearly independent

x x x

z z z

y y y

• Three vectors in R3 are linearly independent if and only if they do not lie in the same
plane when they have their initial points at the origin. Otherwise at least one would
be a linear combination of the other two (Figure 4.3.4).

Figure 4.3.4
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At the beginning of this section we observed that a third coordinate axis in R2 is
superfluous by showing that a unit vector along such an axis would have to be expressible
as a linear combination of unit vectors along the positive x- and y-axis. That result is
a consequence of the next theorem, which shows that there can be at most n vectors in
any linearly independent set Rn.

THEOREM 4.3.3 Let S = {v1, v2, . . . , vr} be a set of vectors in Rn. If r > n, then S is
linearly dependent.

Proof Suppose that
v1 = (v11, v12, . . . , v1n)

v2 = (v21, v22, . . . , v2n)
...

...
vr = (vr1, vr2, . . . , vrn)

and consider the equation

k1v1 + k2v2 + · · · + krvr = 0
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If we express both sides of this equation in terms of components and then equate the
It follows from Theorem 4.3.3
that a set in R2 with more than
two vectors is linearly depen-
dent and a set in R3 with more
than three vectors is linearly
dependent.

corresponding components, we obtain the system

v11k1 + v21k2 + · · ·+ vr1kr = 0

v12k1 + v22k2 + · · ·+ vr2kr = 0
...

...
...

...

v1nk1 + v2nk2 + · · ·+ vrnkr = 0

This is a homogeneous system of n equations in the r unknowns k1, . . . , kr . Since
r > n, it follows from Theorem 1.2.2 that the system has nontrivial solutions. Therefore,
S = {v1, v2, . . . , vr} is a linearly dependent set.

Linear Independence of
Functions

Sometimes linear dependence of functions can be deduced from known identities. ForCA L C U L U S R E Q U I R E D

example, the functions

f1 = sin2 x, f2 = cos2 x, and f3 = 5

form a linearly dependent set in F(−�, �), since the equation

5f1 + 5f2 − f3 = 5 sin2 x + 5 cos2 x − 5

= 5(sin2 x + cos2 x) − 5 = 0

expresses 0 as a linear combination of f1, f2, and f3 with coefficients that are not all zero.
However, it is relatively rare that linear independence or dependence of functions can

be ascertained by algebraic or trigonometric methods. To make matters worse, there is
no general method for doing that either. That said, there does exist a theorem that can
be useful for that purpose in certain cases. The following definition is needed for that
theorem.

DEFINITION 2 If f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are functions that are
n − 1 times differentiable on the interval (−�, �), then the determinant

W(x) =

∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

...

f
(n−1)

1 (x) f
(n−1)

2 (x) · · · f (n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣
is called the Wronskian of f1, f2, . . . , fn.

Józef Hoëné de Wroński
(1778–1853)

Historical Note The Polish-French mathematician Józef Hoëné de
Wroński was born Józef Hoëné and adopted the name Wroński after
he married. Wroński’s life was fraught with controversy and conflict,
which some say was due to psychopathic tendencies and his exag-
geration of the importance of his own work. AlthoughWroński’s work
was dismissed as rubbish for many years, and much of it was indeed
erroneous, some of his ideas contained hidden brilliance and have sur-
vived. Among other things, Wroński designed a caterpillar vehicle to
compete with trains (though it was never manufactured) and did re-
search on the famous problem of determining the longitude of a ship
at sea. His final years were spent in poverty.

[Image: © TopFoto/The ImageWorks]
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Suppose for the moment that f1 = f1(x), f2 = f2(x), . . . , fn = fn(x) are linearly
dependent vectors in C(n−1)(−�, �). This implies that the vector equation

k1f1 + k2f2 + · · · + knfn = 0

is satisfied by values of the coefficients k1, k2, . . . , kn that are not all zero, and for these
coefficients the equation

k1f1(x) + k2f2(x) + · · · + knfn(x) = 0

is satisfied for all x in (−�, �). Using this equation together with those that result by
differentiating it n − 1 times we obtain the linear system

k1f1(x) + k2f2(x) + · · ·+ knfn(x) = 0

k1f
′

1(x) + k2f
′

2(x) + · · ·+ knf
′
n(x) = 0

...
...

...
...

k1f
(n−1)

1 (x) + k2f
(n−1)

2 (x) + · · ·+ knf
(n−1)
n (x) = 0

Thus, the linear dependence of f1, f2, . . . , fn implies that the linear system⎡
⎢⎢⎢⎢⎣

f1(x) f2(x) · · · fn(x)

f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

...

f
(n−1)

1 (x) f
(n−1)

2 (x) · · · f (n−1)
n (x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

k1

k2
...

kn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎥⎦ (10)

has a nontrivial solution for every x in the interval (−�, �), and this in turn implies
that the determinant of the coefficient matrix of (10) is zero for every such x. Since this
determinant is the Wronskian of f1, f2, . . . , fn, we have established the following result.

THEOREM 4.3.4 If the functions f1, f2, . . . , fn have n−1 continuous derivatives
on the interval (−�, �), and if the Wronskian of these functions is not identically
zero on (−�, �), then these functions form a linearly independent set of vectors in
C(n−1)(−�, �).

In Example 6 we showed that x and sin x are linearly independent functions by

WARNING The converse of
Theorem 4.3.4 is false. If the
Wronskian of f1, f2, . . . , fn is
identically zero on (−�, �),
then no conclusion can be
reached about the linear inde-
pendence of {f1, f2, . . . , fn}—
this set of vectors may be lin-
early independent or linearly
dependent.

observing that neither is a scalar multiple of the other. The following example illustrates
how to obtain the same result using the Wronskian (though it is a more complicated
procedure in this particular case).

EXAMPLE 7 Linear Independence Using theWronskian

Use the Wronskian to show that f1 = x and f2 = sin x are linearly independent vectors
in C�(−�, �).

Solution The Wronskian is

W(x) =
∣∣∣∣x sin x

1 cos x

∣∣∣∣ = x cos x − sin x

This function is not identically zero on the interval (−�, �) since, for example,

W
(π

2

)
= π

2
cos

(π

2

)
− sin

(π

2

)
= π

2

Thus, the functions are linearly independent.
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EXAMPLE 8 Linear Independence Using theWronskian

Use the Wronskian to show that f1 = 1, f2 = ex , and f3 = e2x are linearly independent
vectors in C�(−�, �).

Solution The Wronskian is

W(x) =

∣∣∣∣∣∣∣
1 ex e2x

0 ex 2e2x

0 ex 4e2x

∣∣∣∣∣∣∣ = 2e3x

This function is obviously not identically zero on (−�, �), so f1, f2, and f3 form a linearly
independent set.

We will close this section by proving Theorem 4.3.1.O PT I O NA L

Proof of Theorem 4.3.1 We will prove this theorem in the case where the set S has two
or more vectors, and leave the case where S has only one vector as an exercise. Assume
first that S is linearly independent. We will show that if the equation

k1v1 + k2v2 + · · · + krvr = 0 (11)

can be satisfied with coefficients that are not all zero, then at least one of the vectors in
S must be expressible as a linear combination of the others, thereby contradicting the
assumption of linear independence. To be specific, suppose that k1 �= 0. Then we can
rewrite (11) as

v1 =
(
−k2

k1

)
v2 + · · · +

(
−kr

k1

)
vr

which expresses v1 as a linear combination of the other vectors in S.
Conversely, we must show that if the only coefficients satisfying (11) are

k1 = 0, k2 = 0, . . . , kr = 0

then the vectors in S must be linearly independent. But if this were true of the coeffi-
cients and the vectors were not linearly independent, then at least one of them would be
expressible as a linear combination of the others, say

v1 = c2v2 + · · · + crvr

which we can rewrite as

v1 + (−c2)v2 + · · · + (−cr)vr = 0

But this contradicts our assumption that (11) can only be satisfied by coefficients that
are all zero. Thus, the vectors in S must be linearly independent.

Exercise Set 4.3
1. Explain why the following form linearly dependent sets of vec-

tors. (Solve this problem by inspection.)

(a) u1 = (−1, 2, 4) and u2 = (5,−10,−20) in R3

(b) u1 = (3,−1), u2 = (4, 5), u3 = (−4, 7) in R2

(c) p1 = 3 − 2x + x2 and p2 = 6 − 4x + 2x2 in P2

(d) A =
[
−3 4

2 0

]
and B =

[
3 −4

−2 0

]
in M22

2. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R3.

(a) (−3, 0, 4), (5,−1, 2), (1, 1, 3)

(b) (−2, 0, 1), (3, 2, 5), (6,−1, 1), (7, 0,−2)

3. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in R4.

(a) (3, 8, 7,−3), (1, 5, 3,−1), (2,−1, 2, 6), (4, 2, 6, 4)

(b) (3, 0,−3, 6), (0, 2, 3, 1), (0,−2,−2, 0), (−2, 1, 2, 1)
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4. In each part, determine whether the vectors are linearly inde-
pendent or are linearly dependent in P2.

(a) 2 − x + 4x2, 3 + 6x + 2x2, 2 + 10x − 4x2

(b) 1 + 3x + 3x2, x + 4x2, 5 + 6x + 3x2, 7 + 2x − x2

5. In each part, determine whether the matrices are linearly in-
dependent or dependent.

(a)

[
1 0

1 2

]
,

[
1 2

2 1

]
,

[
0 1

2 1

]
in M22

(b)

[
1 0 0

0 0 0

]
,

[
0 0 1

0 0 0

]
,

[
0 0 0

0 1 0

]
in M23

6. Determine all values of k for which the following matrices are
linearly independent in M22.[

1 0

1 k

]
,

[
−1 0

k 1

]
,

[
2 0

1 3

]

7. In each part, determine whether the three vectors lie in a plane
in R3.

(a) v1 = (2,−2, 0), v2 = (6, 1, 4), v3 = (2, 0,−4)

(b) v1 = (−6, 7, 2), v2 = (3, 2, 4), v3 = (4,−1, 2)

8. In each part, determine whether the three vectors lie on the
same line in R3.

(a) v1 = (−1, 2, 3), v2 = (2,−4,−6), v3 = (−3, 6, 0)

(b) v1 = (2,−1, 4), v2 = (4, 2, 3), v3 = (2, 7,−6)

(c) v1 = (4, 6, 8), v2 = (2, 3, 4), v3 = (−2,−3,−4)

9. (a) Show that the three vectors v1 = (0, 3, 1,−1),
v2 = (6, 0, 5, 1), and v3 = (4,−7, 1, 3) form a linearly
dependent set in R4.

(b) Express each vector in part (a) as a linear combination of
the other two.

10. (a) Show that the vectors v1 = (1, 2, 3, 4), v2 = (0, 1, 0,−1),
and v3 = (1, 3, 3, 3) form a linearly dependent set in R4.

(b) Express each vector in part (a) as a linear combination of
the other two.

11. For which real values of λ do the following vectors form a
linearly dependent set in R3?

v1 = (
λ,− 1

2 ,− 1
2

)
, v2 = (− 1

2 , λ,− 1
2

)
, v3 = (− 1

2 ,− 1
2 , λ

)
12. Under what conditions is a set with one vector linearly inde-

pendent?

13. In each part, let TA: R2 →R2 be multiplication by A, and
let u1 = (1, 2) and u2 = (−1, 1). Determine whether the set
{TA(u1), TA(u2)} is linearly independent in R2.

(a) A =
[

1 −1

0 2

]
(b) A =

[
1 −1

−2 2

]

14. In each part, let TA: R3 →R3 be multiplication by A, and let
u1 = (1, 0, 0), u2 = (2,−1, 1), and u3 = (0, 1, 1). Determine

whether the set {TA(u1), TA(u2), TA(u3)} is linearly indepen-
dent in R3.

(a) A =
⎡
⎢⎣1 1 2

1 0 −3

2 2 0

⎤
⎥⎦ (b) A =

⎡
⎢⎣1 1 1

1 1 −3

2 2 0

⎤
⎥⎦

15. Are the vectors v1, v2, and v3 in part (a) of the accompany-
ing figure linearly independent? What about those in part (b)?
Explain.

z

y

x

z

y

x

(a) (b)

v1

v1

v2

v2

v3 v3

Figure Ex-15

16. By using appropriate identities, where required, determine
which of the following sets of vectors in F(−�, �) are lin-
early dependent.

(a) 6, 3 sin2 x, 2 cos2 x (b) x, cos x

(c) 1, sin x, sin 2x (d) cos 2x, sin2 x, cos2 x

(e) (3 − x)2, x2 − 6x, 5 (f ) 0, cos3 πx, sin5 3πx

17. (Calculus required ) The functions

f1(x) = x and f2(x) = cos x

are linearly independent inF(−�, �)because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

18. (Calculus required ) The functions

f1(x) = sin x and f2(x) = cos x

are linearly independent inF(−�, �)because neither function
is a scalar multiple of the other. Confirm the linear indepen-
dence using the Wronskian.

19. (Calculus required ) Use the Wronskian to show that the fol-
lowing sets of vectors are linearly independent.

(a) 1, x, ex (b) 1, x, x2

20. (Calculus required ) Use the Wronskian to show that the func-
tions f1(x) = ex, f2(x) = xex , and f3(x) = x2ex are linearly
independent vectors in C�(−�, �).

21. (Calculus required ) Use the Wronskian to show that the func-
tions f1(x) = sin x, f2(x) = cos x, and f3(x) = x cos x are
linearly independent vectors in C�(−�, �).
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22. Show that for any vectors u, v, and w in a vector space V, the
vectors u − v, v − w, and w − u form a linearly dependent set.

23. (a) In Example 1 we showed that the mutually orthogonal vec-
tors i, j, and k form a linearly independent set of vectors in
R3. Do you think that every set of three nonzero mutually
orthogonal vectors in R3 is linearly independent? Justify
your conclusion with a geometric argument.

(b) Justify your conclusion with an algebraic argument. [Hint:
Use dot products.]

Working with Proofs

24. Prove that if {v1, v2, v3} is a linearly independent set of vectors,
then so are {v1, v2}, {v1, v3}, {v2, v3}, {v1}, {v2}, and {v3}.

25. Prove that if S = {v1, v2, . . . , vr} is a linearly independent set
of vectors, then so is every nonempty subset of S.

26. Prove that if S = {v1, v2, v3} is a linearly dependent set of vec-
tors in a vector space V, and v4 is any vector in V that is not
in S, then {v1, v2, v3, v4} is also linearly dependent.

27. Prove that if S = {v1, v2, . . . , vr} is a linearly dependent set of
vectors in a vector space V, and if vr+1, . . . , vn are any vectors
in V that are not in S, then {v1, v2, . . . , vr , vr+1, . . . , vn} is also
linearly dependent.

28. Prove that in P2 every set with more than three vectors is lin-
early dependent.

29. Prove that if {v1, v2} is linearly independent and v3 does not lie
in span{v1, v2}, then {v1, v2, v3} is linearly independent.

30. Use part (a) of Theorem 4.3.1 to prove part (b).

31. Prove part (b) of Theorem 4.3.2.

32. Prove part (c) of Theorem 4.3.2.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) A set containing a single vector is linearly independent.

(b) The set of vectors {v, kv} is linearly dependent for every
scalar k.

(c) Every linearly dependent set contains the zero vector.

(d) If the set of vectors {v1, v2, v3} is linearly independent, then
{kv1, kv2, kv3} is also linearly independent for every nonzero
scalar k.

(e) If v1, . . . , vn are linearly dependent nonzero vectors, then
at least one vector vk is a unique linear combination of
v1, . . . , vk−1.

(f ) The set of 2 × 2 matrices that contain exactly two 1’s and two
0’s is a linearly independent set in M22.

(g) The three polynomials (x − 1)(x + 2), x(x + 2), and
x(x − 1) are linearly independent.

(h) The functions f1 and f2 are linearly dependent if there is a real
number x such that k1f1(x) + k2f2(x) = 0 for some scalars k1

and k2.

Working withTechnology

T1. Devise three different methods for using your technology util-
ity to determine whether a set of vectors in Rn is linearly indepen-
dent, and then use each of those methods to determine whether
the following vectors are linearly independent.

v1 = (4,−5, 2, 6), v2 = (2,−2, 1, 3),

v3 = (6,−3, 3, 9), v4 = (4,−1, 5, 6)

T2. Show that S = {cos t, sin t, cos 2t, sin 2t} is a linearly inde-
pendent set in C(−�, �) by evaluating the left side of the equation

c1 cos t + c2 sin t + c3 cos 2t + c4 sin 2t = 0

at sufficiently many values of t to obtain a linear system whose
only solution is c1 = c2 = c3 = c4 = 0.

4.4 Coordinates and Basis
We usually think of a line as being one-dimensional, a plane as two-dimensional, and the
space around us as three-dimensional. It is the primary goal of this section and the next to
make this intuitive notion of dimension precise. In this section we will discuss coordinate
systems in general vector spaces and lay the groundwork for a precise definition of
dimension in the next section.

Coordinate Systems in
Linear Algebra

In analytic geometry one uses rectangular coordinate systems to create a one-to-one cor-
respondence between points in 2-space and ordered pairs of real numbers and between
points in 3-space and ordered triples of real numbers (Figure 4.4.1). Although rectan-
gular coordinate systems are common, they are not essential. For example, Figure 4.4.2
shows coordinate systems in 2-space and 3-space in which the coordinate axes are not
mutually perpendicular.
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Figure 4.4.1

y

b

x

O a

P(a, b)

x

z

y

b

c

a

P(a, b, c)

Coordinates of P in a rectangular

coordinate system in 2-space.

Coordinates of P in a rectangular

coordinate system in 3-space.

Figure 4.4.2
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In linear algebra coordinate systems are commonly specified using vectors rather
than coordinate axes. For example, in Figure 4.4.3 we have re-created the coordinate
systems in Figure 4.4.2 by using unit vectors to identify the positive directions and then
attaching coordinates to a point P using the scalar coefficients in the equations

−→
OP = au1 + bu2 and

−→
OP = au1 + bu2 + cu3

Figure 4.4.3

bu2

cu3

bu2

O

O

au1 au1u1

u2

u3

u1
u2

P(a, b)

P(a, b, c)

Units of measurement are essential ingredients of any coordinate system. In ge-
ometry problems one tries to use the same unit of measurement on all axes to avoid
distorting the shapes of figures. This is less important in applications where coordinates
represent physical quantities with diverse units (for example, time in seconds on one axis
and temperature in degrees Celsius on another axis). To allow for this level of generality,
we will relax the requirement that unit vectors be used to identify the positive directions
and require only that those vectors be linearly independent. We will refer to these as the
“basis vectors” for the coordinate system. In summary, it is the directions of the basis
vectors that establish the positive directions, and it is the lengths of the basis vectors that
establish the spacing between the integer points on the axes (Figure 4.4.4).
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Basis for a Vector Space Our next goal is to extend the concepts of “basis vectors” and “coordinate systems” to
general vector spaces, and for that purpose we will need some definitions. Vector spaces
fall into two categories: A vector space V is said to be finite-dimensional if there is a
finite set of vectors in V that spans V and is said to be infinite-dimensional if no such set
exists.

DEFINITION 1 If S = {v1, v2, . . . , vn} is a set of vectors in a finite-dimensional vector
space V , then S is called a basis for V if:

(a) S spans V.

(b) S is linearly independent.

If you think of a basis as describing a coordinate system for a finite-dimensional
vector space V , then part (a) of this definition guarantees that there are enough basis
vectors to provide coordinates for all vectors in V , and part (b) guarantees that there is
no interrelationship between the basis vectors. Here are some examples.

EXAMPLE 1 The Standard Basis for Rn

Recall from Example 11 of Section 4.2 that the standard unit vectors

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

span Rn and from Example 1 of Section 4.3 that they are linearly independent. Thus,
they form a basis for Rn that we call the standard basis for Rn. In particular,

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

is the standard basis for R3.

EXAMPLE 2 The Standard Basis for Pn
Show that S = {1, x, x2, . . . , xn} is a basis for the vector space Pn of polynomials of
degree n or less.

Solution We must show that the polynomials in S are linearly independent and span
Pn. Let us denote these polynomials by

p0 = 1, p1 = x, p2 = x2, . . . , pn = xn

We showed in Example 13 of Section 4.2 that these vectors span Pn and in Example 4
of Section 4.3 that they are linearly independent. Thus, they form a basis for Pn that we
call the standard basis for Pn.
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EXAMPLE 3 Another Basis for R3

Show that the vectors v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4) form a basis for R3.

Solution We must show that these vectors are linearly independent and span R3. To
prove linear independence we must show that the vector equation

c1v1 + c2v2 + c3v3 = 0 (1)

has only the trivial solution; and to prove that the vectors span R3 we must show that
every vector b = (b1, b2, b3) in R3 can be expressed as

c1v1 + c2v2 + c3v3 = b (2)

By equating corresponding components on the two sides, these two equations can be
expressed as the linear systems

c1 + 2c2 + 3c3 = 0

2c1 + 9c2 + 3c3 = 0

c1 + 4c3 = 0

and

c1 + 2c2 + 3c3 = b1

2c1 + 9c2 + 3c3 = b2

c1 + 4c3 = b3

(3)

(verify). Thus, we have reduced the problem to showing that in (3) the homogeneous
system has only the trivial solution and that the nonhomogeneous system is consistent
for all values of b1, b2, and b3. But the two systems have the same coefficient matrix

A =
⎡
⎢⎣1 2 3

2 9 3

1 0 4

⎤
⎥⎦

so it follows from parts (b), (e), and (g) of Theorem 2.3.8 that we can prove both resultsFrom Examples 1 and 3 you
can see that a vector space can
have more than one basis.

at the same time by showing that det(A) �= 0. We leave it for you to confirm that
det(A) = −1, which proves that the vectors v1, v2, and v3 form a basis for R3.

EXAMPLE 4 The Standard Basis forMmn

Show that the matrices

M1 =
[

1 0

0 0

]
, M2 =

[
0 1

0 0

]
, M3 =

[
0 0

1 0

]
, M4 =

[
0 0

0 1

]
form a basis for the vector space M22 of 2 × 2 matrices.

Solution We must show that the matrices are linearly independent and span M22. To
prove linear independence we must show that the equation

c1M1 + c2M2 + c3M3 + c4M4 = 0 (4)

has only the trivial solution, where 0 is the 2 × 2 zero matrix; and to prove that the
matrices span M22 we must show that every 2 × 2 matrix

B =
[
a b

c d

]
can be expressed as

c1M1 + c2M2 + c3M3 + c4M4 = B (5)

The matrix forms of Equations (4) and (5) are

c1

[
1 0

0 0

]
+ c2

[
0 1

0 0

]
+ c3

[
0 0

1 0

]
+ c4

[
0 0

0 1

]
=
[

0 0

0 0

]
and

c1

[
1 0

0 0

]
+ c2

[
0 1

0 0

]
+ c3

[
0 0

1 0

]
+ c4

[
0 0

0 1

]
=
[
a b

c d

]
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which can be rewritten as[
c1 c2

c3 c4

]
=
[

0 0

0 0

]
and

[
c1 c2

c3 c4

]
=
[
a b

c d

]
Since the first equation has only the trivial solution

c1 = c2 = c3 = c4 = 0

the matrices are linearly independent, and since the second equation has the solution

c1 = a, c2 = b, c3 = c, c4 = d

the matrices span M22. This proves that the matrices M1, M2, M3, M4 form a basis for
M22. More generally, the mn different matrices whose entries are zero except for a single
entry of 1 form a basis for Mmn called the standard basis for Mmn.

The simplest of all vector spaces is the zero vector space V = {0}. This space is
finite-dimensional because it is spanned by the vector 0. However, it has no basis in the
sense of Definition 1 because {0} is not a linearly independent set (why?). However, we
will find it useful to define the empty set Ø to be a basis for this vector space.

EXAMPLE 5 An Infinite-DimensionalVector Space

Show that the vector space of P� of all polynomials with real coefficients is infinite-
dimensional by showing that it has no finite spanning set.

Solution If there were a finite spanning set, say S = {p1, p2, . . . , pr}, then the degrees
of the polynomials in S would have a maximum value, say n; and this in turn would
imply that any linear combination of the polynomials in S would have degree at most n.
Thus, there would be no way to express the polynomial xn+1 as a linear combination of
the polynomials in S, contradicting the fact that the vectors in S span P�.

EXAMPLE 6 Some Finite- and Infinite-Dimensional Spaces

In Examples 1, 2, and 4 we found bases for Rn, Pn, and Mmn, so these vector spaces
are finite-dimensional. We showed in Example 5 that the vector space P� is not spanned
by finitely many vectors and hence is infinite-dimensional. Some other examples of
infinite-dimensional vector spaces are R�, F(−�, �), C(−�, �), Cm(−�, �), and
C�(−�, �).

Coordinates Relative to a
Basis

Earlier in this section we drew an informal analogy between basis vectors and coordinate
systems. Our next goal is to make this informal idea precise by defining the notion of a
coordinate system in a general vector space. The following theorem will be our first step
in that direction.

THEOREM 4.4.1 Uniqueness of Basis Representation

If S = {v1, v2, . . . , vn} is a basis for a vector space V, then every vector v in V can be
expressed in the form v = c1v1 + c2v2 + · · · + cnvn in exactly one way.

Proof Since S spans V, it follows from the definition of a spanning set that every vector
in V is expressible as a linear combination of the vectors in S. To see that there is only
one way to express a vector as a linear combination of the vectors in S, suppose that
some vector v can be written as

v = c1v1 + c2v2 + · · · + cnvn
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and also as
v = k1v1 + k2v2 + · · · + knvn

Subtracting the second equation from the first gives

0 = (c1 − k1)v1 + (c2 − k2)v2 + · · · + (cn − kn)vn

Since the right side of this equation is a linear combination of vectors in S, the linear
independence of S implies that

c1 − k1 = 0, c2 − k2 = 0, . . . , cn − kn = 0

that is,
c1 = k1, c2 = k2, . . . , cn = kn

Thus, the two expressions for v are the same.

We now have all of the ingredients required to define the notion of “coordinates” in a
general vector space V. For motivation, observe that in R3, for example, the coordinates
(a, b, c) of a vector v are precisely the coefficients in the formula

k

ck

j

bji

ai
(0, 1, 0)

(a, b, c)

(1, 0, 0)

(0, 0, 1)

z

y

x

Figure 4.4.5

v = ai + bj + ck

that expresses v as a linear combination of the standard basis vectors for R3 (see Fig-
ure 4.4.5). The following definition generalizes this idea.

DEFINITION 2 If S = {v1, v2, . . . , vn} is a basis for a vector space V, and

v = c1v1 + c2v2 + · · · + cnvn

is the expression for a vector v in terms of the basis S, then the scalars c1, c2, . . . , cn

are called the coordinates of v relative to the basis S. The vector (c1, c2, . . . , cn) in
Rn constructed from these coordinates is called the coordinate vector of v relative to
S; it is denoted by

(v)S = (c1, c2, . . . , cn) (6)

Sometimes it will be desirable
to write a coordinate vector as
a column matrix or row ma-
trix, in which case we will de-
note it with square brackets as
[v]S . We will refer to this as the
matrix form of the coordinate
vector and (6) as the comma-
delimited form.

Remark It is standard to regard two sets to be the same if they have the same members, even if
those members are written in a different order. In particular, in a basis for a vector space V , which
is a set of linearly independent vectors that span V , the order in which those vectors are listed
does not generally matter. However, the order in which they are listed is critical for coordinate
vectors, since changing the order of the basis vectors changes the coordinate vectors [for example,
in R2 the coordinate pair (1, 2) is not the same as the coordinate pair (2, 1)]. To deal with this
complication, many authors define an ordered basis to be one in which the listing order of the
basis vectors remains fixed. In all discussions involving coordinate vectors we will assume that the
underlying basis is ordered, even though we may not say so explicitly.

Observe that (v)S is a vector in Rn, so that once an ordered basis S is given for a
vector space V, Theorem 4.4.1 establishes a one-to-one correspondence between vectors
in V and vectors in Rn (Figure 4.4.6).

Figure 4.4.6 RnV

v (v)S

A one-to-one correspondence
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EXAMPLE 7 Coordinates Relative to the Standard Basis for Rn

In the special case where V = Rn and S is the standard basis, the coordinate vector (v)S
and the vector v are the same; that is,

v = (v)S

For example, in R3 the representation of a vector v = (a, b, c) as a linear combination
of the vectors in the standard basis S = {i, j, k} is

v = ai + bj + ck

so the coordinate vector relative to this basis is (v)S = (a, b, c), which is the same as the
vector v.

EXAMPLE 8 CoordinateVectors Relative to Standard Bases

(a) Find the coordinate vector for the polynomial

p(x) = c0 + c1x + c2x
2 + · · · + cnx

n

relative to the standard basis for the vector space Pn.

(b) Find the coordinate vector of

B =
[
a b

c d

]
relative to the standard basis for M22.

Solution (a) The given formula for p(x) expresses this polynomial as a linear combina-
tion of the standard basis vectors S = {1, x, x2, . . . , xn}. Thus, the coordinate vector
for p relative to S is

(p)S = (c0, c1, c2, . . . , cn)

Solution (b) We showed in Example 4 that the representation of a vector

B =
[
a b

c d

]
as a linear combination of the standard basis vectors is

B =
[
a b

c d

]
= a

[
1 0

0 0

]
+ b

[
0 1

0 0

]
+ c

[
0 0

1 0

]
+ d

[
0 0

0 1

]
so the coordinate vector of B relative to S is

(B)S = (a, b, c, d)

EXAMPLE 9 Coordinates in R3

(a) We showed in Example 3 that the vectors

v1 = (1, 2, 1), v2 = (2, 9, 0), v3 = (3, 3, 4)

form a basis for R3. Find the coordinate vector of v = (5,−1, 9) relative to the
basis S = {v1, v2, v3}.

(b) Find the vector v in R3 whose coordinate vector relative to S is (v)S = (−1, 3, 2).

Solution (a) To find (v)S we must first express v as a linear combination of the vectors
in S; that is, we must find values of c1, c2, and c3 such that

v = c1v1 + c2v2 + c3v3
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or, in terms of components,

(5,−1, 9) = c1(1, 2, 1) + c2(2, 9, 0) + c3(3, 3, 4)

Equating corresponding components gives

c1 + 2c2 + 3c3 = 5

2c1 + 9c2 + 3c3 = −1

c1 + 4c3 = 9

Solving this system we obtain c1 = 1, c2 = −1, c3 = 2 (verify). Therefore,

(v)S = (1,−1, 2)

Solution (b) Using the definition of (v)S , we obtain

v = (−1)v1 + 3v2 + 2v3

= (−1)(1, 2, 1) + 3(2, 9, 0) + 2(3, 3, 4) = (11, 31, 7)

Exercise Set 4.4
1. Use the method of Example 3 to show that the following set

of vectors forms a basis for R2.{
(2, 1), (3, 0)

}
2. Use the method of Example 3 to show that the following set

of vectors forms a basis for R3.{
(3, 1,−4), (2, 5, 6), (1, 4, 8)

}
3. Show that the following polynomials form a basis for P2.

x2 + 1, x2 − 1, 2x − 1

4. Show that the following polynomials form a basis for P3.

1 + x, 1 − x, 1 − x2, 1 − x3

5. Show that the following matrices form a basis for M22.[
3 6

3 −6

]
,

[
0 −1

−1 0

]
,

[
0 −8

−12 −4

]
,

[
1 0

−1 2

]

6. Show that the following matrices form a basis for M22.[
1 1

1 1

]
,

[
1 −1

0 0

]
,

[
0 −1

1 0

]
,

[
1 0

0 0

]

7. In each part, show that the set of vectors is not a basis for R3.

(a)
{
(2,−3, 1), (4, 1, 1), (0,−7, 1)

}
(b)

{
(1, 6, 4), (2, 4,−1), (−1, 2, 5)

}
8. Show that the following vectors do not form a basis for P2.

1 − 3x + 2x2, 1 + x + 4x2, 1 − 7x

9. Show that the following matrices do not form a basis for M22.[
1 0

1 1

]
,

[
2 −2

3 2

]
,

[
1 −1

1 0

]
,

[
0 −1

1 1

]

10. Let V be the space spanned by v1 = cos2 x, v2 = sin2 x,
v3 = cos 2x.

(a) Show that S = {v1, v2, v3} is not a basis for V.

(b) Find a basis for V .

11. Find the coordinate vector of w relative to the basis
S = {u1, u2} for R2.

(a) u1 = (2,−4), u2 = (3, 8); w = (1, 1)

(b) u1 = (1, 1), u2 = (0, 2); w = (a, b)

12. Find the coordinate vector of w relative to the basis
S = {u1, u2} for R2.

(a) u1 = (1,−1), u2 = (1, 1); w = (1, 0)

(b) u1 = (1,−1), u2 = (1, 1); w = (0, 1)

13. Find the coordinate vector of v relative to the basis
S = {v1, v2, v3} for R3.

(a) v = (2,−1, 3); v1 = (1, 0, 0), v2 = (2, 2, 0),
v3 = (3, 3, 3)

(b) v = (5,−12, 3); v1 = (1, 2, 3), v2 = (−4, 5, 6),
v3 = (7,−8, 9)

14. Find the coordinate vector of p relative to the basis
S = {p1, p2, p3} for P2.

(a) p = 4 − 3x + x2; p1 = 1, p2 = x, p3 = x2

(b) p = 2 − x + x2; p1 = 1 + x, p2 = 1 + x2, p3 = x + x2
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In Exercises 15–16, first show that the set S = {A1, A2, A3, A4}
is a basis for M22, then express A as a linear combination of the
vectors in S, and then find the coordinate vector of A relative
to S.

15. A1 =
[

1 1

1 1

]
, A2 =

[
0 1

1 1

]
, A3 =

[
0 0

1 1

]
,

A4 =
[

0 0

0 1

]
; A =

[
1 0

1 0

]

16. A1 =
[

1 0

1 0

]
, A2 =

[
1 1

0 0

]
, A3 =

[
1 0

0 1

]
,

A4 =
[

0 0

1 0

]
; A =

[
6 2

5 3

]

In Exercises 17–18, first show that the set S = {p1, p2, p3} is a
basis for P2, then express p as a linear combination of the vectors
in S, and then find the coordinate vector of p relative to S.

17. p1 = 1 + x + x2, p2 = x + x2, p3 = x2;
p = 7 − x + 2x2

18. p1 = 1 + 2x + x2, p2 = 2 + 9x, p3 = 3 + 3x + 4x2;
p = 2 + 17x − 3x2

19. In words, explain why the sets of vectors in parts (a) to (d) are
not bases for the indicated vector spaces.

(a) u1 = (1, 2), u2 = (0, 3), u3 = (1, 5) for R2

(b) u1 = (−1, 3, 2), u2 = (6, 1, 1) for R3

(c) p1 = 1 + x + x2, p2 = x for P2

(d) A =
[

1 0

2 3

]
, B =

[
6 0

−1 4

]
, C =

[
3 0

1 7

]
,

D =
[

5 0

4 2

]
for M22

20. In any vector space a set that contains the zero vector must be
linearly dependent. Explain why this is so.

21. In each part, let TA: R3 →R3 be multiplication by A, and let
{e1, e2, e3} be the standard basis for R3. Determine whether
the set {TA(e1), TA(e2), TA(e3)} is linearly independent in R2.

(a) A =
⎡
⎢⎣ 1 1 1

0 1 −3

−1 2 0

⎤
⎥⎦ (b) A =

⎡
⎢⎣ 1 1 2

0 1 1

−1 2 1

⎤
⎥⎦

22. In each part, let TA: R3 →R3 be multiplication by A, and let
u = (1,−2,−1). Find the coordinate vector of TA(u) relative
to the basis S = {(1, 1, 0), (0, 1, 1), (1, 1, 1)} for R3.

(a) A =
⎡
⎢⎣2 −1 0

1 1 1

0 −1 2

⎤
⎥⎦ (b) A =

⎡
⎢⎣0 1 0

1 0 1

0 0 1

⎤
⎥⎦

23. The accompanying figure shows a rectangular xy-coordin-
ate system determined by the unit basis vectors i and j and
an x ′y ′-coordinate system determined by unit basis vectors u1

and u2. Find the x ′y ′-coordinates of the points whose xy-
coordinates are given.

(a) (
√

3, 1) (b) (1, 0) (c) (0, 1) (d) (a, b)

x

y and y'

x'

30°

i

j and u2

u1

Figure Ex-23

24. The accompanying figure shows a rectangular xy-coordinate
system and an x ′y ′-coordinate system with skewed axes. As-
suming that 1-unit scales are used on all the axes, find the x ′y ′-
coordinates of the points whose xy-coordinates are given.

(a) (1, 1) (b) (1, 0) (c) (0, 1) (d) (a, b)

x and x´

y y´

45°

Figure Ex-24

25. The first four Hermite polynomials [named for the French
mathematician Charles Hermite (1822–1901)] are

1, 2t, −2 + 4t2, −12t + 8t3

These polynomials have a wide variety of applications in
physics and engineering.

(a) Show that the first four Hermite polynomials form a basis
for P3.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = −1 − 4t + 8t2 + 8t3

relative to B.

26. The first four Laguerre polynomials [named for the French
mathematician Edmond Laguerre (1834–1886)] are

1, 1 − t, 2 − 4t + t2, 6 − 18t + 9t2 − t3

(a) Show that the first four Laguerre polynomials form a basis
for P3.

(b) Let B be the basis in part (a). Find the coordinate vector
of the polynomial

p(t) = −10t + 9t2 − t3

relative to B.
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27. Consider the coordinate vectors

[w]S =
⎡
⎢⎣ 6

−1

4

⎤
⎥⎦ , [q]S =

⎡
⎢⎣3

0

4

⎤
⎥⎦ , [B]S =

⎡
⎢⎢⎢⎣
−8

7

6

3

⎤
⎥⎥⎥⎦

(a) Find w if S is the basis in Exercise 2.

(b) Find q if S is the basis in Exercise 3.

(c) Find B if S is the basis in Exercise 5.

28. The basis that we gave for M22 in Example 4 consisted of non-
invertible matrices. Do you think that there is a basis for M22

consisting of invertible matrices? Justify your answer.

Working with Proofs

29. Prove that R� is an infinite-dimensional vector space.

30. Let TA: Rn →Rn be multiplication by an invertible matrix
A, and let {u1, u2, . . . , un} be a basis for Rn. Prove that
{TA(u1), TA(u2), . . . , TA(un)} is also a basis for Rn.

31. Prove that if V is a subspace of a vector space W and if V is
infinite-dimensional, then so is W .

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) If V = span{v1, . . . , vn}, then {v1, . . . , vn} is a basis for V.

(b) Every linearly independent subset of a vector space V is a
basis for V.

(c) If {v1, v2, . . . , vn} is a basis for a vector space V, then ev-
ery vector in V can be expressed as a linear combination of
v1, v2, . . . , vn.

(d) The coordinate vector of a vector x in Rn relative to the stan-
dard basis for Rn is x.

(e) Every basis of P4 contains at least one polynomial of degree 3
or less.

Working withTechnology

T1. Let V be the subspace of P3 spanned by the vectors

p1 = 1 + 5x − 3x2 − 11x3, p2 = 7 + 4x − x2 + 2x3,

p3 = 5 + x + 9x2 + 2x3, p4 = 3 − x + 7x2 + 5x3

(a) Find a basis S for V .

(b) Find the coordinate vector of p = 19 + 18x − 13x2 − 10x3

relative to the basis S you obtained in part (a).

T2. Let V be the subspace of C�(−�, �) spanned by the vectors
in the set

B = {1, cos x, cos2 x, cos3 x, cos4 x, cos5 x}

and accept without proof that B is a basis for V . Confirm that
the following vectors are in V , and find their coordinate vectors
relative to B.

f0 = 1, f1 = cos x, f2 = cos 2x, f3 = cos 3x,

f4 = cos 4x, f5 = cos 5x

4.5 Dimension
We showed in the previous section that the standard basis for Rn has n vectors and hence
that the standard basis for R3 has three vectors, the standard basis for R2 has two vectors, and
the standard basis for R1(= R) has one vector. Since we think of space as three-dimensional,
a plane as two-dimensional, and a line as one-dimensional, there seems to be a link between
the number of vectors in a basis and the dimension of a vector space. We will develop this
idea in this section.

Number of Vectors in a
Basis

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.5.1 All bases for a finite-dimensional vector space have the same number
of vectors.

To prove this theorem we will need the following preliminary result, whose proof is
deferred to the end of the section.
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THEOREM 4.5.2 Let V be an n-dimensional vector space, and let {v1, v2, . . . , vn} be
any basis.

(a) If a set in V has more than n vectors, then it is linearly dependent.

(b) If a set in V has fewer than n vectors, then it does not span V.

We can now see rather easily why Theorem 4.5.1 is true; for if

S = {v1, v2, . . . , vn}
is an arbitrary basis for V, then the linear independence of S implies that any set in V

with more than n vectors is linearly dependent and any set in V with fewer than n vectors
does not span V. Thus, unless a set in V has exactly n vectors it cannot be a basis.

We noted in the introduction to this section that for certain familiar vector spaces
the intuitive notion of dimension coincides with the number of vectors in a basis. The
following definition makes this idea precise.

DEFINITION 1 The dimension of a finite-dimensional vector space V is denoted by
dim(V ) and is defined to be the number of vectors in a basis for V. In addition, the
zero vector space is defined to have dimension zero.

EXAMPLE 1 Dimensions of Some FamiliarVector Spaces

dim(Rn) = n [ The standard basis has n vectors. ]

dim(Pn) = n + 1 [ The standard basis has n + 1 vectors. ]

dim(Mmn) = mn [ The standard basis has mn vectors. ]

Engineers often use the term
degrees of freedom as a syn-
onym for dimension.

EXAMPLE 2 Dimension of Span(S)

If S = {v1, v2, . . . , vr} then every vector in span(S) is expressible as a linear combination
of the vectors in S. Thus, if the vectors in S are linearly independent, they automatically
form a basis for span(S), from which we can conclude that

dim[span{v1, v2, . . . , vr}] = r

In words, the dimension of the space spanned by a linearly independent set of vectors is
equal to the number of vectors in that set.

EXAMPLE 3 Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

x1 + 3x2 − 2x3 + 2x5 = 0

2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0

2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

Solution In Example 6 of Section 1.2 we found the solution of this system to be

x1 = −3r − 4s − 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

which can be written in vector form as

(x1, x2, x3, x4, x5, x6) = (−3r − 4s − 2t, r,−2s, s, t, 0)



4.5 Dimension 223

or, alternatively, as

(x1, x2, x3, x4, x5, x6) = r(−3, 1, 0, 0, 0, 0) + s(−4, 0,−2, 1, 0, 0) + t(−2, 0, 0, 0, 1, 0)

This shows that the vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0,−2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)

span the solution space. We leave it for you to check that these vectors are linearly
independent by showing that none of them is a linear combination of the other two (but
see the remark that follows). Thus, the solution space has dimension 3.

Remark It can be shown that for any homogeneous linear system, the method of the last example
always produces a basis for the solution space of the system. We omit the formal proof.

Some Fundamental
Theorems

We will devote the remainder of this section to a series of theorems that reveal the subtle
interrelationships among the concepts of linear independence, spanning sets, basis, and
dimension. These theorems are not simply exercises in mathematical theory—they are
essential to the understanding of vector spaces and the applications that build on them.

We will start with a theorem (proved at the end of this section) that is concerned with
the effect on linear independence and spanning if a vector is added to or removed from
a nonempty set of vectors. Informally stated, if you start with a linearly independent set
S and adjoin to it a vector that is not a linear combination of those already in S, then
the enlarged set will still be linearly independent. Also, if you start with a set S of two
or more vectors in which one of the vectors is a linear combination of the others, then
that vector can be removed from S without affecting span(S) (Figure 4.5.1).

The vector outside the plane

can be adjoined to the other

two without affecting their

linear independence.

Any of the vectors can

be removed, and the 

remaining two will still

span the plane.

Either of the collinear

vectors can be removed,

and the remaining two

will still span the plane.

Figure 4.5.1

THEOREM 4.5.3 Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.

(a) If S is a linearly independent set, and if v is a vector in V that is outside of
span(S), then the set S ∪ {v} that results by inserting v into S is still linearly
independent.

(b) If v is a vector in S that is expressible as a linear combination of other vectors
in S, and if S − {v} denotes the set obtained by removing v from S, then S and
S − {v} span the same space; that is,

span(S) = span(S − {v})
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EXAMPLE 4 Applying the Plus/MinusTheorem

Show that p1 = 1 − x2, p2 = 2 − x2, and p3 = x3 are linearly independent vectors.

Solution The set S = {p1, p2} is linearly independent since neither vector in S is a scalar
multiple of the other. Since the vector p3 cannot be expressed as a linear combination
of the vectors in S (why?), it can be adjoined to S to produce a linearly independent set
S ∪ {p3} = {p1, p2, p3}.

In general, to show that a set of vectors {v1, v2, . . . , vn} is a basis for a vector space V,

one must show that the vectors are linearly independent and span V. However, if we
happen to know that V has dimension n (so that {v1, v2, . . . , vn} contains the right
number of vectors for a basis), then it suffices to check either linear independence or
spanning—the remaining condition will hold automatically. This is the content of the
following theorem.

THEOREM 4.5.4 Let V be an n-dimensional vector space, and let S be a set in V

with exactly n vectors. Then S is a basis for V if and only if S spans V or S is linearly
independent.

Proof Assume that S has exactly n vectors and spans V. To prove that S is a basis, we
must show that S is a linearly independent set. But if this is not so, then some vector v in
S is a linear combination of the remaining vectors. If we remove this vector from S, then
it follows from Theorem 4.5.3(b) that the remaining set of n − 1 vectors still spans V.

But this is impossible since Theorem 4.5.2(b) states that no set with fewer than n vectors
can span an n-dimensional vector space. Thus S is linearly independent.

Assume that S has exactly n vectors and is a linearly independent set. To prove
that S is a basis, we must show that S spans V. But if this is not so, then there is
some vector v in V that is not in span(S). If we insert this vector into S, then it fol-
lows from Theorem 4.5.3(a) that this set of n + 1 vectors is still linearly independent.
But this is impossible, since Theorem 4.5.2(a) states that no set with more than n vec-
tors in an n-dimensional vector space can be linearly independent. Thus S spans V.

EXAMPLE 5 Bases by Inspection

(a) Explain why the vectors v1 = (−3, 7) and v2 = (5, 5) form a basis for R2.

(b) Explain why the vectors v1 = (2, 0,−1), v2 = (4, 0, 7), and v3 = (−1, 1, 4) form a
basis for R3.

Solution (a) Since neither vector is a scalar multiple of the other, the two vectors form
a linearly independent set in the two-dimensional space R2, and hence they form a basis
by Theorem 4.5.4.

Solution (b) The vectors v1 and v2 form a linearly independent set in the xz-plane (why?).
The vector v3 is outside of the xz-plane, so the set {v1, v2, v3} is also linearly independent.
Since R3 is three-dimensional, Theorem 4.5.4 implies that {v1, v2, v3} is a basis for the
vector space R3.

The next theorem (whose proof is deferred to the end of this section) reveals two
important facts about the vectors in a finite-dimensional vector space V :
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1. Every spanning set for a subspace is either a basis for that subspace or has a basis
as a subset.

2. Every linearly independent set in a subspace is either a basis for that subspace or
can be extended to a basis for it.

THEOREM 4.5.5 Let S be a finite set of vectors in a finite-dimensional vector space V.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by
removing appropriate vectors from S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be
enlarged to a basis for V by inserting appropriate vectors into S.

We conclude this section with a theorem that relates the dimension of a vector space
to the dimensions of its subspaces.

THEOREM 4.5.6 If W is a subspace of a finite-dimensional vector space V, then:

(a) W is finite-dimensional.

(b) dim(W) ≤ dim(V ).

(c) W = V if and only if dim(W) = dim(V ).

Proof (a) We will leave the proof of this part as an exercise.

Proof (b) Part (a) shows that W is finite-dimensional, so it has a basis

S = {w1, w2, . . . , wm}
Either S is also a basis for V or it is not. If so, then dim(V ) = m, which means that
dim(V ) = dim(W). If not, then because S is a linearly independent set it can be enlarged
to a basis for V by part (b) of Theorem 4.5.5. But this implies that dim(W) < dim(V ),
so we have shown that dim(W) ≤ dim(V ) in all cases.

Proof (c) Assume that dim(W) = dim(V ) and that

S = {w1, w2, . . . , wm}
is a basis for W . If S is not also a basis for V, then being linearly independent S can
be extended to a basis for V by part (b) of Theorem 4.5.5. But this would mean that
dim(V ) > dim(W), which contradicts our hypothesis. Thus S must also be a basis for
V, which means that W = V . The converse is obvious.

Figure 4.5.2 illustrates the geometric relationship between the subspaces of R3 in
order of increasing dimension.

Figure 4.5.2

Line through the origin
(1-dimensional)

The origin
(0-dimensional)

Plane through
the origin

(2-dimensional)

R3

(3-dimensional)
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We conclude this section with optional proofs of Theorems 4.5.2, 4.5.3, and 4.5.5.O PT I O NA L

Proof ofTheorem 4.5.2 (a) Let S ′ = {w1, w2, . . . , wm} be any set of m vectors in V, where
m > n. We want to show that S ′ is linearly dependent. Since S = {v1, v2, . . . , vn} is a
basis, each wi can be expressed as a linear combination of the vectors in S, say

w1 = a11v1 + a21v2 + · · ·+ an1vn

w2 = a12v1 + a22v2 + · · ·+ an2vn
...

...
...

...
wm = a1mv1 + a2mv2 + · · ·+ anmvn

(1)

To show that S ′ is linearly dependent, we must find scalars k1, k2, . . . , km, not all zero,
such that

k1w1 + k2w2 + · · · + kmwm = 0 (2)

We leave it for you to verify that the equations in (1) can be rewritten in the partitioned
form

[w1 | w2 | · · · | wm] = [v1 | v2 | · · · | vn]

⎡
⎢⎢⎢⎢⎢⎣

a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn

⎤
⎥⎥⎥⎥⎥⎦ (3)

Since m > n, the linear system⎡
⎢⎢⎢⎢⎢⎣

a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

...

xm

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎥⎦ (4)

has more equations than unknowns and hence has a nontrivial solution

x1 = k1, x2 = k2, . . . , xm = km

Creating a column vector from this solution and multiplying both sides of (3) on the
right by this vector yields

[w1 | w2 | · · · | wm]

⎡
⎢⎢⎢⎢⎣

k1

k2

...

km

⎤
⎥⎥⎥⎥⎦ = [v1 | v2 | · · · | vn]

⎡
⎢⎢⎢⎢⎢⎣

a11 a21 · · · am1

a12 a22 · · · am2

...
...

...

a1n a2n · · · amn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

k1

k2

...

km

⎤
⎥⎥⎥⎥⎦

By (4), this simplifies to

[w1 | w2 | · · · | wm]

⎡
⎢⎢⎢⎢⎣

k1

k2

...

km

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0
...

0

⎤
⎥⎥⎥⎥⎦

which we can rewrite as
k1w1 + k2w2 + · · · + kmwm = 0

Since the scalar coefficients in this equation are not all zero, we have proved that
S ′ = {w1, w2, . . . , wm} is linearly independent.
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The proof of Theorem 4.5.2(b) closely parallels that of Theorem 4.5.2(a) and will be
omitted.

Proof of Theorem 4.5.3 (a) Assume that S = {v1, v2, . . . , vr} is a linearly independent
set of vectors in V, and v is a vector in V that is outside of span(S). To show that
S ′ = {v1, v2, . . . , vr , v} is a linearly independent set, we must show that the only scalars
that satisfy

k1v1 + k2v2 + · · · + krvr + kr+1v = 0 (5)

are k1 = k2 = · · · = kr = kr+1 = 0. But it must be true that kr+1 = 0 for otherwise we
could solve (5) for v as a linear combination of v1, v2, . . . , vr , contradicting the assump-
tion that v is outside of span(S). Thus, (5) simplifies to

k1v1 + k2v2 + · · · + krvr = 0 (6)

which, by the linear independence of {v1, v2, . . . , vr}, implies that

k1 = k2 = · · · = kr = 0

Proof ofTheorem 4.5.3 (b) Assume that S = {v1, v2, . . . , vr} is a set of vectors in V, and
(to be specific) suppose that vr is a linear combination of v1, v2, . . . , vr−1, say

vr = c1v1 + c2v2 + · · · + cr−1vr−1 (7)

We want to show that if vr is removed from S, then the remaining set of vectors
{v1, v2, . . . , vr−1} still spans S; that is, we must show that every vector w in span(S)

is expressible as a linear combination of {v1, v2, . . . , vr−1}. But if w is in span(S), then
w is expressible in the form

w = k1v1 + k2v2 + · · · + kr−1vr−1 + krvr

or, on substituting (7),

w = k1v1 + k2v2 + · · · + kr−1vr−1 + kr(c1v1 + c2v2 + · · · + cr−1vr−1)

which expresses w as a linear combination of v1, v2, . . . , vr−1.

Proof ofTheorem 4.5.5 (a) If S is a set of vectors that spans V but is not a basis for V,

then S is a linearly dependent set. Thus some vector v in S is expressible as a linear
combination of the other vectors in S. By the Plus/Minus Theorem (4.5.3b), we can
remove v from S, and the resulting set S ′ will still span V. If S ′ is linearly independent,
then S ′ is a basis for V, and we are done. If S ′ is linearly dependent, then we can remove
some appropriate vector from S ′ to produce a set S ′′ that still spans V. We can continue
removing vectors in this way until we finally arrive at a set of vectors in S that is linearly
independent and spans V. This subset of S is a basis for V.

Proof ofTheorem 4.5.5 (b) Suppose that dim(V ) = n. If S is a linearly independent set
that is not already a basis for V, then S fails to span V, so there is some vector v in V

that is not in span(S). By the Plus/Minus Theorem (4.5.3a), we can insert v into S, and
the resulting set S ′ will still be linearly independent. If S ′ spans V, then S ′ is a basis for
V, and we are finished. If S ′ does not span V, then we can insert an appropriate vector
into S ′ to produce a set S ′′ that is still linearly independent. We can continue inserting
vectors in this way until we reach a set with n linearly independent vectors in V. This set
will be a basis for V by Theorem 4.5.4.
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Exercise Set 4.5
In Exercises 1–6, find a basis for the solution space of the ho-

mogeneous linear system, and find the dimension of that space.

1. x1 + x2 − x3 = 0
−2x1 − x2 + 2x3 = 0
−x1 + x3 = 0

2. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

3. 2x1 + x2 + 3x3 = 0
x1 + 5x3 = 0

x2 + x3 = 0

4. x1 − 4x2 + 3x3 − x4 = 0
2x1 − 8x2 + 6x3 − 2x4 = 0

5. x1 − 3x2 + x3 = 0
2x1 − 6x2 + 2x3 = 0
3x1 − 9x2 + 3x3 = 0

6. x + y + z = 0
3x + 2y − 2z = 0
4x + 3y − z = 0
6x + 5y + z = 0

7. In each part, find a basis for the given subspace of R3, and
state its dimension.

(a) The plane 3x − 2y + 5z = 0.

(b) The plane x − y = 0.

(c) The line x = 2t, y = −t, z = 4t .

(d) All vectors of the form (a, b, c), where b = a + c.

8. In each part, find a basis for the given subspace of R4, and
state its dimension.

(a) All vectors of the form (a, b, c, 0).

(b) All vectors of the form (a, b, c, d), where d = a + b and
c = a − b.

(c) All vectors of the form (a, b, c, d), where a = b = c = d.

9. Find the dimension of each of the following vector spaces.

(a) The vector space of all diagonal n × n matrices.

(b) The vector space of all symmetric n × n matrices.

(c) The vector space of all upper triangular n × n matrices.

10. Find the dimension of the subspace of P3 consisting of all
polynomials a0 + a1x + a2x

2 + a3x
3 for which a0 = 0.

11. (a) Show that the set W of all polynomials in P2 such that
p(1) = 0 is a subspace of P2.

(b) Make a conjecture about the dimension of W .

(c) Confirm your conjecture by finding a basis for W .

12. Find a standard basis vector for R3 that can be added to the
set {v1, v2} to produce a basis for R3.

(a) v1 = (−1, 2, 3), v2 = (1,−2,−2)

(b) v1 = (1,−1, 0), v2 = (3, 1,−2)

13. Find standard basis vectors for R4 that can be added to the
set {v1, v2} to produce a basis for R4.

v1 = (1,−4, 2,−3), v2 = (−3, 8,−4, 6)

14. Let {v1, v2, v3} be a basis for a vector space V. Show that
{u1, u2, u3} is also a basis, where u1 = v1, u2 = v1 + v2, and
u3 = v1 + v2 + v3.

15. The vectors v1 = (1,−2, 3) and v2 = (0, 5,−3) are linearly
independent. Enlarge {v1, v2} to a basis for R3.

16. The vectors v1 = (1, 0, 0, 0) and v2 = (1, 1, 0, 0) are linearly
independent. Enlarge {v1, v2} to a basis for R4.

17. Find a basis for the subspace of R3 that is spanned by the
vectors

v1 = (1, 0, 0), v2 = (1, 0, 1), v3 = (2, 0, 1), v4 = (0, 0,−1)

18. Find a basis for the subspace of R4 that is spanned by the
vectors

v1 = (1, 1, 1, 1), v2 = (2, 2, 2, 0), v3 = (0, 0, 0, 3),
v4 = (3, 3, 3, 4)

19. In each part, let TA: R3 →R3 be multiplication by A and find
the dimension of the subspace of R3 consisting of all vectors
x for which TA(x) = 0.

(a) A =
⎡
⎢⎣1 1 0

1 0 1

1 0 1

⎤
⎥⎦ (b) A =

⎡
⎢⎣1 2 0

1 2 0

1 2 0

⎤
⎥⎦

(c) A =
⎡
⎢⎣ 1 0 0

−1 1 0

1 1 1

⎤
⎥⎦

20. In each part, let TA be multiplication by A and find the dimen-
sion of the subspace R4 consisting of all vectors x for which
TA(x) = 0.

(a) A =
[

1 0 2 −1

−1 4 0 0

]
(b) A =

⎡
⎢⎣ 0 0 1 1

−1 1 0 0

1 0 0 1

⎤
⎥⎦

Working with Proofs

21. (a) Prove that for every positive integer n, one can find n + 1
linearly independent vectors in F(−�, �). [Hint: Look
for polynomials.]

(b) Use the result in part (a) to prove that F(−�, �) is infinite-
dimensional.

(c) Prove that C(−�, �), Cm(−�, �), and C�(−�, �) are
infinite-dimensional.

22. Let S be a basis for an n-dimensional vector space V. Prove
that if v1, v2, . . . , vr form a linearly independent set of vectors
in V, then the coordinate vectors (v1)S, (v2)S, . . . , (vr )S form
a linearly independent set in Rn, and conversely.
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23. Let S = {v1, v2, . . . , vr} be a nonempty set of vectors in an
n-dimensional vector space V . Prove that if the vectors in
S span V, then the coordinate vectors (v1)S, (v2)S, . . . , (vr )S

span Rn, and conversely.

24. Prove part (a) of Theorem 4.5.6.

25. Prove: A subspace of a finite-dimensional vector space is
finite-dimensional.

26. State the two parts of Theorem 4.5.2 in contrapositive form.

27. In each part, let S be the standard basis for P2. Use the results
proved in Exercises 22 and 23 to find a basis for the subspace
of P2 spanned by the given vectors.

(a) −1 + x − 2x2, 3 + 3x + 6x2, 9

(b) 1 + x, x2, 2 + 2x + 3x2

(c) 1 + x − 3x2, 2 + 2x − 6x2, 3 + 3x − 9x2

True-False Exercises

TF. In parts (a)–( k) determine whether the statement is true or
false, and justify your answer.

(a) The zero vector space has dimension zero.

(b) There is a set of 17 linearly independent vectors in R17.

(c) There is a set of 11 vectors that span R17.

(d) Every linearly independent set of five vectors in R5 is a basis
for R5.

(e) Every set of five vectors that spans R5 is a basis for R5.

(f ) Every set of vectors that spans Rn contains a basis for Rn.

(g) Every linearly independent set of vectors in Rn is contained in
some basis for Rn.

(h) There is a basis for M22 consisting of invertible matrices.

(i) If A has size n × n and In, A, A2, . . . , An2
are distinct matri-

ces, then {In, A, A2, . . . , An2 } is a linearly dependent set.

( j) There are at least two distinct three-dimensional subspaces
of P2.

(k) There are only three distinct two-dimensional subspaces of P2.

Working withTechnology

T1. Devise three different procedures for using your technology
utility to determine the dimension of the subspace spanned by a
set of vectors in Rn, and then use each of those procedures to
determine the dimension of the subspace of R5 spanned by the
vectors

v1 = (2, 2,−1, 0, 1), v2 = (−1,−1, 2,−3, 1),

v3 = (1, 1,−2, 0,−1), v4 = (0, 0, 1, 1, 1)

T2. Find a basis for the row space of A by starting at the top and
successively removing each row that is a linear combination of its
predecessors.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

3.4 2.2 1.0 −1.8

2.1 3.6 4.0 −3.4

8.9 8.0 6.0 7.0

7.6 9.4 9.0 −8.6

1.0 2.2 0.0 2.2

⎤
⎥⎥⎥⎥⎥⎥⎦

4.6 Change of Basis
A basis that is suitable for one problem may not be suitable for another, so it is a common
process in the study of vector spaces to change from one basis to another. Because a basis is
the vector space generalization of a coordinate system, changing bases is akin to changing
coordinate axes in R2 and R3. In this section we will study problems related to changing
bases.

Coordinate Maps If S = {v1, v2, . . . , vn} is a basis for a finite-dimensional vector space V, and if

(v)S = (c1, c2, . . . , cn)

is the coordinate vector of v relative to S, then, as illustrated in Figure 4.4.6, the mapping

v → (v)S (1)

creates a connection (a one-to-one correspondence) between vectors in the general vector
space V and vectors in the Euclidean vector space Rn. We call (1) the coordinate map
relative to S from V to Rn. In this section we will find it convenient to express coordinate
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vectors in the matrix form

[v]S =

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦ (2)

where the square brackets emphasize the matrix notation (Figure 4.6.1).
RnV

[   ]S c1
c2
...
cn

v

Coordinate map

Figure 4.6.1

Change of Basis There are many applications in which it is necessary to work with more than one coor-
dinate system. In such cases it becomes important to know how the coordinates of a
fixed vector relative to each coordinate system are related. This leads to the following
problem.

The Change-of-Basis Problem If v is a vector in a finite-dimensional vector space V,
and if we change the basis for V from a basis B to a basis B ′, how are the coordinate
vectors [v]B and [v]B ′ related?

Remark To solve this problem, it will be convenient to refer to B as the “old basis” and B ′ as
the “new basis.” Thus, our objective is to find a relationship between the old and new coordinates
of a fixed vector v in V.

For simplicity, we will solve this problem for two-dimensional spaces. The solution
for n-dimensional spaces is similar. Let

B = {u1, u2} and B ′ = {u′
1, u′

2}
be the old and new bases, respectively. We will need the coordinate vectors for the new
basis vectors relative to the old basis. Suppose they are

[u′
1]B =

[
a

b

]
and [u′

2]B =
[
c

d

]
(3)

That is,
u′

1 = au1 + bu2

u′
2 = cu1 + du2

(4)

Now let v be any vector in V, and let

[v]B ′ =
[
k1

k2

]
(5)

be the new coordinate vector, so that

v = k1u′
1 + k2u′

2 (6)

In order to find the old coordinates of v, we must express v in terms of the old basis B.
To do this, we substitute (4) into (6). This yields

v = k1(au1 + bu2) + k2(cu1 + du2)

or
v = (k1a + k2c)u1 + (k1b + k2d)u2

Thus, the old coordinate vector for v is

[v]B =
[
k1a + k2c

k1b + k2d

]
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which, by using (5), can be written as

[v]B =
[
a c

b d

] [
k1

k2

]
=
[
a c

b d

]
[v]B ′

This equation states that the old coordinate vector [v]B results when we multiply the new
coordinate vector [v]B ′ on the left by the matrix

P =
[
a c

b d

]
Since the columns of this matrix are the coordinates of the new basis vectors relative to
the old basis [see (3)], we have the following solution of the change-of-basis problem.

Solution of the Change-of-Basis Problem If we change the basis for a vector space V

from an old basis B = {u1, u2, . . . , un} to a new basis B ′ = {u′
1, u′

2, . . . , u′
n}, then for

each vector v in V, the old coordinate vector [v]B is related to the new coordinate
vector [v]B ′ by the equation

[v]B = P [v]B ′ (7)

where the columns of P are the coordinate vectors of the new basis vectors relative
to the old basis; that is, the column vectors of P are

[u′
1]B, [u′

2]B, . . . , [u′
n]B (8)

Transition Matrices The matrix P in Equation (7) is called the transition matrix from B ′ to B. For emphasis,
we will often denote it by PB ′→B . It follows from (8) that this matrix can be expressed
in terms of its column vectors as

PB ′→B = [[u′
1]B | [u′

2]B | · · · | [u′
n]B
]

(9)

Similarly, the transition matrix from B to B ′ can be expressed in terms of its column
vectors as

PB→B ′ = [[u1]B ′ | [u2]B ′ | · · · | [un]B ′
]

(10)

Remark There is a simple way to remember both of these formulas using the terms “old basis”
and “new basis” defined earlier in this section: In Formula (9) the old basis is B ′ and the new basis
is B, whereas in Formula (10) the old basis is B and the new basis is B ′. Thus, both formulas can
be restated as follows:

The columns of the transition matrix from an old basis to a new basis are the coordinate
vectors of the old basis relative to the new basis.

EXAMPLE 1 FindingTransition Matrices

Consider the bases B = {u1, u2} and B ′ = {u′
1, u′

2} for R2, where

u1 = (1, 0), u2 = (0, 1), u′
1 = (1, 1), u′

2 = (2, 1)

(a) Find the transition matrix PB ′→B from B ′ to B.

(b) Find the transition matrix PB→B ′ from B to B ′.
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Solution (a) Here the old basis vectors are u′
1 and u′

2 and the new basis vectors are u1

and u2. We want to find the coordinate matrices of the old basis vectors u′
1 and u′

2 relative
to the new basis vectors u1 and u2. To do this, observe that

u′
1 = u1 + u2

u′
2 = 2u1 + u2

from which it follows that

[u′
1]B =

[
1

1

]
and [u′

2]B =
[

2

1

]
and hence that

PB ′→B =
[

1 2

1 1

]
Solution (b) Here the old basis vectors are u1 and u2 and the new basis vectors are u′

1
and u′

2. As in part (a), we want to find the coordinate matrices of the old basis vectors
u′

1 and u′
2 relative to the new basis vectors u1 and u2. To do this, observe that

u1 = −u′
1 + u′

2

u2 = 2u′
1 − u′

2

from which it follows that

[u1]B ′ =
[−1

1

]
and [u2]B ′ =

[
2

−1

]
and hence that

PB→B ′ =
[−1 2

1 −1

]

Suppose now that B and B ′ are bases for a finite-dimensional vector space V. Since
multiplication by PB ′→B maps coordinate vectors relative to the basis B ′ into coordinate
vectors relative to a basis B, and PB→B ′ maps coordinate vectors relative to B into
coordinate vectors relative to B ′, it follows that for every vector v in V we have

[v]B = PB ′→B[v]B ′ (11)

[v]B ′ = PB→B ′ [v]B (12)

EXAMPLE 2 Computing CoordinateVectors

Let B and B ′ be the bases in Example 1. Use an appropriate formula to find [v]B given
that

[v]B ′ =
[−3

5

]
Solution To find [v]B we need to make the transition from B ′ to B. It follows from
Formula (11) and part (a) of Example 1 that

[v]B = PB ′→B[v]B ′ =
[

1 2

1 1

] [−3

5

]
=
[

7

2

]

Invertibility of Transition
Matrices

If B and B ′ are bases for a finite-dimensional vector space V, then

(PB ′→B)(PB→B ′) = PB→B



4.6 Change of Basis 233

because multiplication by the product (PB ′→B)(PB→B ′) first maps the B-coordinates of a
vector into its B ′-coordinates, and then maps those B ′-coordinates back into the original
B-coordinates. Since the net effect of the two operations is to leave each coordinate vector
unchanged, we are led to conclude that PB→B must be the identity matrix, that is,

(PB ′→B)(PB→B ′) = I (13)

(we omit the formal proof). For example, for the transition matrices obtained in Example
1 we have

(PB ′→B)(PB→B ′) =
[

1 2

1 1

] [−1 2

1 −1

]
=
[

1 0

0 1

]
= I

It follows from (13) that PB ′→B is invertible and that its inverse is PB→B ′ . Thus, we
have the following theorem.

THEOREM 4.6.1 If P is the transition matrix from a basis B ′ to a basis B for a finite-
dimensional vector space V, then P is invertible and P−1 is the transition matrix from
B to B ′.

An Efficient Method for
ComputingTransition

Matrices for Rn

Our next objective is to develop an efficient procedure for computing transition matrices
between bases forRn. As illustrated in Example 1, the first step in computing a transition
matrix is to express each new basis vector as a linear combination of the old basis vectors.
For Rn this involves solving n linear systems of n equations in n unknowns, each of which
has the same coefficient matrix (why?). An efficient way to do this is by the method
illustrated in Example 2 of Section 1.6, which is as follows:

A Procedure for Computing PB→B′

Step 1. Form the matrix [B ′ | B].
Step 2. Use elementary row operations to reduce the matrix in Step 1 to reduced row

echelon form.

Step 3. The resulting matrix will be [I | PB→B ′ ].
Step 4. Extract the matrix PB→B ′ from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

[new basis | old basis] row operations−→ [I | transition from old to new] (14)

EXAMPLE 3 Example 1 Revisited

In Example 1 we considered the bases B = {u1, u2} and B ′ = {u′
1, u′

2} for R2, where

u1 = (1, 0), u2 = (0, 1), u′
1 = (1, 1), u′

2 = (2, 1)

(a) Use Formula (14) to find the transition matrix from B ′ to B.

(b) Use Formula (14) to find the transition matrix from B to B ′.

Solution (a) Here B ′ is the old basis and B is the new basis, so

[new basis | old basis] =
[

1 0 1 2

0 1 1 1

]



234 Chapter 4 GeneralVector Spaces

Since the left side is already the identity matrix, no reduction is needed. We see by
inspection that the transition matrix is

PB ′→B =
[

1 2

1 1

]

which agrees with the result in Example 1.

Solution (b) Here B is the old basis and B ′ is the new basis, so

[new basis | old basis] =
[

1 2 1 0

1 1 0 1

]

By reducing this matrix, so the left side becomes the identity, we obtain (verify)

[I | transition from old to new] =
[

1 0 −1 2

0 1 1 −1

]

so the transition matrix is

PB→B ′ =
[−1 2

1 −1

]
which also agrees with the result in Example 1.

Transition to the Standard
Basis for Rn

Note that in part (a) of the last example the column vectors of the matrix that made
the transition from the basis B ′ to the standard basis turned out to be the vectors in B ′
written in column form. This illustrates the following general result.

THEOREM 4.6.2 Let B ′ = {u1, u2, . . . , un} be any basis for the vector space Rn and
let S = {e1, e2, . . . , en} be the standard basis for Rn. If the vectors in these bases are
written in column form, then

PB ′→S = [u1 | u2 | · · · | un] (15)

It follows from this theorem that if

A = [u1 | u2 | · · · | un]
is any invertible n × n matrix, then A can be viewed as the transition matrix from the
basis {u1, u2, . . . , un} for Rn to the standard basis for Rn. Thus, for example, the matrix

A =
⎡
⎢⎣1 2 3

2 5 3

1 0 8

⎤
⎥⎦

which was shown to be invertible in Example 4 of Section 1.5, is the transition matrix
from the basis

u1 = (1, 2, 1), u2 = (2, 5, 0), u3 = (3, 3, 8)

to the basis
e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)
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Exercise Set 4.6
1. Consider the bases B = {u1, u2} and B ′ = {u′

1, u′
2} for R2,

where

u1 =
[

2

2

]
, u2 =

[
4

−1

]
, u′

1 =
[

1

3

]
, u′

2 =
[
−1

−1

]

(a) Find the transition matrix from B ′ to B.

(b) Find the transition matrix from B to B ′.

(c) Compute the coordinate vector [w]B , where

w =
[

3

−5

]

and use (12) to compute [w]B ′ .

(d) Check your work by computing [w]B ′ directly.

2. Repeat the directions of Exercise 1 with the same vector w but
with

u1 =
[

1

0

]
, u2 =

[
0

1

]
, u′

1 =
[

2

1

]
, u′

2 =
[
−3

4

]

3. Consider the bases B = {u1, u2, u3} and B ′ = {u′
1, u′

2, u′
3} for

R3, where

u1 =
⎡
⎢⎣2

1

1

⎤
⎥⎦, u2 =

⎡
⎢⎣ 2

−1

1

⎤
⎥⎦, u3 =

⎡
⎢⎣1

2

1

⎤
⎥⎦

u′
1 =

⎡
⎢⎣ 3

1

−5

⎤
⎥⎦, u′

2 =
⎡
⎢⎣ 1

1

−3

⎤
⎥⎦, u′

3 =
⎡
⎢⎣−1

0

2

⎤
⎥⎦

(a) Find the transition matrix B to B ′.

(b) Compute the coordinate vector [w]B , where

w =
⎡
⎢⎣−5

8

−5

⎤
⎥⎦

and use (12) to compute [w]B ′ .

(c) Check your work by computing [w]B ′ directly.

4. Repeat the directions of Exercise 3 with the same vector w, but
with

u1 =
⎡
⎢⎣−3

0

−3

⎤
⎥⎦, u2 =

⎡
⎢⎣−3

2

−1

⎤
⎥⎦, u3 =

⎡
⎢⎣ 1

6

−1

⎤
⎥⎦

u′
1 =

⎡
⎢⎣−6

−6

0

⎤
⎥⎦, u′

2 =
⎡
⎢⎣−2

−6

4

⎤
⎥⎦, u′

3 =
⎡
⎢⎣−2

−3

7

⎤
⎥⎦

5. Let V be the space spanned by f1 = sin x and f2 = cos x.

(a) Show that g1 = 2 sin x + cos x and g2 = 3 cos x form a
basis for V.

(b) Find the transition matrix from B ′ = {g1, g2} to
B = {f1, f2}.

(c) Find the transition matrix from B to B ′.

(d) Compute the coordinate vector [h]B , where
h = 2 sin x − 5 cos x, and use (12) to obtain [h]B ′ .

(e) Check your work by computing [h]B ′ directly.

6. Consider the bases B = {p1, p2} and B ′ = {q1, q2} for P1,
where

p1 = 6 + 3x, p2 = 10 + 2x, q1 = 2, q2 = 3 + 2x

(a) Find the transition matrix from B ′ to B.

(b) Find the transition matrix from B to B ′.

(c) Compute the coordinate vector [p]B , where p = −4 + x,
and use (12) to compute [p]B ′ .

(d) Check your work by computing [p]B ′ directly.

7. Let B1 = {u1, u2} and B2 = {v1, v2} be the bases for R2 in
which u1 = (1, 2), u2 = (2, 3), v1 = (1, 3), and v2 = (1, 4).

(a) Use Formula (14) to find the transition matrix PB2→B1 .

(b) Use Formula (14) to find the transition matrix PB1→B2 .

(c) Confirm that PB2→B1 and PB1→B2 are inverses of one
another.

(d) Let w = (0, 1). Find [w]B1 and then use the matrix PB1→B2

to compute [w]B2 from [w]B1 .

(e) Let w = (2, 5). Find [w]B2 and then use the matrix PB2→B1

to compute [w]B1 from [w]B2 .

8. Let S be the standard basis for R2, and let B = {v1, v2} be the
basis in which v1 = (2, 1) and v2 = (−3, 4).

(a) Find the transition matrix PB→S by inspection.

(b) Use Formula (14) to find the transition matrix PS→B .

(c) Confirm that PB→S and PS→B are inverses of one another.

(d) Let w = (5,−3). Find [w]B and then use Formula (11) to
compute [w]S .

(e) Let w = (3,−5). Find [w]S and then use Formula (12) to
compute [w]B .

9. Let S be the standard basis for R3, and let B = {v1, v2, v3}
be the basis in which v1 = (1, 2, 1), v2 = (2, 5, 0), and
v3 = (3, 3, 8).

(a) Find the transition matrix PB→S by inspection.

(b) Use Formula (14) to find the transition matrix PS→B .

(c) Confirm that PB→S and PS→B are inverses of one another.

(d) Let w = (5,−3, 1). Find [w]B and then use Formula (11)
to compute [w]S .

(e) Let w = (3,−5, 0). Find [w]S and then use Formula (12)
to compute [w]B .



236 Chapter 4 GeneralVector Spaces

10. Let S = {e1, e2} be the standard basis for R2, and let
B = {v1, v2} be the basis that results when the vectors in S are
reflected about the line y = x.

(a) Find the transition matrix PB→S .

(b) Let P = PB→S and show that P T = PS→B .

11. Let S = {e1, e2} be the standard basis for R2, and let
B = {v1, v2} be the basis that results when the vectors in S are
reflected about the line that makes an angle θ with the positive
x-axis.

(a) Find the transition matrix PB→S .

(b) Let P = PB→S and show that P T = PS→B .

12. If B1, B2, and B3 are bases for R2, and if

PB1→B2 =
[

3 1

5 2

]
and PB2→B3 =

[
7 2

4 −1

]

then PB3→B1 = .

13. If P is the transition matrix from a basis B ′ to a basis B, and
Q is the transition matrix from B to a basis C, what is the
transition matrix from B ′ to C? What is the transition matrix
from C to B ′?

14. To write the coordinate vector for a vector, it is necessary to
specify an order for the vectors in the basis. If P is the tran-
sition matrix from a basis B ′ to a basis B, what is the effect
on P if we reverse the order of vectors in B from v1, . . . , vn to
vn, . . . , v1? What is the effect on P if we reverse the order of
vectors in both B ′ and B?

15. Consider the matrix

P =
⎡
⎢⎣1 1 0

1 0 2

0 2 1

⎤
⎥⎦

(a) P is the transition matrix from what basis B to the stan-
dard basis S = {e1, e2, e3} for R3?

(b) P is the transition matrix from the standard basis
S = {e1, e2, e3} to what basis B for R3?

16. The matrix

P =
⎡
⎣1 0 0

0 3 2
0 1 1

⎤
⎦

is the transition matrix from what basis B to the basis{
(1, 1, 1), (1, 1, 0), (1, 0, 0)

}
for R3?

17. Let S = {e1, e2} be the standard basis for R2, and let
B = {v1, v2} be the basis that results when the linear transfor-
mation defined by

T (x1, x2) = (2x1 + 3x2, 5x1 − x2)

is applied to each vector inS. Find the transition matrixPB→S .

18. Let S = {e1, e2, e3} be the standard basis for R3, and let
B = {v1, v2, v3} be the basis that results when the linear trans-
formation defined by

T (x1, x2, x3) = (x1 + x2, 2x1 − x2 + 4x3, x2 + 3x3)

is applied to each vector inS. Find the transition matrixPB→S .

19. If [w]B = w holds for all vectors w in Rn, what can you say
about the basis B?

Working with Proofs

20. Let B be a basis for Rn. Prove that the vectors v1, v2, . . . , vk

span Rn if and only if the vectors [v1]B, [v2]B, . . . , [vk]B
span Rn.

21. Let B be a basis for Rn. Prove that the vectors v1, v2, . . . , vk

form a linearly independent set in Rn if and only if the vectors
[v1]B, [v2]B, . . . , [vk]B form a linearly independent set in Rn.

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If B1 and B2 are bases for a vector space V, then there exists a
transition matrix from B1 to B2.

(b) Transition matrices are invertible.

(c) If B is a basis for a vector space Rn, then PB→B is the identity
matrix.

(d) If PB1→B2 is a diagonal matrix, then each vector in B2 is a
scalar multiple of some vector in B1.

(e) If each vector in B2 is a scalar multiple of some vector in B1,
then PB1→B2 is a diagonal matrix.

(f ) If A is a square matrix, then A = PB1→B2 for some bases B1

and B2 for Rn.

Working withTechnology

T1. Let

P =

⎡
⎢⎢⎢⎣

5 8 6 −13

3 −1 0 −9

0 1 −1 0

2 4 3 −5

⎤
⎥⎥⎥⎦

and
v1 = (2, 4, 3,−5), v2 = (0, 1,−1, 0),

v3 = (3,−1, 0,−9), v4 = (5, 8, 6,−13)

Find a basis B = {u1, u2, u3, u4} for R4 for which P is the transi-
tion matrix from B to B ′ = {v1, v2, v3, v4}.
T2. Given that the matrix for a linear transformation T : R4 →R4

relative to the standard basis B = {e1, e2, e3, e4} for R4 is⎡
⎢⎢⎢⎣

1 2 0 1

3 0 −1 2

2 5 3 1

1 2 1 3

⎤
⎥⎥⎥⎦

find the matrix for T relative to the basis

B ′ = {e1, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4}
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4.7 Row Space, Column Space, and Null Space
In this section we will study some important vector spaces that are associated with matrices.
Our work here will provide us with a deeper understanding of the relationships between the
solutions of a linear system and properties of its coefficient matrix.

Row Space, Column Space,
and Null Space

Recall that vectors can be written in comma-delimited form or in matrix form as either
row vectors or column vectors. In this section we will use the latter two.

DEFINITION 1 For an m × n matrix

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

the vectors
r1 = [a11 a12 · · · a1n]
r2 = [a21 a22 · · · a2n]
...

...
rm = [am1 am2 · · · amn]

in Rn that are formed from the rows of A are called the row vectors of A, and the
vectors

c1 =

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦, c2 =

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦, . . . , cn =

⎡
⎢⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎥⎦

in Rm formed from the columns of A are called the column vectors of A.

EXAMPLE 1 Row and ColumnVectors of a 2 × 3 Matrix

Let

A =
[

2 1 0

3 −1 4

]
The row vectors of A are

r1 = [2 1 0] and r2 = [3 − 1 4]
and the column vectors of A are

c1 =
[

2

3

]
, c2 =

[
1

−1

]
, and c3 =

[
0

4

]

The following definition defines three important vector spaces associated with a

We will sometimes denote the
row space of A, the column
space of A, and the null space
of A by row(A), col(A), and
null(A), respectively.

matrix.

DEFINITION 2 If A is an m × n matrix, then the subspace of Rn spanned by the
row vectors of A is called the row space of A, and the subspace of Rm spanned by
the column vectors of A is called the column space of A. The solution space of the
homogeneous system of equations Ax = 0, which is a subspace of Rn, is called the
null space of A.
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In this section and the next we will be concerned with two general questions:

Question 1. What relationships exist among the solutions of a linear system Ax = b
and the row space, column space, and null space of the coefficient matrix A?

Question 2. What relationships exist among the row space, column space, and null
space of a matrix?

Starting with the first question, suppose that

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ and x =

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦

It follows from Formula (10) of Section 1.3 that if c1, c2, . . . , cn denote the column
vectors of A, then the product Ax can be expressed as a linear combination of these
vectors with coefficients from x; that is,

Ax = x1c1 + x2c2 + · · · + xncn (1)

Thus, a linear system, Ax = b, of m equations in n unknowns can be written as

x1c1 + x2c2 + · · · + xncn = b (2)

from which we conclude that Ax = b is consistent if and only if b is expressible as a linear
combination of the column vectors of A. This yields the following theorem.

THEOREM 4.7.1 A system of linear equations Ax = b is consistent if and only if b is in
the column space of A.

EXAMPLE 2 AVector b in the Column Space ofA

Let Ax = b be the linear system⎡
⎢⎣−1 3 2

1 2 −3

2 1 −2

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦

Show that b is in the column space of A by expressing it as a linear combination of the
column vectors of A.

Solution Solving the system by Gaussian elimination yields (verify)

x1 = 2, x2 = −1, x3 = 3

It follows from this and Formula (2) that

2

⎡
⎢⎣−1

1

2

⎤
⎥⎦−

⎡
⎢⎣3

2

1

⎤
⎥⎦+ 3

⎡
⎢⎣ 2

−3

−2

⎤
⎥⎦ =

⎡
⎢⎣ 1

−9

−3

⎤
⎥⎦

Recall from Theorem 3.4.4 that the general solution of a consistent linear system
Ax = b can be obtained by adding any specific solution of the system to the general
solution of the corresponding homogeneous system Ax = 0. Keeping in mind that the
null space of A is the same as the solution space of Ax = 0, we can rephrase that theorem
in the following vector form.
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THEOREM 4.7.2 If x0 is any solution of a consistent linear system Ax = b, and if
S = {v1, v2, . . . , vk} is a basis for the null space ofA, then every solution ofAx = b can
be expressed in the form

x = x0 + c1v1 + c2v2 + · · · + ckvk (3)

Conversely, for all choices of scalars c1, c2, . . . , ck, the vector x in this formula is a
solution of Ax = b.

The vector x0 in Formula (3) is called a particular solution of Ax = b, and the remain-
ing part of the formula is called the general solution of Ax = 0. With this terminology
Theorem 4.7.2 can be rephrased as:

The general solution of a consistent linear system can be expressed as the sum of a partic-
ular solution of that system and the general solution of the corresponding homogeneous
system.

Geometrically, the solution set of Ax = b can be viewed as the translation by x0 of the
solution space of Ax = 0 (Figure 4.7.1).

Figure 4.7.1

y

xx

x0 + x

Solution space
of Ax = 0

x0

Solution set
of Ax = b

EXAMPLE 3 General Solution of a Linear SystemAx = b

In the concluding subsection of Section 3.4 we compared solutions of the linear systems

⎡
⎢⎢⎢⎣

1 3 −2 0 2 0

2 6 −5 −2 4 −3

0 0 5 10 0 15

2 6 0 8 4 18

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎣

1 3 −2 0 2 0

2 6 −5 −2 4 −3

0 0 5 10 0 15

2 6 0 8 4 18

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0

−1

5

6

⎤
⎥⎥⎥⎦

and deduced that the general solution x of the nonhomogeneous system and the general
solution xh of the corresponding homogeneous system (when written in column-vector
form) are related by
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3r − 4s − 2t

r

−2s

s

t
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
x0

+ r

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4

0

−2

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
xh

Recall from the Remark following Example 3 of Section 4.5 that the vectors in xh

form a basis for the solution space of Ax = 0.

Bases for Row Spaces,
Column Spaces, and Null

Spaces

We know that performing elementary row operations on the augmented matrix [A | b]
of a linear system does not change the solution set of that system. This is true, in
particular, if the system is homogeneous, in which case the augmented matrix is [A | 0].
But elementary row operations have no effect on the column of zeros, so it follows that
the solution set of Ax = 0 is unaffected by performing elementary row operations on A

itself. Thus, we have the following theorem.

THEOREM 4.7.3 Elementary row operations do not change the null space of a matrix.

The following theorem, whose proof is left as an exercise, is a companion to Theo-
rem 4.7.3.

THEOREM 4.7.4 Elementary row operations do not change the row space of a matrix.

Theorems 4.7.3 and 4.7.4 might tempt you into incorrectly believing that elementary
row operations do not change the column space of a matrix. To see why this is not true,
compare the matrices

A =
[

1 3

2 6

]
and B =

[
1 3

0 0

]
The matrix B can be obtained from A by adding −2 times the first row to the second.
However, this operation has changed the column space of A, since that column space
consists of all scalar multiples of [

1

2

]
whereas the column space of B consists of all scalar multiples of[

1

0

]
and the two are different spaces.

EXAMPLE 4 Finding a Basis for the Null Space of a Matrix

Find a basis for the null space of the matrix

A =

⎡
⎢⎢⎢⎣

1 3 −2 0 2 0

2 6 −5 −2 4 −3

0 0 5 10 0 15

2 6 0 8 4 18

⎤
⎥⎥⎥⎦
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Solution The null space of A is the solution space of the homogeneous linear system
Ax = 0, which, as shown in Example 3, has the basis

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4

0

−2

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Remark Observe that the basis vectors v1, v2, and v3 in the last example are the vectors that result
by successively setting one of the parameters in the general solution equal to 1 and the others equal
to 0.

The following theorem makes it possible to find bases for the row and column spaces
of a matrix in row echelon form by inspection.

THEOREM 4.7.5 If a matrix R is in row echelon form, then the row vectors with the
leading 1’s (the nonzero row vectors) form a basis for the row space ofR, and the column
vectors with the leading 1’s of the row vectors form a basis for the column space of R.

The proof essentially involves an analysis of the positions of the 0’s and 1’s of R. We
omit the details.

EXAMPLE 5 Bases for the Row and Column Spaces of a Matrix in Row
Echelon Form

Find bases for the row and column spaces of the matrix

R =

⎡
⎢⎢⎢⎣

1 −2 5 0 3

0 1 3 0 0

0 0 0 1 0

0 0 0 0 0

⎤
⎥⎥⎥⎦

Solution Since the matrix R is in row echelon form, it follows from Theorem 4.7.5 that
the vectors

r1 = [1 −2 5 0 3]
r2 = [0 1 3 0 0]
r3 = [0 0 0 1 0]

form a basis for the row space of R, and the vectors

c1 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦, c2 =

⎡
⎢⎢⎢⎣
−2

1

0

0

⎤
⎥⎥⎥⎦, c4 =

⎡
⎢⎢⎢⎣

0

0

1

0

⎤
⎥⎥⎥⎦

form a basis for the column space of R.
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EXAMPLE 6 Basis for a Row Space by Row Reduction

Find a basis for the row space of the matrix

A =

⎡
⎢⎢⎢⎣

1 −3 4 −2 5 4

2 −6 9 −1 8 2

2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥⎥⎥⎦

Solution Since elementary row operations do not change the row space of a matrix, we
can find a basis for the row space of A by finding a basis for the row space of any row
echelon form of A. Reducing A to row echelon form, we obtain (verify)

R =

⎡
⎢⎢⎢⎣

1 −3 4 −2 5 4

0 0 1 3 −2 −6

0 0 0 0 1 5

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

By Theorem 4.7.5, the nonzero row vectors of R form a basis for the row space of R and
hence form a basis for the row space of A. These basis vectors are

r1 = [1 −3 4 −2 5 4]
r2 = [0 0 1 3 −2 −6]
r3 = [0 0 0 0 1 5]

Basis for the Column
Space of a Matrix

The problem of finding a basis for the column space of a matrix A in Example 6 is
complicated by the fact that an elementary row operation can alter its column space.
However, the good news is that elementary rowoperations do not alter dependence relation-
ships among the column vectors. To make this more precise, suppose that w1, w2, . . . , wk

are linearly dependent column vectors of A, so there are scalars c1, c2, . . . , ck that are
not all zero and such that

c1w1 + c2w2 + · · · + ckwk = 0 (4)

If we perform an elementary row operation on A, then these vectors will be changed
into new column vectors w′

1, w′
2, . . . , w′

k . At first glance it would seem possible that the
transformed vectors might be linearly independent. However, this is not so, since it can
be proved that these new column vectors are linearly dependent and, in fact, related by
an equation

c1w′
1 + c2w′

2 + · · · + ckw′
k = 0

that has exactly the same coefficients as (4). It can also be proved that elementary row
operations do not alter the linear independence of a set of column vectors. All of these
results are summarized in the following theorem.

THEOREM 4.7.6 If A and B are row equivalent matrices, then:

(a) A given set of column vectors of A is linearly independent if and only if the corre-
sponding column vectors of B are linearly independent.

(b) A given set of column vectors of A forms a basis for the column space of A if and
only if the corresponding column vectors of B form a basis for the column space
of B.

Although elementary row op-
erations can change the col-
umn space of a matrix, it
follows from Theorem 4.7.6(b)
that they do not change the
dimension of its column space.



4.7 Row Space, Column Space, and Null Space 243

EXAMPLE 7 Basis for a Column Space by Row Reduction

Find a basis for the column space of the matrix

A =

⎡
⎢⎢⎢⎣

1 −3 4 −2 5 4

2 −6 9 −1 8 2

2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥⎥⎥⎦

that consists of column vectors of A.

Solution We observed in Example 6 that the matrix

R =

⎡
⎢⎢⎢⎣

1 −3 4 −2 5 4

0 0 1 3 −2 −6

0 0 0 0 1 5

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

is a row echelon form of A. Keeping in mind that A and R can have different column
spaces, we cannot find a basis for the column space of A directly from the
column vectors of R. However, it follows from Theorem 4.7.6(b) that if we can find
a set of column vectors of R that forms a basis for the column space of R, then the
corresponding column vectors of A will form a basis for the column space of A.

Since the first, third, and fifth columns of R contain the leading 1’s of the row vectors,
the vectors

c′1 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦, c′3 =

⎡
⎢⎢⎢⎣

4

1

0

0

⎤
⎥⎥⎥⎦, c′5 =

⎡
⎢⎢⎢⎣

5

−2

1

0

⎤
⎥⎥⎥⎦

form a basis for the column space of R. Thus, the corresponding column vectors of A,
which are

c1 =

⎡
⎢⎢⎢⎣

1

2

2

−1

⎤
⎥⎥⎥⎦, c3 =

⎡
⎢⎢⎢⎣

4

9

9

−4

⎤
⎥⎥⎥⎦, c5 =

⎡
⎢⎢⎢⎣

5

8

9

−5

⎤
⎥⎥⎥⎦

form a basis for the column space of A.

Up to now we have focused on methods for finding bases associated with matrices.
Those methods can readily be adapted to the more general problem of finding a basis
for the subspace spanned by a set of vectors in Rn.

EXAMPLE 8 Basis for the Space Spanned by a Set ofVectors

The following vectors span a subspace of R4. Find a subset of these vectors that forms
a basis of this subspace.

v1 = (1, 2, 2,−1), v2 = (−3,−6,−6, 3),

v3 = (4, 9, 9,−4), v4 = (−2,−1,−1, 2),

v5 = (5, 8, 9,−5), v6 = (4, 2, 7,−4)

Solution If we rewrite these vectors in column form and construct the matrix that has
those vectors as its successive columns, then we obtain the matrix A in Example 7 (verify).
Thus,

span{v1, v2, v3, v4, v5, v6} = col(A)
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Proceeding as in that example (and adjusting the notation appropriately), we see that
the vectors v1, v3, and v5 form a basis for

span{v1, v2, v3, v4, v5, v6}

Bases Formed from Row
and ColumnVectors of a

Matrix

In Example 6, we found a basis for the row space of a matrix by reducing that matrix
to row echelon form. However, the basis vectors produced by that method were not all
row vectors of the original matrix. The following adaptation of the technique used in
Example 7 shows how to find a basis for the row space of a matrix that consists entirely
of row vectors of that matrix.

EXAMPLE 9 Basis for the Row Space of a Matrix

Find a basis for the row space of

A =

⎡
⎢⎢⎢⎣

1 −2 0 0 3

2 −5 −3 −2 6

0 5 15 10 0

2 6 18 8 6

⎤
⎥⎥⎥⎦

consisting entirely of row vectors from A.

Solution We will transpose A, thereby converting the row space of A into the column
space of AT ; then we will use the method of Example 7 to find a basis for the column
space of AT ; and then we will transpose again to convert column vectors back to row
vectors.

Transposing A yields

AT =

⎡
⎢⎢⎢⎢⎢⎣

1 2 0 2

−2 −5 5 6

0 −3 15 18

0 −2 10 8

3 6 0 6

⎤
⎥⎥⎥⎥⎥⎦

and then reducing this matrix to row echelon form we obtain⎡
⎢⎢⎢⎢⎢⎣

1 2 0 2

0 1 −5 −10

0 0 0 1

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

The first, second, and fourth columns contain the leading 1’s, so the corresponding
column vectors in AT form a basis for the column space of AT ; these are

c1 =

⎡
⎢⎢⎢⎢⎢⎣

1

−2

0

0

3

⎤
⎥⎥⎥⎥⎥⎦, c2 =

⎡
⎢⎢⎢⎢⎢⎣

2

−5

−3

−2

6

⎤
⎥⎥⎥⎥⎥⎦, and c4 =

⎡
⎢⎢⎢⎢⎢⎣

2

6

18

8

6

⎤
⎥⎥⎥⎥⎥⎦

Transposing again and adjusting the notation appropriately yields the basis vectors

r1 = [1 −2 0 0 3], r2 = [2 −5 −3 −2 6],
r4 = [2 6 18 8 6]

for the row space of A.
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Next we will give an example that adapts the method of Example 7 to solve the
following general problem in Rn:

Problem Given a set of vectors S = {v1, v2, . . . , vk} in Rn, find a subset of these
vectors that forms a basis for span(S), and express each vector that is not in that basis
as a linear combination of the basis vectors.

EXAMPLE 10 Basis and Linear Combinations

(a) Find a subset of the vectors

v1 = (1,−2, 0, 3), v2 = (2,−5,−3, 6),

v3 = (0, 1, 3, 0), v4 = (2,−1, 4,−7), v5 = (5,−8, 1, 2)

that forms a basis for the subspace of R4 spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of the basis vectors.

Solution (a) We begin by constructing a matrix that has v1, v2, . . . , v5 as its column
vectors: ⎡

⎢⎢⎢⎣
1 2 0 2 5

−2 −5 1 −1 −8

0 −3 3 4 1

3 6 0 −7 2

⎤
⎥⎥⎥⎦

↑ ↑ ↑ ↑ ↑
v1 v2 v3 v4 v5

(5)

The first part of our problem can be solved by finding a basis for the column space of

Had we only been interested
in part (a) of this example, it
would have sufficed to reduce
the matrix to row echelon
form. It is for part (b) that
the reduced row echelon form
is most useful.

this matrix. Reducing the matrix to reduced row echelon form and denoting the column
vectors of the resulting matrix by w1, w2, w3, w4, and w5 yields⎡

⎢⎢⎢⎣
1 0 2 0 1

0 1 −1 0 1

0 0 0 1 1

0 0 0 0 0

⎤
⎥⎥⎥⎦

↑ ↑ ↑ ↑ ↑
w1 w2 w3 w4 w5

(6)

The leading 1’s occur in columns 1, 2, and 4, so by Theorem 4.7.5,

{w1, w2, w4}
is a basis for the column space of (6), and consequently,

{v1, v2, v4}
is a basis for the column space of (5).

Solution (b) We will start by expressing w3 and w5 as linear combinations of the basis
vectors w1, w2, w4. The simplest way of doing this is to express w3 and w5 in terms
of basis vectors with smaller subscripts. Accordingly, we will express w3 as a linear
combination of w1 and w2, and we will express w5 as a linear combination of w1, w2,
and w4. By inspection of (6), these linear combinations are

w3 = 2w1 − w2

w5 = w1 + w2 + w4
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We call these the dependency equations. The corresponding relationships in (5) are

v3 = 2v1 − v2

v5 = v1 + v2 + v4

The following is a summary of the steps that we followed in our last example to solve
the problem posed above.

Basis for the Space Spanned by a Set of Vectors

Step 1. Form the matrixAwhose columns are the vectors in the setS = {v1, v2, . . . , vk}.
Step 2. Reduce the matrix A to reduced row echelon form R.

Step 3. Denote the column vectors of R by w1, w2, . . . , wk .

Step 4. Identify the columns of R that contain the leading 1’s. The corresponding
column vectors of A form a basis for span(S).

This completes the first part of the problem.

Step 5. Obtain a set of dependency equations for the column vectors w1, w2, . . . , wk

of R by successively expressing each wi that does not contain a leading 1 of
R as a linear combination of predecessors that do.

Step 6. In each dependency equation obtained in Step 5, replace the vector wi by the
vector vi for i = 1, 2, . . . , k.

This completes the second part of the problem.

Exercise Set 4.7

In Exercises 1–2, express the product Ax as a linear combina-
tion of the column vectors of A.

1. (a)

[
2 3

−1 4

] [
1

2

]
(b)

⎡
⎢⎣4 0 −1

3 6 2

0 −1 4

⎤
⎥⎦
⎡
⎢⎣−2

3

5

⎤
⎥⎦

2. (a)

⎡
⎢⎢⎢⎣
−3 6 2

5 −4 0

2 3 −1

1 8 3

⎤
⎥⎥⎥⎦
⎡
⎢⎣−1

2

5

⎤
⎥⎦ (b)

[
2 1 5

6 3 −8

]⎡⎢⎣ 3

0

−5

⎤
⎥⎦

In Exercises 3–4, determine whether b is in the column space
of A, and if so, express b as a linear combination of the column
vectors of A

3. (a) A =
⎡
⎢⎣1 1 2

1 0 1

2 1 3

⎤
⎥⎦; b =

⎡
⎢⎣−1

0

2

⎤
⎥⎦

(b) A =
⎡
⎢⎣1 −1 1

9 3 1

1 1 1

⎤
⎥⎦; b =

⎡
⎢⎣ 5

1

−1

⎤
⎥⎦

4. (a) A =
⎡
⎢⎣ 1 −1 1

−1 1 −1

−1 −1 1

⎤
⎥⎦; b =

⎡
⎢⎣2

0

0

⎤
⎥⎦

(b) A =

⎡
⎢⎢⎢⎣

1 2 0 1

0 1 2 1

1 2 1 3

0 1 2 2

⎤
⎥⎥⎥⎦; b =

⎡
⎢⎢⎢⎣

4

3

5

7

⎤
⎥⎥⎥⎦

5. Suppose that x1 = 3, x2 = 0, x3 = −1, x4 = 5 is a solution of
a nonhomogeneous linear system Ax = b and that the solu-
tion set of the homogeneous system Ax = 0 is given by the
formulas

x1 = 5r − 2s, x2 = s, x3 = s + t, x4 = t

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

6. Suppose that x1 = −1, x2 = 2, x3 = 4, x4 = −3 is a solution
of a nonhomogeneous linear system Ax = b and that the so-
lution set of the homogeneous system Ax = 0 is given by the
formulas

x1 = −3r + 4s, x2 = r − s, x3 = r, x4 = s

(a) Find a vector form of the general solution of Ax = 0.

(b) Find a vector form of the general solution of Ax = b.

In Exercises 7–8, find the vector form of the general solution
of the linear system Ax = b, and then use that result to find the
vector form of the general solution of Ax = 0.
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7. (a) x1 − 3x2 = 1
2x1 − 6x2 = 2

(b) x1 + x2 + 2x3 = 5
x1 + x3 = −2

2x1 + x2 + 3x3 = 3

8. (a) x1 − 2x2 + x3 + 2x4 = −1
2x1 − 4x2 + 2x3 + 4x4 = −2
−x1 + 2x2 − x3 − 2x4 = 1
3x1 − 6x2 + 3x3 + 6x4 = −3

(b) x1 + 2x2 − 3x3 + x4 = 4
−2x1 + x2 + 2x3 + x4 = −1
−x1 + 3x2 − x3 + 2x4 = 3
4x1 − 7x2 − 5x4 = −5

In Exercises 9–10, find bases for the null space and row space
of A.

9. (a) A =
⎡
⎢⎣1 −1 3

5 −4 −4

7 −6 2

⎤
⎥⎦ (b) A =

⎡
⎢⎣2 0 −1

4 0 −2

0 0 0

⎤
⎥⎦

10. (a) A =
⎡
⎢⎣ 1 4 5 2

2 1 3 0

−1 3 2 2

⎤
⎥⎦

(b) A =

⎡
⎢⎢⎢⎣

1 4 5 6 9

3 −2 1 4 −1

−1 0 −1 −2 −1

2 3 5 7 8

⎤
⎥⎥⎥⎦

In Exercises 11–12, a matrix in row echelon form is given. By
inspection, find a basis for the row space and for the column space
of that matrix.

11. (a)

⎡
⎢⎣1 0 2

0 0 1

0 0 0

⎤
⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 −3 0 0

0 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

12. (a)

⎡
⎢⎢⎢⎢⎢⎣

1 2 4 5

0 1 −3 0

0 0 1 −3

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 2 −1 5

0 1 4 3

0 0 1 −7

0 0 0 1

⎤
⎥⎥⎥⎦

13. (a) Use the methods of Examples 6 and 7 to find bases for the
row space and column space of the matrix

A =

⎡
⎢⎢⎣

1 −2 5 0 3
−2 5 −7 0 −6
−1 3 −2 1 −3
−3 8 −9 1 −9

⎤
⎥⎥⎦

(b) Use the method of Example 9 to find a basis for the row
space of A that consists entirely of row vectors of A.

In Exercises 14–15, find a basis for the subspace of R4 that is
spanned by the given vectors.

14. (1, 1,−4,−3), (2, 0, 2,−2), (2,−1, 3, 2)

15. (1, 1, 0, 0), (0, 0, 1, 1), (−2, 0, 2, 2), (0,−3, 0, 3)

In Exericses 16–17, find a subset of the given vectors that forms
a basis for the space spanned by those vectors, and then express
each vector that is not in the basis as a linear combination of the
basis vectors.

16. v1 = (1, 0, 1, 1), v2 = (−3, 3, 7, 1),
v3 = (−1, 3, 9, 3), v4 = (−5, 3, 5,−1)

17. v1 = (1,−1, 5, 2), v2 = (−2, 3, 1, 0),
v3 = (4,−5, 9, 4), v4 = (0, 4, 2,−3),
v5 = (−7, 18, 2,−8)

In Exercises 18–19, find a basis for the row space of A that
consists entirely of row vectors of A.
18. The matrix in Exercise 10(a).

19. The matrix in Exercise 10(b).

20. Construct a matrix whose null space consists of all linear
combinations of the vectors

v1 =

⎡
⎢⎢⎢⎣

1

−1

3

2

⎤
⎥⎥⎥⎦ and v2 =

⎡
⎢⎢⎢⎣

2

0

−2

4

⎤
⎥⎥⎥⎦

21. In each part, let A =
[

1 2 0

1 −1 4

]
. For the given vector b,

find the general form of all vectors x in R3 for which TA(x) = b
if such vectors exist.

(a) b = (0, 0) (b) b = (1, 3) (c) b = (−1, 1)

22. In each part, let A =

⎡
⎢⎢⎢⎣

2 0

0 1

1 1

2 0

⎤
⎥⎥⎥⎦. For the given vector b, find

the general form of all vectors x in R2 for which TA(x) = b if
such vectors exist.

(a) b = (0, 0, 0, 0) (b) b = (1, 1,−1,−1)

(c) b = (2, 0, 0, 2)

23. (a) Let

A =
⎡
⎢⎣0 1 0

1 0 0

0 0 0

⎤
⎥⎦

Show that relative to an xyz-coordinate system in 3-space
the null space of A consists of all points on the z-axis and
that the column space consists of all points in the xy-plane
(see the accompanying figure).

(b) Find a 3 × 3 matrix whose null space is the x-axis and
whose column space is the yz-plane.

z

y

x

Null space of A

Column space
of A

Figure Ex-23
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24. Find a 3 × 3 matrix whose null space is

(a) a point. (b) a line. (c) a plane.

25. (a) Find all 2 × 2 matrices whose null space is the line
3x − 5y = 0.

(b) Describe the null spaces of the following matrices:

A =
[

1 4

0 5

]
, B =

[
1 0

0 5

]
, C =

[
6 2

3 1

]
, D =

[
0 0

0 0

]

Working with Proofs

26. Prove Theorem 4.7.4.

27. Prove that the row vectors of an n × n invertible matrix A

form a basis for Rn.

28. Suppose that A and B are n × n matrices and A is invertible.
Invent and prove a theorem that describes how the row spaces
of AB and B are related.

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) The span of v1, . . . , vn is the column space of the matrix
whose column vectors are v1, . . . , vn.

(b) The column space of a matrix A is the set of solutions of
Ax = b.

(c) If R is the reduced row echelon form of A, then those column
vectors of R that contain the leading 1’s form a basis for the
column space of A.

(d) The set of nonzero row vectors of a matrix A is a basis for the
row space of A.

(e) If A and B are n × n matrices that have the same row space,
then A and B have the same column space.

(f ) If E is an m × m elementary matrix and A is an m × n matrix,
then the null space of EA is the same as the null space of A.

(g) If E is an m × m elementary matrix and A is an m × n matrix,
then the row space of EA is the same as the row space of A.

(h) If E is an m × m elementary matrix and A is an m × n matrix,
then the column space of EA is the same as the column space
of A.

(i) The system Ax = b is inconsistent if and only if b is not in the
column space of A.

( j) There is an invertible matrix A and a singular matrix B such
that the row spaces of A and B are the same.

Working withTechnology

T1. Find a basis for the column space of

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 6 0 8 4 12 4

3 9 −2 8 6 18 6

3 9 −7 −2 6 −3 −1

2 6 5 18 4 33 11

1 3 −2 0 2 6 2

⎤
⎥⎥⎥⎥⎥⎥⎦

that consists of column vectors of A.

T2. Find a basis for the row space of the matrix A in Exercise T1
that consists of row vectors of A.

4.8 Rank, Nullity, and the Fundamental Matrix Spaces
In the last section we investigated relationships between a system of linear equations and
the row space, column space, and null space of its coefficient matrix. In this section we will
be concerned with the dimensions of those spaces. The results we obtain will provide a
deeper insight into the relationship between a linear system and its coefficient matrix.

Row and Column Spaces
Have Equal Dimensions

In Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the
matrix

A =

⎡
⎢⎢⎢⎣

1 −3 4 −2 5 4

2 −6 9 −1 8 2

2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

⎤
⎥⎥⎥⎦

both have three basis vectors and hence are both three-dimensional. The fact that these
spaces have the same dimension is not accidental, but rather a consequence of the fol-
lowing theorem.
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THEOREM 4.8.1 The row space and the column space of a matrix A have the same
dimension.

Proof It follows from Theorems 4.7.4 and 4.7.6 (b) that elementary row operations do

The proof of Theorem 4.8.1
shows that the rank of A can
be interpreted as the number
of leading 1’s in any row eche-
lon form of A.

not change the dimension of the row space or of the column space of a matrix. Thus, if
R is any row echelon form of A, it must be true that

dim(row space of A) = dim(row space of R)

dim(column space of A) = dim(column space of R)

so it suffices to show that the row and column spaces of R have the same dimension. But
the dimension of the row space of R is the number of nonzero rows, and by Theorem
4.7.5 the dimension of the column space of R is the number of leading 1’s. Since these
two numbers are the same, the row and column space have the same dimension.

Rank and Nullity The dimensions of the row space, column space, and null space of a matrix are such
important numbers that there is some notation and terminology associated with them.

DEFINITION 1 The common dimension of the row space and column space of a
matrix A is called the rank of A and is denoted by rank(A); the dimension of the null
space of A is called the nullity of A and is denoted by nullity(A).

EXAMPLE 1 Rank and Nullity of a 4 × 6 Matrix

Find the rank and nullity of the matrix

A =

⎡
⎢⎢⎢⎣
−1 2 0 4 5 −3

3 −7 2 0 1 4

2 −5 2 4 6 1

4 −9 2 −4 −4 7

⎤
⎥⎥⎥⎦

Solution The reduced row echelon form of A is⎡
⎢⎢⎢⎣

1 0 −4 −28 −37 13

0 1 −2 −12 −16 5

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎦ (1)

(verify). Since this matrix has two leading 1’s, its row and column spaces are two-
dimensional and rank(A) = 2. To find the nullity of A, we must find the dimension of
the solution space of the linear system Ax = 0. This system can be solved by reducing
its augmented matrix to reduced row echelon form. The resulting matrix will be iden-
tical to (1), except that it will have an additional last column of zeros, and hence the
corresponding system of equations will be

x1 − 4x3 − 28x4 − 37x5 + 13x6 = 0

x2 − 2x3 − 12x4 − 16x5 + 5x6 = 0

Solving these equations for the leading variables yields

x1 = 4x3 + 28x4 + 37x5 − 13x6

x2 = 2x3 + 12x4 + 16x5 − 5x6
(2)
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from which we obtain the general solution

x1 = 4r + 28s + 37t − 13u

x2 = 2r + 12s + 16t − 5u

x3 = r

x4 = s

x5 = t

x6 = u

or in column vector form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4

2

1

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

28

12

0

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

37

16

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ u

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13

−5

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Because the four vectors on the right side of (3) form a basis for the solution space,
nullity(A) = 4.

EXAMPLE 2 MaximumValue for Rank

What is the maximum possible rank of an m × n matrix A that is not square?

Solution Since the row vectors of A lie in Rn and the column vectors in Rm, the row
space of A is at most n-dimensional and the column space is at most m-dimensional.
Since the rank of A is the common dimension of its row and column space, it follows
that the rank is at most the smaller of m and n. We denote this by writing

rank(A) ≤ min(m, n)

in which min(m, n) is the minimum of m and n.

The following theorem establishes a fundamental relationship between the rank and
nullity of a matrix.

THEOREM 4.8.2 DimensionTheorem for Matrices

If A is a matrix with n columns, then

rank(A) + nullity(A) = n (4)

Proof Since A has n columns, the homogeneous linear system Ax = 0 has n unknowns
(variables). These fall into two distinct categories: the leading variables and the free
variables. Thus, [

number of leading

variables

]
+
[

number of free

variables

]
= n

But the number of leading variables is the same as the number of leading 1’s in any row
echelon form of A, which is the same as the dimension of the row space of A, which is
the same as the rank of A. Also, the number of free variables in the general solution of
Ax = 0 is the same as the number of parameters in that solution, which is the same as
the dimension of the solution space of Ax = 0, which is the same as the nullity of A.
This yields Formula (4).
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EXAMPLE 3 The Sum of Rank and Nullity

The matrix

A =

⎡
⎢⎢⎢⎣
−1 2 0 4 5 −3

3 −7 2 0 1 4

2 −5 2 4 6 1

4 −9 2 −4 −4 7

⎤
⎥⎥⎥⎦

has 6 columns, so
rank(A) + nullity(A) = 6

This is consistent with Example 1, where we showed that

rank(A) = 2 and nullity(A) = 4

The following theorem, which summarizes results already obtained, interprets rank
and nullity in the context of a homogeneous linear system.

THEOREM 4.8.3 If A is an m × n matrix, then

(a) rank(A) = the number of leading variables in the general solution of Ax = 0.

(b) nullity(A) = the number of parameters in the general solution of Ax = 0.

EXAMPLE 4 Rank, Nullity, and Linear Systems

(a) Find the number of parameters in the general solution of Ax = 0 if A is a 5 × 7
matrix of rank 3.

(b) Find the rank of a 5 × 7 matrix A for which Ax = 0 has a two-dimensional solution
space.

Solution (a) From (4),

nullity(A) = n − rank(A) = 7 − 3 = 4

Thus, there are four parameters.

Solution (b) The matrix A has nullity 2, so

rank(A) = n − nullity(A) = 7 − 2 = 5

Recall from Section 4.7 that if Ax = b is a consistent linear system, then its general
solution can be expressed as the sum of a particular solution of this system and the general
solution of Ax = 0. We leave it as an exercise for you to use this fact and Theorem 4.8.3
to prove the following result.

THEOREM 4.8.4 IfAx = b is a consistent linear system ofm equations in n unknowns,
and if A has rank r , then the general solution of the system contains n − r parameters.

The Fundamental Spaces of
a Matrix

There are six important vector spaces associated with a matrix A and its transpose AT :

row space of A row space of AT

column space of A column space of AT

null space of A null space of AT
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However, transposing a matrix converts row vectors into column vectors and conversely,
so except for a difference in notation, the row space of AT is the same as the column
space of A, and the column space of AT is the same as the row space of A. Thus, of the
six spaces listed above, only the following four are distinct:

row space of A column space of A

null space of A null space of AT

These are called the fundamental spaces of a matrix A. We will now consider how these

If A is an m × n matrix, then
the row space and null space
of A are subspaces of Rn, and
the column space of A and the
null space of AT are subspaces
of Rm.

four subspaces are related.
Let us focus for a moment on the matrix AT . Since the row space and column space

of a matrix have the same dimension, and since transposing a matrix converts its columns
to rows and its rows to columns, the following result should not be surprising.

THEOREM 4.8.5 If A is any matrix, then rank(A) = rank(AT ).

Proof

rank(A) = dim(row space of A) = dim(column space of AT ) = rank(AT ).

This result has some important implications. For example, if A is an m × n matrix,
then applying Formula (4) to the matrix AT and using the fact that this matrix has m

columns yields

rank(AT ) + nullity(AT ) = m

which, by virtue of Theorem 4.8.5, can be rewritten as

rank(A) + nullity(AT ) = m (5)

This alternative form of Formula (4) makes it possible to express the dimensions of all
four fundamental spaces in terms of the size and rank of A. Specifically, if rank(A) = r ,
then

dim[row(A)] = r dim[col(A)] = r

dim[null(A)] = n − r dim[null(AT )] = m − r
(6)

A Geometric Link Between
the Fundamental Spaces

The four formulas in (6) provide an algebraic relationship between the size of a matrix
and the dimensions of its fundamental spaces. Our next objective is to find a geometric
relationship between the fundamental spaces themselves. For this purpose recall from
Theorem 3.4.3 that if A is an m × n matrix, then the null space of A consists of those
vectors that are orthogonal to each of the row vectors of A. To develop that idea in more
detail, we make the following definition.

DEFINITION 2 If W is a subspace of Rn, then the set of all vectors in Rn that are
orthogonal to every vector in W is called the orthogonal complement of W and is
denoted by the symbol W⊥.

The following theorem lists three basic properties of orthogonal complements. We
will omit the formal proof because a more general version of this theorem will be proved
later in the text.
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THEOREM 4.8.6 If W is a subspace of Rn, then:

(a) W⊥ is a subspace of Rn.

(b) The only vector common to W and W⊥ is 0.

(c) The orthogonal complement of W⊥ is W .

Part (b) of Theorem 4.8.6 can
be expressed as

W ∩ W⊥ = {0}
and part (c) as

(W⊥)⊥ = W

EXAMPLE 5 Orthogonal Complements

In R2 the orthogonal complement of a line W through the origin is the line through the
origin that is perpendicular to W (Figure 4.8.1a); and in R3 the orthogonal complement
of a plane W through the origin is the line through the origin that is perpendicular to
that plane (Figure 4.8.1b).

Figure 4.8.1
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The next theorem will provide a geometric link between the fundamental spaces of

Explain why {0} and Rn are
orthogonal complements.

a matrix. In the exercises we will ask you to prove that if a vector in Rn is orthogonal
to each vector in a basis for a subspace of Rn, then it is orthogonal to every vector in
that subspace. Thus, part (a) of the following theorem is essentially a restatement of
Theorem 3.4.3 in the language of orthogonal complements; it is illustrated in Example 6
of Section 3.4. The proof of part (b), which is left as an exercise, follows from part (a).
The essential idea of the theorem is illustrated in Figure 4.8.2.

Figure 4.8.2
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THEOREM 4.8.7 If A is an m × n matrix, then:

(a) The null space of A and the row space of A are orthogonal complements in Rn.

(b) The null space ofAT and the column space ofA are orthogonal complements inRm.
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More on the Equivalence
Theorem

In Theorem 2.3.8 we listed six results that are equivalent to the invertibility of a square
matrix A. We are now in a position to add ten more statements to that list to produce a
single theorem that summarizes and links together all of the topics that we have covered
thus far. We will prove some of the equivalences and leave others as exercises.

THEOREM 4.8.8 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) �= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.

Proof The equivalence of (h) through (m) follows from Theorem 4.5.4 (we omit the
details). To complete the proof we will show that (b), (n), and (o) are equivalent by
proving the chain of implications (b) ⇒ (o) ⇒ (n) ⇒ (b).

(b) ⇒ (o) If Ax = 0 has only the trivial solution, then there are no parameters in that
solution, so nullity(A) = 0 by Theorem 4.8.3(b).

(o) ⇒ (n) Theorem 4.8.2.

(n)⇒ (b) IfAhas rankn, then Theorem 4.8.3(a) implies that there aren leading variables
(hence no free variables) in the general solution of Ax = 0. This leaves the trivial solution
as the only possibility.

Applications of Rank The advent of the Internet has stimulated research on finding efficient methods for trans-
mitting large amounts of digital data over communications lines with limited bandwidths.
Digital data are commonly stored in matrix form, and many techniques for improving
transmission speed use the rank of a matrix in some way. Rank plays a role because it
measures the “redundancy” in a matrix in the sense that if A is an m × n matrix of rank
k, then n − k of the column vectors and m − k of the row vectors can be expressed in
terms of k linearly independent column or row vectors. The essential idea in many data
compression schemes is to approximate the original data set by a data set with smaller
rank that conveys nearly the same information, then eliminate redundant vectors in the
approximating set to speed up the transmission time.
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Overdetermined and
Underdetermined Systems

In many applications the equations in a linear system correspond to physical constraintsO PT I O NA L

or conditions that must be satisfied. In general, the most desirable systems are those that

In engineering and physics,
the occurrence of an overde-
termined or underdetermined
linear system often signals that
one or more variables were
omitted in formulating the
problem or that extraneous
variables were included. This
often leads to some kind of
complication.

have the same number of constraints as unknowns since such systems often have a unique
solution. Unfortunately, it is not always possible to match the number of constraints and
unknowns, so researchers are often faced with linear systems that have more constraints
than unknowns, called overdetermined systems, or with fewer constraints than unknowns,
called underdetermined systems. The following theorem will help us to analyze both
overdetermined and underdetermined systems.

THEOREM 4.8.9 Let A be an m × n matrix.

(a) (Overdetermined Case). If m > n, then the linear system Ax = b is inconsistent
for at least one vector b in Rn.

(b) (Underdetermined Case). Ifm < n, then for each vector b inRm the linear system
Ax = b is either inconsistent or has infinitely many solutions.

Proof (a) Assume that m > n, in which case the column vectors of A cannot span Rm

(fewer vectors than the dimension of Rm). Thus, there is at least one vector b in Rm that
is not in the column space of A, and for any such b the system Ax = b is inconsistent by
Theorem 4.7.1.

Proof (b) Assume that m < n. For each vector b in Rn there are two possibilities: either
the system Ax = b is consistent or it is inconsistent. If it is inconsistent, then the proof
is complete. If it is consistent, then Theorem 4.8.4 implies that the general solution has
n − r parameters, where r = rank(A). But we know from Example 2 that rank(A) is at
most the smaller of m and n (which is m), so

n − r ≥ n − m > 0

This means that the general solution has at least one parameter and hence there are
infinitely many solutions.

EXAMPLE 6 Overdetermined and Underdetermined Systems

(a) What can you say about the solutions of an overdetermined system Ax = b of 7
equations in 5 unknowns in which A has rank r = 4?

(b) What can you say about the solutions of an underdetermined system Ax = b of 5
equations in 7 unknowns in which A has rank r = 4?

Solution (a) The system is consistent for some vector b in R7, and for any such b the
number of parameters in the general solution is n − r = 5 − 4 = 1.

Solution (b) The system may be consistent or inconsistent, but if it is consistent for the
vector b in R5, then the general solution has n − r = 7 − 4 = 3 parameters.

EXAMPLE 7 An Overdetermined System

The linear system
x1 − 2x2 = b1

x1 − x2 = b2

x1 + x2 = b3

x1 + 2x2 = b4

x1 + 3x2 = b5

is overdetermined, so it cannot be consistent for all possible values of b1, b2, b3, b4, and
b5. Conditions under which the system is consistent can be obtained by solving the linear
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system by Gauss–Jordan elimination. We leave it for you to show that the augmented
matrix is row equivalent to ⎡

⎢⎢⎢⎢⎢⎣
1 0 2b2 − b1

0 1 b2 − b1

0 0 b3 − 3b2 + 2b1

0 0 b4 − 4b2 + 3b1

0 0 b5 − 5b2 + 4b1

⎤
⎥⎥⎥⎥⎥⎦ (7)

Thus, the system is consistent if and only if b1, b2, b3, b4, and b5 satisfy the conditions

2b1 − 3b2 + b3 = 0

3b1 − 4b2 + b4 = 0

4b1 − 5b2 + b5 = 0

Solving this homogeneous linear system yields

b1 = 5r − 4s, b2 = 4r − 3s, b3 = 2r − s, b4 = r, b5 = s

where r and s are arbitrary.

Remark The coefficient matrix for the given linear system in the last example has n = 2 columns,
and it has rank r = 2 because there are two nonzero rows in its reduced row echelon form. This
implies that when the system is consistent its general solution will contain n − r = 0 parameters;
that is, the solution will be unique. With a moment’s thought, you should be able to see that this
is so from (7).

Exercise Set 4.8
In Exercises 1–2, find the rank and nullity of the matrix A by

reducing it to row echelon form.

1. (a) A =

⎡
⎢⎢⎢⎣

1 2 −1 1

2 4 −2 2

3 6 −3 3

4 8 −4 4

⎤
⎥⎥⎥⎦

(b) A =
⎡
⎢⎣ 1 −2 2 3 −1

−3 6 −1 1 −7

2 −4 5 8 −4

⎤
⎥⎦

2. (a) A =

⎡
⎢⎢⎢⎣

1 0 −2 1 0

0 −1 −3 1 3

−2 −1 1 −1 3

0 1 3 0 −4

⎤
⎥⎥⎥⎦

(b) A =

⎡
⎢⎢⎢⎢⎢⎣

1 3 1 3

0 1 1 0

−3 0 6 −1

3 4 −2 1

2 0 −4 −2

⎤
⎥⎥⎥⎥⎥⎦

In Exercises 3–6, the matrix R is the reduced row echelon form
of the matrix A.

(a) By inspection of the matrix R, find the rank and nullity
of A.

(b) Confirm that the rank and nullity satisfy Formula (4).

(c) Find the number of leading variables and the number
of parameters in the general solution of Ax = 0 without
solving the system.

3. A =
⎡
⎢⎣ 2 −1 −3

−1 2 −3

1 1 4

⎤
⎥⎦; R =

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦

4. A =
⎡
⎢⎣ 2 −1 −3

−1 2 −3

1 1 −6

⎤
⎥⎦; R =

⎡
⎢⎣1 0 −3

0 1 −3

0 0 0

⎤
⎥⎦

5. A =
⎡
⎢⎣ 2 −1 −3

−2 1 3

−4 2 6

⎤
⎥⎦; R =

⎡
⎢⎣1 − 1

2 − 3
2

0 0 0

0 0 0

⎤
⎥⎦

6. A =

⎡
⎢⎢⎢⎣

0 2 2 4

1 0 −1 −3

2 3 1 1

−2 1 3 −2

⎤
⎥⎥⎥⎦; R =

⎡
⎢⎢⎢⎣

1 0 −1 0

0 1 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦
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7. In each part, find the largest possible value for the rank of A

and the smallest possible value for the nullity of A.

(a) A is 4 × 4 (b) A is 3 × 5 (c) A is 5 × 3

8. If A is an m × n matrix, what is the largest possible value for
its rank and the smallest possible value for its nullity?

9. In each part, use the information in the table to:

(i) find the dimensions of the row space of A, column space
of A, null space of A, and null space of AT ;

(ii) determine whether or not the linear system Ax = b is
consistent;

(iii) find the number of parameters in the general solution of
each system in (ii) that is consistent.

(a) (b) (c) (d) (e) (f ) (g)

Size of A 3 × 3 3 × 3 3 × 3 5 × 9 5 × 9 4 × 4 6 × 2
Rank(A) 3 2 1 2 2 0 2
Rank[A | b] 3 3 1 2 3 0 2

10. Verify that rank(A) = rank(AT ).

A =
⎡
⎢⎣ 1 2 4 0

−3 1 5 2

−2 3 9 2

⎤
⎥⎦

11. (a) Find an equation relating nullity(A) and nullity(AT ) for
the matrix in Exercise 10.

(b) Find an equation relating nullity(A) and nullity(AT ) for
a general m × n matrix.

12. Let T : R2 →R3 be the linear transformation defined by the
formula

T (x1, x2) = (x1 + 3x2, x1 − x2, x1)

(a) Find the rank of the standard matrix for T .

(b) Find the nullity of the standard matrix for T .

13. Let T : R5 →R3 be the linear transformation defined by the
formula

T (x1, x2, x3, x4, x5) = (x1 + x2, x2 + x3 + x4, x4 + x5)

(a) Find the rank of the standard matrix for T .

(b) Find the nullity of the standard matrix for T .

14. Discuss how the rank of A varies with t .

(a) A =
⎡
⎢⎣1 1 t

1 t 1

t 1 1

⎤
⎥⎦ (b) A =

⎡
⎢⎣ t 3 −1

3 6 −2

−1 −3 t

⎤
⎥⎦

15. Are there values of r and s for which⎡
⎢⎢⎢⎣

1 0 0

0 r − 2 2

0 s − 1 r + 2

0 0 3

⎤
⎥⎥⎥⎦

has rank 1? Has rank 2? If so, find those values.

16. (a) Give an example of a 3 × 3 matrix whose column space is
a plane through the origin in 3-space.

(b) What kind of geometric object is the null space of your
matrix?

(c) What kind of geometric object is the row space of your
matrix?

17. Suppose that A is a 3 × 3 matrix whose null space is a line
through the origin in 3-space. Can the row or column space
of A also be a line through the origin? Explain.

18. (a) If A is a 3 × 5 matrix, then the rank of A is at most
. Why?

(b) If A is a 3 × 5 matrix, then the nullity of A is at most
. Why?

(c) If A is a 3 × 5 matrix, then the rank of AT is at most
. Why?

(d) If A is a 3 × 5 matrix, then the nullity of AT is at most
. Why?

19. (a) If A is a 3 × 5 matrix, then the number of leading 1’s in
the reduced row echelon form of A is at most .
Why?

(b) If A is a 3 × 5 matrix, then the number of parameters in
the general solution of Ax = 0 is at most . Why?

(c) If A is a 5 × 3 matrix, then the number of leading 1’s in
the reduced row echelon form of A is at most .
Why?

(d) If A is a 5 × 3 matrix, then the number of parameters in
the general solution of Ax = 0 is at most . Why?

20. Let A be a 7 × 6 matrix such that Ax = 0 has only the trivial
solution. Find the rank and nullity of A.

21. Let A be a 5 × 7 matrix with rank 4.

(a) What is the dimension of the solution space of Ax = 0 ?

(b) Is Ax = b consistent for all vectors b in R5? Explain.

22. Let

A =
[
a11 a12 a13

a21 a22 a23

]
Show that A has rank 2 if and only if one or more of the fol-
lowing determinants is nonzero.∣∣∣∣a11 a12

a21 a22

∣∣∣∣,
∣∣∣∣a11 a13

a21 a23

∣∣∣∣,
∣∣∣∣a12 a13

a22 a23

∣∣∣∣
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23. Use the result in Exercise 22 to show that the set of points
(x, y, z) in R3 for which the matrix[

x y z

1 x y

]
has rank 1 is the curve with parametric equations x = t ,
y = t2, z = t3.

24. Find matrices A and B for which rank(A) = rank(B), but
rank(A2) �= rank(B2).

25. In Example 6 of Section 3.4 we showed that the row space and
the null space of the matrix

A =

⎡
⎢⎢⎢⎣

1 3 −2 0 2 0

2 6 −5 −2 4 −3

0 0 5 10 0 15

2 6 0 8 4 18

⎤
⎥⎥⎥⎦

are orthogonal complements in R6, as guaranteed by part (a)
of Theorem 4.8.7. Show that null space of AT and the column
space of A are orthogonal complements in R4, as guaranteed
by part (b) of Theorem 4.8.7. [Suggestion: Show that each
column vector of A is orthogonal to each vector in a basis for
the null space of AT .]

26. Confirm the results stated in Theorem 4.8.7 for the matrix.

A =

⎡
⎢⎢⎢⎣
−2 −5 8 0 −17

1 3 −5 1 5

3 11 −19 7 1

1 7 −13 5 −3

⎤
⎥⎥⎥⎦

27. In each part, state whether the system is overdetermined or
underdetermined. If overdetermined, find all values of the b’s
for which it is inconsistent, and if underdetermined, find all
values of the b’s for which it is inconsistent and all values for
which it has infinitely many solutions.

(a)

⎡
⎢⎣ 1 −1

−3 1

0 1

⎤
⎥⎦
[
x

y

]
=
⎡
⎢⎣b1

b2

b3

⎤
⎥⎦

(b)

[
1 −3 4

−2 −6 8

]⎡⎢⎣x

y

z

⎤
⎥⎦ =

[
b1

b2

]

(c)

[
1 −3 0

−1 1 1

]⎡⎢⎣x

y

z

⎤
⎥⎦ =

[
b1

b2

]

28. What conditions must be satisfied by b1, b2, b3, b4, and b5 for
the overdetermined linear system

x1 − 3x2 = b1

x1 − 2x2 = b2

x1 + x2 = b3

x1 − 4x2 = b4

x1 + 5x2 = b5

to be consistent?

Working with Proofs

29. Prove: If k �= 0, then A and kA have the same rank.

30. Prove: If a matrix A is not square, then either the row vectors
or the column vectors of A are linearly dependent.

31. Use Theorem 4.8.3 to prove Theorem 4.8.4.

32. Prove Theorem 4.8.7(b).

33. Prove: If a vector v in Rn is orthogonal to each vector in a
basis for a subspace W of Rn, then v is orthogonal to every
vector in W .

True-False Exercises

TF. In parts (a)–( j) determine whether the statement is true or
false, and justify your answer.

(a) Either the row vectors or the column vectors of a square matrix
are linearly independent.

(b) A matrix with linearly independent row vectors and linearly
independent column vectors is square.

(c) The nullity of a nonzero m × n matrix is at most m.

(d) Adding one additional column to a matrix increases its rank
by one.

(e) The nullity of a square matrix with linearly dependent rows is
at least one.

(f ) If A is square and Ax = b is inconsistent for some vector b,
then the nullity of A is zero.

(g) If a matrix A has more rows than columns, then the dimension
of the row space is greater than the dimension of the column
space.

(h) If rank(AT ) = rank(A), then A is square.

(i) There is no 3 × 3 matrix whose row space and null space are
both lines in 3-space.

( j) If V is a subspace of Rn and W is a subspace of V, then W⊥

is a subspace of V ⊥.

Working withTechnology

T1. It can be proved that a nonzero matrix A has rank k if and
only if some k × k submatrix has a nonzero determinant and all
square submatrices of larger size have determinant zero. Use this
fact to find the rank of

A =

⎡
⎢⎢⎢⎣

3 −1 3 2 5

5 −3 2 3 4

1 −3 −5 0 −7

7 −5 1 4 1

⎤
⎥⎥⎥⎦

Check your result by computing the rank of A in a different way.
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T2. Sylvester’s inequality states that if A and B are n × n matrices
with rank rA and rB , respectively, then the rank rAB of AB satisfies
the inequality

rA + rB − n ≤ rAB ≤ min(rA, rB)

where min(rA, rB) denotes the smaller of rA and rB or their com-
mon value if the two ranks are the same. Use your technology
utility to confirm this result for some matrices of your choice.

4.9 Basic Matrix Transformations in R 2 and R 3

In this section we will continue our study of linear transformations by considering some
basic types of matrix transformations in R2 and R3 that have simple geometric
interpretations. The transformations we will study here are important in such fields as
computer graphics, engineering, and physics.

There are many ways to transform the vector spaces R2 and R3, some of the most
important of which can be accomplished by matrix transformations using the methods
introduced in Section 1.8. For example, rotations about the origin, reflections about
lines and planes through the origin, and projections onto lines and planes through the
origin can all be accomplished using a linear operator TA in which A is an appropriate
2 × 2 or 3 × 3 matrix.

Reflection Operators Some of the most basic matrix operators on R2 and R3 are those that map each point into
its symmetric image about a fixed line or a fixed plane that contains the origin; these are
called reflection operators. Table 1 shows the standard matrices for the reflections about
the coordinate axes in R2, and Table 2 shows the standard matrices for the reflections
about the coordinate planes in R3. In each case the standard matrix was obtained using
the following procedure introduced in Section 1.8: Find the images of the standard basis
vectors, convert those images to column vectors, and then use those column vectors as
successive columns of the standard matrix.

Table 1

Operator Illustration Images of e1 and e2 Standard Matrix

Reflection about
the x-axis

T (x, y) = (x,−y) T(x)

x
(x, y)

(x, –y)

x

y

T (e1) = T (1, 0) = (1, 0)
T (e2) = T (0, 1) = (0,−1)

[
1 0

0 −1

]

Reflection about
the y-axis

T (x, y) = (−x, y) T(x) x

(x, y)(–x, y)

x

y

T (e1) = T (1, 0) = (−1, 0)
T (e2) = T (0, 1) = (0, 1)

[−1 0

0 1

]

Reflection about
the line y = x

T (x, y) = (y, x)

T(x)

x (x, y)

(y, x)
y = x

x

y

T (e1) = T (1, 0) = (0, 1)
T (e2) = T (0, 1) = (1, 0)

[
0 1
1 0

]
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Table 2

Operator Illustration Images of e1, e2, e3 Standard Matrix

Reflection about
the xy-plane

T (x, y, z) = (x, y,−z)

y

(x, y, z)

(x, y, –z)

z

x T(x)

x T (e1) = T (1, 0, 0) = (1, 0, 0)
T (e2) = T (0, 1, 0) = (0, 1, 0)
T (e3) = T (0, 0, 1) = (0, 0,−1)

⎡
⎢⎣1 0 0

0 1 0

0 0 −1

⎤
⎥⎦

Reflection about
the xz-plane

T (x, y, z) = (x,−y, z)

y

(x, y, z)(x, –y, z)

z

x

T(x) x
T (e1) = T (1, 0, 0) = (1, 0, 0)
T (e2) = T (0, 1, 0) = (0,−1, 0)
T (e3) = T (0, 0, 1) = (0, 0, 1)

⎡
⎢⎣1 0 0

0 −1 0

0 0 1

⎤
⎥⎦

Reflection about
the yz-plane

T (x, y, z) = (−x, y, z)
y(x, y, z)

(–x, y, z)

z

x

T(x)

x

T (e1) = T (1, 0, 0) = (−1, 0, 0)
T (e2) = T (0, 1, 0) = (0, 1, 0)
T (e3) = T (0, 0, 1) = (0, 0, 1)

⎡
⎢⎣−1 0 0

0 1 0

0 0 1

⎤
⎥⎦

Projection Operators Matrix operators on R2 and R3 that map each point into its orthogonal projection onto
a fixed line or plane through the origin are called projection operators (or more precisely,
orthogonal projection operators). Table 3 shows the standard matrices for the orthogonal
projections onto the coordinate axes in R2, and Table 4 shows the standard matrices for
the orthogonal projections onto the coordinate planes in R3.

Table 3

Operator Illustration Images of e1 and e2 Standard Matrix

Orthogonal projection
onto the x-axis

T (x, y) = (x, 0)
T(x)

x
(x, y)

(x, 0) x

y

T (e1) = T (1, 0) = (1, 0)
T (e2) = T (0, 1) = (0, 0)

[
1 0

0 0

]

Orthogonal projection
onto the y-axis

T (x, y) = (0, y)
x

(x, y)(0, y)

x

y

T(x)
T (e1) = T (1, 0) = (0, 0)
T (e2) = T (0, 1) = (0, 1)

[
0 0

0 1

]
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Table 4

Operator Illustration Images of e1, e2, e3 Standard Matrix

Orthogonal projection
onto the xy-plane

T (x, y, z) = (x, y, 0)
y

(x, y, z)

(x, y, 0)

z

x T(x)

x
T (e1) = T (1, 0, 0) = (1, 0, 0)
T (e2) = T (0, 1, 0) = (0, 1, 0)
T (e3) = T (0, 0, 1) = (0, 0, 0)

⎡
⎢⎣1 0 0

0 1 0

0 0 0

⎤
⎥⎦

Orthogonal projection
onto the xz-plane

T (x, y, z) = (x, 0, z)
y

(x, y, z)(x, 0, z)

z

x

T(x)
x

T (e1) = T (1, 0, 0) = (1, 0, 0)
T (e2) = T (0, 1, 0) = (0, 0, 0)
T (e3) = T (0, 0, 1) = (0, 0, 1)

⎡
⎢⎣1 0 0

0 0 0

0 0 1

⎤
⎥⎦

Orthogonal projection
onto the yz-plane

T (x, y, z) = (0, y, z)
y

(x, y, z)

(0, y, z)
z

x

T(x)

x

T (e1) = T (1, 0, 0) = (0, 0, 0)
T (e2) = T (0, 1, 0) = (0, 1, 0)
T (e3) = T (0, 0, 1) = (0, 0, 1)

⎡
⎢⎣0 0 0

0 1 0

0 0 1

⎤
⎥⎦

Rotation Operators Matrix operators on R2 and R3 that move points along arcs of circles centered at the
origin are called rotation operators. Let us consider how to find the standard matrix for
the rotation operator T : R2 →R2 that moves points counterclockwise about the origin
through a positive angle θ . As illustrated in Figure 4.9.1, the images of the standard
basis vectors are

T (e1) = T (1, 0) = (cos θ, sin θ) and T (e2) = T (0, 1) = (− sin θ, cos θ)

so it follows from Formula (14) of Section 1.8 that the standard matrix for T is

A = [T (e1) | T (e2)] =
[

cos θ − sin θ

sin θ cos θ

]

Figure 4.9.1

e1

e2
(–sin θ, cos θ)

(cos θ, sin θ)

x

y
T

T11 u

u

In keeping with common usage we will denote this operator by Rθ and call

Rθ =
[

cos θ − sin θ

sin θ cos θ

]
(1)
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the rotation matrix for R2. If x = (x, y) is a vector in R2, and if w = (w1, w2) is its
image under the rotation, then the relationship w = Rθ x can be written in component
form as

w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ
(2)

These are called the rotation equations for R2. These ideas are summarized in Table 5.

In the plane, counterclockwise
angles are positive and clock-
wise angles are negative. The
rotation matrix for a clockwise
rotation of −θ radians can be
obtained by replacing θ by −θ

in (1). After simplification this
yields

R−θ =
[

cos θ sin θ

− sin θ cos θ

] Table 5

Operator Illustration Rotation Equations Standard Matrix

Counterclockwise
rotation about the
origin through an
angle θ

 (w1, w2)

 (x, y)

x

w

y

xθ

w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ

[
cos θ − sin θ

sin θ cos θ

]

EXAMPLE 1 A Rotation Operator

Find the image of x = (1, 1) under a rotation of π/6 radians (= 30◦) about the origin.

Solution It follows from (1) with θ = π/6 that

Rπ/6x =
[√

3
2 − 1

2

1
2

√
3

2

] [
1

1

]
=
[√

3−1
2

1+√
3

2

]
≈
[

0.37

1.37

]

or in comma-delimited notation, Rπ/6(1, 1) ≈ (0.37, 1.37).

Rotations in R3 A rotation of vectors in R3 is commonly described in relation to a line through the origin
called the axis of rotation and a unit vector u along that line (Figure 4.9.2a). The unit
vector and what is called the right-hand rule can be used to establish a sign for the angle of
rotation by cupping the fingers of your right hand so they curl in the direction of rotation
and observing the direction of your thumb. If your thumb points in the direction of u,
then the angle of rotation is regarded to be positive relative to u, and if it points in the
direction opposite to u, then it is regarded to be negative relative to u (Figure 4.9.2b).

Figure 4.9.2

z

y

x

lx

Axis of rotation

(a)  Angle of rotation

z

y

x

u

Positive
rotation

(b)  Right-hand rule

z

y

x

u

Negative
rotation

w
θ

For rotations about the coordinate axes in R3, we will take the unit vectors to be i, j,
and k, in which case an angle of rotation will be positive if it is counterclockwise looking
toward the origin along the positive coordinate axis and will be negative if it is clockwise.
Table 6 shows the standard matrices for the rotation operators on R3 that rotate each
vector about one of the coordinate axes through an angle θ . You will find it instructive
to compare these matrices to that in Table 5.
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Table 6

Operator Illustration Rotation Equations Standard Matrix

Counterclockwise
rotation about the
positive x-axis through
an angle θ

z

y

x

w

x
θ

w1 = x

w2 = y cos θ − z sin θ

w3 = y sin θ + z cos θ

⎡
⎢⎣1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎤
⎥⎦

Counterclockwise
rotation about the
positive y-axis through
an angle θ

z

y

x w

x

θ

w1 = x cos θ + z sin θ

w2 = y

w3 = −x sin θ + z cos θ

⎡
⎢⎣ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤
⎥⎦

Counterclockwise
rotation about the
positive z-axis through
an angle θ

z

y

x

wx

θ
w1 = x cos θ − y sin θ

w2 = x sin θ + y cos θ

w3 = z

⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦

Yaw, Pitch, and Roll

In aeronautics and astronautics, the orientation of an aircraft or
space shuttle relative to an xyz-coordinate system is often described
in terms of angles called yaw, pitch, and roll . If, for example, an
aircraft is flying along the y-axis and the xy-plane defines the hori-
zontal, then the aircraft’s angle of rotation about the z-axis is called
the yaw, its angle of rotation about the x-axis is called the pitch, and
its angle of rotation about the y-axis is called the roll . A combi-
nation of yaw, pitch, and roll can be achieved by a single rotation
about some axis through the origin. This is, in fact, how a space
shuttle makes attitude adjustments—it doesn’t perform each rota-
tion separately; it calculates one axis, and rotates about that axis
to get the correct orientation. Such rotation maneuvers are used to

align an antenna, point the nose toward a celestial object, or position
a payload bay for docking.

Roll

Yaw

Pitch

z

x
y

For completeness, we note that the standard matrix for a counterclockwise rotation
through an angle θ about an axis in R3, which is determined by an arbitrary unit vector
u = (a, b, c) that has its initial point at the origin, is⎡
⎢⎣a2(1 − cos θ) + cos θ ab(1 − cos θ) − c sin θ ac(1 − cos θ) + b sin θ

ab(1 − cos θ) + c sin θ b2(1 − cos θ) + cos θ bc(1 − cos θ) − a sin θ

ac(1 − cos θ) − b sin θ bc(1 − cos θ) + a sin θ c2(1 − cos θ) + cos θ

⎤
⎥⎦ (3)

The derivation can be found in the book Principles of Interactive Computer Graphics, by
W. M. Newman and R. F. Sproull (New York: McGraw-Hill, 1979). You may find it
instructive to derive the results in Table 6 as special cases of this more general result.
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Dilations and Contractions If k is a nonnegative scalar, then the operator T(x) = kx on R2 or R3 has the effect of
increasing or decreasing the length of each vector by a factor of k. If 0 ≤ k < 1 the
operator is called a contraction with factor k, and if k > 1 it is called a dilation with
factor k (Figure 4.9.3). Tables 7 and 8 illustrate these operators. If k = 1, then T is the
identity operator.

Figure 4.9.3

x

T(x) = kx

(a)  0 ≤ k < 1

x

T(x) = kx

(b)  k > 1

Table 7

Illustration Effect on the Standard
Operator T (x, y) = (kx, ky) Unit Square Matrix

Contraction with
factor k in R2

(0 ≤ k < 1)
T(x)

x (x, y)

(kx, ky)

y

x

(0, 1)

(1, 0)

(0, k)

(k, 0) [
k 0

0 k

]
Dilation with
factor k in R2

(k > 1) x

T(x)

x (x, y)

(kx, ky)y (0, 1)

(1, 0)

(0, k)

(k, 0)

Table 8

Illustration Standard
Operator T (x, y, z) = (kx, ky, kz) Matrix

Contraction with
factor k in R3

(0 ≤ k < 1)

T(x)

x (x, y, z)

(kx, ky, kz)

z

y

x

⎡
⎢⎣k 0 0

0 k 0

0 0 k

⎤
⎥⎦

Dilation with
factor k in R3

(k > 1)

T(x)

x (x, y, z)

(kx, ky, kz)z

y

x
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Expansions and
Compressions

In a dilation or contraction of R2 or R3, all coordinates are multiplied by a nonnegative
factor k. If only one coordinate is multiplied by k, then, depending on the value of k,
the resulting operator is called a compression or expansion with factor k in the direction
of a coordinate axis. This is illustrated in Table 9 for R2. The extension to R3 is left as
an exercise.

Table 9

Illustration Effect on the Standard
Operator T (x, y) = (kx, y) Unit Square Matrix

Compression in the
x-direction
with factor k in R2

(0 ≤ k < 1)

x

(x, y)
(kx, y)

x

y

T(x)

(0, 1) (0, 1)

(1, 0) (k, 0) [
k 0

0 1

]
Expansion in the
x-direction
with factor k in R2

(k > 1)

x

(x, y) (kx, y)

x

y

T(x)

(0, 1) (0, 1)

(1, 0) (k, 0)

Illustration Effect on the Standard
Operator T (x, y) = (x, ky) Unit Square Matrix

Compression in the
y-direction
with factor k in R2

(0 ≤ k < 1)

x
(x, y)

(x, ky)
x

y

T(x)

(0, 1)
(0, k)

(1, 0) (1, 0) [
1 0

0 k

]
Expansion in the
y-direction
with factor k in R2

(k > 1)
x

(x, y)

(x, ky)

x

y

T(x)
(0, 1)

(1, 0) (1, 0)

(0, k)

Shears A matrix operator of the form T (x, y) = (x + ky, y) translates a point (x, y) in the
xy-plane parallel to the x-axis by an amount ky that is proportional to the y-coordinate
of the point. This operator leaves the points on the x-axis fixed (since y = 0), but
as we progress away from the x-axis, the translation distance increases. We call this
operator the shear in the x-direction by a factor k. Similarly, a matrix operator of the
form T (x, y) = (x, y + kx) is called the shear in the y-direction by a factor k. Table 10,
which illustrates the basic information about shears in R2, shows that a shear is in the
positive direction if k > 0 and the negative direction if k < 0.
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Table 10

Operator Effect on the Unit Square Standard Matrix

Shear in the
x-direction by a
factor k in R2

T (x, y) = (x + ky, y)

(0, 1)

(1, 0)

(k, 1)

(1, 0)

(k, 1)

(1, 0)

(k > 0) (k < 0)

[
1 k

0 1

]

Shear in the
y-direction by a
factor k in R2

T (x, y) = (x, y + kx)

(0, 1)

(1, 0)

(0, 1)

(1, k)

(k < 0)(k > 0)

(0, 1)

(1, k)

[
1 0

k 1

]

EXAMPLE 2 Effect of Matrix Operators on the Unit Square

In each part, describe the matrix operator whose standard matrix is shown, and show
its effect on the unit square.

(a) A1 =
[

1 2

0 1

]
(b) A2 =

[
1 −2

0 1

]
(c) A3 =

[
2 0

0 2

]
(d) A4 =

[
2 0

0 1

]
Solution By comparing the forms of these matrices to those in Tables 7, 9, and 10, we
see that the matrix A1 corresponds to a shear in the x-direction by a factor 2, the matrix
A2 corresponds to a shear in the x-direction by a factor −2, the matrix A3 corresponds
to a dilation with factor 2, and the matrix A4 corresponds to an expansion in the x-
direction with factor 2. The effects of these operators on the unit square are shown in
Figure 4.9.4.

Figure 4.9.4

x

y

321

3

2

1
x

y

321

3

2

1
x

y

10–1

3

2

1
x

A1 A2 A3 A4

y

321

3

2

1

0 0–20

Orthogonal Projections
onto LinesThrough the

Origin

In Table 3 we listed the standard matrices for the orthogonal projections onto the coordi-
nate axes in R2. These are special cases of the more general matrix operator TA: R2 →R2

that maps each point into its orthogonal projection onto a line L through the origin that
makes an angle θ with the positive x-axis (Figure 4.9.5). In Example 4 of Section 3.3
we used Formula (10) of that section to find the orthogonal projections of the standard
basis vectors for R2 onto that line. Expressed in matrix form, we found those projections
to be

T (e1) =
[

cos2 θ

sin θ cos θ

]
and T (e2) =

[
sin θ cos θ

sin2 θ

]
Thus, the standard matrix for TA is

y

x

x

T(x)

L

θ

Figure 4.9.5
A = [T (e1) | T (e2)] =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
=
[

cos2 θ 1
2 sin 2θ

1
2 sin 2θ sin2 θ

]
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In keeping with common usage, we will denote this operator by

We have included two versions
of Formula (4) because both
are commonly used. Whereas
the first version involves only
the angle θ , the second in-
volves both θ and 2θ .

Pθ =
[

cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
=
[

cos2 θ 1
2 sin 2θ

1
2 sin 2θ sin2 θ

]
(4)

EXAMPLE 3 Orthogonal Projection onto a LineThrough the Origin

Use Formula (4) to find the orthogonal projection of the vector x = (1, 5) onto the line
through the origin that makes an angle of π/6 (= 30◦) with the positive x-axis.

Solution Since sin(π/6) = 1/2 and cos(π/6) = √
3/2, it follows from (4) that the stan-

dard matrix for this projection is

Pπ/6 =
[

cos2(π/6) sin(π/6) cos(π/6)

sin(π/6) cos(π/6) sin2(π/6)

]
=
[

3
4

√
3

4√
3

4
1
4

]

Thus,

Pπ/6x =
[

3
4

√
3

4√
3

4
1
4

][
1

5

]
=
[

3+5
√

3
4√
3+5
4

]
≈
[

2.91

1.68

]
or in comma-delimited notation, Pπ/6(1, 5) ≈ (2.91, 1.68).

Reflections About Lines
Through the Origin

In Table 1 we listed the reflections about the coordinate axes in R2. These are special cases
of the more general operator Hθ : R2 →R2 that maps each point into its reflection about
a line L through the origin that makes an angle θ with the positive x-axis (Figure 4.9.6).

x

Hθx

x

y

θ

L

Figure 4.9.6

We could find the standard matrix for Hθ by finding the images of the standard basis
vectors, but instead we will take advantage of our work on orthogonal projections by
using Formula (4) for Pθ to find a formula for Hθ .

You should be able to see from Figure 4.9.7 that for every vector x in Rn

x

Hθx

Pθx

x

y

θ

L

Figure 4.9.7

Pθ x − x = 1
2 (Hθ x − x) or equivalently Hθ x = (2Pθ − I )x

Thus, it follows from Theorem 1.8.4 that

Hθ = 2Pθ − I (5)

and hence from (4) that

Hθ =
[

cos 2θ sin 2θ

sin 2θ − cos 2θ

]
(6)

EXAMPLE 4 Reflection About a LineThrough the Origin

Find the reflection of the vector x = (1, 5) about the line through the origin that makes
an angle of π/6 (= 30◦) with the x-axis.

Solution Since sin(π/3) = √
3/2 and cos(π/3) = 1/2, it follows from (6) that the stan-

dard matrix for this reflection is

Hπ/6 =
[

cos(π/3) sin(π/3)

sin(π/3) − cos(π/3)

]
=
[

1
2

√
3

2√
3

2 − 1
2

]

Thus,

Hπ/6x =
[

1
2

√
3

2√
3

2 − 1
2

][
1

5

]
=
[

1+5
√

3
2√
3−5
2

]
≈
[

4.83

−1.63

]
or in comma-delimited notation, Hπ/6(1, 5) ≈ (4.83,−1.63).



268 Chapter 4 GeneralVector Spaces

Exercise Set 4.9
1. Use matrix multiplication to find the reflection of (−1, 2)

about the

(a) x-axis. (b) y-axis. (c) line y = x.

2. Use matrix multiplication to find the reflection of (a, b) about
the

(a) x-axis. (b) y-axis. (c) line y = x.

3. Use matrix multiplication to find the reflection of (2,−5, 3)
about the

(a) xy-plane. (b) xz-plane. (c) yz-plane.

4. Use matrix multiplication to find the reflection of (a, b, c)

about the

(a) xy-plane. (b) xz-plane. (c) yz-plane.

5. Use matrix multiplication to find the orthogonal projection of
(2,−5) onto the

(a) x-axis. (b) y-axis.

6. Use matrix multiplication to find the orthogonal projection of
(a, b) onto the

(a) x-axis. (b) y-axis.

7. Use matrix multiplication to find the orthogonal projection of
(−2, 1, 3) onto the

(a) xy-plane. (b) xz-plane. (c) yz-plane.

8. Use matrix multiplication to find the orthogonal projection of
(a, b, c) onto the

(a) xy-plane. (b) xz-plane. (c) yz-plane.

9. Use matrix multiplication to find the image of the vector
(3,−4) when it is rotated about the origin through an angle
of

(a) θ = 30◦. (b) θ = −60◦.

(c) θ = 45◦. (d) θ = 90◦.

10. Use matrix multiplication to find the image of the nonzero
vector v = (v1, v2) when it is rotated about the origin through

(a) a positive angle α. (b) a negative angle −α.

11. Use matrix multiplication to find the image of the vector
(2,−1, 2) if it is rotated

(a) 30◦ clockwise about the positive x-axis.

(b) 30◦ counterclockwise about the positive y-axis.

(c) 45◦ clockwise about the positive y-axis.

(d) 90◦ counterclockwise about the positive z-axis.

12. Use matrix multiplication to find the image of the vector
(2,−1, 2) if it is rotated

(a) 30◦ counterclockwise about the positive x-axis.

(b) 30◦ clockwise about the positive y-axis.

(c) 45◦ counterclockwise about the positive y-axis.

(d) 90◦ clockwise about the positive z-axis.

13. (a) Use matrix multiplication to find the contraction of
(−1, 2) with factor k = 1

2 .

(b) Use matrix multiplication to find the dilation of (−1, 2)

with factor k = 3.

14. (a) Use matrix multiplication to find the contraction of (a, b)

with factor k = 1/α, where α > 1.

(b) Use matrix multiplication to find the dilation of (a, b) with
factor k = α, where α > 1.

15. (a) Use matrix multiplication to find the contraction of
(2,−1, 3) with factor k = 1

4 .

(b) Use matrix multiplication to find the dilation of (2,−1, 3)
with factor k = 2.

16. (a) Use matrix multiplication to find the contraction of
(a, b, c) with factor k = 1/α, where α > 1.

(b) Use matrix multiplication to find the dilation of (a, b, c)

with factor k = α, where α > 1.

17. (a) Use matrix multiplication to find the compression of
(−1, 2) in the x-direction with factor k = 1

2 .

(b) Use matrix multiplication to find the compression of
(−1, 2) in the y-direction with factor k = 1

2 .

18. (a) Use matrix multiplication to find the expansion of (−1, 2)

in the x-direction with factor k = 3.

(b) Use matrix multiplication to find the expansion of (−1, 2)

in the y-direction with factor k = 3.

19. (a) Use matrix multiplication to find the compression of (a, b)

in the x-direction with factor k = 1/α, where α > 1.

(b) Use matrix multiplication to find the expansion of (a, b)

in the y-direction with factor k = α, where α > 1.

20. Based on Table 9, make a conjecture about the standard ma-
trices for the compressions with factor k in the directions of
the coordinate axes in R3.

Exercises 21–22 Using Example 2 as a model, describe the ma-
trix operator whose standard matrix is given, and then show in a
coordinate system its effect on the unit square.

21. (a) A1 =
[

1
2 0

0 1
2

]
(b) A2 =

[
1 0

0 1
2

]

(c) A3 =
[

1 0
1
2 1

]
(d) A4 =

[
1 0

− 1
2 1

]
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22. (a) A1 =
[

3 0

0 3

]
(b) A2 =

[
1 0

0 3

]

(c) A3 =
[

1 0

3 1

]
(d) A4 =

[
1 0

−3 1

]

In each part of Exercises 23–24, the effect of some matrix op-
erator on the unit square is shown. Find the standard matrix for
an operator with that effect.

23. (a)

x

y

3210

3

2

1

(b)

x

y

3210

3

2

1

24. (a)

–2
x

y

10–1

3

2

1

(b)

x

y

321

3

2

1

0

In Exercises 25–26, find the standard matrix for the orthogonal
projection of R2 onto the stated line, and then use that matrix to
find the orthogonal projection of the given point onto that line.

25. The orthogonal projection of (3, 4) onto the line that makes
an angle of π/3 (= 60◦) with the positive x-axis.

26. The orthogonal projection of (1, 2) onto the line that makes
an angle of π/4 (= 45◦) with the positive x-axis.

In Exercises 27–28, find the standard matrix for the reflection
of R2 about the stated line, and then use that matrix to find the
reflection of the given point about that line.

27. The reflection of (3, 4) about the line that makes an angle of
π/3 (= 60◦) with the positive x-axis.

28. The reflection of (1, 2) about the line that makes an angle of
π/4 (= 45◦) with the positive x-axis.

29. For each reflection operator in Table 2 use the standard matrix
to compute T (1, 2, 3), and convince yourself that your result
makes sense geometrically.

30. For each orthogonal projection operator in Table 4 use the
standard matrix to compute T (1, 2, 3), and convince yourself
that your result makes sense geometrically.

31. Find the standard matrix for the operator T : R3 →R3 that

(a) rotates each vector 30◦ counterclockwise about the z-axis
(looking along the positive z-axis toward the origin).

(b) rotates each vector 45◦ counterclockwise about the x-axis
(looking along the positive x-axis toward the origin).

(c) rotates each vector 90◦ counterclockwise about the y-axis
(looking along the positive y-axis toward the origin).

32. In each part of the accompanying figure, find the standard
matrix for the pictured operator.

z

y

x

(x, y, z)

(x, z, y)

z

y

x (x, y, z)

(z, y, x)

z

y

x

(x, y, z)

(y, x, z)

(a) (b) (c)

Figure Ex-32

33. Use Formula (3) to find the standard matrix for a rotation
of 180◦ about the axis determined by the vector v = (2, 2, 1).
[Note: Formula (3) requires that the vector defining the axis
of rotation have length 1.]

34. Use Formula (3) to find the standard matrix for a rotation
of π/2 radians about the axis determined by v = (1, 1, 1).
[Note: Formula (3) requires that the vector defining the axis
of rotation have length 1.]

35. Use Formula (3) to derive the standard matrices for the rota-
tions about the x-axis, the y-axis, and the z-axis through an
angle of 90◦ in R3.

36. Show that the standard matrices listed in Tables 1 and 3 are
special cases of Formulas (4) and (6).

37. In a sentence, describe the geometric effect of multiplying a
vector x by the matrix

A =
[

cos2 θ − sin2 θ −2 sin θ cos θ

2 sin θ cos θ cos2 θ − sin2 θ

]

38. If multiplication by A rotates a vector x in the xy-plane
through an angle θ , what is the effect of multiplying x by AT ?
Explain your reasoning.

39. Let x0 be a nonzero column vector in R2, and suppose that
T : R2 →R2 is the transformation defined by the formula
T (x) = x0 + Rθ x, where Rθ is the standard matrix of the ro-
tation of R2 about the origin through the angle θ . Give a
geometric description of this transformation. Is it a matrix
transformation? Explain.

40. In R3 the orthogonal projections onto the x-axis, y-axis, and
z-axis are

T1(x, y, z) = (x, 0, 0), T2(x, y, z) = (0, y, 0),

T3(x, y, z) = (0, 0, z)

respectively.

(a) Show that the orthogonal projections onto the coordinate
axes are matrix operators, and then find their standard
matrices.
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(b) Show that if T : R3 →R3 is an orthogonal projection onto
one of the coordinate axes, then for every vector x in R3,
the vectors T(x) and x − T(x) are orthogonal.

(c) Make a sketch showing x and x − T(x) in the case where
T is the orthogonal projection onto the x-axis.

4.10 Properties of MatrixTransformations
In this section we will discuss properties of matrix transformations. We will show, for
example, that if several matrix transformations are performed in succession, then the same
result can be obtained by a single matrix transformation that is chosen appropriately. We
will also explore the relationship between the invertibility of a matrix and properties of the
corresponding transformation.

Compositions of Matrix
Transformations

Suppose that TA is a matrix transformation from Rn to Rk and TB is a matrix transforma-
tion from Rk to Rm. If x is a vector in Rn, then TA maps this vector into a vector TA(x)

in Rk , and TB , in turn, maps that vector into the vector TB(TA(x)) in Rm. This process
creates a transformation from Rn to Rm that we call the composition of TB with TA and
denote by the symbol

TB ◦ TA

which is read “TB circle TA.” As illustrated in Figure 4.10.1, the transformation TA in
the formula is performed first; that is,

(TB ◦ TA)(x) = TB(TA(x)) (1)

This composition is itself a matrix transformation since

(TB ◦ TA)(x) = TB(TA(x)) = B(TA(x)) = B(Ax) = (BA)x

which shows that it is multiplication by BA. This is expressed by the formula

TB ◦ TA = TBA (2)

Figure 4.10.1

Rn Rk Rmx
TB (TA(x))

TA(x)

TA TB

TB ° TA

Compositions can be defined for any finite succession of matrix transformations
whose domains and ranges have the appropriate dimensions. For example, to extend
Formula (2) to three factors, consider the matrix transformations

TA: Rn → Rk, TB : Rk → Rl, TC : Rl → Rm

We define the composition (TC ◦ TB ◦ TA): Rn →Rm by

(TC ◦ TB ◦ TA)(x) = TC(TB(TA(x)))

As above, it can be shown that this is a matrix transformation whose standard matrix is
CBA and that

TC ◦ TB ◦ TA = TCBA (3)

Sometimes we will want to refer to the standard matrix for a matrix transformation
T : Rn →Rm without giving a name to the matrix itself. In such cases we will denote the
standard matrix for T by the symbol [T ]. Thus, the equation

T (x) = [T ]x
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states that T (x) is the product of the standard matrix [T ] and the column vector x. For
example, if T1: Rn →Rk and if T2: Rk →Rm, then Formula (2) can be restated as

[T2 ◦ T1] = [T2][T1] (4)

Similarly, Formula (3) can be restated as

[T3 ◦ T2 ◦ T1] = [T3][T2][T1] (5)

EXAMPLE 1 Composition Is Not Commutative

Let T1: R2 →R2 be the reflection about the line y = x, and let T2: R2 →R2 be the or-
WARNING Just as it is not gen-
erally true for matrices that
AB = BA, so it is not gener-
ally true that

TB ◦ TA = TA ◦ TB

That is, ordermatterswhenma-
trix transformations are com-
posed. In those special cases
where the order does not mat-
ter we say that the linear trans-
formations commute.

thogonal projection onto the y-axis. Figure 4.10.2 illustrates graphically that T1 ◦ T2

and T2 ◦ T1 have different effects on a vector x. This same conclusion can be reached by
showing that the standard matrices for T1 and T2 do not commute:

[T1 ◦ T2] = [T1][T2] =
[

0 1

1 0

] [
0 0

0 1

]
=
[

0 1

0 0

]

[T2 ◦ T1] = [T2][T1] =
[

0 0

0 1

] [
0 1

1 0

]
=
[

0 0

1 0

]
so [T2 ◦ T1] �= [T1 ◦ T2].

Figure 4.10.2

y

x

T1(x)

x

y = x
T2(T1(x))

T2 ° T1

y

x

T2(x)

T1(T2(x))

x

y = x

T1 ° T2

EXAMPLE 2 Composition of Rotations Is Commutative

Let T1: R2 →R2 and T2: R2 →R2 be the matrix operators that rotate vectors about the
origin through the angles θ1 and θ2, respectively. Thus the operation

(T2 ◦ T1)(x) = T2(T1(x))

first rotates x through the angle θ1, then rotates T1(x) through the angle θ2. It follows
that the net effect of T2 ◦ T1 is to rotate each vector in R2 through the angle θ1 + θ2

(Figure 4.10.3). The standard matrices for these matrix operators, which are

y

x

x

θ1

θ1 + θ2θ2

T1(x)
T2(T1(x))

Figure 4.10.3

[T1] =
[

cos θ1 − sin θ1

sin θ1 cos θ1

]
, [T2] =

[
cos θ2 − sin θ2

sin θ2 cos θ2

]
,

[T2 ◦ T1] =
[

cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

]
should satisfy (4). With the help of some basic trigonometric identities, we can confirm
that this is so as follows:
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Using the notation Rθ for a
rotation of R2 about the origin
through an angle θ , the com-
putation in Example 2 shows
that

Rθ1Rθ2 = Rθ1+θ2

This makes sense since rotat-
ing a vector through an angle
θ1 and then rotating the result-
ing vector through an angle θ2

is the same as rotating the orig-
inal vector through the angle
θ1 + θ2.

[T2][T1] =
[

cos θ2 − sin θ2

sin θ2 cos θ2

][
cos θ1 − sin θ1

sin θ1 cos θ1

]

=
[

cos θ2 cos θ1 − sin θ2 sin θ1 −(cos θ2 sin θ1 + sin θ2 cos θ1)

sin θ2 cos θ1 + cos θ2 sin θ1 − sin θ2 sin θ1 + cos θ2 cos θ1

]

=
[

cos(θ1 + θ2) − sin(θ1 + θ2)

sin(θ1 + θ2) cos(θ1 + θ2)

]

= [T2 ◦ T1]

EXAMPLE 3 Composition of Two Reflections

Let T1: R2 →R2 be the reflection about the y-axis, and let T2: R2 →R2 be the reflec-
tion about the x-axis. In this case T1 ◦ T2 and T2 ◦ T1 are the same; both map every
vector x = (x, y) into its negative −x = (−x,−y) (Figure 4.10.4):

(T1 ◦ T2)(x, y) = T1(x,−y) = (−x,−y)

(T2 ◦ T1)(x, y) = T2(−x, y) = (−x,−y)

The equality of T1 ◦ T2 and T2 ◦ T1 can also be deduced by showing that the standard
matrices for T1 and T2 commute:

[T1 ◦ T2] = [T1][T2] =
[−1 0

0 1

] [
1 0

0 −1

]
=
[−1 0

0 −1

]

[T2 ◦ T1] = [T2][T1] =
[

1 0

0 −1

] [−1 0

0 1

]
=
[−1 0

0 −1

]
The operator T (x) = −x on R2 or R3 is called the reflection about the origin. As the
foregoing computations show, the standard matrix for this operator on R2 is

[T ] =
[−1 0

0 −1

]

Figure 4.10.4

y

x

y

x

T1(x)x

T2(T1(x))

T2(x)
T1(T2(x))

(x, y) (–x, y)

(x, –y)(–x, –y) (–x, –y)

x

(x, y)

T2 ° T1T1 ° T2

EXAMPLE 4 Composition of ThreeTransformations

Find the standard matrix for the operator T : R3 →R3 that first rotates a vector coun-
terclockwise about the z-axis through an angle θ , then reflects the resulting vector about
the yz-plane, and then projects that vector orthogonally onto the xy-plane.

Solution The operator T can be expressed as the composition

T = T3 ◦ T2 ◦ T1

where T1 is the rotation about the z-axis, T2 is the reflection about the yz-plane, and T3

is the orthogonal projection onto the xy-plane. From Tables 6, 2, and 4 of Section 4.9,
the standard matrices for these operators are
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[T1] =
⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦, [T2] =

⎡
⎢⎣−1 0 0

0 1 0

0 0 1

⎤
⎥⎦, [T3] =

⎡
⎢⎣1 0 0

0 1 0

0 0 0

⎤
⎥⎦

Thus, it follows from (5) that the standard matrix for T is

[T ] =
⎡
⎢⎣1 0 0

0 1 0

0 0 0

⎤
⎥⎦
⎡
⎢⎣−1 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣− cos θ sin θ 0

sin θ cos θ 0

0 0 0

⎤
⎥⎦

One-to-One Matrix
Transformations

Our next objective is to establish a link between the invertibility of a matrix A and
properties of the corresponding matrix transformation TA.

DEFINITION 1 A matrix transformation TA: Rn →Rm is said to be one-to-one if TA

maps distinct vectors (points) in Rn into distinct vectors (points) in Rm.

(See Figure 4.10.5.) This idea can be expressed in various ways. For example, you should
be able to see that the following are just restatements of Definition 1:

1. TA is one-to-one if for each vector b in the range of A there is exactly one vector x in
Rn such that TAx = b.

2. TA is one-to-one if the equality TA(u) = TA(v) implies that u = v.

Figure 4.10.5

Rn Rm

Not one-to-one

Rn Rm

One-to-one

Rotation operators on R2 are one-to-one since distinct vectors that are rotated
through the same angle have distinct images (Figure 4.10.6). In contrast, the orthogonal
projection of R2 onto the x-axis is not one-to-one because it maps distinct points on the
same vertical line into the same point (Figure 4.10.7).

y

x

v

u

T(u)
T(v)

θ

θ

Figure 4.10.6 Distinct
vectors u and v are rotated
into distinct vectors T (u)
and T (v).

x

P

Q

M

y

Figure 4.10.7 The
distinct points P and
Q are mapped into the
same point M .
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Kernel and Range In the discussion leading up to Theorem 4.2.5 we introduced the notion of the “kernel”
of a matrix transformation. The following definition formalizes this idea and defines the
companion notion of “range.”

DEFINITION 2 If TA: Rn →Rm is a matrix transformation, then the set of all vectors
in Rn that TA maps into 0 is called the kernel of TA and is denoted by ker(TA). The set
of all vectors in Rm that are images under this transformation of at least one vector
in Rn is called the range of TA and is denoted by R(TA).

In brief:

ker(TA) = null space of A (6)

R(TA) = column space of A (7)

The key to solving a mathematical problem is often adopting the right point of view;
and this is why, in linear algebra, we develop different ways of thinking about the same
vector space. For example, if A is an m × n matrix, here are three ways of viewing the
same subspace of Rn:

• Matrix view: the null space of A

• System view: the solution space of Ax = 0

• Transformation view: the kernel of TA

and here are three ways of viewing the same subspace of Rm:

• Matrix view: the column space of A

• System view: all b in Rm for which Ax = b is consistent

• Transformation view: the range of TA

In the special case of a linear operatorTA: Rn →Rn, the following theorem establishes
fundamental relationships between the invertibility of A and properties of TA.

THEOREM 4.10.1 If A is an n × n matrix and TA: Rn →Rn is the corresponding
matrix operator, then the following statements are equivalent.

(a) A is invertible.

(b) The kernel of TA is {0}.
(c) The range of TA is Rn.

(d ) TA is one-to-one.

Proof We can prove this theorem by establishing the chain of implications (a) ⇒ (b) ⇒
(c) ⇒ (d) ⇒ (a). We will prove the first two implications and leave the rest as exercises.

(a) ⇒ (b) Assume that A is invertible. It follows from parts (a) and (b) of Theorem 4.8.8
that the system Ax = 0 has only the trivial solution and hence that the null space of A

is {0}. Formula (6) now implies that the kernel of TA is {0}.

(b) ⇒ (c) Assume that the kernel of TA is {0}. It follows from Formula (6) that the null
space of A is {0} and hence that A has nullity 0. This in turn implies that the rank of A

is n and hence that the column space of A is all of Rn. Formula (7) now implies that the
range of TA is Rn.
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EXAMPLE 5 The Rotation Operator on R2 Is One-to-One

As was illustrated in Figure 4.10.6, the operator T : R2 →R2 that rotates vectors through
an angle θ is one-to-one. In accordance with parts (a) and (d) of Theorem 4.10.1, show
that the standard matrix for T is invertible.

Solution We will show that the standard matrix for T is invertible by showing that its
determinant is nonzero. From Table 5 of Section 4.9 the standard matrix for T is

[T ] =
[

cos θ − sin θ

sin θ cos θ

]

This matrix is invertible because

det[T ] =
∣∣∣∣cos θ − sin θ

sin θ cos θ

∣∣∣∣ = cos2 θ + sin2 θ = 1 �= 0

EXAMPLE 6 Projection Operators Are Not One-to-One

As illustrated in Figure 4.10.7, the operator T : R2 →R2 that projects onto the x-axis in
the xy-plane is not one-to-one. In accordance with parts (a) and (d) of Theorem 4.10.1,
show that the standard matrix for T is not invertible.

Solution We will show that the standard matrix for T is not invertible by showing that
its determinant is zero. From Table 3 of Section 4.9 the standard matrix for T is

[T ] =
[

1 0

0 0

]

Since det[T ] = 0, the operator T is not one-to-one.

Inverse of a One-to-One
Matrix Operator

If TA: Rn →Rn is a one-to-one matrix operator, then it follows from Theorem 4.10.1 that
A is invertible. The matrix operator

TA−1 : Rn →Rn

that corresponds to A−1 is called the inverse operator or (more simply) the inverse of TA.
This terminology is appropriate because TA and TA−1 cancel the effect of each other in
the sense that if x is any vector in Rn, then

TA(TA−1(x)) = AA−1x = Ix = x

TA−1(TA(x)) = A−1Ax = Ix = x

or, equivalently,

TA ◦ TA−1 = TAA−1 = TI

TA−1 ◦ TA = TA−1A = TI

From a more geometric viewpoint, if w is the image of x under TA, then TA−1 maps w
backinto x, since

TA−1(w) = TA−1(TA(x)) = x

This is illustrated in Figure 4.10.8 for R2.

y

x

T A
 maps x to w 

TA–1 maps w to x 
x

w

Figure 4.10.8
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Before considering examples, it will be helpful to touch on some notational matters.
If TA: Rn →Rn is a one-to-one matrix operator, and if TA−1 : Rn →Rn is its inverse, then
the standard matrices for these operators are related by the equation

TA−1 = T −1
A (8)

In cases where it is preferable not to assign a name to the matrix, we can express this
equation as

[T −1] = [T ]−1 (9)

EXAMPLE 7 Standard Matrix forT−1

Let T : R2 →R2 be the operator that rotates each vector in R2 through the angle θ , so
from Table 5 of Section 4.9,

[T ] =
[

cos θ − sin θ

sin θ cos θ

]
(10)

It is evident geometrically that to undo the effect of T , one must rotate each vector in R2

through the angle −θ . But this is exactly what the operator T −1 does, since the standard
matrix for T −1 is

[T −1] = [T ]−1 =
[

cos θ sin θ

− sin θ cos θ

]
=
[

cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

]
(verify), which is the standard matrix for a rotation through the angle −θ .

EXAMPLE 8 FindingT−1

Show that the operator T : R2 →R2 defined by the equations

w1 = 2x1 + x2

w2 = 3x1 + 4x2

is one-to-one, and find T −1(w1, w2).

Solution The matrix form of these equations is[
w1

w2

]
=
[

2 1
3 4

] [
x1

x2

]
so the standard matrix for T is

[T ] =
[

2 1
3 4

]
This matrix is invertible (so T is one-to-one) and the standard matrix for T −1 is

[T −1] = [T ]−1 =
⎡
⎣ 4

5 − 1
5

− 3
5

2
5

⎤
⎦

Thus

[T −1]
[
w1

w2

]
=
⎡
⎣ 4

5 − 1
5

− 3
5

2
5

⎤
⎦[w1

w2

]
=
⎡
⎣ 4

5w1 − 1
5w2

− 3
5w1 + 2

5w2

⎤
⎦

from which we conclude that

T −1(w1, w2) = (
4
5w1 − 1

5w2,− 3
5w1 + 2

5w2
)
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More on the Equivalence
Theorem

As our final result in this section, we will add parts (b), (c), and (d) of Theorem 4.10.1
to Theorem 4.8.8.

THEOREM 4.10.2 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) �= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.
(r) The kernel of TA is {0}.
(s) The range of TA is Rn.

(t) TA is one-to-one.

Exercise Set 4.10
In Exercises 1–4, determine whether the operators T1 and T2

commute; that is, whether T1 ◦ T2 = T2 ◦ T1.

1. (a) T1: R2 →R2 is the reflection about the line y = x, and
T2: R2 →R2 is the orthogonal projection onto the x-axis.

(b) T1: R2 →R2 is the reflection about the x-axis, and
T2: R2 →R2 is the reflection about the line y = x.

2. (a) T1: R2 →R2 is the orthogonal projection onto the x-axis,
and T2: R2 →R2 is the orthogonal projection onto the
y-axis.

(b) T1: R2 →R2 is the rotation about the origin through an
angle of π/4, and T2: R2 →R2 is the reflection about the
y-axis.

3. T1: R3 →R3 is a dilation with factor k, and T2: R3 →R3 is a
contraction with factor 1/k.

4. T1: R3 →R3 is the rotation about the x-axis through an angle
θ1, and T2: R3 →R3 is the rotation about the z-axis through
an angle θ2.

In Exercises 5–6, let TA and TB bet the operators whose stan-
dard matrices are given. Find the standard matrices for TB ◦ TA

and TA ◦ TB .

5. A =
[

1 −2

4 1

]
, B =

[
2 −3

5 0

]

6. A =
⎡
⎢⎣6 3 −1

2 0 1

4 −3 6

⎤
⎥⎦ , B =

⎡
⎢⎣ 4 0 4

−1 5 2

2 −3 8

⎤
⎥⎦

7. Find the standard matrix for the stated composition in R2.

(a) A rotation of 90◦, followed by a reflection about the line
y = x.

(b) An orthogonal projection onto the y-axis, followed by a
contraction with factor k = 1

2 .

(c) A reflection about the x-axis, followed by a dilation with
factor k = 3, followed by a rotation about the origin
of 60◦.
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8. Find the standard matrix for the stated composition in R2.

(a) A rotation about the origin of 60◦, followed by an orthog-
onal projection onto the x-axis, followed by a reflection
about the line y = x.

(b) A dilation with factor k = 2, followed by a rotation about
the origin of 45◦, followed by a reflection about the y-axis.

(c) A rotation about the origin of 15◦, followed by a rotation
about the origin of 105◦, followed by a rotation about the
origin of 60◦.

9. Find the standard matrix for the stated composition in R3.

(a) A reflection about the yz-plane, followed by an orthogonal
projection onto the xz-plane.

(b) A rotation of 45◦ about the y-axis, followed by a dilation
with factor k = √

2.

(c) An orthogonal projection onto the xy-plane, followed by
a reflection about the yz-plane.

10. Find the standard matrix for the stated composition in R3.

(a) A rotation of 30◦ about the x-axis, followed by a rotation
of 30◦ about the z-axis, followed by a contraction with
factor k = 1

4 .

(b) A reflection about the xy-plane, followed by a reflection
about the xz-plane, followed by an orthogonal projection
onto the yz-plane.

(c) A rotation of 270◦ about the x-axis, followed by a rota-
tion of 90◦ about the y-axis, followed by a rotation of 180◦

about the z-axis.

11. Let T1(x1, x2) = (x1 + x2, x1 − x2) and
T2(x1, x2) = (3x1, 2x1 + 4x2).

(a) Find the standard matrices for T1 and T2.

(b) Find the standard matrices for T2 ◦ T1 and T1 ◦ T2.

(c) Use the matrices obtained in part (b) to find formulas for
T1(T2(x1, x2)) and T2(T1(x1, x2)).

12. Let T1(x1, x2, x3) = (4x1,−2x1 + x2,−x1 − 3x2) and
T2(x1, x2, x3) = (x1 + 2x2,−x3, 4x1 − x3).

(a) Find the standard matrices for T1 and T2.

(b) Find the standard matrices for T2 ◦ T1 and T1 ◦ T2.

(c) Use the matrices obtained in part (b) to find formulas for
T1(T2(x1, x2, x3)) and T2(T1(x1, x2, x3)).

In Exercises 13–14, determine by inspection whether the stated
matrix operator is one-to-one.

13. (a) The orthogonal projection onto the x-axis in R2.

(b) The reflection about the y-axis in R2.

(c) The reflection about the line y = x in R2.

(d) A contraction with factor k > 0 in R2.

14. (a) A rotation about the z-axis in R3.

(b) A reflection about the xy-plane in R3.

(c) A dilation with factor k > 0 in R3.

(d) An orthogonal projection onto the xz-plane in R3.

In Exercises 15–16, describe in words the inverse of the given
one-to-one operator.

15. (a) The reflection about the x-axis on R2.

(b) The rotation about the origin through an angle of π/4
on R2.

(c) The dilation with factor of 3 on R2.

16. (a) The reflection about the yz-plane in R3.

(b) The contraction with factor 1
5 in R3.

(c) The rotation through an angle of −18◦ about the z-axis
in R3.

In Exercises 17–18, express the equations in matrix form, and
then use parts (g) and (s) of Theorem 4.10.2 to determine whether
the operator defined by the equations is one-to-one.

17. (a) w1 = 8x1 + 4x2

w2 = 2x1 + x2

(b) w1 = −x1 + 3x2 + 2x3

w2 = 2x1 + 4x3

w3 = x1 + 3x2 + 6x3

18. (a) w1 = 2x1 − 3x2

w2 = 5x1 + x2

(b) w1 = x1 + 2x2 + 3x3

w2 = 2x1 + 5x2 + 3x3

w3 = x1 + 8x3

19. Determine whether the matrix operator T : R2 →R2 defined
by the equations is one-to-one; if so, find the standard matrix
for the inverse operator, and find T −1(w1, w2).

(a) w1 = x1 + 2x2

w2 = −x1 + x2

(b) w1 = 4x1 − 6x2

w2 = −2x1 + 3x2

20. Determine whether the matrix operator T : R3 →R3 defined
by the equations is one-to-one; if so, find the standard matrix
for the inverse operator, and find T −1(w1, w2, w3).

(a) w1 = x1 − 2x2 + 2x3

w2 = 2x1 + x2 + x3

w3 = x1 + x2

(b) w1 = x1 − 3x2 + 4x3

w2 = −x1 + x2 + x3

w3 = − 2x2 + 5x3

In Exercises 21–22, determine whether multiplication by A is
a one-to-one matrix transformation.

21. (a) A =
⎡
⎢⎣1 −1

2 0

3 −4

⎤
⎥⎦ (b) A =

[
1 2 3

−1 0 −4

]

22. (a) A =

⎡
⎢⎢⎢⎣

1 2 1

0 1 1

1 1 0

1 0 −1

⎤
⎥⎥⎥⎦ (b) A =

[
4 3

1 1

]
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In Exercises 23–24, let T be multiplication by the matrix A.
Find

(a) a basis for the range of T .

(b) a basis for the kernel of T .

(c) the rank and nullity of T .

(d) the rank and nullity of A.

23. A =
⎡
⎢⎣1 −1 3

5 6 −4

7 4 2

⎤
⎥⎦ 24. A =

⎡
⎢⎣ 2 0 −1

4 0 −2

20 0 0

⎤
⎥⎦

In Exercises 25–26, let TA: R4 →R3 be multiplication by A.
Find a basis for the kernel of TA, and then find a basis for the
range of TA that consists of column vectors of A.

25. A =
⎡
⎢⎣ 1 2 −1 −2

−3 1 3 4

−3 8 4 2

⎤
⎥⎦

26. A =
⎡
⎢⎣ 1 1 0 1

−2 4 2 2

−1 8 3 5

⎤
⎥⎦

27. Let A be an n × n matrix such that det(A) = 0, and let
T : Rn →Rn be multiplication by A.

(a) What can you say about the range of the matrix operator
T ? Give an example that illustrates your conclusion.

(b) What can you say about the number of vectors that T maps
into 0?

28. Answer the questions in Exercise 27 in the case where
det(A) �= 0.

29. (a) Is a composition of one-to-one matrix transformations
one-to-one? Justify your conclusion.

(b) Can the composition of a one-to-one matrix transforma-
tion and a matrix transformation that is not one-to-one
be one-to-one? Account for both possible orders of com-
position and justify your conclusion.

30. Let TA: R2 →R2 be multiplication by

A =
[

cos2 θ − sin2 θ −2 sin θ cos θ

2 sin θ cos θ cos2 θ − sin2 θ

]

(a) What is the geometric effect of applying this transforma-
tion to a vector x in R2?

(b) Express the operator TA as a composition of two linear
operators on R2.

In Exercises 31–32, use matrix inversion to confirm the stated
result in R2.

31. (a) The inverse transformation for a reflection about y = x is
a reflection about y = x.

(b) The inverse transformation for a compression along an
axis is an expansion along that axis.

32. (a) The inverse transformation for a reflections about a coor-
dinate axis is a reflection about that axis.

(b) The inverse transformation for a shear along a coordinate
axis is a shear along that axis.

Working with Proofs

33. Prove that the matrix transformations TA and TB commute if
and only if the matrices A and B commute.

34. Prove the implication (c) ⇒ (d) in Theorem 4.10.1.

35. Prove the implication (d) ⇒ (a) in Theorem 4.10.1.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) If TA and TB are matrix operators on Rn, then
TA(TB(x)) = TB(TA(x)) for every vector x in Rn.

(b) If T1 and T2 are matrix operators on Rn, then
[T2 ◦ T1] = [T2][T1].

(c) A composition of two rotation operators about the origin of
R2 is another rotation about the origin.

(d) A composition of two reflection operators in R2 is another
reflection operator.

(e) The kernel of a matrix transformation TA: Rn →Rm is the
same as the null space of A.

(f ) If there is a nonzero vector in the kernel of the matrix operator
TA: Rn →Rn, then this operator is not one-to-one.

(g) If A is an n × n matrix and if the linear system Ax = 0 has
a nontrivial solution, then the range of the matrix operator is
not Rn.

Working withTechnology

T1. (a) Find the standard matrix for the linear operator on R3

that performs a counterclockwise rotation of 47◦ about
the x-axis, followed by a counterclockwise rotation of 68◦

about the y-axis, followed by a counterclockwise rotation
of 33◦ about the z-axis.

(b) Find the image of the point (1, 1, 1) under the operator
in part (a).

T2. Find the standard matrix for the linear operator on R2 that
first reflects each point in the plane about the line through the ori-
gin that makes an angle of 27◦ with the positive x-axis and then
projects the resulting point orthogonally onto the line through the
origin that makes an angle of 51◦ with the positive x-axis.
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4.11 Geometry of Matrix Operators on R2

In applications such as computer graphics it is important to understand not only how linear
operators on R2 and R3 affect individual vectors but also how they affect two-dimensional
or three-dimensional regions. That is the focus of this section.

Transformations of Regions Figure 4.11.1 shows a famous picture of Albert Einstein that has been transformed in
various ways using matrix operators on R2. The original image was scanned and then
digitized to decompose it into a rectangular array of pixels. Those pixels were then
transformed as follows:

• The program MATLAB was used to assign coordinates and a gray level to each pixel.

• The coordinates of the pixels were transformed by matrix multiplication.

• The pixels were then assigned their original gray levels to produce the transformed
picture.

In computer games a perception of motion is created by using matrices to rapidly
and repeatedly transform the arrays of pixels that form the visual images.

Digitized scan Rotated Sheared horizontally Compressed horizontally

Figure 4.11.1 [Image: ARTHUR SASSE/AFP/Getty Images]

Images of Lines Under
Matrix Operators

The effect of a matrix operator on R2 can often be deduced by studying how it transforms
the points that form the unit square. The following theorem, which we state without
proof, shows that if the operator is invertible, then it maps each line segment in the unit
square into the line segment connecting the images of its endpoints. In particular, the
edges of the unit square get mapped into edges of the image (see Figure 4.11.2 in which
the edges of a unit square and the corresponding edges of its image have been numbered).

e1

e2 3

1

4 2

32

4

3

1

1

2 4

2

4

1 3

(1, 1)

x

y

Unit square

x

y

Unit square reflected

about the line y = x

x

y

Unit square reflected

about the y-axis

x

y

Unit square rotated

Figure 4.11.2
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THEOREM 4.11.1 If T : R2 →R2 is multiplication by an invertible matrix, then:

(a) The image of a straight line is a straight line.

(b) The image of a line through the origin is a line through the origin.

(c) The images of parallel lines are parallel lines.

(d ) The image of the line segment joining points P and Q is the line segment joining
the images of P and Q.

(e) The images of three points lie on a line if and only if the points themselves lie on a
line.

EXAMPLE 1 Image of a Line

According to Theorem 4.11.1, the invertible matrix

A =
[

3 1

2 1

]
maps the line y = 2x + 1 into another line. Find its equation.

Solution Let (x, y) be a point on the line y = 2x + 1, and let (x ′, y ′) be its image under
multiplication by A. Then[

x ′

y ′

]
=
[

3 1

2 1

] [
x

y

]
and

[
x

y

]
=
[

3 1

2 1

]−1 [
x ′

y ′

]
=
[

1 −1

−2 3

] [
x ′

y ′

]
so

x = x ′ − y ′

y = −2x ′ + 3y ′

Substituting these expressions in y = 2x + 1 yields

−2x ′ + 3y ′ = 2(x ′ − y ′) + 1

or, equivalently,
y ′ = 4

5x
′ + 1

5

EXAMPLE 2 Transformation of the Unit Square

Sketch the image of the unit square under multiplication by the invertible matrix

A =
[

0 1

2 1

]

Label the vertices of the image with their coordinates, and number the edges of the unit

(1, 1)3

1

2

4

3

1

4 2

(1, 0)(0, 0)

(0, 1)

(0, 2)

(0, 0)

(1, 1)

(1, 3)

y

x

y

x

Figure 4.11.3

square and their corresponding images (as in Figure 4.11.2).

Solution Since [
0 1

2 1

][
0

0

]
=
[

0

0

]
,

[
0 1

2 1

][
1

0

]
=
[

0

2

]
,

[
0 1

2 1

][
0

1

]
=
[

1

1

]
,

[
0 1

2 1

][
1

1

]
=
[

1

3

]
the image of the unit square is a parallelogram with vertices (0, 0), (0, 2), (1, 1), and
(1, 3) (Figure 4.11.3).

The next example illustrates a transformation of the unit square under a composition
of matrix operators.
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EXAMPLE 3 Transformation of the Unit Square

(a) Find the standard matrix for the operator on R2 that first shears by a factor of 2 in
the x-direction and then reflects the result about the line y = x. Sketch the image
of the unit square under this operator.

(b) Find the standard matrix for the operator on R2 that first reflects about y = x and
then shears by a factor of 2 in the x-direction. Sketch the image of the unit square
under this operator.

(c) Confirm that the shear and the reflection in parts (a) and (b) do not commute.

Solution (a) The standard matrix for the shear is

A1 =
[

1 2

0 1

]
and for the reflection is

A2 =
[

0 1

1 0

]
Thus, the standard matrix for the shear followed by the reflection is

A2A1 =
[

0 1

1 0

] [
1 2

0 1

]
=
[

0 1

1 2

]
Solution (b) The standard matrix for the reflection followed by the shear is

A1A2 =
[

1 2

0 1

] [
0 1

1 0

]
=
[

2 1

1 0

]
Solution (c) The computations in Solutions (a) and (b) show that A1A2 �= A2A1, so
the standard matrices, and hence the operators, do not commute. The same conclusion
follows from Figures 4.11.4 and 4.11.5 since the two operators produce different images
of the unit square.

Figure 4.11.4

y y

x

y

(1, 1)
(3, 1)

(1, 1)

y = x

x x

Reflection 

about y = x
Shear in the 

x-direction by a

factor k = 2

Figure 4.11.5

y

x

y

x

y

x

(1, 1)
(3, 1)

(1, 3)y = x y = x

Reflection 

about y = x
Shear in the 

x-direction by a

factor k = 2
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Geometry of Invertible
Matrix Operators

In Example 3 we illustrated the effect on the unit square in R2 of a composition of shears
and reflections. Our next objective is to show how to decompose any 2 × 2 invertible
matrix into a product of matrices in Table 1, thereby allowing us to analyze the geometric
effect of a matrix operator in R2 as a composition of simpler matrix operators. The next
theorem is our first step in this direction.

Table 1

Standard
Operator Matrix Effect on the Unit Square

Reflection about
the y-axis

[−1 0

0 1

] y

x x

y

 

(1, 1) (––1, 1)

Reflection about
the x-axis

[
1 0

0 −1

]
y

x

(1, 1)

y

x

(1, ––1)

Reflection about
the line y = x

[
1 0

0 1

] y

x

(1, 1)

y

x

(1, 1)

Rotation about the
origin through a
positive angle θ

[
cos θ − sin θ

sin θ cos θ

]
(cos θ – sin θ, sin θ + cos θ)

y

xθ

y

x

(1, 1)

Compression in the
x-direction with
factor k

(0 < k < 1)

[
k 0

0 1

] (k, 1)

y

x

y

x

(1, 1)

Compression in the
y-direction with
factor k

(0 < k < 1)

[
1 0

0 k

]
(1, k)

y

x

y

x

(1, 1)

Expansion in the
x-direction with
factor k

(k > 1)

[
k 0

0 1

] y

x

(k, 1)
y

x

(1, 1)

(Continued on the following page.)
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Standard
Operator Matrix Effect on the Unit Square

Expansion in the
y-direction with
factor k

(k > 1)

[
1 0

0 k

]
y

x

(1, k)

y

x

(1, 1)

Shear in the
positive x-direction
by a factor k

(k > 0)

[
1 k

0 1

] y

x

(1 + k, 1)(k, 1)
y

x

(1, 1)

Shear in the
negative x-direction
by a factor k

(k < 0)

[
1 k

0 1

] y

x

(k + 1, 1)(k, 1)
y

x

(1, 1)

Shear in the
positive y-direction
by a factor k

(k > 0)

[
1 0

k 1

]
y

x

(1, 1 + k)

(1, k)

y

x

(1, 1)

Shear in the
negative y-direction
by a factor k

(k < 0)

[
1 0

k 1

]
y

x
(1, 1 + k)

(1, k)

y

x

(1, 1)

THEOREM 4.11.2 If E is an elementary matrtix, then TE : R2 →R2 is one of the
following:

(a) A shear along a coordinate axis.

(b) A reflection about y = x.

(c) A compression along a coordinate axis.

(d ) An expansion along a coordinate axis.

(e) A reflection about a coordinate axis.

( f ) A compression or expansion along a coordinate axis followed by a reflection about
a coordinate axis.
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Proof Because a 2 × 2 elementary matrix results from performing a single elementary
row operation on the 2 × 2 identity matrix, such a matrix must have one of the following
forms (verify): [

1 0

k 1

]
,

[
1 k

0 1

]
,

[
0 1

1 0

]
,

[
k 0

0 1

]
,

[
1 0

0 k

]
The first two matrices represent shears along coordinate axes, and the third represents
a reflection about y = x. If k > 0, the last two matrices represent compressions or
expansions along coordinate axes, depending on whether 0 ≤ k < 1 or k > 1. If k < 0,
and if we express k in the form k = −k1, where k1 > 0, then the last two matrices can be
written as [

k 0

0 1

]
=
[−k1 0

0 1

]
=
[−1 0

0 1

] [
k1 0

0 1

]
(1)

[
1 0

0 k

]
=
[

1 0

0 −k1

]
=
[

1 0

0 −1

] [
1 0

0 k1

]
(2)

Since k1 > 0, the product in (1) represents a compression or expansion along the
x-axis followed by a reflection about the y-axis, and (2) represents a compression or
expansion along the y-axis followed by a reflection about the x-axis. In the case where
k = −1, transformations (1) and (2) are simply reflections about the y-axis and x-axis,
respectively.

We know from Theorem 4.10.2(d) that an invertible matrix can be expressed as a
product of elementary matrices, so Theorem 4.11.2 implies the following result.

THEOREM 4.11.3 If TA: R2 →R2 is multiplication by an invertible matrix A, then the
geometric effect of TA is the same as an appropriate succession of shears, compressions,
expansions, and reflections.

The next example will illustrate how Theorems 4.11.2 and 4.11.3 together with
Table 1 can be used to analyze the geometric effect of multiplication by a 2 × 2 invertible
matrix.

EXAMPLE 4 Decomposing a Matrix Operator

In Example 2 we illustrated the effect on the unit square of multiplication by

A =
[

0 1

2 1

]
(see Figure 4.11.3). Express this matrix as a product of elementary matrices, and then
describe the effect of multiplication by A in terms of shears, compressions, expansions,
and reflections.

Solution The matrix A can be reduced to the identity matrix as follows:[
0 1

2 1

]
−→

[
2 1
0 1

]
−→

[
1 1

2
0 1

]
−→

[
1 0
0 1

]

�

Interchange the
first and second
rows.

�

Multiply the
first row by 1

2 .

�

Add − 1
2 times

the second row
to the first.
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These three successive row operations can be performed by multiplying A on the left
successively by

E1 =
[

0 1

1 0

]
, E2 =

[
1
2 0

0 1

]
, E3 =

[
1 − 1

2

0 1

]

Inverting these matrices and using Formula (4) of Section 1.5 yields

A =
[

0 1

2 1

]
= E−1

1 E−1
2 E−1

3 =
[

0 1

1 0

][
2 0

0 1

][
1 1

2

0 1

]

Reading from right to left we can now see that the geometric effect of multiplying by A

is equivalent to successively

1. shearing by a factor of 1
2 in the x-direction;

2. expanding by a factor of 2 in the x-direction;

3. reflecting about the line y = x.

This is illustrated in Figure 4.11.6, whose end result agrees with that in Example 2.

y

x

y

x

y

x

(1, 1)

(1, 3)

(1, 1)

(0, 0)

(0, 2)

y = xy

x

(3, 1)

y = x

(   , 1)3
2

Figure 4.11.6

EXAMPLE 5 Transformations with Diagonal Matrices

Discuss the geometric effect on the unit square of multiplication by a diagonal matrix

A =
[
k1 0

0 k2

]
in which the entries k1 and k2 are positive real numbers ( �= 1).

Solution The matrix A is invertible and can be expressed as

A =
[
k1 0

0 k2

]
=
[

1 0

0 k2

] [
k1 0

0 1

]
which show that multiplication by A causes a compression or expansion of the unit
square by a factor of k1 in the x-direction followed by an expansion or compression of
the unit square by a factor of k2 in the y-direction.

EXAMPLE 6 Reflection About the Origin

As illustrated in Figure 4.11.7, multiplication by the matrix

(1, 1)

(–1, –1)

y

x

Figure 4.11.7
A =

[−1 0

0 −1

]
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has the geometric effect of reflecting the unit square about the origin. Note, however,
that the matrix equation

A =
[−1 0

0 −1

]
=
[−1 0

0 1

] [
1 0

0 −1

]
together with Table 1 shows that the same result can be obtained by first reflecting the
unit square about the x-axis and then reflecting that result about the y-axis. You should
be able to see this as well from Figure 4.11.7.

EXAMPLE 7 Reflection About the Line y = –x

We leave it for you to verify that multiplication by the matrix

(1, 1)

(–1, –1)

y

x

Figure 4.11.8

A =
[

0 −1

−1 0

]
reflects the unit square about the line y = −x (Figure 4.11.8).

Exercise Set 4.11
1. Use the method of Example 1 to find an equation for the image

of the line y = 4x under multiplication by the matrix

A =
[

5 2

2 1

]

2. Use the method of Example 1 to find an equation for the image
of the line y = −4x + 3 under multiplication by the matrix

A =
[

4 −3

3 −2

]
In Exercises 3–4, find an equation for the image of the line

y = 2x that results from the stated transformation.

3. A shear by a factor 3 in the x-direction.

4. A compression with factor 1
2 in the y-direction.

In Exercises 5–6, sketch the image of the unit square under
multiplication by the given invertible matrix. As in Example 2,
number the edges of the unit square and its image so it is clear
how those edges correspond.

5.
[

3 −1

1 −2

]
6.
[

2 1

−1 2

]

In each part of Exercises 7–8, find the standard matrix for a
single operator that performs the stated succession of opera-
tions.

7. (a) Compresses by a factor of 1
2 in the x-direction, then ex-

pands by a factor of 5 in the y-direction.

(b) Expands by a factor of 5 in the y-direction, then shears by
a factor of 2 in the y-direction.

(c) Reflects about y = x, then rotates through an angle of
180◦ about the origin.

8. (a) Reflects about the y-axis, then expands by a factor of 5 in
the x-direction, and then reflects about y = x.

(b) Rotates through 30◦ about the origin, then shears by a fac-
tor of −2 in the y-direction, and then expands by a factor
of 3 in the y-direction.

In each part of Exercises 9–10, determine whether the stated
operators commute.

9. (a) A reflection about the x-axis and a compression in the
x-direction with factor 1

3 .

(b) A reflection about the line y = x and an expansion in the
x-direction with factor 2.

10. (a) A shear in the y-direction by a factor 1
4 and a shear in the

y-direction by a factor 3
5 .

(b) A shear in the y-direction by a factor 1
4 and a shear in the

x-direction by a factor 3
5 .

In Exercises 11–14, express the matrix as a product of elemen-
tary matrices, and then describe the effect of multiplication by A

in terms of shears, compressions, expansions, and reflections.

11. A =
[

4 4

0 −2

]
12. A =

[
1 4

2 9

]

13. A =
[

0 −2

4 0

]
14. A =

[
1 −3

4 6

]

In each part of Exercises 15–16, describe, in words, the effect on
the unit square of multiplication by the given diagonal matrix.

15. (a) A =
[

3 0

0 1

]
(b) A =

[
1 0

0 −5

]

16. (a) A =
[−2 0

0 1

]
(b) A =

[−3 0

0 −1

]
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17. (a) Show that multiplication by

A =
[

3 1

6 2

]

maps each point in the plane onto the line y = 2x.

(b) It follows from part (a) that the noncollinear points (1, 0),
(0, 1), (−1, 0) are mapped onto a line. Does this violate
part (e) of Theorem 4.11.1?

18. Find the matrix for a shear in the x-direction that transforms
the triangle with vertices (0, 0), (2, 1), and (3, 0) into a right
triangle with the right angle at the origin.

19. In accordance with part (c) of Theorem 4.11.1, show that
multiplication by the invertible matrix

A =
[

3 2

1 1

]

maps the parallel lines y = 3x + 1 and y = 3x − 2 into par-
allel lines.

20. Draw a figure that shows the image of the triangle with vertices
(0, 0), (1, 0), and (0.5, 1) under a shear by a factor of 2 in the
x-direction.

21. (a) Draw a figure that shows the image of the triangle with
vertices (0, 0), (1, 0), and (0.5, 1) under multiplication by

A =
[

1 −1

1 1

]

(b) Find a succession of shears, compressions, expansions,
and reflections that produces the same image.

22. Find the endpoints of the line segment that results when the
line segment from P(1, 2) to Q(3, 4) is transformed by

(a) a compression with factor 1
2 in the y-direction.

(b) a rotation of 30◦ about the origin.

23. Draw a figure showing the italicized letter “T” that results
when the letter in the accompanying figure is sheared by a
factor 1

4 in the x-direction.

x

y

(0, .90)

1

1

(.45, 0) (.55, 0) Figure Ex-23

24. Can an invertible matrix operator on R2 map a square region
into a triangular region? Justify your answer.

25. Find the image of the triangle with vertices (0, 0), (1, 1), (2, 0)
under multiplication by

A =
[

2 −1
0 0

]
Does your answer violate part (e) of Theorem 4.11.1? Explain.

26. In R3 the shear in the xy-direction by a factor k is the matrix
transformation that moves each point (x, y, z) parallel to the
xy-plane to the new position (x + kz, y + kz, z). (See the
accompanying figure.)

(a) Find the standard matrix for the shear in the xy-direction
by a factor k.

(b) How would you define the shear in the xz-direction by a
factor k and the shear in the yz-direction by a factor k?
What are the standard matrices for these matrix transfor-
mations?

z

y

x

(x, y, z)

z

y

x

(x + kz, y + kz, z)

Figure Ex-26

Working with Proofs

27. Prove part (a) of Theorem 4.11.1. [Hint: A line in the plane
has an equation of the form Ax + By + C = 0, where A and
B are not both zero. Use the method of Example 1 to show
that the image of this line under multiplication by the invertible
matrix [

a b

c d

]
has the equation A′x + B ′y + C = 0, where

A′ = (dA − cB)/(ad − bc)

and
B ′ = (−bA + aB)/(ad − bc)

Then show that A′ and B ′ are not both zero to conclude that
the image is a line.]

28. Use the hint in Exercise 27 to prove parts (b) and (c) of Theo-
rem 4.11.1.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The image of the unit square under a one-to-one matrix oper-
ator is a square.

(b) A 2 × 2 invertible matrix operator has the geometric effect of
a succession of shears, compressions, expansions, and reflec-
tions.
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(c) The image of a line under an invertible matrix operator is a
line.

(d) Every reflection operator on R2 is its own inverse.

(e) The matrix

[
1 1

1 −1

]
represents reflection about a line.

(f ) The matrix

[
1 −2

2 1

]
represents a shear.

(g) The matrix

[
1 0

0 3

]
represents an expansion.

Chapter 4 Supplementary Exercises

1. Let V be the set of all ordered triples of real numbers, and
consider the following addition and scalar multiplication op-
erations on u = (u1, u2, u3) and v = (v1, v2, v3):

u + v = (u1 + v1, u2 + v2, u3 + v3), ku = (ku1, 0, 0)

(a) Compute u + v and ku for u = (3,−2, 4),
v = (1, 5,−2), and k = −1.

(b) In words, explain why V is closed under addition and
scalar multiplication.

(c) Since the addition operation on V is the standard addition
operation on R3, certain vector space axioms hold for V

because they are known to hold for R3. Which axioms in
Definition 1 of Section 4.1 are they?

(d) Show that Axioms 7, 8, and 9 hold.

(e) Show that Axiom 10 fails for the given operations.

2. In each part, the solution space of the system is a subspace of
R3 and so must be a line through the origin, a plane through
the origin, all of R3, or the origin only. For each system, de-
termine which is the case. If the subspace is a plane, find an
equation for it, and if it is a line, find parametric equations.

(a) 0x + 0y + 0z = 0 (b) 2x − 3y + z = 0
6x − 9y + 3z = 0

−4x + 6y − 2z = 0

(c) x − 2y + 7z = 0
−4x + 8y + 5z = 0

2x − 4y + 3z = 0

(d) x + 4y + 8z = 0
2x + 5y + 6z = 0
3x + y − 4z = 0

3. For what values of s is the solution space of

x1 + x2 + sx3 = 0

x1 + sx2 + x3 = 0

sx1 + x2 + x3 = 0

the origin only, a line through the origin, a plane through the
origin, or all of R3?

4. (a) Express (4a, a − b, a + 2b) as a linear combination of
(4, 1, 1) and (0,−1, 2).

(b) Express (3a + b + 3c,−a + 4b − c, 2a + b + 2c) as a
linear combination of (3,−1, 2) and (1, 4, 1).

(c) Express (2a − b + 4c, 3a − c, 4b + c) as a linear combi-
nation of three nonzero vectors.

5. Let W be the space spanned by f = sin x and g = cos x.

(a) Show that for any value of θ , f1 = sin(x + θ) and
g1 = cos(x + θ) are vectors in W .

(b) Show that f1 and g1 form a basis for W .

6. (a) Express v = (1, 1) as a linear combination of
v1 = (1,−1), v2 = (3, 0), and v3 = (2, 1) in two different
ways.

(b) Explain why this does not violate Theorem 4.4.1.

7. Let A be an n × n matrix, and let v1, v2, . . . , vn be linearly
independent vectors in Rn expressed as n × 1 matrices. What
must be true about A for Av1, Av2, . . . , Avn to be linearly in-
dependent?

8. Must a basis for Pn contain a polynomial of degree k for each
k = 0, 1, 2, . . . , n? Justify your answer.

9. For the purpose of this exercise, let us define a “checkerboard
matrix” to be a square matrix A = [aij ] such that

aij =
{

1 if i + j is even

0 if i + j is odd

Find the rank and nullity of the following checkerboard
matrices.

(a) The 3 × 3 checkerboard matrix.

(b) The 4 × 4 checkerboard matrix.

(c) The n × n checkerboard matrix.

10. For the purpose of this exercise, let us define an “X-matrix” to
be a square matrix with an odd number of rows and columns
that has 0’s everywhere except on the two diagonals where it
has 1’s. Find the rank and nullity of the following X-matrices.

(a)

⎡
⎢⎣1 0 1

0 1 0

1 0 1

⎤
⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(c) the X-matrix of size (2n + 1) × (2n + 1)
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11. In each part, show that the stated set of polynomials is a sub-
space of Pn and find a basis for it.

(a) All polynomials in Pn such that p(−x) = p(x).

(b) All polynomials in Pn such that p(0) = p(1).

12. (Calculus required ) Show that the set of all polynomials in Pn

that have a horizontal tangent at x = 0 is a subspace of Pn.
Find a basis for this subspace.

13. (a) Find a basis for the vector space of all 3 × 3 symmetric
matrices.

(b) Find a basis for the vector space of all 3 × 3 skew-
symmetric matrices.

14. Various advanced texts in linear algebra prove the following
determinant criterion for rank: The rank of a matrix A is r if
and only ifA has some r × r submatrix with a nonzero determi-
nant, and all square submatrices of larger size have determinant
zero. [Note: A submatrix of A is any matrix obtained by
deleting rows or columns of A. The matrix A itself is also
considered to be a submatrix of A.] In each part, use this
criterion to find the rank of the matrix.

(a)

[
1 2 0

2 4 −1

]
(b)

[
1 2 3

2 4 6

]

(c)

⎡
⎢⎣1 0 1

2 −1 3

3 −1 4

⎤
⎥⎦ (d)

⎡
⎢⎣ 1 −1 2 0

3 1 0 0

−1 2 4 0

⎤
⎥⎦

15. Use the result in Exercise 14 above to find the possible ranks
for matrices of the form

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 a16

0 0 0 0 0 a26

0 0 0 0 0 a36

0 0 0 0 0 a46

a51 a52 a53 a54 a55 a56

⎤
⎥⎥⎥⎥⎥⎥⎦

16. Prove: If S is a basis for a vector space V, then for any vectors
u and v in V and any scalar k, the following relationships hold.

(a) (u + v)S = (u)S + (v)S (b) (ku)S = k(u)S

17. Let Dk , Rθ , and Sk be a dilation of R2 with factor k, a coun-
terclockwise rotation about the origin of R2 through an angle
θ , and a shear of R2 by a factor k, respectively.

(a) Do Dk and Rθ commute?

(b) Do Rθ and Sk commute?

(c) Do Dk and Sk commute?

18. A vector space V is said to be the direct sum of its subspaces
U and W , written V = U⊕W , if every vector in V can be
expressed in exactly one way as v = u + w, where u is a vector
in U and w is a vector in W .

(a) Prove that V = U⊕W if and only if every vector in V is
the sum of some vector in U and some vector in W and
U ∩ W = {0}.

(b) Let U be the xy-plane and W the z-axis in R3. Is it true
that R3 = U⊕W ? Explain.

(c) Let U be the xy-plane and W the yz-plane in R3. Can ev-
ery vector in R3 be expressed as the sum of a vector in U

and a vector in W ? Is it true that R3 = U⊕W ? Explain.
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INTRODUCTION In this chapter we will focus on classes of scalars and vectors known as “eigenvalues”
and “eigenvectors,” terms derived from the German word eigen, meaning “own,”
“peculiar to,” “characteristic,” or “individual.” The underlying idea first appeared in
the study of rotational motion but was later used to classify various kinds of surfaces
and to describe solutions of certain differential equations. In the early 1900s it was
applied to matrices and matrix transformations, and today it has applications in such
diverse fields as computer graphics, mechanical vibrations, heat flow, population
dynamics, quantum mechanics, and economics, to name just a few.

5.1 Eigenvalues and Eigenvectors
In this section we will define the notions of “eigenvalue” and “eigenvector” and discuss
some of their basic properties.

Definition of Eigenvalue
and Eigenvector

We begin with the main definition in this section.

DEFINITION 1 If A is an n × n matrix, then a nonzero vector x in Rn is called an
eigenvector of A (or of the matrix operator TA) if Ax is a scalar multiple of x; that is,

Ax = λx

for some scalar λ. The scalar λ is called an eigenvalue of A (or of TA), and x is said
to be an eigenvector corresponding to λ.

The requirement that an eigen-
vector be nonzero is imposed
to avoid the unimportant case
A0 = λ0, which holds for ev-
ery A and λ.

In general, the image of a vector x under multiplication by a square matrix A dif-
fers from x in both magnitude and direction. However, in the special case where x is
an eigenvector of A, multiplication by A leaves the direction unchanged. For example,
in R2 or R3 multiplication by A maps each eigenvector x of A (if any) along the same
line through the origin as x. Depending on the sign and magnitude of the eigenvalue λ
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corresponding to x, the operation Ax = λx compresses or stretches x by a factor of λ,
with a reversal of direction in the case where λ is negative (Figure 5.1.1).

Figure 5.1.1
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λ

λ

xλ

(a)  0 ≤ λ ≤ 1

0 0

x

00

xλ

(b)  λ ≥ 1 (c)  –1 ≤ λ ≤ 0 (d )  λ ≤ –1

EXAMPLE 1 Eigenvector of a 2 × 2 Matrix

The vector x =
[

1

2

]
is an eigenvector of

A =
[

3 0

8 −1

]
corresponding to the eigenvalue λ = 3, since

Ax =
[

3 0

8 −1

] [
1

2

]
=
[

3

6

]
= 3x

Geometrically, multiplication by A has stretched the vector x by a factor of 3 (Figure

x

2

6

31

x

3x

y

Figure 5.1.2 5.1.2).

Computing Eigenvalues
and Eigenvectors

Our next objective is to obtain a general procedure for finding eigenvalues and eigenvec-
tors of an n × n matrix A. We will begin with the problem of finding the eigenvalues of A.
Note first that the equation Ax = λx can be rewritten as Ax = λIx, or equivalently, as

(λI − A)x = 0

For λ to be an eigenvalue of A this equation must have a nonzero solution for x. But
it follows from parts (b) and (g) of Theorem 4.10.2 that this is so if and only if the
coefficient matrix λI − A has a zero determinant. Thus, we have the following result.

Note that if (A)ij = aij , then
formula (1) can be written in
expanded form as∣∣∣∣∣∣∣∣∣

λ − a11 a12 · · · −a1n

−a21 λ − a22 · · · −a2n

...
...

...

−an1 −an2 · · · λ − ann

∣∣∣∣∣∣∣∣∣
= 0

THEOREM 5.1.1 If A is an n × n matrix, then λ is an eigenvalue of A if and only if it
satisfies the equation

det(λI − A) = 0 (1)

This is called the characteristic equation of A.

EXAMPLE 2 Finding Eigenvalues

In Example 1 we observed that λ = 3 is an eigenvalue of the matrix

A =
[

3 0
8 −1

]
but we did not explain how we found it. Use the characteristic equation to find all
eigenvalues of this matrix.
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Solution It follows from Formula (1) that the eigenvalues of A are the solutions of the
equation det(λI − A) = 0, which we can write as∣∣∣∣λ − 3 0

−8 λ + 1

∣∣∣∣ = 0

from which we obtain

(λ − 3)(λ + 1) = 0 (2)

This shows that the eigenvalues of A are λ = 3 and λ = −1. Thus, in addition to
the eigenvalue λ = 3 noted in Example 1, we have discovered a second eigenvalue
λ = −1.

When the determinant det(λI − A) in (1) is expanded, the characteristic equation
of A takes the form

λn + c1λ
n−1 + · · · + cn = 0 (3)

where the left side of this equation is a polynomial of degree n in which the coefficient
of λn is 1 (Exercise 37). The polynomial

p(λ) = λn + c1λ
n−1 + · · · + cn (4)

is called the characteristic polynomial of A. For example, it follows from (2) that the
characteristic polynomial of the 2 × 2 matrix in Example 2 is

p(λ) = (λ − 3)(λ + 1) = λ2 − 2λ − 3

which is a polynomial of degree 2.
Since a polynomial of degree n has at most n distinct roots, it follows from (3) that

the characteristic equation of an n × n matrix A has at most n distinct solutions and
consequently the matrix has at most n distinct eigenvalues. Since some of these solutions
may be complex numbers, it is possible for a matrix to have complex eigenvalues, even if
that matrix itself has real entries. We will discuss this issue in more detail later, but for
now we will focus on examples in which the eigenvalues are real numbers.

EXAMPLE 3 Eigenvalues of a 3 × 3 Matrix

Find the eigenvalues of

A =
⎡
⎢⎣0 1 0

0 0 1

4 −17 8

⎤
⎥⎦

Solution The characteristic polynomial of A is

det(λI − A) = det

⎡
⎢⎣ λ −1 0

0 λ −1

−4 17 λ − 8

⎤
⎥⎦ = λ3 − 8λ2 + 17λ − 4

The eigenvalues of A must therefore satisfy the cubic equation

λ3 − 8λ2 + 17λ − 4 = 0 (5)
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To solve this equation, we will begin by searching for integer solutions. This task can be
simplified by exploiting the fact that all integer solutions (if there are any) of a polynomial
equation with integer coefficients

λn + c1λ
n−1 + · · · + cn = 0

must be divisors of the constant term, cn. Thus, the only possible integer solutions of (5)
are the divisors of −4, that is, ±1, ±2, ±4. Successively substituting these values in (5)
shows that λ = 4 is an integer solution and hence that λ − 4 is a factor of the left side
of (5). Dividing λ − 4 into λ3 − 8λ2 + 17λ − 4 shows that (5) can be rewritten as

(λ − 4)(λ2 − 4λ + 1) = 0

Thus, the remaining solutions of (5) satisfy the quadratic equation
In applications involving large
matrices it is often not feasi-
ble to compute the character-
istic equation directly, so other
methods must be used to find
eigenvalues. We will consider
such methods in Chapter 9.

λ2 − 4λ + 1 = 0

which can be solved by the quadratic formula. Thus, the eigenvalues of A are

λ = 4, λ = 2 +√
3, and λ = 2 −√

3

EXAMPLE 4 Eigenvalues of an UpperTriangular Matrix

Find the eigenvalues of the upper triangular matrix

A =

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44

⎤
⎥⎥⎥⎦

Solution Recalling that the determinant of a triangular matrix is the product of the
entries on the main diagonal (Theorem 2.1.2), we obtain

det(λI − A) = det

⎡
⎢⎢⎢⎣

λ − a11 −a12 −a13 −a14

0 λ − a22 −a23 −a24

0 0 λ − a33 −a34

0 0 0 λ − a44

⎤
⎥⎥⎥⎦

= (λ − a11)(λ − a22)(λ − a33)(λ − a44)

Thus, the characteristic equation is

(λ − a11)(λ − a22)(λ − a33)(λ − a44) = 0

and the eigenvalues are

λ = a11, λ = a22, λ = a33, λ = a44

which are precisely the diagonal entries of A.

The following general theorem should be evident from the computations in the pre-
ceding example.

THEOREM5.1.2 IfA is an n × n triangularmatrix (upper triangular, lower triangular,
or diagonal ), then the eigenvalues of A are the entries on the main diagonal of A.
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EXAMPLE 5 Eigenvalues of a LowerTriangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

Had Theorem 5.1.2 been avail-
able earlier, we could have an-
ticipated the result obtained in
Example 2.

A =
⎡
⎢⎣

1
2 0 0

−1 2
3 0

5 −8 − 1
4

⎤
⎥⎦

are λ = 1
2 , λ = 2

3 , and λ = − 1
4 .

The following theorem gives some alternative ways of describing eigenvalues.

THEOREM 5.1.3 If A is an n × n matrix, the following statements are equivalent.

(a) λ is an eigenvalue of A.

(b) λ is a solution of the characteristic equation det(λI − A) = 0.

(c) The system of equations (λI − A)x = 0 has nontrivial solutions.

(d ) There is a nonzero vector x such that Ax = λx.

Finding Eigenvectors and
Bases for Eigenspaces

Now that we know how to find the eigenvalues of a matrix, we will consider the
problem of finding the corresponding eigenvectors. By definition, the eigenvectors of A

corresponding to an eigenvalue λ are the nonzero vectors that satisfy

(λI − A)x = 0

Thus, we can find the eigenvectors of A corresponding to λ by finding the nonzero
Notice that x = 0 is in every
eigenspace but is not an eigen-
vector (see Definition 1). In
the exercises we will ask you to
show that this is theonly vector
that distinct eigenspaces have
in common.

vectors in the solution space of this linear system. This solution space, which is called
the eigenspace of A corresponding to λ, can also be viewed as:

1. the null space of the matrix λI − A

2. the kernel of the matrix operator TλI−A: Rn →Rn

3. the set of vectors for which Ax = λx

EXAMPLE 6 Bases for Eigenspaces

Find bases for the eigenspaces of the matrix

A =
[
−1 3

2 0

]

Historical Note Methods of linear algebra are used in the emerg-
ing field of computerized face recognition. Researchers are working
with the idea that every human face in a racial group is a combina-
tion of a few dozen primary shapes. For example, by analyzing three-
dimensional scans ofmany faces, researchers at Rockefeller University
have produced both an average head shape in the Caucasian group—
dubbed themeanhead (top row left in the figure to the left)—and a set
of standardized variations from that shape, called eigenheads (15 of
which are shown in the picture). These are so named because they are
eigenvectors of a certain matrix that stores digitized facial information.
Face shapes are representedmathematically as linear combinations of
the eigenheads.

[Image: © Dr. Joseph J. Atick, adapted from Scientific American]
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Solution The characteristic equation of A is∣∣∣∣∣λ + 1 −3

−2 λ

∣∣∣∣∣ = λ(λ + 1) − 6 = (λ − 2)(λ + 3) = 0

so the eigenvalues of A are λ = 2 and λ = −3. Thus, there are two eigenspaces of A,
one for each eigenvalue.

By definition,

x =
[
x1

x2

]

is an eigenvector of A corresponding to an eigenvalue λ if and only if (λI − A)x = 0,
that is, [

λ + 1 −3

−2 λ

][
x1

x2

]
=
[

0

0

]
In the case where λ = 2 this equation becomes[

3 −3

−2 2

][
x1

x2

]
=
[

0

0

]

whose general solution is
x1 = t, x2 = t

(verify). Since this can be written in matrix form as[
x1

x2

]
=
[
t

t

]
= t

[
1

1

]

it follows that [
1

1

]
is a basis for the eigenspace corresponding to λ = 2. We leave it for you to follow the
pattern of these computations and show that[

− 3
2

1

]

is a basis for the eigenspace corresponding to λ = −3.

Figure 5.1.3 illustrates the geometric effect of multiplication by the matrix A in
Example 6. The eigenspace corresponding to λ = 2 is the line L1 through the origin and
the point (1, 1), and the eigenspace corresponding to λ = 3 is the line L2 through the
origin and the point (− 3

2 , 1). As indicated in the figure, multiplication by A maps each
vector in L1 back into L1, scaling it by a factor of 2, and it maps each vector in L2 back
into L2, scaling it by a factor of −3.

EXAMPLE 7 Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

A =
⎡
⎣0 0 −2

1 2 1
1 0 3

⎤
⎦
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Figure 5.1.3

L1
L2

Multiplication

by λ = –3

Multiplication

by λ = 2
(1, 1)

(2, 2)

2(   , –3)9

2(–   , 1)3

x

y

Solution The characteristic equation of A is λ3 − 5λ2 + 8λ − 4 = 0, or in factored
form, (λ − 1)(λ − 2)2 = 0 (verify). Thus, the distinct eigenvalues of A are λ = 1 and
λ = 2, so there are two eigenspaces of A.

By definition,

x =
⎡
⎣x1

x2

x3

⎤
⎦

is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of
(λI − A)x = 0, or in matrix form,⎡

⎣ λ 0 2
−1 λ − 2 −1
−1 0 λ − 3

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ (6)

In the case where λ = 2, Formula (6) becomes⎡
⎣ 2 0 2
−1 0 −1
−1 0 −1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

Solving this system using Gaussian elimination yields (verify)

x1 = −s, x2 = t, x3 = s

Thus, the eigenvectors of A corresponding to λ = 2 are the nonzero vectors of the form

x =
⎡
⎣−s

t

s

⎤
⎦ =

⎡
⎣−s

0
s

⎤
⎦+

⎡
⎣0

t

0

⎤
⎦ = s

⎡
⎣−1

0
1

⎤
⎦+ t

⎡
⎣0

1
0

⎤
⎦

Since ⎡
⎣−1

0
1

⎤
⎦ and

⎡
⎣0

1
0

⎤
⎦

are linearly independent (why?), these vectors form a basis for the eigenspace corre-
sponding to λ = 2.
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If λ = 1, then (6) becomes⎡
⎣ 1 0 2
−1 −1 −1
−1 0 −2

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦

Solving this system yields (verify)

x1 = −2s, x2 = s, x3 = s

Thus, the eigenvectors corresponding to λ = 1 are the nonzero vectors of the form⎡
⎣−2s

s

s

⎤
⎦ = s

⎡
⎣−2

1
1

⎤
⎦ so that

⎡
⎣−2

1
1

⎤
⎦

is a basis for the eigenspace corresponding to λ = 1.

Eigenvalues and
Invertibility

The next theorem establishes a relationship between the eigenvalues and the invertibility
of a matrix.

THEOREM 5.1.4 A square matrix A is invertible if and only if λ = 0 is not an eigen-
value of A.

Proof Assume that A is an n × n matrix and observe first that λ = 0 is a solution of the
characteristic equation

λn + c1λ
n−1 + · · · + cn = 0

if and only if the constant term cn is zero. Thus, it suffices to prove that A is invertible
if and only if cn �= 0. But

det(λI − A) = λn + c1λ
n−1 + · · · + cn

or, on setting λ = 0,

det(−A) = cn or (−1)n det(A) = cn

It follows from the last equation that det(A) = 0 if and only if cn = 0, and this in turn
implies that A is invertible if and only if cn �= 0.

EXAMPLE 8 Eigenvalues and Invertibility

The matrix A in Example 7 is invertible since it has eigenvalues λ = 1 and λ = 2, nei-
ther of which is zero. We leave it for you to check this conclusion by showing that
det(A) �= 0.

More on the Equivalence
Theorem

As our final result in this section, we will use Theorem 5.1.4 to add one additional part
to Theorem 4.10.2.
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THEOREM 5.1.5 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) �= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.
(r) The kernel of TA is {0}.
(s) The range of TA is Rn.

(t) TA is one-to-one.

(u) λ = 0 is not an eigenvalue of A.

Eigenvalues of General
LinearTransformations

Thus far, we have only defined eigenvalues and eigenvectors for matrices and linear
operators on Rn. The following definition, which parallels Definition 1, extends this
concept to general vector spaces.

DEFINITION 2 If T : V →V is a linear operator on a vector space V , then a nonzero
vector x in V is called an eigenvector of T if T(x) is a scalar multiple of x; that is,

T(x) = λx
for some scalar λ. The scalar λ is called an eigenvalue of T , and x is said to be an
eigenvector corresponding to λ.

As with matrix operators, we call the kernel of the operator λI − A the eigenspace of
T corresponding to λ. Stated another way, this is the subspace of all vectors in V for
which T(x) = λx.

EXAMPLE 9 Eigenvalue of a Differentiation Operator

If D: C� →C� is the differentiation operator on the vector space of functions with

CA L C U L U S R E Q U I R E D

In vector spaces of functions
eigenvectors are commonly re-
ferred to as eigenfunctions.

continuous derivatives of all orders on the interval (−�, �), and if λ is a constant, then

D(eλx) = λeλx

so that λ is an eigenvalue of D and eλx is a corresponding eigenvector.
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Exercise Set 5.1
In Exercises 1–4, confirm by multiplication that x is an eigen-

vector of A, and find the corresponding eigenvalue.

1. A =
[

1 2

3 2

]
; x =

[
1

−1

]

2. A =
[

5 −1

1 3

]
; x =

[
1

1

]

3. A =
⎡
⎢⎣4 0 1

2 3 2

1 0 4

⎤
⎥⎦ ; x =

⎡
⎢⎣1

2

1

⎤
⎥⎦

4. A =
⎡
⎢⎣ 2 −1 −1

−1 2 −1

−1 −1 2

⎤
⎥⎦ ; x =

⎡
⎢⎣1

1

1

⎤
⎥⎦

In each part of Exercises 5–6, find the characteristic equation,
the eigenvalues, and bases for the eigenspaces of the matrix.

5. (a)

[
1 4

2 3

]
(b)

[−2 −7

1 2

]

(c)

[
1 0

0 1

]
(d)

[
1 −2

0 1

]

6. (a)

[
2 1

1 2

]
(b)

[
2 −3

0 2

]

(c)

[
2 0

0 2

]
(d)

[
1 2

−2 −1

]

In Exercises 7–12, find the characteristic equation, the eigen-
values, and bases for the eigenspaces of the matrix.

7.

⎡
⎢⎣ 4 0 1

−2 1 0

−2 0 1

⎤
⎥⎦ 8.

⎡
⎢⎣ 1 0 −2

0 0 0

−2 0 4

⎤
⎥⎦

9.

⎡
⎢⎣6 3 −8

0 −2 0

1 0 −3

⎤
⎥⎦ 10.

⎡
⎢⎣0 1 1

1 0 1

1 1 0

⎤
⎥⎦

11.

⎡
⎢⎣4 0 −1

0 3 0

1 0 2

⎤
⎥⎦ 12.

⎡
⎢⎣1 −3 3

3 −5 3

6 −6 4

⎤
⎥⎦

In Exercises 13–14, find the characteristic equation of the
matrix by inspection.

13.

⎡
⎢⎣ 3 0 0

−2 7 0

4 8 1

⎤
⎥⎦ 14.

⎡
⎢⎢⎢⎣

9 −8 6 3

0 −1 0 0

0 0 3 0

0 0 0 7

⎤
⎥⎥⎥⎦

In Exercises 15–16, find the eigenvalues and a basis for each
eigenspace of the linear operator defined by the stated formula.
[Suggestion: Work with the standard matrix for the operator.]

15. T (x, y) = (x + 4y, 2x + 3y)

16. T (x, y, z) = (2x − y − z, x − z, −x + y + 2z)

17. (Calculus required ) Let D2: C�(−�, �)→C�(−�, �) be the
operator that maps a function into its second derivative.

(a) Show that D2 is linear.

(b) Show that if ω is a positive constant, then sin
√

ωx and
cos

√
ωx are eigenvectors of D2, and find their corre-

sponding eigenvalues.

18. (Calculus required ) Let D2: C� →C� be the linear operator
in Exercise 17. Show that if ω is a positive constant, then
sinh

√
ωx and cosh

√
ωx are eigenvectors of D2, and find their

corresponding eigenvalues.

In each part of Exercises 19–20, find the eigenvalues and the
corresponding eigenspaces of the stated matrix operator on R2.
Refer to the tables in Section 4.9 and use geometric reasoning to
find the answers. No computations are needed.

19. (a) Reflection about the line y = x.

(b) Orthogonal projection onto the x-axis.

(c) Rotation about the origin through a positive angle of 90◦.

(d) Contraction with factor k (0 ≤ k < 1).

(e) Shear in the x-direction by a factor k (k �= 0).

20. (a) Reflection about the y-axis.

(b) Rotation about the origin through a positive angle of 180◦.

(c) Dilation with factor k (k > 1).

(d) Expansion in the y-direction with factor k (k > 1).

(e) Shear in the y-direction by a factor k (k �= 0).

In each part of Exercises 21–22, find the eigenvalues and the
corresponding eigenspaces of the stated matrix operator on R3.
Refer to the tables in Section 4.9 and use geometric reasoning to
find the answers. No computations are needed.

21. (a) Reflection about the xy-plane.

(b) Orthogonal projection onto the xz-plane.

(c) Counterclockwise rotation about the positive x-axis
through an angle of 90◦.

(d) Contraction with factor k (0 ≤ k < 1).

22. (a) Reflection about the xz-plane.

(b) Orthogonal projection onto the yz-plane.

(c) Counterclockwise rotation about the positive y-axis
through an angle of 180◦.

(d) Dilation with factor k (k > 1).
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23. Let A be a 2 × 2 matrix, and call a line through the origin of
R2 invariant under A if Ax lies on the line when x does. Find
equations for all lines in R2, if any, that are invariant under
the given matrix.

(a) A =
[

4 −1

2 1

]
(b) A =

[
0 1

−1 0

]

24. Find det(A) given that A has p(λ) as its characteristic poly-
nomial.

(a) p(λ) = λ3 − 2λ2 + λ + 5

(b) p(λ) = λ4 − λ3 + 7

[Hint: See the proof of Theorem 5.1.4.]

25. Suppose that the characteristic polynomial of some matrix A

is found to be p(λ) = (λ − 1)(λ − 3)2(λ − 4)3. In each part,
answer the question and explain your reasoning.

(a) What is the size of A?

(b) Is A invertible?

(c) How many eigenspaces does A have?

26. The eigenvectors that we have been studying are sometimes
called right eigenvectors to distinguish them from left eigen-
vectors, which are n × 1 column matrices x that satisfy the
equation xTA = μxT for some scalar μ. For a given matrix A,
how are the right eigenvectors and their corresponding eigen-
values related to the left eigenvectors and their corresponding
eigenvalues?

27. Find a 3 × 3 matrix A that has eigenvalues 1, −1, and 0, and
for which ⎡

⎢⎣ 1

−1

1

⎤
⎥⎦ ,

⎡
⎢⎣1

1

0

⎤
⎥⎦ ,

⎡
⎢⎣ 1

−1

0

⎤
⎥⎦

are their corresponding eigenvectors.

Working with Proofs

28. Prove that the characteristic equation of a 2 × 2 matrix A can
be expressed as λ2 − tr(A)λ + det(A) = 0, where tr(A) is the
trace of A.

29. Use the result in Exercise 28 to show that if

A =
[
a b

c d

]

then the solutions of the characteristic equation of A are

λ = 1
2

[
(a + d) ±√

(a − d)2 + 4bc
]

Use this result to show that A has

(a) two distinct real eigenvalues if (a − d)2 + 4bc > 0.

(b) two repeated real eigenvalues if (a − d)2 + 4bc = 0.

(c) complex conjugate eigenvalues if (a − d)2 + 4bc < 0.

30. Let A be the matrix in Exercise 29. Show that if b �= 0, then

x1 =
[ −b

a − λ1

]
and x2 =

[ −b

a − λ2

]
are eigenvectors of A that correspond, respectively, to the
eigenvalues

λ1 = 1
2

[
(a + d) +√

(a − d)2 + 4bc
]

and
λ2 = 1

2

[
(a + d) −√

(a − d)2 + 4bc
]

31. Use the result of Exercise 28 to prove that if

p(λ) = λ2 + c1λ + c2

is the characteristic polynomial of a 2 × 2 matrix, then

p(A) = A2 + c1A + c2I = 0

(Stated informally, A satisfies its characteristic equation. This
result is true as well for n × n matrices.)

32. Prove: If a, b, c, and d are integers such that a + b = c + d,
then

A =
[
a b

c d

]
has integer eigenvalues.

33. Prove: If λ is an eigenvalue of an invertible matrix A and x is
a corresponding eigenvector, then 1/λ is an eigenvalue of A−1

and x is a corresponding eigenvector.

34. Prove: If λ is an eigenvalue of A, x is a corresponding eigen-
vector, and s is a scalar, then λ − s is an eigenvalue of A − sI

and x is a corresponding eigenvector.

35. Prove: If λ is an eigenvalue of A and x is a corresponding
eigenvector, then sλ is an eigenvalue of sA for every scalar s

and x is a corresponding eigenvector.

36. Find the eigenvalues and bases for the eigenspaces of

A =
⎡
⎢⎣−2 2 3

−2 3 2

−4 2 5

⎤
⎥⎦

and then use Exercises 33 and 34 to find the eigenvalues and
bases for the eigenspaces of

(a) A−1 (b) A − 3I (c) A + 2I

37. Prove that the characteristic polynomial of an n × n matrix A

has degree n and that the coefficient of λn in that polynomial
is 1.

38. (a) Prove that if A is a square matrix, then A and AT have
the same eigenvalues. [Hint: Look at the characteristic
equation det(λI − A) = 0.]

(b) Show that A and AT need not have the same eigenspaces.
[Hint: Use the result in Exercise 30 to find a 2 × 2 matrix
for which A and AT have different eigenspaces.]
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39. Prove that the intersection of any two distinct eigenspaces of
a matrix A is {0}.

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) If A is a square matrix and Ax = λx for some nonzero scalar
λ, then x is an eigenvector of A.

(b) If λ is an eigenvalue of a matrix A, then the linear system
(λI − A)x = 0 has only the trivial solution.

(c) If the characteristic polynomial of a matrix A is
p(λ) = λ2 + 1, then A is invertible.

(d) If λ is an eigenvalue of a matrix A, then the eigenspace of A

corresponding to λ is the set of eigenvectors of A correspond-
ing to λ.

(e) The eigenvalues of a matrix A are the same as the eigenvalues
of the reduced row echelon form of A.

(f ) If 0 is an eigenvalue of a matrix A, then the set of columns of
A is linearly independent.

Working withTechnology

T1. For the given matrix A, find the characteristic polynomial
and the eigenvalues, and then use the method of Example 7 to find
bases for the eigenspaces.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−8 33 38 173 −30

0 0 −1 −4 0

0 0 −5 −25 1

0 0 1 5 0

4 −16 −19 −86 15

⎤
⎥⎥⎥⎥⎥⎥⎦

T2. The Cayley–Hamilton Theorem states that every square ma-
trix satisfies its characteristic equation; that is, if A is an n × n

matrix whose characteristic equation is

λ′′ + c1λ
n−1 + · · · + cn = 0

then An + c1A
n−1 + · · · + cn = 0.

(a) Verify the Cayley–Hamilton Theorem for the matrix

A =
⎡
⎢⎣

0 1 0

0 0 1

2 −5 4

⎤
⎥⎦

(b) Use the result in Exercise 28 to prove the Cayley–Hamilton
Theorem for 2 × 2 matrices.

5.2 Diagonalization
In this section we will be concerned with the problem of finding a basis for Rn that consists
of eigenvectors of an n × n matrix A. Such bases can be used to study geometric properties
of A and to simplify various numerical computations. These bases are also of physical
significance in a wide variety of applications, some of which will be considered later in this
text.

The Matrix Diagonalization
Problem

Products of the form P−1AP in which A and P are n × n matrices and P is invertible
will be our main topic of study in this section. There are various ways to think about
such products, one of which is to view them as transformations

A→P−1AP

in which the matrix A is mapped into the matrix P−1AP . These are called similarity
transformations. Such transformations are important because they preserve many prop-
erties of the matrix A. For example, if we let B = P−1AP, then A and B have the same
determinant since

det(B) = det(P−1AP) = det(P−1) det(A) det(P )

= 1

det(P )
det(A) det(P ) = det(A)
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In general, any property that is preserved by a similarity transformation is called a
similarity invariant and is said to be invariant under similarity. Table 1 lists the most
important similarity invariants. The proofs of some of these are given as exercises.

Table 1 Similarity Invariants

Property Description

Determinant A and P−1AP have the same determinant.

Invertibility A is invertible if and only if P−1AP is invertible.

Rank A and P−1AP have the same rank.

Nullity A and P−1AP have the same nullity.

Trace A and P−1AP have the same trace.

Characteristic polynomial A and P−1AP have the same characteristic polynomial.

Eigenvalues A and P−1AP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of A (and hence of P−1AP ) then the eigenspace
of A corresponding to λ and the eigenspace of P−1AP

corresponding to λ have the same dimension.

We will find the following terminology useful in our study of similarity transforma-
tions.

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if
there is an invertible matrix P such that B = P−1AP .

Note that if B is similar to A, then it is also true that A is similar to B since we can
express A as A = Q−1BQ by taking Q = P−1. This being the case, we will usually say
that A and B are similar matrices if either is similar to the other.

Because diagonal matrices have such a simple form, it is natural to inquire whether
a given n × n matrix A is similar to a matrix of this type. Should this turn out to be
the case, and should we be able to actually find a diagonal matrix D that is similar to
A, then we would be able to ascertain many of the similarity invariant properties of A

directly from the diagonal entries of D. For example, the diagonal entries of D will
be the eigenvalues of A (Theorem 5.1.2), and the product of the diagonal entries of D

will be the determinant of A (Theorem 2.1.2). This leads us to introduce the following
terminology.

DEFINITION 2 A square matrix A is said to be diagonalizable if it is similar to some
diagonal matrix; that is, if there exists an invertible matrix P such that P−1AP is
diagonal. In this case the matrix P is said to diagonalize A.

The following theorem and the ideas used in its proof will provide us with a roadmap
for devising a technique for determining whether a matrix is diagonalizable and, if so,
for finding a matrix P that will perform the diagonalization.
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THEOREM 5.2.1 If A is an n × n matrix, the following statements are equivalent.

(a) A is diagonalizable.

(b) A has n linearly independent eigenvectors.

Proof (a) ⇒ (b) Since A is assumed to be diagonalizable, it follows that there exist an

Part (b) of Theorem 5.2.1 is
equivalent to saying that there
is a basis for Rn consisting of
eigenvectors of A. Why?

invertible matrix P and a diagonal matrix D such that P−1AP = D or, equivalently,

AP = PD (1)

If we denote the column vectors of P by p1, p2, . . . , pn, and if we assume that the
diagonal entries of D are λ1, λ2, . . . , λn, then by Formula (6) of Section 1.3 the left side
of (1) can be expressed as

AP = A[p1 p2 · · · pn] = [Ap1 Ap2 · · · Apn]
and, as noted in the comment following Example 1 of Section 1.7, the right side of (1)
can be expressed as

PD = [λ1p1 λ2p2 · · · λnpn]
Thus, it follows from (1) that

Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn = λnpn (2)

Since P is invertible, we know from Theorem 5.1.5 that its column vectors p1, p2, . . . , pn

are linearly independent (and hence nonzero). Thus, it follows from (2) that these n

column vectors are eigenvectors of A.

Proof (b) ⇒ (a) Assume that A has n linearly independent eigenvectors, p1, p2, . . . , pn,
and that λ1, λ2, . . . , λn are the corresponding eigenvalues. If we let

P = [p1 p2 · · · pn]
and if we let D be the diagonal matrix that has λ1, λ2, . . . , λn as its successive diagonal
entries, then

AP = A[p1 p2 · · · pn] = [Ap1 Ap2 · · · Apn]
= [λ1p1 λ2p2 · · · λnpn] = PD

Since the column vectors of P are linearly independent, it follows from Theorem 5.1.5
that P is invertible, so that this last equation can be rewritten as P−1AP = D, which
shows that A is diagonalizable.

Whereas Theorem 5.2.1 tells us that we need to find n linearly independent eigen-
vectors to diagonalize a matrix, the following theorem tells us where such vectors might
be found. Part (a) is proved at the end of this section, and part (b) is an immediate
consequence of part (a) and Theorem 5.2.1 (why?).

THEOREM 5.2.2

(a) If λ1, λ2, . . . , λk are distinct eigenvalues of a matrix A, and if v1, v2, . . . , vk are
corresponding eigenvectors, then {v1, v2, . . . , vk} is a linearly independent set.

(b) An n × n matrix with n distinct eigenvalues is diagonalizable.

Remark Part (a) of Theorem 5.2.2 is a special case of a more general result: Specifically, if
λ1, λ2, . . . , λk are distinct eigenvalues, and if S1, S2, . . . , Sk are corresponding sets of linearly
independent eigenvectors, then the union of these sets is linearly independent.
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Procedure for
Diagonalizing a Matrix

Theorem 5.2.1 guarantees that an n × n matrix A with n linearly independent eigen-
vectors is diagonalizable, and the proof of that theorem together with Theorem 5.2.2
suggests the following procedure for diagonalizing A.

A Procedure for Diagonalizing an n × n Matrix

Step 1. Determine first whether the matrix is actually diagonalizable by searching for
n linearly independent eigenvectors. One way to do this is to find a basis for
each eigenspace and count the total number of vectors obtained. If there is
a total of n vectors, then the matrix is diagonalizable, and if the total is less
than n, then it is not.

Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix
P = [p1 p2 · · · pn] whose column vectors are the n basis vectors you ob-
tained in Step 1.

Step 3. P−1AP will be a diagonal matrix whose successive diagonal entries are the
eigenvalues λ1, λ2, . . . , λn that correspond to the successive columns of P .

EXAMPLE 1 Finding a Matrix P That Diagonalizes a MatrixA

Find a matrix P that diagonalizes

A =
⎡
⎣0 0 −2

1 2 1
1 0 3

⎤
⎦

Solution In Example 7 of the preceding section we found the characteristic equation of
A to be

(λ − 1)(λ − 2)2 = 0

and we found the following bases for the eigenspaces:

λ = 2: p1 =
⎡
⎣−1

0
1

⎤
⎦, p2 =

⎡
⎣0

1
0

⎤
⎦ ; λ = 1: p3 =

⎡
⎣−2

1
1

⎤
⎦

There are three basis vectors in total, so the matrix

P =
⎡
⎣−1 0 −2

0 1 1
1 0 1

⎤
⎦

diagonalizes A. As a check, you should verify that

P−1AP =
⎡
⎣ 1 0 2

1 1 1
−1 0 −1

⎤
⎦
⎡
⎣0 0 −2

1 2 1
1 0 3

⎤
⎦
⎡
⎣−1 0 −2

0 1 1
1 0 1

⎤
⎦ =

⎡
⎣2 0 0

0 2 0
0 0 1

⎤
⎦

In general, there is no preferred order for the columns of P . Since the ith diagonal
entry of P−1AP is an eigenvalue for the ith column vector of P , changing the order of
the columns of P just changes the order of the eigenvalues on the diagonal of P−1AP .
Thus, had we written

P =
⎡
⎣−1 −2 0

0 1 1
1 1 0

⎤
⎦
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in the preceding example, we would have obtained

P−1AP =
⎡
⎢⎣2 0 0

0 1 0

0 0 2

⎤
⎥⎦

EXAMPLE 2 A MatrixThat Is Not Diagonalizable

Show that the following matrix is not diagonalizable:

A =
⎡
⎢⎣ 1 0 0

1 2 0

−3 5 2

⎤
⎥⎦

Solution The characteristic polynomial of A is

det(λI − A) =

∣∣∣∣∣∣∣
λ − 1 0 0

−1 λ − 2 0

3 −5 λ − 2

∣∣∣∣∣∣∣ = (λ − 1)(λ − 2)2

so the characteristic equation is

(λ − 1)(λ − 2)2 = 0

and the distinct eigenvalues of A are λ = 1 and λ = 2. We leave it for you to show that
bases for the eigenspaces are

λ = 1: p1 =

⎡
⎢⎢⎣

1
8

− 1
8

1

⎤
⎥⎥⎦ ; λ = 2: p2 =

⎡
⎢⎣0

0

1

⎤
⎥⎦

Since A is a 3 × 3 matrix and there are only two basis vectors in total, A is not diago-
nalizable.

Alternative Solution If you are concerned only in determining whether a matrix is di-
agonalizable and not with actually finding a diagonalizing matrix P , then it is not nec-
essary to compute bases for the eigenspaces—it suffices to find the dimensions of the
eigenspaces. For this example, the eigenspace corresponding to λ = 1 is the solution
space of the system ⎡

⎢⎣ 0 0 0

−1 −1 0

3 −5 −1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦

Since the coefficient matrix has rank 2 (verify), the nullity of this matrix is 1 by Theo-
rem 4.8.2, and hence the eigenspace corresponding to λ = 1 is one-dimensional.

The eigenspace corresponding to λ = 2 is the solution space of the system⎡
⎢⎣ 1 0 0

−1 0 0

3 −5 0

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦

This coefficient matrix also has rank 2 and nullity 1 (verify), so the eigenspace corre-
sponding to λ = 2 is also one-dimensional. Since the eigenspaces produce a total of two
basis vectors, and since three are needed, the matrix A is not diagonalizable.
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EXAMPLE 3 Recognizing Diagonalizability

We saw in Example 3 of the preceding section that

A =
⎡
⎢⎣0 1 0

0 0 1

4 −17 8

⎤
⎥⎦

has three distinct eigenvalues: λ = 4, λ = 2 +√
3, and λ = 2 −√

3. Therefore, A is
diagonalizable and

P−1AP =
⎡
⎢⎣4 0 0

0 2 +√
3 0

0 0 2 −√
3

⎤
⎥⎦

for some invertible matrix P . If needed, the matrix P can be found using the method
shown in Example 1 of this section.

EXAMPLE 4 Diagonalizability ofTriangular Matrices

From Theorem 5.1.2, the eigenvalues of a triangular matrix are the entries on its main
diagonal. Thus, a triangular matrix with distinct entries on the main diagonal is diago-
nalizable. For example,

A =

⎡
⎢⎢⎢⎣
−1 2 4 0

0 3 1 7

0 0 5 8

0 0 0 −2

⎤
⎥⎥⎥⎦

is a diagonalizable matrix with eigenvalues λ1 = −1, λ2 = 3, λ3 = 5, λ4 = −2.

Eigenvalues of Powers of a
Matrix

Since there are many applications in which it is necessary to compute high powers of a
square matrix A, we will now turn our attention to that important problem. As we will
see, the most efficient way to compute Ak , particularly for large values of k, is to first
diagonalize A. But because diagonalizing a matrix A involves finding its eigenvalues and
eigenvectors, we will need to know how these quantities are related to those of Ak . As an
illustration, suppose that λ is an eigenvalue of A and x is a corresponding eigenvector.
Then

A2x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = λ2x

which shows not only that λ2 is a eigenvalue of A2 but that x is a corresponding eigen-
vector. In general, we have the following result.

Note that diagonalizability is
not a requirement in Theo-
rem 5.2.3.

THEOREM 5.2.3 If k is a positive integer, λ is an eigenvalue of a matrix A, and x is
a corresponding eigenvector, then λk is an eigenvalue of Ak and x is a corresponding
eigenvector.

EXAMPLE 5 Eigenvalues and Eigenvectors of Matrix Powers

In Example 2 we found the eigenvalues and corresponding eigenvectors of the matrix

A =
⎡
⎢⎣ 1 0 0

1 2 0

−3 5 2

⎤
⎥⎦

Do the same for A7.
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Solution We know from Example 2 that the eigenvalues of A are λ = 1 and λ = 2, so
the eigenvalues of A7 are λ = 17 = 1 and λ = 27 = 128. The eigenvectors p1 and p2

obtained in Example 1 corresponding to the eigenvalues λ = 1 and λ = 2 of A are also
the eigenvectors corresponding to the eigenvalues λ = 1 and λ = 128 of A7.

Computing Powers of a
Matrix

The problem of computing powers of a matrix is greatly simplified when the matrix is
diagonalizable. To see why this is so, suppose that A is a diagonalizable n × n matrix,
that P diagonalizes A, and that

P−1AP =

⎡
⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

0 0 · · · λn

⎤
⎥⎥⎥⎦ = D

Squaring both sides of this equation yields

(P−1AP)2 =

⎡
⎢⎢⎢⎣

λ2
1 0 · · · 0

0 λ2
2 · · · 0

...
...

...

0 0 · · · λ2
n

⎤
⎥⎥⎥⎦ = D2

We can rewrite the left side of this equation as

(P−1AP)2 = P−1APP−1AP = P−1AIAP = P−1A2P

from which we obtain the relationship P−1A2P = D2. More generally, if k is a positive
integer, then a similar computation will show that

P−1AkP = Dk =

⎡
⎢⎢⎢⎣

λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...

0 0 · · · λk
n

⎤
⎥⎥⎥⎦

which we can rewrite as

Formula (3) reveals that rais-
ing a diagonalizable matrix A

to a positive integer power has
the effect of raising its eigen-
values to that power.

Ak = PDkP−1 = P

⎡
⎢⎢⎢⎣

λk
1 0 · · · 0

0 λk
2 · · · 0

...
...

...

0 0 · · · λk
n

⎤
⎥⎥⎥⎦P−1 (3)

EXAMPLE 6 Powers of a Matrix

Use (3) to find A13, where

A =
⎡
⎢⎣0 0 −2

1 2 1

1 0 3

⎤
⎥⎦

Solution We showed in Example 1 that the matrix A is diagonalized by

P =
⎡
⎢⎣−1 0 −2

0 1 1

1 0 1

⎤
⎥⎦

and that

D = P−1AP =
⎡
⎢⎣2 0 0

0 2 0

0 0 1

⎤
⎥⎦
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Thus, it follows from (3) that

A13 = PD13P−1 =
⎡
⎢⎣−1 0 −2

0 1 1

1 0 1

⎤
⎥⎦
⎡
⎢⎣213 0 0

0 213 0

0 0 113

⎤
⎥⎦
⎡
⎢⎣ 1 0 2

1 1 1

−1 0 −1

⎤
⎥⎦

=
⎡
⎢⎣−8190 0 −16382

8191 8192 8191

8191 0 16383

⎤
⎥⎦

(4)

Remark With the method in the preceding example, most of the work is in diagonalizing A.
Once that work is done, it can be used to compute any power of A. Thus, to compute A1000 we
need only change the exponents from 13 to 1000 in (4).

Geometric and Algebraic
Multiplicity

Theorem 5.2.2(b) does not completely settle the diagonalizability question since it only
guarantees that a square matrix with n distinct eigenvalues is diagonalizable; it does not
preclude the possibility that there may exist diagonalizable matrices with fewer than n

distinct eigenvalues. The following example shows that this is indeed the case.

EXAMPLE 7 The Converse ofTheorem 5.2.2(b) Is False

Consider the matrices

I =
⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦ and J =

⎡
⎢⎣1 1 0

0 1 1

0 0 1

⎤
⎥⎦

It follows from Theorem 5.1.2 that both of these matrices have only one distinct eigen-
value, namely λ = 1, and hence only one eigenspace. We leave it as an exercise for you
to solve the characteristic equations

(λI − I )x = 0 and (λI − J )x = 0

with λ = 1 and show that for I the eigenspace is three-dimensional (all of R3) and for J

it is one-dimensional, consisting of all scalar multiples of

x =
⎡
⎢⎣1

0

0

⎤
⎥⎦

This shows that the converse of Theorem 5.2.2(b) is false, since we have produced two
3 × 3 matrices with fewer than three distinct eigenvalues, one of which is diagonalizable
and the other of which is not.

A full excursion into the study of diagonalizability is left for more advanced courses,
but we will touch on one theorem that is important for a fuller understanding of diago-
nalizability. It can be proved that if λ0 is an eigenvalue of A, then the dimension of the
eigenspace corresponding to λ0 cannot exceed the number of times that λ − λ0 appears
as a factor of the characteristic polynomial of A. For example, in Examples 1 and 2 the
characteristic polynomial is

(λ − 1)(λ − 2)2

Thus, the eigenspace corresponding to λ = 1 is at most (hence exactly) one-dimensional,
and the eigenspace corresponding to λ = 2 is at most two-dimensional. In Example 1
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the eigenspace corresponding to λ = 2 actually had dimension 2, resulting in diagonal-
izability, but in Example 2 the eigenspace corresponding to λ = 2 had only dimension 1,
resulting in nondiagonalizability.

There is some terminology that is related to these ideas. If λ0 is an eigenvalue of an
n × n matrix A, then the dimension of the eigenspace corresponding to λ0 is called the
geometric multiplicity of λ0, and the number of times that λ − λ0 appears as a factor in
the characteristic polynomial of A is called the algebraic multiplicity of λ0. The following
theorem, which we state without proof, summarizes the preceding discussion.

THEOREM 5.2.4 Geometric and Algebraic Multiplicity

If A is a square matrix, then:

(a) For every eigenvalue of A, the geometric multiplicity is less than or equal to the
algebraic multiplicity.

(b) A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is
equal to the algebraic multiplicity.

We will complete this section with an optional proof of Theorem 5.2.2(a).

Proof ofTheorem 5.2.2 (a ) Let v1, v2, . . . , vk be eigenvectors of A corresponding to dis-O PT I O NA L

tinct eigenvalues λ1, λ2, . . . , λk . We will assume that v1, v2, . . . , vk are linearly depen-
dent and obtain a contradiction. We can then conclude that v1, v2, . . . , vk are linearly
independent.

Since an eigenvector is nonzero by definition, {v1} is linearly independent. Let r

be the largest integer such that {v1, v2, . . . , vr} is linearly independent. Since we are
assuming that {v1, v2, . . . , vk} is linearly dependent, r satisfies 1 ≤ r < k. Moreover,
by the definition of r , {v1, v2, . . . , vr+1} is linearly dependent. Thus, there are scalars
c1, c2, . . . , cr+1, not all zero, such that

c1v1 + c2v2 + · · · + cr+1vr+1 = 0 (5)

Multiplying both sides of (5) by A and using the fact that

Av1 = λ1v1, Av2 = λ2v2, . . . , Avr+1 = λr+1vr+1

we obtain
c1λ1v1 + c2λ2v2 + · · · + cr+1λr+1vr+1 = 0 (6)

If we now multiply both sides of (5) by λr+1 and subtract the resulting equation from (6)
we obtain

c1(λ1 − λr+1)v1 + c2(λ2 − λr+1)v2 + · · · + cr(λr − λr+1)vr = 0

Since {v1, v2, . . . , vr} is a linearly independent set, this equation implies that

c1(λ1 − λr+1) = c2(λ2 − λr+1) = · · · = cr(λr − λr+1) = 0

and since λ1, λ2, . . . , λr+1 are assumed to be distinct, it follows that

c1 = c2 = · · · = cr = 0 (7)

Substituting these values in (5) yields

cr+1vr+1 = 0
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Since the eigenvector vr+1 is nonzero, it follows that

cr+1 = 0 (8)

But equations (7) and (8) contradict the fact that c1, c2, . . . , cr+1 are not all zero so the
proof is complete.

Exercise Set 5.2
In Exercises 1–4, show that A and B are not similar matrices.

1. A =
[

1 1

3 2

]
, B =

[
1 0

3 −2

]

2. A =
[

4 −1

2 4

]
, B =

[
4 1

2 4

]

3. A =
⎡
⎢⎣1 2 3

0 1 2

0 0 1

⎤
⎥⎦, B =

⎡
⎢⎢⎣

1 2 0

1
2 1 0

0 0 1

⎤
⎥⎥⎦

4. A =
⎡
⎢⎣1 0 1

2 0 2

3 0 3

⎤
⎥⎦, B =

⎡
⎢⎣1 1 0

2 2 0

0 1 1

⎤
⎥⎦

In Exercises 5–8, find a matrix P that diagonalizes A, and
check your work by computing P−1AP .

5. A =
[

1 0

6 −1

]
6. A =

[
−14 12

−20 17

]

7. A =
⎡
⎢⎣2 0 −2

0 3 0

0 0 3

⎤
⎥⎦ 8. A =

⎡
⎢⎣1 0 0

0 1 1

0 1 1

⎤
⎥⎦

9. Let

A =
⎡
⎢⎣4 0 1

2 3 2

1 0 4

⎤
⎥⎦

(a) Find the eigenvalues of A.

(b) For each eigenvalue λ, find the rank of the matrix λI −A.

(c) Is A diagonalizable? Justify your conclusion.

10. Follow the directions in Exercise 9 for the matrix⎡
⎢⎣3 0 0

0 2 0

0 1 2

⎤
⎥⎦

In Exercises 11–14, find the geometric and algebraic multiplic-
ity of each eigenvalue of the matrix A, and determine whether A

is diagonalizable. If A is diagonalizable, then find a matrix P that
diagonalizes A, and find P−1AP .

11. A =
⎡
⎢⎣−1 4 −2

−3 4 0

−3 1 3

⎤
⎥⎦ 12. A =

⎡
⎢⎣19 −9 −6

25 −11 −9

17 −9 −4

⎤
⎥⎦

13. A =
⎡
⎢⎣0 0 0

0 0 0

3 0 1

⎤
⎥⎦ 14. A =

⎡
⎢⎣5 0 0

1 5 0

0 1 5

⎤
⎥⎦

In each part of Exercises 15–16, the characteristic equation of
a matrix A is given. Find the size of the matrix and the possible
dimensions of its eigenspaces.

15. (a) (λ − 1)(λ + 3)(λ − 5) = 0

(b) λ2(λ − 1)(λ − 2)3 = 0

16. (a) λ3(λ2 − 5λ − 6) = 0

(b) λ3 − 3λ2 + 3λ − 1 = 0

In Exercises 17–18, use the method of Example 6 to compute
the matrix A10.

17. A =
[

0 3

2 −1

]
18. A =

[
1 0

−1 2

]

19. Let

A =
⎡
⎢⎣−1 7 −1

0 1 0

0 15 −2

⎤
⎥⎦ and P =

⎡
⎢⎣1 1 1

0 0 1

1 0 5

⎤
⎥⎦

Confirm that P diagonalizes A, and then compute A11.

20. Let

A =
⎡
⎢⎣1 −2 8

0 −1 0

0 0 −1

⎤
⎥⎦ and P =

⎡
⎢⎣1 −4 1

1 0 0

0 1 0

⎤
⎥⎦

Confirm that P diagonalizes A, and then compute each of the
following powers of A.

(a) A1000 (b) A−1000 (c) A2301 (d) A−2301

21. Find An if n is a positive integer and

A =
⎡
⎢⎣ 3 −1 0

−1 2 −1

0 −1 3

⎤
⎥⎦



312 Chapter 5 Eigenvalues and Eigenvectors

22. Show that the matrices

A =
⎡
⎢⎣1 1 1

1 1 1

1 1 1

⎤
⎥⎦ and B =

⎡
⎢⎣3 0 0

0 0 0

0 0 0

⎤
⎥⎦

are similar.

23. We know from Table 1 that similar matrices have the same
rank. Show that the converse is false by showing that the
matrices

A =
[

1 0

0 0

]
and B =

[
0 1

0 0

]

have the same rank but are not similar. [Suggestion: If they
were similar, then there would be an invertible 2 × 2 matrix P

for which AP = PB. Show that there is no such matrix.]

24. We know from Table 1 that similar matrices have the same
eigenvalues. Use the method of Exercise 23 to show that the
converse is false by showing that the matrices

A =
[

1 1

0 1

]
and B =

[
1 0

0 1

]

have the same eigenvalues but are not similar.

25. If A, B, and C are n × n matrices such that A is similar to B

and B is similar to C, do you think that A must be similar to
C? Justify your answer.

26. (a) Is it possible for an n × n matrix to be similar to itself ?
Justify your answer.

(b) What can you say about an n × n matrix that is similar to
0n×n? Justify your answer.

(c) Is is possible for a nonsingular matrix to be similar to a
singular matrix? Justify your answer.

27. Suppose that the characteristic polynomial of some matrix A

is found to be p(λ) = (λ − 1)(λ − 3)2(λ − 4)3. In each part,
answer the question and explain your reasoning.

(a) What can you say about the dimensions of the eigenspaces
of A?

(b) What can you say about the dimensions of the eigenspaces
if you know that A is diagonalizable?

(c) If {v1, v2, v3} is a linearly independent set of eigenvectors
of A, all of which correspond to the same eigenvalue of A,
what can you say about that eigenvalue?

28. Let

A =
[
a b

c d

]
Show that

(a) A is diagonalizable if (a − d)2 + 4bc > 0.

(b) A is not diagonalizable if (a − d)2 + 4bc < 0.

[Hint: See Exercise 29 of Section 5.1.]

29. In the case where the matrix A in Exercise 28 is diagonalizable,
find a matrix P that diagonalizes A. [Hint: See Exercise 30 of
Section 5.1.]

In Exercises 30–33, find the standard matrix A for the given lin-
ear operator, and determine whether that matrix is diagonalizable.
If diagonalizable, find a matrix P that diagonalizes A.

30. T (x1, x2) = (2x1 − x2, x1 + x2)

31. T (x1, x2) = (−x2,−x1)

32. T (x1, x2, x3) = (8x1 + 3x2 − 4x3,−3x1 + x2 + 3x3,

4x1 + 3x2)

33. T (x1, x2, x3) = (3x1, x2, x1 − x2)

34. If P is a fixed n × n matrix, then the similarity transformation

A→P−1AP

can be viewed as an operator SP (A) = P−1AP on the vector
space Mnn of n × n matrices.

(a) Show that SP is a linear operator.

(b) Find the kernel of SP .

(c) Find the rank of SP .

Working with Proofs

35. Prove that similar matrices have the same rank and nullity.

36. Prove that similar matrices have the same trace.

37. Prove that if A is diagonalizable, then so is Ak for every positive
integer k.

38. We know from Table 1 that similar matrices, A and B, have
the same eigenvalues. However, it is not true that those eigen-
values have the same corresponding eigenvectors for the two
matrices. Prove that if B = P−1AP , and v is an eigenvector of
B corresponding to the eigenvalue λ, then P v is the eigenvec-
tor of A corresponding to λ.

39. Let A be an n × n matrix, and let q(A) be the matrix

q(A) = anA
n + an−1A

n−1 + · · · + a1A + a0In

(a) Prove that if B = P−1AP , then q(B) = P−1q(A)P .

(b) Prove that if A is diagonalizable, then so is q(A).

40. Prove that if A is a diagonalizable matrix, then the rank of A

is the number of nonzero eigenvalues of A.

41. This problem will lead you through a proof of the fact that
the algebraic multiplicity of an eigenvalue of an n × n matrix
A is greater than or equal to the geometric multiplicity. For
this purpose, assume that λ0 is an eigenvalue with geometric
multiplicity k.

(a) Prove that there is a basis B = {u1, u2, . . . , un} for Rn

in which the first k vectors of B form a basis for the
eigenspace corresponding to λ0.
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(b) Let P be the matrix having the vectors in B as col-
umns. Prove that the product AP can be expressed as

AP = P

[
λ0Ik X

0 Y

]
[Hint: Compare the first k column vectors on both sides.]

(c) Use the result in part (b) to prove that A is similar to

C =
[
λ0Ik X

0 Y

]
and hence that A and C have the same characteristic poly-
nomial.

(d) By considering det(λI − C), prove that the charac-
teristic polynomial of C (and hence A) contains the factor
(λ − λ0) at least k times, thereby proving that the algebraic
multiplicity of λ0 is greater than or equal to the geometric
multiplicity k.

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) An n × n matrix with fewer than n distinct eigenvalues is not
diagonalizable.

(b) An n × n matrix with fewer than n linearly independent eigen-
vectors is not diagonalizable.

(c) If A and B are similar n × n matrices, then there exists an
invertible n × n matrix P such that PA = BP .

(d) If A is diagonalizable, then there is a unique matrix P such
that P−1AP is diagonal.

(e) If A is diagonalizable and invertible, then A−1 is diagonaliz-
able.

(f ) If A is diagonalizable, then AT is diagonalizable.

(g) If there is a basis for Rn consisting of eigenvectors of an n × n

matrix A, then A is diagonalizable.

(h) If every eigenvalue of a matrix A has algebraic multiplicity 1,
then A is diagonalizable.

(i) If 0 is an eigenvalue of a matrix A, then A2 is singular.

Working withTechnology

T1. Generate a random 4 × 4 matrix A and an invertible 4 × 4
matrix P and then confirm, as stated in Table 1, that P−1AP and
A have the same

(a) determinant.

(b) rank.

(c) nullity.

(d) trace.

(e) characteristic polynomial.

(f ) eigenvalues.

T2. (a) Use Theorem 5.2.1 to show that the following matrix is
diagonalizable.

A =
⎡
⎢⎣
−13 −60 −60

10 42 40

−5 −20 −18

⎤
⎥⎦

(b) Find a matrix P that diagonalizes A.

(c) Use the method of Example 6 to compute A10, and check your
result by computing A10 directly.

T3. Use Theorem 5.2.1 to show that the following matrix is not
diagonalizable.

A =
⎡
⎢⎣
−10 11 −6

−15 16 −10

−3 3 −2

⎤
⎥⎦

5.3 ComplexVector Spaces
Because the characteristic equation of any square matrix can have complex solutions, the
notions of complex eigenvalues and eigenvectors arise naturally, even within the context of
matrices with real entries. In this section we will discuss this idea and apply our results to
study symmetric matrices in more detail. A review of the essentials of complex numbers
appears in the back of this text.

Review of Complex
Numbers

Recall that if z = a + bi is a complex number, then:

• Re(z) = a and Im(z) = b are called the real part of z and the imaginary part of z,
respectively,

• |z| = √
a2 + b2 is called the modulus (or absolute value) of z,

• z = a − bi is called the complex conjugate of z,
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• zz = a2 + b2 = |z|2,

• the angle φ in Figure 5.3.1 is called an argument of z,
z = a + bi

|z|

Re(z) = a

Im(z) = b

φ

Figure 5.3.1

• Re(z) = |z| cos φ

• Im(z) = |z| sin φ

• z = |z|(cos φ + i sin φ) is called the polar form of z.

Complex Eigenvalues In Formula (3) of Section 5.1 we observed that the characteristic equation of a general
n × n matrix A has the form

λn + c1λ
n−1 + · · · + cn = 0 (1)

in which the highest power of λ has a coefficient of 1. Up to now we have limited our
discussion to matrices in which the solutions of (1) are real numbers. However, it is
possible for the characteristic equation of a matrix A with real entries to have imaginary
solutions; for example, the characteristic equation of the matrix

A =
[−2 −1

5 2

]
is ∣∣∣∣λ + 2 1

−5 λ − 2

∣∣∣∣ = λ2 + 1 = 0

which has the imaginary solutions λ = i and λ = −i. To deal with this case we will need
to explore the notion of a complex vector space and some related ideas.

Vectors in Cn A vector space in which scalars are allowed to be complex numbers is called a complex
vector space. In this section we will be concerned only with the following complex
generalization of the real vector space Rn.

DEFINITION 1 If n is a positive integer, then a complex n-tuple is a sequence of n

complex numbers (v1, v2, . . . , vn). The set of all complex n-tuples is called complex
n-space and is denoted by Cn. Scalars are complex numbers, and the operations of
addition, subtraction, and scalar multiplication are performed componentwise.

The terminology used for n-tuples of real numbers applies to complex n-tuples with-
out change. Thus, ifv1, v2, . . . , vn are complex numbers, then we call v = (v1, v2, . . . , vn)

a vector in Cn and v1, v2, . . . , vn its components. Some examples of vectors in C3 are

u = (1 + i,−4i, 3 + 2i), v = (0, i, 5), w = (
6 −√

2 i, 9 + 1
2 i, πi

)
Every vector

v = (v1, v2, . . . , vn) = (a1 + b1i, a2 + b2i, . . . , an + bni)

in Cn can be split into real and imaginary parts as

v = (a1, a2, . . . , an) + i(b1, b2, . . . , bn)

which we also denote as
v = Re(v) + i Im(v)
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where
Re(v) = (a1, a2, . . . , an) and Im(v) = (b1, b2, . . . , bn)

The vector
v = (v1, v2, . . . , vn) = (a1 − b1i, a2 − b2i, . . . , an − bni)

is called the complex conjugate of v and can be expressed in terms of Re(v) and Im(v) as

v = (a1, a2, . . . , an) − i(b1, b2, . . . , bn) = Re(v) − i Im(v) (2)

It follows that the vectors in Rn can be viewed as those vectors in Cn whose imaginary
part is zero; or stated another way, a vector v in Cn is in Rn if and only if v = v.

In this section we will need to distinguish between matrices whose entriesmust be real
numbers, called real matrices, and matrices whose entries may be either real numbers
or complex numbers, called complex matrices. When convenient, you can think of a
real matrix as a complex matrix each of whose entries has a zero imaginary part. The
standard operations on real matrices carry over without change to complex matrices,
and all of the familiar properties of matrices continue to hold.

If A is a complex matrix, then Re(A) and Im(A) are the matrices formed from the
real and imaginary parts of the entries of A, and A is the matrix formed by taking the
complex conjugate of each entry in A.

EXAMPLE 1 Real and Imaginary Parts ofVectors and Matrices

Let
As you might expect, if A is
a complex matrix, then A and
A can be expressed in terms of
Re(A) and Im(A) as

A = Re(A) + i Im(A)

A = Re(A) − i Im(A)

v = (3 + i,−2i, 5) and A =
[

1 + i −i

4 6 − 2i

]
Then

v = (3 − i, 2i, 5), Re(v) = (3, 0, 5), Im(v) = (1,−2, 0)

A =
[

1 − i i

4 6 + 2i

]
, Re(A) =

[
1 0

4 6

]
, Im(A) =

[
1 −1

0 −2

]

det(A) =
∣∣∣∣1 + i −i

4 6 − 2i

∣∣∣∣ = (1 + i)(6 − 2i) − (−i)(4) = 8 + 8i

Algebraic Properties of the
Complex Conjugate

The next two theorems list some properties of complex vectors and matrices that we will
need in this section. Some of the proofs are given as exercises.

THEOREM 5.3.1 If u and v are vectors in Cn, and if k is a scalar, then:

(a) u = u

(b) ku = ku

(c) u + v = u + v

(d ) u − v = u − v

THEOREM 5.3.2 If A is an m × k complex matrix and B is a k × n complex matrix,
then:

(a) A = A

(b) (AT ) = (A)T

(c) AB = A B
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The Complex Euclidean
Inner Product

The following definition extends the notions of dot product and norm to Cn.

DEFINITION 2 If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are vectors in Cn,

then the complex Euclidean inner product of u and v (also called the complex dot
product) is denoted by u · v and is defined as

u · v = u1v1 + u2v2 + · · · + unvn (3)

We also define the Euclidean norm on Cn to be

‖v‖ = √
v · v =

√
|v1|2 + |v2|2 + · · · + |vn|2 (4)

As in the real case, we call v a unit vector in Cn if ‖v‖ = 1, and we say two vectors u and

The complex conjugates in
(3) ensure that ‖v‖ is a real
number, for without them the
quantity v · v in (4) might be
imaginary.

v are orthogonal if u · v = 0.

EXAMPLE 2 Complex Euclidean Inner Product and Norm

Find u · v, v · u, ‖u‖, and ‖v‖ for the vectors

u = (1 + i, i, 3 − i) and v = (1 + i, 2, 4i)

Solution

u · v = (1 + i)(1 + i) + i(2) + (3 − i)(4i) = (1 + i)(1 − i) + 2i + (3 − i)(−4i) = −2 − 10i

v · u = (1 + i)(1 + i) + 2(i) + (4i)(3 − i) = (1 + i)(1 − i) − 2i + 4i(3 + i) = −2 + 10i

‖u‖ = √|1 + i|2 + |i|2 + |3 − i|2 = √
2 + 1 + 10 = √

13

‖v‖ = √|1 + i|2 + |2|2 + |4i|2 = √
2 + 4 + 16 = √

22

Recall from Table 1 of Section 3.2 that if u and v are column vectors in Rn, then their
dot product can be expressed as

u · v = uTv = vTu

The analogous formulas in Cn are (verify)

u · v = uT v = vTu (5)

Example 2 reveals a major difference between the dot product on Rn and the complex
dot product on Cn. For the dot product on Rn we always have v · u = u · v (the symmetry
property), but for the complex dot product the corresponding relationship is given by
u · v = v · u, which is called its antisymmetry property. The following theorem is an
analog of Theorem 3.2.2.

THEOREM 5.3.3 If u, v, and w are vectors in Cn, and if k is a scalar, then the complex
Euclidean inner product has the following properties:

(a) u · v = v · u [ Antisymmetry property ]

(b) u · (v + w) = u · v + u · w [ Distributive property ]

(c) k(u · v) = (ku) · v [ Homogeneity property ]

(d ) u · kv = k(u · v) [ Antihomogeneity property ]

(e) v · v ≥ 0 and v · v = 0 if and only if v = 0. [ Positivity property ]
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Parts (c) and (d ) of this theorem state that a scalar multiplying a complex Euclidean
inner product can be regrouped with the first vector, but to regroup it with the second
vector you must first take its complex conjugate. We will prove part (d ), and leave the
others as exercises.

Proof (d)

k(u · v) = k(v · u) = k (v · u) = k (v · u) = (kv) · u = u · (kv)

To complete the proof, substitute k for k and use the fact that k = k.

Vector Concepts in Cn Except for the use of complex scalars, the notions of linear combination, linear indepen-
dence, subspace, spanning, basis, and dimension carry over without change to Cn.

Is Rn a subspace of Cn? Ex-
plain.

Eigenvalues and eigenvectors are defined for complex matrices exactly as for real
matrices. If A is an n × n matrix with complex entries, then the complex roots of the
characteristic equation det(λI − A) = 0 are called complex eigenvalues of A. As in the
real case, λ is a complex eigenvalue of A if and only if there exists a nonzero vector x in
Cn such that Ax = λx. Each such x is called a complex eigenvector of A corresponding
to λ. The complex eigenvectors of A corresponding to λ are the nonzero solutions of
the linear system (λI − A)x = 0, and the set of all such solutions is a subspace of Cn,

called the complex eigenspace of A corresponding to λ.

The following theorem states that if a real matrix has complex eigenvalues, then those
eigenvalues and their corresponding eigenvectors occur in conjugate pairs.

THEOREM 5.3.4 If λ is an eigenvalue of a real n × n matrix A, and if x is a corre-
sponding eigenvector, then λ is also an eigenvalue of A, and x is a corresponding
eigenvector.

Proof Since λ is an eigenvalue of A and x is a corresponding eigenvector, we have

Ax = λx = λx (6)

However, A = A, since A has real entries, so it follows from part (c) of Theorem 5.3.2
that

Ax = Ax = Ax (7)

Equations (6) and (7) together imply that

Ax = Ax = λx

in which x �= 0 (why?); this tells us that λ is an eigenvalue of A and x is a corresponding
eigenvector.

EXAMPLE 3 Complex Eigenvalues and Eigenvectors

Find the eigenvalues and bases for the eigenspaces of

A =
[−2 −1

5 2

]

Solution The characteristic polynomial of A is∣∣∣∣λ + 2 1

−5 λ − 2

∣∣∣∣ = λ2 + 1 = (λ − i)(λ + i)
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so the eigenvalues of A are λ = i and λ = −i. Note that these eigenvalues are complex
conjugates, as guaranteed by Theorem 5.3.4. To find the eigenvectors we must solve the
system [

λ + 2 1

−5 λ − 2

] [
x1

x2

]
=
[

0

0

]
with λ = i and then with λ = −i. With λ = i, this system becomes[

i + 2 1

−5 i − 2

] [
x1

x2

]
=
[

0

0

]
(8)

We could solve this system by reducing the augmented matrix[
i + 2 1 0

−5 i − 2 0

]
(9)

to reduced row echelon form by Gauss–Jordan elimination, though the complex arith-
metic is somewhat tedious. A simpler procedure here is first to observe that the reduced
row echelon form of (9) must have a row of zeros because (8) has nontrivial solutions.
This being the case, each row of (9) must be a scalar multiple of the other, and hence the
first row can be made into a row of zeros by adding a suitable multiple of the second row
to it. Accordingly, we can simply set the entries in the first row to zero, then interchange
the rows, and then multiply the new first row by − 1

5 to obtain the reduced row echelon
form [

1 2
5 − 1

5 i 0

0 0 0

]

Thus, a general solution of the system is

x1 = (− 2
5 + 1

5 i
)
t, x2 = t

This tells us that the eigenspace corresponding to λ = i is one-dimensional and consists
of all complex scalar multiples of the basis vector

x =
[− 2

5 + 1
5 i

1

]
(10)

As a check, let us confirm that Ax = ix. We obtain

Ax =
[−2 −1

5 2

][− 2
5 + 1

5 i

1

]
=
[−2

(− 2
5 + 1

5 i
)− 1

5
(− 2

5 + 1
5 i
)+ 2

]
=
[− 1

5 − 2
5 i

i

]
= ix

We could find a basis for the eigenspace corresponding to λ = −i in a similar way, but
the work is unnecessary since Theorem 5.3.4 implies that

x =
[− 2

5 − 1
5 i

1

]
(11)

must be a basis for this eigenspace. The following computations confirm that x is an
eigenvector of A corresponding to λ = −i:

Ax =
[−2 −1

5 2

][− 2
5 − 1

5 i

1

]

=
[−2

(− 2
5 − 1

5 i
)− 1

5
(− 2

5 − 1
5 i
)+ 2

]
=
[− 1

5 + 2
5 i

−i

]
= −ix
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Since a number of our subsequent examples will involve 2 × 2 matrices with real
entries, it will be useful to discuss some general results about the eigenvalues of such
matrices. Observe first that the characteristic polynomial of the matrix

A =
[
a b

c d

]
is

det(λI − A) =
∣∣∣∣λ − a −b

−c λ − d

∣∣∣∣ = (λ − a)(λ − d) − bc = λ2 − (a + d)λ + (ad − bc)

We can express this in terms of the trace and determinant of A as

det(λI − A) = λ2 − tr(A)λ + det(A) (12)

from which it follows that the characteristic equation of A is

λ2 − tr(A)λ + det(A) = 0 (13)

Now recall from algebra that if ax2 + bx + c = 0 is a quadratic equation with real
coefficients, then the discriminant b2 − 4ac determines the nature of the roots:

b2 − 4ac > 0 [ Two distinct real roots ]

b2 − 4ac = 0 [ One repeated real root ]

b2 − 4ac < 0 [ Two conjugate imaginary roots ]

Applying this to (13) with a = 1, b = −tr(A), and c = det(A) yields the following
theorem.

THEOREM 5.3.5 If A is a 2 × 2 matrix with real entries, then the characteristic equa-
tion of A is λ2 − tr(A)λ + det(A) = 0 and

(a) A has two distinct real eigenvalues if tr(A)2 − 4 det(A) > 0;

(b) A has one repeated real eigenvalue if tr(A)2 − 4 det(A) = 0;

(c) A has two complex conjugate eigenvalues if tr(A)2 − 4 det(A) < 0.

EXAMPLE 4 Eigenvalues of a 2 × 2 Matrix

In each part, use Formula (13) for the characteristic equation to find the eigenvalues of

(a) A =
[

2 2

−1 5

]
(b) A =

[
0 −1

1 2

]
(c) A =

[
2 3

−3 2

]

Olga Taussky-Todd
(1906–1995)

Historical Note OlgaTaussky-Todd was one of the pioneering women
in matrix analysis and the first woman appointed to the faculty at the
California Institute ofTechnology. She worked at the National Physical
Laboratory in London during World War II, where she was assigned
to study flutter in supersonic aircraft. While there, she realized that
some results about the eigenvalues of a certain 6 × 6 complex matrix
could be used to answer key questions about the flutter problem that
would otherwise have required laborious calculation. AfterWorldWar II
OlgaTaussky-Todd continued her work on matrix-related subjects and
helped to draw many known but disparate results about matrices into
the coherent subject that we now call matrix theory.
[Image: Courtesy of the Archives, California Institute ofTechnology ]
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Solution (a) We have tr(A) = 7 and det(A) = 12, so the characteristic equation of A is

λ2 − 7λ + 12 = 0

Factoring yields (λ − 4)(λ − 3) = 0, so the eigenvalues of A are λ = 4 and λ = 3.

Solution (b) We have tr(A) = 2 and det(A) = 1, so the characteristic equation of A is

λ2 − 2λ + 1 = 0

Factoring this equation yields (λ − 1)2 = 0, so λ = 1 is the only eigenvalue of A; it has
algebraic multiplicity 2.

Solution (c) We have tr(A) = 4 and det(A) = 13, so the characteristic equation of A is

λ2 − 4λ + 13 = 0

Solving this equation by the quadratic formula yields

λ = 4 ±√
(−4)2 − 4(13)

2
= 4 ±√−36

2
= 2 ± 3i

Thus, the eigenvalues of A are λ = 2 + 3i and λ = 2 − 3i.

Symmetric Matrices Have
Real Eigenvalues

Our next result, which is concerned with the eigenvalues of real symmetric matrices, is
important in a wide variety of applications. The key to its proof is to think of a real
symmetric matrix as a complex matrix whose entries have an imaginary part of zero.

THEOREM 5.3.6 If A is a real symmetric matrix, then A has real eigenvalues.

Proof Suppose that λ is an eigenvalue of A and x is a corresponding eigenvector, where
we allow for the possibility that λ is complex and x is in Cn. Thus,

Ax = λx

where x �= 0. If we multiply both sides of this equation by xT and use the fact that

xTAx = xT(λx) = λ(xTx) = λ(x · x) = λ‖x‖2

then we obtain

λ = xTAx
‖x‖2

Since the denominator in this expression is real, we can prove that λ is real by showing
that

xTAx = xTAx (14)

But A is symmetric and has real entries, so it follows from the second equality in (5) and
properties of the conjugate that

xTAx = x
T
Ax = xT Ax = (Ax)T x = (Ax)Tx = (Ax)Tx = xTATx = xTAx

A Geometric Interpretation
of Complex Eigenvalues

The following theorem is the key to understanding the geometric significance of complex
eigenvalues of real 2 × 2 matrices.
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THEOREM 5.3.7 The eigenvalues of the real matrix

C =
[
a −b

b a

]
(15)

are λ = a ± bi. If a and b are not both zero, then this matrix can be factored as[
a −b

b a

]
=
[|λ| 0

0 |λ|
] [

cos φ − sin φ

sin φ cos φ

]
(16)

where φ is the angle from the positive x-axis to the ray that joins the origin to the
point (a, b) (Figure 5.3.2).

Geometrically, this theorem states that multiplication by a matrix of form (15) can be

|λ|

φ

(a, b)

x

y

Figure 5.3.2

viewed as a rotation through the angle φ followed by a scaling with factor |λ| (Figure
5.3.3).

Cx

x

Rotated

Scaled

x

y

φ

Figure 5.3.3

Proof The characteristic equation of C is (λ − a)2 + b2 = 0 (verify), from which it
follows that the eigenvalues of C are λ = a ± bi. Assuming that a and b are not both
zero, let φ be the angle from the positive x-axis to the ray that joins the origin to the
point (a, b). The angle φ is an argument of the eigenvalue λ = a + bi, so we see from
Figure 5.3.2 that

a = |λ| cos φ and b = |λ| sin φ

It follows from this that the matrix in (15) can be written as

[
a −b

b a

]
=
[|λ| 0

0 |λ|
]⎡⎢⎢⎣

a

|λ| − b

|λ|
b

|λ|
a

|λ|

⎤
⎥⎥⎦ =

[|λ| 0

0 |λ|
] [

cos φ − sin φ

sin φ cos φ

]

The following theorem, whose proof is considered in the exercises, shows that every
real 2 × 2 matrix with complex eigenvalues is similar to a matrix of form (15).

THEOREM 5.3.8 Let A be a real 2 × 2 matrix with complex eigenvalues λ = a ± bi

(where b �= 0). If x is an eigenvector of A corresponding to λ = a − bi, then the
matrix P = [Re(x) Im(x)] is invertible and

A = P

[
a −b

b a

]
P−1 (17)

EXAMPLE 5 A Matrix Factorization Using Complex Eigenvalues

Factor the matrix in Example 3 into form (17) using the eigenvalue λ = −i and the
corresponding eigenvector that was given in (11).

Solution For consistency with the notation in Theorem 5.3.8, let us denote the eigen-
vector in (11) that corresponds to λ = −i by x (rather than x as before). For this λ and
x we have

a = 0, b = 1, Re(x) =
[− 2

5

1

]
, Im(x) =

[− 1
5

0

]
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Thus,

P = [Re(x) Im(x)] =
[− 2

5 − 1
5

1 0

]

so A can be factored in form (17) as[−2 −1

5 2

]
=
[− 2

5 − 1
5

1 0

][
0 −1

1 0

] [
0 1

−5 −2

]

You may want to confirm this by multiplying out the right side.

A Geometric Interpretation
ofTheorem 5.3.8

To clarify what Theorem 5.3.8 says geometrically, let us denote the matrices on the right
side of (16) by S and Rφ , respectively, and then use (16) to rewrite (17) as

A = PSRφP−1 = P

[
|λ| 0

0 |λ|

][
cos φ − sin φ

sin φ cos φ

]
P−1 (18)

If we now view P as the transition matrix from the basis B = {Re(x), Im(x)} to the
standard basis, then (18) tells us that computing a product Ax0 can be broken down into
a three-step process:

Interpreting Formula (18)

Step 1. Map x0 from standard coordinates into B-coordinates by forming the product
P−1x0.

Step 2. Rotate and scale the vector P−1x0 by forming the product SRφP−1x0.

Step 3. Map the rotated and scaled vector back to standard coordinates to obtain
Ax0 = PSRφP−1x0.

Power Sequences There are many problems in which one is interested in how successive applications of a
matrix transformation affect a specific vector. For example, if A is the standard matrix
for an operator on Rn and x0 is some fixed vector in Rn, then one might be interested in
the behavior of the power sequence

x0, Ax0, A2x0, . . . , Akx0, . . .

For example, if

A =
[

1
2

3
4

− 3
5

11
10

]
and x0 =

[
1

1

]
then with the help of a computer or calculator one can show that the first four terms in
the power sequence are

x0 =
[

1

1

]
, Ax0 =

[
1.25

0.5

]
, A2x0 =

[
1.0

−0.2

]
, A3x0 =

[
0.35

−0.82

]

With the help of MATLAB or a computer algebra system one can show that if the first
100 terms are plotted as ordered pairs (x, y), then the points move along the elliptical
path shown in Figure 5.3.4a.
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Figure 5.3.4

To understand why the points move along an elliptical path, we will need to examine
the eigenvalues and eigenvectors of A. We leave it for you to show that the eigenvalues
of A are λ = 4

5 ± 3
5 i and that the corresponding eigenvectors are

λ1 = 4
5 − 3

5 i: v1 = (
1
2 + i, 1

)
and λ2 = 4

5 + 3
5 i: v2 = (

1
2 − i, 1

)
If we take λ = λ1 = 4

5 − 3
5 i and x = v1 = (

1
2 + i, 1

)
in (17) and use the fact that |λ| = 1,

then we obtain the factorization⎡
⎣ 1

2
3
4

− 3
5

11
10

⎤
⎦ =

[
1
2 1

1 0

]⎡⎣ 4
5 − 3

5

3
5

4
5

⎤
⎦[0 1

1 − 1
2

]

A = P Rφ P−1

(19)

where Rφ is a rotation about the origin through the angle φ whose tangent is

tan φ = sin φ

cos φ
= 3/5

4/5
= 3

4

(
φ = tan−1 3

4 ≈ 36.9◦)
The matrix P in (19) is the transition matrix from the basis

B = {Re(x), Im(x)} = {(
1
2 , 1

)
, (1, 0)

}
to the standard basis, and P−1 is the transition matrix from the standard basis to the
basis B (Figure 5.3.5). Next, observe that if n is a positive integer, then (19) implies that

Anx0 = (PRφP−1)nx0 = PR n
φ P−1x0

so the product Anx0 can be computed by first mapping x0 into the point P−1x0 in B-
coordinates, then multiplying by R n

φ to rotate this point about the origin through the

Re(x)

Im(x) (1, 0)

(0, 1) (   , 1)1
2

x

y

Figure 5.3.5
angle nφ, and then multiplying R n

φ P−1x0 by P to map the resulting point back to stan-
dard coordinates. We can now see what is happening geometrically: In B-coordinates
each successive multiplication by A causes the point P−1x0 to advance through an angle
φ, thereby tracing a circular orbit about the origin. However, the basis B is skewed (not
orthogonal), so when the points on the circular orbit are transformed back to standard
coordinates, the effect is to distort the circular orbit into the elliptical orbit traced by
Anx0 (Figure 5.3.4b). Here are the computations for the first step (successive steps are
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illustrated in Figure 5.3.4c):⎡
⎣ 1

2
3
4

− 3
5

11
10

⎤
⎦[1

1

]
=
[

1
2 1

1 0

]⎡⎣ 4
5 − 3

5

3
5

4
5

⎤
⎦[0 1

1 − 1
2

][
1

1

]

=
[

1
2 1

1 0

]⎡⎣ 4
5 − 3

5

3
5

4
5

⎤
⎦[1

1
2

]
[x0 is mapped to B-coordinates.]

=
[

1
2 1

1 0

][
1
2

1

]
[The point

(
1, 1

2

)
is rotated through the angle φ.]

=
⎡
⎣ 5

4

1
2

⎤
⎦ [The point

( 1
2 , 1

)
is mapped to standard coordinates.]

Exercise Set 5.3
In Exercises 1–2, find u, Re(u), Im(u), and ‖u‖.

1. u = (2 − i, 4i, 1 + i) 2. u = (6, 1 + 4i, 6 − 2i)

In Exercises 3–4, show that u, v, and k satisfy Theorem 5.3.1.

3. u = (3 − 4i, 2 + i,−6i), v = (1 + i, 2 − i, 4), k = i

4. u = (6, 1 + 4i, 6 − 2i), v = (4, 3 + 2i, i − 3), k = −i

5. Solve the equation ix − 3v = u for x, where u and v are the
vectors in Exercise 3.

6. Solve the equation (1 + i)x + 2u = v for x, where u and v are
the vectors in Exercise 4.

In Exercises 7–8, find A, Re(A), Im(A), det(A), and tr(A).

7. A =
[−5i 4

2 − i 1 + 5i

]
8. A =

[
4i 2 − 3i

2 + 3i 1

]
9. Let A be the matrix given in Exercise 7, and let B be the matrix

B =
[

1 − i

2i

]
Confirm that these matrices have the properties stated in The-
orem 5.3.2.

10. Let A be the matrix given in Exercise 8, and let B be the matrix

B =
[

5i

1 − 4i

]
Confirm that these matrices have the properties stated in The-
orem 5.3.2.

In Exercises 11–12, compute u · v, u · w, and v · w, and show
that the vectors satisfy Formula (5) and parts (a), (b), and (c) of
Theorem 5.3.3.

11. u = (i, 2i, 3), v = (4,−2i, 1 + i), w = (2 − i, 2i, 5 + 3i),
k = 2i

12. u = (1 + i, 4, 3i), v = (3,−4i, 2 + 3i),
w = (1 − i, 4i, 4 − 5i), k = 1 + i

13. Compute (u · v) − w · u for the vectors u, v, and w in Exer-
cise 11.

14. Compute (iu · w) + (‖u‖v) · u for the vectors u, v, and w in
Exercise 12.

In Exercises 15–18, find the eigenvalues and bases for the
eigenspaces of A.

15. A =
[

4 −5

1 0

]
16. A =

[−1 −5

4 7

]

17. A =
[

5 −2

1 3

]
18. A =

[
8 6

−3 2

]

In Exercises 19–22, each matrix C has form (15). Theorem
5.3.7 implies that C is the product of a scaling matrix with factor
|λ| and a rotation matrix with angle φ. Find |λ| and φ for which
−π < φ ≤ π.

19. C =
[

1 −1

1 1

]
20. C =

[
0 5

−5 0

]

21. C =
[

1
√

3

−√
3 1

]
22. C =

[ √
2

√
2

−√
2

√
2

]

In Exercises 23–26, find an invertible matrix P and a matrix C

of form (15) such that A = PCP−1.

23. A =
[−1 −5

4 7

]
24. A =

[
4 −5

1 0

]

25. A =
[

8 6

−3 2

]
26. A =

[
5 −2

1 3

]
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27. Find all complex scalars k, if any, for which u and v are or-
thogonal in C3.

(a) u = (2i, i, 3i), v = (i, 6i, k)

(b) u = (k, k, 1 + i), v = (1,−1, 1 − i)

28. Show that if A is a real n × n matrix and x is a column vector
in Cn, then Re(Ax) = A(Re(x)) and Im(Ax) = A(Im(x)).

29. The matrices

σ1 =
[

0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]

called Pauli spin matrices, are used in quantum mechanics to
study particle spin. The Dirac matrices, which are also used in
quantum mechanics, are expressed in terms of the Pauli spin
matrices and the 2 × 2 identity matrix I2 as

β =
[
I2 0

0 −I2

]
, αx =

[
0 σ1

σ1 0

]
,

αy =
[

0 σ2

σ2 0

]
, αz =

[
0 σ3

σ3 0

]

(a) Show that β2 = α2
x = α2

y = α2
z .

(b) Matrices A and B for which AB = −BA are said to be
anticommutative. Show that the Dirac matrices are anti-
commutative.

30. If k is a real scalar and v is a vector in Rn, then Theorem 3.2.1
states that ‖kv‖ = |k|‖v‖. Is this relationship also true if k is
a complex scalar and v is a vector in Cn? Justify your answer.

Working with Proofs

31. Prove part (c) of Theorem 5.3.1.

32. Prove Theorem 5.3.2.

33. Prove that if u and v are vectors in Cn, then

u · v = 1

4
‖u + v‖2 − 1

4
‖u − v‖2

+ i

4
‖u + iv‖2 − i

4
‖u − iv‖2

34. It follows from Theorem 5.3.7 that the eigenvalues of the ro-
tation matrix

Rφ =
[

cos φ −sin φ

sin φ cos φ

]

are λ = cos φ ± i sin φ. Prove that if x is an eigenvector cor-
responding to either eigenvalue, then Re(x) and Im(x) are or-
thogonal and have the same length. [Note: This implies that
P = [Re(x) | Im(x)] is a real scalar multiple of an orthogonal
matrix.]

35. The two parts of this exercise lead you through a proof of
Theorem 5.3.8.

(a) For notational simplicity, let

M =
[
a −b

b a

]
and let u = Re(x) and v = Im(x), so P = [u | v]. Show
that the relationship Ax = λx implies that

Ax = (au + bv) + i(−bu + av)

and then equate real and imaginary parts in this equation
to show that

AP = [Au | Av] = [au + bv | −bu + av] = PM

(b) Show that P is invertible, thereby completing the proof,
since the result in part (a) implies that A = PMP−1.
[Hint: If P is not invertible, then one of its col-
umn vectors is a real scalar multiple of the other, say
v = cu. Substitute this into the equations Au = au + bv
and Av = −bu + av obtained in part (a), and show that
(1 + c2)bu = 0. Finally, show that this leads to a contra-
diction, thereby proving that P is invertible.]

36. In this problem you will prove the complex analog of the
Cauchy–Schwarz inequality.

(a) Prove: If k is a complex number, and u and v are vectors
in Cn, then

(u − kv) · (u − kv) = u · u − k(u · v) − k(u · v) + kk(v · v)

(b) Use the result in part (a) to prove that

0 ≤ u · u − k(u · v) − k(u · v) + kk(v · v)

(c) Take k = (u · v)/(v · v) in part (b) to prove that

|u · v| ≤ ‖u‖ ‖v‖

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) There is a real 5 × 5 matrix with no real eigenvalues.

(b) The eigenvalues of a 2 × 2 complex matrix are the solutions
of the equation λ2 − tr(A)λ + det(A) = 0.

(c) A 2 × 2 matrix A with real entries has two distinct eigenvalues
if and only if tr(A)2 �= 4 det(A).

(d) If λ is a complex eigenvalue of a real matrix A with a corre-
sponding complex eigenvector v, then λ is a complex eigen-
value of A and v is a complex eigenvector of A corresponding
to λ.

(e) Every eigenvalue of a complex symmetric matrix is real.

(f ) If a 2 × 2 real matrix A has complex eigenvalues and x0 is a
vector in R2, then the vectors x0, Ax0, A2x0, . . . , A

nx0, . . . lie
on an ellipse.
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5.4 Differential Equations
Many laws of physics, chemistry, biology, engineering, and economics are described in
terms of “differential equations”—that is, equations involving functions and their
derivatives. In this section we will illustrate one way in which matrix diagonalization can be
used to solve systems of differential equations. Calculus is a prerequisite for this section.

Terminology Recall from calculus that a differential equation is an equation involving unknown func-
tions and their derivatives. The order of a differential equation is the order of the highest
derivative it contains. The simplest differential equations are the first-order equations
of the form

y ′ = ay (1)

where y = f(x) is an unknown differentiable function to be determined, y ′ = dy/dx is
its derivative, and a is a constant. As with most differential equations, this equation has
infinitely many solutions; they are the functions of the form

y = ceax (2)

where c is an arbitrary constant. That every function of this form is a solution of (1)
follows from the computation

y ′ = caeax = ay

and that these are the only solution is shown in the exercises. Accordingly, we call (2) the
general solution of (1). As an example, the general solution of the differential equation
y ′ = 5y is

y = ce5x (3)

Often, a physical problem that leads to a differential equation imposes some conditions
that enable us to isolate one particular solution from the general solution. For example,
if we require that solution (3) of the equation y ′ = 5y satisfy the added condition

y(0) = 6 (4)

(that is, y = 6 when x = 0), then on substituting these values in (3), we obtain
6 = ce0 = c, from which we conclude that

y = 6e5x

is the only solution y ′ = 5y that satisfies (4).
A condition such as (4), which specifies the value of the general solution at a point,

is called an initial condition, and the problem of solving a differential equation subject
to an initial condition is called an initial-value problem.

First-Order Linear Systems In this section we will be concerned with solving systems of differential equations of the
form

y ′
1 = a11y1 + a12y2 + · · ·+ a1nyn

y ′
2 = a21y1 + a22y2 + · · ·+ a2nyn
...

...
...

...
y ′

n = an1y1 + an2y2 + · · ·+ annyn

(5)

where y1 = f1(x), y2 = f2(x), . . . , yn = fn(x) are functions to be determined, and the
aij’s are constants. In matrix notation, (5) can be written as⎡

⎢⎢⎢⎣
y ′

1

y ′
2
...

y ′
n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦
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or more briefly as

y′ = Ay (6)

where the notation y′ denotes the vector obtained by differentiating each component
of y.

We call (5) or its matrix form (6) a constant coefficient first-order homogeneous linear
system. It is of first order because all derivatives are of that order, it is linear because dif-
ferentiation and matrix multiplication are linear transformations, and it is homogeneous
because

y1 = y2 = · · · = yn = 0

is a solution regardless of the values of the coefficients. As expected, this is called the
trivial solution. In this section we will work primarily with the matrix form. Here is an
example.

EXAMPLE 1 Solution of a Linear System with Initial Conditions

(a) Write the following system in matrix form:

y ′
1 = 3y1

y ′
2 = −2y2

y ′
3 = 5y3

(7)

(b) Solve the system.

(c) Find a solution of the system that satisfies the initial conditions y1(0) = 1,
y2(0) = 4, and y3(0) = −2.

Solution (a) ⎡
⎢⎣y ′

1

y ′
2

y ′
3

⎤
⎥⎦ =

⎡
⎢⎣3 0 0

0 −2 0

0 0 5

⎤
⎥⎦
⎡
⎢⎣y1

y2

y3

⎤
⎥⎦ (8)

or

y′ =
⎡
⎢⎣3 0 0

0 −2 0

0 0 5

⎤
⎥⎦ y (9)

Solution (b) Because each equation in (7) involves only one unknown function, we can
solve the equations individually. It follows from (2) that these solutions are

y1 = c1e
3x

y2 = c2e
−2x

y3 = c3e
5x

or, in matrix notation,

y =
⎡
⎢⎣y1

y2

y3

⎤
⎥⎦ =

⎡
⎢⎣c1e

3x

c2e
−2x

c3e
5x

⎤
⎥⎦ (10)

Solution (c) From the given initial conditions, we obtain

1 = y1(0) = c1e
0 = c1

4 = y2(0) = c2e
0 = c2

−2 = y3(0) = c3e
0 = c3
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so the solution satisfying these conditions is

y1 = e3x, y2 = 4e−2x, y3 = −2e5x

or, in matrix notation,

y =
⎡
⎢⎣y1

y2

y3

⎤
⎥⎦ =

⎡
⎢⎣ e3x

4e−2x

−2e5x

⎤
⎥⎦

Solution by Diagonalization What made the system in Example 1 easy to solve was the fact that each equation involved
only one of the unknown functions, so its matrix formulation, y′ = Ay, had a diagonal
coefficient matrix A [Formula (9)]. A more complicated situation occurs when some or
all of the equations in the system involve more than one of the unknown functions, for
in this case the coefficient matrix is not diagonal. Let us now consider how we might
solve such a system.

The basic idea for solving a system y′ = Ay whose coefficient matrix A is not diagonal
is to introduce a new unknown vector u that is related to the unknown vector y by an
equation of the form y = P u in which P is an invertible matrix that diagonalizes A.
Of course, such a matrix may or may not exist, but if it does, then we can rewrite the
equation y′ = Ay as

P u′ = A(P u)

or alternatively as
u′ = (P−1AP)u

Since P is assumed to diagonalize A, this equation has the form

u′ = Du

where D is diagonal. We can now solve this equation for u using the method of Example
1, and then obtain y by matrix multiplication using the relationship y = P u.

In summary, we have the following procedure for solving a system y′ = Ay in the
case were A is diagonalizable.

A Procedure for Solving y′ = Ay If A Is Diagonalizable

Step 1. Find a matrix P that diagonalizes A.

Step 2. Make the substitutions y = P u and y′ = P u′ to obtain a new “diagonal
system” u′ = Du, where D = P−1AP .

Step 3. Solve u′ = Du.

Step 4. Determine y from the equation y = P u.

EXAMPLE 2 Solution Using Diagonalization

(a) Solve the system
y ′

1 = y1 + y2

y ′
2 = 4y1 − 2y2

(b) Find the solution that satisfies the initial conditions y1(0) = 1, y2(0) = 6.

Solution (a) The coefficient matrix for the system is

A =
[

1 1

4 −2

]
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As discussed in Section 5.2, A will be diagonalized by any matrix P whose columns are
linearly independent eigenvectors of A. Since

det(λI − A) =
∣∣∣∣λ − 1 −1

−4 λ + 2

∣∣∣∣ = λ2 + λ − 6 = (λ + 3)(λ − 2)

the eigenvalues of A are λ = 2 and λ = −3. By definition,

x =
[
x1

x2

]

is an eigenvector of A corresponding to λ if and only if x is a nontrivial solution of[
λ − 1 −1

−4 λ + 2

] [
x1

x2

]
=
[

0

0

]

If λ = 2, this system becomes [
1 −1

−4 4

] [
x1

x2

]
=
[

0

0

]

Solving this system yields x1 = t, x2 = t, so[
x1

x2

]
=
[
t

t

]
= t

[
1

1

]

Thus,

p1 =
[

1

1

]
is a basis for the eigenspace corresponding to λ = 2. Similarly, you can show that

p2 =
[
− 1

4

1

]

is a basis for the eigenspace corresponding to λ = −3. Thus,

P =
[

1 − 1
4

1 1

]

diagonalizes A, and

D = P−1AP =
[

2 0

0 −3

]
Thus, as noted in Step 2 of the procedure stated above, the substitution

y = P u and y′ = P u′

yields the “diagonal system”

u′ = Du =
[

2 0

0 −3

]
u or

u′
1 = 2u1

u′
2 = −3u2

From (2) the solution of this system is

u1 = c1e
2x

u2 = c2e
−3x or u =

[
c1e

2x

c2e
−3x

]
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so the equation y = P u yields, as the solution for y,

y =
[
y1

y2

]
=
[

1 − 1
4

1 1

][
c1e

2x

c2e
−3x

]
=
[
c1e

2x − 1
4c2e

−3x

c1e
2x + c2e

−3x

]

or
y1 = c1e

2x − 1
4c2e

−3x

y2 = c1e
2x + c2e

−3x
(11)

Solution (b) If we substitute the given initial conditions in (11), we obtain

c1 − 1
4c2 = 1

c1 + c2 = 6

Solving this system, we obtain c1 = 2, c2 = 4, so it follows from (11) that the solution
satisfying the initial conditions is

y1 = 2e2x − e−3x

y2 = 2e2x + 4e−3x

Remark Keep in mind that the method of Example 2 works because the coefficient matrix of
the system is diagonalizable. In cases where this is not so, other methods are required. These are
typically discussed in books devoted to differential equations.

Exercise Set 5.4
1. (a) Solve the system

y ′
1 = y1 + 4y2

y ′
2 = 2y1 + 3y2

(b) Find the solution that satisfies the initial conditions
y1(0) = 0, y2(0) = 0.

2. (a) Solve the system

y ′
1 = y1 + 3y2

y ′
2 = 4y1 + 5y2

(b) Find the solution that satisfies the conditions y1(0) = 2,
y2(0) = 1.

3. (a) Solve the system

y ′
1 = 4y1 + y3

y ′
2 = −2y1 + y2

y ′
3 = −2y1 + y3

(b) Find the solution that satisfies the initial conditions
y1(0) = −1, y2(0) = 1, y3(0) = 0.

4. Solve the system

y ′
1 = 4y1 + 2y2 + 2y3

y ′
2 = 2y1 + 4y2 + 2y3

y ′
3 = 2y1 + 2y2 + 4y3

5. Show that every solution of y ′ = ay has the form y = ceax .
[Hint: Let y = f(x) be a solution of the equation, and show
that f(x)e−ax is constant.]

6. Show that if A is diagonalizable and

y =

⎡
⎢⎢⎢⎣

y1

y2
...
yn

⎤
⎥⎥⎥⎦

is a solution of the system y′ = Ay, then each yi is a linear
combination of eλ1x, eλ2x, . . . , eλnx, where λ1, λ2, . . . , λn are
the eigenvalues of A.

7. Sometimes it is possible to solve a single higher-order linear
differential equation with constant coefficients by expressing
it as a system and applying the methods of this section. For
the differential equation y ′′ − y ′ − 6y = 0, show that the sub-
stitutions y1 = y and y2 = y ′ lead to the system

y ′
1 = y2

y ′
2 = 6y1 + y2

Solve this system, and use the result to solve the original dif-
ferential equation.
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8. Use the procedure in Exercise 7 to solve y ′′ + y ′ − 12y = 0.

9. Explain how you might use the procedure in Exercise 7 to solve
y ′′′ − 6y ′′ + 11y ′ − 6y = 0. Use that procedure to solve the
equation.

10. Solve the nondiagonalizable system

y ′
1 = y1 + y2

y ′
2 = y2

[Hint: Solve the second equation for y2, substitute in the first
equation, and then multiply both sides of the resulting equa-
tion by e−x .]

11. Consider a system of differential equations y′ = Ay, where A

is a 2 × 2 matrix. For what values of a11, a12, a21, a22 do the
component solutions y1(t), y2(t) tend to zero as t → �? In
particular, what must be true about the determinant and the
trace of A for this to happen?

12. (a) By rewriting (11) in matrix form, show that the solution
of the system in Example 2 can be expressed as

y = c1e
2x

[
1

1

]
+ c2e

−3x

[
− 1

4

1

]

This is called the general solution of the system.

(b) Note that in part (a), the vector in the first term is an
eigenvector corresponding to the eigenvalue λ1 = 2, and
the vector in the second term is an eigenvector correspond-
ing to the eigenvalue λ2 = −3. This is a special case of the
following general result:

Theorem. If the coefficient matrix A of the system y′ = Ay is
diagonalizable, then the general solution of the system can be
expressed as

y = c1e
λ1xx1 + c2e

λ2xx2 + · · · + cne
λnxxn

where λ1, λ2, . . . , λn are the eigenvalues ofA, and xi is an eigen-
vector of A corresponding to λi.

13. The electrical circuit in the accompanying figure is called a
parallel LRC circuit; it contains a resistor with resistance
R ohms (�), an inductor with inductance L henries (H), and
a capacitor with capacitance C farads (F). It is shown in elec-
trical circuit analysis that at time t the current iL through the
inductor and the voltage vC across the capacitor are solutions
of the system[

i ′L(t)

v′
C(t)

]
=
[

0 1/L

−1/C −1/(RC)

][
iL(t)

vC(t)

]

(a) Find the general solution of this system in the case where
R = 1 ohm, L = 1 henry, and C = 0.5 farad.

(b) Find iL(t) and vC(t) subject to the initial conditions
iL(0) = 2 amperes and vC(0) = 1 volt.

(c) What can you say about the current and voltage in part (b)
over the “long term” (that is, as t →�)?

C

R

L
Figure Ex-13

In Exercises 14–15, a mapping

L: C�(−�, �)→C�(−�, �)

is given.

(a) Show that L is a linear operator.

(b) Use the ideas in Exercises 7 and 9 to solve the differential
equation L(y) = 0.

14. L(y) = y ′′ + 2y ′ − 3y

15. L(y) = y ′′′ − 2y ′′ − y ′ + 2y

Working with Proofs

16. Prove the theorem in Exercise 12 by tracing through the four-
step procedure preceding Example 2 with

D =

⎡
⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0

...
...

...

0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎦ and P = [x1 | x2 | · · · | xn]

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) Every system of differential equations y′ = Ay has a solution.

(b) If x′ = Ax and y′ = Ay, then x = y.

(c) If x′ = Ax and y′ = Ay, then (cx + dy)′ = A(cx + dy) for
all scalars c and d.

(d) If A is a square matrix with distinct real eigenvalues, then it is
possible to solve x′ = Ax by diagonalization.

(e) If A and P are similar matrices, then y′ = Ay and u′ = P u
have the same solutions.



332 Chapter 5 Eigenvalues and Eigenvectors

Working withTechnology

T1. (a) Find the general solution of the following system by com-
puting appropriate eigenvalues and eigenvectors.

y ′
1 = 3y1 + 2y2 + 2y3

y ′
2 = y1 + 4y2 + y3

y ′
3 = −2y1 − 4y2 − y3

(b) Find the solution that satisfies the initial conditions y1(0) = 0,
y2(0) = 1, y3(0) = −3. [Technology not required.]

T2. It is shown in electrical circuit theory that for the LRC circuit
in Figure Ex-13 the current I in amperes (A) through the inductor

and the voltage drop V in volts (V) across the capacitor satisfy the
system of differential equations

dI

dt
= V

L

dV

dt
= − I

C
− V

RC

where the derivatives are with respect to the time t . Find I and
V as functions of t if L = 0.5 H, C = 0.2 F, R = 2 �, and the
initial values of V and I are V (0) = 1 V and I (0) = 2 A.

5.5 Dynamical Systems and Markov Chains
In this optional section we will show how matrix methods can be used to analyze the
behavior of physical systems that evolve over time. The methods that we will study here
have been applied to problems in business, ecology, demographics, sociology, and most of
the physical sciences.

Dynamical Systems A dynamical system is a finite set of variables whose values change with time. The value
of a variable at a point in time is called the state of the variable at that time, and the vector
formed from these states is called the state vector of the dynamical system at that time.
Our primary objective in this section is to analyze how the state vector of a dynamical
system changes with time. Let us begin with an example.

EXAMPLE 1 Market Share as a Dynamical System

Suppose that two competing television channels, channel 1 and channel 2, each have 50%
of the viewer market at some initial point in time. Assume that over each one-year period
channel 1 captures 10% of channel 2’s share, and channel 2 captures 20% of channel 1’s
share (see Figure 5.5.1). What is each channel’s market share after one year?

Channel 1 loses 20%
and holds 80%.

Channel 2 loses 10%
and holds 90%.

Channel

1
Channel

2

10%

20%

80% 90%

Figure 5.5.1

Solution Let us begin by introducing the time-dependent variables

x1(t) = fraction of the market held by channel 1 at time t

x2(t) = fraction of the market held by channel 2 at time t

and the column vector

x(t) =
[
x1(t)

x2(t)

] ← Channel 1’s fraction of the market at time t in years

← Channel 2’s fraction of the market at time t in years

The variables x1(t) and x2(t) form a dynamical system whose state at time t is the vector
x(t). If we take t = 0 to be the starting point at which the two channels had 50% of the
market, then the state of the system at that time is

x(0) =
[
x1(0)

x2(0)

]
=
[

0.5

0.5

] ← Channel 1’s fraction of the market at time t = 0

← Channel 2’s fraction of the market at time t = 0
(1)

Now let us try to find the state of the system at time t = 1 (one year later). Over the
one-year period, channel 1 retains 80% of its initial 50%, and it gains 10% of channel 2’s
initial 50%. Thus,

x1(1) = 0.8(0.5) + 0.1(0.5) = 0.45 (2)
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Similarly, channel 2 gains 20% of channel 1’s initial 50%, and retains 90% of its initial
50%. Thus,

x2(1) = 0.2(0.5) + 0.9(0.5) = 0.55 (3)

Therefore, the state of the system at time t = 1 is

x(1) =
[
x1(1)

x2(1)

]
=
[

0.45

0.55

] ← Channel 1’s fraction of the market at time t = 1

← Channel 2’s fraction of the market at time t = 1
(4)

EXAMPLE 2 Evolution of Market Share over FiveYears

Track the market shares of channels 1 and 2 in Example 1 over a five-year period.

Solution To solve this problem suppose that we have already computed the market
share of each channel at time t = k and we are interested in using the known values of
x1(k) and x2(k) to compute the market shares x1(k + 1) and x2(k + 1) one year later.
The analysis is exactly the same as that used to obtain Equations (2) and (3). Over the
one-year period, channel 1 retains 80% of its starting fraction x1(k) and gains 10% of
channel 2’s starting fraction x2(k). Thus,

x1(k + 1) = (0.8)x1(k) + (0.1)x2(k) (5)

Similarly, channel 2 gains 20% of channel 1’s starting fraction x1(k) and retains 90% of
its own starting fraction x2(k). Thus,

x2(k + 1) = (0.2)x1(k) + (0.9)x2(k) (6)

Equations (5) and (6) can be expressed in matrix form as[
x1(k + 1)

x2(k + 1)

]
=
[

0.8 0.1

0.2 0.9

] [
x1(k)

x2(k)

]
(7)

which provides a way of using matrix multiplication to compute the state of the system
at time t = k + 1 from the state at time t = k. For example, using (1) and (7) we obtain

x(1) =
[

0.8 0.1

0.2 0.9

]
x(0) =

[
0.8 0.1

0.2 0.9

] [
0.5

0.5

]
=
[

0.45

0.55

]
which agrees with (4). Similarly,

x(2) =
[

0.8 0.1

0.2 0.9

]
x(1) =

[
0.8 0.1

0.2 0.9

] [
0.45

0.55

]
=
[

0.415

0.585

]
We can now continue this process, using Formula (7) to compute x(3) from x(2), then
x(4) from x(3), and so on. This yields (verify)

x(3) =
[

0.3905

0.6095

]
, x(4) =

[
0.37335

0.62665

]
, x(5) =

[
0.361345

0.638655

]
(8)

Thus, after five years, channel 1 will hold about 36% of the market and channel 2 will
hold about 64% of the market.

If desired, we can continue the market analysis in the last example beyond the five-
year period and explore what happens to the market share over the long term. We did
so, using a computer, and obtained the following state vectors (rounded to six decimal
places):

x(10) ≈
[

0.338041

0.661959

]
, x(20) ≈

[
0.333466

0.666534

]
, x(40) ≈

[
0.333333

0.666667

]
(9)
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All subsequent state vectors, when rounded to six decimal places, are the same as x(40),
so we see that the market shares eventually stabilize with channel 1 holding about one-
third of the market and channel 2 holding about two-thirds. Later in this section, we
will explain why this stabilization occurs.

Markov Chains In many dynamical systems the states of the variables are not known with certainty but
can be expressed as probabilities; such dynamical systems are called stochastic processes
(from the Greek word stochastikos, meaning “proceeding by guesswork”). A detailed
study of stochastic processes requires a precise definition of the term probability, which
is outside the scope of this course. However, the following interpretation will suffice for
our present purposes:

Stated informally, the probability that an experiment or observation will have a certain
outcome is the fraction of the time that the outcome would occur if the experiment could
be repeated indefinitely under constant conditions—the greater the number of actual
repetitions, the more accurately the probability describes the fraction of time that the
outcome occurs.

For example, when we say that the probability of tossing heads with a fair coin is 1
2 ,

we mean that if the coin were tossed many times under constant conditions, then we
would expect about half of the outcomes to be heads. Probabilities are often expressed
as decimals or percentages. Thus, the probability of tossing heads with a fair coin can
also be expressed as 0.5 or 50%.

If an experiment or observation has n possible outcomes, then the probabilities of
those outcomes must be nonnegative fractions whose sum is 1. The probabilities are
nonnegative because each describes the fraction of occurrences of an outcome over the
long term, and the sum is 1 because they account for all possible outcomes. For example,
if a box containing 10 balls has one red ball, three green balls, and six yellow balls, and
if a ball is drawn at random from the box, then the probabilities of the various outcomes
are

p1 = prob(red) = 1/10 = 0.1

p2 = prob(green) = 3/10 = 0.3

p3 = prob(yellow) = 6/10 = 0.6

Each probability is a nonnegative fraction and

p1 + p2 + p3 = 0.1 + 0.3 + 0.6 = 1

In a stochastic process with n possible states, the state vector at each time t has the
form

x(t) =

⎡
⎢⎢⎢⎣

x1(t)

x2(t)
...

xn(t)

⎤
⎥⎥⎥⎦

Probability that the system is in state 1

Probability that the system is in state 2
...

Probability that the system is in state n

The entries in this vector must add up to 1 since they account for all n possibilities. In
general, a vector with nonnegative entries that add up to 1 is called a probability vector.

EXAMPLE 3 Example 1 Revisited from the ProbabilityViewpoint

Observe that the state vectors in Examples 1 and 2 are all probability vectors. This is to
be expected since the entries in each state vector are the fractional market shares of the
channels, and together they account for the entire market. In practice, it is preferable
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to interpret the entries in the state vectors as probabilities rather than exact market
fractions, since market information is usually obtained by statistical sampling procedures
with intrinsic uncertainties. Thus, for example, the state vector

x(1) =
[
x1(1)

x2(1)

]
=
[

0.45

0.55

]

which we interpreted in Example 1 to mean that channel 1 has 45% of the market and
channel 2 has 55%, can also be interpreted to mean that an individual picked at random
from the market will be a channel 1 viewer with probability 0.45 and a channel 2 viewer
with probability 0.55.

A square matrix, each of whose columns is a probability vector, is called a stochastic
matrix. Such matrices commonly occur in formulas that relate successive states of a
stochastic process. For example, the state vectors x(k + 1) and x(k) in (7) are related by
an equation of the form x(k + 1) = P x(k) in which

P =
[

0.8 0.1
0.2 0.9

]
(10)

is a stochastic matrix. It should not be surprising that the column vectors of P are prob-
ability vectors, since the entries in each column provide a breakdown of what happens
to each channel’s market share over the year—the entries in column 1 convey that each
year channel 1 retains 80% of its market share and loses 20%; and the entries in column
2 convey that each year channel 2 retains 90% of its market share and loses 10%. The
entries in (10) can also be viewed as probabilities:

p11 = 0.8 = probability that a channel 1 viewer remains a channel 1 viewer
p21 = 0.2 = probability that a channel 1 viewer becomes a channel 2 viewer
p12 = 0.1 = probability that a channel 2 viewer becomes a channel 1 viewer
p22 = 0.9 = probability that a channel 2 viewer remains a channel 2 viewer

Example 1 is a special case of a large class of stochastic processes called Markov
chains.

DEFINITION 1 A Markov chain is a dynamical system whose state vectors at a succes-
sion of equally spaced times are probability vectors and for which the state vectors at
successive times are related by an equation of the form

x(k + 1) = P x(k)

in which P = [pij ] is a stochastic matrix and pij is the probability that the system
will be in state i at time t = k + 1 if it is in state j at time t = k. The matrix P is
called the transition matrix for the system.

WARNING Note that in this definition the row index i corresponds to the later state and the
column index j to the earlier state (Figure 5.5.2).

The entry pij is the probability

that the system is in state i at

time t = k + 1 if it is in state j
at time t = k.

pij

State at time t = k

State at time
t = k + 1

Figure 5.5.2
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EXAMPLE 4 Wildlife Migration as a Markov Chain

Suppose that a tagged lion can migrate over three adjacent game reserves in search
of food, reserve 1, reserve 2, and reserve 3. Based on data about the food resources,
researchers conclude that the monthly migration pattern of the lion can be modeled by
a Markov chain with transition matrix

Reserve at time t = k

1 2 3

P =
⎡
⎢⎣

0.5 0.4 0.6
0.2 0.2 0.3
0.3 0.4 0.1

⎤
⎥⎦

1

2

3

Reserve at time t = k + 1

(see Figure 5.5.3). That is,

Reserve

2
Reserve

3

Reserve

1

0.3

0.5

0.3

0.4

0.4 0.6

0.10.2

0.2

Figure 5.5.3

p11 = 0.5 = probability that the lion will stay in reserve 1 when it is in reserve 1

p12 = 0.4 = probability that the lion will move from reserve 2 to reserve 1

p13 = 0.6 = probability that the lion will move from reserve 3 to reserve 1

p21 = 0.2 = probability that the lion will move from reserve 1 to reserve 2

p22 = 0.2 = probability that the lion will stay in reserve 2 when it is in reserve 2

p23 = 0.3 = probability that the lion will move from reserve 3 to reserve 2

p31 = 0.3 = probability that the lion will move from reserve 1 to reserve 3

p32 = 0.4 = probability that the lion will move from reserve 2 to reserve 3

p33 = 0.1 = probability that the lion will stay in reserve 3 when it is in reserve 3

Assuming that t is in months and the lion is released in reserve 2 at time t = 0, track its
probable locations over a six-month period.

Solution Let x1(k), x2(k), and x3(k) be the probabilities that the lion is in reserve 1, 2,
or 3, respectively, at time t = k, and let

x(k) =
⎡
⎣x1(k)

x2(k)

x3(k)

⎤
⎦

be the state vector at that time. Since we know with certainty that the lion is in reserve
2 at time t = 0, the initial state vector is

x(0) =
⎡
⎣0

1

0

⎤
⎦

Andrei Andreyevich
Markov
(1856–1922)

Historical Note Markov chains are named in honor
of the Russian mathematician A. A. Markov, a lover
of poetry, who used them to analyze the alterna-
tion of vowels and consonants in the poem Eugene
Onegin by Pushkin. Markov believed that the only
applications of his chains were to the analysis of lit-
eraryworks, so hewould be astonished to learn that
his discovery is used today in the social sciences,
quantum theory, and genetics!

[Image: SPL/Science Source]
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We leave it for you to show that the state vectors over a six-month period are

x(1) = P x(0) =
⎡
⎣0.400

0.200

0.400

⎤
⎦ , x(2) = P x(1) =

⎡
⎣0.520

0.240

0.240

⎤
⎦ , x(3) = P x(2) =

⎡
⎣0.500

0.224

0.276

⎤
⎦

x(4) = P x(3) ≈
⎡
⎣0.505

0.228

0.267

⎤
⎦ , x(5) = P x(4) ≈

⎡
⎣0.504

0.227

0.269

⎤
⎦ , x(6) = P x(5) ≈

⎡
⎣0.504

0.227

0.269

⎤
⎦

As in Example 2, the state vectors here seem to stabilize over time with a probability of
approximately 0.504 that the lion is in reserve 1, a probability of approximately 0.227
that it is in reserve 2, and a probability of approximately 0.269 that it is in reserve 3.

Markov Chains inTerms of
Powers of theTransition

Matrix

In a Markov chain with an initial state of x(0), the successive state vectors are

x(1) = P x(0), x(2) = P x(1), x(3) = P x(2), x(4) = P x(3), . . .

For brevity, it is common to denote x(k) by xk, which allows us to write the successive
state vectors more briefly as

x1 = P x0, x2 = P x1, x3 = P x2, x4 = P x3, . . . (11)

Alternatively, these state vectors can be expressed in terms of the initial state vector x0

Note that Formula (12) makes
it possible to compute the state
vector xk without first com-
puting the earlier state vectors
as required in Formula (11).

as

x1 = P x0, x2 = P(P x0) = P 2x0, x3 = P(P 2x0) = P 3x0, x4 = P(P 3x0) = P 4x0, . . .

from which it follows that

xk = P kx0 (12)

EXAMPLE 5 Finding a StateVector Directly from x0
Use Formula (12) to find the state vector x(3) in Example 2.

Solution From (1) and (7), the initial state vector and transition matrix are

x0 = x(0) =
[

0.5

0.5

]
and P =

[
0.8 0.1

0.2 0.9

]
We leave it for you to calculate P 3 and show that

x(3) = x3 = P 3x0 =
[

0.562 0.219

0.438 0.781

] [
0.5

0.5

]
=
[

0.3905

0.6095

]
which agrees with the result in (8).

Long-Term Behavior of a
Markov Chain

We have seen two examples of Markov chains in which the state vectors seem to stabilize
after a period of time. Thus, it is reasonable to ask whether all Markov chains have this
property. The following example shows that this is not the case.

EXAMPLE 6 A Markov ChainThat Does Not Stabilize

The matrix

P =
[

0 1

1 0

]
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is stochastic and hence can be regarded as the transition matrix for a Markov chain. A
simple calculation shows that P 2 = I, from which it follows that

I = P 2 = P 4 = P 6 = · · · and P = P 3 = P 5 = P 7 = · · ·
Thus, the successive states in the Markov chain with initial vector x0 are

x0, P x0, x0, P x0, x0, . . .

which oscillate between x0 and P x0. Thus, the Markov chain does not stabilize unless
both components of x0 are 1

2 (verify).

A precise definition of what it means for a sequence of numbers or vectors to stabilize
is given in calculus; however, that level of precision will not be needed here. Stated
informally, we will say that a sequence of vectors

x1, x2, . . . , xk, . . .

approaches a limit q or that it converges to q if all entries in xk can be made as close as we
like to the corresponding entries in the vector q by taking k sufficiently large. We denote
this by writing xk →q as k→�. Similarly, we say that a sequence of matrices

P1, P2, P3, . . . , Pk, . . .

converges to a matrix Q, written Pk →Q as k→�, if each entry of Pk can be made as
close as we like to the corresponding entry of Q by taking k sufficiently large.

We saw in Example 6 that the state vectors of a Markov chain need not approach a
limit in all cases. However, by imposing a mild condition on the transition matrix of a
Markov chain, we can guarantee that the state vectors will approach a limit.

DEFINITION 2 A stochastic matrix P is said to be regular if P or some positive power
of P has all positive entries, and a Markov chain whose transition matrix is regular
is said to be a regular Markov chain.

EXAMPLE 7 Regular Stochastic Matrices

The transition matrices in Examples 2 and 4 are regular because their entries are positive.
The matrix

P =
[

0.5 1

0.5 0

]
is regular because

P 2 =
[

0.75 0.5

0.25 0.5

]
has positive entries. The matrix P in Example 6 is not regular because P and every
positive power of P have some zero entries (verify).

The following theorem, which we state without proof, is the fundamental result about
the long-term behavior of Markov chains.
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THEOREM 5.5.1 If P is the transition matrix for a regular Markov chain, then:

(a) There is a unique probability vector q with positive entries such that P q = q.

(b) For any initial probability vector x0, the sequence of state vectors

x0, P x0, . . . , P kx0, . . .

converges to q.

(c) The sequence P, P 2, P 3, . . . , P k, . . . converges to the matrix Q each of whose
column vectors is q.

The vector q in Theorem 5.5.1 is called the steady-state vector of the Markov chain.
Because it is a nonzero vector that satisfies the equation P q = q, it is an eigenvector
corresponding to the eigenvalue λ = 1 of P . Thus, q can be found by solving the linear
system

(I − P)q = 0 (13)

subject to the requirement that q be a probability vector. Here are some examples.

EXAMPLE 8 Examples 1 and 2 Revisited

The transition matrix for the Markov chain in Example 2 is

P =
[

0.8 0.1

0.2 0.9

]
Since the entries of P are positive, the Markov chain is regular and hence has a unique
steady-state vector q. To find q we will solve the system (I − P)q = 0, which we can
write as [

0.2 −0.1

−0.2 0.1

] [
q1

q2

]
=
[

0

0

]
The general solution of this system is

q1 = 0.5s, q2 = s

(verify), which we can write in vector form as

q =
[
q1

q2

]
=
[

0.5s

s

]
=
[

1
2 s

s

]
(14)

For q to be a probability vector, we must have

1 = q1 + q2 = 3
2 s

which implies that s = 2
3 . Substituting this value in (14) yields the steady-state vector

q =
[

1
3

2
3

]

which is consistent with the numerical results obtained in (9).

EXAMPLE 9 Example 4 Revisited

The transition matrix for the Markov chain in Example 4 is

P =
⎡
⎢⎣0.5 0.4 0.6

0.2 0.2 0.3

0.3 0.4 0.1

⎤
⎥⎦
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Since the entries of P are positive, the Markov chain is regular and hence has a unique
steady-state vector q. To find q we will solve the system (I − P)q = 0, which we can
write (using fractions) as ⎡

⎢⎣
1
2 − 2

5 − 3
5

− 1
5

4
5 − 3

10

− 3
10 − 2

5
9
10

⎤
⎥⎦
⎡
⎣q1

q2

q3

⎤
⎦ =

⎡
⎣0

0

0

⎤
⎦ (15)

(We have converted to fractions to avoid roundoff error in this illustrative example.) We
leave it for you to confirm that the reduced row echelon form of the coefficient matrix is⎡

⎢⎣
1 0 − 15

8

0 1 − 27
32

0 0 0

⎤
⎥⎦

and that the general solution of (15) is

q1 = 15
8 s, q2 = 27

32 s, q3 = s (16)

For q to be a probability vector we must have q1 + q2 + q3 = 1, from which it follows
that s = 32

119 (verify). Substituting this value in (16) yields the steady-state vector

q =

⎡
⎢⎢⎣

60
119

27
119

32
119

⎤
⎥⎥⎦ ≈

⎡
⎣0.5042

0.2269

0.2689

⎤
⎦

(verify), which is consistent with the results obtained in Example 4.

Exercise Set 5.5
In Exercises 1–2, determine whether A is a stochastic matrix.

If A is not stochastic, then explain why not.

1. (a) A =
[

0.4 0.3

0.6 0.7

]
(b) A =

[
0.4 0.6

0.3 0.7

]

(c) A =

⎡
⎢⎢⎣

1 1
2

1
3

0 0 1
3

0 1
2

1
3

⎤
⎥⎥⎦ (d) A =

⎡
⎢⎢⎣

1
3

1
3

1
2

1
6

1
3 − 1

2

1
2

1
3 1

⎤
⎥⎥⎦

2. (a) A =
[

0.2 0.9

0.8 0.1

]
(b) A =

[
0.2 0.8

0.9 0.1

]

(c) A =

⎡
⎢⎢⎣

1
12

1
9

1
6

1
2 0 5

6

5
12

8
9 0

⎤
⎥⎥⎦ (d) A =

⎡
⎢⎢⎣
−1 1

3
1
2

0 1
3

1
2

2 1
3 0

⎤
⎥⎥⎦

In Exercises 3–4, use Formulas (11) and (12) to compute the
state vector x4 in two different ways.

3. P =
[

0.5 0.6

0.5 0.4

]
; x0 =

[
0.5

0.5

]

4. P =
[

0.8 0.5

0.2 0.5

]
; x0 =

[
1

0

]

In Exercises 5–6, determine whether P is a regular stochastic
matrix.

5. (a) P =
[

1
5

1
7

4
5

6
7

]
(b) P =

[
1
5 0

4
5 1

]
(c) P =

[
1
5 1

4
5 0

]

6. (a) P =
[

1
2 1

1
2 0

]
(b) P =

[
1 2

3

0 1
3

]
(c) P =

[
3
4

1
3

1
4

2
3

]

In Exercises 7–10, verify that P is a regular stochastic matrix,
and find the steady-state vector for the associated Markov chain.

7. P =
[

1
4

2
3

3
4

1
3

]
8. P =

[
0.2 0.6

0.8 0.4

]

9. P =

⎡
⎢⎢⎣

1
2

1
2 0

1
4

1
2

1
3

1
4 0 2

3

⎤
⎥⎥⎦ 10. P =

⎡
⎢⎢⎣

1
3

1
4

2
5

0 3
4

2
5

2
3 0 1

5

⎤
⎥⎥⎦
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11. Consider a Markov process with transition matrix

State 1 State 2

State 1
State 2

[
0.2 0.1

0.8 0.9

]

(a) What does the entry 0.2 represent?

(b) What does the entry 0.1 represent?

(c) If the system is in state 1 initially, what is the probability
that it will be in state 2 at the next observation?

(d) If the system has a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

12. Consider a Markov process with transition matrix

State 1 State 2

State 1
State 2

[
0 1

7

1 6
7

]

(a) What does the entry 6
7 represent?

(b) What does the entry 0 represent?

(c) If the system is in state 1 initially, what is the probability
that it will be in state 1 at the next observation?

(d) If the system has a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

13. On a given day the air quality in a certain city is either good or
bad. Records show that when the air quality is good on one
day, then there is a 95% chance that it will be good the next
day, and when the air quality is bad on one day, then there is
a 45% chance that it will be bad the next day.

(a) Find a transition matrix for this phenomenon.

(b) If the air quality is good today, what is the probability that
it will be good two days from now?

(c) If the air quality is bad today, what is the probability that
it will be bad three days from now?

(d) If there is a 20% chance that the air quality will be
good today, what is the probability that it will be good
tomorrow?

14. In a laboratory experiment, a mouse can choose one of two
food types each day, type I or type II. Records show that if
the mouse chooses type I on a given day, then there is a 75%
chance that it will choose type I the next day, and if it chooses
type II on one day, then there is a 50% chance that it will
choose type II the next day.

(a) Find a transition matrix for this phenomenon.

(b) If the mouse chooses type I today, what is the probability
that it will choose type I two days from now?

(c) If the mouse chooses type II today, what is the probability
that it will choose type II three days from now?

(d) If there is a 10% chance that the mouse will choose type
I today, what is the probability that it will choose type I
tomorrow?

15. Suppose that at some initial point in time 100,000 people live
in a certain city and 25,000 people live in its suburbs. The
Regional Planning Commission determines that each year 5%
of the city population moves to the suburbs and 3% of the
suburban population moves to the city.

(a) Assuming that the total population remains constant,
make a table that shows the populations of the city and
its suburbs over a five-year period (round to the nearest
integer).

(b) Over the long term, how will the population be distributed
between the city and its suburbs?

16. Suppose that two competing television stations, station 1 and
station 2, each have 50% of the viewer market at some initial
point in time. Assume that over each one-year period station 1
captures 5% of station 2’s market share and station 2 captures
10% of station 1’s market share.

(a) Make a table that shows the market share of each station
over a five-year period.

(b) Over the long term, how will the market share be dis-
tributed between the two stations?

17. Fill in the missing entries of the stochastic matrix

P =

⎡
⎢⎢⎢⎣

7
10 ∗ 1

5

∗ 3
10 ∗

1
10

3
5

3
10

⎤
⎥⎥⎥⎦

and find its steady-state vector.

18. If P is an n × n stochastic matrix, and if M is a 1 × n matrix
whose entries are all 1’s, then MP = .

19. If P is a regular stochastic matrix with steady-state vector q,
what can you say about the sequence of products

P q, P 2q, P 3q, . . . , P kq, . . .

as k→�?

20. (a) If P is a regular n × n stochastic matrix with steady-state
vector q, and if e1, e2, . . . , en are the standard unit vectors
in column form, what can you say about the behavior of
the sequence

P ei , P 2ei , P 3ei , . . . , P kei , . . .

as k→� for each i = 1, 2, . . . , n?

(b) What does this tell you about the behavior of the column
vectors of P k as k→�?
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Working with Proofs

21. Prove that the product of two stochastic matrices with the
same size is a stochastic matrix. [Hint: Write each column of
the product as a linear combination of the columns of the first
factor.]

22. Prove that if P is a stochastic matrix whose entries are all
greater than or equal to ρ, then the entries of P 2 are greater
than or equal to ρ.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The vector

⎡
⎢⎣

1
3

0
2
3

⎤
⎥⎦ is a probability vector.

(b) The matrix

[
0.2 1

0.8 0

]
is a regular stochastic matrix.

(c) The column vectors of a transition matrix are probability
vectors.

(d) A steady-state vector for a Markov chain with transition ma-
trix P is any solution of the linear system (I − P)q = 0.

(e) The square of every regular stochastic matrix is stochastic.

(f ) A vector with real entries that sum to 1 is a probability vector.

(g) Every regular stochastic matrix has λ = 1 as an eigenvalue.

Working withTechnology

T1. In Examples 4 and 9 we considered the Markov chain with
transition matrix P and initial state vector x(0) where

P =
⎡
⎢⎣

0.5 0.4 0.6

0.2 0.2 0.3

0.3 0.4 0.1

⎤
⎥⎦ and x(0) =

⎡
⎢⎣

0

1

0

⎤
⎥⎦

(a) Confirm the numerical values of x(1), x(2), . . . , x(6)obtained
in Example 4 using the method given in that example.

(b) As guaranteed by part (c) of Theorem 5.5.1, confirm that the
sequence P, P 2, P 3, . . . , P k, . . . converges to the matrix Q

each of whose column vectors is the steady-state vector q ob-
tained in Example 9.

T2. Suppose that a car rental agency has three locations, num-
bered 1, 2, and 3. A customer may rent a car from any of the three
locations and return it to any of the three locations. Records show
that cars are rented and returned in accordance with the following
probabilities:

Rented from Location
1 2 3

1 1
10

1
5

3
5

Returned to
2 4

5
3
10

1
5Location

3 1
10

1
2

1
5

(a) Assuming that a car is rented from location 1, what is the
probability that it will be at location 1 after two rentals?

(b) Assuming that this dynamical system can be modeled as a
Markov chain, find the steady-state vector.

(c) If the rental agency owns 120 cars, how many parking spaces
should it allocate at each location to be reasonably certain
that it will have enough spaces for the cars over the long term?
Explain your reasoning.

T3. Physical traits are determined by the genes that an offspring
receives from its parents. In the simplest case a trait in the off-
spring is determined by one pair of genes, one member of the pair
inherited from the male parent and the other from the female par-
ent. Typically, each gene in a pair can assume one of two forms,
called alleles, denoted by A and a. This leads to three possible
pairings:

AA, Aa, aa

called genotypes (the pairs Aa and aA determine the same trait
and hence are not distinguished from one another). It is shown in
the study of heredity that if a parent of known genotype is crossed
with a random parent of unknown genotype, then the offspring
will have the genotype probabilities given in the following table,
which can be viewed as a transition matrix for a Markov process:

Genotype of Parent
AA Aa aa

AA 1
2

1
4 0

Genotype of
Aa 1

2
1
2

1
2Offspring

aa 0 1
4

1
2

Thus, for example, the offspring of a parent of genotype AA that
is crossed at random with a parent of unknown genotype will have
a 50% chance of being AA, a 50% chance of being Aa, and no
chance of being aa.

(a) Show that the transition matrix is regular.

(b) Find the steady-state vector, and discuss its physical interpre-
tation.
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Chapter 5 Supplementary Exercises

1. (a) Show that if 0 < θ < π , then

A =
[

cos θ − sin θ

sin θ cos θ

]

has no real eigenvalues and consequently no real eigen-
vectors.

(b) Give a geometric explanation of the result in part (a).

2. Find the eigenvalues of

A =
⎡
⎣ 0 1 0

0 0 1
k3 −3k2 3k

⎤
⎦

3. (a) Show that if D is a diagonal matrix with nonnegative en-
tries on the main diagonal, then there is a matrix S such
that S2 = D.

(b) Show that if A is a diagonalizable matrix with nonnegative
eigenvalues, then there is a matrix S such that S2 = A.

(c) Find a matrix S such that S2 = A, given that

A =
⎡
⎣1 3 1

0 4 5
0 0 9

⎤
⎦

4. Given that A and B are similar matrices, in each part deter-
mine whether the given matrices are also similar.

(a) AT and BT

(b) Ak and Bk (k a positive integer)

(c) A−1 and B−1 (if A is invertible)

5. Prove: If A is a square matrix and p(λ) = det(λI − A) is the
characteristic polynomial of A, then the coefficient of λn−1 in
p(λ) is the negative of the trace of A.

6. Prove: If b �= 0, then

A =
[
a b

0 a

]

is not diagonalizable.

7. In advanced linear algebra, one proves the Cayley–Hamilton
Theorem, which states that a square matrix A satisfies its char-
acteristic equation; that is, if

c0 + c1λ + c2λ
2 + · · · + cn−1λ

n−1 + λn = 0

is the characteristic equation of A, then

c0I + c1A + c2A
2 + · · · + cn−1A

n−1 + An = 0

Verify this result for

(a) A =
[

3 6

1 2

]
(b) A =

⎡
⎢⎣0 1 0

0 0 1

1 −3 3

⎤
⎥⎦

In Exercises 8–10, use the Cayley–Hamilton Theorem, stated
in Exercise 7.

8. (a) Use Exercise 28 of Section 5.1 to establish the Cayley–
Hamilton Theorem for 2 × 2 matrices.

(b) Prove the Cayley–Hamilton Theorem for n × n diagonal-
izable matrices.

9. The Cayley–Hamilton Theorem provides a method for calcu-
lating powers of a matrix. For example, if A is a 2 × 2 matrix
with characteristic equation

c0 + c1λ + λ2 = 0

then c0I + c1A + A2 = 0, so

A2 = −c1A − c0I

Multiplying through by A yields A3 = −c1A
2 − c0A, which

expresses A3 in terms of A2 and A, and multiplying through by
A2 yields A4 = −c1A

3 − c0A
2, which expresses A4 in terms of

A3 and A2. Continuing in this way, we can calculate successive
powers of A by expressing them in terms of lower powers. Use
this procedure to calculate A2, A3, A4, and A5 for

A =
[

3 6

1 2

]

10. Use the method of the preceding exercise to calculate A3 and
A4 for

A =
⎡
⎢⎣0 1 0

0 0 1

1 −3 3

⎤
⎥⎦

11. Find the eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎣

c1 c2 · · · cn

c1 c2 · · · cn

...
...

...
c1 c2 · · · cn

⎤
⎥⎥⎥⎦

12. (a) It was shown in Exercise 37 of Section 5.1 that if A is an
n × n matrix, then the coefficient of λn in the characteris-
tic polynomial of A is 1. (A polynomial with this property
is called monic.) Show that the matrix⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −c0

1 0 0 · · · 0 −c1

0 1 0 · · · 0 −c2
...

...
...

...
...

0 0 0 · · · 1 −cn−1

⎤
⎥⎥⎥⎥⎥⎥⎦
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has characteristic polynomial

p(λ) = c0 + c1λ + · · · + cn−1λ
n−1 + λn

This shows that every monic polynomial is the characteris-
tic polynomial of some matrix. The matrix in this example
is called the companion matrix of p(λ). [Hint: Evaluate
all determinants in the problem by adding a multiple of
the second row to the first to introduce a zero at the top of
the first column, and then expanding by cofactors along
the first column.]

(b) Find a matrix with characteristic polynomial

p(λ) = 1 − 2λ + λ2 + 3λ3 + λ4

13. A square matrix A is called nilpotent if An = 0 for some pos-
itive integer n. What can you say about the eigenvalues of a
nilpotent matrix?

14. Prove: If A is an n × n matrix and n is odd, then A has at least
one real eigenvalue.

15. Find a 3 × 3 matrix A that has eigenvalues λ = 0, 1, and −1
with corresponding eigenvectors⎡

⎢⎣ 0

1

−1

⎤
⎥⎦,

⎡
⎢⎣ 1

−1

1

⎤
⎥⎦,

⎡
⎢⎣0

1

1

⎤
⎥⎦

respectively.

16. Suppose that a 4 × 4 matrix A has eigenvalues λ1 = 1,
λ2 = −2, λ3 = 3, and λ4 = −3.

(a) Use the method of Exercise 24 of Section 5.1 to find
det(A).

(b) Use Exercise 5 above to find tr(A).

17. Let A be a square matrix such that A3 = A. What can you
say about the eigenvalues of A?

18. (a) Solve the system
y ′

1 = y1 + 3y2

y ′
2 = 2y1 + 4y2

(b) Find the solution satisfying the initial conditions
y1(0) = 5 and y2(0) = 6.

19. Let A be a 3 × 3 matrix, one of whose eigenvalues is 1. Given
that both the sum and the product of all three eigenvalues is 6,
what are the possible values for the remaining two eigenvalues?

20. Show that the matrices

A =
⎡
⎢⎣

0 1 0

0 0 1

1 0 0

⎤
⎥⎦ and D =

⎡
⎢⎣

d1 0 0

0 d2 0

0 0 d3

⎤
⎥⎦

are similar if

dk = cos
2πk

3
+ i sin

2πk

3
(k = 1, 2, 3)
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Inner Product Spaces
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INTRODUCTION In Chapter 3 we defined the dot product of vectors in Rn, and we used that concept to
define notions of length, angle, distance, and orthogonality. In this chapter we will
generalize those ideas so they are applicable in any vector space, not just Rn. We will
also discuss various applications of these ideas.

6.1 Inner Products
In this section we will use the most important properties of the dot product on Rn as
axioms, which, if satisfied by the vectors in a vector space V, will enable us to extend the
notions of length, distance, angle, and perpendicularity to general vector spaces.

General Inner Products In Definition 4 of Section 3.2 we defined the dot product of two vectors in Rn, and in
Theorem 3.2.2 we listed four fundamental properties of such products. Our first goal
in this section is to extend the notion of a dot product to general real vector spaces by
using those four properties as axioms. We make the following definition.

Note that Definition 1 applies
only to real vector spaces. A
definition of inner products on
complex vector spaces is given
in the exercises. Since we will
have little need for complex
vector spaces from this point
on, you can assume that all
vector spaces under discussion
are real, even though some of
the theorems are also valid in
complex vector spaces.

DEFINITION 1 An inner product on a real vector space V is a function that associates
a real number 〈u, v〉 with each pair of vectors in V in such a way that the following
axioms are satisfied for all vectors u, v, and w in V and all scalars k.

1. 〈u, v〉 = 〈v, u〉 [ Symmetry axiom ]

2. 〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 [ Additivity axiom ]

3. 〈ku, v〉 = k〈u, v〉 [ Homogeneity axiom ]

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0 [ Positivity axiom ]

A real vector space with an inner product is called a real inner product space.

Because the axioms for a real inner product space are based on properties of the dot
product, these inner product space axioms will be satisfied automatically if we define the
inner product of two vectors u and v in Rn to be

〈u, v〉 = u · v = u1v1 + u2v2 + · · · + unvn (1)
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This inner product is commonly called the Euclidean inner product (or the standard inner
product) on Rn to distinguish it from other possible inner products that might be defined
on Rn. We call Rn with the Euclidean inner product Euclidean n-space.

Inner products can be used to define notions of norm and distance in a general inner
product space just as we did with dot products in Rn. Recall from Formulas (11) and (19)
of Section 3.2 that if u and v are vectors in Euclidean n-space, then norm and distance
can be expressed in terms of the dot product as

‖v‖ = √
v · v and d(u, v) = ‖u − v‖ = √

(u − v) · (u − v)

Motivated by these formulas, we make the following definition.

DEFINITION 2 If V is a real inner product space, then the norm (or length) of a vector
v in V is denoted by ‖v‖ and is defined by

‖v‖ = √〈v, v〉
and the distance between two vectors is denoted by d(u, v) and is defined by

d(u, v) = ‖u − v‖ = √〈u − v, u − v〉
A vector of norm 1 is called a unit vector.

The following theorem, whose proof is left for the exercises, shows that norms and
distances in real inner product spaces have many of the properties that you might expect.

THEOREM 6.1.1 If u and v are vectors in a real inner product space V, and if k is a
scalar, then:

(a) ‖v‖ ≥ 0 with equality if and only if v = 0.

(b) ‖kv‖ = |k|‖v‖.
(c) d(u, v) = d(v, u).

(d ) d(u, v) ≥ 0 with equality if and only if u = v.

Although the Euclidean inner product is the most important inner product on Rn,
there are various applications in which it is desirable to modify it by weighting each term
differently. More precisely, if

w1, w2, . . . , wn

are positive real numbers, which we will call weights, and if u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) are vectors in Rn, then it can be shown that the formula

〈u, v〉 = w1u1v1 + w2u2v2 + · · · + wnunvn (2)

defines an inner product on Rn that we call the weighted Euclidean inner product with

Note that the standard Eu-
clidean inner product in For-
mula (1) is the special case
of the weighted Euclidean in-
ner product in which all the
weights are 1.

weights w1, w2, . . . , wn.

EXAMPLE 1 Weighted Euclidean Inner Product

Let u = (u1, u2) and v = (v1, v2) be vectors in R2. Verify that the weighted Euclidean
inner product

〈u, v〉 = 3u1v1 + 2u2v2 (3)

satisfies the four inner product axioms.
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Solution

Axiom 1: Interchanging u and v in Formula (3) does not change the sum on the right
side, so 〈u, v〉 = 〈v, u〉.
Axiom 2: If w = (w1, w2), then

In Example 1, we are using
subscripted w’s to denote the
components of the vector w,
not the weights. The weights
are the numbers 3 and 2 in For-
mula (3).

〈u + v, w〉 = 3(u1 + v1)w1 + 2(u2 + v2)w2

= 3(u1w1 + v1w1) + 2(u2w2 + v2w2)

= (3u1w1 + 2u2w2) + (3v1w1 + 2v2w2)

= 〈u, w〉 + 〈v, w〉
Axiom 3: 〈ku, v〉 = 3(ku1)v1 + 2(ku2)v2

= k(3u1v1 + 2u2v2)

= k〈u, v〉
Axiom 4: 〈v, v〉 = 3(v1v1) + 2(v2v2) = 3v2

1 + 2v2
2 ≥ 0 with equality if and only if

v1 = v2 = 0, that is, if and only if v = 0.

An Application ofWeighted
Euclidean Inner Products

To illustrate one way in which a weighted Euclidean inner product can arise, suppose
that some physical experiment has n possible numerical outcomes

x1, x2, . . . , xn

and that a series of m repetitions of the experiment yields these values with various
frequencies. Specifically, suppose that x1 occurs f1 times, x2 occurs f2 times, and so
forth. Since there is a total of m repetitions of the experiment, it follows that

f1 + f2 + · · · + fn = m

Thus, the arithmetic average of the observed numerical values (denoted by x̄) is

x̄ = f1x1 + f2x2 + · · · + fnxn

f1 + f2 + · · · + fn

= 1

m
(f1x1 + f2x2 + · · · + fnxn) (4)

If we let
f = (f1, f2, . . . , fn)

x = (x1, x2, . . . , xn)

w1 = w2 = · · · = wn = 1/m

then (4) can be expressed as the weighted Euclidean inner product

x̄ = 〈f, x〉 = w1f1x1 + w2f2x2 + · · · + wnfnxn

EXAMPLE 2 Calculating with aWeighted Euclidean Inner Product

It is important to keep in mind that norm and distance depend on the inner product being
used. If the inner product is changed, then the norms and distances between vectors also
change. For example, for the vectors u = (1, 0) and v = (0, 1) in R2 with the Euclidean
inner product we have

‖u‖ =
√

12 + 0 2 = 1

and
d(u, v) = ‖u − v‖ = ‖(1,−1)‖ =

√
12 + (−1)2 = √

2

but if we change to the weighted Euclidean inner product

〈u, v〉 = 3u1v1 + 2u2v2

we have
‖u‖ = 〈u, u〉1/2 = [3(1)(1) + 2(0)(0)]1/2 = √

3
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and
d(u, v) = ‖u − v‖ = 〈(1,−1), (1,−1)〉1/2

= [3(1)(1) + 2(−1)(−1)]1/2 = √
5

Unit Circles and Spheres in
Inner Product Spaces

DEFINITION 3 If V is an inner product space, then the set of points in V that satisfy

‖u‖ = 1

is called the unit sphere or sometimes the unit circle in V .

EXAMPLE 3 Unusual Unit Circles in R2

(a) Sketch the unit circle in an xy-coordinate system in R2 using the Euclidean inner
product 〈u, v〉 = u1v1 + u2v2.

(b) Sketch the unit circle in an xy-coordinate system in R2 using the weighted Euclidean
inner product 〈u, v〉 = 1

9u1v1 + 1
4u2v2.

Solution (a) If u = (x, y), then ‖u‖ = 〈u, u〉1/2 =
√

x2 + y2, so the equation of the unit
circle is

√
x2 + y2 = 1, or on squaring both sides,

x2 + y2 = 1

As expected, the graph of this equation is a circle of radius 1 centered at the origin
(Figure 6.1.1a).

y

x

1

||u|| = 1

(a)  The unit circle using
       the standard Euclidean
       inner product.

(b)  The unit circle using
       a weighted Euclidean
       inner product.

y

x

3

2
||u|| = 1

Figure 6.1.1

Solution (b) If u = (x, y), then ‖u‖ = 〈u, u〉1/2 =
√

1
9x

2 + 1
4y

2, so the equation of the

unit circle is
√

1
9x

2 + 1
4y

2 = 1, or on squaring both sides,

x2

9
+ y2

4
= 1

The graph of this equation is the ellipse shown in Figure 6.1.1b. Though this may seem
odd when viewed geometrically, it makes sense algebraically since all points on the ellipse
are 1 unit away from the origin relative to the given weighted Euclidean inner product. In
short, weighting has the effect of distorting the space that we are used to seeing through
“unweighted Euclidean eyes.”

Inner Products Generated
by Matrices

The Euclidean inner product and the weighted Euclidean inner products are special cases
of a general class of inner products on Rn called matrix inner products. To define this
class of inner products, let u and v be vectors in Rn that are expressed in column form,
and let A be an invertible n × n matrix. It can be shown (Exercise 47) that if u · v is the
Euclidean inner product on Rn, then the formula

〈u, v〉 = Au · Av (5)

also defines an inner product; it is called the inner product on Rn generated by A.
Recall from Table 1 of Section 3.2 that if u and v are in column form, then u · v can

be written as vTu from which it follows that (5) can be expressed as

〈u, v〉 = (Av)TAu
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or equivalently as

〈u, v〉 = vTATAu (6)

EXAMPLE 4 Matrices GeneratingWeighted Euclidean Inner Products

The standard Euclidean and weighted Euclidean inner products are special cases of
matrix inner products. The standard Euclidean inner product on Rn is generated by the
n × n identity matrix, since setting A = I in Formula (5) yields

〈u, v〉 = Iu · Iv = u · v

and the weighted Euclidean inner product

〈u, v〉 = w1u1v1 + w2u2v2 + · · · + wnunvn (7)

is generated by the matrix

A =

⎡
⎢⎢⎢⎢⎣
√

w1 0 0 · · · 0

0
√

w2 0 · · · 0
...

...
...

...

0 0 0 · · · √
wn

⎤
⎥⎥⎥⎥⎦

This can be seen by observing that ATA is the n × n diagonal matrix whose diagonal
entries are the weights w1, w2, . . . , wn.

EXAMPLE 5 Example 1 Revisited

The weighted Euclidean inner product 〈u, v〉 = 3u1v1 + 2u2v2 discussed in Example 1
Every diagonal matrix with
positive diagonal entries gen-
erates a weighted inner prod-
uct. Why?

is the inner product on R2 generated by

A =
[√

3 0

0
√

2

]

Other Examples of Inner
Products

So far, we have only considered examples of inner products on Rn. We will now consider
examples of inner products on some of the other kinds of vector spaces that we discussed
earlier.

EXAMPLE 6 The Standard Inner Product onMnn

If u = U and v = V are matrices in the vector space Mnn, then the formula

〈u, v〉 = tr(UTV ) (8)

defines an inner product on Mnn called the standard inner product on that space (see
Definition 8 of Section 1.3 for a definition of trace). This can be proved by confirming
that the four inner product space axioms are satisfied, but we can see why this is so by
computing (8) for the 2 × 2 matrices

U =
[
u1 u2

u3 u4

]
and V =

[
v1 v2

v3 v4

]
This yields

〈u, v〉 = tr(UTV ) = u1v1 + u2v2 + u3v3 + u4v4
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which is just the dot product of the corresponding entries in the two matrices. And it
follows from this that

‖u‖ = √〈u, u〉 =
√

tr〈UTU〉 =
√

u2
1 + u2

2 + u2
3 + u2

4

For example, if

u = U =
[

1 2

3 4

]
and v = V =

[−1 0

3 2

]
then

〈u, v〉 = tr(UTV ) = 1(−1) + 2(0) + 3(3) + 4(2) = 16

and
‖u‖ = √〈u, u〉 = √

tr(UTU) = √
12 + 22 + 32 + 42 = √

30

‖v‖ = √〈v, v〉 = √
tr(V TV ) = √

(−1)2 + 02 + 32 + 22 = √
14

EXAMPLE 7 The Standard Inner Product on Pn
If

p = a0 + a1x + · · · + anx
n and q = b0 + b1x + · · · + bnx

n

are polynomials in Pn, then the following formula defines an inner product on Pn (verify)
that we will call the standard inner product on this space:

〈p, q〉 = a0b0 + a1b1 + · · · + anbn (9)

The norm of a polynomial p relative to this inner product is

‖p‖ = √〈p, p〉 =
√

a2
0 + a2

1 + · · · + a2
n

EXAMPLE 8 The Evaluation Inner Product on Pn
If

p = p(x) = a0 + a1x + · · · + anx
n and q = q(x) = b0 + b1x + · · · + bnx

n

are polynomials in Pn, and if x0, x1, . . . , xn are distinct real numbers (called sample
points), then the formula

〈p, q〉 = p(x0)q(x0) + p(x1)q(x1) + · · · + p(xn)q(xn) (10)

defines an inner product on Pn called the evaluation inner product at x0, x1, . . . , xn.
Algebraically, this can be viewed as the dot product in Rn of the n-tuples(

p(x0), p(x1), . . . , p(xn)
)

and
(
q(x0), q(x1), . . . , q(xn)

)
and hence the first three inner product axioms follow from properties of the dot product.
The fourth inner product axiom follows from the fact that

〈p, p〉 = [p(x0)]2 + [p(x1)]2 + · · · + [p(xn)]2 ≥ 0

with equality holding if and only if

p(x0) = p(x1) = · · · = p(xn) = 0

But a nonzero polynomial of degree n or less can have at most n distinct roots, so it must
be that p = 0, which proves that the fourth inner product axiom holds.
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The norm of a polynomial p relative to the evaluation inner product is

‖p‖ = √〈p, p〉 =
√
[p(x0)]2 + [p(x1)]2 + · · · + [p(xn)]2 (11)

EXAMPLE 9 Working with the Evaluation Inner Product

Let P2 have the evaluation inner product at the points

x0 = −2, x1 = 0, and x2 = 2

Compute 〈p, q〉 and ‖p‖ for the polynomials p = p(x) = x2 and q = q(x) = 1 + x.

Solution It follows from (10) and (11) that

〈p, q〉 = p(−2)q(−2) + p(0)q(0) + p(2)q(2) = (4)(−1) + (0)(1) + (4)(3) = 8

‖p‖ = √[p(x0)]2 + [p(x1)]2 + [p(x2)]2 = √[p(−2)]2 + [p(0)]2 + [p(2)]2

= √
42 + 02 + 42 = √

32 = 4
√

2

EXAMPLE 10 An Integral Inner Product on C [a, b]

Let f = f(x) and g = g(x) be two functions in C[a, b] and define

CA L C U L U S R E Q U I R E D

〈f, g〉 =
∫ b

a

f(x)g(x) dx (12)

We will show that this formula defines an inner product on C[a, b] by verifying the four
inner product axioms for functions f = f(x), g = g(x), and h = h(x) in C[a, b]:
Axiom 1: 〈f, g〉 =

∫ b

a

f(x)g(x) dx =
∫ b

a

g(x)f(x) dx = 〈g, f〉

Axiom 2: 〈f + g, h〉 =
∫ b

a

(f(x) + g(x))h(x) dx

=
∫ b

a

f(x)h(x) dx +
∫ b

a

g(x)h(x) dx

= 〈f, h〉 + 〈g, h〉

Axiom 3: 〈kf, g〉 =
∫ b

a

kf(x)g(x) dx = k

∫ b

a

f(x)g(x) dx = k〈f, g〉

Axiom 4: If f = f(x) is any function in C[a, b], then

〈f, f〉 =
∫ b

a

f 2(x) dx ≥ 0 (13)

since f 2(x) ≥ 0 for all x in the interval [a, b]. Moreover, because f is continuous on
[a, b], the equality in Formula (13) holds if and only if the function f is identically zero
on [a, b], that is, if and only if f = 0; and this proves that Axiom 4 holds.

EXAMPLE 11 Norm of aVector in C [a, b]

If C[a, b] has the inner product that was defined in Example 10, then the norm of a

CA L C U L U S R E Q U I R E D

function f = f(x) relative to this inner product is

‖f‖ = 〈f, f〉1/2 =
√∫ b

a

f 2(x) dx (14)
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and the unit sphere in this space consists of all functions f in C[a, b] that satisfy the
equation ∫ b

a

f 2(x) dx = 1

Remark Note that the vector space Pn is a subspace of C[a, b] because polynomials are contin-
uous functions. Thus, Formula (12) defines an inner product on Pn that is different from both the
standard inner product and the evaluation inner product.

WARNING Recall from calculus that the arc length of a curve y = f(x) over an interval [a, b]
is given by the formula

L =
∫ b

a

√
1 + [f ′(x)]2 dx (15)

Do not confuse this concept of arc length with ‖f‖, which is the length (norm) of f when f is
viewed as a vector in C[a, b]. Formulas (14) and (15) have different meanings.

Algebraic Properties of
Inner Products

The following theorem lists some of the algebraic properties of inner products that follow
from the inner product axioms. This result is a generalization of Theorem 3.2.3, which
applied only to the dot product on Rn.

THEOREM 6.1.2 If u, v, and w are vectors in a real inner product space V, and if k is a
scalar, then:

(a) 〈0, v〉 = 〈v, 0〉 = 0

(b) 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉
(c) 〈u, v − w〉 = 〈u, v〉 − 〈u, w〉
(d ) 〈u − v, w〉 = 〈u, w〉 − 〈v, w〉
(e) k〈u, v〉 = 〈u, kv〉

Proof We will prove part (b) and leave the proofs of the remaining parts as exercises.

〈u, v + w〉 = 〈v + w, u〉 [ By symmetry ]

= 〈v, u〉 + 〈w, u〉 [ By additivity ]

= 〈u, v〉 + 〈u, w〉 [ By symmetry ]

The following example illustrates how Theorem 6.1.2 and the defining properties of
inner products can be used to perform algebraic computations with inner products. As
you read through the example, you will find it instructive to justify the steps.

EXAMPLE 12 Calculating with Inner Products

〈u − 2v, 3u + 4v〉 = 〈u, 3u + 4v〉 − 〈2v, 3u + 4v〉
= 〈u, 3u〉 + 〈u, 4v〉 − 〈2v, 3u〉 − 〈2v, 4v〉
= 3〈u, u〉 + 4〈u, v〉 − 6〈v, u〉 − 8〈v, v〉
= 3‖u‖2 + 4〈u, v〉 − 6〈u, v〉 − 8‖v‖2

= 3‖u‖2 − 2〈u, v〉 − 8‖v‖2
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Exercise Set 6.1
1. Let R2 have the weighted Euclidean inner product

〈u, v〉 = 2u1v1 + 3u2v2

and let u = (1, 1), v = (3, 2), w = (0,−1), and k = 3. Com-
pute the stated quantities.

(a) 〈u, v〉 (b) 〈kv, w〉 (c) 〈u + v, w〉
(d) ‖v‖ (e) d(u, v) (f ) ‖u − kv‖

2. Follow the directions of Exercise 1 using the weighted Eu-
clidean inner product

〈u, v〉 = 1
2 u1v1 + 5u2v2

In Exercises 3–4, compute the quantities in parts (a)–(f) of
Exercise 1 using the inner product on R2 generated by A.

3. A =
[

2 1

1 1

]
4. A =

[
1 0

2 −1

]

In Exercises 5–6, find a matrix that generates the stated
weighted inner product on R2.

5. 〈u, v〉 = 2u1v1 + 3u2v2 6. 〈u, v〉 = 1
2 u1v1 + 5u2v2

In Exercises 7–8, use the inner product on R2 generated by the
matrix A to find 〈u, v〉 for the vectors u = (0,−3) and v = (6, 2).

7. A =
[

4 1

2 −3

]
8. A =

[
2 1

−1 3

]

In Exercises 9–10, compute the standard inner product on M22

of the given matrices.

9. U =
[

3 −2

4 8

]
, V =

[−1 3

1 1

]

10. U =
[

1 2

−3 5

]
, V =

[
4 6

0 8

]

In Exercises 11–12, find the standard inner product on P2 of
the given polynomials.

11. p = −2 + x + 3x2, q = 4 − 7x2

12. p = −5 + 2x + x2, q = 3 + 2x − 4x2

In Exercises 13–14, a weighted Euclidean inner product on
R2 is given for the vectors u = (u1, u2) and v = (v1, v2). Find a
matrix that generates it.

13. 〈u, v〉 = 3u1v1 + 5u2v2 14. 〈u, v〉 = 4u1v1 + 6u2v2

In Exercises 15–16, a sequence of sample points is given. Use
the evaluation inner product on P3 at those sample points to find
〈p, q〉 for the polynomials

p = x + x3 and q = 1 + x2

15. x0 = −2, x1 = −1, x2 = 0, x3 = 1

16. x0 = −1, x1 = 0, x2 = 1, x3 = 2

In Exercises 17–18, find ‖u‖ and d(u, v) relative to the weighted
Euclidean inner product 〈u, v〉 = 2u1v1 + 3u2v2 on R2.

17. u = (−3, 2) and v = (1, 7)

18. u = (−1, 2) and v = (2, 5)

In Exercises 19–20, find‖p‖ and d(p, q) relative to the standard
inner product on P2.

19. p = −2 + x + 3x2, q = 4 − 7x2

20. p = −5 + 2x + x2, q = 3 + 2x − 4x2

In Exercises 21–22, find ‖U‖ and d(U, V ) relative to the stan-
dard inner product on M22.

21. U =
[

3 −2

4 8

]
, V =

[−1 3

1 1

]

22. U =
[

1 2

−3 5

]
, V =

[
4 6

0 8

]

In Exercises 23–24, let

p = x + x3 and q = 1 + x2

Find ‖p‖ and d(p, q) relative to the evaluation inner product on
P3 at the stated sample points.

23. x0 = −2, x1 = −1, x2 = 0, x3 = 1

24. x0 = −1, x1 = 0, x2 = 1, x3 = 2

In Exercises 25–26, find ‖u‖ and d(u, v) for the vectors
u = (−1, 2) and v = (2, 5) relative to the inner product on R2

generated by the matrix A.

25. A =
[

4 0

3 5

]
26. A =

[
1 2

−1 3

]

In Exercises 27–28, suppose that u, v, and w are vectors in an
inner product space such that

〈u, v〉 = 2, 〈v, w〉 = −6, 〈u, w〉 = −3

‖u‖ = 1, ‖v‖ = 2, ‖w‖ = 7

Evaluate the given expression.

27. (a) 〈2v − w, 3u + 2w〉 (b) ‖u + v‖

28. (a) 〈u − v − 2w, 4u + v〉 (b) ‖2w − v‖
In Exercises 29–30, sketch the unit circle in R2 using the given

inner product.

29. 〈u, v〉 = 1
4 u1v1 + 1

16 u2v2 30. 〈u, v〉 = 2u1v1 + u2v2
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In Exercises 31–32, find a weighted Euclidean inner product
on R2 for which the “unit circle” is the ellipse shown in the accom-
panying figure.

31.

x

y

1

3

Figure Ex-31

32.

x

y

1

3
4

Figure Ex-31

In Exercises 33–34, let u = (u1, u2, u3) and v = (v1, v2, v3).
Show that the expression does not define an inner product on R3,
and list all inner product axioms that fail to hold.

33. 〈u, v〉 = u2
1v

2
1 + u2

2v
2
2 + u2

3v
2
3

34. 〈u, v〉 = u1v1 − u2v2 + u3v3

In Exercises 35–36, suppose that u and v are vectors in an in-
ner product space. Rewrite the given expression in terms of 〈u, v〉,
‖u‖2, and ‖v‖2.

35. 〈2v − 4u, u − 3v〉 36. 〈5u + 6v, 4v − 3u〉
37. (Calculus required ) Let the vector space P2 have the inner

product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Find the following for p = 1 and q = x2.

(a) 〈p, q〉 (b) d(p, q)

(c) ‖p‖ (d) ‖q‖
38. (Calculus required ) Let the vector space P3 have the inner

product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Find the following for p = 2x3 and q = 1 − x3.

(a) 〈p, q〉 (b) d(p, q)

(c) ‖p‖ (d) ‖q‖
(Calculus required ) In Exericses 39–40, use the inner product

〈f, g〉 =
∫ 1

0
f (x)g(x)dx

on C[0, 1] to compute 〈f, g〉.

39. f = cos 2πx, g = sin 2πx 40. f = x, g = ex

Working with Proofs

41. Prove parts (a) and (b) of Theorem 6.1.1.

42. Prove parts (c) and (d) of Theorem 6.1.1.

43. (a) Let u = (u1, u2) and v = (v1, v2). Prove that
〈u, v〉 = 3u1v1 + 5u2v2 defines an inner product on R2 by
showing that the inner product axioms hold.

(b) What conditions must k1 and k2 satisfy for
〈u, v〉 = k1u1v1 + k2u2v2 to define an inner product on
R2? Justify your answer.

44. Prove that the following identity holds for vectors in any inner
product space.

〈u, v〉 = 1
4‖u + v‖2 − 1

4‖u − v‖2

45. Prove that the following identity holds for vectors in any inner
product space.

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2

46. The definition of a complex vector space was given in the first
margin note in Section 4.1. The definition of a complex inner
product on a complex vector space V is identical to that in
Definition 1 except that scalars are allowed to be complex
numbers, and Axiom 1 is replaced by 〈u, v〉 = 〈v, u〉. The
remaining axioms are unchanged. A complex vector space
with a complex inner product is called a complex inner product
space. Prove that if V is a complex inner product space, then
〈u, kv〉 = k〈u, v〉.

47. Prove that Formula (5) defines an inner product on Rn.

48. (a) Prove that if v is a fixed vector in a real inner product space
V , then the mapping T : V →R defined by T (x) = 〈x, v〉
is a linear transformation.

(b) Let V = R3 have the Euclidean inner product, and let
v = (1, 0, 2). Compute T (1, 1, 1).

(c) Let V = P2 have the standard inner product, and let
v = 1 + x. Compute T (x + x2).

(d) Let V = P2 have the evaluation inner product at the points
x0 = 1, x1 = 0, x2 = −1, and let v = 1 + x. Compute
T (x + x2).

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) The dot product on R2 is an example of a weighted inner
product.

(b) The inner product of two vectors cannot be a negative real
number.

(c) 〈u, v + w〉 = 〈v, u〉 + 〈w, u〉.
(d) 〈ku, kv〉 = k2〈u, v〉.
(e) If 〈u, v〉 = 0, then u = 0 or v = 0.

(f ) If ‖v‖2 = 0, then v = 0.

(g) If A is an n × n matrix, then 〈u, v〉 = Au · Av defines an inner
product on Rn.
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Working withTechnology

T1. (a) Confirm that the following matrix generates an inner
product.

A =

⎡
⎢⎢⎢⎣

5 8 6 −13

3 −1 0 −9

0 1 −1 0

2 4 3 −5

⎤
⎥⎥⎥⎦

(b) For the following vectors, use the inner product in part (a) to
compute 〈u, v〉, first by Formula (5) and then by Formula (6).

u =

⎡
⎢⎢⎢⎣

1

−2

0

3

⎤
⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎣

0

1

−1

2

⎤
⎥⎥⎥⎦

T2. Let the vector space P4 have the evaluation inner product at
the points

−2, −1, 0, 1, 2

and let

p = p(x) = x + x3 and q = q(x) = 1 + x2 + x4

(a) Compute 〈p, q〉, ‖p‖, and ‖q‖.

(b) Verify that the identities in Exercises 44 and 45 hold for the
vectors p and q.

T3. Let the vector space M33 have the standard inner product and
let

u = U =
⎡
⎢⎣

1 −2 3

−2 4 1

3 1 0

⎤
⎥⎦ and v = V =

⎡
⎢⎣

2 −1 0

1 4 3

1 0 2

⎤
⎥⎦

(a) Use Formula (8) to compute 〈u, v〉, ‖u‖, and ‖v‖.

(b) Verify that the identities in Exercises 44 and 45 hold for the
vectors u and v.

6.2 Angle and Orthogonality in Inner Product Spaces
In Section 3.2 we defined the notion of “angle” between vectors in Rn. In this section we
will extend this idea to general vector spaces. This will enable us to extend the notion of
orthogonality as well, thereby setting the groundwork for a variety of new applications.

Cauchy–Schwarz Inequality Recall from Formula (20) of Section 3.2 that the angle θ between two vectors u and v in
Rn is

θ = cos−1

(
u · v

‖u‖‖v‖
)

(1)

We were assured that this formula was valid because it followed from the Cauchy–
Schwarz inequality (Theorem 3.2.4) that

−1 ≤ u · v
‖u‖‖v‖ ≤ 1 (2)

as required for the inverse cosine to be defined. The following generalization of the
Cauchy–Schwarz inequality will enable us to define the angle between two vectors in any
real inner product space.

THEOREM 6.2.1 Cauchy–Schwarz Inequality

If u and v are vectors in a real inner product space V, then

|〈u, v〉| ≤ ‖u‖‖v‖ (3)

Proof We warn you in advance that the proof presented here depends on a clever trick
that is not easy to motivate.

In the case where u = 0 the two sides of (3) are equal since 〈u, v〉 and ‖u‖ are both
zero. Thus, we need only consider the case where u �= 0. Making this assumption, let

a = 〈u, u〉, b = 2〈u, v〉, c = 〈v, v〉
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and let t be any real number. Since the positivity axiom states that the inner product of
any vector with itself is nonnegative, it follows that

0 ≤ 〈tu + v, tu + v〉 = 〈u, u〉t2 + 2〈u, v〉t + 〈v, v〉
= at2 + bt + c

This inequality implies that the quadratic polynomial at2 + bt + c has either no real
roots or a repeated real root. Therefore, its discriminant must satisfy the inequality
b2 − 4ac ≤ 0. Expressing the coefficients a, b, and c in terms of the vectors u and v
gives 4〈u, v〉2 − 4〈u, u〉〈v, v〉 ≤ 0 or, equivalently,

〈u, v〉2 ≤ 〈u, u〉〈v, v〉
Taking square roots of both sides and using the fact that 〈u, u〉 and 〈v, v〉 are nonnegative
yields

|〈u, v〉| ≤ 〈u, u〉1/2〈v, v〉1/2 or equivalently |〈u, v〉| ≤ ‖u‖‖v‖
which completes the proof.

The following two alternative forms of the Cauchy–Schwarz inequality are useful to
know:

〈u, v〉2 ≤ 〈u, u〉〈v, v〉 (4)

〈u, v〉2 ≤ ‖u‖2‖v‖2 (5)

The first of these formulas was obtained in the proof of Theorem 6.2.1, and the second
is a variation of the first.

Angle BetweenVectors Our next goal is to define what is meant by the “angle” between vectors in a real inner
product space. As a first step, we leave it as an exercise for you to use the Cauchy–Schwarz
inequality to show that

−1 ≤ 〈u, v〉
‖u‖‖v‖ ≤ 1 (6)

This being the case, there is a unique angle θ in radian measure for which

cos θ = 〈u, v〉
‖u‖‖v‖ and 0 ≤ θ ≤ π (7)

(Figure 6.2.1). This enables us to define the angle θ between u and v to be

θ = cos−1

( 〈u, v〉
‖u‖‖v‖

)
(8)

Figure 6.2.1

π

–1

1
y

–π
π
2

π
2

– π
2

5
π2 π3

π
2

3

θ



6.2 Angle and Orthogonality in Inner Product Spaces 357

EXAMPLE 1 Cosine of the Angle BetweenVectors inM22

Let M22 have the standard inner product. Find the cosine of the angle between the
vectors

u = U =
[

1 2

3 4

]
and v = V =

[
−1 0

3 2

]

Solution We showed in Example 6 of the previous section that

〈u, v〉 = 16, ‖u‖ = √
30, ‖v‖ = √

14

from which it follows that

cos θ = 〈u, v〉
‖u‖‖v‖ = 16√

30
√

14
≈ 0.78

Properties of Length and
Distance in General Inner

Product Spaces

In Section 3.2 we used the dot product to extend the notions of length and distance to Rn,

and we showed that various basic geometry theorems remained valid (see Theorems 3.2.5,
3.2.6, and 3.2.7). By making only minor adjustments to the proofs of those theorems,
one can show that they remain valid in any real inner product space. For example, here
is the generalization of Theorem 3.2.5 (the triangle inequalities).

THEOREM 6.2.2 If u, v, and w are vectors in a real inner product space V, and if k is
any scalar, then:

(a) ‖u + v‖ ≤ ‖u‖ + ‖v‖ [ Triangle inequality for vectors ]

(b) d(u, v) ≤ d(u, w) + d(w, v) [ Triangle inequality for distances ]

Proof (a)

‖u + v‖2 = 〈u + v, u + v〉
= 〈u, u〉 + 2〈u, v〉 + 〈v, v〉
≤ 〈u, u〉 + 2|〈u, v〉| + 〈v, v〉 [ Property of absolute value ]

≤ 〈u, u〉 + 2‖u‖‖v‖ + 〈v, v〉 [ By (3) ]

= ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2

Taking square roots gives ‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof (b) Identical to the proof of part (b) of Theorem 3.2.5.

Orthogonality Although Example 1 is a useful mathematical exercise, there is only an occasional need
to compute angles in vector spaces other than R2 and R3. A problem of more interest
in general vector spaces is ascertaining whether the angle between vectors is π/2. You
should be able to see from Formula (8) that if u and v are nonzero vectors, then the angle
between them is θ = π/2 if and only if 〈u, v〉 = 0. Accordingly, we make the following
definition, which is a generalization of Definition 1 in Section 3.3 and is applicable even
if one or both of the vectors is zero.

DEFINITION 1 Two vectors u and v in an inner product space V called orthogonal if
〈u, v〉 = 0.
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As the following example shows, orthogonality depends on the inner product in the
sense that for different inner products two vectors can be orthogonal with respect to one
but not the other.

EXAMPLE 2 Orthogonality Depends on the Inner Product

The vectors u = (1, 1) and v = (1,−1) are orthogonal with respect to the Euclidean
inner product on R2 since

u · v = (1)(1) + (1)(−1) = 0

However, they are not orthogonal with respect to the weighted Euclidean inner product
〈u, v〉 = 3u1v1 + 2u2v2 since

〈u, v〉 = 3(1)(1) + 2(1)(−1) = 1 �= 0

EXAMPLE 3 OrthogonalVectors inM22

If M22 has the inner product of Example 6 in the preceding section, then the matrices

U =
[

1 0

1 1

]
and V =

[
0 2

0 0

]
are orthogonal since

〈U, V 〉 = 1(0) + 0(2) + 1(0) + 1(0) = 0

CA L C U L U S R E Q U I R E D EXAMPLE 4 OrthogonalVectors in P2

Let P2 have the inner product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

and let p = x and q = x2. Then

‖p‖ = 〈p, p〉1/2 =
[∫ 1

−1
xx dx

]1/2

=
[∫ 1

−1
x2 dx

]1/2

=
√

2

3

‖q‖ = 〈q, q〉1/2 =
[∫ 1

−1
x2x2 dx

]1/2

=
[∫ 1

−1
x4 dx

]1/2

=
√

2

5

〈p, q〉 =
∫ 1

−1
xx2 dx =

∫ 1

−1
x3 dx = 0

Because 〈p, q〉 = 0, the vectors p = x and q = x2 are orthogonal relative to the given
inner product.

In Theorem 3.3.3 we proved the Theorem of Pythagoras for vectors in Euclidean
n-space. The following theorem extends this result to vectors in any real inner product
space.

THEOREM 6.2.3 GeneralizedTheorem of Pythagoras

If u and v are orthogonal vectors in a real inner product space, then

‖u + v‖2 = ‖u‖2 + ‖v‖2
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Proof The orthogonality of u and v implies that 〈u, v〉 = 0, so

‖u + v‖2 = 〈u + v, u + v〉 = ‖u‖2 + 2〈u, v〉 + ‖v‖2

= ‖u‖2 + ‖v‖2

CA L C U L U S R E Q U I R E D EXAMPLE 5 Theorem of Pythagoras in P2

In Example 4 we showed that p = x and q = x2 are orthogonal with respect to the inner
product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

on P2. It follows from Theorem 6.2.3 that

‖p + q‖2 = ‖p‖2 + ‖q‖2

Thus, from the computations in Example 4, we have

‖p + q‖2 =
(√

2

3

)2

+
(√

2

5

)2

= 2

3
+ 2

5
= 16

15

We can check this result by direct integration:

‖p + q‖2 = 〈p + q, p + q〉 =
∫ 1

−1
(x + x2)(x + x2) dx

=
∫ 1

−1
x2 dx + 2

∫ 1

−1
x3 dx +

∫ 1

−1
x4 dx = 2

3
+ 0 + 2

5
= 16

15

Orthogonal Complements In Section 4.8 we defined the notion of an orthogonal complement for subspaces of Rn,
and we used that definition to establish a geometric link between the fundamental spaces
of a matrix. The following definition extends that idea to general inner product spaces.

DEFINITION 2 If W is a subspace of a real inner product space V, then the set of
all vectors in V that are orthogonal to every vector in W is called the orthogonal
complement of W and is denoted by the symbol W⊥.

In Theorem 4.8.6 we stated three properties of orthogonal complements in Rn. The
following theorem generalizes parts (a) and (b) of that theorem to general real inner
product spaces.

THEOREM 6.2.4 If W is a subspace of a real inner product space V, then:

(a) W⊥ is a subspace of V .

(b) W ∩ W⊥ = {0}.

Proof (a) The set W⊥ contains at least the zero vector, since 〈0, w〉 = 0 for every vector
w in W . Thus, it remains to show that W⊥ is closed under addition and scalar multipli-
cation. To do this, suppose that u and v are vectors in W⊥, so that for every vector w in
W we have 〈u, w〉 = 0 and 〈v, w〉 = 0. It follows from the additivity and homogeneity
axioms of inner products that

〈u + v, w〉 = 〈u, w〉 + 〈v, w〉 = 0 + 0 = 0

〈ku, w〉 = k〈u, w〉 = k(0) = 0

which proves that u + v and ku are in W⊥.
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Proof (b) If v is any vector in both W and W⊥, then v is orthogonal to itself; that is,
〈v, v〉 = 0. It follows from the positivity axiom for inner products that v = 0.

The next theorem, which we state without proof, generalizes part (c) of Theo-
rem 4.8.6. Note, however, that this theorem applies only to finite-dimensional inner
product spaces, whereas Theorem 4.8.6 does not have this restriction.

THEOREM 6.2.5 IfW is a subspace of a real finite-dimensional inner product space V,

Theorem 6.2.5 implies that
in a finite-dimensional in-
ner product space orthogonal
complements occur in pairs,
each being orthogonal to the
other (Figure 6.2.2).

then the orthogonal complement of W⊥ is W ; that is,

(W⊥)⊥ = W

In our study of the fundamental spaces of a matrix in Section 4.8 we showed that the
W⊥

W

Figure 6.2.2 Each vector in
W is orthogonal to each vector
in W⊥ and conversely.

row space and null space of a matrix are orthogonal complements with respect to the
Euclidean inner product on Rn (Theorem 4.8.7). The following example takes advantage
of that fact.

EXAMPLE 6 Basis for an Orthogonal Complement

Let W be the subspace of R6 spanned by the vectors

w1 = (1, 3,−2, 0, 2, 0), w2 = (2, 6,−5,−2, 4,−3),

w3 = (0, 0, 5, 10, 0, 15), w4 = (2, 6, 0, 8, 4, 18)

Find a basis for the orthogonal complement of W .

Solution The subspace W is the same as the row space of the matrix

A =

⎡
⎢⎢⎢⎣

1 3 −2 0 2 0

2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

⎤
⎥⎥⎥⎦

Since the row space and null space of A are orthogonal complements, our problem
reduces to finding a basis for the null space of this matrix. In Example 4 of Section 4.7
we showed that

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4

0

−2

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

form a basis for this null space. Expressing these vectors in comma-delimited form (to
match that of w1, w2, w3, and w4), we obtain the basis vectors

v1 = (−3, 1, 0, 0, 0, 0), v2 = (−4, 0,−2, 1, 0, 0), v3 = (−2, 0, 0, 0, 1, 0)

You may want to check that these vectors are orthogonal to w1, w2, w3, and w4 by
computing the necessary dot products.
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Exercise Set 6.2
In Exercises 1–2, find the cosine of the angle between the vec-

tors with respect to the Euclidean inner product.
1. (a) u = (1,−3), v = (2, 4)

(b) u = (−1, 5, 2), v = (2, 4,−9)

(c) u = (1, 0, 1, 0), v = (−3,−3,−3,−3)

2. (a) u = (−1, 0), v = (3, 8)

(b) u = (4, 1, 8), v = (1, 0,−3)

(c) u = (2, 1, 7,−1), v = (4, 0, 0, 0)

In Exercises 3–4, find the cosine of the angle between the vec-
tors with respect to the standard inner product on P2.

3. p = −1 + 5x + 2x2, q = 2 + 4x − 9x2

4. p = x − x2, q = 7 + 3x + 3x2

In Exercises 5–6, find the cosine of the angle between A and B

with respect to the standard inner product on M22.

5. A =
[

2 6

1 −3

]
, B =

[
3 2

1 0

]

6. A =
[

2 4

−1 3

]
, B =

[−3 1

4 2

]

In Exercises 7–8, determine whether the vectors are orthogonal
with respect to the Euclidean inner product.

7. (a) u = (−1, 3, 2), v = (4, 2,−1)

(b) u = (−2,−2,−2), v = (1, 1, 1)

(c) u = (a, b), v = (−b, a)

8. (a) u = (u1, u2, u3), v = (0, 0, 0)

(b) u = (−4, 6,−10, 1), v = (2, 1,−2, 9)

(c) u = (a, b, c), v = (−c, 0, a)

In Exercises 9–10, show that the vectors are orthogonal with
respect to the standard inner product on P2.

9. p = −1 − x + 2x2, q = 2x + x2

10. p = 2 − 3x + x2, q = 4 + 2x − 2x2

In Exercises 11–12, show that the matrices are orthogonal with
respect to the standard inner product on M22.

11. U =
[

2 1

−1 3

]
, V =

[−3 0

0 2

]

12. U =
[

5 −1

2 −2

]
, V =

[
1 3

−1 0

]

In Exercises 13–14, show that the vectors are not orthogonal
with respect to the Euclidean inner product on R2, and then find
a value of k for which the vectors are orthogonal with respect to
the weighted Euclidean inner product 〈u, v〉 = 2u1v1 + ku2v2.

13. u = (1, 3), v = (2,−1) 14. u = (2,−4), v = (0, 3)

15. If the vectors u = (1, 2) and v = (2,−4) are orthogonal
with respect to the weighted Euclidean inner product
〈u, v〉 = w1u1v1 + w2u2v2, what must be true of the weights
w1 and w2?

16. Let R4 have the Euclidean inner product. Find two unit vec-
tors that are orthogonal to all three of the vectors
u = (2, 1,−4, 0), v = (−1,−1, 2, 2), and w = (3, 2, 5, 4).

17. Do there exist scalars k and l such that the vectors

p1 = 2 + kx + 6x2, p2 = l + 5x + 3x2, p3 = 1 + 2x + 3x2

are mutually orthogonal with respect to the standard inner
product on P2?

18. Show that the vectors

u =
[

3

3

]
and v =

[
5

−8

]

are orthogonal with respect to the inner product on R2 that is
generated by the matrix

A =
[

2 1

1 1

]

[See Formulas (5) and (6) of Section 6.1.]

19. Let P2 have the evaluation inner product at the points

x0 = −2, x1 = 0, x2 = 2

Show that the vectors p = x and q = x2 are orthogonal with
respect to this inner product.

20. Let M22 have the standard inner product. Determine whether
the matrix A is in the subspace spanned by the matrices U

and V .

A =
[−1 1

0 2

]
, U =

[
1 −1

3 0

]
, V =

[
4 0

9 2

]

In Exercises 21–24, confirm that the Cauchy–Schwarz inequal-
ity holds for the given vectors using the stated inner product.

21. u = (1, 0, 3), v = (2, 1,−1) using the weighted Euclidean in-
ner product 〈u, v〉 = 2u1v1 + 3u2v2 + u3v3 in R3.

22. U =
[−1 2

6 1

]
and V =

[
1 0

3 3

]
using the standard inner product on M22.

23. p = −1 + 2x + x2 and q = 2 − 4x2 using the standard inner
product on P2.

24. The vectors

u =
[

1

1

]
and v =

[
1

−1

]
with respect to the inner product in Exercise 18.
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25. Let R4 have the Euclidean inner product, and let
u = (−1, 1, 0, 2). Determine whether the vector u is orthogo-
nal to the subspace spanned by the vectors w1 = (1,−1, 3, 0)
and w2 = (4, 0, 9, 2).

26. Let P3 have the standard inner product, and let

p = −1 − x + 2x2 + 4x3

Determine whether p is orthogonal to the subspace spanned by
the polynomials w1 = 2 − x2 + x3 and w2 = 4x − 2x2 + 2x3.

In Exercises 27–28, find a basis for the orthogonal complement
of the subspace of Rn spanned by the vectors.

27. v1 = (1, 4, 5, 2), v2 = (2, 1, 3, 0), v3 = (−1, 3, 2, 2)

28. v1 = (1, 4, 5, 6, 9), v2 = (3,−2, 1, 4,−1),
v3 = (−1, 0,−1,−2,−1), v4 = (2, 3, 5, 7, 8)

In Exercises 29–30, assume that Rn has the Euclidean inner
product.

29. (a) Let W be the line in R2 with equation y = 2x. Find an
equation for W⊥.

(b) Let W be the plane in R3 with equation x − 2y − 3z = 0.
Find parametric equations for W⊥.

30. (a) Let W be the y-axis in an xyz-coordinate system in R3.
Describe the subspace W⊥.

(b) Let W be the yz-plane of an xyz-coordinate system in R3.
Describe the subspace W⊥.

31. (Calculus required ) Let C[0, 1] have the integral inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx

and let p = p(x) = x and q = q(x) = x2.

(a) Find 〈p, q〉.
(b) Find ‖p‖ and ‖q‖.

32. (a) Find the cosine of the angle between the vectors p and q
in Exercise 31.

(b) Find the distance between the vectors p and q in Exer-
cise 31.

33. (Calculus required ) Let C[−1, 1] have the integral inner
product

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

and let p = p(x) = x2 − x and q = q(x) = x + 1.

(a) Find 〈p, q〉.
(b) Find ‖p‖ and ‖q‖.

34. (a) Find the cosine of the angle between the vectors p and q
in Exercise 33.

(b) Find the distance between the vectors p and q in Exer-
cise 33.

35. (Calculus required ) Let C[0, 1] have the inner product in Ex-
ercise 31.

(a) Show that the vectors

p = p(x) = 1 and q = q(x) = 1
2 − x

are orthogonal.

(b) Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

36. (Calculus required ) Let C[−1, 1] have the inner product in
Exercise 33.

(a) Show that the vectors

p = p(x) = x and q = q(x) = x2 − 1

are orthogonal.

(b) Show that the vectors in part (a) satisfy the Theorem of
Pythagoras.

37. Let V be an inner product space. Show that if u and v are
orthogonal unit vectors in V, then ‖u − v‖ = √

2.

38. Let V be an inner product space. Show that if w is orthogonal
to both u1 and u2, then it is orthogonal to k1u1 + k2u2 for all
scalars k1 and k2. Interpret this result geometrically in the case
where V is R3 with the Euclidean inner product.

39. (Calculus required ) Let C[0, π ] have the inner product

〈f, g〉 =
∫ π

0
f(x)g(x) dx

and let fn = cos nx (n = 0, 1, 2, . . .). Show that if k �= l, then
fk and fl are orthogonal vectors.

40. As illustrated in the accompanying figure, the vectors
u = (1,

√
3 ) and v = (−1,

√
3 ) have norm 2 and an angle

of 60◦ between them relative to the Euclidean inner product.
Find a weighted Euclidean inner product with respect to which
u and v are orthogonal unit vectors.

y

x
uv

2

60°

(–1, √3) (1, √3)

Figure Ex-40

Working with Proofs

41. Let V be an inner product space. Prove that if w is orthogonal
to each of the vectors u1, u2, . . . , ur , then it is orthogonal to
every vector in span{u1, u2, . . . , ur}.

42. Let {v1, v2, . . . , vr} be a basis for an inner product space V .
Prove that the zero vector is the only vector in V that is or-
thogonal to all of the basis vectors.
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43. Let {w1, w2, . . . , wk} be a basis for a subspace W of V . Prove
that W⊥ consists of all vectors in V that are orthogonal to
every basis vector.

44. Prove the following generalization of Theorem 6.2.3: If
v1, v2, . . . , vr are pairwise orthogonal vectors in an inner
product space V, then

‖v1 + v2 + · · · + vr‖2 = ‖v1‖2 + ‖v2‖2 + · · · + ‖vr‖2

45. Prove: If u and v are n × 1 matrices and A is an n × n matrix,
then

(vTATAu)2 ≤ (uTATAu)(vTATAv)

46. Use the Cauchy–Schwarz inequality to prove that for all real
values of a, b, and θ ,

(a cos θ + b sin θ)2 ≤ a2 + b2

47. Prove: If w1, w2, . . . , wn are positive real numbers, and
if u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are any two
vectors in Rn, then

|w1u1v1 + w2u2v2 + · · · + wnunvn|
≤ (w1u

2
1 + w2u

2
2 + · · · + wnu

2
n)

1/2(w1v
2
1 + w2v

2
2 + · · · + wnv

2
n)

1/2

48. Prove that equality holds in the Cauchy–Schwarz inequality if
and only if u and v are linearly dependent.

49. (Calculus required ) Let f(x) and g(x) be continuous functions
on [0, 1]. Prove:

(a)

[∫ 1

0
f(x)g(x) dx

]2

≤
[∫ 1

0
f 2(x) dx

][∫ 1

0
g2(x) dx

]

(b)

[∫ 1

0
[f(x) + g(x)]2 dx

]1/2

≤
[∫ 1

0
f 2(x) dx

]1/2

+
[∫ 1

0
g2(x) dx

]1/2

[Hint: Use the Cauchy–Schwarz inequality.]

50. Prove that Formula (4) holds for all nonzero vectors u and v
in a real inner product space V .

51. Let TA: R2 →R2 be multiplication by

A =
[

1 1

−1 1

]
and let x = (1, 1).

(a) Assuming that R2 has the Euclidean inner product, find
all vectors v in R2 such that 〈x, v〉 = 〈TA(x), TA(v)〉.

(b) Assuming that R2 has the weighted Euclidean inner prod-
uct 〈u, v〉 = 2u1v1 + 3u2v2, find all vectors v in R2 such
that 〈x, v〉 = 〈TA(x), TA(v)〉.

52. Let T : P2 →P2 be the linear transformation defined by

T (a + bx + cx2) = 3a − cx2

and let p = 1 + x.

(a) Assuming that P2 has the standard inner product, find all
vectors q in P2 such that 〈p, q〉 = 〈T (p), T (q)〉.

(b) Assuming that P2 has the evaluation inner product at the
points x0 = −1, x1 = 0, x2 = 1, find all vectors q in P2

such that 〈p, q〉 = 〈T (p), T (q)〉.

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) If u is orthogonal to every vector of a subspace W , then u = 0.

(b) If u is a vector in both W and W⊥, then u = 0.

(c) If u and v are vectors in W⊥, then u + v is in W⊥.

(d) If u is a vector in W⊥ and k is a real number, then ku is in W⊥.

(e) If u and v are orthogonal, then |〈u, v〉| = ‖u‖‖v‖.

(f ) If u and v are orthogonal, then ‖u + v‖ = ‖u‖ + ‖v‖.

Working withTechnology

T1. (a) We know that the row space and null space of a matrix
are orthogonal complements relative to the Euclidean inner
product. Confirm this fact for the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 3 5

4 −3 1 3

3 −2 3 4

4 −1 15 17

7 −6 −7 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(b) Find a basis for the orthogonal complement of the column
space of A.

T2. In each part, confirm that the vectors u and v satisfy the
Cauchy–Schwarz inequality relative to the stated inner product.

(a) M44 with the standard inner product.

u =

⎡
⎢⎢⎢⎣

1 0 2 0

0 −1 0 1

3 0 0 2

0 4 −3 0

⎤
⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎣

2 2 1 3

3 −1 0 1

1 0 0 −2

−3 1 2 0

⎤
⎥⎥⎥⎦

(b) R4 with the weighted Euclidean inner product with weights
w1 = 1

2 , w2 = 1
4 , w3 = 1

8 , w4 = 1
8 .

u = (1,−2, 2, 1) and v = (0,−3, 3,−2)
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6.3 Gram–Schmidt Process; QR-Decomposition
In many problems involving vector spaces, the problem solver is free to choose any basis for
the vector space that seems appropriate. In inner product spaces, the solution of a problem
can often be simplified by choosing a basis in which the vectors are orthogonal to one
another. In this section we will show how such bases can be obtained.

Orthogonal and
Orthonormal Sets

Recall from Section 6.2 that two vectors in an inner product space are said to beorthogonal
if their inner product is zero. The following definition extends the notion of orthogonality
to sets of vectors in an inner product space.

DEFINITION 1 A set of two or more vectors in a real inner product space is said to be
orthogonal if all pairs of distinct vectors in the set are orthogonal. An orthogonal set
in which each vector has norm 1 is said to be orthonormal.

EXAMPLE 1 An Orthogonal Set in R3

Let
v1 = (0, 1, 0), v2 = (1, 0, 1), v3 = (1, 0,−1)

and assume that R3 has the Euclidean inner product. It follows that the set of vectors
S = {v1, v2, v3} is orthogonal since 〈v1, v2〉 = 〈v1, v3〉 = 〈v2, v3〉 = 0.

It frequently happens that one has found a set of orthogonal vectors in an inner
product space but what is actually needed is a set of orthonormal vectors. A simple way
to convert an orthogonal set of nonzero vectors into an orthonormal set is to multiply
each vector v in the orthogonal set by the reciprocal of its length to create a vector of
norm 1 (called a unit vector). To see why this works, suppose that v is a nonzero vector
in an inner product space, and let

u = 1

‖v‖v (1)

Then it follows from Theorem 6.1.1(b) with k = ‖v‖ that

Note that Formula (1) is iden-
tical to Formula (4) of Sec-
tion 3.2, but whereas For-
mula (4) was valid only for vec-
tors in Rn with the Euclidean
inner product, Formula (1) is
valid in general inner product
spaces.

‖u‖ =
∥∥∥∥ 1

‖v‖v

∥∥∥∥ =
∣∣∣∣ 1

‖v‖
∣∣∣∣ ‖v‖ = 1

‖v‖‖v‖ = 1

This process of multiplying a vector v by the reciprocal of its length is called normalizing v.
We leave it as an exercise to show that normalizing the vectors in an orthogonal set of
nonzero vectors preserves the orthogonality of the vectors and produces an orthonormal
set.

EXAMPLE 2 Constructing an Orthonormal Set

The Euclidean norms of the vectors in Example 1 are

‖v1‖ = 1, ‖v2‖ = √
2, ‖v3‖ = √

2

Consequently, normalizing u1, u2, and u3 yields

u1 = v1

‖v1‖ = (0, 1, 0), u2 = v2

‖v2‖ =
(

1√
2
, 0,

1√
2

)
,

u3 = v3

‖v3‖ =
(

1√
2
, 0,− 1√

2

)
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We leave it for you to verify that the set S = {u1, u2, u3} is orthonormal by showing that

〈u1, u2〉 = 〈u1, u3〉 = 〈u2, u3〉 = 0 and ‖u1‖ = ‖u2‖ = ‖u3‖ = 1

InR2 any two nonzero perpendicular vectors are linearly independent because neither
is a scalar multiple of the other; and in R3 any three nonzero mutually perpendicular
vectors are linearly independent because no one lies in the plane of the other two (and
hence is not expressible as a linear combination of the other two). The following theorem
generalizes these observations.

THEOREM 6.3.1 If S = {v1, v2, . . . , vn} is an orthogonal set of nonzero vectors in an
inner product space, then S is linearly independent.

Proof Assume that
k1v1 + k2v2 + · · · + knvn = 0 (2)

To demonstrate that S = {v1, v2, . . . , vn} is linearly independent, we must prove that
k1 = k2 = · · · = kn = 0.

For each vi in S, it follows from (2) that

〈k1v1 + k2v2 + · · · + knvn, vi〉 = 〈0, vi〉 = 0

or, equivalently,
k1〈v1, vi〉 + k2〈v2, vi〉 + · · · + kn〈vn, vi〉 = 0

From the orthogonality of S it follows that 〈vj , vi〉 = 0 when j �= i, so this equation
reduces to

ki〈vi , vi〉 = 0

Since the vectors in S are assumed to be nonzero, it follows from the positivity axiom

Since an orthonormal set is or-
thogonal, and since its vectors
are nonzero (norm 1), it fol-
lows from Theorem 6.3.1 that
every orthonormal set is lin-
early independent.

for inner products that 〈vi , vi〉 �= 0. Thus, the preceding equation implies that each ki in
Equation (2) is zero, which is what we wanted to prove.

In an inner product space, a basis consisting of orthonormal vectors is called an
orthonormal basis, and a basis consisting of orthogonal vectors is called an orthogonal
basis. A familiar example of an orthonormal basis is the standard basis for Rn with the
Euclidean inner product:

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)

EXAMPLE 3 An Orthonormal Basis for Pn
Recall from Example 7 of Section 6.1 that the standard inner product of the polynomials

p = a0 + a1x + · · · + anx
n and q = b0 + b1x + · · · + bnx

n

is
〈p, q〉 = a0b0 + a1b1 + · · · + anbn

and the norm of p relative to this inner product is

‖p‖ = √〈p, p〉 =
√

a2
0 + a2

1 + · · · + a2
n

You should be able to see from these formulas that the standard basis

S = {
1, x, x2, . . . , xn

}
is orthonormal with respect to this inner product.
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EXAMPLE 4 An Orthonormal Basis

In Example 2 we showed that the vectors

u1 = (0, 1, 0), u2 =
(

1√
2
, 0,

1√
2

)
, and u3 =

(
1√
2
, 0,− 1√

2

)
form an orthonormal set with respect to the Euclidean inner product on R3. By Theorem
6.3.1, these vectors form a linearly independent set, and since R3 is three-dimensional,
it follows from Theorem 4.5.4 that S = {u1, u2, u3} is an orthonormal basis for R3.

Coordinates Relative to
Orthonormal Bases

One way to express a vector u as a linear combination of basis vectors

S = {v1, v2, . . . , vn}
is to convert the vector equation

u = c1v1 + c2v2 + · · · + cnvn

to a linear system and solve for the coefficients c1, c2, . . . , cn. However, if the basis
happens to be orthogonal or orthonormal, then the following theorem shows that the
coefficients can be obtained more simply by computing appropriate inner products.

THEOREM 6.3.2

(a) If S = {v1, v2, . . . , vn} is an orthogonal basis for an inner product space V, and if
u is any vector in V, then

u = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vn〉
‖vn‖2

vn (3)

(b) If S = {v1, v2, . . . , vn} is an orthonormal basis for an inner product space V, and
if u is any vector in V, then

u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · · + 〈u, vn〉vn (4)

Proof (a) Since S = {v1, v2, . . . , vn} is a basis for V, every vector u in V can be expressed
in the form

u = c1v1 + c2v2 + · · · + cnvn

We will complete the proof by showing that

ci = 〈u, vi〉
‖vi‖2

(5)

for i = 1, 2, . . . , n. To do this, observe first that

〈u, vi〉 = 〈c1v1 + c2v2 + · · · + cnvn, vi〉
= c1〈v1, vi〉 + c2〈v2, vi〉 + · · · + cn〈vn, vi〉

Since S is an orthogonal set, all of the inner products in the last equality are zero except
the ith, so we have

〈u, vi〉 = ci〈vi , vi〉 = ci‖vi‖2

Solving this equation for ci yields (5), which completes the proof.

Proof (b) In this case, ‖v1‖ = ‖v2‖ = · · · = ‖vn‖ = 1, so Formula (3) simplifies to For-
mula (4).



6.3 Gram–Schmidt Process; QR -Decomposition 367

Using the terminology and notation from Definition 2 of Section 4.4, it follows from
Theorem 6.3.2 that the coordinate vector of a vector u in V relative to an orthogonal
basis S = {v1, v2, . . . , vn} is

(u)S =
( 〈u, v1〉

‖v1‖2
,
〈u, v2〉
‖v2‖2

, . . . ,
〈u, vn〉
‖vn‖2

)
(6)

and relative to an orthonormal basis S = {v1, v2, . . . , vn} is

(u)S = (〈u, v1〉, 〈u, v2〉, . . . , 〈u, vn〉) (7)

EXAMPLE 5 A CoordinateVector Relative to an Orthonormal Basis

Let
v1 = (0, 1, 0), v2 = (− 4

5 , 0, 3
5

)
, v3 = (

3
5 , 0, 4

5

)
It is easy to check that S = {v1, v2, v3} is an orthonormal basis for R3 with the Euclidean
inner product. Express the vector u = (1, 1, 1) as a linear combination of the vectors in
S, and find the coordinate vector (u)S .

Solution We leave it for you to verify that

〈u, v1〉 = 1, 〈u, v2〉 = − 1
5 , and 〈u, v3〉 = 7

5

Therefore, by Theorem 6.3.2 we have

u = v1 − 1
5 v2 + 7

5 v3

that is,
(1, 1, 1) = (0, 1, 0) − 1

5

(− 4
5 , 0, 3

5

)+ 7
5

(
3
5 , 0, 4

5

)
Thus, the coordinate vector of u relative to S is

(u)S = (〈u, v1〉, 〈u, v2〉, 〈u, v3〉) = (
1,− 1

5 ,
7
5

)

EXAMPLE 6 An Orthonormal Basis from an Orthogonal Basis

(a) Show that the vectors

w1 = (0, 2, 0), w2 = (3, 0, 3), w3 = (−4, 0, 4)

form an orthogonal basis for R3 with the Euclidean inner product, and use that
basis to find an orthonormal basis by normalizing each vector.

(b) Express the vector u = (1, 2, 4) as a linear combination of the orthonormal basis
vectors obtained in part (a).

Solution (a) The given vectors form an orthogonal set since

〈w1, w2〉 = 0, 〈w1, w3〉 = 0, 〈w2, w3〉 = 0

It follows from Theorem 6.3.1 that these vectors are linearly independent and hence form
a basis for R3 by Theorem 4.5.4. We leave it for you to calculate the norms of w1, w2,
and w3 and then obtain the orthonormal basis

v1 = w1

‖w1‖ = (0, 1, 0), v2 = w2

‖w2‖ =
(

1√
2
, 0,

1√
2

)
,

v3 = w3

‖w3‖ =
(
− 1√

2
, 0,

1√
2

)
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Solution (b) It follows from Formula (4) that

u = 〈u, v1〉v1 + 〈u, v2〉v2 + 〈u, v3〉v3

We leave it for you to confirm that

〈u, v1〉 = (1, 2, 4) · (0, 1, 0) = 2

〈u, v2〉 = (1, 2, 4) ·
(

1√
2
, 0,

1√
2

)
= 5√

2

〈u, v3〉 = (1, 2, 4) ·
(
− 1√

2
, 0,

1√
2

)
= 3√

2

and hence that

(1, 2, 4) = 2(0, 1, 0) + 5√
2

(
1√
2
, 0,

1√
2

)
+ 3√

2

(
− 1√

2
, 0,

1√
2

)

Orthogonal Projections Many applied problems are best solved by working with orthogonal or orthonormal
basis vectors. Such bases are typically found by starting with some simple basis (say a
standard basis) and then converting that basis into an orthogonal or orthonormal basis.
To explain exactly how that is done will require some preliminary ideas about orthogonal
projections.

In Section 3.3 we proved a result called the Projection Theorem (see Theorem 3.3.2)
that dealt with the problem of decomposing a vector u in Rn into a sum of two terms,
w1 and w2, in which w1 is the orthogonal projection of u on some nonzero vector a and
w2 is orthogonal to w1 (Figure 3.3.2). That result is a special case of the following more
general theorem, which we will state without proof.

THEOREM 6.3.3 ProjectionTheorem

If W is a finite-dimensional subspace of an inner product space V, then every vector u
in V can be expressed in exactly one way as

u = w1 + w2 (8)

where w1 is in W and w2 is in W⊥.

The vectors w1 and w2 in Formula (8) are commonly denoted by

w1 = projW u and w2 = projW⊥ u (9)

These are called the orthogonal projection of u on W and the orthogonal projection of u
on W⊥, respectively. The vector w2 is also called the component of u orthogonal to W .
Using the notation in (9), Formula (8) can be expressed as

u = projW u + projW⊥ u (10)

(Figure 6.3.1). Moreover, since projW⊥u = u − projW u, we can also express Formula

W⊥

W
0

u
projW⊥ u

projW u

Figure 6.3.1

(10) as

u = projW u + (u − projW u) (11)
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The following theorem provides formulas for calculating orthogonal projections.

Although Formulas (12) and
(13) are expressed in terms of
orthogonal and orthonormal
basis vectors, the resulting vec-
tor projW u does not depend on
the basis vectors that are used.

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V .

(a) If {v1, v2, . . . , vr} is an orthogonal basis for W, and u is any vector in V, then

projW u = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vr〉
‖vr‖2

vr (12)

(b) If {v1, v2, . . . , vr} is an orthonormal basis for W, and u is any vector in V, then

projW u = 〈u, v1〉v1 + 〈u, v2〉v2 + · · · + 〈u, vr〉vr (13)

Proof (a) It follows from Theorem 6.3.3 that the vector u can be expressed in the form
u = w1 + w2, where w1 = projW u is in W and w2 is in W⊥; and it follows from Theo-
rem 6.3.2 that the component projW u = w1 can be expressed in terms of the basis vectors
for W as

projW u = w1 = 〈w1, v1〉
‖v1‖2

v1 + 〈w1, v2〉
‖v2‖2

v2 + · · · + 〈w1, vr〉
‖vr‖2

vr (14)

Since w2 is orthogonal to W , it follows that

〈w2, v1〉 = 〈w2, v2〉 = · · · = 〈w2, vr〉 = 0

so we can rewrite (14) as

projW u = w1 = 〈w1 + w2, v1〉
‖v1‖2

v1 + 〈w1 + w2, v2〉
‖v2‖2

v2 + · · · + 〈w1 + w2, vr〉
‖vr‖2

vr

or, equivalently, as

projW u = w1 = 〈u, v1〉
‖v1‖2

v1 + 〈u, v2〉
‖v2‖2

v2 + · · · + 〈u, vr〉
‖vr‖2

vr

Proof (b) In this case, ‖v1‖ = ‖v2‖ = · · · = ‖vr‖ = 1, so Formula (14) simplifies to
Formula (13).

EXAMPLE 7 Calculating Projections

Let R3 have the Euclidean inner product, and let W be the subspace spanned by the
orthonormal vectors v1 = (0, 1, 0) and v2 = (− 4

5 , 0, 3
5

)
. From Formula (13) the or-

thogonal projection of u = (1, 1, 1) on W is

projW u = 〈u, v1〉v1 + 〈u, v2〉v2

= (1)(0, 1, 0) + (− 1
5

) (− 4
5 , 0, 3

5

)
= (

4
25 , 1,− 3

25

)
The component of u orthogonal to W is

projW⊥ u = u − projW u = (1, 1, 1) − (
4
25 , 1,− 3

25

) = (
21
25 , 0, 28

25

)
Observe that projW⊥ u is orthogonal to both v1 and v2, so this vector is orthogonal to
each vector in the space W spanned by v1 and v2, as it should be.

A Geometric Interpretation
of Orthogonal Projections

If W is a one-dimensional subspace of an inner product space V, say span{a}, then
Formula (12) has only the one term

projW u = 〈u, a〉
‖a‖2

a

In the special case where V is R3 with the Euclidean inner product, this is exactly For-
mula (10) of Section 3.3 for the orthogonal projection of u along a. This suggests that
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we can think of (12) as the sum of orthogonal projections on “axes” determined by the
basis vectors for the subspace W (Figure 6.3.2).

Figure 6.3.2

W

u

v2

v1

projW u

projv2
u

projv1
u

0

The Gram–Schmidt Process We have seen that orthonormal bases exhibit a variety of useful properties. Our next the-
orem, which is the main result in this section, shows that every nonzero finite-dimensional
vector space has an orthonormal basis. The proof of this result is extremely important
since it provides an algorithm, or method, for converting an arbitrary basis into an
orthonormal basis.

THEOREM 6.3.5 Every nonzero finite-dimensional inner product space has an ortho-
normal basis.

Proof Let W be any nonzero finite-dimensional subspace of an inner product space, and
suppose that {u1, u2, . . . , ur} is any basis for W . It suffices to show that W has an orthog-
onal basis since the vectors in that basis can be normalized to obtain an orthonormal
basis. The following sequence of steps will produce an orthogonal basis {v1, v2, . . . , vr}
for W :

Step 1. Let v1 = u1.

Step 2. As illustrated in Figure 6.3.3, we can obtain a vector v2 that is orthogonal to v1

W1

u2

v2 = u2 – projW1
 u2

v1 projW1 u2

Figure 6.3.3

by computing the component of u2 that is orthogonal to the space W1 spanned
by v1. Using Formula (12) to perform this computation, we obtain

v2 = u2 − projW1
u2 = u2 − 〈u2, v1〉

‖v1‖2
v1

Of course, if v2 = 0, then v2 is not a basis vector. But this cannot happen, since
it would then follow from the preceding formula for v2 that

u2 = 〈u2, v1〉
‖v1‖2

v1 = 〈u2, v1〉
‖u1‖2

u1

which implies that u2 is a multiple of u1, contradicting the linear independence
of the basis {u1, u2, . . . , ur}.

Step 3. To construct a vector v3 that is orthogonal to both v1 and v2, we compute the
component of u3 orthogonal to the space W2 spanned by v1 and v2 (Figure 6.3.4).

W2

u3

v3 = u3 – projW2
 u3

v2

v1

projW2 u3

Figure 6.3.4

Using Formula (12) to perform this computation, we obtain

v3 = u3 − projW2
u3 = u3 − 〈u3, v1〉

‖v1‖2
v1 − 〈u3, v2〉

‖v2‖2
v2

As in Step 2, the linear independence of {u1, u2, . . . , ur} ensures that v3 �= 0. We
leave the details for you.
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Step 4. To determine a vector v4 that is orthogonal to v1, v2, and v3, we compute the
component of u4 orthogonal to the space W3 spanned by v1, v2, and v3. From (12),

v4 = u4 − projW3
u4 = u4 − 〈u4, v1〉

‖v1‖2
v1 − 〈u4, v2〉

‖v2‖2
v2 − 〈u4, v3〉

‖v3‖2
v3

Continuing in this way we will produce after r steps an orthogonal set of nonzero
vectors {v1, v2, . . . , vr}. Since such sets are linearly independent, we will have produced
an orthogonal basis for the r-dimensional space W . By normalizing these basis vectors
we can obtain an orthonormal basis.

The step-by-step construction of an orthogonal (or orthonormal) basis given in
the foregoing proof is called the Gram–Schmidt process. For reference, we provide the
following summary of the steps.

The Gram–Schmidt Process

To convert a basis {u1, u2, . . . , ur} into an orthogonal basis {v1, v2, . . . , vr}, perform
the following computations:

Step 1. v1 = u1

Step 2. v2 = u2 − 〈u2, v1〉
‖v1‖2

v1

Step 3. v3 = u3 − 〈u3, v1〉
‖v1‖2

v1 − 〈u3, v2〉
‖v2‖2

v2

Step 4. v4 = u4 − 〈u4, v1〉
‖v1‖2

v1 − 〈u4, v2〉
‖v2‖2

v2 − 〈u4, v3〉
‖v3‖2

v3

...

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis
{q1, q2, . . . , qr}, normalize the orthogonal basis vectors.

Jorgen Pederson Gram
(1850–1916)

Historical Note Erhardt Schmidt (1875–1959) was a German mathematician
who studied for his doctoral degree at Göttingen University under David
Hilbert, one of the giants of modern mathematics. For most of his life he taught
at Berlin University where, in addition to making important contributions to
many branches of mathematics, he fashioned some of Hilbert’s ideas into a
general concept, called a Hilbert space—a fundamental structure in the study
of infinite-dimensional vector spaces. He first described the process that bears
his name in a paper on integral equations that he published in 1907.

Historical Note Gram was a Danish actuary whose early education was at vil-
lage schools supplemented by private tutoring. He obtained a doctorate degree
in mathematics while working for the Hafnia Life Insurance Company, where
he specialized in the mathematics of accident insurance. It was in his disser-
tation that his contributions to the Gram–Schmidt process were formulated.
He eventually became interested in abstract mathematics and received a gold
medal from the Royal Danish Society of Sciences and Letters in recognition of
his work. His lifelong interest in applied mathematics never wavered, however,
and he produced a variety of treatises on Danish forest management.

[Image: http://www-history.mcs.st-and.ac.uk/PictDisplay/Gram.html]
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EXAMPLE 8 Using the Gram–Schmidt Process

Assume that the vector space R3 has the Euclidean inner product. Apply the Gram–
Schmidt process to transform the basis vectors

u1 = (1, 1, 1), u2 = (0, 1, 1), u3 = (0, 0, 1)

into an orthogonal basis {v1, v2, v3}, and then normalize the orthogonal basis vectors to
obtain an orthonormal basis {q1, q2, q3}.
Solution

Step 1. v1 = u1 = (1, 1, 1)

Step 2. v2 = u2 − projW1
u2 = u2 − 〈u2, v1〉

‖v1‖2
v1

= (0, 1, 1) − 2

3
(1, 1, 1) =

(
−2

3
,

1

3
,

1

3

)

Step 3. v3 = u3 − projW2
u3 = u3 − 〈u3, v1〉

‖v1‖2
v1 − 〈u3, v2〉

‖v2‖2
v2

= (0, 0, 1) − 1

3
(1, 1, 1) − 1/3

2/3

(
−2

3
,

1

3
,

1

3

)

=
(

0,−1

2
,

1

2

)
Thus,

v1 = (1, 1, 1), v2 =
(
−2

3
,

1

3
,

1

3

)
, v3 =

(
0,−1

2
,

1

2

)
form an orthogonal basis for R3. The norms of these vectors are

‖v1‖ = √
3, ‖v2‖ =

√
6

3
, ‖v3‖ = 1√

2

so an orthonormal basis for R3 is

q1 = v1

‖v1‖ =
(

1√
3
,

1√
3
,

1√
3

)
, q2 = v2

‖v2‖ =
(
− 2√

6
,

1√
6
,

1√
6

)
,

q3 = v3

‖v3‖ =
(

0,− 1√
2
,

1√
2

)

Remark In the last example we normalized at the end to convert the orthogonal basis into an
orthonormal basis. Alternatively, we could have normalized each orthogonal basis vector as soon
as it was obtained, thereby producing an orthonormal basis step by step. However, that procedure
generally has the disadvantage in hand calculation of producing more square roots to manipulate.
A more useful variation is to “scale” the orthogonal basis vectors at each step to eliminate some of
the fractions. For example, after Step 2 above, we could have multiplied by 3 to produce (−2, 1, 1)
as the second orthogonal basis vector, thereby simplifying the calculations in Step 3.

EXAMPLE 9 Legendre Polynomials

Let the vector space P2 have the inner product

CA L C U L U S R E Q U I R E D

〈p, q〉 =
∫ 1

−1
p(x)q(x) dx

Apply the Gram–Schmidt process to transform the standard basis {1, x, x2} for P2 into
an orthogonal basis {φ1(x), φ2(x), φ3(x)}.
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Solution Take u1 = 1, u2 = x, and u3 = x2.

Step 1. v1 = u1 = 1

Step 2. We have

〈u2, v1〉 =
∫ 1

−1
x dx = 0

so

v2 = u2 − 〈u2, v1〉
‖v1‖2

v1 = u2 = x

Step 3. We have

〈u3, v1〉 =
∫ 1

−1
x2 dx = x3

3

]1

−1

= 2

3

〈u3, v2〉 =
∫ 1

−1
x3 dx = x4

4

]1

−1

= 0

‖v1‖2 = 〈v1, v1〉 =
∫ 1

−1
1 dx = x

]1

−1

= 2

so

v3 = u3 − 〈u3, v1〉
‖v1‖2

v1 − 〈u3, v2〉
‖v2‖2

v2 = x2 − 1

3

Thus, we have obtained the orthogonal basis {φ1(x), φ2(x), φ3(x)} in which

φ1(x) = 1, φ2(x) = x, φ3(x) = x2 − 1

3

Remark The orthogonal basis vectors in the last example are often scaled so all three functions
have a value of 1 at x = 1. The resulting polynomials

1, x,
1

2
(3x2 − 1)

which are known as the first three Legendre polynomials, play an important role in a variety of
applications. The scaling does not affect the orthogonality.

Extending Orthonormal
Sets to Orthonormal Bases

Recall from part (b) of Theorem 4.5.5 that a linearly independent set in a finite-dimensional
vector space can be enlarged to a basis by adding appropriate vectors. The following the-
orem is an analog of that result for orthogonal and orthonormal sets in finite-dimensional
inner product spaces.

THEOREM 6.3.6 If W is a finite-dimensional inner product space, then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal
basis for W .

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W .

We will prove part (b) and leave part (a) as an exercise.

Proof (b) Suppose that S = {v1, v2, . . . , vs} is an orthonormal set of vectors in W .
Part (b) of Theorem 4.5.5 tells us that we can enlarge S to some basis

S ′ = {v1, v2, . . . , vs , vs+1, . . . , vk}
for W . If we now apply the Gram–Schmidt process to the set S ′, then the vectors
v1, v2, . . . , vs , will not be affected since they are already orthonormal, and the resulting
set

S ′′ = {v1, v2, . . . , vs , v′s+1, . . . , v′k}
will be an orthonormal basis for W .
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QR-Decomposition
In recent years a numerical algorithm based on the Gram–Schmidt process, and knownO PT I O NA L

as QR-decomposition, has assumed growing importance as the mathematical foundation
for a wide variety of numerical algorithms, including those for computing eigenvalues of
large matrices. The technical aspects of such algorithms are discussed in textbooks that
specialize in the numerical aspects of linear algebra. However, we will discuss some of
the underlying ideas here. We begin by posing the following problem.

Problem If A is an m × n matrix with linearly independent column vectors, and if
Q is the matrix that results by applying the Gram–Schmidt process to the column
vectors of A, what relationship, if any, exists between A and Q?

To solve this problem, suppose that the column vectors of A are u1, u2, . . . , un and
that Q has orthonormal column vectors q1, q2, . . . , qn. Thus, A and Q can be written
in partitioned form as

A = [u1 | u2 | · · · | un] and Q = [q1 | q2 | · · · | qn]
It follows from Theorem 6.3.2(b) that u1, u2, . . . , un are expressible in terms of the vectors
q1, q2, . . . , qn as

u1 = 〈u1, q1〉q1 + 〈u1, q2〉q2 + · · ·+ 〈u1, qn〉qn

u2 = 〈u2, q1〉q1 + 〈u2, q2〉q2 + · · ·+ 〈u2, qn〉qn

...
...

...
...

un = 〈un, q1〉q1 + 〈un, q2〉q2 + · · ·+ 〈un, qn〉qn

Recalling from Section 1.3 (Example 9) that the j th column vector of a matrix product
is a linear combination of the column vectors of the first factor with coefficients coming
from the j th column of the second factor, it follows that these relationships can be
expressed in matrix form as

[u1 | u2 | · · · | un] = [q1 | q2 | · · · | qn]

⎡
⎢⎢⎢⎣
〈u1, q1〉 〈u2, q1〉 · · · 〈un, q1〉
〈u1, q2〉 〈u2, q2〉 · · · 〈un, q2〉

...
...

...

〈u1, qn〉 〈u2, qn〉 · · · 〈un, qn〉

⎤
⎥⎥⎥⎦

or more briefly as

A = QR (15)

where R is the second factor in the product. However, it is a property of the Gram–
Schmidt process that for j ≥ 2, the vector qj is orthogonal to u1, u2, . . . , uj−1. Thus, all
entries below the main diagonal of R are zero, and R has the form

R =

⎡
⎢⎢⎢⎣
〈u1, q1〉 〈u2, q1〉 · · · 〈un, q1〉

0 〈u2, q2〉 · · · 〈un, q2〉
...

...
...

0 0 · · · 〈un, qn〉

⎤
⎥⎥⎥⎦ (16)

We leave it for you to show that R is invertible by showing that its diagonal entries
are nonzero. Thus, Equation (15) is a factorization of A into the product of a matrix Q
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with orthonormal column vectors and an invertible upper triangular matrix R. We call
Equation (15) a QR-decomposition of A. In summary, we have the following theorem.

THEOREM 6.3.7 QR -Decomposition

If A is an m × n matrix with linearly independent column vectors, then A can be fac-
tored as

A = QR

where Q is an m × n matrix with orthonormal column vectors, and R is an n × n

invertible upper triangular matrix.

It is common in numerical
linear algebra to say that a ma-
trix with linearly independent
columns has full column rank.

Recall from Theorem 5.1.5 (the Equivalence Theorem) that a square matrix has
linearly independent column vectors if and only if it is invertible. Thus, it follows from
Theorem 6.3.7 that every invertible matrix has a QR-decomposition.

EXAMPLE 10 QR -Decomposition of a 3 × 3 Matrix

Find a QR-decomposition of

A =
⎡
⎢⎣1 0 0

1 1 0

1 1 1

⎤
⎥⎦

Solution The column vectors of A are

u1 =
⎡
⎢⎣1

1

1

⎤
⎥⎦, u2 =

⎡
⎢⎣0

1

1

⎤
⎥⎦, u3 =

⎡
⎢⎣0

0

1

⎤
⎥⎦

Applying the Gram–Schmidt process with normalization to these column vectors yields
the orthonormal vectors (see Example 8)

q1 =

⎡
⎢⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎥⎦, q2 =

⎡
⎢⎢⎣
− 2√

6
1√
6

1√
6

⎤
⎥⎥⎦, q3 =

⎡
⎢⎢⎣

0

− 1√
2

1√
2

⎤
⎥⎥⎦

Thus, it follows from Formula (16) that R is

R =
⎡
⎢⎣〈u1, q1〉 〈u2, q1〉 〈u3, q1〉

0 〈u2, q2〉 〈u3, q2〉
0 0 〈u3, q3〉

⎤
⎥⎦ =

⎡
⎢⎢⎣

3√
3

2√
3

1√
3

0 2√
6

1√
6

0 0 1√
2

⎤
⎥⎥⎦

from which it follows that a QR-decomposition of A is⎡
⎢⎣1 0 0

1 1 0

1 1 1

⎤
⎥⎦ =

⎡
⎢⎢⎣

1√
3

− 2√
6

0

1√
3

1√
6

− 1√
2

1√
3

1√
6

1√
2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

3√
3

2√
3

1√
3

0 2√
6

1√
6

0 0 1√
2

⎤
⎥⎥⎦

A = Q R
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Exercise Set 6.3
1. In each part, determine whether the set of vectors is orthog-

onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R2.

(a) (0, 1), (2, 0)

(b)
(
− 1√

2
, 1√

2

)
,
(

1√
2
, 1√

2

)
(c)

(
− 1√

2
,− 1√

2

)
,
(

1√
2
, 1√

2

)
(d) (0, 0), (0, 1)

2. In each part, determine whether the set of vectors is orthog-
onal and whether it is orthonormal with respect to the Eu-
clidean inner product on R3.

(a)
(

1√
2
, 0, 1√

2

)
,
(

1√
3
, 1√

3
,− 1√

3

)
,
(
− 1√

2
, 0, 1√

2

)
(b)

(
2
3 ,− 2

3 ,
1
3

)
,
(

2
3 ,

1
3 ,− 2

3

)
,
(

1
3 ,

2
3 ,

2
3

)
(c) (1, 0, 0),

(
0, 1√

2
, 1√

2

)
, (0, 0, 1)

(d)
(

1√
6
, 1√

6
,− 2√

6

)
,
(

1√
2
,− 1√

2
, 0
)

3. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on P2 (see
Example 7 of Section 6.1).

(a) p1(x) = 2
3 − 2

3 x + 1
3 x

2, p2(x) = 2
3 + 1

3 x − 2
3 x

2,

p3(x) = 1
3 + 2

3 x + 2
3 x

2

(b) p1(x) = 1, p2(x) = 1√
2
x + 1√

2
x2, p3(x) = x2

4. In each part, determine whether the set of vectors is orthog-
onal with respect to the standard inner product on M22 (see
Example 6 of Section 6.1).

(a)

[
1 0

0 0

]
,

[
0 2

3

1
3 − 2

3

]
,

[
0 2

3

− 2
3

1
3

]
,

[
0 1

3

2
3

2
3

]

(b)

[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 1

]
,

[
0 0

1 −1

]

In Exercises 5–6, show that the column vectors of A form an
orthogonal basis for the column space of A with respect to the
Euclidean inner product, and then find an orthonormal basis for
that column space.

5. A =
⎡
⎢⎣ 1 2 0

0 0 5

−1 2 0

⎤
⎥⎦ 6. A =

⎡
⎢⎢⎣

1
5 − 1

2
1
3

1
5

1
2

1
3

1
5 0 − 2

3

⎤
⎥⎥⎦

7. Verify that the vectors

v1 = (− 3
5 ,

4
5 , 0

)
, v2 = (

4
5 ,

3
5 , 0

)
, v3 = (0, 0, 1)

form an orthonormal basis for R3 with respect to the Eu-
clidean inner product, and then use Theorem 6.3.2(b) to ex-
press the vector u = (1,−2, 2) as a linear combination of v1,
v2, and v3.

8. Use Theorem 6.3.2(b) to express the vector u = (3,−7, 4) as
a linear combination of the vectors v1, v2, and v3 in Exercise 7.

9. Verify that the vectors

v1 = (2,−2, 1), v2 = (2, 1,−2), v3 = (1, 2, 2)

form an orthogonal basis for R3 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (−1, 0, 2) as a linear combination of v1, v2, and v3.

10. Verify that the vectors

v1 = (1,−1, 2,−1), v2 = (−2, 2, 3, 2),

v3 = (1, 2, 0,−1), v4 = (1, 0, 0, 1)

form an orthogonal basis for R4 with respect to the Euclidean
inner product, and then use Theorem 6.3.2(a) to express the
vector u = (1, 1, 1, 1) as a linear combination of v1, v2, v3,

and v4.

In Exercises 11–14, find the coordinate vector (u)S for the vec-
tor u and the basis S that were given in the stated exercise.

11. Exercise 7 12. Exercise 8

13. Exercise 9 14. Exercise 10

In Exercises 15–18, let R2 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the line spanned by
the vector v.

(b) Find the component of u orthogonal to the line spanned by
the vector v, and confirm that this component is orthogonal
to the line.

15. u = (−1, 6); v = (
3
5 ,

4
5

)
16. u = (2, 3); v = (

5
13 ,

12
13

)
17. u = (2, 3); v = (1, 1) 18. u = (3,−1); v = (3, 4)

In Exercises 19–22, let R3 have the Euclidean inner product.

(a) Find the orthogonal projection of u onto the plane spanned
by the vectors v1 and v2.

(b) Find the component of u orthogonal to the plane spanned
by the vectors v1 and v2, and confirm that this component is
orthogonal to the plane.

19. u = (4, 2, 1); v1 = (
1
3 ,

2
3 ,− 2

3

)
, v2 = (

2
3 ,

1
3 ,

2
3

)
20. u = (3,−1, 2); v1 =

(
1√
6
, 1√

6
,− 2√

6

)
, v2 =

(
1√
3
, 1√

3
, 1√

3

)
21. u = (1, 0, 3); v1 = (1,−2, 1), v2 = (2, 1, 0)

22. u = (1, 0, 2); v1 = (3, 1, 2), v2 = (−1, 1, 1)

In Exercises 23–24, the vectors v1 and v2 are orthogonal with
respect to the Euclidean inner product on R4. Find the orthogo-
nal projection of b = (1, 2, 0,−2) on the subspace W spanned by
these vectors.

23. v1 = (1, 1, 1, 1), v2 = (1, 1,−1,−1)

24. v1 = (0, 1,−4,−1), v2 = (3, 5, 1, 1)
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In Exercises 25–26, the vectors v1, v2, and v3 are orthonor-
mal with respect to the Euclidean inner product on R4. Find the
orthogonal projection of b = (1, 2, 0,−1) onto the subspace W

spanned by these vectors.

25. v1 =
(

0, 1√
18

,− 4√
18

,− 1√
18

)
, v2 = (

1
2 ,

5
6 ,

1
6 ,

1
6

)
,

v3 =
(

1√
18

, 0, 1√
18

,− 4√
18

)
26. v1 = (

1
2 ,

1
2 ,

1
2 ,

1
2

)
, v2 = (

1
2 ,

1
2 ,− 1

2 ,− 1
2

)
,

v3 = (
1
2 ,− 1

2 ,
1
2 ,− 1

2

)
In Exercises 27–28, let R2 have the Euclidean inner product

and use the Gram–Schmidt process to transform the basis {u1, u2}
into an orthonormal basis. Draw both sets of basis vectors in the
xy-plane.

27. u1 = (1,−3), u2 = (2, 2) 28. u1 = (1, 0), u2 = (3,−5)

In Exercises 29–30, letR3 have the Euclidean inner product and
use the Gram–Schmidt process to transform the basis {u1, u2, u3}
into an orthonormal basis.

29. u1 = (1, 1, 1), u2 = (−1, 1, 0), u3 = (1, 2, 1)

30. u1 = (1, 0, 0), u2 = (3, 7,−2), u3 = (0, 4, 1)

31. Let R4 have the Euclidean inner product. Use the Gram–
Schmidt process to transform the basis {u1, u2, u3, u4} into an
orthonormal basis.

u1 = (0, 2, 1, 0), u2 = (1,−1, 0, 0),

u3 = (1, 2, 0,−1), u4 = (1, 0, 0, 1)

32. Let R3 have the Euclidean inner product. Find an orthonor-
mal basis for the subspace spanned by (0, 1, 2), (−1, 0, 1),
(−1, 1, 3).

33. Let b and W be as in Exercise 23. Find vectors w1 in W and
w2 in W⊥ such that b = w1 + w2.

34. Let b and W be as in Exercise 25. Find vectors w1 in W and
w2 in W⊥ such that b = w1 + w2.

35. Let R3 have the Euclidean inner product. The subspace of
R3 spanned by the vectors u1 = (1, 1, 1) and u2 = (2, 0,−1)
is a plane passing through the origin. Express w = (1, 2, 3)
in the form w = w1 + w2, where w1 lies in the plane and w2 is
perpendicular to the plane.

36. Let R4 have the Euclidean inner product. Express the vector
w = (−1, 2, 6, 0) in the form w = w1 + w2, where w1 is in the
space W spanned by u1 = (−1, 0, 1, 2) and u2 = (0, 1, 0, 1),
and w2 is orthogonal to W .

37. Let R3 have the inner product

〈u, v〉 = u1v1 + 2u2v2 + 3u3v3

Use the Gram–Schmidt process to transform u1 = (1, 1, 1),
u2 = (1, 1, 0), u3 = (1, 0, 0) into an orthonormal basis.

38. Verify that the set of vectors {(1, 0), (0, 1)} is orthogonal with
respect to the inner product 〈u, v〉 = 4u1v1 + u2v2 on R2; then
convert it to an orthonormal set by normalizing the vectors.

39. Find vectors x and y in R2 that are orthonormal with respect
to the inner product 〈u, v〉 = 3u1v1 + 2u2v2 but are not or-
thonormal with respect to the Euclidean inner product.

40. In Example 3 of Section 4.9 we found the orthogonal projec-
tion of the vector x = (1, 5) onto the line through the origin
making an angle of π/6 radians with the positive x-axis. Solve
that same problem using Theorem 6.3.4.

41. This exercise illustrates that the orthogonal projection result-
ing from Formula (12) in Theorem 6.3.4 does not depend on
which orthogonal basis vectors are used.

(a) Let R3 have the Euclidean inner product, and let W be the
subspace of R3 spanned by the orthogonal vectors

v1 = (1, 0, 1) and v2 = (0, 1, 0)

Show that the orthogonal vectors

v′1 = (1, 1, 1) and v′2 = (1,−2, 1)

span the same subspace W .

(b) Let u = (−3, 1, 7) and show that the same vector projW u
results regardless of which of the bases in part (a) is used
for its computation.

42. (Calculus required ) Use Theorem 6.3.2(a) to express the fol-
lowing polynomials as linear combinations of the first three
Legendre polynomials (see the Remark following Example 9).

(a) 1 + x + 4x2 (b) 2 − 7x2 (c) 4 + 3x

43. (Calculus required ) Let P2 have the inner product

〈p, q〉 =
∫ 1

0
p(x)q(x) dx

Apply the Gram–Schmidt process to transform the standard
basis S = {1, x, x2} into an orthonormal basis.

44. Find an orthogonal basis for the column space of the matrix

A =

⎡
⎢⎢⎢⎣

6 1 −5

2 1 1

−2 −2 5

6 8 −7

⎤
⎥⎥⎥⎦

In Exercises 45–48, we obtained the column vectors of Q by
applying the Gram–Schmidt process to the column vectors of A.
Find a QR-decomposition of the matrix A.

45. A =
[

1 −1
2 3

]
, Q =

[ 1√
5

− 2√
5

2√
5

1√
5

]

46. A =
⎡
⎣1 2

0 1
1 4

⎤
⎦ , Q =

⎡
⎢⎢⎣

1√
2

− 1√
3

0 1√
3

1√
2

1√
3

⎤
⎥⎥⎦
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47. A =
⎡
⎣1 0 2

0 1 1
1 2 0

⎤
⎦ , Q =

⎡
⎢⎢⎣

1√
2

− 1√
3

1√
6

0 1√
3

2√
6

1√
2

1√
3

− 1√
6

⎤
⎥⎥⎦

48. A =
⎡
⎣1 2 1

1 1 1
0 3 1

⎤
⎦ , Q =

⎡
⎢⎢⎢⎣

1√
2

√
2

2
√

19
− 3√

19

1√
2

−
√

2
2
√

19
3√
19

0 3
√

2√
19

1√
19

⎤
⎥⎥⎥⎦

49. Find a QR-decomposition of the matrix

A =

⎡
⎢⎢⎣

1 0 1
−1 1 1

1 0 1
−1 1 1

⎤
⎥⎥⎦

50. In the Remark following Example 8 we discussed two alter-
native ways to perform the calculations in the Gram–Schmidt
process: normalizing each orthogonal basis vector as soon as
it is calculated and scaling the orthogonal basis vectors at each
step to eliminate fractions. Try these methods in Example 8.

Working with Proofs

51. Prove part (a) of Theorem 6.3.6.

52. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the
linear independence of {u1, u2, . . . , un} ensures that v3 �= 0.”
Prove this statement.

53. Prove that the diagonal entries of R in Formula (16) are
nonzero.

54. Show that matrix Q in Example 10 has the property
QQT = I3, and prove that every m × n matrix Q with or-
thonormal column vectors has the property QQT = Im.

55. (a) Prove that if W is a subspace of a finite-dimensional vec-
tor space V , then the mapping T : V →W defined by
T (v) = projW v is a linear transformation.

(b) What are the range and kernel of the transformation in
part (a)?

True-False Exercises

TF. In parts (a)–(f ) determine whether the statement is true or
false, and justify your answer.

(a) Every linearly independent set of vectors in an inner product
space is orthogonal.

(b) Every orthogonal set of vectors in an inner product space is
linearly independent.

(c) Every nontrivial subspace ofR3 has an orthonormal basis with
respect to the Euclidean inner product.

(d) Every nonzero finite-dimensional inner product space has an
orthonormal basis.

(e) projW x is orthogonal to every vector of W .

(f ) If A is an n × n matrix with a nonzero determinant, then A

has a QR-decomposition.

Working withTechnology

T1. (a) Use the Gram–Schmidt process to find an orthonormal
basis relative to the Euclidean inner product for the column
space of

A =

⎡
⎢⎢⎢⎣

1 1 1 1

1 0 0 1

0 1 0 2

2 −1 1 1

⎤
⎥⎥⎥⎦

(b) Use the method of Example 9 to find a QR-decomposition
of A.

T2. Let P4 have the evaluation inner product at the points
−2,−1, 0, 1, 2. Find an orthogonal basis for P4 relative to this
inner product by applying the Gram–Schmidt process to the vec-
tors

p0 = 1, p1 = x, p2 = x2, p3 = x3, p4 = x4

6.4 Best Approximation; Least Squares
There are many applications in which some linear system Ax = b of m equations in n

unknowns should be consistent on physical grounds but fails to be so because of
measurement errors in the entries of A or b. In such cases one looks for vectors that come
as close as possible to being solutions in the sense that they minimize ‖b − Ax‖ with respect
to the Euclidean inner product on Rm. In this section we will discuss methods for finding
such minimizing vectors.

Least Squares Solutions of
Linear Systems

Suppose that Ax = b is an inconsistent linear system of m equations in n unknowns in
which we suspect the inconsistency to be caused by errors in the entries of A or b. Since
no exact solution is possible, we will look for a vector x that comes as “close as possible”
to being a solution in the sense that it minimizes ‖b − Ax‖ with respect to the Euclidean
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inner product on Rm. You can think of Ax as an approximation to b and ‖b − Ax‖
as the error in that approximation—the smaller the error, the better the approximation.
This leads to the following problem.

Least Squares Problem Given a linear system Ax = b of m equations in n un-
knowns, find a vector x in Rn that minimizes ‖b − Ax‖ with respect to the Euclidean
inner product on Rm. We call such a vector, if it exists, a least squares solution of
Ax = b, we call b − Ax the least squares error vector, and we call ‖b − Ax‖ the least
squares error.

To explain the terminology in this problem, suppose that the column form of b − Ax is

If a linear system is consistent,
then its exact solutions are the
same as its least squares solu-
tions, in which case the least
squares error is zero.

b − Ax =

⎡
⎢⎢⎢⎢⎣

e1

e2

...

em

⎤
⎥⎥⎥⎥⎦

The term “least squares solution” results from the fact that minimizing ‖b − Ax‖ also
has the effect of minimizing ‖b − Ax‖2 = e2

1 + e2
2 + · · · + e2

m.
What is important to keep in mind about the least squares problem is that for ev-

ery vector x in Rn, the product Ax is in the column space of A because it is a linear
combination of the column vectors of A. That being the case, to find a least squares
solution of Ax = b is equivalent to finding a vector Ax̂ in the column space of A that
is closest to b in the sense that it minimizes the length of the vector b − Ax. This is
illustrated in Figure 6.4.1a, which also suggests that Ax̂ is the orthogonal projection of
b on the column space of A, that is, Ax̂ = projcol(A)b (Figure 6.4.1b). The next theorem
will confirm this conjecture.

Figure 6.4.1

b

(b)(a)

b

col(A) col(A)

b – Ax

Ax

Ax̂ Ax = projcol(A)bˆ

THEOREM 6.4.1 Best ApproximationTheorem

If W is a finite-dimensional subspace of an inner product space V, and if b is a
vector in V, then projW b is the best approximation to b from W in the sense that

‖b − projW b‖ < ‖b − w‖
for every vector w in W that is different from projW b.

Proof For every vector w in W , we can write

b − w = (b − projW b) + (projW b − w) (1)
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But projW b − w, being a difference of vectors in W , is itself in W ; and since b − projW b
is orthogonal to W , the two terms on the right side of (1) are orthogonal. Thus, it follows
from the Theorem of Pythagoras (Theorem 6.2.3) that

‖b − w‖2 = ‖b − projW b‖2 + ‖projW b − w‖2

If w �= projW b, it follows that the second term in this sum is positive, and hence that

‖b − projW b‖2 < ‖b − w‖2

Since norms are nonnegative, it follows (from a property of inequalities) that

‖b − projW b‖ < ‖b − w‖

It follows from Theorem 6.4.1 that if V = Rn and W = col(A), then the best ap-
proximation to b from col(A) is projcol(A)b. But every vector in the column space of A is
expressible in the form Ax for some vector x, so there is at least one vector x̂ in col(A) for
which Ax̂ = projcol(A)b. Each such vector is a least squares solution of Ax = b. Note,
however, that although there may be more than one least squares solution of Ax = b,
each such solution x̂ has the same error vector b − Ax̂.

Finding Least Squares
Solutions

One way to find a least squares solution of Ax = b is to calculate the orthogonal projec-
tion projW b on the column space W of A and then solve the equation

Ax = projW b (2)

However, we can avoid calculating the projection by rewriting (2) as

b − Ax = b − projW b

and then multiplying both sides of this equation by AT to obtain

AT (b − Ax) = AT (b − projW b) (3)

Since b − projW b is the component of b that is orthogonal to the column space of A,
it follows from Theorem 4.8.7(b) that this vector lies in the null space of AT , and hence
that

AT (b − projW b) = 0

Thus, (3) simplifies to

AT (b − Ax) = 0

which we can rewrite as

ATAx = AT b (4)

This is called the normal equation or the normal system associated with Ax = b. When
viewed as a linear system, the individual equations are called the normal equations asso-
ciated with Ax = b.

In summary, we have established the following result.
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THEOREM 6.4.2 For every linear system Ax = b, the associated normal system

ATAx = AT b (5)

is consistent, and all solutions of (5) are least squares solutions of Ax = b. Moreover,
if W is the column space of A, and x is any least squares solution of Ax = b, then the
orthogonal projection of b on W is

projW b = Ax (6)

EXAMPLE 1 Unique Least Squares Solution

Find the least squares solution, the least squares error vector, and the least squares error
of the linear system

x1 − x2 = 4

3x1 + 2x2 = 1

−2x1 + 4x2 = 3

Solution It will be convenient to express the system in the matrix form Ax = b, where

A =
⎡
⎢⎣ 1 −1

3 2

−2 4

⎤
⎥⎦ and b =

⎡
⎢⎣4

1

3

⎤
⎥⎦ (7)

It follows that

ATA =
[

1 3 −2

−1 2 4

]⎡⎢⎣ 1 −1

3 2

−2 4

⎤
⎥⎦ =

[
14 −3

−3 21

]
(8)

AT b =
[

1 3 −2

−1 2 4

]⎡⎢⎣4

1

3

⎤
⎥⎦ =

[
1

10

]

so the normal system ATAx = AT b is[
14 −3

−3 21

] [
x1

x2

]
=
[

1

10

]
Solving this system yields a unique least squares solution, namely,

x1 = 17
95 , x2 = 143

285

The least squares error vector is

b − Ax =
⎡
⎢⎣4

1

3

⎤
⎥⎦−

⎡
⎢⎣ 1 −1

3 2

−2 4

⎤
⎥⎦
⎡
⎣ 17

95

143
285

⎤
⎦ =

⎡
⎢⎣4

1

3

⎤
⎥⎦−

⎡
⎢⎢⎢⎣
− 92

285

439
285

95
57

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1232
285

− 154
285

4
3

⎤
⎥⎥⎥⎦

and the least squares error is

‖b − Ax‖ ≈ 4.556

The computations in the next example are a little tedious for hand computation, so
in absence of a calculating utility you may want to just read through it for its ideas and
logical flow.
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EXAMPLE 2 Infinitely Many Least Squares Solutions

Find the least squares solutions, the least squares error vector, and the least squares error
of the linear system

3x1 + 2x2 − x3 = 2
x1 − 4x2 + 3x3 = −2
x1 + 10x2 − 7x3 = 1

Solution The matrix form of the system is Ax = b, where

A =
⎡
⎢⎣3 2 −1

1 −4 3

1 10 −7

⎤
⎥⎦ and b =

⎡
⎢⎣ 2

−2

1

⎤
⎥⎦

It follows that

ATA =
⎡
⎢⎣ 11 12 −7

12 120 −84

−7 −84 59

⎤
⎥⎦ and AT b =

⎡
⎢⎣ 5

22

−15

⎤
⎥⎦

so the augmented matrix for the normal system ATAx = AT b is⎡
⎢⎣ 11 12 −7 5

12 120 −84 22

−7 −84 59 −15

⎤
⎥⎦

The reduced row echelon form of this matrix is⎡
⎢⎣1 0 1

7
2
7

0 1 − 5
7

13
84

0 0 0 0

⎤
⎥⎦

from which it follows that there are infinitely many least squares solutions, and that they
are given by the parametric equations

x1 = 2
7 − 1

7 t

x2 = 13
84 + 5

7 t

x3 = t

As a check, let us verify that all least squares solutions produce the same least squares
error vector and the same least squares error. To see that this is so, we first compute

b − Ax =
⎡
⎢⎣ 2

−2

1

⎤
⎥⎦−

⎡
⎢⎣3 2 −1

1 −4 3

1 10 −7

⎤
⎥⎦
⎡
⎢⎣

2
7 − 1

7 t

13
84 + 5

7 t

t

⎤
⎥⎦ =

⎡
⎢⎣ 2

−2

1

⎤
⎥⎦−

⎡
⎢⎣

7
6

− 1
3

11
6

⎤
⎥⎦ =

⎡
⎢⎣

5
6

− 5
3

− 5
6

⎤
⎥⎦

Since b − Ax does not depend on t , all least squares solutions produce the same error
vector, namely

‖b − Ax‖ =
√(

5
6

)2 + (− 5
3

)2 + (− 5
6

)2 = 5
6

√
6

Conditions for Uniqueness
of Least Squares Solutions

We know from Theorem 6.4.2 that the system ATAx = AT b of normal equations that is
associated with the system Ax = b is consistent. Thus, it follows from Theorem 1.6.1
that every linear system Ax = b has either one least squares solution (as in Example 1) or
infinitely many least squares solutions (as in Example 2). Since ATA is a square matrix,
the former occurs if ATA is invertible and the latter if it is not. The next two theorems
are concerned with this idea.
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THEOREM 6.4.3 If A is an m × n matrix, then the following are equivalent.

(a) The column vectors of A are linearly independent.

(b) ATA is invertible.

Proof We will prove that (a) ⇒ (b) and leave the proof that (b) ⇒ (a) as an exercise.

(a) ⇒ (b) Assume that the column vectors of A are linearly independent. The matrix
ATA has size n × n, so we can prove that this matrix is invertible by showing that the linear
system ATAx = 0 has only the trivial solution. But if x is any solution of this system, then
Ax is in the null space of AT and also in the column space of A. By Theorem 4.8.7(b)
these spaces are orthogonal complements, so part (b) of Theorem 6.2.4 implies that
Ax = 0. But A is assumed to have linearly independent column vectors, so x = 0 by
Theorem 1.3.1.

The next theorem, which follows directly from Theorems 6.4.2 and 6.4.3, gives an
explicit formula for the least squares solution of a linear system in which the coefficient
matrix has linearly independent column vectors.

THEOREM 6.4.4 If A is an m × n matrix with linearly independent column vectors,
then for every m × 1 matrix b, the linear system Ax = b has a unique least squares
solution. This solution is given by

x = (ATA)−1AT b (9)

Moreover, if W is the column space of A, then the orthogonal projection of b on W is

projW b = Ax = A(ATA)−1AT b (10)

EXAMPLE 3 A Formula Solution to Example 1

Use Formula (9) and the matrices in Formulas (7) and (8) to find the least squares solution
of the linear system in Example 1.

Solution We leave it for you to verify that

x = (ATA)−1AT b =
[

14 −3

−3 21

]−1 [
1 3 −2

−1 2 4

]⎡⎢⎣4

1

3

⎤
⎥⎦

= 1

285

[
21 3

3 14

][
1 3 −2

−1 2 4

]⎡⎢⎣4

1

3

⎤
⎥⎦ =

⎡
⎣ 17

95

143
285

⎤
⎦

which agrees with the result obtained in Example 1.

It follows from Formula (10) that the standard matrix for the orthogonal projection
on the column space of a matrix A is

P = A(ATA)−1AT (11)

We will use this result in the next example.

EXAMPLE 4 Orthogonal Projection on a Column Space

We showed in Formula (4) of Section 4.9 that the standard matrix for the orthogonal
projection onto the line W through the origin of R2 that makes an angle θ with the
positive x-axis is
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Pθ =
[

cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
Derive this result using Formula (11).

Solution To apply Formula (11) we must find a matrix A for which the line W is the
column space. Since the line is one-dimensional and consists of all scalar multiples of
the vector w = (cos θ, sin θ) (see Figure 6.4.2), we can take A to be

A =
[

cos θ

sin θ

]
Since ATA is the 1 × 1 identity matrix (verify), it follows that

y

x

W

w

1

cos θ

sin θ
θ

Figure 6.4.2

A(ATA)−1AT = AAT =
[

cos θ

sin θ

]
[cos θ sin θ ]

=
[

cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
= Pθ

More on the Equivalence
Theorem

As our final result in the main part of this section we will add one additional part to
Theorem 5.1.5.

THEOREM 6.4.5 Equivalent Statements

If A is an n × n matrix, then the following statements are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row echelon form of A is In.

(d ) A is expressible as a product of elementary matrices.

(e) Ax = b is consistent for every n × 1 matrix b.

( f ) Ax = b has exactly one solution for every n × 1 matrix b.

(g) det(A) �= 0.

(h) The column vectors of A are linearly independent.

(i ) The row vectors of A are linearly independent.

( j) The column vectors of A span Rn.

(k) The row vectors of A span Rn.

(l ) The column vectors of A form a basis for Rn.

(m) The row vectors of A form a basis for Rn.

(n) A has rank n.

(o) A has nullity 0.

( p) The orthogonal complement of the null space of A is Rn.

(q) The orthogonal complement of the row space of A is {0}.
(r) The kernel of TA is {0}.
(s) The range of TA is Rn.

(t) TA is one-to-one.

(u) λ = 0 is not an eigenvalue of A.

(v) ATA is invertible.
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The proof of part (v) follows from part (h) of this theorem and Theorem 6.4.3 applied
to square matrices.

Another View of Least
Squares

Recall from Theorem 4.8.7 that the null space and row space of an m × n matrix A areO PT I O NA L

orthogonal complements, as are the null space of AT and the column space of A. Thus,
given a linear system Ax = b in which A is an m × n matrix, the Projection Theorem
(6.3.3) tells us that the vectors x and b can each be decomposed into sums of orthogonal
terms as

x = xrow(A) + xnull(A) and b = bnull(AT ) + bcol(A)

where xrow(A) and xnull(A) are the orthogonal projections of x on the row space of A and
the null space of A, and the vectors bnull(AT ) and bcol(A) are the orthogonal projections
of b on the null space of AT and the column space of A.

In Figure 6.4.3 we have represented the fundamental spaces of A by perpendicular
lines in Rn and Rm on which we indicated the orthogonal projections of x and b. (This,
of course, is only pictorial since the fundamental spaces need not be one-dimensional.)
The figure shows Ax as a point in the column space of A and conveys that bcol(A) is the
point in col(A) that is closest to b. This illustrates that the least squares solutions of
Ax = b are the exact solutions of the equation Ax = bcol(A).

Figure 6.4.3

x

Ax

Rn Rmxrow(A) bnull(AT)

xnull(A) bcol(A)b

row(A)

null(A) col(A)

null(AT)

The Role of
QR-Decomposition in Least

Squares Problems

Formulas (9) and (10) have theoretical use but are not well suited for numerical com-O PT I O NA L

putation. In practice, least squares solutions of Ax = b are typically found by using
some variation of Gaussian elimination to solve the normal equations or by using QR-
decomposition and the following theorem.

THEOREM 6.4.6 IfA is anm × nmatrix with linearly independent column vectors, and
if A = QR is aQR-decomposition of A (see Theorem 6.3.7), then for each b in Rm the
system Ax = b has a unique least squares solution given by

x = R−1QT b (12)

A proof of this theorem and a discussion of its use can be found in many books on
numerical methods of linear algebra. However, you can obtain Formula (12) by making
the substitution A = QR in (9) and using the fact that QTQ = I to obtain

x = (
(QR)T (QR)

)−1
(QR)T b

= (RTQTQR)−1(QR)T b

= R−1(RT )−1RTQT b

= R−1QT b
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Exercise Set 6.4

In Exercises 1–2, find the associated normal equation.

1.

⎡
⎢⎣1 −1

2 3

4 5

⎤
⎥⎦[x1

x2

]
=
⎡
⎢⎣ 2

−1

5

⎤
⎥⎦

2.

⎡
⎢⎢⎢⎣

2 −1 0

3 1 2

−1 4 5

1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣
−1

0

1

2

⎤
⎥⎥⎥⎦

In Exercises 3–6, find the least squares solution of the equation
Ax = b.

3. A =
⎡
⎢⎣1 −1

2 3

4 5

⎤
⎥⎦; b =

⎡
⎢⎣ 2

−1

5

⎤
⎥⎦

4. A =
⎡
⎢⎣2 −2

1 1

3 1

⎤
⎥⎦; b =

⎡
⎢⎣ 2

−1

1

⎤
⎥⎦

5. A =

⎡
⎢⎢⎢⎣

1 0 −1

2 1 −2

1 1 0

1 1 −1

⎤
⎥⎥⎥⎦; b =

⎡
⎢⎢⎢⎣

6

0

9

3

⎤
⎥⎥⎥⎦

6. A =

⎡
⎢⎢⎢⎣

2 0 −1

1 −2 2

2 −1 0

0 1 −1

⎤
⎥⎥⎥⎦; b =

⎡
⎢⎢⎢⎣

0

6

0

6

⎤
⎥⎥⎥⎦

In Exercises 7–10, find the least squares error vector and least
squares error of the stated equation. Verify that the least squares
error vector is orthogonal to the column space of A.

7. The equation in Exercise 3.

8. The equation in Exercise 4.

9. The equation in Exercise 5.

10. The equation in Exercise 6.

In Exercises 11–14, find parametric equations for all least
squares solutions of Ax = b, and confirm that all of the solutions
have the same error vector.

11. A =
⎡
⎢⎣ 2 1

4 2

−2 −1

⎤
⎥⎦; b =

⎡
⎢⎣3

2

1

⎤
⎥⎦

12. A =
⎡
⎢⎣ 1 3

−2 −6

3 9

⎤
⎥⎦; b =

⎡
⎢⎣1

0

1

⎤
⎥⎦

13. A =
⎡
⎢⎣−1 3 2

2 1 3

0 1 1

⎤
⎥⎦; b =

⎡
⎢⎣ 7

0

−7

⎤
⎥⎦

14. A =
⎡
⎢⎣3 2 −1

1 −4 3

1 10 −7

⎤
⎥⎦; b =

⎡
⎢⎣ 2

−2

1

⎤
⎥⎦

In Exercises 15–16, use Theorem 6.4.2 to find the orthogonal
projection of b on the column space of A, and check your result
using Theorem 6.4.4.

15. A =
⎡
⎢⎣ 1 −1

3 2

−2 4

⎤
⎥⎦; b =

⎡
⎢⎣4

1

3

⎤
⎥⎦

16. A =
⎡
⎢⎣5 1

1 3

4 −2

⎤
⎥⎦; b =

⎡
⎢⎣−4

2

3

⎤
⎥⎦

17. Find the orthogonal projection of u on the subspace of R3

spanned by the vectors v1 and v2.

u = (1,−6, 1); v1 = (−1, 2, 1), v2 = (2, 2, 4)

18. Find the orthogonal projection of u on the subspace of R4

spanned by the vectors v1, v2, and v3.

u = (6, 3, 9, 6); v1 = (2, 1, 1, 1), v2 = (1, 0, 1, 1),
v3 = (−2,−1, 0,−1)

In Exercises 19–20, use the method of Example 3 to find the
standard matrix for the orthogonal projection on the stated sub-
space of R2. Compare your result to that in Table 3 of Section
4.9.

19. the x-axis 20. the y-axis

In Exercises 21–22, use the method of Example 3 to find the
standard matrix for the orthogonal projection on the stated sub-
space of R3. Compare your result to that in Table 4 of Section
4.9.

21. the xz-plane 22. the yz-plane

In Exercises 23–24, a QR-factorization of A is given. Use it to
find the least squares solution of Ax = b.

23. A =
[

3 1

−4 1

]
=
[

3
5

4
5

− 4
5

3
5

][
5 − 1

5

0 7
5

]
; b =

[
3

2

]

24. A =
⎡
⎢⎣

3 −6

4 −8

0 1

⎤
⎥⎦ =

⎡
⎢⎣

3
5 0
4
5 0

0 1

⎤
⎥⎦
[

5 −10

0 1

]
; b =

⎡
⎢⎣
−1

7

2

⎤
⎥⎦

25. Let W be the plane with equation 5x − 3y + z = 0.

(a) Find a basis for W .

(b) Find the standard matrix for the orthogonal projection
onto W .
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26. Let W be the line with parametric equations

x = 2t, y = −t, z = 4t

(a) Find a basis for W .

(b) Find the standard matrix for the orthogonal projection
on W .

27. Find the orthogonal projection of u = (5, 6, 7, 2) on the so-
lution space of the homogeneous linear system

x1 + x2 + x3 = 0

2x2 + x3 + x4 = 0

28. Show that if w = (a, b, c) is a nonzero vector, then the stan-
dard matrix for the orthogonal projection of R3 onto the line
span{w} is

P = 1

a2 + b2 + c2

⎡
⎢⎣

a2 ab ac

ab b2 bc

ac bc c2

⎤
⎥⎦

29. Let A be an m × n matrix with linearly independent row vec-
tors. Find a standard matrix for the orthogonal projection of
Rn onto the row space of A.

Working with Proofs

30. Prove: If A has linearly independent column vectors, and if
Ax = b is consistent, then the least squares solution of Ax = b
and the exact solution of Ax = b are the same.

31. Prove: If A has linearly independent column vectors, and if b
is orthogonal to the column space of A, then the least squares
solution of Ax = b is x = 0.

32. Prove the implication (b) ⇒ (a) of Theorem 6.4.3.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) If A is an m × n matrix, then ATA is a square matrix.

(b) If ATA is invertible, then A is invertible.

(c) If A is invertible, then ATA is invertible.

(d) If Ax = b is a consistent linear system, then
ATAx = AT b is also consistent.

(e) If Ax = b is an inconsistent linear system, then
ATAx = AT b is also inconsistent.

(f ) Every linear system has a least squares solution.

(g) Every linear system has a unique least squares solution.

(h) If A is an m × n matrix with linearly independent columns and
b is in Rm, then Ax = b has a unique least squares solution.

Working withTechnology

T1. (a) Use Theorem 6.4.4 to show that the following linear sys-
tem has a unique least squares solution, and use the method
of Example 1 to find it.

x1 + x2 + x3 = 1

4x1 + 2x2 + x3 = 10

9x1 + 3x2 + x3 = 9

16x1 + 4x2 + x3 = 16

(b) Check your result in part (a) using Formula (9).

T2. Use your technology utility to perform the computations and
confirm the results obtained in Example 2.

6.5 Mathematical Modeling Using Least Squares
In this section we will use results about orthogonal projections in inner product spaces to
obtain a technique for fitting a line or other polynomial curve to a set of experimentally
determined points in the plane.

Fitting a Curve to Data A common problem in experimental work is to obtain a mathematical relationship
y = f(x) between two variables x and y by “fitting” a curve to points in the plane
corresponding to various experimentally determined values of x and y, say

(x1, y1), (x2, y2), . . . , (xn, yn)

On the basis of theoretical considerations or simply by observing the pattern of the
points, the experimenter decides on the general form of the curve y = f(x) to be fitted.
This curve is called a mathematical model of the data. Some examples are (Figure 6.5.1):
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(a) A straight line: y = a + bx

(b) A quadratic polynomial: y = a + bx + cx2

(c) A cubic polynomial: y = a + bx + cx2 + dx3

Figure 6.5.1

x

y

(b)  y = a + bx + cx2

x

y

(c)  y = a + bx + cx2 + dx3

x

y

(a)  y = a + bx

Least Squares Fit of a
Straight Line

When data points are obtained experimentally, there is generally some measurement
“error,” making it impossible to find a curve of the desired form that passes through all
the points. Thus, the idea is to choose the curve (by determining its coefficients) that
“best fits” the data. We begin with the simplest case: fitting a straight line to data points.

Suppose we want to fit a straight line y = a + bx to the experimentally determined
points

(x1, y1), (x2, y2), . . . , (xn, yn)

If the data points were collinear, the line would pass through all n points, and the
unknown coefficients a and b would satisfy the equations

y1 = a + bx1

y2 = a + bx2
...

yn = a + bxn

(1)

We can write this system in matrix form as⎡
⎢⎢⎢⎣

1 x1

1 x2
...

...

1 xn

⎤
⎥⎥⎥⎦
[
a

b

]
=

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦

or more compactly as
Mv = y (2)

where

y =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦, M =

⎡
⎢⎢⎢⎣

1 x1

1 x2
...

...

1 xn

⎤
⎥⎥⎥⎦, v =

[
a

b

]
(3)

If there are measurement errors in the data, then the data points will typically not lie
on a line, and (1) will be inconsistent. In this case we look for a least squares approxi-
mation to the values of a and b by solving the normal system

MTMv = MTy

For simplicity, let us assume that the x-coordinates of the data points are not all the same,
so M has linearly independent column vectors (Exericse 14) and the normal system has
the unique solution
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v∗ =
[
a∗

b∗

]
= (MTM)−1MTy

[see Formula (9) of Theorem 6.4.4]. The line y = a∗ + b∗x that results from this solution
is called the least squares line of best fit or the regression line. It follows from (2) and (3)
that this line minimizes

‖y − Mv‖2 = [y1 − (a + bx1)]2 + [y2 − (a + bx2)]2 + · · · + [yn − (a + bxn)]2

The quantities

d1 = |y1 − (a + bx1)|, d2 = |y2 − (a + bx2)|, . . . , dn = |yn − (a + bxn)|
are called residuals. Since the residual di is the distance between the data point (xi, yi)

and the regression line (Figure 6.5.2), we can interpret its value as the “error” in yi at
the point xi . If we assume that the value of each xi is exact, then all the errors are in the
yi so the regression line can be described as the line that minimizes the sum of the squares
of the data errors—hence the name, “least squares line of best fit.” In summary, we have
the following theorem.

Figure 6.5.2 di measures the
vertical error.

y = a + bx 

(x1, y1)
(xn, yn)

(xi, yi)

d1

y

yi

di dn

a + bxi

x

THEOREM 6.5.1 Uniqueness of the Least Squares Solution

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of two or more data points, not all lying on
a vertical line, and let

M =

⎡
⎢⎢⎢⎣

1 x1

1 x2
...

...

1 xn

⎤
⎥⎥⎥⎦ and y =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ (4)

Then there is a unique least squares straight line fit

y = a∗ + b∗x (5)

to the data points. Moreover,

v∗ =
[
a∗
b∗

]
(6)

is given by the formula
v∗ = (MTM)−1MTy (7)

which expresses the fact that v = v∗ is the unique solution of the normal equation

MTMv = MTy (8)
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EXAMPLE 1 Least Squares Straight Line Fit

Find the least squares straight line fit to the four points (0, 1), (1, 3), (2, 4), and (3, 4).
(See Figure 6.5.3.)

0
0 1 2 3 4–1

1

2

3

4

5

x

y

Figure 6.5.3

Solution We have

M =

⎡
⎢⎢⎢⎣

1 0

1 1

1 2

1 3

⎤
⎥⎥⎥⎦, MTM =

[
4 6

6 14

]
, and (MTM)−1 = 1

10

[
7 −3

−3 2

]

v∗ = (MTM)−1MTy = 1

10

[
7 −3

−3 2

] [
1 1 1 1

0 1 2 3

]⎡⎢⎢⎢⎣
1

3

4

4

⎤
⎥⎥⎥⎦ =

[
1.5

1

]

so the desired line is y = 1.5 + x.

EXAMPLE 2 Spring Constant

Hooke’s law in physics states that the length x of a uniform spring is a linear function of
the force y applied to it. If we express this relationship as y = a + bx, then the coefficient
b is called the spring constant. Suppose a particular unstretched spring has a measured
length of 6.1 inches (i.e., x = 6.1 when y = 0). Suppose further that, as illustrated in
Figure 6.5.4, various weights are attached to the end of the spring and the following table
of resulting spring lengths is recorded. Find the least squares straight line fit to the data
and use it to approximate the spring constant.

Weight y (lb) 0 2 4 6

Length x (in) 6.1 7.6 8.7 10.4

Solution The mathematical problem is to fit a line y = a + bx to the four data points

y

x

6.1

Figure 6.5.4

(6.1, 0), (7.6, 2), (8.7, 4), (10.4, 6)

For these data the matrices M and y in (4) are

M =

⎡
⎢⎢⎢⎣

1 6.1

1 7.6

1 8.7

1 10.4

⎤
⎥⎥⎥⎦, y =

⎡
⎢⎢⎢⎣

0

2

4

6

⎤
⎥⎥⎥⎦

so

v∗ =
[
a∗

b∗

]
= (MTM)−1MTy ≈

[−8.6

1.4

]
where the numerical values have been rounded to one decimal place. Thus, the estimated
value of the spring constant is b∗ ≈ 1.4 pounds/inch.

Least Squares Fit of a
Polynomial

The technique described for fitting a straight line to data points can be generalized to
fitting a polynomial of specified degree to data points. Let us attempt to fit a polynomial
of fixed degree m

y = a0 + a1x + · · · + amxm (9)

to n points
(x1, y1), (x2, y2), . . . , (xn, yn)
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Substituting these n values of x and y into (9) yields the n equations

y1 = a0 + a1x1 + · · ·+ amxm
1

y2 = a0 + a1x2 + · · ·+ amxm
2

...
...

...
...

yn = a0 + a1xn + · · ·+ amxm
n

or in matrix form,
y = Mv (10)

where

y =

⎡
⎢⎢⎢⎣

y1

y2
...
yn

⎤
⎥⎥⎥⎦, M =

⎡
⎢⎢⎢⎣

1 x1 x2
1 · · · xm

1

1 x2 x2
2 · · · xm

2
...

...
...

...

1 xn x2
n · · · xm

n

⎤
⎥⎥⎥⎦, v =

⎡
⎢⎢⎢⎣

a0

a1
...

am

⎤
⎥⎥⎥⎦ (11)

As before, the solutions of the normal equations

MTMv = MTy

determine the coefficients of the polynomial, and the vector v minimizes

‖y − Mv‖
Conditions that guarantee the invertibility of MTM are discussed in the exercises (Exer-
cise 16). If MTM is invertible, then the normal equations have a unique solution v = v∗,
which is given by

v∗ = (MTM)−1MT y (12)

EXAMPLE 3 Fitting a Quadratic Curve to Data

According to Newton’s second law of motion, a body near the Earth’s surface falls
vertically downward in accordance with the equation

s = s0 + v0t + 1
2gt2 (13)

where

s = vertical displacement downward relative to some reference point

s0 = displacement from the reference point at time t = 0

v0 = velocity at time t = 0

g = acceleration of gravity at the Earth’s surface

Suppose that a laboratory experiment is performed to approximate g by measuring the
displacement s relative to a fixed reference point of a falling weight at various times. Use
the experimental results shown in the following table to approximate g.

Time t (sec) .1 .2 .3 .4 .5

Displacement s (ft) −0.18 0.31 1.03 2.48 3.73
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Solution For notational simplicity, let a0 = s0, a1 = v0, and a2 = 1
2g in (13), so our

mathematical problem is to fit a quadratic curve

s = a0 + a1t + a2t
2 (14)

to the five data points:

(.1,−0.18), (.2, 0.31), (.3, 1.03), (.4, 2.48), (.5, 3.73)

With the appropriate adjustments in notation, the matrices M and y in (11) are

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 t2
1

1 t2 t2
2

1 t3 t2
3

1 t4 t2
4

1 t5 t2
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 .1 .01

1 .2 .04

1 .3 .09

1 .4 .16

1 .5 .25

⎤
⎥⎥⎥⎥⎥⎥⎦, y =

⎡
⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

s4

s5

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.18

0.31

1.03

2.48

3.73

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, from (12),

v∗ =
⎡
⎢⎣

a∗
0

a∗
1

a∗
2

⎤
⎥⎦ = (MTM)−1MTy ≈

⎡
⎢⎣
−0.40

0.35

16.1

⎤
⎥⎦

so the least squares quadratic fit is

s = −0.40 + 0.35t + 16.1t2

From this equation we estimate that 1
2g = 16.1 and hence that g = 32.2 ft/sec2. Note

that this equation also provides the following estimates of the initial displacement and
velocity of the weight:

s0 = a∗
0 = −0.40 ft

v0 = a∗
1 = 0.35 ft/sec

In Figure 6.5.5 we have plotted the data points and the approximating polynomial.
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Magellan orbit 3213
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Historical Note On October 5, 1991 the Magellan spacecraft
entered the atmosphere of Venus and transmitted the tempera-
ture T in kelvins (K) versus the altitude h in kilometers (km)
until its signal was lost at an altitude of about 34 km. Discount-
ing the initial erratic signal, the data strongly suggested a linear
relationship, so a least squares straight line fit was used on the
linear part of the data to obtain the equation

T = 737.5 − 8.125h

By setting h = 0 in this equation, the surface temperature of
Venus was estimated at T ≈ 737.5 K. The accuracy of this result
has been confirmed by more recent flybys of Venus.
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Exercise Set 6.5
In Exercises 1–2, find the least squares straight line fit

y = ax + b to the data points, and show that the result is rea-
sonable by graphing the fitted line and plotting the data in the
same coordinate system.

1. (0, 0), (1, 2), (2, 7) 2. (0, 1), (2, 0), (3, 1), (3, 2)

In Exercises 3–4, find the least squares quadratic fit
y = a0 + a1x + a2x

2 to the data points, and show that the result
is reasonable by graphing the fitted curve and plotting the data in
the same coordinate system.

3. (2, 0), (3,−10), (5,−48), (6,−76)

4. (1,−2), (0,−1), (1, 0), (2, 4)

5. Find a curve of the form y = a + (b/x) that best fits the
data points (1, 7), (3, 3), (6, 1) by making the substitution
X = 1/x.

6. Find a curve of the form y = a + b
√

x that best fits the data
points (3, 1.5), (7, 2.5), (10, 3) by making the substitution
X = √

x. Show that the result is reasonable by graphing
the fitted curve and plotting the data in the same coordinate
system.

Working with Proofs

7. Prove that the matrix M in Equation (3) has linearly inde-
pendent columns if and only if at least two of the numbers
x1, x2, . . . , xn are distinct.

8. Prove that the columns of the n × (m + 1) matrix M in Equa-
tion (11) are linearly independent if n > m and at least m + 1
of the numbers x1, x2, . . . , xn are distinct. [Hint: A nonzero
polynomial of degree m has at most m distinct roots.]

9. Let M be the matrix in Equation (11). Using Exercise 8, show
that a sufficient condition for the matrix MTM to be invert-
ible is that n > m and that at least m + 1 of the numbers
x1, x2, . . . , xn are distinct.

True-False Exercises

TF. In parts (a)–(d) determine whether the statement is true or
false, and justify your answer.

(a) Every set of data points has a unique least squares straight
line fit.

(b) If the data points (x1, y1), (x2, y2), . . . , (xn, yn) are not col-
linear, then (2) is an inconsistent system.

(c) If the data points (x1, y1), (x2, y2), . . . , (xn, yn) do not lie on
a vertical line, then the expression

|y1 − (a + bx1)|2 + |y2 − (a + bx2)
2| + · · · + |yn − (a + bxn)|2

is minimized by taking a and b to be the coefficients in the
least squares line y = a + bx of best fit to the data.

(d) If the data points (x1, y1), (x2, y2), . . . , (xn, yn) do not lie on
a vertical line, then the expression

|y1 − (a + bx1)| + |y2 − (a + bx2)| + · · · + |yn − (a + bxn)|
is minimized by taking a and b to be the coefficients in the
least squares line y = a + bx of best fit to the data.

Working withTechnology

In Exercises T1–T7, find the normal system for the least
squares cubic fit y = a0 + a1x + a2x

2 + a3x
3 to the data points.

Solve the system and show that the result is reasonable by graph-
ing the fitted curve and plotting the data in the same coordinate
system.

T1. (−1,−14), (0,−5), (1,−4), (2, 1), (3, 22)

T2. (0,−10), (1,−1), (2, 0), (3, 5), (4, 26)

T3. The owner of a rapidly expanding business finds that for
the first five months of the year the sales (in thousands) are
$4.0, $4.4, $5.2, $6.4, and $8.0. The owner plots these figures on
a graph and conjectures that for the rest of the year, the sales curve
can be approximated by a quadratic polynomial. Find the least
squares quadratic polynomial fit to the sales curve, and use it to
project the sales for the twelfth month of the year.

T4. Pathfinder is an experimental, lightweight, remotely piloted,
solar-powered aircraft that was used in a series of experiments by
NASA to determine the feasibility of applying solar power for
long-duration, high-altitude flights. In August 1997 Pathfinder
recorded the data in the accompanying table relating altitude H

and temperatureT . Show that a linear model is reasonable by plot-
ting the data, and then find the least squares line H = H0 + kT

of best fit.

Table Ex-T4

Altitude H

(thousands of feet) 15 20 25 30 35 40 45

Temperature T

(◦C) 4.5 −5.9 −16.1 −27.6 −39.8 −50.2 −62.9

Three important models in applications are

exponential models (y = aebx)

power function models (y = axb)

logarithmic models (y = a + b ln x)

where a and b are to be determined to fit experimental data as
closely as possible. Exercises T5–T7 are concerned with a proce-
dure, called linearization, by which the data are transformed to a
form in which a least squares straight line fit can be used to approx-
imate the constants. Calculus is required for these exercises.

T5. (a) Show that making the substitution Y = ln y in the equa-
tion y = aebx produces the equation Y = bx + ln a whose
graph in the xY -plane is a line of slope b and Y -intercept ln a.
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(b) Part (a) suggests that a curve of the form y = aebx can be fit-
ted to n data points (xi, yi) by letting Yi = ln yi , then fitting
a straight line to the transformed data points (xi, Yi) by least
squares to find b and ln a, and then computing a from ln a.
Use this method to fit an exponential model to the following
data, and graph the curve and data in the same coordinate
system.

x 0 1 2 3 4 5 6 7

y 3.9 5.3 7.2 9.6 12 17 23 31

T6. (a) Show that making the substitutions

X = ln x and Y = ln y

in the equation y = axb produces the equation Y = bX + ln a

whose graph in the XY -plane is a line of slope b and Y -
intercept ln a.

(b) Part (a) suggest that a curve of the form y = axb can be fitted
to n data points (xi, yi) by letting Xi = ln xi and Yi = ln yi ,
then fitting a straight line to the transformed data points
(Xi, Yi) by least squares to find b and ln a, and then com-

puting a from ln a. Use this method to fit a power function
model to the following data, and graph the curve and data in
the same coordinate system.

x 2 3 4 5 6 7 8 9

y 1.75 1.91 2.03 2.13 2.22 2.30 2.37 2.43

T7. (a) Show that making the substitution X = ln x in the equa-
tion y = a + b ln x produces the equation y = a + bX whose
graph in the Xy-plane is a line of slope b and y-intercept a.

(b) Part (a) suggests that a curve of the form y = a + b ln x can
be fitted to n data points (xi, yi) by letting Xi = ln xi and then
fitting a straight line to the transformed data points (Xi, yi)

by least squares to find b and a. Use this method to fit a loga-
rithmic model to the following data, and graph the curve and
data in the same coordinate system.

x 2 3 4 5 6 7 8 9

y 4.07 5.30 6.21 6.79 7.32 7.91 8.23 8.51

6.6 Function Approximation; Fourier Series
In this section we will show how orthogonal projections can be used to approximate certain
types of functions by simpler functions. The ideas explained here have important
applications in engineering and science. Calculus is required.

Best Approximations All of the problems that we will study in this section will be special cases of the following
general problem.

Approximation Problem Given a function f that is continuous on an interval [a, b],
find the “best possible approximation” to f using only functions from a specified
subspace W of C[a, b].

Here are some examples of such problems:

(a) Find the best possible approximation to ex over [0, 1] by a polynomial of the form
a0 + a1x + a2x

2.

(b) Find the best possible approximation to sin πx over [−1, 1] by a function of the
form a0 + a1e

x + a2e
2x + a3e

3x .

(c) Find the best possible approximation to x over [0, 2π ] by a function of the form
a0 + a1 sin x + a2 sin 2x + b1 cos x + b2 cos 2x.

In the first example W is the subspace of C[0, 1] spanned by 1, x, and x2; in the second
example W is the subspace of C[−1, 1] spanned by 1, ex , e2x , and e3x ; and in the third
example W is the subspace of C[0, 2π ] spanned by 1, sin x, sin 2x, cos x, and cos 2x.
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Measurements of Error To solve approximation problems of the preceding types, we first need to make the phrase
“best approximation over [a, b]” mathematically precise. To do this we will need some
way of quantifying the error that results when one continuous function is approximated
by another over an interval [a, b]. If we were to approximate f(x) by g(x), and if we
were concerned only with the error in that approximation at a single point x0, then it
would be natural to define the error to be

error = |f(x0) − g(x0)|
sometimes called the deviation between f and g at x0 (Figure 6.6.1). However, we are not

[ ]
a b

| f (x0) – g(x0)|
x0

g

f

Figure 6.6.1 The deviation
between f and g at x0.

concerned simply with measuring the error at a single point but rather with measuring
it over the entire interval [a, b]. The difficulty is that an approximation may have small
deviations in one part of the interval and large deviations in another. One possible way
of accounting for this is to integrate the deviation |f(x) − g(x)| over the interval [a, b]
and define the error over the interval to be

error =
∫ b

a

|f(x) − g(x)| dx (1)

Geometrically, (1) is the area between the graphs of f(x) and g(x) over the interval [a, b]
(Figure 6.6.2)—the greater the area, the greater the overall error.

[ ]
a b

g

f

Figure 6.6.2 The area
between the graphs of f and g
over [a, b] measures the error in
approximating f by g over [a, b].

Although (1) is natural and appealing geometrically, most mathematicians and sci-
entists generally favor the following alternative measure of error, called the mean square
error:

mean square error =
∫ b

a

[f(x) − g(x)]2 dx

Mean square error emphasizes the effect of larger errors because of the squaring and
has the added advantage that it allows us to bring to bear the theory of inner product
spaces. To see how, suppose that f is a continuous function on [a, b] that we want to
approximate by a function g from a subspace W of C[a, b], and suppose that C[a, b] is
given the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx

It follows that

‖f − g‖2 = 〈f − g, f − g〉 =
∫ b

a

[f(x) − g(x)]2 dx = mean square error

so minimizing the mean square error is the same as minimizing ‖f − g‖2. Thus, the
approximation problem posed informally at the beginning of this section can be restated
more precisely as follows.

Least Squares
Approximation

Least Squares Approximation Problem Let f be a function that is continuous on an
interval [a, b], let C[a, b] have the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx

and let W be a finite-dimensional subspace of C[a, b]. Find a function g in W that
minimizes

‖f − g‖2 =
∫ b

a

[f(x) − g(x)]2 dx
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Since ‖f − g‖2 and ‖f − g‖ are minimized by the same function g, this problem is equiva-
lent to looking for a function g in W that is closest to f. But we know from Theorem 6.4.1
that g = projW f is such a function (Figure 6.6.3). Thus, we have the following result.

Figure 6.6.3

f = function in C[a, b]
      to be approximated

g = projW f = least squares
                     approximation
                     to f from Wsubspace of 

approximating
functions 

W

THEOREM 6.6.1 If f is a continuous function on [a, b], and W is a finite-dimensional
subspace of C[a, b], then the function g in W that minimizes the mean square error∫ b

a

[f(x) − g(x)]2 dx

is g = projW f, where the orthogonal projection is relative to the inner product

〈f, g〉 =
∫ b

a

f(x)g(x) dx

The function g = projW f is called the least squares approximation to f from W .

Fourier Series A function of the form

T (x) = c0 + c1 cos x + c2 cos 2x + · · · + cn cos nx

+ d1 sin x + d2 sin 2x + · · · + dn sin nx
(2)

is called a trigonometric polynomial ; if cn and dn are not both zero, then T (x) is said to
have order n. For example,

T (x) = 2 + cos x − 3 cos 2x + 7 sin 4x

is a trigonometric polynomial of order 4 with

c0 = 2, c1 = 1, c2 = −3, c3 = 0, c4 = 0, d1 = 0, d2 = 0, d3 = 0, d4 = 7

It is evident from (2) that the trigonometric polynomials of order n or less are the
various possible linear combinations of

1, cos x, cos 2x, . . . , cos nx, sin x, sin 2x, . . . , sin nx (3)

It can be shown that these 2n + 1 functions are linearly independent and thus form a
basis for a (2n + 1)-dimensional subspace of C[a, b].

Let us now consider the problem of finding the least squares approximation of a
continuous function f(x) over the interval [0, 2π ] by a trigonometric polynomial of
order n or less. As noted above, the least squares approximation to f from W is the
orthogonal projection of f on W . To find this orthogonal projection, we must find an
orthonormal basis g0, g1, . . . , g2n for W , after which we can compute the orthogonal
projection on W from the formula

projW f = 〈f, g0〉g0 + 〈f, g1〉g1 + · · · + 〈f, g2n〉g2n (4)
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[see Theorem 6.3.4(b)]. An orthonormal basis for W can be obtained by applying the
Gram–Schmidt process to the basis vectors in (3) using the inner product

〈f, g〉 =
∫ 2π

0
f(x)g(x) dx

This yields the orthonormal basis

g0 = 1√
2π

, g1 = 1√
π

cos x, . . . , gn = 1√
π

cos nx,

gn+1 = 1√
π

sin x, . . . , g2n = 1√
π

sin nx

(5)

(see Exercise 6). If we introduce the notation

a0 = 2√
2π

〈f, g0〉, a1 = 1√
π
〈f, g1〉, . . . , an = 1√

π
〈f, gn〉

b1 = 1√
π
〈f, gn+1〉, . . . , bn = 1√

π
〈f, g2n〉

(6)

then on substituting (5) in (4), we obtain

projW f = a0

2
+ [a1 cos x + · · · + an cos nx] + [b1 sin x + · · · + bn sin nx] (7)

where

a0 = 2√
2π

〈f, g0〉 =
2√
2π

∫ 2π

0
f(x)

1√
2π

dx = 1

π

∫ 2π

0
f(x) dx

a1 = 1√
π
〈f, g1〉 =

1√
π

∫ 2π

0
f(x)

1√
π

cos x dx = 1

π

∫ 2π

0
f(x) cos x dx

...

an = 1√
π
〈f, gn〉 =

1√
π

∫ 2π

0
f(x)

1√
π

cos nx dx = 1

π

∫ 2π

0
f(x) cos nx dx

b1 = 1√
π
〈f, gn+1〉 =

1√
π

∫ 2π

0
f(x)

1√
π

sin x dx = 1

π

∫ 2π

0
f(x) sin x dx

...

bn = 1√
π
〈f, g2n〉 =

1√
π

∫ 2π

0
f(x)

1√
π

sin nx dx = 1

π

∫ 2π

0
f(x) sin nx dx

In short,

ak = 1

π

∫ 2π

0
f(x) cos kx dx, bk = 1

π

∫ 2π

0
f(x) sin kx dx (8)

The numbers a0, a1, . . . , an, b1, . . . , bn are called the Fourier coefficients of f.

EXAMPLE 1 Least Squares Approximations

Find the least squares approximation of f(x) = x on [0, 2π ] by

(a) a trigonometric polynomial of order 2 or less;

(b) a trigonometric polynomial of order n or less.
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Solution (a)

a0 = 1

π

∫ 2π

0
f(x) dx = 1

π

∫ 2π

0
x dx = 2π (9a)

For k = 1, 2, . . . , integration by parts yields (verify)

ak = 1

π

∫ 2π

0
f(x) cos kx dx = 1

π

∫ 2π

0
x cos kx dx = 0 (9b)

bk = 1

π

∫ 2π

0
f(x) sin kx dx = 1

π

∫ 2π

0
x sin kx dx = −2

k
(9c)

Thus, the least squares approximation to x on [0, 2π ] by a trigonometric polynomial of
order 2 or less is

x ≈ a0

2
+ a1 cos x + a2 cos 2x + b1 sin x + b2 sin 2x

or, from (9a), (9b), and (9c),

x ≈ π − 2 sin x − sin 2x

Solution (b) The least squares approximation to x on [0, 2π ] by a trigonometric poly-
nomial of order n or less is

x ≈ a0

2
+ [a1 cos x + · · · + an cos nx] + [b1 sin x + · · · + bn sin nx]

or, from (9a), (9b), and (9c),

x ≈ π − 2

(
sin x + sin 2x

2
+ sin 3x

3
+ · · · + sin nx

n

)
The graphs of y = x and some of these approximations are shown in Figure 6.6.4.

Figure 6.6.4 1 2 3 4 5 6 2π 7

1

2

3

4

5

6

x

y

y = π

y = π – 2 sin x

y = x

y = π – 2 (sin x +          )sin 2x
2

y = π – 2 (sin x +          +         )sin 2x
2

sin 3x
3

y = π – 2 (sin x +          +          +         )sin 2x
2

sin 3x
3

sin 4x
4

Jean Baptiste
Fourier (1768–1830)

Historical Note Fourier was a
French mathematician and physi-
cist who discovered the Fourier
series and related ideas while
working on problems of heat
diffusion. This discovery was
one of the most influential in
the history of mathematics; it is
the cornerstone of many fields
of mathematical research and a
basic tool in many branches of en-
gineering. Fourier, a political ac-
tivist during the French revolution,
spent time in jail for his defense
of many victims during the Ter-
ror. He later became a favorite of
Napoleon who made him a baron.

[Image: Hulton Archive/
Getty Images]

It is natural to expect that the mean square error will diminish as the number of terms
in the least squares approximation

f(x) ≈ a0

2
+

n∑
k=1

(ak cos kx + bk sin kx)

increases. It can be proved that for functions f in C[0, 2π ], the mean square error
approaches zero as n → +�; this is denoted by writing

f(x) = a0

2
+

�∑
k=1

(ak cos kx + bk sin kx)

The right side of this equation is called the Fourier series for f over the interval [0, 2π ].
Such series are of major importance in engineering, science, and mathematics.



Chapter 6 Supplementary Exercises 399

Exercise Set 6.6
1. Find the least squares approximation of f(x) = 1 + x over

the interval [0, 2π ] by

(a) a trigonometric polynomial of order 2 or less.

(b) a trigonometric polynomial of order n or less.

2. Find the least squares approximation of f(x) = x2 over the
interval [0, 2π ] by

(a) a trigonometric polynomial of order 3 or less.

(b) a trigonometric polynomial of order n or less.

3. (a) Find the least squares approximation of x over the interval
[0, 1] by a function of the form a + bex .

(b) Find the mean square error of the approximation.

4. (a) Find the least squares approximation of ex over the inter-
val [0, 1] by a polynomial of the form a0 + a1x.

(b) Find the mean square error of the approximation.

5. (a) Find the least squares approximation of sin πx over the
interval [−1, 1] by a polynomial of the form
a0 + a1x + a2x

2.

(b) Find the mean square error of the approximation.

6. Use the Gram–Schmidt process to obtain the orthonormal
basis (5) from the basis (3).

7. Carry out the integrations indicated in Formulas (9a), (9b),
and (9c).

8. Find the Fourier series of f(x) = π − x over the interval
[0, 2π ].

9. Find the Fourier series of f(x) = 1, 0 < x < π and f(x) = 0,
π ≤ x ≤ 2π over the interval [0, 2π ].

10. What is the Fourier series of sin(3x)?

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) If a function f in C[a, b] is approximated by the function g,
then the mean square error is the same as the area between the
graphs of f(x) and g(x) over the interval [a, b].

(b) Given a finite-dimensional subspace W of C[a, b], the func-
tion g = projW f minimizes the mean square error.

(c) {1, cos x, sin x, cos 2x, sin 2x} is an orthogonal subset of the
vector space C[0, 2π ] with respect to the inner product
〈f, g〉 = ∫ 2π

0 f(x)g(x) dx.

(d) {1, cos x, sin x, cos 2x, sin 2x} is an orthonormal subset of
the vector space C[0, 2π ] with respect to the inner product
〈f, g〉 = ∫ 2π

0 f(x)g(x) dx.

(e) {1, cos x, sin x, cos 2x, sin 2x} is a linearly independent subset
of C[0, 2π ].

Chapter 6 Supplementary Exercises

1. Let R4 have the Euclidean inner product.

(a) Find a vector in R4 that is orthogonal to u1 = (1, 0, 0, 0)
and u4 = (0, 0, 0, 1) and makes equal angles with
u2 = (0, 1, 0, 0) and u3 = (0, 0, 1, 0).

(b) Find a vector x = (x1, x2, x3, x4) of length 1 that is or-
thogonal to u1 and u4 above and such that the cosine of
the angle between x and u2 is twice the cosine of the angle
between x and u3.

2. Prove: If 〈u, v〉 is the Euclidean inner product on Rn, and if A

is an n × n matrix, then

〈u, Av〉 = 〈ATu, v〉
[Hint: Use the fact that 〈u, v〉 = u · v = vT u.]

3. LetM22 have the inner product 〈U, V 〉 = tr(UTV ) = tr(V TU)

that was defined in Example 6 of Section 6.1. Describe the
orthogonal complement of

(a) the subspace of all diagonal matrices.

(b) the subspace of symmetric matrices.

4. Let Ax = 0 be a system of m equations in n unknowns. Show
that

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

is a solution of this system if and only if the vector
x = (x1, x2, . . . , xn) is orthogonal to every row vector of A

with respect to the Euclidean inner product on Rn.

5. Use the Cauchy–Schwarz inequality to show that if
a1, a2, . . . , an are positive real numbers, then

(a1 + a2 + · · · + an)

(
1

a1
+ 1

a2
+ · · · + 1

an

)
≥ n2

6. Show that if x and y are vectors in an inner product space and
c is any scalar, then

‖cx + y‖2 = c2‖x‖2 + 2c〈x, y〉 + ‖y‖2
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7. Let R3 have the Euclidean inner product. Find two vectors
of length 1 that are orthogonal to all three of the vectors
u1 = (1, 1,−1), u2 = (−2,−1, 2), and u3 = (−1, 0, 1).

8. Find a weighted Euclidean inner product on Rn such that the
vectors

v1 = (1, 0, 0, . . . , 0)

v2 = (0,
√

2, 0, . . . , 0)

v3 = (0, 0,
√

3, . . . , 0)
...

vn = (0, 0, 0, . . . ,
√

n )

form an orthonormal set.

9. Is there a weighted Euclidean inner product on R2 for which
the vectors (1, 2) and (3,−1) form an orthonormal set? Jus-
tify your answer.

10. If u and v are vectors in an inner product space V, then u, v,
and u − v can be regarded as sides of a “triangle” in V (see
the accompanying figure). Prove that the law of cosines holds
for any such triangle; that is,

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ

where θ is the angle between u and v.

u

u – vv

θ

Figure Ex-10

11. (a) As shown in Figure 3.2.6, the vectors (k, 0, 0), (0, k, 0),
and (0, 0, k) form the edges of a cube in R3 with diagonal
(k, k, k). Similarly, the vectors

(k, 0, 0, . . . , 0), (0, k, 0, . . . , 0), . . . , (0, 0, 0, . . . , k)

can be regarded as edges of a “cube” in Rn with diagonal
(k, k, k, . . . , k). Show that each of the above edges makes
an angle of θ with the diagonal, where cos θ = 1/

√
n.

(b) (Calculus required ) What happens to the angle θ in part (a)
as the dimension of Rn approaches �?

12. Let u and v be vectors in an inner product space.

(a) Prove that ‖u‖ = ‖v‖ if and only if u + v and u − v are
orthogonal.

(b) Give a geometric interpretation of this result in R2 with
the Euclidean inner product.

13. Let u be a vector in an inner product space V, and let
{v1, v2, . . . , vn} be an orthonormal basis for V . Show that
if αi is the angle between u and vi , then

cos2 α1 + cos2 α2 + · · · + cos2 αn = 1

14. Prove: If 〈u, v〉1 and 〈u, v〉2 are two inner products on a vector
space V, then the quantity 〈u, v〉 = 〈u, v〉1 + 〈u, v〉2 is also an
inner product.

15. Prove Theorem 6.2.5.

16. Prove: If A has linearly independent column vectors, and if b
is orthogonal to the column space of A, then the least squares
solution of Ax = b is x = 0.

17. Is there any value of s for which x1 = 1 and x2 = 2 is the least
squares solution of the following linear system?

x1 − x2 = 1

2x1 + 3x2 = 1

4x1 + 5x2 = s

Explain your reasoning.

18. Show that if p and q are distinct positive integers, then the
functions f(x) = sin px and g(x) = sin qx are orthogonal
with respect to the inner product

〈f, g〉 =
∫ 2π

0
f(x)g(x) dx

19. Show that if p and q are positive integers, then the functions
f(x) = cos px and g(x) = sin qx are orthogonal with respect
to the inner product

〈f, g〉 =
∫ 2π

0
f(x)g(x) dx

20. Let W be the intersection of the planes

x + y + z = 0 and x − y + z = 0

in R3. Find an equation for W⊥.

21. Prove that if ad − bc �= 0, then the matrix

A =
[
a b

c d

]

has a unique QR-decomposition A = QR, where

Q = 1√
a2 + c2

[
a −c

c a

]

R = 1√
a2 + c2

[
a2 + c2 ab + cd

0 ad − bc

]
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INTRODUCTION In Section 5.2 we found conditions that guaranteed the diagonalizability of an n × n

matrix, but we did not consider what class or classes of matrices might actually satisfy
those conditions. In this chapter we will show that every symmetric matrix is
diagonalizable. This is an extremely important result because many applications utilize
it in some essential way.

7.1 Orthogonal Matrices
In this section we will discuss the class of matrices whose inverses can be obtained by
transposition. Such matrices occur in a variety of applications and arise as well as
transition matrices when one orthonormal basis is changed to another.

Orthogonal Matrices We begin with the following definition.

DEFINITION 1 A square matrix A is said to be orthogonal if its transpose is the same
as its inverse, that is, if

A−1 = AT

or, equivalently, if
AAT = ATA = I (1)

Recall from Theorem 1.6.3
that if either product in (1)
holds, then so does the other.
Thus, A is orthogonal if either
AAT = I or ATA = I .

EXAMPLE 1 A 3 × 3 Orthogonal Matrix

The matrix

A =

⎡
⎢⎢⎣

3
7

2
7

6
7

− 6
7

3
7

2
7

2
7

6
7 − 3

7

⎤
⎥⎥⎦

is orthogonal since

ATA =

⎡
⎢⎢⎣

3
7 − 6

7
2
7

2
7

3
7

6
7

6
7

2
7 − 3

7

⎤
⎥⎥⎦
⎡
⎢⎢⎣

3
7

2
7

6
7

− 6
7

3
7

2
7

2
7

6
7 − 3

7

⎤
⎥⎥⎦ =

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦
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EXAMPLE 2 Rotation and Reflection Matrices Are Orthogonal

Recall from Table 5 of Section 4.9 that the standard matrix for the counterclockwise
rotation of R2 through an angle θ is

A =
[

cos θ − sin θ

sin θ cos θ

]
This matrix is orthogonal for all choices of θ since

ATA =
[

cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ

sin θ cos θ

]
=
[

1 0

0 1

]
We leave it for you to verify that the reflection matrices in Tables 1 and 2 and the rotation
matrices in Table 6 of Section 4.9 are all orthogonal.

Observe that for the orthogonal matrices in Examples 1 and 2, both the row vec-
tors and the column vectors form orthonormal sets with respect to the Euclidean inner
product. This is a consequence of the following theorem.

THEOREM 7.1.1 The following are equivalent for an n × n matrix A.

(a) A is orthogonal.

(b) The row vectors of A form an orthonormal set in Rn with the Euclidean inner
product.

(c) The column vectors of A form an orthonormal set in Rn with the Euclidean inner
product.

Proof We will prove the equivalence of (a) and (b) and leave the equivalence of (a) and
(c) as an exercise.

(a)⇔ (b) Let ri be the ith row vector and cj the j th column vector of A. Since transpos-
ing a matrix converts its columns to rows and rows to columns, it follows that cT

j = rj .
Thus, it follows from the row-column rule [Formula (5) of Section 1.3] and the bottom
form listed in Table 1 of Section 3.2 that

AAT =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1cT
1 r1cT

2 · · · r1cT
n

r2cT
1 r2cT

2 · · · r2cT
n

...
...

...

rncT
1 rncT

2 · · · rncT
n

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

r1 · r1 r1 · r2 · · · r1 · rn

r2 · r1 r2 · r2 · · · r2 · rn

...
...

...

rn · r1 rn · r2 · · · rn · rn

⎤
⎥⎥⎥⎥⎥⎥⎦

It is evident from this formula that AAT = I if and only if

r1 · r1 = r2 · r2 = · · · = rn · rn = 1

and
ri · rj = 0 when i �= j

which are true if and only if {r1, r2, . . . , rn} is an orthonormal set in Rn.

WARNING Note that an or-
thogonal matrix has orthonor-
mal rows and columns—not
simply orthogonal rows and
columns. The following theorem lists four more fundamental properties of orthogonal matri-

ces. The proofs are all straightforward and are left as exercises.
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THEOREM 7.1.2

(a) The transpose of an orthogonal matrix is orthogonal.

(b) The inverse of an orthogonal matrix is orthogonal.

(c) A product of orthogonal matrices is orthogonal.

(d ) If A is orthogonal, then det(A) = 1 or det(A) = −1.

EXAMPLE 3 det(A) = ±1 for an Orthogonal MatrixA

The matrix

A =
[ 1√

2
1√
2

− 1√
2

1√
2

]

is orthogonal since its row (and column) vectors form orthonormal sets in R2 with
the Euclidean inner product. We leave it for you to verify that det(A) = 1 and that
interchanging the rows produces an orthogonal matrix whose determinant is −1.

Orthogonal Matrices as
Linear Operators

We observed in Example 2 that the standard matrices for the basic reflection and rotation
operators on R2 and R3 are orthogonal. The next theorem will explain why this is so.

THEOREM 7.1.3 If A is an n × n matrix, then the following are equivalent.

(a) A is orthogonal.

(b) ‖Ax‖ = ‖x‖ for all x in Rn.

(c) Ax · Ay = x · y for all x and y in Rn.

Proof We will prove the sequence of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b) Assume that A is orthogonal, so that ATA = I . It follows from Formula (26)
of Section 3.2 that

‖Ax‖ = (Ax · Ax)1/2 = (x · ATAx)1/2 = (x · x)1/2 = ‖x‖

(b) ⇒ (c) Assume that ‖Ax‖ = ‖x‖ for all x in Rn. From Theorem 3.2.7 we have

Ax · Ay = 1
4‖Ax + Ay‖2 − 1

4‖Ax − Ay‖2 = 1
4‖A(x + y)‖2 − 1

4‖A(x − y)‖2

= 1
4‖x + y‖2 − 1

4‖x − y‖2 = x · y

(c)⇒ (a) Assume that Ax · Ay = x · y for all x and y in Rn. It follows from Formula (26)
of Section 3.2 that

x · y = x · ATAy

which can be rewritten as x · (ATAy − y) = 0 or as

x · (ATA − I )y = 0

Since this equation holds for all x in Rn, it holds in particular if x = (ATA − I )y, so

(ATA − I )y · (ATA − I )y = 0

Thus, it follows from the positivity axiom for inner products that

(ATA − I )y = 0



404 Chapter 7 Diagonalization and Quadratic Forms

Since this equation is satisfied by every vector y in Rn, it must be that ATA − I is the

v

0

||TA(u)|| = ||u||,  TA(v)|| = ||v||

    α = β,  d(TA(u), TA(v)) = d(u, v)

α

β

u

TA(u)

TA(v)

Figure 7.1.1

zero matrix (why?) and hence that ATA = I . Thus, A is orthogonal.

Theorem 7.1.3 has a useful geometric interpretation when considered from the view-
point of matrix transformations: If A is an orthogonal matrix and TA: Rn →Rn is mul-
tiplication by A, then we will call TA an orthogonal operator on Rn. It follows from parts
(a) and (b) of Theorem 7.1.3 that the orthogonal operators on Rn are precisely those
operators that leave the lengths (norms) of vectors unchanged. However, as illustrated
in Figure 7.1.1, this implies that orthogonal operators also leave angles and distances
between vectors in Rn unchanged since these can be expressed in terms of norms [see
Definition 2 and Formula (20) of Section 3.2].

Change of Orthonormal
Basis

Orthonormal bases for inner product spaces are convenient because, as the following
theorem shows, many familiar formulas hold for such bases. We leave the proof as an
exercise.

THEOREM 7.1.4 If S is an orthonormal basis for an n-dimensional inner product space
V, and if

(u)S = (u1, u2, . . . , un) and (v)S = (v1, v2, . . . , vn)

then:

(a) ‖u‖ =
√

u2
1 + u2

2 + · · · + u2
n

(b) d(u, v) = √
(u1 − v1)2 + (u2 − v2)2 + · · · + (un − vn)2

(c) 〈u, v〉 = u1v1 + u2v2 + · · · + unvn

Remark Note that the three parts of Theorem 7.1.4 can be expressed as

‖u‖ = ‖(u)S‖ d(u, v) = d
(
(u)S, (v)S

) 〈u, v〉 = 〈
(u)S, (v)S

〉
where the norm, distance, and inner product on the left sides are relative to the inner product on
V and on the right sides are relative to the Euclidean inner product on Rn.

Transitions between orthonormal bases for an inner product space are of special
importance in geometry and various applications. The following theorem, whose proof
is deferred to the end of this section, is concerned with transitions of this type.

THEOREM 7.1.5 Let V be a finite-dimensional inner product space. If P is the tran-
sition matrix from one orthonormal basis for V to another orthonormal basis for V,

then P is an orthogonal matrix.

EXAMPLE 4 Rotation of Axes in 2-Space

In many problems a rectangular xy-coordinate system is given, and a new x ′y ′-coordinate
system is obtained by rotating the xy-system counterclockwise about the origin through
an angle θ . When this is done, each point Q in the plane has two sets of coordinates—
coordinates (x, y) relative to the xy-system and coordinates (x ′, y ′) relative to the x ′y ′-
system (Figure 7.1.2a).

By introducing unit vectors u1 and u2 along the positive x- and y-axes and unit vec-
tors u′

1 and u′
2 along the positive x ′- and y ′-axes, we can regard this rotation as a change
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from an old basis B = {u1, u2} to a new basis B ′ = {u′
1, u′

2} (Figure 7.1.2b). Thus, the
new coordinates (x ′, y ′) and the old coordinates (x, y) of a point Q will be related by[

x ′

y ′

]
= P−1

[
x

y

]
(2)

where P is the transition from B ′ to B. To find P we must determine the coordinate
matrices of the new basis vectors u′

1 and u′
2 relative to the old basis. As indicated in

Figure 7.1.2c, the components of u′
1 in the old basis are cos θ and sin θ , so

[u′
1]B =

[
cos θ

sin θ

]
Similarly, from Figure 7.1.2d we see that the components of u′

2 in the old basis are
cos(θ + π/2) = − sin θ and sin(θ + π/2) = cos θ , so

[u′
2]B =

[− sin θ

cos θ

]
Thus the transition matrix from B ′ to B is

P =
[

cos θ − sin θ

sin θ cos θ

]
(3)

Observe that P is an orthogonal matrix, as expected, since B and B ′ are orthonormal
bases. Thus

P−1 = P T =
[

cos θ sin θ

− sin θ cos θ

]
so (2) yields [

x ′

y ′

]
=
[

cos θ sin θ

− sin θ cos θ

] [
x

y

]
(4)

or, equivalently,

x ′ = x cos θ + y sin θ

y ′ = −x sin θ + y cos θ
(5)

These are sometimes called the rotation equations for R2.
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x

x´

Q (x, y)
(x´, y´)

(a) (b) (c)

θ

yy´

x

x´

θ sin θ

sin (θ +    )

cos (θ +    )

θ + 

cos θ

u2
u2u2

u1

u1

θ

u1

(d )

yy´

x

x´

θ

π
2

π
2

π
2

´

´

´

´

Figure 7.1.2

EXAMPLE 5 Rotation of Axes in 2-Space

Use form (4) of the rotation equations for R2 to find the new coordinates of the point
Q(2, 1) if the coordinate axes of a rectangular coordinate system are rotated through an
angle of θ = π/4.

Solution Since

sin
π

4
= cos

π

4
= 1√

2
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the equation in (4) becomes [
x ′

y ′

]
=
⎡
⎣ 1√

2
1√
2

− 1√
2

1√
2

⎤
⎦[x

y

]

Thus, if the old coordinates of a point Q are (x, y) = (2,−1), then[
x ′

y ′

]
=
⎡
⎣ 1√

2
1√
2

− 1√
2

1√
2

⎤
⎦[ 2

−1

]
=
⎡
⎣ 1√

2

− 3√
2

⎤
⎦

so the new coordinates of Q are (x ′, y ′) =
(

1√
2
,− 3√

2

)
.

Remark Observe that the coefficient matrix in (4) is the same as the standard matrix for the
linear operator that rotates the vectors of R2 through the angle −θ (see margin note for Table 5
of Section 4.9). This is to be expected since rotating the coordinate axes through the angle θ with
the vectors of R2 kept fixed has the same effect as rotating the vectors in R2 through the angle −θ

with the axes kept fixed.

EXAMPLE 6 Application to Rotation of Axes in 3-Space

Suppose that a rectangular xyz-coordinate system is rotated around its z-axis counter-
clockwise (looking down the positive z-axis) through an angle θ (Figure 7.1.3). If we

z´z

y

y´

x
x´

u3 u3

u1 u1
u2

u2

θ

´

´

´

Figure 7.1.3

introduce unit vectors u1, u2, and u3 along the positive x-, y-, and z-axes and unit vec-
tors u′

1, u′
2, and u′

3 along the positive x ′-, y ′-, and z′-axes, we can regard the rotation as
a change from the old basis B = {u1, u2, u3} to the new basis B ′ = {u′

1, u′
2, u′

3}. In light
of Example 4, it should be evident that

[u′
1]B =

⎡
⎢⎣cos θ

sin θ

0

⎤
⎥⎦ and [u′

2]B =
⎡
⎢⎣− sin θ

cos θ

0

⎤
⎥⎦

Moreover, since u′
3 extends 1 unit up the positive z′-axis,

[u′
3]B =

⎡
⎢⎣0

0

1

⎤
⎥⎦

It follows that the transition matrix from B ′ to B is

P =
⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦

and the transition matrix from B to B ′ is

P−1 =
⎡
⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦

(verify). Thus, the new coordinates (x ′, y ′, z′) of a point Q can be computed from its old
coordinates (x, y, z) by ⎡

⎢⎣x ′

y ′

z′

⎤
⎥⎦ =

⎡
⎢⎣ cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦

We conclude this section with an optional proof of Theorem 7.1.5.O PT I O NA L
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Proof of Theorem 7.1.5 Assume that V is an n-dimensional inner product space and
that P is the transition matrix from an orthonormal basis B ′ to an orthonormal basis
B. We will denote the norm relative to the inner product on V by the symbol ‖ ‖V to
distinguish it from the norm relative to the Euclidean inner product on Rn, which we
will denote by ‖ ‖.

To prove that P is orthogonal, we will use Theorem 7.1.3 and show that ‖P x‖ = ‖x‖
for every vector x in Rn. As a first step in this direction, recall from Theorem 7.1.4(a)
that for any orthonormal basis for V the norm of any vector u in V is the same as the
norm of its coordinate vector with respect to the Euclidean inner product, that is,

Recall that (u)S denotes a
coordinate vector expressed
in comma-delimited form
whereas [u]S denotes a coord-
inate vector expressed in
column form. ‖u‖V = ‖[u]B ′ ‖ = ‖[u]B‖

or
‖u‖V = ‖[u]B ′ ‖ = ‖P [u]B ′ ‖ (6)

Now let x be any vector in Rn, and let u be the vector in V whose coordinate vector with
respect to the basis B ′ is x, that is, [u]B ′ = x. Thus, from (6),

‖u‖ = ‖x‖ = ‖P x‖
which proves that P is orthogonal.

Exercise Set 7.1
In each part of Exercises 1–4, determine whether the matrix is

orthogonal, and if so find it inverse.

1. (a)

[
1 0

0 −1

]
(b)

[ 1√
2

− 1√
2

1√
2

1√
2

]

2. (a)

[
1 0

0 1

]
(b)

[ 1√
5

2√
5

2√
5

1√
5

]

3. (a)

⎡
⎢⎢⎣

0 1 1√
2

1 0 0

0 0 1√
2

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣
− 1√

2
1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3

⎤
⎥⎥⎦

4. (a)

⎡
⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

1
2 − 5

6
1
6

1
6

1
2

1
6

1
6 − 5

6

1
2

1
6 − 5

6
1
6

⎤
⎥⎥⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1√
3

− 1
2 0

0 1√
3

0 1

0 1√
3

1
2 0

⎤
⎥⎥⎥⎥⎥⎦

In Exercises 5–6, show that the matrix is orthogonal three ways:
first by calculating ATA, then by using part (b) of Theorem 7.1.1,
and then by using part (c) of Theorem 7.1.1.

5. A =
⎡
⎢⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25
12
25

3
5

16
25

⎤
⎥⎦ 6. A =

⎡
⎢⎣

1
3

2
3

2
3

2
3 − 2

3
1
3

− 2
3 − 1

3
2
3

⎤
⎥⎦

7. Let TA: R3 →R3 be multiplication by the orthogonal matrix
in Exercise 5. Find TA(x) for the vector x = (−2, 3, 5), and
confirm that ‖TA(x)‖ = ‖x‖ relative to the Euclidean inner
product on R3.

8. Let TA: R3 →R3 be multiplication by the orthogonal matrix in
Exercise 6. Find TA(x) for the vector x = (0, 1, 4), and con-
firm ‖TA(x)‖ = ‖x‖ relative to the Euclidean inner product
on R3.

9. Are the standard matrices for the reflections in Tables 1 and 2
of Section 4.9 orthogonal?

10. Are the standard matrices for the orthogonal projections in
Tables 3 and 4 of Section 4.9 orthogonal?

11. What conditions must a and b satisfy for the matrix[
a + b b − a

a − b b + a

]
to be orthogonal?

12. Under what conditions will a diagonal matrix be orthogonal?

13. Let a rectangular x ′y ′-coordinate system be obtained by ro-
tating a rectangular xy-coordinate system counterclockwise
through the angle θ = π/3.

(a) Find the x ′y ′-coordinates of the point whose
xy-coordinates are (−2, 6).

(b) Find the xy-coordinates of the point whose
x ′y ′-coordinates are (5, 2).

14. Repeat Exercise 13 with θ = 3π/4.
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15. Let a rectangular x ′y ′z′-coordinate system be obtained by ro-
tating a rectangular xyz-coordinate system counterclockwise
about the z-axis (looking down the z-axis) through the angle
θ = π/4.

(a) Find the x ′y ′z′-coordinates of the point whose
xyz-coordinates are (−1, 2, 5).

(b) Find the xyz-coordinates of the point whose
x ′y ′z′-coordinates are (1, 6,−3).

16. Repeat Exercise 15 for a rotation of θ = 3π/4 counterclock-
wise about the x-axis (looking along the positive x-axis toward
the origin).

17. Repeat Exercise 15 for a rotation of θ = π/3 counterclockwise
about the y-axis (looking along the positive y-axis toward the
origin).

18. A rectangular x ′y ′z′-coordinate system is obtained by rotating
an xyz-coordinate system counterclockwise about the y-axis
through an angle θ (looking along the positive y-axis toward
the origin). Find a matrix A such that⎡

⎢⎣x ′

y ′

z′

⎤
⎥⎦ = A

⎡
⎢⎣x

y

z

⎤
⎥⎦

where (x, y, z) and (x ′, y ′, z′) are the coordinates of the same
point in the xyz- and x ′y ′z′-systems, respectively.

19. Repeat Exercise 18 for a rotation about the x-axis.

20. A rectangular x ′′y ′′z′′-coordinate system is obtained by first
rotating a rectangular xyz-coordinate system 60◦ counter-
clockwise about the z-axis (looking down the positive z-axis)
to obtain an x ′y ′z′-coordinate system, and then rotating the
x ′y ′z′-coordinate system 45◦ counterclockwise about the y ′-
axis (looking along the positive y ′-axis toward the origin).
Find a matrix A such that⎡

⎢⎣x ′′

y ′′

z′′

⎤
⎥⎦ = A

⎡
⎢⎣x

y

z

⎤
⎥⎦

where (x, y, z) and (x ′′, y ′′, z′′) are the xyz- and x ′′y ′′z′′-
coordinates of the same point.

21. A linear operator on R2 is called rigid if it does not change the
lengths of vectors, and it is called angle preserving if it does
not change the angle between nonzero vectors.

(a) Identify two different types of linear operators that are
rigid.

(b) Identify two different types of linear operators that are
angle preserving.

(c) Are there any linear operators on R2 that are rigid and not
angle preserving? Angle preserving and not rigid? Justify
your answer.

22. Can an orthogonal operator TA: Rn →Rn map nonzero vec-
tors that are not orthogonal into orthogonal vectors? Justify
your answer.

23. The set S =
{

1√
3
, 1√

2
x,

√
3
2 x

2 −
√

2
3

}
is an orthonormal ba-

sis for P2 with respect to the evaluation inner product at the
points x0 = −1, x1 = 0, x2 = 1. Let p = p(x) = 1 + x + x2

and q = q(x) = 2x − x2.

(a) Find (p)S and (q)S .

(b) Use Theorem 7.1.4 to compute ‖p‖, d(p, q) and 〈p, q〉.
24. The sets S = {1, x} and S ′ =

{
1√
2
(1 + x), 1√

2
(1 − x)

}
are or-

thonormal bases for P1 with respect to the standard inner
product. Find the transition matrix P from S to S ′, and ver-
ify that the conclusion of Theorem 7.1.5 holds for P .

Working with Proofs

25. Prove that if x is an n × 1 matrix, then the matrix

A = In − 2

xT x
xxT

is both orthogonal and symmetric.

26. Prove that a 2 × 2 orthogonal matrix A has only one of two
possible forms:

A =
[

cos θ − sin θ

sin θ cos θ

]
or A =

[
cos θ sin θ

sin θ − cos θ

]
where 0 ≤ θ < 2π . [Hint: Start with a general 2 × 2 matrixA,
and use the fact that the column vectors form an orthonormal
set in R2.]

27. (a) Use the result in Exercise 26 to prove that multiplication
by a 2 × 2 orthogonal matrix is a rotation if det(A) = 1
and a reflection followed by a rotation if det(A) = −1.

(b) In the case where the transformation in part (a) is a reflec-
tion followed by a rotation, show that the same transfor-
mation can be accomplished by a single reflection about
an appropriate line through the origin. What is that line?
[Hint: See Formula (6) of Section 4.9.]

28. In each part, use the result in Exercise 27(a) to determine
whether multiplication by A is a rotation or a reflection fol-
lowed by rotation. Find the angle of rotation in both cases,
and in the case where it is a reflection followed by a rotation
find an equation for the line through the origin referenced in
Exercise 27(b).

(a) A =
[− 1√

2
1√
2

− 1√
2

− 1√
2

]
(b) A =

⎡
⎣− 1

2

√
3

2
√

3
2

1
2

⎤
⎦

29. The result in Exercise 27(a) has an analog for 3 × 3 orthogo-
nal matrices. It can be proved that multiplication by a 3 × 3
orthogonal matrix A is a rotation about some line through the
origin of R3 if det(A) = 1 and is a reflection about some co-
ordinate plane followed by a rotation about some line through
the origin if det(A) = −1. Use the first of these facts and The-
orem 7.1.2 to prove that any composition of rotations about
lines through the origin in R3 can be accomplished by a single
rotation about an appropriate line through the origin.
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30. Euler’s Axis of Rotation Theorem states that: IfA is an orthog-
onal 3 × 3 matrix for which det(A) = 1, then multiplication by
A is a rotation about a line through the origin in R3. Moreover,
if u is a unit vector along this line, then Au = u.

(a) Confirm that the following matrix A is orthogonal, that
det(A) = 1, and that there is a unit vector u for which
Au = u.

A =

⎡
⎢⎢⎣

2
7

3
7

6
7

3
7 − 6

7
2
7

6
7

2
7 − 3

7

⎤
⎥⎥⎦

(b) Use Formula (3) of Section 4.9 to prove that if A is a 3 × 3
orthogonal matrix for which det(A) = 1, then the angle
of rotation resulting from multiplication by A satisfies the
equation cos θ = 1

2 [tr(A) − 1]. Use this result to find the
angle of rotation for the rotation matrix in part (a).

31. Prove the equivalence of statements (a) and (c) that are given
in Theorem 7.1.1.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) The matrix

⎡
⎢⎣1 0

0 1

0 0

⎤
⎥⎦ is orthogonal.

(b) The matrix

[
1 −2

2 1

]
is orthogonal.

(c) An m × n matrix A is orthogonal if ATA = I .

(d) A square matrix whose columns form an orthogonal set is
orthogonal.

(e) Every orthogonal matrix is invertible.

(f ) If A is an orthogonal matrix, then A2 is orthogonal and
(det A)2 = 1.

(g) Every eigenvalue of an orthogonal matrix has absolute value 1.

(h) If A is a square matrix and ‖Au‖ = 1 for all unit vectors u,
then A is orthogonal.

Working withTechnology

T1. If a is a nonzero vector in Rn, then aaT is called the outer
product of a with itself, the subspace a⊥ is called the hyperplane in
Rn orthogonal to a, and the n × n orthogonal matrix

Ha⊥ = I − 2

aTa
aaT

is called the Householder matrix or the Householder reflection
about a⊥, named in honor of the American mathematician Al-
ston S. Householder (1904–1993). In R2 the matrix Ha⊥ represents
a reflection about the line through the origin that is orthogonal to
a, and in R3 it represents a reflection about the plane through the
origin that is orthogonal to a. In higher dimensions we can view
Ha⊥ as a “reflection” about the hyperplane a⊥. Householder reflec-
tions are important in large-scale implementations of numerical
algorithms, particularly QR-decompositions, because they can be
used to transform a given vector into a vector with specified zero
components while leaving the other components unchanged. This
is a consequence of the following theorem [see Contemporary Lin-
ear Algebra, by Howard Anton and Robert C. Busby (Hoboken,
NJ: John Wiley & Sons, 2003, p. 422)].

Theorem. If v and w are distinct vectors in Rn with the same
norm, then the Householder reflection about the hyperplane
(v − w)⊥ maps v into w and conversely.

(a) Find a Householder reflection that maps the vector
v = (4, 2, 4) into a vector w that has zeros as its second
and third components. Find w.

(b) Find a Householder reflection that maps the vector
v = (3, 4, 2, 4) into the vector whose last two entries are
zero, while leaving the first entry unchanged. Find w.

7.2 Orthogonal Diagonalization
In this section we will be concerned with the problem of diagonalizing a symmetric matrix
A. As we will see, this problem is closely related to that of finding an orthonormal basis for
Rn that consists of eigenvectors of A. Problems of this type are important because many of
the matrices that arise in applications are symmetric.

The Orthogonal
Diagonalization Problem

In Section 5.2 we defined two square matrices, A and B, to be similar if there is an
invertible matrix P such that P−1AP = B. In this section we will be concerned with
the special case in which it is possible to find an orthogonal matrix P for which this
relationship holds.

We begin with the following definition.
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DEFINITION 1 If A and B are square matrices, then we say that B is orthogonally
similar to A if there is an orthogonal matrix P such that B = P TAP .

Note that if B is orthogonally similar to A, then it is also true that A is orthogonally
similar to B since we can express A as A = QTBQ by taking Q = P T (verify). This
being the case we will say that A and B are orthogonally similar matrices if either is
orthogonally similar to the other.

If A is orthogonally similar to some diagonal matrix, say

P TAP = D

then we say that A is orthogonally diagonalizable and that P orthogonally diagonalizes A.
Our first goal in this section is to determine what conditions a matrix must satisfy

to be orthogonally diagonalizable. As an initial step, observe that there is no hope of
orthogonally diagonalizing a matrix that is not symmetric. To see why this is so, suppose
that

P TAP = D (1)

where P is an orthogonal matrix and D is a diagonal matrix. Multiplying the left side
of (1) by P , the right side by P T, and then using the fact that PP T = P TP = I , we can
rewrite this equation as

A = PDP T (2)

Now transposing both sides of this equation and using the fact that a diagonal matrix is
the same as its transpose we obtain

AT = (PDP T )T = (P T )T DTP T = PDP T = A

so A must be symmetric if it is orthogonally diagonalizable.

Conditions for Orthogonal
Diagonalizability

The following theorem shows that every symmetric matrix with real entries is, in fact,
orthogonally diagonalizable. In this theorem, and for the remainder of this section,
orthogonal will mean orthogonal with respect to the Euclidean inner product on Rn.

THEOREM 7.2.1 If A is an n × n matrix with real entries, then the following are equiv-
alent.

(a) A is orthogonally diagonalizable.

(b) A has an orthonormal set of n eigenvectors.

(c) A is symmetric.

Proof (a) ⇒ (b) Since A is orthogonally diagonalizable, there is an orthogonal matrix P

such that P−1AP is diagonal. As shown in Formula (2) in the proof of Theorem 5.2.1,
the n column vectors of P are eigenvectors of A. Since P is orthogonal, these column
vectors are orthonormal, so A has n orthonormal eigenvectors.

(b) ⇒ (a) Assume that A has an orthonormal set of n eigenvectors {p1, p2, . . . , pn}. As
shown in the proof of Theorem 5.2.1, the matrix P with these eigenvectors as columns
diagonalizes A. Since these eigenvectors are orthonormal, P is orthogonal and thus
orthogonally diagonalizes A.

(a) ⇒ (c) In the proof that (a) ⇒ (b) we showed that an orthogonally diagonalizable
n × n matrix A is orthogonally diagonalized by an n × n matrix P whose columns form
an orthonormal set of eigenvectors of A. Let D be the diagonal matrix

D = P TAP
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from which it follows that
A = PDP T

Thus,
AT = (PDP T )T = PDTP T = PDP T = A

which shows that A is symmetric.

(c) ⇒ (a) The proof of this part is beyond the scope of this text. However, because it is
such an important result we have outlined the structure of its proof in the exercises (see
Exercise 31).

Properties of Symmetric
Matrices

Our next goal is to devise a procedure for orthogonally diagonalizing a symmetric matrix,
but before we can do so, we need the following critical theorem about eigenvalues and
eigenvectors of symmetric matrices.

THEOREM 7.2.2 If A is a symmetric matrix with real entries, then:

(a) The eigenvalues of A are all real numbers.

(b) Eigenvectors from different eigenspaces are orthogonal.

Part (a), which requires results about complex vector spaces, will be discussed in
Section 7.5.

Proof (b) Let v1 and v2 be eigenvectors corresponding to distinct eigenvalues λ1 and λ2

of the matrix A. We want to show that v1 · v2 = 0. Our proof of this involves the trick
of starting with the expression Av1 · v2. It follows from Formula (26) of Section 3.2 and
the symmetry of A that

Av1 · v2 = v1 · ATv2 = v1 · Av2 (3)

But v1 is an eigenvector of A corresponding to λ1, and v2 is an eigenvector of A corre-
sponding to λ2, so (3) yields the relationship

λ1v1 · v2 = v1 · λ2v2

which can be rewritten as
(λ1 − λ2)(v1 · v2) = 0 (4)

But λ1 − λ2 �= 0, since λ1 and λ2 were assumed distinct. Thus, it follows from (4) that
v1 · v2 = 0.

Theorem 7.2.2 yields the following procedure for orthogonally diagonalizing a sym-
metric matrix.

Orthogonally Diagonalizing an n × n Symmetric Matrix

Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram–Schmidt process to each of these bases to obtain an or-
thonormal basis for each eigenspace.

Step 3. Form the matrix P whose columns are the vectors constructed in Step 2. This
matrix will orthogonally diagonalize A, and the eigenvalues on the diagonal
of D = P TAP will be in the same order as their corresponding eigenvectors
in P .
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Remark The justification of this procedure should be clear: Theorem 7.2.2 ensures that eigenvec-
tors from different eigenspaces are orthogonal, and applying the Gram–Schmidt process ensures
that the eigenvectors within the same eigenspace are orthonormal. Thus the entire set of eigenvec-
tors obtained by this procedure will be orthonormal.

EXAMPLE 1 Orthogonally Diagonalizing a Symmetric Matrix

Find an orthogonal matrix P that diagonalizes

A =
⎡
⎢⎣4 2 2

2 4 2

2 2 4

⎤
⎥⎦

Solution We leave it for you to verify that the characteristic equation of A is

det(λI − A) = det

⎡
⎢⎣λ − 4 −2 −2

−2 λ − 4 −2

−2 −2 λ − 4

⎤
⎥⎦ = (λ − 2)2(λ − 8) = 0

Thus, the distinct eigenvalues ofAareλ = 2 andλ = 8. By the method used in Example 7
of Section 5.1, it can be shown that

u1 =
⎡
⎢⎣−1

1

0

⎤
⎥⎦ and u2 =

⎡
⎢⎣−1

0

1

⎤
⎥⎦ (5)

form a basis for the eigenspace corresponding to λ = 2. Applying the Gram–Schmidt
process to {u1, u2} yields the following orthonormal eigenvectors (verify):

v1 =

⎡
⎢⎢⎣
− 1√

2
1√
2

0

⎤
⎥⎥⎦ and v2 =

⎡
⎢⎢⎣
− 1√

6

− 1√
6

2√
6

⎤
⎥⎥⎦ (6)

The eigenspace corresponding to λ = 8 has

u3 =
⎡
⎢⎣1

1

1

⎤
⎥⎦

as a basis. Applying the Gram–Schmidt process to {u3} (i.e., normalizing u3) yields

v3 =

⎡
⎢⎢⎣

1√
3

1√
3

1√
3

⎤
⎥⎥⎦

Finally, using v1, v2, and v3 as column vectors, we obtain

P =

⎡
⎢⎢⎣
− 1√

2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

⎤
⎥⎥⎦

which orthogonally diagonalizes A. As a check, we leave it for you to confirm that

P TAP =

⎡
⎢⎢⎣
− 1√

2
1√
2

0

− 1√
6

− 1√
6

2√
6

1√
3

1√
3

1√
3

⎤
⎥⎥⎦
⎡
⎣4 2 2

2 4 2

2 2 4

⎤
⎦
⎡
⎢⎢⎣
− 1√

2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

⎤
⎥⎥⎦ =

⎡
⎣2 0 0

0 2 0

0 0 8

⎤
⎦
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Spectral Decomposition If A is a symmetric matrix that is orthogonally diagonalized by

P = [u1 u2 · · · un]
and if λ1, λ2, . . . , λn are the eigenvalues of A corresponding to the unit eigenvectors
u1, u2, . . . , un, then we know that D = P TAP, where D is a diagonal matrix with the
eigenvalues in the diagonal positions. It follows from this that the matrix A can be
expressed as

A = PDP T = [u1 u2 · · · un]

⎡
⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

uT
1

uT
2
...

uT
n

⎤
⎥⎥⎥⎥⎦

= [λ1u1 λ2u2 · · · λnun]

⎡
⎢⎢⎢⎢⎣

uT
1

uT
2
...

uT
n

⎤
⎥⎥⎥⎥⎦

Multiplying out, we obtain the formula

A = λ1u1uT
1 + λ2u2uT

2 + · · · + λnunuT
n (7)

which is called a spectral decomposition of A.*

Note that in each term of the spectral decomposition of A has the form λu uT , where
u is a unit eigenvector of A in column form, and λ is an eigenvalue of A corresponding to
u. Since u has size n × 1, it follows that the product u uT has size n × n. It can be proved
(though we will not do it) that u uT is the standard matrix for the orthogonal projection
of Rn on the subspace spanned by the vector u. Accepting this to be so, the spectral
decomposition of A tells that the image of a vector x under multiplication by a symmetric
matrix A can be obtained by projecting x orthogonally on the lines (one-dimensional
subspaces) determined by the eigenvectors of A, then scaling those projections by the
eigenvalues, and then adding the scaled projections. Here is an example.

EXAMPLE 2 A Geometric Interpretation of a Spectral Decomposition

The matrix

A =
[

1 2

2 −2

]
has eigenvalues λ1 = −3 and λ2 = 2 with corresponding eigenvectors

x1 =
[

1

−2

]
and x2 =

[
2

1

]
(verify). Normalizing these basis vectors yields

u1 = x1

‖x1‖ =
⎡
⎣ 1√

5

− 2√
5

⎤
⎦ and u2 = x2

‖x2‖ =
⎡
⎣ 2√

5
1√
5

⎤
⎦

*The terminology spectral decomposition is derived from the fact that the set of all eigenvalues of a matrix
A is sometimes called the spectrum of A. The terminology eigenvalue decomposition is due to Professor Dan
Kalman, who introduced it in an award-winning paper entitled “A Singularly Valuable Decomposition: The
SVD of a Matrix,” The College Mathematics Journal, Vol. 27, No. 1, January 1996.
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so a spectral decomposition of A is[
1 2

2 −2

]
= λ1u1uT

1 + λ2u2uT
2 = (−3)

⎡
⎣ 1√

5

− 2√
5

⎤
⎦[ 1√

5
− 2√

5

]
+ (2)

⎡
⎣ 2√

5
1√
5

⎤
⎦[ 2√

5
1√
5

]

= (−3)

⎡
⎣ 1

5 − 2
5

− 2
5

4
5

⎤
⎦+ (2)

⎡
⎣ 4

5
2
5

2
5

1
5

⎤
⎦ (8)

where, as noted above, the 2 × 2 matrices on the right side of (8) are the standard matrices
for the orthogonal projections onto the eigenspaces corresponding to the eigenvalues
λ1 = −3 and λ2 = 2, respectively.

Now let us see what this spectral decomposition tells us about the image of the vector
x = (1, 1) under multiplication by A. Writing x in column form, it follows that

Ax =
[

1 2

2 −2

] [
1

1

]
=
[

3

0

]
(9)

and from (8) that

Ax =
[

1 2

2 −2

] [
1

1

]
= (−3)

[
1
5 − 2

5

− 2
5

4
5

][
1

1

]
+ (2)

[
4
5

2
5

2
5

1
5

][
1

1

]

= (−3)

[− 1
5

2
5

]
+ (2)

[
6
5

3
5

]

=
[

3
5

− 6
5

]
+
[

12
5

6
5

]
=
[

3

0

]
(10)

Formulas (9) and (10) provide two different ways of viewing the image of the vector (1, 1)
under multiplication by A: Formula (9) tells us directly that the image of this vector is
(3, 0), whereas Formula (10) tells us that this image can also be obtained by projecting
(1, 1) onto the eigenspaces corresponding to λ1 = −3 and λ2 = 2 to obtain the vectors(− 1

5 , 2
5

)
and

(
6
5 , 3

5

)
, then scaling by the eigenvalues to obtain

(
3
5 ,− 6

5

)
and

(
12
5 , 6

5

)
,

and then adding these vectors (see Figure 7.2.1).

Figure 7.2.1

5 5(   , ––   )3 6

5 5(   ,    )6 3

5 5(    ,    )12 6

5 5(–   ,   )1 2

λ2 = 2

λ1 = ––3

Ax = (3, 0)

x = (1, 1)

The Nondiagonalizable
Case

If A is an n × n matrix that is not orthogonally diagonalizable, it may still be possible
to achieve considerable simplification in the form of P TAP by choosing the orthogonal
matrix P appropriately. We will consider two theorems (without proof) that illustrate
this. The first, due to the German mathematician Issai Schur, states that every square
matrix A is orthogonally similar to an upper triangular matrix that has the eigenvalues
of A on the main diagonal.
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THEOREM 7.2.3 Schur’sTheorem

IfA is an n × nmatrix with real entries and real eigenvalues, then there is an orthogonal
matrix P such that P TAP is an upper triangular matrix of the form

P TAP =

⎡
⎢⎢⎢⎢⎢⎣

λ1 × × · · · ×
0 λ2 × · · · ×
0 0 λ3 · · · ×
...

...
...

. . .
...

0 0 0 · · · λn

⎤
⎥⎥⎥⎥⎥⎦ (11)

in which λ1, λ2, . . . , λn are the eigenvalues of A repeated according to multiplicity.

It is common to denote the upper triangular matrix in (11) by S (for Schur), in which
case that equation would be rewritten as

A = PSP T (12)

which is called a Schur decomposition of A.

The next theorem, due to the German electrical engineer Karl Hessenberg (1904–
1959), states that every square matrix with real entries is orthogonally similar to a matrix
in which each entry below the first subdiagonal is zero (Figure 7.2.2). Such a matrix is

First subdiagonal

Figure 7.2.2 said to be in upper Hessenberg form.

THEOREM 7.2.4 Hessenberg’sTheorem

IfA is an n × nmatrix with real entries, then there is an orthogonal matrix P such that
P TAP is a matrix of the form

P TAP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × · · · × × ×
× × · · · × × ×
0 × . . . × × ×
...

...
. . .

...
...

...

0 0 · · · × × ×
0 0 · · · 0 × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)
Note that unlike those in (11),
the diagonal entries in (13)
are usually not the eigenvalues
of A.

It is common to denote the upper Hessenberg matrix in (13) by H (for Hessenberg),
in which case that equation can be rewritten as

A = PHP T (14)

which is called an upper Hessenberg decomposition of A.

Issai Schur
(1875–1941)

Historical Note The life of the German mathematician Issai Schur is a sad reminder
of the effect that Nazi policies had on Jewish intellectuals during the 1930s. Schur
was a brilliant mathematician and a popular lecturer who attracted many students
and researchers to the University of Berlin, where he worked and taught. His lectures
sometimes attracted so many students that opera glasses were needed to see him
from the back row. Schur’s life became increasingly difficult under Nazi rule, and in
April of 1933 he was forced to “retire” from the university under a law that prohibited
non-Aryans from holding “civil service” positions. There was an outcry from many
of his students and colleagues who respected and liked him, but it did not stave off
his complete dismissal in 1935. Schur, who thought of himself as a loyal German,
never understood the persecution and humiliation he received at Nazi hands. He left
Germany for Palestine in 1939, a broken man. Lacking in financial resources, he had
to sell his beloved mathematics books and lived in poverty until his death in 1941.

[Image: Courtesy Electronic Publishing Services, Inc., NewYork City ]
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Remark In many numerical algorithms the initial matrix is first converted to upper Hessenberg
form to reduce the amount of computation in subsequent parts of the algorithm. Many computer
packages have built-in commands for finding Schur and Hessenberg decompositions.

Exercise Set 7.2
In Exercises 1–6, find the characteristic equation of the given

symmetric matrix, and then by inspection determine the dimen-
sions of the eigenspaces.

1.
[

1 2

2 4

]
2.

⎡
⎢⎣ 1 −4 2

−4 1 −2

2 −2 −2

⎤
⎥⎦

3.

⎡
⎢⎣1 1 1

1 1 1

1 1 1

⎤
⎥⎦ 4.

⎡
⎢⎣4 2 2

2 4 2

2 2 4

⎤
⎥⎦

5.

⎡
⎢⎢⎢⎣

4 4 0 0

4 4 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ 6.

⎡
⎢⎢⎢⎣

2 −1 0 0

−1 2 0 0

0 0 2 −1

0 0 −1 2

⎤
⎥⎥⎥⎦

In Exercises 7–14, find a matrix P that orthogonally diagonal-
izes A, and determine P−1AP .

7. A =
[

6 2
√

3

2
√

3 7

]
8. A =

[
3 1

1 3

]

9. A =
⎡
⎢⎣ −2 0 −36

0 −3 0

−36 0 −23

⎤
⎥⎦ 10. A =

[
6 −2

−2 3

]

11. A =
⎡
⎢⎣ 2 −1 −1

−1 2 −1

−1 −1 2

⎤
⎥⎦ 12. A =

⎡
⎢⎣1 1 0

1 1 0

0 0 0

⎤
⎥⎦

13. A =

⎡
⎢⎢⎢⎣
−7 24 0 0

24 7 0 0

0 0 −7 24

0 0 24 7

⎤
⎥⎥⎥⎦14. A =

⎡
⎢⎢⎢⎣

3 1 0 0

1 3 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

In Exercises 15–18, find the spectral decomposition of the
matrix.

15.
[

3 1

1 3

]
16.

[
6 −2

−2 3

]

17.

⎡
⎢⎣−3 1 2

1 −3 2

2 2 0

⎤
⎥⎦ 18.

⎡
⎢⎣ −2 0 −36

0 −3 0

−36 0 −23

⎤
⎥⎦

In Exercises 19–20, determine whether there exists a 3 × 3 sym-
metric matrix whose eigenvalues are λ1 = −1, λ2 = 3, λ3 = 7 and
for which the corresponding eigenvectors are as stated. If there is
such a matrix, find it, and if there is none, explain why not.

19. x1 =
⎡
⎢⎣ 0

1

−1

⎤
⎥⎦, x2 =

⎡
⎢⎣1

0

0

⎤
⎥⎦, x3 =

⎡
⎢⎣0

1

1

⎤
⎥⎦

20. x1 =
⎡
⎢⎣ 0

1

−1

⎤
⎥⎦, x2 =

⎡
⎢⎣1

0

0

⎤
⎥⎦, x3 =

⎡
⎢⎣1

1

1

⎤
⎥⎦

21. Let A be a diagonalizable matrix with the property that eigen-
vectors corresponding to distinct eigenvalues are orthogonal.
Must A be symmetric? Explain your reasoning.

22. Assuming that b �= 0, find a matrix that orthogonally diago-
nalizes [

a b

b a

]

23. Let TA: R2 →R2 be multiplication by A. Find two orthog-
onal unit vectors u1 and u2 such that TA(u1) and TA(u2) are
orthogonal.

(a) A =
[
−1 1

1 1

]
(b) A =

[
1 2

2 1

]

24. Let TA: R3 →R3 be multiplication by A. Find two orthog-
onal unit vectors u1 and u2 such that TA(u1) and TA(u2) are
orthogonal.

(a) A =
⎡
⎢⎣4 2 2

2 4 2

2 2 4

⎤
⎥⎦ (b) A =

⎡
⎢⎣1 0 0

0 1 1

0 1 1

⎤
⎥⎦

Working with Proofs

25. Prove that if A is any m × n matrix, then ATA has an ortho-
normal set of n eigenvectors.

26. Prove: If {u1, u2, . . . , un} is an orthonormal basis for Rn, and
if A can be expressed as

A = c1u1uT
1 + c2u2uT

2 + · · · + cnunuT
n

then A is symmetric and has eigenvalues c1, c2, . . . , cn.

27. Use the result in Exercise 29 of Section 5.1 to prove Theo-
rem 7.2.2(a) for 2 × 2 symmetric matrices.

28. (a) Prove that if v is any n × 1 matrix and I is the n × n iden-
tity matrix, then I − vvT is orthogonally diagonalizable.
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(b) Find a matrix P that orthogonally diagonalizes I − vvT if

v =
⎡
⎢⎣

1

0

1

⎤
⎥⎦

29. Prove that if A is a symmetric orthogonal matrix, then 1 and
−1 are the only possible eigenvalues.

30. Is the converse of Theorem 7.2.2(b) true? Justify your answer.

31. In this exercise we will show that a symmetric matrix A is
orthogonally diagonalizable, thereby completing the missing
part of Theorem 7.2.1. We will proceed in two steps: first we
will show that A is diagonalizable, and then we will build on
that result to show that A is orthogonally diagonalizable.

(a) Assume that A is a symmetric n × n matrix. One way
to prove that A is diagonalizable is to show that for each
eigenvalue λ0 the geometric multiplicity is equal to the
algebraic multiplicity. For this purpose, assume that the
geometric multiplicity of λ0 is k, let B0 = {u1, u2, . . . , uk}
be an orthonormal basis for the eigenspace correspond-
ing to the eigenvalue λ0, extend this to an orthonormal
basis B0 = {u1, u2, . . . , un} for Rn, and let P be the ma-
trix having the vectors of B as columns. As shown in Ex-
ercise 40(b) of Section 5.2, the product AP can be written
as

AP = P

[
λ0Ik X

0 Y

]
Use the fact that B is an orthonormal basis to prove that
X = 0 [a zero matrix of size n × (n − k)].

(b) It follows from part (a) and Exercise 40(c) of Section 5.2
that A has the same characteristic polynomial as

C = P

[
λ0Ik 0

0 Y

]

Use this fact and Exercise 40(d) of Section 5.2 to prove that
the algebraic multiplicity of λ0 is the same as the geometric
multiplicity ofλ0. This establishes thatA is diagonalizable.

(c) Use Theorem 7.2.2(b) and the fact that A is diagonalizable
to prove that A is orthogonally diagonalizable.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) If A is a square matrix, then AAT and ATA are orthogonally
diagonalizable.

(b) If v1 and v2 are eigenvectors from distinct eigenspaces of a
symmetric matrix with real entries, then

‖v1 + v2‖2 = ‖v1‖2 + ‖v2‖2

(c) Every orthogonal matrix is orthogonally diagonalizable.

(d) If A is both invertible and orthogonally diagonalizable, then
A−1 is orthogonally diagonalizable.

(e) Every eigenvalue of an orthogonal matrix has absolute value 1.

(f ) If A is an n × n orthogonally diagonalizable matrix, then there
exists an orthonormal basis for Rn consisting of eigenvectors
of A.

(g) If A is orthogonally diagonalizable, then A has real eigen-
values.

Working withTechnology

T1. If your technology utility has an orthogonal diagonalization
capability, use it to confirm the final result obtained in Example 1.

T2. For the given matrix A, find orthonormal bases for the
eigenspaces of A, and use those basis vectors to construct an or-
thogonal matrix P for which P TAP is diagonal.

A =
⎡
⎢⎣
−4 2 −2

2 −7 4

−2 4 −7

⎤
⎥⎦

T3. Find a spectral decomposition of the matrix A in Exercise T2.

7.3 Quadratic Forms
In this section we will use matrix methods to study real-valued functions of several
variables in which each term is either the square of a variable or the product of two
variables. Such functions arise in a variety of applications, including geometry, vibrations
of mechanical systems, statistics, and electrical engineering.

Definition of a Quadratic
Form

Expressions of the form
a1x1 + a2x2 + · · · + anxn

occurred in our study of linear equations and linear systems. If a1, a2, . . . , an are
treated as fixed constants, then this expression is a real-valued function of the n variables
x1, x2, . . . , xn and is called a linear form on Rn. All variables in a linear form occur to
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the first power and there are no products of variables. Here we will be concerned with
quadratic forms on Rn, which are functions of the form

a1x
2
1 + a2x

2
2 + · · · + anx

2
n + (all possible terms akxixj in which i �= j )

The terms of the form akxixj are called cross product terms. It is common to combine
the cross product terms involving xixj with those involving xjxi to avoid duplication.
Thus, a general quadratic form on R2 would typically be expressed as

a1x
2
1 + a2x

2
2 + 2a3x1x2 (1)

and a general quadratic form on R3 as

a1x
2
1 + a2x

2
2 + a3x

2
3 + 2a4x1x2 + 2a5x1x3 + 2a6x2x3 (2)

If, as usual, we do not distinguish between the number a and the 1 × 1 matrix [a], and
if we let x be the column vector of variables, then (1) and (2) can be expressed in matrix
form as [

x1 x2

] [a1 a3

a3 a2

] [
x1

x2

]
= xTAx

[
x1 x2 x3

]⎡⎣a1 a4 a5

a4 a2 a6

a5 a6 a3

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ = xTAx

(verify). Note that the matrix A in these formulas is symmetric, that its diagonal entries
are the coefficients of the squared terms, and its off-diagonal entries are half the coeffi-
cients of the cross product terms. In general, if A is a symmetric n × n matrix and x is
an n × 1 column vector of variables, then we call the function

QA(x) = xTAx (3)

the quadratic form associated with A. When convenient, (3) can be expressed in dot
product notation as

xTAx = x · Ax = Ax · x (4)

In the case where A is a diagonal matrix, the quadratic form xTAx has no cross
product terms; for example, if A has diagonal entries λ1, λ2, . . . , λn, then

xTAx = [x1 x2 · · · xn]

⎡
⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦ = λ1x

2
1 + λ2x

2
2 + · · · + λnx

2
n

EXAMPLE 1 Expressing Quadratic Forms in Matrix Notation

In each part, express the quadratic form in the matrix notation xTAx, where A is sym-
metric.
(a) 2x2 + 6xy − 5y2 (b) x2

1 + 7x2
2 − 3x2

3 + 4x1x2 − 2x1x3 + 8x2x2

Solution The diagonal entries of A are the coefficients of the squared terms, and the
off-diagonal entries are half the coefficients of the cross product terms, so

2x2 + 6xy − 5y2 = [x y]
[

2 3

3 −5

] [
x

y

]

x2
1 + 7x2

2 − 3x2
3 + 4x1x2 − 2x1x3 + 8x2x3 = [

x1 x2 x3

]⎡⎣ 1 2 −1

2 7 4

−1 4 −3

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦
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Change of Variable in a
Quadratic Form

There are three important kinds of problems that occur in applications of quadratic
forms:

Problem 1 If xTAx is a quadratic form on R2 or R3, what kind of curve or surface is
represented by the equation xTAx = k?

Problem 2 If xTAx is a quadratic form on Rn, what conditions must A satisfy for
xTAx to have positive values for x �= 0?

Problem 3 If xTAx is a quadratic form on Rn, what are its maximum and minimum
values if x is constrained to satisfy ‖x‖ = 1?

We will consider the first two problems in this section and the third problem in the next
section.

Many of the techniques for solving these problems are based on simplifying the
quadratic form xTAx by making a substitution

x = P y (5)

that expresses the variables x1, x2, . . . , xn in terms of new variables y1, y2, . . . , yn. If P

is invertible, then we call (5) a change of variable, and if P is orthogonal, then we call (5)
an orthogonal change of variable.

If we make the change of variable x = P y in the quadratic form xTAx, then we obtain

xTAx = (P y)TA(P y) = yTP TAP y = yT(P TAP )y (6)

Since the matrix B = P TAP is symmetric (verify), the effect of the change of variable is
to produce a new quadratic form yTBy in the variables y1, y2, . . . , yn. In particular, if
we choose P to orthogonally diagonalize A, then the new quadratic form will be yTDy,
where D is a diagonal matrix with the eigenvalues of A on the main diagonal; that is,

xTAx = yTDy = [y1 y2 · · · yn]

⎡
⎢⎢⎢⎢⎣

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1

y2
...
yn

⎤
⎥⎥⎥⎦

= λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n

Thus, we have the following result, called the principal axes theorem.

THEOREM 7.3.1 The Principal AxesTheorem

If A is a symmetric n × n matrix, then there is an orthogonal change of variable that
transforms the quadratic form xTAx into a quadratic form yTDy with no cross product
terms. Specifically, ifP orthogonally diagonalizesA, thenmaking the change of variable
x = P y in the quadratic form xTAx yields the quadratic form

xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n

in which λ1, λ2, . . . , λn are the eigenvalues of A corresponding to the eigenvectors that
form the successive columns of P.
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EXAMPLE 2 An Illustration of the Principal AxesTheorem

Find an orthogonal change of variable that eliminates the cross product terms in the
quadratic form Q = x2

1 − x2
3 − 4x1x2 + 4x2x3, and express Q in terms of the new vari-

ables.

Solution The quadratic form can be expressed in matrix notation as

Q = xTAx = [x1 x2 x3]
⎡
⎢⎣ 1 −2 0

−2 0 2

0 2 −1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

The characteristic equation of the matrix A is∣∣∣∣∣∣∣
λ − 1 2 0

2 λ −2

0 −2 λ + 1

∣∣∣∣∣∣∣ = λ3 − 9λ = λ(λ + 3)(λ − 3) = 0

so the eigenvalues are λ = 0, −3, 3. We leave it for you to show that orthonormal bases
for the three eigenspaces are

λ = 0:

⎡
⎢⎢⎣

2
3

1
3

2
3

⎤
⎥⎥⎦ , λ = −3:

⎡
⎢⎢⎣
− 1

3

− 2
3

2
3

⎤
⎥⎥⎦ , λ = 3:

⎡
⎢⎢⎣
− 2

3

2
3

1
3

⎤
⎥⎥⎦

Thus, a substitution x = P y that eliminates the cross product terms is

⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎢⎢⎣

2
3 − 1

3 − 2
3

1
3 − 2

3
2
3

2
3

2
3

1
3

⎤
⎥⎥⎦
⎡
⎣y1

y2

y3

⎤
⎦

This produces the new quadratic form

Q = yT(P TAP )y = [
y1 y2 y3

]⎡⎣0 0 0

0 −3 0

0 0 3

⎤
⎦
⎡
⎣y1

y2

y3

⎤
⎦ = −3y2

2 + 3y2
3

in which there are no cross product terms.

Remark If A is a symmetric n × n matrix, then the quadratic form xTAx is a real-valued function
whose range is the set of all possible values for xTAx as x varies over Rn. It can be shown that an
orthogonal change of variable x = P y does not alter the range of a quadratic form; that is, the
set of all values for xTAx as x varies over Rn is the same as the set of all values for yT(P TAP )y as y
varies over Rn.

Quadratic Forms in
Geometry

Recall that a conic section or conic is a curve that results by cutting a double-napped cone
with a plane (Figure 7.3.1). The most important conic sections are ellipses, hyperbolas,
and parabolas, which result when the cutting plane does not pass through the vertex.
Circles are special cases of ellipses that result when the cutting plane is perpendicular to
the axis of symmetry of the cone. If the cutting plane passes through the vertex, then the
resulting intersection is called a degenerate conic. The possibilities are a point, a pair of
intersecting lines, or a single line.

Quadratic forms in R2 arise naturally in the study of conic sections. For example, it
is shown in analytic geometry that an equation of the form

ax2 + 2bxy + cy2 + dx + ey + f = 0 (7)
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Figure 7.3.1
Circle Ellipse Parabola Hyperbola

in which a, b, and c are not all zero, represents a conic section.* If d = e = 0 in (7),
then there are no linear terms, so the equation becomes

ax2 + 2bxy + cy2 + f = 0 (8)

and is said to represent a central conic. These include circles, ellipses, and hyperbolas,
but not parabolas. Furthermore, if b = 0 in (8), then there is no cross product term (i.e.,
term involving xy), and the equation

ax2 + cy2 + f = 0 (9)

is said to represent a central conic in standard position. The most important conics of
this type are shown in Table 1.

Table 1

x

y

β

––β

α––α

x2

α2

y2

β2
+       = 1

(α ≥ β > 0)

x

y
β

––β

α––α

x2

α2

y2

β2
+       = 1

(β ≥ α > 0)

x2

α2

y2

β2
–       = 1

(α > 0, β > 0)

β
β

––β

––α α

x

y

x2

β2

y2

α2
–       = 1

(α > 0, β > 0)

α––α

––β

x

y

If we take the constant f in Equations (8) and (9) to the right side and let k = −f ,
then we can rewrite these equations in matrix form as

[
x y

] [a b

b c

] [
x

y

]
= k and

[
x y

] [a 0

0 c

] [
x

y

]
= k (10)

*We must also allow for the possibility that there are no real values of x and y that satisfy the equation, as
with x2 + y2 + 1 = 0. In such cases we say that the equation has no graph or has an empty graph.
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The first of these corresponds to Equation (8) in which there is a cross product term
2bxy, and the second corresponds to Equation (9) in which there is no cross product
term. Geometrically, the existence of a cross product term signals that the graph of the
quadratic form is rotated about the origin, as in Figure 7.3.2. The three-dimensional
analogs of the equations in (10) are

[
x y z

]⎡⎢⎣a d e

d b f

e f c

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ = k and

[
x y z

]⎡⎢⎣a 0 0

0 b 0

0 0 c

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦ = k (11)

If a, b, and c are not all zero, then the graphs in R3 of the equations in (11) are called

x

y

A central conic

rotated out of

standard position

Figure 7.3.2

central quadrics; the graph of the second of these equations, which is a special case of
the first, is called a central quadric in standard position.

Identifying Conic Sections We are now ready to consider the first of the three problems posed earlier, identifying
the curve or surface represented by an equation xTAx = k in two or three variables. We
will focus on the two-variable case. We noted above that an equation of the form

ax2 + 2bxy + cy2 + f = 0 (12)

represents a central conic. If b = 0, then the conic is in standard position, and if b �= 0, it
is rotated. It is an easy matter to identify central conics in standard position by matching
the equation with one of the standard forms. For example, the equation

9x2 + 16y2 − 144 = 0

can be rewritten as
x2

16
+ y2

9
= 1

which, by comparison with Table 1, is the ellipse shown in Figure 7.3.3.x

y

3

4–4

–3

x2

16
y2

9
+       = 1

Figure 7.3.3

If a central conic is rotated out of standard position, then it can be identified by
first rotating the coordinate axes to put it in standard position and then matching the
resulting equation with one of the standard forms in Table 1. To find a rotation that
eliminates the cross product term in the equation

ax2 + 2bxy + cy2 = k (13)

it will be convenient to express the equation in the matrix form

xTAx = [x y]
[
a b

b c

] [
x

y

]
= k (14)

and look for a change of variable
x = P x′

that diagonalizes A and for which det(P ) = 1. Since we saw in Example 4 of Section 7.1
that the transition matrix

P =
[

cos θ − sin θ

sin θ cos θ

]
(15)

has the effect of rotating the xy-axes of a rectangular coordinate system through an angle
θ , our problem reduces to finding θ that diagonalizes A, thereby eliminating the cross
product term in (13). If we make this change of variable, then in the x ′y ′-coordinate
system, Equation (14) will become

x′TDx′ = [x ′ y ′]
[
λ1 0

0 λ2

] [
x ′

y ′

]
= k (16)

where λ1 and λ2 are the eigenvalues of A. The conic can now be identified by writing
(16) in the form

λ1x
′2 + λ2y

′2 = k (17)
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and performing the necessary algebra to match it with one of the standard forms in
Table 1. For example, if λ1, λ2, and k are positive, then (17) represents an ellipse with
an axis of length 2

√
k/λ1 in the x ′-direction and 2

√
k/λ2 in the y ′-direction. The first

column vector of P, which is a unit eigenvector corresponding to λ1, is along the positive
x ′-axis; and the second column vector of P, which is a unit eigenvector corresponding
to λ2, is a unit vector along the y ′-axis. These are called the principal axes of the
ellipse, which explains why Theorem 7.3.1 is called “the principal axes theorem.” (See
Figure 7.3.4.)

Figure 7.3.4

x

x´
y

y´

θ

Unit eigenvector for λ2

Unit eigenvector for λ1

(cos θ, sin θ)(––sin θ, cos θ)

√k/λ2

√k/λ1

EXAMPLE 3 Identifying a Conic by Eliminating the Cross ProductTerm

(a) Identify the conic whose equation is 5x2 − 4xy + 8y2 − 36 = 0 by rotating the
xy-axes to put the conic in standard position.

(b) Find the angle θ through which you rotated the xy-axes in part (a).

Solution (a) The given equation can be written in the matrix form

xTAx = 36

where

A =
[

5 −2

−2 8

]
The characteristic polynomial of A is∣∣∣∣λ − 5 2

2 λ − 8

∣∣∣∣ = (λ − 4)(λ − 9)

so the eigenvalues are λ = 4 and λ = 9. We leave it for you to show that orthonormal
bases for the eigenspaces are

λ = 4:

⎡
⎣ 2√

5

1√
5

⎤
⎦ , λ = 9:

⎡
⎣− 1√

5

2√
5

⎤
⎦

Thus, A is orthogonally diagonalized by

P =
⎡
⎣ 2√

5
− 1√

5

1√
5

2√
5

⎤
⎦ (18)

Moreover, it happens by chance that det(P ) = 1, so we are assured that the substitution
Had it turned out that
det(P ) = −1, then we would
have interchanged the col-
umns to reverse the sign.

x = P x′ performs a rotation of axes. It follows from (16) that the equation of the conic
in the x ′y ′-coordinate system is

[x ′ y ′]
[

4 0

0 9

] [
x ′

y ′

]
= 36
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which we can write as

4x ′2 + 9y ′2 = 36 or
x ′2

9
+ y ′2

4
= 1

We can now see from Table 1 that the conic is an ellipse whose axis has length 2α = 6 in
the x ′-direction and length 2β = 4 in the y ′-direction.

Solution (b) It follows from (15) that

P =
⎡
⎣ 2√

5
− 1√

5

1√
5

2√
5

⎤
⎦ =

[
cos θ − sin θ

sin θ cos θ

]
which implies that

cos θ = 2√
5
, sin θ = 1√

5
, tan θ = sin θ

cos θ
= 1

2

Thus, θ = tan−1 1
2 ≈ 26.6◦ (Figure 7.3.5).

x´

y´

(3, 0)
(0, 2)

x

y
2

√5

1

√5( ),1

√5

2

√5( ),–

26.6˚

Figure 7.3.5

Remark In the exercises we will ask you to show that if b �= 0, then the cross product term in
the equation

ax2 + 2bxy + cy2 = k

can be eliminated by a rotation through an angle θ that satisfies

cot 2θ = a − c

2b
(19)

We leave it for you to confirm that this is consistent with part (b) of the last example.

Positive Definite Quadratic
Forms

We will now consider the second of the two problems posed earlier, determining con-
ditions under which xTAx > 0 for all nonzero values of x. We will explain why this is
important shortly, but first we introduce some terminology.

DEFINITION 1 A quadratic form xTAx is said to be

positive definite if xTAx > 0 for x �= 0;

negative definite if xTAx < 0 for x �= 0;

indefinite if xTAx has both positive and negative values.

The terminology in Definition
1 also applies to the matrix A;
that is, A is positive definite,
negative definite, or indefinite
in accordance with whether
the associated quadratic form
has that property. The following theorem, whose proof is deferred to the end of the section, provides a

way of using eigenvalues to determine whether a matrix A and its associated quadratic
form xTAx are positive definite, negative definite, or indefinite.

THEOREM 7.3.2 If A is a symmetric matrix, then:

(a) xTAx is positive definite if and only if all eigenvalues of A are positive.

(b) xTAx is negative definite if and only if all eigenvalues of A are negative.

(c) xTAx is indefinite if and only if A has at least one positive eigenvalue and at least
one negative eigenvalue.

Remark The three classifications in Definition 1 do not exhaust all of the possibilities. For
example, a quadratic form for which xTAx ≥ 0 if x �= 0 is called positive semidefinite, and one for
which xTAx ≤ 0 if x �= 0 is called negative semidefinite. Every positive definite form is positive
semidefinite, but not conversely, and every negative definite form is negative semidefinite, but not
conversely (why?). By adjusting the proof of Theorem 7.3.2 appropriately, one can prove that
xTAx is positive semidefinite if and only if all eigenvalues of A are nonnegative and is negative
semidefinite if and only if all eigenvalues of A are nonpositive.
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EXAMPLE 4 Positive Definite Quadratic Forms

It is not usually possible to tell from the signs of the entries in a symmetric matrix A

whether that matrix is positive definite, negative definite, or indefinite. For example, the
entries of the matrix

A =
⎡
⎣3 1 1

1 0 2

1 2 0

⎤
⎦

are nonnegative, but the matrix is indefinite since its eigenvalues are λ = 1, 4,−2 (verify).
To see this another way, let us write out the quadratic form as

xTAx = [x1 x2 x3]
⎡
⎣3 1 1

1 0 2

1 2 0

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ = 3x2

1 + 2x1x2 + 2x1x3 + 4x2x3

We can now see, for example, that

Positive definite and negative
definite matrices are invertible.
Why?

xTAx = 4 for x1 = 0, x2 = 1, x3 = 1

and
xTAx = −4 for x1 = 0, x2 = 1, x3 = −1

Classifying Conic Sections
Using Eigenvalues

If xTBx = k is the equation of a conic, and if k �= 0, then we can divide through by k

and rewrite the equation in the form

xTAx = 1 (20)

where A = (1/k)B. If we now rotate the coordinate axes to eliminate the cross product
term (if any) in this equation, then the equation of the conic in the new coordinate system
will be of the form

λ1x
′ 2 + λ2y

′ 2 = 1 (21)

in which λ1 and λ2 are the eigenvalues of A. The particular type of conic represented by
this equation will depend on the signs of the eigenvalues λ1 and λ2. For example, you
should be able to see from (21) that:

• xTAx = 1 represents an ellipse if λ1 > 0 and λ2 > 0.

• xTAx = 1 has no graph if λ1 < 0 and λ2 < 0.

• xTAx = 1 represents a hyperbola if λ1 and λ2 have opposite signs.

In the case of the ellipse, Equation (21) can be rewritten as

x ′ 2

(1/
√

λ1)2
+ y ′ 2

(1/
√

λ2)2
= 1 (22)

so the axes of the ellipse have lengths 2/
√

λ1 and 2/
√

λ2 (Figure 7.3.6).

x´y´

x

y

1/√λ2
1/√λ1

Figure 7.3.6 The following theorem is an immediate consequence of this discussion and Theorem
7.3.2.

THEOREM 7.3.3 If A is a symmetric 2 × 2 matrix, then:

(a) xTAx = 1 represents an ellipse if A is positive definite.

(b) xTAx = 1 has no graph if A is negative definite.

(c) xTAx = 1 represents a hyperbola if A is indefinite.
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In Example 3 we performed a rotation to show that the equation

5x2 − 4xy + 8y2 − 36 = 0

represents an ellipse with a major axis of length 6 and a minor axis of length 4. This
conclusion can also be obtained by rewriting the equation in the form

5
36x

2 − 1
9 xy + 2

9 y2 = 1

and showing that the associated matrix

A =
⎡
⎣ 5

36 − 1
18

− 1
18

2
9

⎤
⎦

has eigenvalues λ1 = 1
9 and λ2 = 1

4 . These eigenvalues are positive, so the matrix A is
positive definite and the equation represents an ellipse. Moreover, it follows from (21)
that the axes of the ellipse have lengths 2/

√
λ1 = 6 and 2/

√
λ2 = 4, which is consistent

with Example 3.

Identifying Positive Definite
Matrices

Positive definite matrices are the most important symmetric matrices in applications, so
it will be useful to learn a little more about them. We already know that a symmetric
matrix is positive definite if and only if its eigenvalues are all positive; now we will give
a criterion that can be used to determine whether a symmetric matrix is positive definite
without finding the eigenvalues. For this purpose we define the kth principal submatrix of
an n × n matrix A to be the k × k submatrix consisting of the first k rows and columns
of A. For example, here are the principal submatrices of a general 4 × 4 matrix:

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦

First principal submatrix Second principal submatrix Third principal submatrix Fourth principal submatrix = A

The following theorem, which we state without proof, provides a determinant test
for ascertaining whether a symmetric matrix is positive definite.

THEOREM 7.3.4 If A is a symmetric matrix, then:

(a) A is positive definite if and only if the determinant of every principal submatrix is
positive.

(b) A is negative definite if and only if the determinants of the principal submatrices
alternate between negative and positive values starting with a negative value for the
determinant of the first principal submatrix.

(c) A is indefinite if and only if it is neither positive definite nor negative definite and
at least one principal submatrix has a positive determinant and at least one has a
negative determinant.
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EXAMPLE 5 Working with Principal Submatrices

The matrix

A =
⎡
⎣ 2 −1 −3

−1 2 4

−3 4 9

⎤
⎦

is positive definite since the determinants

|2| = 2,

∣∣∣∣ 2 −1

−1 2

∣∣∣∣ = 3,

∣∣∣∣∣∣
2 −1 −3

−1 2 4

−3 4 9

∣∣∣∣∣∣ = 1

are all positive. Thus, we are guaranteed that all eigenvalues of A are positive and
xTAx > 0 for x �= 0.

We conclude this section with an optional proof of Theorem 7.3.2.O PT I O NA L

Proofs of Theorem 7.3.2 (a) and (b) It follows from the principal axes theorem (Theo-
rem 7.3.1) that there is an orthogonal change of variable x = P y for which

xTAx = yTDy = λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n (23)

where the λ’s are the eigenvalues of A. Moreover, it follows from the invertibility of P

that y �= 0 if and only if x �= 0, so the values of xTAx for x �= 0 are the same as the values
of yTDy for y �= 0. Thus, it follows from (23) that xTAx > 0 for x �= 0 if and only if all
of the λ’s in that equation are positive, and that xTAx < 0 for x �= 0 if and only if all of
the λ’s are negative. This proves parts (a) and (b).

Proof (c) Assume that A has at least one positive eigenvalue and at least one negative
eigenvalue, and to be specific, suppose that λ1 > 0 and λ2 < 0 in (23). Then

xTAx > 0 if y1 = 1 and all other y’s are 0

and
xTAx < 0 if y2 = 1 and all other y’s are 0

which proves that xTAx is indefinite. Conversely, if xTAx > 0 for some x, then yTDy > 0
for some y, so at least one of the λ’s in (23) must be positive. Similarly, if xTAx < 0 for
some x, then yTDy < 0 for some y, so at least one of the λ’s in (23) must be negative,
which completes the proof.

Exercise Set 7.3
In Exercises 1–2, express the quadratic form in the matrix no-

tation xTAx, where A is a symmetric matrix.

1. (a) 3x2
1 + 7x2

2 (b) 4x2
1 − 9x2

2 − 6x1x2

(c) 9x2
1 − x2

2 + 4x2
3 + 6x1x2 − 8x1x3 + x2x3

2. (a) 5x2
1 + 5x1x2 (b) −7x1x2

(c) x2
1 + x2

2 − 3x2
3 − 5x1x2 + 9x1x3

In Exercises 3–4, find a formula for the quadratic form that
does not use matrices.

3. [x y]
[

2 −3

−3 5

] [
x

y

]

4.
[
x1 x2 x3

]
⎡
⎢⎢⎢⎣
−2 7

2 1
7
2 0 6

1 6 3

⎤
⎥⎥⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

In Exercises 5–8, find an orthogonal change of variables that
eliminates the cross product terms in the quadratic form Q, and
express Q in terms of the new variables.

5. Q = 2x2
1 + 2x2

2 − 2x1x2

6. Q = 5x2
1 + 2x2

2 + 4x2
3 + 4x1x2

7. Q = 3x2
1 + 4x2

2 + 5x2
3 + 4x1x2 − 4x2x3

8. Q = 2x2
1 + 5x2

2 + 5x2
3 + 4x1x2 − 4x1x3 − 8x2x3
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In Exercises 9–10, express the quadratic equation in the matrix
form xTAx + Kx + f = 0, where xTAx is the associated quadratic
form and K is an appropriate matrix.

9. (a) 2x2 + xy + x − 6y + 2 = 0

(b) y2 + 7x − 8y − 5 = 0

10. (a) x2 − xy + 5x + 8y − 3 = 0

(b) 5xy = 8

In Exercises 11–12, identify the conic section represented by
the equation.

11. (a) 2x2 + 5y2 = 20 (b) x2 − y2 − 8 = 0

(c) 7y2 − 2x = 0 (d) x2 + y2 − 25 = 0

12. (a) 4x2 + 9y2 = 1 (b) 4x2 − 5y2 = 20

(c) −x2 = 2y (d) x2 − 3 = −y2

In Exercises 13–16, identify the conic section represented by
the equation by rotating axes to place the conic in standard po-
sition. Find an equation of the conic in the rotated coordinates,
and find the angle of rotation.

13. 2x2 − 4xy − y2 + 8 = 0 14. 5x2 + 4xy + 5y2 = 9

15. 11x2 + 24xy + 4y2 − 15 = 0 16. x2 + xy + y2 = 1
2

In Exercises 17–18, determine by inspection whether the matrix
is positive definite, negative definite, indefinite, positive semidefi-
nite, or negative semidefinite.

17. (a)

[
1 0

0 2

]
(b)

[−1 0

0 −2

]
(c)

[−1 0

0 2

]

(d)

[
1 0

0 0

]
(e)

[
0 0

0 −2

]

18. (a)

[
2 0

0 −5

]
(b)

[−2 0

0 −5

]
(c)

[
2 0

0 5

]

(d)

[
0 0

0 −5

]
(e)

[
2 0

0 0

]

In Exercises 19–24, classify the quadratic form as positive defi-
nite, negative definite, indefinite, positive semidefinite, or negative
semidefinite.

19. x2
1 + x2

2 20. −x2
1 − 3x2

2 21. (x1 − x2)
2

22. −(x1 − x2)
2 23. x2

1 − x2
2 24. x1x2

In Exercises 25–26, show that the matrix A is positive definite
first by using Theorem 7.3.2 and then by using Theorem 7.3.4.

25. (a) A =
[

5 −2

−2 5

]
(b) A =

⎡
⎢⎣ 2 −1 0

−1 2 0

0 0 5

⎤
⎥⎦

26. (a) A =
[

2 1

1 2

]
(b) A =

⎡
⎢⎣ 3 −1 0

−1 2 −1

0 −1 3

⎤
⎥⎦

In Exercises 27–28, use Theorem 7.3.4 to classify the matrix as
positive definite, negative definite, or indefinite.

27. (a) A =
⎡
⎢⎣3 1 2

1 −1 3

2 3 2

⎤
⎥⎦ (b) A =

⎡
⎢⎣−3 2 0

2 −3 0

0 0 −5

⎤
⎥⎦

28. (a) A =
⎡
⎢⎣ 4 1 −1

1 2 1

−1 1 2

⎤
⎥⎦ (b) A =

⎡
⎢⎣−4 −1 1

−1 −2 −1

1 −1 −2

⎤
⎥⎦

In Exercises 29–30, find all values of k for which the quadratic
form is positive definite.

29. 5x2
1 + x2

2 + kx2
3 + 4x1x2 − 2x1x3 − 2x2x3

30. 3x2
1 + x2

2 + 2x2
3 − 2x1x3 + 2kx2x3

31. Let xTAx be a quadratic form in the variables x1, x2, . . . , xn,

and define T : Rn →R by T(x) = xTAx.

(a) Show that T(x + y) = T(x) + 2xTAy + T(y).

(b) Show that T(cx) = c2T(x).

32. Express the quadratic form (c1x1 + c2x2 + · · · + cnxn)
2 in the

matrix notation xTAx, where A is symmetric.

33. In statistics, the quantities

x = 1

n
(x1 + x2 + · · · + xn)

and

s2
x = 1

n − 1

[
(x1 − x )2 + (x2 − x )2 + · · · + (xn − x)2

]
are called, respectively, the sample mean and sample variance
of x = (x1, x2, . . . , xn).

(a) Express the quadratic form s2
x in the matrix notation xTAx,

where A is symmetric.

(b) Is s2
x a positive definite quadratic form? Explain.

34. The graph in an xyz-coordinate system of an equation of form
ax2 + by2 + cz2 = 1 in which a, b, and c are positive is a
surface called a central ellipsoid in standard position (see the
accompanying figure). This is the three-dimensional gener-
alization of the ellipse ax2 + by2 = 1 in the xy-plane. The
intersections of the ellipsoid ax2 + by2 + cz2 = 1 with the co-
ordinate axes determine three line segments called the axes of
the ellipsoid. If a central ellipsoid is rotated about the origin
so two or more of its axes do not coincide with any of the
coordinate axes, then the resulting equation will have one or
more cross product terms.
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(a) Show that the equation
4
3 x2 + 4

3 y2 + 4
3 z2 + 4

3 xy + 4
3 xz + 4

3 yz = 1

represents an ellipsoid, and find the lengths of its axes.
[Suggestion: Write the equation in the form xTAx = 1 and
make an orthogonal change of variable to eliminate the
cross product terms.]

(b) What property must a symmetric 3 × 3 matrix have in or-
der for the equation xTAx = 1 to represent an ellipsoid?

z

y

x
Figure Ex-34

35. What property must a symmetric 2 × 2 matrix A have for
xTAx = 1 to represent a circle?

Working with Proofs

36. Prove: If b �= 0, then the cross product term can be eliminated
from the quadratic form ax2 + 2bxy + cy2 by rotating the co-
ordinate axes through an angle θ that satisfies the equation

cot 2θ = a − c

2b

37. Prove: If A is an n × n symmetric matrix all of whose eigen-
values are nonnegative, then xT Ax ≥ 0 for all nonzero x in
the vector space Rn.

True-False Exercises

TF. In parts (a)–(l) determine whether the statement is true or
false, and justify your answer.

(a) If all eigenvalues of a symmetric matrix A are positive, then A

is positive definite.

(b) x2
1 − x2

2 + x2
3 + 4x1x2x3 is a quadratic form.

(c) (x1 − 3x2)
2 is a quadratic form.

(d) A positive definite matrix is invertible.

(e) A symmetric matrix is either positive definite, negative definite,
or indefinite.

(f ) If A is positive definite, then −A is negative definite.

(g) x · x is a quadratic form for all x in Rn.

(h) If A is symmetric and invertible, and if xTAx is a positive def-
inite quadratic form, then xTA−1x is also a positive definite
quadratic form.

(i) If A is symmetric and has only positive eigenvalues, then xTAx
is a positive definite quadratic form.

( j) If A is a 2 × 2 symmetric matrix with positive entries and
det(A) > 0, then A is positive definite.

(k) If A is symmetric, and if the quadratic form xTAx has no cross
product terms, then A must be a diagonal matrix.

(l) If xTAx is a positive definite quadratic form in two variables
and c �= 0, then the graph of the equation xTAx = c is an el-
lipse.

Working withTechnology

T1. Find an orthogonal matrix P such that P TAP is diagonal.

A =

⎡
⎢⎢⎢⎣
−2 1 1 1

1 −2 1 1

1 1 −2 1

1 1 1 −2

⎤
⎥⎥⎥⎦

T2. Use the eigenvalues of the following matrix to determine
whether it is positive definite, negative definite, or idefinite, and
then confirm your conclusion using Theorem 7.3.4.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−5 −3 0 3 0

−3 −2 0 2 0

0 0 −1 1 1

3 2 1 −8 2

0 0 1 2 −7

⎤
⎥⎥⎥⎥⎥⎥⎦

7.4 Optimization Using Quadratic Forms
Quadratic forms arise in various problems in which the maximum or minimum value of
some quantity is required. In this section we will discuss some problems of this type.

Constrained Extremum
Problems

Our first goal in this section is to consider the problem of finding the maximum and
minimum values of a quadratic form xTAx subject to the constraint ‖x‖ = 1. Problems
of this type arise in a wide variety of applications.

To visualize this problem geometrically in the case where xTAx is a quadratic form
on R2, view z = xTAx as the equation of some surface in a rectangular xyz-coordinate
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system and view ‖x‖ = 1 as the unit circle centered at the origin of the xy-plane. Geo-
metrically, the problem of finding the maximum and minimum values of xTAx subject
to the requirement ‖x‖ = 1 amounts to finding the highest and lowest points on the
intersection of the surface with the right circular cylinder determined by the circle (Fig-
ure 7.4.1).

z

y

x

Constrained

maximum
Constrained

minimum

Unit circle

Figure 7.4.1

The following theorem, whose proof is deferred to the end of the section, is the key
result for solving problems of this type.

THEOREM 7.4.1 Constrained ExtremumTheorem

Let A be a symmetric n × n matrix whose eigenvalues in order of decreasing size are
λ1 ≥ λ2 ≥ · · · ≥ λn. Then:

(a) The quadratic form xTAx attains a maximum value and a minimum value on the
set of vectors for which ‖x‖ = 1.

(b) The maximum value attained in part (a) occurs at a vector corresponding to the
eigenvalue λ1.

(c) The minimum value attained in part (a) occurs at a vector corresponding to the
eigenvalue λn.

Remark The condition ‖x‖ = 1 in this theorem is called a constraint, and the maximum or
minimum value of xTAx subject to the constraint is called a constrained extremum. This constraint
can also be expressed as xTx = 1 or as x2

1 + x2
2 + · · · + x2

n = 1, when convenient.

EXAMPLE 1 Finding Constrained Extrema

Find the maximum and minimum values of the quadratic form

z = 5x2 + 5y2 + 4xy

subject to the constraint x2 + y2 = 1.

Solution The quadratic form can be expressed in matrix notation as

z = 5x2 + 5y2 + 4xy = xTAx = [x y]
[

5 2

2 5

] [
x

y

]
We leave it for you to show that the eigenvalues of A are λ1 = 7 and λ2 = 3 and that
corresponding eigenvectors are

λ1 = 7:

[
1

1

]
, λ2 = 3:

[−1

1

]
Normalizing these eigenvectors yields

λ1 = 7:

⎡
⎣ 1√

2

1√
2

⎤
⎦ , λ2 = 3:

⎡
⎣− 1√

2

1√
2

⎤
⎦ (1)

Thus, the constrained extrema are

constrained maximum: z = 7 at (x, y) = (
1√
2
, 1√

2

)
constrained minimum: z = 3 at (x, y) = (− 1√

2
, 1√

2

)
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Remark Since the negatives of the eigenvectors in (1) are also unit eigenvectors, they too produce
the maximum and minimum values of z; that is, the constrained maximum z = 7 also occurs at
the point (x, y) = (− 1√

2
,− 1√

2

)
and the constrained minimum z = 3 at (x, y) = (

1√
2
,− 1√

2

)
.

EXAMPLE 2 A Constrained Extremum Problem

A rectangle is to be inscribed in the ellipse 4x2 + 9y2 = 36, as shown in Figure 7.4.2.

x

y

(x, y)

Figure 7.4.2 A rectangle
inscribed in the ellipse
4x2 + 9y2 = 36.

Use eigenvalue methods to find nonnegative values of x and y that produce the inscribed
rectangle with maximum area.

Solution The area z of the inscribed rectangle is given by z = 4xy, so the problem is to
maximize the quadratic form z = 4xy subject to the constraint 4x2 + 9y2 = 36. In this
problem, the graph of the constraint equation is an ellipse rather than the unit circle as
required in Theorem 7.4.1, but we can remedy this problem by rewriting the constraint
as (x

3

)2 +
(y

2

)2 = 1

and defining new variables, x1 and y1, by the equations

x = 3x1 and y = 2y1

This enables us to reformulate the problem as follows:

maximize z = 4xy = 24x1y1

subject to the constraint
x2

1 + y2
1 = 1

To solve this problem, we will write the quadratic form z = 24x1y1 as

z = xTAx = [x1 y1]
[

0 12

12 0

] [
x1

y1

]
We now leave it for you to show that the largest eigenvalue of A is λ = 12 and that the
only corresponding unit eigenvector with nonnegative entries is

x =
[
x1

y1

]
=
⎡
⎣ 1√

2

1√
2

⎤
⎦

Thus, the maximum area is z = 12, and this occurs when

x = 3x1 = 3√
2

and y = 2y1 = 2√
2

Constrained Extrema and
Level Curves

A useful way of visualizing the behavior of a function f(x, y) of two variables is to
consider the curves in the xy-plane along which f(x, y) is constant. These curves have
equations of the form

f(x, y) = k

and are called the level curves of f (Figure 7.4.3). In particular, the level curves of a

y

x

z

Level curve f (x, y) = k

z = f (x, y)

Plane z = k
k

Figure 7.4.3

quadratic form xTAx on R2 have equations of the form

xTAx = k (2)

so the maximum and minimum values of xTAx subject to the constraint ‖x‖ = 1 are
the largest and smallest values of k for which the graph of (2) intersects the unit cir-
cle. Typically, such values of k produce level curves that just touch the unit circle
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(Figure 7.4.4), and the coordinates of the points where the level curves just touch produce

x

y

||x|| = 1
x

xTAx = k

Figure 7.4.4

the vectors that maximize or minimize xTAx subject to the constraint ‖x‖ = 1.

EXAMPLE 3 Example 1 Revisited Using Level Curves

In Example 1 (and its following remark) we found the maximum and minimum values
of the quadratic form

z = 5x2 + 5y2 + 4xy

subject to the constraint x2 + y2 = 1. We showed that the constrained maximum is
z = 7, which is attained at the points

(x, y) =
(

1√
2
,

1√
2

)
and (x, y) =

(
− 1√

2
,− 1√

2

)
(3)

and that the constrained minimum is z = 3, which is attained at the points

(x, y) =
(
− 1√

2
,

1√
2

)
and (x, y) =

(
1√
2
,− 1√

2

)
(4)

Geometrically, this means that the level curve 5x2 + 5y2 + 4xy = 7 should just touch
the unit circle at the points in (3), and the level curve 5x2 + 5y2 + 4xy = 3 should just
touch it at the points in (4). All of this is consistent with Figure 7.4.5.

Figure 7.4.5
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y

1
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√2

1

√2
( ),–

5x2 + 5y2 + 4xy = 7

5x2 + 5y2 + 4xy = 3

x2 + y2 = 1

π
4

Relative Extrema of
Functions ofTwoVariables

We will conclude this section by showing how quadratic forms can be used to studyCA L C U L U S R E Q U I R E D

characteristics of real-valued functions of two variables.
Recall that if a function f(x, y) has first-order partial derivatives, then its relative

maxima and minima, if any, occur at points where the conditions

fx(x, y) = 0 and fy(x, y) = 0

are both true. These are called critical points of f. The specific behavior of f at a critical
point (x0, y0) is determined by the sign of

D(x, y) = f(x, y) − f(x0, y0) (5)

at points (x, y) that are close to, but different from, (x0, y0):

• IfD(x, y) > 0 at points (x, y) that are sufficiently close to, but different from, (x0, y0),

then f(x0, y0) < f(x, y) at such points and f is said to have a relative minimum at
(x0, y0) (Figure 7.4.6a).
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• IfD(x, y) < 0 at points (x, y) that are sufficiently close to, but different from, (x0, y0),

y

x

z

y
x

z

y
x

z

Relative minimum at (0, 0)

Relative maximum at (0, 0)

Saddle point at (0, 0)

(a)

(b)

(c)

Figure 7.4.6

then f(x0, y0) > f(x, y) at such points and f is said to have a relative maximum at
(x0, y0) (Figure 7.4.6b).

• If D(x, y) has both positive and negative values inside every circle centered at
(x0, y0), then there are points (x, y) that are arbitrarily close to (x0, y0) at which
f(x0, y0) < f(x, y) and points (x, y) that are arbitrarily close to (x0, y0) at which
f(x0, y0) > f(x, y). In this case we say that f has a saddle point at (x0, y0) (Figure
7.4.6c).

In general, it can be difficult to determine the sign of (5) directly. However, the
following theorem, which is proved in calculus, makes it possible to analyze critical
points using derivatives.

THEOREM 7.4.2 Second DerivativeTest

Suppose that (x0, y0) is a critical point of f(x, y) and that f has continuous second-
order partial derivatives in some circular region centered at (x0, y0). Then:

(a) f has a relative minimum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) > 0 and fxx(x0, y0) > 0

(b) f has a relative maximum at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) > 0 and fxx(x0, y0) < 0

(c) f has a saddle point at (x0, y0) if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) < 0

(d ) The test is inconclusive if

fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) = 0

Our interest here is in showing how to reformulate this theorem using properties of
symmetric matrices. For this purpose we consider the symmetric matrix

H(x, y) =
[
fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)

]

which is called the Hessian or Hessian matrix of f in honor of the German mathematician
and scientist Ludwig Otto Hesse (1811–1874). The notation H(x, y) emphasizes that
the entries in the matrix depend on x and y. The Hessian is of interest because

det[H(x0, y0)] =
∣∣∣∣fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

∣∣∣∣ = fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0)

is the expression that appears in Theorem 7.4.2. We can now reformulate the second
derivative test as follows.
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THEOREM 7.4.3 Hessian Form of the Second DerivativeTest

Suppose that (x0, y0) is a critical point of f(x, y) and that f has continuous second-
order partial derivatives in some circular region centered at (x0, y0). IfH(x0, y0) is the
Hessian of f at (x0, y0), then:

(a) f has a relative minimum at (x0, y0) if H(x0, y0) is positive definite.

(b) f has a relative maximum at (x0, y0) if H(x0, y0) is negative definite.

(c) f has a saddle point at (x0, y0) if H(x0, y0) is indefinite.

(d ) The test is inconclusive otherwise.

We will prove part (a). The proofs of the remaining parts will be left as exercises.

Proof (a) If H(x0, y0) is positive definite, then Theorem 7.3.4 implies that the principal
submatrices of H(x0, y0) have positive determinants. Thus,

det[H(x0, y0)] =
∣∣∣∣fxx(x0, y0) fxy(x0, y0)

fxy(x0, y0) fyy(x0, y0)

∣∣∣∣ = fxx(x0, y0)fyy(x0, y0) − f 2
xy(x0, y0) > 0

and
det[fxx(x0, y0)] = fxx(x0, y0) > 0

so f has a relative minimum at (x0, y0) by part (a) of Theorem 7.4.2.

EXAMPLE 4 Using the Hessian to Classify Relative Extrema

Find the critical points of the function

f(x, y) = 1
3 x3 + xy2 − 8xy + 3

and use the eigenvalues of the Hessian matrix at those points to determine which of
them, if any, are relative maxima, relative minima, or saddle points.

Solution To find both the critical points and the Hessian matrix we will need to calculate
the first and second partial derivatives of f. These derivatives are

fx(x, y) = x2 + y2 − 8y, fy(x, y) = 2xy − 8x, fxy(x, y) = 2y − 8

fxx(x, y) = 2x, fyy(x, y) = 2x

Thus, the Hessian matrix is

H(x, y) =
[
fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)

]
=
[

2x 2y − 8

2y − 8 2x

]
To find the critical points we set fx and fy equal to zero. This yields the equations

fx(x, y) = x2 + y2 − 8y = 0 and fy(x, y) = 2xy − 8x = 2x(y − 4) = 0

Solving the second equation yields x = 0 or y = 4. Substituting x = 0 in the first equa-
tion and solving for y yieldsy = 0 ory = 8;and substitutingy = 4 into the first equation
and solving for x yields x = 4 or x = −4. Thus, we have four critical points:

(0, 0), (0, 8), (4, 4), (−4, 4)

Evaluating the Hessian matrix at these points yields

H(0, 0) =
[

0 −8

−8 0

]
, H(0, 8) =

[
0 8

8 0

]

H(4, 4) =
[

8 0

0 8

]
, H(−4, 4) =

[−8 0

0 −8

]



7.4 Optimization Using Quadratic Forms 435

We leave it for you to find the eigenvalues of these matrices and deduce the following
classifications of the stationary points:

Critical Point
(x0, y0) λ1 λ2 Classification

(0, 0) 8 −8 Saddle point

(0, 8) 8 −8 Saddle point

(4, 4) 8 8 Relative minimum

(−4, 4) −8 −8 Relative maximum

We conclude this section with an optional proof of Theorem 7.4.1.O PT I O NA L

Proof ofTheorem 7.4.1 The first step in the proof is to show that xTAx has constrained
maximum and minimum values for ‖x‖ = 1. Since A is symmetric, the principal axes
theorem (Theorem 7.3.1) implies that there is an orthogonal change of variable x = P y
such that

xTAx = λ1y
2
1 + λ2y

2
2 + · · · + λny

2
n (6)

in which λ1, λ2, . . . , λn are the eigenvalues of A. Let us assume that ‖x‖ = 1 and that
the column vectors of P (which are unit eigenvectors of A) have been ordered so that

λ1 ≥ λ2 ≥ · · · ≥ λn (7)

Since the matrix P is orthogonal, multiplication by P is length preserving, from which
it follows that ‖y‖ = ‖x‖ = 1; that is,

y2
1 + y2

2 + · · · + y2
n = 1

It follows from this equation and (7) that

λn = λn(y
2
1 + y2

2 + · · · + y2
n) ≤ λ1y

2
1 + λ2y

2
2 + · · · + λny

2
n

≤ λ1(y
2
1 + y2

2 + · · · + y2
n) = λ1

and hence from (6) that
λn ≤ xTAx ≤ λ1

This shows that all values of xTAx for which ‖x‖ = 1 lie between the largest and smallest
eigenvalues of A. Now let x be a unit eigenvector corresponding to λ1. Then

xTAx = xT(λ1x) = λ1xTx = λ1‖x‖2 = λ1

which shows that xTAx has λ1 as a constrained maximum and that this maximum occurs
if x is a unit eigenvector of A corresponding to λ1. Similarly, if x is a unit eigenvector
corresponding to λn, then

xTAx = xT(λnx) = λnxTx = λn‖x‖2 = λn

so xTAx has λn as a constrained minimum and this minimum occurs if x is a unit eigen-
vector of A corresponding to λn. This completes the proof.
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Exercise Set 7.4
In Exercises 1–4, find the maximum and minimum values of

the given quadratic form subject to the constraint x2 + y2 = 1,
and determine the values of x and y at which the maximum and
minimum occur.

1. 5x2 − y2 2. xy 3. 3x2 + 7y2 4. 5x2 + 5xy

In Exercises 5–6, find the maximum and minimum values of
the given quadratic form subject to the constraint

x2 + y2 + z2 = 1

and determine the values of x, y, and z at which the maximum
and minimum occur.

5. 9x2 + 4y2 + 3z2 6. 2x2 + y2 + z2 + 2xy + 2xz

7. Use the method of Example 2 to find the maximum and min-
imum values of xy subject to the constraint 4x2 + 8y2 = 16.

8. Use the method of Example 2 to find the maximum and
minimum values of x2 + xy + 2y2 subject to the constraint
x2 + 3y2 = 16.

In Exercises 9–10, draw the unit circle and the level curves cor-
responding to the given quadratic form. Show that the unit circle
intersects each of these curves in exactly two places, label the in-
tersection points, and verify that the constrained extrema occur at
those points.

9. 5x2 − y2 10. xy

11. (a) Show that the function f(x, y) = 4xy − x4 − y4 has crit-
ical points at (0, 0), (1, 1), and (−1,−1).

(b) Use the Hessian form of the second derivative test to show
that f has relative maxima at (1, 1) and (−1,−1) and a
saddle point at (0, 0).

12. (a) Show that the function f(x, y) = x3 − 6xy − y3 has crit-
ical points at (0, 0) and (−2, 2).

(b) Use the Hessian form of the second derivative test to show
that f has a relative maximum at (−2, 2) and a saddle
point at (0, 0).

In Exercises 13–16, find the critical points of f, if any, and clas-
sify them as relative maxima, relative minima, or saddle points.

13. f(x, y) = x3 − 3xy − y3

14. f(x, y) = x3 − 3xy + y3

15. f(x, y) = x2 + 2y2 − x2y

16. f(x, y) = x3 + y3 − 3x − 3y

17. A rectangle whose center is at the origin and whose sides are
parallel to the coordinate axes is to be inscribed in the ellipse
x2 + 25y2 = 25. Use the method of Example 2 to find non-
negative values of x and y that produce the inscribed rectangle
with maximum area.

18. Suppose that x is a unit eigenvector of a matrix A correspond-
ing to an eigenvalue 2. What is the value of xTAx?

19. (a) Show that the functions

f(x, y) = x4 + y4 and g(x, y) = x4 − y4

have a critical point at (0, 0) but the second derivative test
is inconclusive at that point.

(b) Give a reasonable argument to show that f has a relative
minimum at (0, 0) and g has a saddle point at (0, 0).

20. Suppose that the Hessian matrix of a certain quadratic form
f(x, y) is

H =
[

2 4

4 2

]
What can you say about the location and classification of the
critical points of f ?

21. Suppose that A is an n × n symmetric matrix and

q(x) = xTAx

where x is a vector in Rn that is expressed in column form.
What can you say about the value of q if x is a unit eigenvec-
tor corresponding to an eigenvalue λ of A?

Working with Proofs

22. Prove: If xTAx is a quadratic form whose minimum and maxi-
mum values subject to the constraint‖x‖ = 1 are m and M, re-
spectively, then for each number c in the interval m ≤ c ≤ M,

there is a unit vector xc such that xT
cAxc = c. [Hint: In the

case where m < M, let um and uM be unit eigenvectors of A

such that uT
mAum = m and uT

MAuM = M, and let

xc =
√

M − c

M − m
um +

√
c − m

M − m
uM

Show that xT
cAxc = c.]

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) A quadratic form must have either a maximum or minimum
value.

(b) The maximum value of a quadratic form xTAx subject to the
constraint ‖x‖ = 1 occurs at a unit eigenvector corresponding
to the largest eigenvalue of A.

(c) The Hessian matrix of a function f with continuous second-
order partial derivatives is a symmetric matrix.

(d) If (x0, y0) is a critical point of a function f and the Hessian of
f at (x0, y0) is 0, then f has neither a relative maximum nor
a relative minimum at (x0, y0).

(e) If A is a symmetric matrix and det(A) < 0, then the minimum
of xTAx subject to the constraint ‖x‖ = 1 is negative.
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Working withTechnology

T1. Find the maximum and minimum values of the following
quadratic form subject to the stated constraint, and specify the
points at which those values are attained.

w = 2x2 + y2 + z2 + 2xy + 2xz; x2 + y2 + z2 = 1

T2. Suppose that the temperature at a point (x, y) on a metal
plate is T (x, y) = 4x2 − 4xy + y2. An ant walking on the plate
traverses a circle of radius 5 centered at the origin. What are the
highest and lowest temperatures encountered by the ant?

T3. The accompanying figure shows the intersection of the sur-
face z = x2 + 4y2 (called an elliptic paraboloid) and the surface
x2 + y2 = 1 (called a right circular cylinder). Find the highest and
lowest points on the curve of intersection.

x

z

y
Figure Ex-T3

7.5 Hermitian, Unitary, and Normal Matrices
We showed in Section 7.2 that every symmetric matrix with real entries is orthogonally
diagonalizable, and conversely that every diagonalizable matrix with real entries is
symmetric. In this section we will be concerned with the diagonalization problem for
matrices with complex entries.

Real Matrices Versus
Complex Matrices

As discussed in Section 5.3, we distinguish between matrices whose entries must be real
numbers, called real matrices, and matrices whose entries may be either real numbers
or complex numbers, called complex matrices. When convenient, you can think of a
real matrix as a complex matrix each of whose entries has zero as its imaginary part.
Similarly, we distinguish between real vectors (those in Rn) and complex vectors (those
in Cn).

Hermitian and Unitary
Matrices

The transpose operation is less important for complex matrices than for real matrices.
A more useful operation for complex matrices is given in the following definition.

DEFINITION 1 If A is a complex matrix, then the conjugate transpose of A, denoted
by A∗, is defined by

A∗ = AT (1)

Remark Note that the order in which the transpose and conjugation operations are performed in
Formula (1) does not matter (see Theorem 5.3.2b). Moreover, if A is a real matrix, then Formula (1)
simplifies to A∗ = (A)T = AT , so the conjugate transpose is the same as the transpose in that case.

EXAMPLE 1 ConjugateTranspose

Find the conjugate transpose A∗ of the matrix

A =
[

1 + i −i 0

2 3 − 2i i

]
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Solution We have

A =
[

1 − i i 0

2 3 + 2i −i

]
and hence A∗ = AT =

⎡
⎣1 − i 2

i 3 + 2i

0 −i

⎤
⎦

The following theorem, parts of which are given as exercises, shows that the basic
algebraic properties of the conjugate transpose operation are similar to those of the
transpose (compare to Theorem 1.4.8).

THEOREM 7.5.1 If k is a complex scalar, and if A and B are complex matrices whose
sizes are such that the stated operations can be performed, then:

(a) (A∗)∗ = A

(b) (A + B)∗ = A∗ + B∗

(c) (A − B)∗ = A∗ − B∗

(d ) (kA)∗ = kA∗

(e) (AB)∗ = B∗A∗

We now define two new classes of matrices that will be important in our study of
diagonalization in Cn.

DEFINITION 2 A square matrix A is said to be unitary if

AA∗ = A∗A = I (2)

or, equivalently, if
A∗ = A−1 (3)

and it is said to be Hermitian* if
A∗ = A (4)

If A is a real matrix, then A∗ = AT , in which case (3) becomes AT = A−1 and (4)

To show that a matrix is uni-
tary it suffices to show that
either AA∗ = I or A∗A = I

since either equation implies
the other.

becomes AT = A. Thus, the unitary matrices are complex generalizations of the real
orthogonal matrices and the Hermitian matrices are complex generalizations of the real
symmetric matrices.

EXAMPLE 2 Recognizing Hermitian Matrices

Hermitian matrices are easy to recognize because their diagonal entries are real (why?)
and the entries that are symmetrically positioned across the main diagonal are complex
conjugates. Thus, for example, we can tell by inspection that

A =
⎡
⎣ 1 i 1 + i

−i −5 2 − i

1 − i 2 + i 3

⎤
⎦

is Hermitian.

*In honor of the French mathematician Charles Hermite (1822–1901).
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EXAMPLE 3 Recognizing Unitary Matrices

Unlike Hermitian matrices, unitary matrices are not readily identifiable by inspection.
The most direct way to identify such matrices is to determine whether the matrix satisfies
Equation (2) or Equation (3). We leave it for you to verify that the following matrix is
unitary:

A =
⎡
⎣ 1√

2
1√
2
i

− 1√
2
i 1√

2

⎤
⎦

In Theorem 7.2.2 we established that real symmetric matrices have real eigenvalues
and that eigenvectors from different eigenvalues are orthogonal. That theorem is a
special case of our next theorem in which orthogonality is with respect to the complex
Euclidean inner product on Cn. We will prove part (b) of the theorem and leave the
proof of part (a) for the exercises. In our proof we will make use of the fact that the
relationship u · v = vTu given in Formula (5) of Section 5.3 can be expressed in terms of
the conjugate transpose as

u · v = v∗u (5)

THEOREM 7.5.2 If A is a Hermitian matrix, then:

(a) The eigenvalues of A are all real numbers.

(b) Eigenvalues from different eigenspaces are orthogonal.

Proof (b) Let v1 and v2 be eigenvectors of A corresponding to distinct eigenvalues λ1

and λ2. Using Formula (5) and the facts that λ1 = λ1, λ2 = λ2, and A = A∗, we can
write

λ1(v2 · v1) = (λ1v1)
∗v2 = (Av1)

∗v2 = (v∗1A∗)v2

= (v∗1A)v2 = v∗1(Av2)

= v∗1(λ2v2) = λ2(v∗1v2) = λ2(v2 · v1)

This implies that (λ1 − λ2)(v2 · v1) = 0 and hence that v2 · v1 = 0 (since λ1 �= λ2).

EXAMPLE 4 Eigenvalues and Eigenvectors of a Hermitian Matrix

Confirm that the Hermitian matrix

A =
[

2 1 + i

1 − i 3

]
has real eigenvalues and that eigenvectors from different eigenspaces are orthogonal.

Solution The characteristic polynomial of A is

det(λI − A) =
∣∣∣∣ λ − 2 −1 − i

−1 + i λ − 3

∣∣∣∣
= (λ − 2)(λ − 3) − (−1 − i)(−1 + i)

= (λ2 − 5λ + 6) − 2 = (λ − 1)(λ − 4)

so the eigenvalues of A are λ = 1 and λ = 4, which are real. Bases for the eigenspaces
of A can be obtained by solving the linear system[

λ − 2 −1 − i

−1 + i λ − 3

] [
x1

x2

]
=
[

0

0

]
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with λ = 1 and with λ = 4. We leave it for you to do this and to show that the general
solutions of these systems are

λ = 1:

[
x1

x2

]
= t

[−1 − i

1

]
and λ = 4:

[
x1

x2

]
= t

[
1
2 (1 + i)

1

]

Thus, bases for these eigenspaces are

λ = 1: v1 =
[−1 − i

1

]
and λ = 4: v2 =

[
1
2 (1 + i)

1

]

The vectors v1 and v2 are orthogonal since

v1 · v2 = (−1 − i)
(

1
2 (1 + i)

)+ (1)(1) = 1
2 (−1 − i)(1 − i) + 1 = 0

and hence all scalar multiples of them are also orthogonal.

Unitary matrices are not usually easy to recognize by inspection. However, the
following analog of Theorems 7.1.1 and 7.1.3, part of which is proved in the exercises,
provides a way of ascertaining whether a matrix is unitary without computing its inverse.

THEOREM 7.5.3 If A is an n × n matrix with complex entries, then the following are
equivalent.

(a) A is unitary.

(b) ‖Ax‖ = ‖x‖ for all x in Cn.

(c) Ax · Ay = x · y for all x and y in Cn.

(d ) The column vectors ofA form an orthonormal set inCn with respect to the complex
Euclidean inner product.

(e) The row vectors of A form an orthonormal set in Cn with respect to the complex
Euclidean inner product.

EXAMPLE 5 A Unitary Matrix

Use Theorem 7.5.3 to show that

A =
⎡
⎣ 1

2 (1 + i) 1
2 (1 + i)

1
2 (1 − i) 1

2 (−1 + i)

⎤
⎦

is unitary, and then find A−1.

Solution We will show that the row vectors

r1 = [
1
2 (1 + i) 1

2 (1 + i)
]

and r2 = [
1
2 (1 − i) 1

2 (−1 + i)
]

are orthonormal. The relevant computations are

‖r1‖ =
√∣∣ 1

2 (1 + i)
∣∣2 + ∣∣ 1

2 (1 + i)
∣∣2 =

√
1
2 + 1

2 = 1

‖r2‖ =
√∣∣ 1

2 (1 − i)
∣∣2 + ∣∣ 1

2 (−1 + i)
∣∣2 =

√
1
2 + 1

2 = 1

r1 · r2 = (
1
2 (1 + i)

) (
1
2 (1 − i)

)+ (
1
2 (1 + i)

) (
1
2 (−1 + i)

)
= (

1
2 (1 + i)

) (
1
2 (1 + i)

)+ (
1
2 (1 + i)

) (
1
2 (−1 − i)

) = 1
2 i − 1

2 i = 0
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Since we now know that A is unitary, it follows that

A−1 = A∗ =
⎡
⎣ 1

2 (1 − i) 1
2 (1 + i)

1
2 (1 − i) 1

2 (−1 − i)

⎤
⎦

You can confirm the validity of this result by showing that AA∗ = A∗A = I.

Unitary Diagonalizability Since unitary matrices are the complex analogs of the real orthogonal matrices, the
following definition is a natural generalization of orthogonal diagonalizability for real
matrices.

DEFINITION 3 A square complex matrix A is said to be unitarily diagonalizable if
there is a unitary matrix P such that P ∗AP = D is a complex diagonal matrix. Any
such matrix P is said to unitarily diagonalize A.

Recall that a real symmetric n × n matrix A has an orthonormal set of n eigenvectors
and is orthogonally diagonalized by any n × n matrix whose column vectors are an
orthonormal set of eigenvectors of A. Here is the complex analog of that result.

THEOREM 7.5.4 Every n × n Hermitian matrix A has an orthonormal set of n eigen-
vectors and is unitarily diagonalized by any n × nmatrix P whose column vectors form
an orthonormal set of eigenvectors of A.

The procedure for unitarily diagonalizing a Hermitian matrix A is exactly the same
as that for orthogonally diagonalizing a symmetric matrix:

Unitarily Diagonalizing a Hermitian Matrix

Step 1. Find a basis for each eigenspace of A.

Step 2. Apply the Gram–Schmidt process to each of these bases to obtain orthonor-
mal bases for the eigenspaces.

Step 3. Form the matrix P whose column vectors are the basis vectors obtained in
Step 2. This will be a unitary matrix (Theorem 7.5.3) and will unitarily diag-
onalize A.

EXAMPLE 6 Unitary Diagonalization of a Hermitian Matrix

Find a matrix P that unitarily diagonalizes the Hermitian matrix

A =
[

2 1 + i

1 − i 3

]
Solution We showed in Example 4 that the eigenvalues of A are λ = 1 and λ = 4 and
that bases for the corresponding eigenspaces are

λ = 1: v1 =
[−1 − i

1

]
and λ = 4: v2 =

[
1
2 (1 + i)

1

]

Since each eigenspace has only one basis vector, the Gram–Schmidt process is simply a
matter of normalizing these basis vectors. We leave it for you to show that
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p1 = v1

‖v1‖ =
⎡
⎣−1−i√

3

1√
3

⎤
⎦ and p2 = v2

‖v2‖ =
⎡
⎣ 1+i√

6

2√
6

⎤
⎦

Thus, A is unitarily diagonalized by the matrix

P = [p1 p2] =
⎡
⎣−1−i√

3
1+i√

6

1√
3

2√
6

⎤
⎦

Although it is a little tedious, you may want to check this result by showing that

P ∗AP =
⎡
⎣−1+i√

3
1√
3

1−i√
6

2√
6

⎤
⎦[ 2 1 + i

1 − i 3

]⎡⎣−1−i√
3

1+i√
6

1√
3

2√
6

⎤
⎦ =

[
1 0

0 4

]

Skew-Symmetric and
Skew-Hermitian Matrices

We will now consider two more classes of matrices that play a role in the analysis of
the diagonalization problem. A square real matrix A is said to be skew-symmetric if
AT = −A, and a square complex matrix A is said to be skew-Hermitian if A∗ = −A.
We leave it as an exercise to show that a skew-symmetric matrix must have zeros on
the main diagonal, and a skew-Hermitian matrix must have zeros or pure imaginary
numbers on the main diagonal. Here are two examples:

A =
⎡
⎢⎣ 0 1 −2

−1 0 4

2 −4 0

⎤
⎥⎦ A =

⎡
⎢⎣ i 1 − i 5

−1 − i 2i i

−5 i 0

⎤
⎥⎦

[ skew-symmetric ] [ skew-Hermitian ]

Normal Matrices Hermitian matrices enjoy many, but not all, of the properties of real symmetric matrices.
For example, we know that real symmetric matrices are orthogonally diagonalizable and
Hermitian matrices are unitarily diagonalizable. However, whereas the real symmetric
matrices are the only orthogonally diagonalizable matrices, the Hermitian matrices do
not constitute the entire class of unitarily diagonalizable complex matrices. Specifically,
it can be proved that a square complex matrix A is unitarily diagonalizable if and only if

AA∗ = A∗A (6)

Matrices with this property are said to be normal . Normal matrices include the Her-
mitian, skew-Hermitian, and unitary matrices in the complex case and the symmetric,
skew-symmetric, and orthogonal matrices in the real case. The nonzero skew-symmetric
matrices are particularly interesting because they are examples of real matrices that are
not orthogonally diagonalizable but are unitarily diagonalizable.

A Comparison of
Eigenvalues

We have seen that Hermitian matrices have real eigenvalues. In the exercises we will ask
you to show that the eigenvalues of a skew-Hermitian matrix are either zero or purely
imaginary (have real part of zero) and that the eigenvalues of unitary matrices have
modulus 1. These ideas are illustrated schematically in Figure 7.5.1.

Figure 7.5.1

x

y

Real eigenvalues

(Hermitian)

Pure imaginary

eigenvalues

(skew-Hermitian)

1

|λ| = 1 (unitary)
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Exercise Set 7.5
In Exercises 1–2, find A∗.

1. A =
⎡
⎢⎣ 2i 1 − i

4 3 + i

5 + i 0

⎤
⎥⎦ 2. A =

[
2i 1 − i −1 + i

4 5 − 7i −i

]

In Exercises 3–4, substitute numbers for the ×’s so that A is
Hermitian.

3. A =
⎡
⎢⎣ 1 i 2 − 3i

× −3 1

× × 2

⎤
⎥⎦ 4. A =

⎡
⎢⎣ 2 0 3 + 5i

× −4 −i

× × 6

⎤
⎥⎦

In Exercises 5–6, show that A is not Hermitian for any choice
of the ×’s.

5. (a) A =
⎡
⎢⎣ 1 i 2 − 3i

−i −3 ×
2 − 3i × ×

⎤
⎥⎦

(b) A =
⎡
⎢⎣ × × 3 + 5i

0 i −i

3 − 5i i ×

⎤
⎥⎦

6. (a) A =
⎡
⎢⎣ 1 1 + i ×

1 + i 7 ×
6 − 2i × 0

⎤
⎥⎦

(b) A =
⎡
⎢⎣ 1 × 3 + 5i

× 3 1 − i

3 − 5i × 2 + i

⎤
⎥⎦

In Exercises 7–8, verify that the eigenvalues of the Hermitian
matrix A are real and that eigenvectors from different eigenspaces
are orthogonal (see Theorem 7.5.2).

7. A =
[

3 2 − 3i

2 + 3i −1

]
8. A =

[
0 2i

−2i 2

]

In Exercises 9–12, show that A is unitary, and find A−1.

9. A =
⎡
⎣ 3

5
4
5 i

− 4
5

3
5 i

⎤
⎦ 10. A =

⎡
⎣ 1√

2
1√
2

− 1
2 (1 + i) 1

2 (1 + i)

⎤
⎦

11. A =
⎡
⎣ 1

2
√

2

(√
3 + i

)
1

2
√

2

(
1 − i

√
3
)

1
2
√

2

(
1 + i

√
3
)

1
2
√

2

(
i −√

3
)
⎤
⎦

12. A =
[ 1√

3
(−1 + i) 1√

6
(1 − i)

1√
3

2√
6

]

In Exercises 13–18, find a unitary matrix P that diagonalizes
the Hermitian matrix A, and determine P−1AP.

13. A =
[

4 1 − i

1 + i 5

]
14. A =

[
3 −i

i 3

]

15. A =
[

6 2 + 2i

2 − 2i 4

]
16. A =

[
0 3 + i

3 − i −3

]

17. A =
⎡
⎢⎣5 0 0

0 −1 −1 + i

0 −1 − i 0

⎤
⎥⎦

18. A =

⎡
⎢⎢⎢⎣

2 1√
2
i − 1√

2
i

− 1√
2
i 2 0

1√
2
i 0 2

⎤
⎥⎥⎥⎦

In Exercises 19–20, substitute numbers for the ×’s so that A is
skew-Hermitian.

19. A =
⎡
⎢⎣ 0 i 2 − 3i

× 0 1

× × 4i

⎤
⎥⎦ 20. A =

⎡
⎢⎣ 0 0 3 − 5i

× 0 −i

× × 0

⎤
⎥⎦

In Exercises 21–22, show that A is not skew-Hermitian for any
choice of the ×’s.

21. (a) A =
⎡
⎢⎣ 0 i 2 − 3i

−i 0 ×
2 + 3i × ×

⎤
⎥⎦

(b) A =
⎡
⎢⎣ 1 × 3 − 5i

× 2i −i

−3 + 5i i 3i

⎤
⎥⎦

22. (a) A =
⎡
⎢⎣ i × 2 − 3i

× 0 1 + i

2 + 3i −1 − i ×

⎤
⎥⎦

(b) A =
⎡
⎢⎣ 0 −i 4 + 7i

× 0 ×
−4 − 7i × 1

⎤
⎥⎦

In Exercises 23–24, verify that the eigenvalues of the skew-
Hermitian matrix A are pure imaginary numbers.

23. A =
[

0 −1 + i

1 + i i

]
24. A =

[
0 3i

3i 0

]

In Exercises 25–26, show that A is normal.

25. A =
⎡
⎢⎣ 1 + 2i 2 + i −2 − i

2 + i 1 + i −i

−2 − i −i 1 + i

⎤
⎥⎦

26. A =
⎡
⎢⎣2 + 2i i 1 − i

i −2i 1 − 3i

1 − i 1 − 3i −3 + 8i

⎤
⎥⎦
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27. Let A be any n × n matrix with complex entries, and define
the matrices B and C to be

B = 1

2
(A + A∗) and C = 1

2i
(A − A∗)

(a) Show that B and C are Hermitian.

(b) Show that A = B + iC and A∗ = B − iC.

(c) What condition must B and C satisfy for A to be normal?

28. Show that if A is an n × n matrix with complex entries, and if
u and v are vectors in Cn that are expressed in column form,
then

Au · v = u · A∗v and u · Av = A∗u · v

29. Show that

A = 1√
2

[
eiθ e−iθ

ieiθ −ie−iθ

]

is unitary for all real values of θ. [Note: See Formula (17) in
Appendix B for the definition of eiθ .]

30. Show that

A =
[
α + iγ −β + iδ

β + iδ α − iγ

]
is unitary if α2 + β2 + λ2 + δ2 = 1.

31. Let A be the unitary matrix in Exercise 9, and verify that the
conclusions in parts (b) and (c) of Theorem 7.5.3 hold for the
vectors x = (1 + i, 2 − i) and y = (1, 1 − i).

32. Let TA: C2 →C2 be multiplication by the Hermitian matrix A

in Exercise 14, and find two orthogonal unit vectors u1 and u2

for which TA(u1) and TA(u2) are orthogonal.

33. Under what conditions is the following matrix normal?

A =
⎡
⎢⎣a 0 0

0 0 c

0 b 0

⎤
⎥⎦

34. What relationship must exist between a matrix and its inverse
if it is both Hermitian and unitary?

35. Find a 2 × 2 matrix that is both Hermitian and unitary and
whose entries are not all real numbers.

Working with Proofs

36. Use properties of the transpose and complex conjugate to
prove parts (b) and (d) of Theorem 7.5.1.

37. Use properties of the transpose and complex conjugate to
prove parts (a) and (e) of Theorem 7.5.1.

38. Prove that each entry on the main diagonal of a skew-
Hermitian matrix is either zero or a pure imaginary number.

39. Prove that if A is a unitary matrix, then so is A∗.

40. Prove that the eigenvalues of a skew-Hermitian matrix are
either zero or pure imaginary.

41. Prove that the eigenvalues of a unitary matrix have modulus 1.

42. Prove that if u is a nonzero vector in Cn that is expressed in
column form, then P = u u∗ is Hermitian.

43. Prove that if u is a unit vector in Cn that is expressed in column
form, then H = I − 2u u∗ is Hermitian and unitary.

44. Prove that if A is an invertible matrix, then A∗ is invertible,
and (A∗)−1 = (A−1)∗.

45. (a) Prove that det(A) = det(A).

(b) Use the result in part (a) and the fact that a square matrix
and its transpose have the same determinant to prove that
det(A∗) = det(A).

46. Use part (b) of Exercise 45 to prove:

(a) If A is Hermitian, then det(A) is real.

(b) If A is unitary, then | det(A)| = 1.

47. Prove that an n × n matrix with complex entries is unitary if
and only if the columns of A form an orthonormal set in Cn.

48. Prove that the eigenvalues of a Hermitian matrix are real.

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) The matrix

[
0 i

i 2

]
is Hermitian.

(b) The matrix

⎡
⎢⎣
− i√

2
i√
6

i√
3

0 − i√
6

i√
3

i√
2

i√
6

i√
3

⎤
⎥⎦ is unitary.

(c) The conjugate transpose of a unitary matrix is unitary.

(d) Every unitarily diagonalizable matrix is Hermitian.

(e) A positive integer power of a skew-Hermitian matrix is skew-
Hermitian.
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Chapter 7 Supplementary Exercises

1. Verify that each matrix is orthogonal, and find its inverse.

(a)

[
3
5 − 4

5
4
5

3
5

]
(b)

⎡
⎢⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25
12
25

3
5

16
25

⎤
⎥⎦

2. Prove: If Q is an orthogonal matrix, then each entry of Q is
the same as its cofactor if det(Q) = 1 and is the negative of
its cofactor if det(Q) = −1.

3. Prove that if A is a positive definite symmetric matrix, and if
u and v are vectors in Rn in column form, then

〈u, v〉 = uTAv

is an inner product on Rn.

4. Find the characteristic polynomial and the dimensions of the
eigenspaces of the symmetric matrix⎡

⎢⎣3 2 2

2 3 2

2 2 3

⎤
⎥⎦

5. Find a matrix P that orthogonally diagonalizes

A =
⎡
⎢⎣1 0 1

0 1 0

1 0 1

⎤
⎥⎦

and determine the diagonal matrix D = P TAP .

6. Express each quadratic form in the matrix notation xTAx.

(a) −4x2
1 + 16x2

2 − 15x1x2

(b) 9x2
1 − x2

2 + 4x2
3 + 6x1x2 − 8x1x3 + x2x3

7. Classify the quadratic form

x2
1 − 3x1x2 + 4x2

2

as positive definite, negative definite, indefinite, positive semi-
definite, or negative semidefinite.

8. Find an orthogonal change of variable that eliminates the
cross product terms in each quadratic form, and express the
quadratic form in terms of the new variables.

(a) −3x2
1 + 5x2

2 + 2x1x2

(b) −5x2
1 + x2

2 − x2
3 + 6x1x3 + 4x1x2

9. Identify the type of conic section represented by each equa-
tion.

(a) y − x2 = 0 (b) 3x − 11y2 = 0

10. Find a unitary matrix U that diagonalizes

A =
⎡
⎢⎣1 1 0

0 1 1

1 0 1

⎤
⎥⎦

and determine the diagonal matrix D = U−1AU .

11. Show that if U is an n × n unitary matrix and

|z1| = |z2| = · · · = |zn| = 1

then the product

U

⎡
⎢⎢⎢⎣

z1 0 0 · · · 0

0 z2 0 · · · 0
...

...
...

...
0 0 0 · · · zn

⎤
⎥⎥⎥⎦

is also unitary.

12. Suppose that A is skew-Hermitian.

(a) Show that iA is Hermitian.

(b) Show that A is unitarily diagonalizable and has pure imag-
inary eigenvalues.

13. Find a, b, and c for which the matrix⎡
⎢⎢⎣

a 1√
2

− 1√
2

b 1√
6

1√
6

c 1√
3

1√
3

⎤
⎥⎥⎦

is orthogonal. Are the values of a, b, and c unique? Explain.

14. In each part, suppose that A is a 4 × 4 matrix in which det(Mj )

is the determinant of the j th principal submatrix of A. De-
termine whether A is positive definite, negative definite, or
indefinite.

(a) det(M1) < 0, det(M2) > 0, det(M3) < 0, det(M4) > 0

(b) det(M1) > 0, det(M2) > 0, det(M3) > 0, det(M4) > 0

(c) det(M1) < 0, det(M2) < 0, det(M3) < 0, det(M4) < 0

(d) det(M1) > 0, det(M2) < 0, det(M3) > 0, det(M4) < 0

(e) det(M1) = 0, det(M2) < 0, det(M3) = 0, det(M4) > 0

(f ) det(M1) = 0, det(M2) > 0, det(M3) = 0, det(M4) = 0
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INTRODUCTION In earlier sections we studied linear transformations from Rn to Rm. In this chapter we
will define and study linear transformations from a general vector space V to a general
vector space W . The results we will obtain here have important applications in physics,
engineering, and various branches of mathematics.

8.1 General Linear Transformations
Up to now our study of linear transformations has focused on transformations from Rn to
Rm. In this section we will turn our attention to linear transformations involving general
vector spaces. We will illustrate ways in which such transformations arise, and we will
establish a fundamental relationship between general n-dimensional vector spaces and Rn.

Definitions and
Terminology

In Section 1.8 we defined a matrix transformation TA: Rn →Rm to be a mapping of the
form

TA(x) = Ax

in which A is an m × n matrix. We subsequently established in Theorem 1.8.3 that the
matrix transformations are precisely the linear transformations from Rn to Rm, that is,
the transformations with the linearity properties

T(u + v) = T(u) + T(v) and T(ku) = kT(u)

We will use these two properties as the starting point for defining more general linear
transformations.

DEFINITION 1 If T : V →W is a mapping from a vector space V to a vector space W ,
then T is called a linear transformation from V to W if the following two properties
hold for all vectors u and v in V and for all scalars k:

(i) T(ku) = kT(u) [ Homogeneity property ]

(ii) T(u + v) = T(u) + T(v) [ Additivity property ]

In the special case whereV = W , the linear transformationT is called a linear operator
on the vector space V.
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The homogeneity and additivity properties of a linear transformation T : V →W

can be used in combination to show that if v1 and v2 are vectors in V and k1 and k2 are
any scalars, then

T(k1v1 + k2v2) = k1T(v1) + k2T(v2)

More generally, if v1, v2, . . . , vr are vectors in V and k1, k2, . . . , kr are any scalars, then

T(k1v1 + k2v2 + · · · + krvr ) = k1T(v1) + k2T(v2) + · · · + krT(vr ) (1)

The following theorem is an analog of parts (a) and (d) of Theorem 1.8.2.

THEOREM 8.1.1 If T : V →W is a linear transformation, then:

(a) T(0) = 0.

(b) T(u − v) = T(u) − T(v) for all u and v in V .

Proof Let u be any vector in V. Since 0u = 0, it follows from the homogeneity property
Use the two parts of Theorem
8.1.1 to prove that

T(−v) = −T (v)

for all v in V.

in Definition 1 that
T(0) = T(0u) = 0T(u) = 0

which proves (a).
We can prove part (b) by rewriting T(u − v) as

T(u − v) = T
(
u + (−1)v

)
= T(u) + (−1)T(v)

= T(u) − T(v)

We leave it for you to justify each step.

EXAMPLE 1 MatrixTransformations

Because we have based the definition of a general linear transformation on the homo-
geneity and additivity properties of matrix transformations, it follows that every matrix
transformation TA: Rn →Rm is also a linear transformation in this more general sense
with V = Rn and W = Rm.

EXAMPLE 2 The ZeroTransformation

Let V and W be any two vector spaces. The mapping T : V →W such that T(v) = 0 for
every v in V is a linear transformation called the zero transformation. To see that T is
linear, observe that

T(u + v) = 0, T(u) = 0, T(v) = 0, and T(ku) = 0

Therefore,
T(u + v) = T(u) + T(v) and T(ku) = kT(u)

EXAMPLE 3 The Identity Operator

Let V be any vector space. The mapping I : V →V defined by I (v) = v is called the
identity operator on V. We will leave it for you to verify that I is linear.
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EXAMPLE 4 Dilation and Contraction Operators

If V is a vector space and k is any scalar, then the mapping T : V →V given by T(x) = kx
is a linear operator on V, for if c is any scalar and if u and v are any vectors in V, then

T(cu) = k(cu) = c(ku) = cT(u)
T(u + v) = k(u + v) = ku + kv = T(u) + T(v)

If 0 < k < 1, then T is called the contraction of V with factor k, and if k > 1, it is called
the dilation of V with factor k.

EXAMPLE 5 A LinearTransformation from Pn to Pn+1

Let p = p(x) = c0 + c1x + · · · + cnx
n be a polynomial in Pn, and define the transfor-

mation T : Pn →Pn+1 by

T(p) = T(p(x)) = xp(x) = c0x + c1x
2 + · · · + cnx

n+1

This transformation is linear because for any scalar k and any polynomials p1 and p2 in
Pn we have

T(kp) = T(kp(x)) = x(kp(x)) = k(xp(x)) = kT(p)

and
T(p1 + p2) = T(p1(x) + p2(x)) = x(p1(x) + p2(x))

= xp1(x) + xp2(x) = T(p1) + T(p2)

EXAMPLE 6 A LinearTransformation Using the Dot Product

Let v0 be any fixed vector in Rn, and let T : Rn →R be the transformation

T(x) = 〈x · v0〉
that maps a vector x to its dot product with v0. This transformation is linear, for if k is
any scalar, and if u and v are any vectors in Rn, then it follows from properties of the dot
product in Theorem 3.2.2 that

T (ku) = (ku) · v0 = k(u · v0) = kT (u)

T (u + v) = (u + v) · v0 = (u · v0) + (v · v0) = T (u) + T (v)

EXAMPLE 7 Transformations on Matrix Spaces

Let Mnn be the vector space of n × n matrices. In each part determine whether the
transformation is linear.

(a) T1(A) = AT (b) T2(A) = det(A)

Solution (a) It follows from parts (b) and (d) of Theorem 1.4.8 that

T1(kA) = (kA)T = kAT = kT1(A)

T1(A + B) = (A + B)T = AT + BT = T1(A) + T1(B)

so T1 is linear.

Solution (b) It follows from Formula (1) of Section 2.3 that

T2(kA) = det(kA) = kn det(A) = knT2(A)

Thus, T2 is not homogeneous and hence not linear if n > 1. Note that additivity also fails
because we showed in Example 1 of Section 2.3 that det(A + B) and det(A) + det(B)

are not generally equal.
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EXAMPLE 8 Translation Is Not Linear

Part (a) of Theorem 8.1.1 states that a linear transformation maps 0 to 0. This property
is useful for identifying transformations that are not linear. For example, if x0 is a fixed
nonzero vector in R2, then the transformation

T(x) = x + x0

has the geometric effect of translating each point x in a direction parallel to x0 through a
distance of ‖x0‖ (Figure 8.1.1). This cannot be a linear transformation since T(0) = x0,

y

x
x

x0

x + x0

0

Figure 8.1.1 T(x) = x + x0

translates each point x along a
line parallel to x0 through a
distance ‖x0‖.

so T does not map 0 to 0.

EXAMPLE 9 The EvaluationTransformation

Let V be a subspace of F(−�, �), let

x1, x2, . . . , xn

be a sequence of distinct real numbers, and let T : V →Rn be the transformation

T(f ) = (
f(x1), f(x2), . . . , f(xn)

)
(2)

that associates with f the n-tuple of function values at x1, x2, . . . , xn. We call this the
evaluation transformation on V at x1, x2, . . . , xn. Thus, for example, if

x1 = −1, x2 = 2, x3 = 4

and if f(x) = x2 − 1, then

T(f ) = (
f(x1), f(x2), f(x3)

) = (0, 3, 15)

The evaluation transformation in (2) is linear, for if k is any scalar, and if f and g

are any functions in V, then

T(kf ) = (
(kf )(x1), (kf )(x2), . . . , (kf )(xn)

)
= (

kf(x1), kf(x2), . . . , kf(xn)
)

= k
(
f(x1), f(x2), . . . , f(xn)

) = kT(f )

and
T(f + g) = (

(f + g)(x1), (f + g)(x2), . . . , (f + g)(xn)
)

= (
f(x1) + g(x1), f(x2) + g(x2), . . . , f(xn) + g(xn)

)
= (

f(x1), f(x2), . . . , f(xn)
)+ (

g(x1), g(x2), . . . , g(xn)
)

= T(f ) + T(g)

Finding Linear
Transformations from

Images of Basis Vectors

We saw in Formula (15) of Section 1.8 that if TA: Rn →Rm is multiplication by A, and
if e1, e2, . . . , en are the standard basis vectors for Rn, then A can be expressed as

A = [T(e1) | T(e2) | · · · | T(en)]
It follows from this that the image of any vector v = (c1, c2, . . . , cn) in Rn under multi-
plication by A can be expressed as

TA(v) = c1TA(e1) + c2TA(e2) + · · · + cnTA(en)

This formula tells us that for a matrix transformation the image of any vector is express-
ible as a linear combination of the images of the standard basis vectors. This is a special
case of the following more general result.
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THEOREM 8.1.2 Let T : V →W be a linear transformation, where V is finite-dimen-
sional. If S = {v1, v2, . . . , vn} is a basis for V, then the image of any vector v in V can
be expressed as

T(v) = c1T(v1) + c2T(v2) + · · · + cnT(vn) (3)

where c1, c2, . . . , cn are the coefficients required to express v as a linear combination of
the vectors in the basis S.

Proof Express v as v = c1v1 + c2v2 + · · · + cnvn and use the linearity of T .

EXAMPLE 10 Computing with Images of BasisVectors

Consider the basis S = {v1, v2, v3} for R3, where

v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0)

Let T : R3 →R2 be the linear transformation for which

T(v1) = (1, 0), T(v2) = (2,−1), T(v3) = (4, 3)

Find a formula for T(x1, x2, x3), and then use that formula to compute T(2,−3, 5).

Solution We first need to express x = (x1, x2, x3) as a linear combination of v1, v2, and
v3. If we write

(x1, x2, x3) = c1(1, 1, 1) + c2(1, 1, 0) + c3(1, 0, 0)

then on equating corresponding components, we obtain

c1 + c2 + c3 = x1

c1 + c2 = x2

c1 = x3

which yields c1 = x3, c2 = x2 − x3, c3 = x1 − x2, so

(x1, x2, x3) = x3(1, 1, 1) + (x2 − x3)(1, 1, 0) + (x1 − x2)(1, 0, 0)

= x3v1 + (x2 − x3)v2 + (x1 − x2)v3

Thus
T(x1, x2, x3) = x3T(v1) + (x2 − x3)T(v2) + (x1 − x2)T(v3)

= x3(1, 0) + (x2 − x3)(2,−1) + (x1 − x2)(4, 3)

= (4x1 − 2x2 − x3, 3x1 − 4x2 + x3)

From this formula we obtain
T(2,−3, 5) = (9, 23)

EXAMPLE 11 A LinearTransformation from C 1(−�, �) to F (−�, �)

Let V = C1(−�, �) be the vector space of functions with continuous first derivatives on

CA L C U L U S R E Q U I R E D

(−�, �), and let W = F(−�, �) be the vector space of all real-valued functions defined
on (−�, �). Let D: V →W be the transformation that maps a function f = f(x) into
its derivative—that is,

D( f ) = f ′(x)

From the properties of differentiation, we have

D(f + g) = D(f ) + D(g) and D( kf ) = kD(f )

Thus, D is a linear transformation.
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EXAMPLE 12 An IntegralTransformation

Let V = C(−�, �) be the vector space of continuous functions on the interval (−�, �),

CA L C U L U S R E Q U I R E D

let W = C1(−�, �) be the vector space of functions with continuous first derivatives on
(−�, �), and let J : V →W be the transformation that maps a function f in V into

J (f ) =
∫ x

0
f(t) dt

For example, if f(x) = x2, then

J (f ) =
∫ x

0
t2 dt = t3

3

]x

0

= x3

3

The transformation J : V →W is linear, for if k is any constant, and if f and g are any
functions in V, then properties of the integral imply that

J (kf ) =
∫ x

0
kf(t) dt = k

∫ x

0
f(t) dt = kJ (f )

J (f + g) =
∫ x

0
(f(t) + g(t)) dt =

∫ x

0
f(t) dt +

∫ x

0
g(t) dt = J (f ) + J (g)

Kernel and Range Recall that if A is an m × n matrix, then the null space of A consists of all vectors x
in Rn such that Ax = 0, and by Theorem 4.7.1 the column space of A consists of all
vectors b in Rm for which there is at least one vector x in Rn such that Ax = b. From
the viewpoint of matrix transformations, the null space of A consists of all vectors in Rn

that multiplication by A maps into 0, and the column space of A consists of all vectors in
Rm that are images of at least one vector in Rn under multiplication by A. The following
definition extends these ideas to general linear transformations.

DEFINITION 2 If T : V →W is a linear transformation, then the set of vectors in V

that T maps into 0 is called the kernel of T and is denoted by ker(T ). The set of all
vectors in W that are images under T of at least one vector in V is called the range of
T and is denoted by R(T ).

EXAMPLE 13 Kernel and Range of a MatrixTransformation

If TA: Rn →Rm is multiplication by the m × n matrix A, then, as discussed above, the
kernel of TA is the null space of A, and the range of TA is the column space of A.

EXAMPLE 14 Kernel and Range of the ZeroTransformation

Let T : V →W be the zero transformation. Since T maps every vector in V into 0, it
follows that ker(T ) = V. Moreover, since 0 is the only image under T of vectors in V, it
follows that R(T ) = {0}.

EXAMPLE 15 Kernel and Range of the Identity Operator

Let I : V →V be the identity operator. Since I (v) = v for all vectors in V, every vector
in V is the image of some vector (namely, itself); thus R(I) = V. Since the only vector
that I maps into 0 is 0, it follows that ker(I) = {0}.

EXAMPLE 16 Kernel and Range of an Orthogonal Projection

Let T : R3 →R3 be the orthogonal projection onto the xy-plane. As illustrated in Fig-
ure 8.1.2a, the points that T maps into 0 = (0, 0, 0) are precisely those on the z-axis, so
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ker(T ) is the set of points of the form (0, 0, z). As illustrated in Figure 8.1.2b, T maps
the points in R3 to the xy-plane, where each point in that plane is the image of each point
on the vertical line above it. Thus, R(T ) is the set of points of the form (x, y, 0).

Figure 8.1.2

z

x

T y

(0, 0, 0)

(0, 0, z)

(a)  ker(T) is the z-axis.

T

z

x

y

(b) R(T) is the entire xy-plane

(x, y, 0)

(x, y, z)

EXAMPLE 17 Kernel and Range of a Rotation

Let T : R2 →R2 be the linear operator that rotates each vector in the xy-plane through

y

x

v

T(v)

θ

Figure 8.1.3

the angle θ (Figure 8.1.3). Since every vector in the xy-plane can be obtained by rotating
some vector through the angle θ , it follows that R(T ) = R2. Moreover, the only vector
that rotates into 0 is 0, so ker(T ) = {0}.

EXAMPLE 18 Kernel of a DifferentiationTransformation

Let V = C1(−�, �) be the vector space of functions with continuous first derivatives on
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(−�, �), let W = F(−�, �) be the vector space of all real-valued functions defined on
(−�, �), and let D: V →W be the differentiation transformation D( f ) = f ′(x). The
kernel of D is the set of functions in V with derivative zero. From calculus, this is the
set of constant functions on (−�, �).

Properties of Kernel and
Range

In all of the preceding examples, ker(T ) and R(T ) turned out to be subspaces. In
Examples 14, 15, and 17 they were either the zero subspace or the entire vector space. In
Example 16 the kernel was a line through the origin, and the range was a plane through
the origin, both of which are subspaces of R3. All of this is a consequence of the following
general theorem.

THEOREM 8.1.3 If T : V →W is a linear transformation, then:

(a) The kernel of T is a subspace of V.

(b) The range of T is a subspace of W .

Proof (a) To show that ker(T ) is a subspace, we must show that it contains at least
one vector and is closed under addition and scalar multiplication. By part (a) of Theo-
rem 8.1.1, the vector 0 is in ker(T ), so the kernel contains at least one vector. Let v1 and
v2 be vectors in ker(T ), and let k be any scalar. Then

T(v1 + v2) = T(v1) + T(v2) = 0 + 0 = 0

so v1 + v2 is in ker(T ). Also,

T(kv1) = kT(v1) = k0 = 0

so kv1 is in ker(T ).
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Proof (b) To show that R(T ) is a subspace of W , we must show that it contains at least
one vector and is closed under addition and scalar multiplication. However, it contains
at least the zero vector of W since T(0) = (0) by part (a) of Theorem 8.1.1. To prove
that it is closed under addition and scalar multiplication, we must show that if w1 and
w2 are vectors in R(T ), and if k is any scalar, then there exist vectors a and b in V for
which

T(a) = w1 + w2 and T(b) = kw1 (4)

But the fact that w1 and w2 are in R(T ) tells us there exist vectors v1 and v2 in V such
that

T(v1) = w1 and T(v2) = w2

The following computations complete the proof by showing that the vectors a = v1 + v2

and b = kv1 satisfy the equations in (4):

T(a) = T(v1 + v2) = T(v1) + T(v2) = w1 + w2

T(b) = T(kv1) = kT(v1) = kw1

EXAMPLE 19 Application to Differential Equations

Differential equations of the form

CA L C U L U S R E Q U I R E D

y ′′ + ω2y = 0 (ω a positive constant) (5)

arise in the study of vibrations. The set of all solutions of this equation on the interval
(−�, �) is the kernel of the linear transformation D : C2(−�, �)→C(−�, �), given by

D(y) = y ′′ + ω2y

It is proved in standard textbooks on differential equations that the kernel is a two-
dimensional subspace of C2(−�, �), so that if we can find two linearly independent
solutions of (5), then all other solutions can be expressed as linear combinations of those
two. We leave it for you to confirm by differentiating that

y1 = cos ωx and y2 = sin ωx

are solutions of (5). These functions are linearly independent since neither is a scalar
multiple of the other, and thus

y = c1 cos ωx + c2 sin ωx (6)

is a “general solution” of (5) in the sense that every choice of c1 and c2 produces a
solution, and every solution is of this form.

Rank and Nullity of Linear
Transformations

In Definition 1 of Section 4.8 we defined the notions of rank and nullity for an m × n

matrix, and in Theorem 4.8.2, which we called the Dimension Theorem for Matrices, we
proved that the sum of the rank and nullity is n. We will show next that this result is
a special case of a more general result about linear transformations. We start with the
following definition.

DEFINITION 3 Let T : V →W be a linear transformation. If the range of T is finite-
dimensional, then its dimension is called the rank of T ; and if the kernel of T is
finite-dimensional, then its dimension is called the nullity of T . The rank of T is
denoted by rank(T ) and the nullity of T by nullity(T ).

The following theorem, whose proof is optional, generalizes Theorem 4.8.2.
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THEOREM 8.1.4 DimensionTheorem for Linear Transformations

If T : V →W is a linear transformation from a finite-dimensional vector space V to a
vector space W, then the range of T is finite-dimensional, and

rank(T ) + nullity(T ) = dim(V ) (7)

In the special case where A is an m × n matrix and TA: Rn →Rm is multiplication
by A, the kernel of TA is the null space of A, and the range of TA is the column space of
A. Thus, it follows from Theorem 8.1.4 that

rank(TA) + nullity(TA) = n

Proof of Theorem 8.1.4 Assume that V is n-dimensional. We must show thatO PT I O NA L

dim(R(T )) + dim(ker(T )) = n

We will give the proof for the case where 1 ≤ dim(ker(T )) < n. The cases where
dim(ker(T )) = 0 and dim(ker(T )) = n are left as exercises. Assume dim(ker(T )) = r ,
and let v1, . . . , vr be a basis for the kernel. Since {v1, . . . , vr} is linearly independent,
Theorem 4.5.5(b) states that there are n − r vectors, vr+1, . . . , vn, such that the extended
set {v1, . . . , vr , vr+1, . . . , vn} is a basis for V. To complete the proof, we will show that
the n − r vectors in the set S = {T (vr+1), . . . , T(vn)} form a basis for the range of T . It
will then follow that

dim(R(T )) + dim(ker(T )) = (n − r) + r = n

First we show that S spans the range of T . If b is any vector in the range of T , then
b = T(v) for some vector v in V. Since {v1, . . . , vr , vr+1, . . . , vn} is a basis for V, the
vector v can be written in the form

v = c1v1 + · · · + crvr + cr+1vr+1 + · · · + cnvn

Since v1, . . . , vr lie in the kernel of T , we have T(v1) = · · · = T(vr ) = 0, so

b = T(v) = cr+1T(vr+1) + · · · + cnT(vn)

Thus S spans the range of T .
Finally, we show that S is a linearly independent set and consequently forms a basis

for the range of T . Suppose that some linear combination of the vectors in S is zero;
that is,

kr+1T(vr+1) + · · · + knT(vn) = 0 (8)

We must show that kr+1 = · · · = kn = 0. Since T is linear, (8) can be rewritten as

T(kr+1vr+1 + · · · + knvn) = 0

which says that kr+1vr+1 + · · · + knvn is in the kernel of T . This vector can therefore be
written as a linear combination of the basis vectors {v1, . . . , vr}, say

kr+1vr+1 + · · · + knvn = k1v1 + · · · + krvr

Thus,
k1v1 + · · · + krvr − kr+1vr+1 − · · · − knvn = 0

Since {v1, . . . , vn} is linearly independent, all of the k’s are zero; in particular,
kr+1 = · · · = kn = 0, which completes the proof.
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Exercise Set 8.1
In Exercises 1–2, suppose that T is a mapping whose domain

is the vector space M22. In each part, determine whether T is a
linear transformation, and if so, find its kernel.

1. (a) T(A) = A2 (b) T(A) = tr(A)

(c) T(A) = A + AT

2. (a) T(A) = (A)11 (b) T(A) = 02×2

(c) T(A) = cA

In Exercises 3–9, determine whether the mapping T is a linear
transformation, and if so, find its kernel.

3. T : R3 →R, where T(u) = ‖u‖.

4. T : R3 →R3, where v0 is a fixed vector in R3 and
T(u) = u × v0.

5. T : M22 →M23, where B is a fixed 2 × 3 matrix and
T(A) = AB.

6. T : M22 →R, where

(a) T

([
a b

c d

])
= 3a − 4b + c − d

(b) T

([
a b

c d

])
= a2 + b2

7. T : P2 →P2, where

(a) T(a0 + a1x + a2x
2) = a0 + a1(x + 1) + a2(x + 1)2

(b) T(a0 + a1x + a2x
2)

= (a0 + 1) + (a1 + 1)x + (a2 + 1)x2

8. T : F(−�, �)→F(−�, �), where

(a) T(f(x)) = 1 + f(x) (b) T(f(x)) = f(x + 1)

9. T : R� →R�, where
T(a0, a1, a2, . . . , an, . . .) = (0, a0, a1, a2, . . . , an, . . .)

10. Let T : P2 →P3 be the linear transformation defined by
T(p(x)) = xp(x). Which of the following are in ker(T )?

(a) x2 (b) 0 (c) 1 + x (d) −x

11. Let T : P2 →P3 be the linear transformation in Exercise 10.
Which of the following are in R(T )?

(a) x + x2 (b) 1 + x (c) 3 − x2 (d) −x

12. Let V be any vector space, and let T : V →V be defined by
T(v) = 3v.

(a) What is the kernel of T ?

(b) What is the range of T ?

13. In each part, use the given information to find the nullity of
the linear transformation T .

(a) T : R5 →P5 has rank 3.

(b) T : P4 →P3 has rank 1.

(c) The range of T : Mmn →R3 is R3.

(d) T : M22 →M22 has rank 3.

14. In each part, use the given information to find the rank of the
linear transformation T .

(a) T : R7 →M32 has nullity 2.

(b) T : P3 →R has nullity 1.

(c) The null space of T : P5 →P5 is P5.

(d) T : Pn →Mmn has nullity 3.

15. Let T : M22 →M22 be the dilation operator with factor k = 3.

(a) Find T

([
1 2

−4 3

])
.

(b) Find the rank and nullity of T .

16. Let T : P2 →P2 be the contraction operator with factor
k = 1/4.

(a) Find T(1 + 4x + 8x2).

(b) Find the rank and nullity of T .

17. Let T : P2 →R3 be the evaluation transformation at the se-
quence of points −1, 0, 1. Find

(a) T(x2) (b) ker(T ) (c) R(T )

18. Let V be the subspace of C[0, 2π ] spanned by the vectors 1,
sin x, and cos x, and let T : V →R3 be the evaluation trans-
formation at the sequence of points 0, π, 2π . Find

(a) T(1 + sin x + cos x) (b) ker(T )

(c) R(T )

19. Consider the basis S = {v1, v2} for R2, where v1 = (1, 1) and
v2 = (1, 0), and let T : R2 →R2 be the linear operator for
which

T(v1) = (1,−2) and T(v2) = (−4, 1)

Find a formula for T(x1, x2), and use that formula to find
T(5,−3).

20. Consider the basis S = {v1, v2} for R2, where v1 = (−2, 1) and
v2 = (1, 3), and let T : R2 →R3 be the linear transformation
such that

T(v1) = (−1, 2, 0) and T(v2) = (0,−3, 5)

Find a formula for T(x1, x2), and use that formula to find
T(2,−3).

21. Consider the basis S = {v1, v2, v3} for R3, where
v1 = (1, 1, 1), v2 = (1, 1, 0), and v3 = (1, 0, 0), and let
T : R3 →R3 be the linear operator for which

T(v1) = (2,−1, 4), T(v2) = (3, 0, 1),

T(v3) = (−1, 5, 1)

Find a formula for T(x1, x2, x3), and use that formula to find
T(2, 4,−1).
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22. Consider the basis S = {v1, v2, v3} for R3, where
v1 = (1, 2, 1), v2 = (2, 9, 0), and v3 = (3, 3, 4), and let
T : R3 →R2 be the linear transformation for which

T(v1) = (1, 0), T(v2) = (−1, 1), T(v3) = (0, 1)

Find a formula for T(x1, x2, x3), and use that formula to find
T(7, 13, 7).

23. Let T : P3 →P2 be the mapping defined by

T(a0 + a1x + a2x
2 + a3x

3) = 5a0 + a3x
2

(a) Show that T is linear.

(b) Find a basis for the kernel of T .

(c) Find a basis for the range of T .

24. Let T : P2 →P2 be the mapping defined by

T(a0 + a1x + a2x
2) = 3a0 + a1x + (a0 + a1)x

2

(a) Show that T is linear.

(b) Find a basis for the kernel of T .

(c) Find a basis for the range of T .

25. (a) (Calculus required ) Let D: P3 →P2 be the differentiation
transformation D(p) = p′(x). What is the kernel of D?

(b) (Calculus required ) Let J : P1 →R be the integration trans-
formation J (p) = ∫ 1

−1 p(x) dx. What is the kernel of J ?

26. (Calculus required ) Let V = C[a, b] be the vector space of
continuous functions on [a, b], and let T : V →V be the trans-
formation defined by

T( f ) = 5f(x) + 3
∫ x

a

f(t) dt

Is T a linear operator?

27. (Calculus required ) Let V be the vector space of real-valued
functions with continuous derivatives of all orders on the in-
terval (−�, �), and let W = F(−�, �) be the vector space of
real-valued functions defined on (−�, �).

(a) Find a linear transformation T : V →W whose kernel
is P3.

(b) Find a linear transformation T : V →W whose kernel
is Pn.

28. For a positive integer n > 1, let T : Mnn →R be the linear
transformation defined by T (A) = tr(A), where A is an n × n

matrix with real entries. Determine the dimension of ker(T ).

29. (a) Let T : V →R3 be a linear transformation from a vector
space V to R3. Geometrically, what are the possibilities
for the range of T ?

(b) Let T : R3 →W be a linear transformation from R3 to a
vector space W . Geometrically, what are the possibilities
for the kernel of T ?

30. In each part, determine whether the mapping T : Pn →Pn is
linear.

(a) T(p(x)) = p(x + 1)

(b) T(p(x)) = p(x) + 1

31. Let v1, v2, and v3 be vectors in a vector space V, and let
T : V →R3 be a linear transformation for which

T(v1) = (1,−1, 2), T(v2) = (0, 3, 2),

T(v3) = (−3, 1, 2)

Find T(2v1 − 3v2 + 4v3).

Working with Proofs

32. Let {v1, v2, . . . , vn} be a basis for a vector space V, and let
T : V →W be a linear transformation. Prove that if

T(v1) = T(v2) = · · · = T(vn) = 0

then T is the zero transformation.

33. Let {v1, v2, . . . , vn} be a basis for a vector space V, and let
T : V →V be a linear operator. Prove that if

T(v1) = v1, T(v2) = v2, . . . , T(vn) = vn

then T is the identity transformation on V.

34. Prove: If {v1, v2, . . . , vn} is a basis for a vector space V and
w1, w2, . . . , wn are vectors in a vector space W , not necessarily
distinct, then there exists a linear transformation T : V →W

such that

T(v1) = w1, T(v2) = w2, . . . , T(vn) = wn

True-False Exercises

TF. In parts (a)–(i) determine whether the statement is true or
false, and justify your answer.

(a) If T(c1v1 + c2v2) = c1T(v1) + c2T(v2) for all vectors v1 and v2

in V and all scalars c1 and c2, then T is a linear transformation.

(b) If v is a nonzero vector in V, then there is exactly one linear
transformation T : V →W such that T(−v) = −T(v).

(c) There is exactly one linear transformation T : V →W for
which T(u + v) = T(u − v) for all vectors u and v in V.

(d) If v0 is a nonzero vector in V, then the formula T(v) = v0 + v
defines a linear operator on V.

(e) The kernel of a linear transformation is a vector space.

(f ) The range of a linear transformation is a vector space.

(g) If T : P6 →M22 is a linear transformation, then the nullity of
T is 3.

(h) The function T : M22 →R defined by T(A) = det A is a linear
transformation.

(i) The linear transformation T : M22 →M22 defined by

T(A) =
[

1 3

2 6

]
A

has rank 1.
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8.2 Compositions and InverseTransformations
In Section 4.10 we discussed compositions and inverses of matrix transformations. In this
section we will extend some of those ideas to general linear transformations.

One-to-One and Onto To set the groundwork for our discussion in this section we will need the following
definitions that are illustrated in Figure 8.2.1.

DEFINITION 1 If T : V →W is a linear transformation from a vector space V to a
vector space W , then T is said to be one-to-one if T maps distinct vectors in V into
distinct vectors in W .

DEFINITION 2 If T : V →W is a linear transformation from a vector space V to a
vector space W , then T is said to be onto (or onto W ) if every vector in W is the image
of at least one vector in V.

V W

Range

of T

V W

Range

of T

V WV W

One-to-one. Distinct

vectors in V have

distinct images in W.

Not one-to-one. There

exist distinct vectors in

V with the same image.

Onto W. Every vector in

W is the image of some

vector in V.

Not onto W. Not every

vector in W is the image

of some vector in V.

Figure 8.2.1

THEOREM 8.2.1 If T : V →W is a linear transformation, then the following statements
are equivalent.

(a) T is one-to-one.

(b) ker(T ) = {0}.

Proof (a) ⇒ (b) Since T is linear, we know that T(0) = 0 by Theorem 8.1.1(a). Since T

is one-to-one, there can be no other vectors in V that map into 0, so ker(T ) = {0}.

(b) ⇒ (a) Assume that ker(T ) = {0}. If u and v are distinct vectors in V, then
u − v �= 0. This implies that T(u − v) �= 0, for otherwise ker(T ) would contain a
nonzero vector. Since T is linear, it follows that

T(u) − T(v) = T(u − v) �= 0

so T maps distinct vectors in V into distinct vectors in W and hence is one-to-one.

In the special case where V is finite-dimensional and T is a linear operator on V,
then we can add a third statement to those in Theorem 8.2.1.
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THEOREM 8.2.2 If V and W are finite-dimensional vector spaces with the same di-
mension, and if T :V →W is a linear transformation, then the following statements are
equivalent.

(a) T is one-to-one.

(b) ker(T ) = {0}.
(c) T is onto [i.e., R(T ) = W ].

Proof We already know that (a) and (b) are equivalent by Theorem 8.2.1, so it suffices
to show that (b) and (c) are equivalent. We leave it for you to do this by assuming that
dim(V ) = n and applying Theorem 8.1.4.

The requirement in Theorem 8.2.2 that V and W have the same dimension is essential
for the validity of the theorem. In the exercises we will ask you to prove the following
facts for the case where they do not have the same dimension.

• If dim(W) < dim(V ), then T cannot be one-to-one.

• If dim(V ) < dim(W), then T cannot be onto.

Stated informally, if a linear transformation maps a “bigger” space to a “smaller” space,
then some points in the “bigger” space must have the same image; and if a linear trans-
formation maps a “smaller” space to a “bigger” space, then there must be points in the
“bigger” space that are not images of any points in the “smaller” space.

EXAMPLE 1 MatrixTransformations

If TA:Rn →Rm is multiplication by an m × n matrix A, then it follows from the foregoing
discussion that TA is not one-to-one if m < n and is not onto if n < m. In the case where
m = n we know from Theorem 4.10.2 that TA is both one-to-one and onto if and only
if A is invertible.

EXAMPLE 2 Basic Transformations That Are One-to-One and Onto

The linear transformations T1: P3 →R4 and T2: M22 →R4 defined by

T1(a + bx + cx2 + dx3) = (a, b, c, d)

T2

([
a b

c d

])
= (a, b, c, d)

are both one-to-one and onto (verify by showing that their kernels contain only the zero
vector).

EXAMPLE 3 A One-to-One LinearTransformationThat Is Not Onto

Let T : Pn →Pn+1 be the linear transformation

T(p) = T(p(x)) = xp(x)

discussed in Example 5 of Section 8.1. If

p = p(x) = c0 + c1x + · · · + cnx
n and q = q(x) = d0 + d1x + · · · + dnx

n

are distinct polynomials, then they differ in at least one coefficient. Thus,

T(p) = c0x + c1x
2 + · · · + cnx

n+1 and T(q) = d0x + d1x
2 + · · · + dnx

n+1

also differ in at least one coefficient. It follows that T is one-to-one since it maps distinct
polynomials p and q into distinct polynomials T(p) and T(q). However, it is not onto
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because all images under T have a zero constant term. Thus, for example, there is no
vector in Pn that maps into the constant polynomial 1.

EXAMPLE 4 Shifting Operators

Let V = R� be the sequence space discussed in Example 3 of Section 4.1, and consider
the linear “shifting operators” on V defined by

T1(u1, u2, . . . , un, . . .) = (0, u1, u2, . . . , un, . . .)

T2(u1, u2, . . . , un, . . .) = (u2, u3, . . . , un, . . .)

(a) Show that T1 is one-to-one but not onto.

(b) Show that T2 is onto but not one-to-one.

Solution (a) The operator T1 is one-to-one because distinct sequences in R� obviously
have distinct images. This operator is not onto because no vector in R� maps into the
sequence (1, 0, 0, . . . , 0, . . .), for example.

Solution (b) The operator T2 is not one-to-one because, for example, the vectors
(1, 0, 0, . . . , 0, . . .) and (2, 0, 0, . . . , 0, . . .) both map into (0, 0, 0, . . . , 0, . . .). This
operator is onto because every possible sequence of real numbers can be obtained withWhy does Example 4 not vio-

late Theorem 8.2.2? an appropriate choice of the numbers u2, u3, . . . , un, . . . .

EXAMPLE 5 Differentiation Is Not One-to-One

Let

CA L C U L U S R E Q U I R E D

D: C1(−�, �)→F(−�, �)

be the differentiation transformation discussed in Example 11 of Section 8.1. This linear
transformation is not one-to-one because it maps functions that differ by a constant into
the same function. For example,

D(x2) = D(x2 + 1) = 2x

Composition of Linear
Transformations

The following definition extends Formula (1) of Section 4.10 to general linear transfor-

Note that the word “with” es-
tablishes the order of the oper-
ations in a composition. The
composition of T2 with T1 is

(T2 ◦ T1)(u) = T2(T1(u))

whereas the composition of T1

with T2 is

(T1 ◦ T2)(u) = T1(T2(u))

It is not true, in general, that
T1 ◦ T2 = T2 ◦ T1.

mations.

DEFINITION 3 If T1: U →V and T2: V →W are linear transformations, then the
composition of T2 with T1, denoted by T2 ◦ T1 (which is read “T2 circle T1”), is the
function defined by the formula

(T2 ◦ T1)(u) = T2(T1(u)) (1)

where u is a vector in U .

Remark Observe that this definition requires that the domain of T2 (which is V ) contain the
range of T1. This is essential for the formula T2(T1(u)) to make sense (Figure 8.2.2).

U V W

u T2(T1(u))T1(u)

T1 T2

T2 ° T1

Figure 8.2.2 The composition of T2 with T1.
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Our next theorem shows that the composition of two linear transformations is itself
a linear transformation.

THEOREM 8.2.3 If T1: U →V and T2: V →W are linear transformations, then
(T2 ◦ T1): U →W is also a linear transformation.

Proof If u and v are vectors in U and c is a scalar, then it follows from (1) and the
linearity of T1 and T2 that

(T2 ◦ T1)(u + v) = T2(T1(u + v)) = T2(T1(u) + T1(v))

= T2(T1(u)) + T2(T1(v))

= (T2 ◦ T1)(u) + (T2 ◦ T1)(v)

and
(T2 ◦ T1)(cu) = T2(T1(cu)) = T2(cT1(u))

= cT2(T1(u)) = c(T2 ◦ T1)(u)

Thus, T2 ◦ T1 satisfies the two requirements of a linear transformation.

EXAMPLE 6 Composition of LinearTransformations

Let T1: P1 →P2 and T2: P2 →P2 be the linear transformations given by the formulas

T1(p(x)) = xp(x) and T2(p(x)) = p(2x + 4)

Then the composition (T2 ◦ T1): P1 →P2 is given by the formula

(T2 ◦ T1)(p(x)) = T2(T1(p(x))) = T2(xp(x)) = (2x + 4)p(2x + 4)

In particular, if p(x) = c0 + c1x, then

(T2 ◦ T1)(p(x)) = (T2 ◦ T1)(c0 + c1x) = (2x + 4)(c0 + c1(2x + 4))

= c0(2x + 4) + c1(2x + 4)2

EXAMPLE 7 Composition with the Identity Operator

If T : V →V is any linear operator, and if I : V →V is the identity operator (Example 3
of Section 8.1), then for all vectors v in V, we have

(T ◦ I)(v) = T(I (v)) = T(v)

(I ◦ T )(v) = I (T(v)) = T(v)

It follows that T ◦ I and I ◦ T are the same as T ; that is,

T ◦ I = T and I ◦ T = T (2)

As illustrated in Figure 8.2.3, compositions can be defined for more than two linear
transformations. For example, if

T1: U →V, T2: V →W, and T3: W →Y

are linear transformations, then the composition T3 ◦ T2 ◦ T1 is defined by

(T3 ◦ T2 ◦ T1)(u) = T3(T2(T1(u))) (3)
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U V W

u T2(T1(u))T1(u)

T1

Y

T3T2

(T3 ° T2 ° T1)(u)

T3(T2(T1(u)))

Figure 8.2.3 The composition of three linear transformations.

Inverse Linear
Transformations

In Theorem 4.10.1 we showed that a matrix operator TA: Rn →Rn is one-to-one if and
only if the matrix A is invertible, in which case the inverse operator is TA−1 . We then
showed that if w is the image of a vector x under the operator TA, then x is the image
under TA−1 of the vector w (see Figure 4.10.8). Our next objective is to extend the notion
of invertibility to general linear transformations.

If T :V →W is a one-to-one linear transformation with range R(T ), and if w is any
vector in R(T ), then the fact that T is one-to-one means that there is exactly one vector v
in V for which T (v) = w. This fact allows us to define a new function, called the inverse
of T (and denoted by T −1), that is defined on the range of T and that maps w back into
v (Figure 8.2.4).

Figure 8.2.4 The inverse of T
maps T(v) back into v. V R(T)

v w = T(v)

T

T –1

It can be proved (Exercise 33) that T −1: R(T )→V is a linear transformation. More-
over, it follows from the definition of T −1 that

T −1(T(v)) = T −1(w) = v (4)

T (T −1(w)) = T(v) = w (5)

so that T and T −1, when applied in succession in either order, cancel the effect of each
other.

EXAMPLE 8 An InverseTransformation

We showed in Example 3 of this section that the linear transformation T :Pn →Pn+1

given by
T(p) = T (p(x)) = xp(x)

is one-to-one but not onto. The fact that it is not onto can be seen explicitly from the
formula

T(c0 + c1x + · · · + cnx
n) = c0x + c1x

2 + · · · + cnx
n+1 (6)

which makes it clear that the range of T consists of all polynomials in Pn+1 that have
zero constant term. Since T is one-to-one it has an inverse, and from (6) this inverse is
given by the formula

T −1(c0x + c1x
2 + · · · + cnx

n+1) = c0 + c1x + · · · + cnx
n

For example, in the case where n ≥ 3,

T −1(2x − x2 + 5x3 + 3x4) = 2 − x + 5x2 + 3x3

EXAMPLE 9 An InverseTransformation

Let T : R3 →R3 be the linear operator defined by the formula

T(x1, x2, x3) = (3x1 + x2,−2x1 − 4x2 + 3x3, 5x1 + 4x2 − 2x3)

Determine whether T is one-to-one; if so, find T −1(x1, x2, x3).
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Solution It follows from Formula (15) of Section 1.8 that the standard matrix for T is

[T ] =
⎡
⎢⎣ 3 1 0

−2 −4 3

5 4 −2

⎤
⎥⎦

(verify). This matrix is invertible, and from Formula (9) of Section 4.10 the standard
matrix for T −1 is

[T −1] = [T ]−1 =
⎡
⎣ 4 −2 −3

−11 6 9

−12 7 10

⎤
⎦

It follows that

T −1

⎛
⎝
⎡
⎣x1

x2

x3

⎤
⎦
⎞
⎠= [T −1]

⎡
⎣x1

x2

x3

⎤
⎦=

⎡
⎣ 4 −2 −3

−11 6 9

−12 7 10

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦=

⎡
⎢⎣ 4x1 − 2x2 − 3x3

−11x1 + 6x2 + 9x3

−12x1 + 7x2 + 10x3

⎤
⎥⎦

Expressing this result in horizontal notation yields

T −1(x1, x2, x3) = (4x1 − 2x2 − 3x3,−11x1 + 6x2 + 9x3,−12x1 + 7x2 + 10x3)

Composition of
One-to-One Linear
Transformations

We conclude this section with a theorem that shows that the composition of one-to-
one linear transformations is one-to-one and that the inverse of a composition is the
composition of the inverses in the reverse order.

THEOREM 8.2.4 If T1: U →V and T2: V →W are one-to-one linear transforma-
tions, then:

(a) T2 ◦ T1 is one-to-one.

(b) (T2 ◦ T1)
−1 = T −1

1 ◦ T −1
2 .

Proof (a) We want to show that T2 ◦ T1 maps distinct vectors in U into distinct vectors
in W . But if u and v are distinct vectors in U , then T1(u) and T1(v) are distinct vectors
in V since T1 is one-to-one. This and the fact that T2 is one-to-one imply that

T2(T1(u)) and T2(T1(v))

are also distinct vectors. But these expressions can also be written as

(T2 ◦ T1)(u) and (T2 ◦ T1)(v)

so T2 ◦ T1 maps u and v into distinct vectors in W .

Proof (b) We want to show that

(T2 ◦ T1)
−1(w) = (T −1

1 ◦ T −1
2 )(w)

for every vector w in the range of T2 ◦ T1. For this purpose, let

u = (T2 ◦ T1)
−1(w) (7)

so our goal is to show that
u = (T −1

1 ◦ T −1
2 )(w)

But it follows from (7) that
(T2 ◦ T1)(u) = w

or, equivalently,
T2(T1(u)) = w
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Now, taking T −1
2 of each side of this equation, then taking T −1

1 of each side of the result,
and then using (4) yields (verify)

u = T −1
1 (T −1

2 (w))

or, equivalently,
u = (T −1

1 ◦ T −1
2 )(w)

In words, part (b) of Theorem 8.2.4 states that the inverse of a composition is the com-
position of the inverses in the reverse order. This result can be extended to compositions
of three or more linear transformations; for example,

(T3 ◦ T2 ◦ T1)
−1 = T −1

1 ◦ T −1
2 ◦ T −1

3 (8)

In the case where TA, TB , and TC are matrix operators on Rn, Formula (8) can be written
as

(TC ◦ TB ◦ TA)−1 = T −1
A ◦ T −1

B ◦ T −1
C

or alternatively as

Note the order of the sub-
scripts on the two sides of
Formula (9).

(TCBA)−1 = TA−1B−1C−1 (9)

Exercise Set 8.2
In Exercises 1–2, determine whether the linear transforma-

tion is one-to-one by finding its kernel and then applying Theo-
rem 8.2.1.

1. (a) T : R2 →R2, where T(x, y) = (y, x)

(b) T : R2 →R3, where T(x, y) = (x, y, x + y)

(c) T : R3 →R2, where T(x, y, z) = (x + y + z, x − y − z)

2. (a) T : R2 →R3, where T(x, y) = (x − y, y − x, 2x − 2y)

(b) T : R2 →R2, where T(x, y) = (0, 2x + 3y)

(c) T : R2 →R2, where T(x, y) = (x + y, x − y)

In Exercises 3–4, determine whether multiplication by A is
one-to-one by computing the nullity of A and then applying The-
orem 8.2.1.

3. (a) A =
⎡
⎢⎣

1 −2

2 −4

−3 6

⎤
⎥⎦

(b) A =
⎡
⎢⎣

1 3 1 7

2 7 2 4

−1 −3 0 0

⎤
⎥⎦

4. (a) A =
⎡
⎢⎣

1 2

2 7

3 9

⎤
⎥⎦

(b) A =
⎡
⎢⎣

1 −3 6 1

0 1 2 4

0 0 0 1

⎤
⎥⎦

5. Use the given information to determine whether the linear
transformation is one-to-one.

(a) T :V →W ; nullity(T ) = 0

(b) T :V →W ; rank(T ) = dim(V )

(c) T :V →W ; dim(W) < dim(V )

6. Use the given information to determine whether the linear
operator is one-to-one, onto, both, or neither.

(a) T :V →V ; nullity(T ) = 0

(b) T :V →V ; rank(T ) < dim(V )

(c) T :V →V ; R(T ) = V

7. Show that the linear transformation T :P2 →R2 defined by
T(p(x)) = (p(−1), p(1)) is not one-to-one by finding a
nonzero polynomial that maps into 0 = (0, 0). Do you think
that this transformation is onto?

8. Show that the linear transformation T :P2 →P2 defined by
T(p(x)) = p(x + 1) is one-to-one. Do you think that this
transformation is onto?

9. Let a be a fixed vector in R3. Does the formula T(v) = a × v
define a one-to-one linear operator on R3? Explain your rea-
soning.

10. Let E be a fixed 2 × 2 elementary matrix. Does the formula
T(A) = EA define a one-to-one linear operator on M22? Ex-
plain your reasoning.

In Exercises 11–12, compute (T2 ◦ T1)(x, y).

11. T1(x, y) = (2x, 3y), T2(x, y) = (x − y, x + y)
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12. T1(x, y) = (2x,−3y, x + y),
T2(x, y, z) = (x − y, y + z)

In Exercises 13–14, compute (T3 ◦ T2 ◦ T1)(x, y).

13. T1(x, y) = (−2y, 3x, x − 2y), T2(x, y, z) = (y, z, x),
T3(x, y, z) = (x + z, y − z)

14. T1(x, y) = (x + y, y,−x),
T2(x, y, z) = (0, x + y + z, 3y),
T3(x, y, z) = (3x + 2y, 4z − x − 3y)

15. Let T1: M22 →R and T2: M22 →M22 be the linear transforma-
tions given by T1(A) = tr(A) and T2(A) = AT .

(a) Find (T1 ◦ T2)(A), where A =
[
a b

c d

]
.

(b) Can you find (T2 ◦ T1)(A)? Explain.

16. Rework Exercise 15 given that T1:M22 →M22 and
T2:M22 →M22 are the linear transformations, T1(A) = kA

and T2(A) = AT , where k is a scalar.

17. Suppose that the linear transformations T1: P2 →P2 and
T2: P2 →P3 are given by the formulas T1(p(x)) = p(x + 1)
and T2(p(x)) = xp(x). Find (T2 ◦ T1)(a0 + a1x + a2x

2).

18. Let T1: Pn →Pn and T2: Pn →Pn be the linear operators given
by T1(p(x)) = p(x − 1) and T2(p(x)) = p(x + 1). Find
(T1 ◦ T2)(p(x)) and (T2 ◦ T1)(p(x)).

19. Let T : P1 →R2 be the function defined by the formula

T(p(x)) = (p(0), p(1))

(a) Find T(1 − 2x).

(b) Show that T is a linear transformation.

(c) Show that T is one-to-one.

(d) Find T −1(2, 3), and sketch its graph.

20. In each part, determine whether the linear operator
T : Rn →Rn is one-to-one; if so, find T −1(x1, x2, . . . , xn).

(a) T(x1, x2, . . . , xn) = (0, x1, x2, . . . , xn−1)

(b) T(x1, x2, . . . , xn) = (xn, xn−1, . . . , x2, x1)

(c) T(x1, x2, . . . , xn) = (x2, x3, . . . , xn, x1)

21. Let T : Rn →Rn be the linear operator defined by the formula

T(x1, x2, . . . , xn) = (a1x1, a2x2, . . . , anxn)

where a1, . . . , an are constants.

(a) Under what conditions will T have an inverse?

(b) Assuming that the conditions determined in part (a) are
satisfied, find a formula for T −1(x1, x2, . . . , xn).

22. Let T1: R2 →R2 and T2: R2 →R2 be the linear operators given
by the formulas

T1(x, y) = (x + y, x − y) and T2(x, y) = (2x + y, x − 2y)

(a) Show that T1 and T2 are one-to-one.

(b) Find formulas for

T −1
1 (x, y), T −1

2 (x, y), (T2 ◦ T1)
−1(x, y)

(c) Verify that (T2 ◦ T1)
−1 = T −1

1 ◦ T −1
2 .

23. Let T1: P2 →P3 and T2: P3 →P3 be the linear transformations
given by the formulas

T1

(
p(x)

) = xp(x) and T2

(
p(x)

) = p(x + 1)

(a) Find formulas for T −1
1

(
p(x)

)
, T −1

2

(
p(x)

)
, and

(T −1
1 ◦ T −1

2 )
(
p(x)

)
.

(b) Verify that (T2 ◦ T1)
−1 = T −1

1 ◦ T −1
2 .

24. Let TA: R3 →R3, TB : R3 →R3, and TC : R3 →R3 be the re-
flections about the xy-plane, the xz-plane, and the yz-plane,
respectively. Verify Formula (9) for these linear operators.

25. Let T1: V →V be the dilation T1(v) = 4v. Find a linear oper-
ator T2: V →V such that T1 ◦ T2 = I and T2 ◦ T1 = I .

26. Let T1:M22 →P1 and T2:P1 →R3 be the linear transforma-

tions given by T1

([
a b

c d

])
= (a + b) + (c + d)x and

T2(a + bx) = (a, b, a).

(a) Find the formula for T2 ◦ T1.

(b) Show that T2 ◦ T1 is not one-to-one by finding distinct
2 × 2 matrices A and B such that

(T2 ◦ T1)(A) = (T2 ◦ T1)(B)

(c) Show that T2 ◦ T1 is not onto by finding a vector (a, b, c)

in R3 that is not in the range of T2 ◦ T1.

27. Let T : R3 →R3 be the orthogonal projection of R3 onto the
xy-plane. Show that T ◦ T = T .

28. (Calculus required ) Let V be the vector space C1[0, 1] and let
T : V →R be defined by

T(f) = f (0) + 2f ′(0) + 3f ′(1)

Verify that T is a linear transformation. Determine whether
T is one-to-one, and justify your conclusion.

29. (Calculus required ) The Fundamental Theorem of Calculus
implies that integration and differentiation reverse the ac-
tions of each other. Define a transformation D: Pn →Pn−1

by D(p(x)) = p′(x), and define J : Pn−1 →Pn by

J (p(x)) =
∫ x

0
p(t) dt

(a) Show that D and J are linear transformations.

(b) Explain why J is not the inverse transformation of D.

(c) Can the domains and/or codomains of D and J be re-
stricted so they are inverse linear transformations?
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30. (Calculus required ) Let

D( f ) = f ′(x) and J ( f ) =
∫ x

0
f(t) dt

be the linear transformations in Examples 11 and 12 of Sec-
tion 8.1. Find (J ◦ D)( f ) for

(a) f(x) = x2 + 3x + 2. (b) f(x) = sin x.

31. (Calculus required ) Let J :P1 →R be the integration transfor-
mation J (p) = ∫ 1

−1 p(x)dx. Determine whether J is one-to-
one. Justify your answer.

32. (Calculus required ) Let D: Pn →Pn−1 be the differentiation
transformation D(p(x)) = p′(x). Determine whether D is
onto, and justify your answer.

Working with Proofs

33. Prove: If T : V →W is a one-to-one linear transformation,
then T −1: R(T )→V is a one-to-one linear transformation.

34. Use the definition of T3 ◦ T2 ◦ T1 given by Formula (3) to
prove that

(a) T3 ◦ T2 ◦ T1 is a linear transformation.

(b) T3 ◦ T2 ◦ T1 = (T3 ◦ T2) ◦ T1.

(c) T3 ◦ T2 ◦ T1 = T3 ◦ (T2 ◦ T1).

35. Let q0(x) be a fixed polynomial of degree m, and define a func-
tion T with domain Pn by the formula T(p(x)) = p(q0(x)).
Prove that T is a linear transformation.

36. Prove: If there exists an onto linear transformation T : V →W

then dim(V ) ≥ dim(W).

37. Prove: If V and W are finite-dimensional vector spaces such
that dim(W) < dim(V ), then there is no one-to-one linear
transformation T : V →W .

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.

(a) The composition of two linear transformations is also a linear
transformation.

(b) If T1: V →V and T2: V →V are any two linear operators, then
T1 ◦ T2 = T2 ◦ T1.

(c) The inverse of a one-to-one linear transformation is a linear
transformation.

(d) If a linear transformation T has an inverse, then the kernel of
T is the zero subspace.

(e) If T : R2 →R2 is the orthogonal projection onto the x-axis,
then T −1: R2 →R2 maps each point on the x-axis onto a line
that is perpendicular to the x-axis.

(f ) If T1: U →V and T2: V →W are linear transformations, and
if T1 is not one-to-one, then neither is T2 ◦ T1.

8.3 Isomorphism
In this section we will establish a fundamental connection between real finite-dimensional
vector spaces and the Euclidean space Rn. This connection is not only important
theoretically, but it has practical applications in that is allows us to perform vector
computations in general vector spaces by working with the vectors in Rn.

Isomorphism Although many of the theorems in this text have been concerned exclusively with the
vector space Rn, this is not as limiting as it might seem. We will show that the vector
space Rn is the “mother” of all real n-dimensional vector spaces in the sense that every
n-dimensional vector space must have the same algebraic structure as Rn even though
its vectors may not be expressed as n-tuples. To explain what we mean by this, we will
need the following definition.

DEFINITION 1 A linear transformation T :V →W that is both one-to-one and onto
is said to be an isomorphism, and W is said to be isomorphic to V .

In the exercises we will ask you to show that if T :V →W is an isomorphism, then
T −1: W →V is also an isomorphism. Accordingly, we will usually say simply that V and
W are isomorphic and that T is an isomorphism between V and W .

The word isomorphic is derived from the Greek words iso, meaning “identical,” and
morphe, meaning “form.” This terminology is appropriate because, as we will now
explain, isomorphic vector spaces have the same “algebraic form,” even though they
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may consist of different kinds of objects. For example, the following diagram illustrates
an isomorphism between P2 and R3

c0 + c1x + c2x
2 T−−−−−→←−−−−−

T −1
(c0, c1, c2)

Although the vectors on the two sides of the arrows are different kinds of objects, the
vector operations on each side mirror those on the other side. For example, for scalar
multiplication we have

k(c0 + c1x + c2x
2)

T−−−−−→←−−−−−
T −1

k(c0, c1, c2)

kc0 + kc1x + kc2x
2 T−−−−−→←−−−−−

T −1
(kc0, kc1, kc2)

and for vector addition we have

(c0 + c1x + c2x
2) + (d0 + d1x + d2x

2)
T−−−−−→←−−−−−

T −1
(c0, c1, c2) + (d0, d1, d2)

(c0 + d0) + (c1 + d1)x + (c2 + d2)x
2 T−−−−−→←−−−−−

T −1
(c0 + d0, c1 + d1, c2 + d2)

The following theorem, which is one of the most basic results in linear algebra, reveals
the fundamental importance of the vector space Rn.

THEOREM 8.3.1 Every real n-dimensional vector space is isomorphic to Rn.

Proof Let V be a real n-dimensional vector space. To prove that V is isomorphic to Rn

Theorem 8.3.1 tells us that ev-
ery real n-dimensional vector
space differs from Rn only in
notation; the algebraic struc-
tures of the two spaces are the
same.

we must find a linear transformation T : V →Rn that is one-to-one and onto. For this
purpose, let

S = {v1, v2, . . . , vn}
be any basis for V, let

u = k1v1 + k2v2 + · · · + knvn (1)

be the representation of a vector u in V as a linear combination of the basis vectors, and
let T : V →Rn be the coordinate map

T(u) = (u)S = (k1, k2, . . . , kn) (2)

We will show that T is an isomorphism (linear, one-to-one, and onto). To prove the
linearity, let u and v be vectors in V, let c be a scalar, and let

u = k1v1 + k2v2 + · · · + knvn and v = d1v1 + d2v2 + · · · + dnvn (3)

be the representations of u and v as linear combinations of the basis vectors. Then it
follows from (3) that

T(cu) = T(ck1v1 + ck2v2 + · · · + cknvn)

= (ck1, ck2, . . . , ckn)

= c(k1, k2, . . . , kn) = cT(u)

and that

T(u + v) = T
(
(k1 + d1)v1 + (k2 + d2)v2 + · · · + (kn + dn)vn

)
= (k1 + d1, k2 + d2, . . . , kn + dn)

= (k1, k2, . . . , kn) + (d1, d2, . . . , dn)

= T(u) + T(v)

which shows that T is linear. To show that T is one-to-one, we must show that if u
and v are distinct vectors in V, then so are their images in Rn. But if u �= v, and if the
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representations of these vectors in terms of the basis vectors are as in (3), then we must
have ki �= di for at least one i. Thus,

T(u) = (k1, k2, . . . , kn) �= (d1, d2, . . . , dn) = T(v)

which shows that u and v have distinct images under T . Finally, the transformation T is
onto, for if

w = (k1, k2, . . . , kn)

is any vector in Rn, then it follows from (2) that w is the image under T of the vector

u = k1v1 + k2v2 + · · · + knvn

Whereas Theorem 8.3.1 tells us, in general, that every n-dimensional vector space is
isomorphic to Rn, it is Formula (2) in its proof that tells us how to find isomorphisms.

THEOREM 8.3.2 If S = {v1, v2, . . . , vn} is a basis for a vector space V , then the coor-
dinate map

u
T−→ (u)S

is an isomorphism between V and Rn.

Remark Recall that coordinate maps depend on the order in which the basis vectors are listed.
Thus, Theorem 8.3.2 actually describes many possible isomorphisms, one for each of the n!possible
orders in which the basis vectors can be listed.

EXAMPLE 1 The Natural Isomorphism Between Pn–1 and Rn

It follows from Theorem 8.3.2 that the coordinate map

a0 + a1x + · · · + an−1x
n−1 T−→ (a0, a1, . . . , an−1)

defines an isomorphism betweenPn−1 andRn. This is called natural isomorphism between
those vector spaces.

EXAMPLE 2 The Natural Isomorphism BetweenM22 and R4

It follows from Theorem 8.3.2 that the coordinate map[
a b

c d

]
T−→ (a, b, c, d)

defines an isomorphism between M22 and R4. This is a special case of the isomorphism
that maps an m × n matrix into its coordinate vector. We call this the natural isomorphism
between Mmn and Rmn.

EXAMPLE 3 Differentiation by Matrix Multiplication

Consider the differentiation transformation D : P3 →P2 on the vector space of poly-

CA L C U L U S R E Q U I R E D

nomials of degree 3 or less. If we map P3 and P2 into R4 and R3, respectively, by
the natural isomorphisms, then the transformation D produces a corresponding matrix
transformation from R4 to R3. Specifically, the derivative transformation

a0 + a1x + a2x
2 + a3x

3 D−→ a1 + 2a2x + 3a3x
2
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produces the matrix transformation⎡
⎢⎣0 1 0 0

0 0 2 0

0 0 0 3

⎤
⎥⎦
⎡
⎢⎢⎢⎣

a0

a1

a2

a3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ a1

2a2

3a3

⎤
⎥⎦

Thus, for example, the derivative

d

dx
(2 + x + 4x2 − x3) = 1 + 8x − 3x2

can be calculated as the matrix product⎡
⎢⎣0 1 0 0

0 0 2 0

0 0 0 3

⎤
⎥⎦
⎡
⎢⎢⎢⎣

2

1

4

−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣ 1

8

−3

⎤
⎥⎦

This idea is useful for constructing numerical algorithms to calculate derivatives.

EXAMPLE 4 Working with Isomorphisms

Use the natural isomorphism between P5 and R6 to determine whether the following
polynomials are linearly independent.

p1 = 1 + 2x − 3x2 + 4x3 + x5

p2 = 1 + 3x − 4x2 + 6x3 + 5x4 + 4x5

p3 = 3 + 8x − 11x2 − 16x3 + 10x4 + 9x5

Solution We will convert this to a matrix problem by creating a matrix whose rows
are the coordinate vectors of the polynomials under the natural isomorphism and then
determine whether those rows are linearly independent using elementary row operations.
The matrix whose rows are the coordinate vectors of the polynomials under the natural
isomorphism is

A =
⎡
⎢⎣1 2 −3 4 0 1

1 3 −4 6 5 4

3 8 −11 16 10 9

⎤
⎥⎦

We leave it for you to use elementary row operations to reduce this matrix to the row
echelon form

R =
⎡
⎢⎣1 2 −3 4 0 1

0 1 −1 2 5 3

0 0 0 0 0 0

⎤
⎥⎦

This matrix has only two nonzero rows, so the row space of A is two-dimensional, which
means that its row vectors are linearly dependent. Hence so are the given polynomi-
als.

Inner Product Space
Isomorphisms

In the case where V is a real n-dimensional inner product space, both V and Rn have, in
addition to their algebraic structure, a geometric structure arising from their respective
inner products. Thus, it is reasonable to inquire if there exists an isomorphism from V to
Rn that preserves the geometric structure as well as the algebraic structure. For example,
we would want orthogonal vectors in V to have orthogonal counterparts in Rn, and we
would want orthonormal sets in V to correspond to orthonormal sets in Rn.

In order for an isomorphism to preserve geometric structure, it obviously has to
preserve inner products, since notions of length, angle, and orthogonality are all based
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on the inner product. Thus, if V and W are inner product spaces, then we call an
isomorphism T : V →W an inner product space isomorphism if

〈T(u), T(v)〉 = 〈u, v〉 for all u and v in V

The following analog of Theorem 8.3.2 provides an important method for obtaining
inner product space isomorphisms between real inner product spaces and Euclidean
vector spaces.

THEOREM 8.3.3 If S = {v1, v2, . . . , vn} is an ordered orthonormal basis for a real
vector space V, then the coordinate map

u
T−→ (u)S

is an inner product space isomorphism between V and the vector space Rn with the
Euclidean inner product.

EXAMPLE 5 An Inner Product Space Isomorphism

We saw in Example 1 that the coordinate map

a0 + a1x + · · · + an−1x
n−1 T−→ (a0, a1, . . . , an−1)

with respect to the standard basis for Pn−1 is an isomorphism between Pn−1 and Rn.
However, the standard basis is orthonormal with respect to the standard inner product
on Pn−1 (see Example 3 of Section 6.3), so it follows that T is actually an inner product
space isomorphismwith respect to the standard inner product on Pn−1 and the Euclidean
inner product on Rn. To verify that this is so, recall from Example 7 of Section 6.1 that
the standard inner product on Pn−1 of two vectors

p = a0 + a1x + · · · + an−1x
n−1 and q = b0 + b1x + · · · + bn−1x

n−1

is
〈p, q〉 = a0b0 + a1b1 + · · · + an−1bn−1

But this is exactly the Euclidean inner product on Rn of the n-tuples

(a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1)

EXAMPLE 6 A Notational Matter

Let Rn be the vector space of real n-tuples in comma-delimited form, let Mn be the vector
space of real n × 1 matrices, let Rn have the Euclidean inner product 〈u, v〉 = u · v, and
let Mn have the inner product 〈u, v〉 = uTv in which u and v are expressed in column
form. The mapping T : Rn →Mn defined by

(v1, v2, . . . , vn)
T−→

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦

is an inner product space isomorphism, so the distinction between the inner product
space Rn and the inner product space Mn is essentially notational, a fact that we have
used many times in this text.
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Exercise Set 8.3
In Exercises 1–8, state whether the transformation is an iso-

morphism. No proof required.

1. c0 + c1x→(c0 − c1, c1) from P1 to R2.

2. (x, y)→(x, y, 0) from R2 to R3.

3. a + bx + cx2 + dx3 →
[
a b

c d

]
from P3 to M22.

4.

[
a b

c d

]
→ad − bc from M22 to R.

5. (a, b, c, d)→a + bx + cx2 + (d + 1)x3 from R4 to P3.

6. A→AT from Mnn to Mnn.

7. c1 sin x + c2 cos x→(c1, c2) from the subspace of C(−�, �)

spanned by S = {sin x, cos x} to R2.

8. The map (u1, u2, . . . , un, . . .)→(0, u1, u2, . . . , un, . . .) from
R� to R�.

9. (a) Find an isomorphism between the vector space of all 3 × 3
symmetric matrices and R6.

(b) Find two different isomorphisms between the vector space
of all 2 × 2 matrices and R4.

10. (a) Find an isomorphism between the vector space of all poly-
nomials of degree at most 3 such that p(0) = 0 and R3.

(b) Find an isomorphism between the vector spaces
span{1, sin(x), cos(x)} and R3.

In Exercises 11–12, determine whether the matrix transforma-
tion TA:R3 →R3 is an isomorphism.

11. A =
⎡
⎢⎣

0 1 −1

1 0 2

−1 1 0

⎤
⎥⎦ 12. A =

⎡
⎢⎣

1 −1 0

0 0 2

−1 1 0

⎤
⎥⎦

In Exercises 13–14, find the dimension n of the solution space
W of Ax = 0, and then construct an isomorphism between W and
Rn.

13. A =
⎡
⎢⎣

1 1 1 1

2 2 2 2

3 3 3 3

⎤
⎥⎦ 14. A =

⎡
⎢⎢⎢⎣

1 0 1 0

1 0 1 0

0 1 0 1

0 1 0 1

⎤
⎥⎥⎥⎦

In Exercises 15–16, determine whether the transformation is
an isomorphism from M22 to R4.

15.

[
a b

c d

]
→

⎡
⎢⎢⎢⎣

a

a + b

a + b + c

a + b + c + d

⎤
⎥⎥⎥⎦

16.

[
a b

c d

]
→

⎡
⎢⎢⎢⎣

a + b

a + b

a + b + c

a + b + c + d

⎤
⎥⎥⎥⎦

17. Do you think that R2 is isomorphic to the xy-plane in R3?
Justify your answer.

18. (a) For what value or values of k, if any, is Mmn isomorphic
to Rk?

(b) For what value or values of k, if any, is Mmn isomorphic
to Pk?

19. Let T :P2 →M22 be the mapping

T (p) = T (p(x)) =
[
p(0) p(1)

p(1) p(0)

]

Is this an isomorphism? Justify your answer.

20. Show that if M22 and P3 have the standard inner products
given in Examples 6 and 7 of Section 6.1, then the mapping[

a0 a1

a2 a3

]
→a0 + a1x + a2x

2 + a3x
3

is an inner product space isomorphism between those spaces.

21. (Calculus required ) Devise a method for using matrix mul-
tiplication to differentiate functions in the vector space
span{1, sin(x), cos(x), sin(2x), cos(2x)}. Use your method
to find the derivative of 3 − 4 sin(x) + sin(2x) + 5 cos(2x).

Working with Proofs

22. Prove that if T : V →W is an isomorphism, then so is
T −1: W →V .

23. Prove that if U , V , and W are vector spaces such that U is iso-
morphic to V and V is isomorphic to W , then U is isomorphic
to W .

24. Use the result in Exercise 22 to prove that any two real finite-
dimensional vector spaces with the same dimension are iso-
morphic to one another.

25. Prove that an inner product space isomorphism preserves an-
gles and distances—that is, the angle between u and v in
V is equal to the angle between T(u) and T(v) in W , and
‖u − v‖V = ‖T(u) − T (v)‖W .

26. Prove that an inner product space isomorphism maps ortho-
normal sets into orthonormal sets.

True-False Exercises

TF. In parts (a)–(f) determine whether the statement is true or
false, and justify your answer.
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(a) The vector spaces R2 and P2 are isomorphic.

(b) If the kernel of a linear transformation T : P3 →P3 is {0}, then
T is an isomorphism.

(c) Every linear transformation fromM33 toP9 is an isomorphism.

(d) There is a subspace of M23 that is isomorphic to R4.

(e) Isomorphic finite-dimensional vector spaces must have the
same number of basis vectors.

(f ) Rn is isomorphic to a subspace of Rn+1.

8.4 Matrices for General LinearTransformations
In this section we will show that a general linear transformation from any n-dimensional
vector space V to any m-dimensional vector space W can be performed using an
appropriate matrix transformation from Rn to Rm. This idea is used in computer
computations since computers are well suited for performing matrix computations.

Matrices of Linear
Transformations

Suppose that V is an n-dimensional vector space, that W is an m-dimensional vector
space, and that T : V →W is a linear transformation. Suppose further that B is a basis
for V, that B ′ is a basis for W , and that for each vector x in V, the coordinate matrices
for x and T(x) are [x]B and [T(x)]B ′ , respectively (Figure 8.4.1).

Figure 8.4.1

x

[x]B [T(x)]B´́

T(x)
T

A vector
in V

(n-dimensional)

A vector
in Rn

A vector
in W

(m-dimensional)

A vector
in Rm

It will be our goal to find an m × n matrix A such that multiplication by A maps
the vector [x]B into the vector [T(x)]B ′ for each x in V (Figure 8.4.2a). If we can do so,
then, as illustrated in Figure 8.4.2b, we will be able to execute the linear transformation
T by using matrix multiplication and the following indirect procedure:

Finding T(x) Indirectly

Step 1. Compute the coordinate vector [x]B .

Step 2. Multiply [x]B on the left by A to produce [T(x)]B ′ .

Step 3. Reconstruct T(x) from its coordinate vector [T(x)]B ′ .

Figure 8.4.2

x

[x]B [T(x)]B´

T(x)T

A

Multiplication by A maps Rn into Rm

T maps
V into W

x

[x]B [T(x)]B́

T(x)Direct
computation

Multiply by A

(1)

(2)

(3)

(a) (b)
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The key to executing this plan is to find an m × n matrix A with the property that

A[x]B = [T(x)]B ′ (1)

For this purpose, let B = {u1, u2, . . . , un} be a basis for the n-dimensional space V and
B ′ = {v1, v2, . . . , vm} a basis for the m-dimensional space W . Since Equation (1) must
hold for all vectors in V, it must hold, in particular, for the basis vectors in B; that is,

A[u1]B = [T(u1)]B ′ , A[u2]B = [T(u2)]B ′ , . . . , A[un]B = [T(un)]B ′ (2)

But

[u1]B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦, [u2]B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎦, . . . , [un]B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

1

⎤
⎥⎥⎥⎥⎥⎥⎦

so

A[u1]B =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11

a21

...
am1

⎤
⎥⎥⎥⎦

A[u2]B =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦

...
...

...

A[un]B =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0
...
1

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1n

a2n

...
amn

⎤
⎥⎥⎥⎦

Substituting these results into (2) yields⎡
⎢⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎥⎦ = [T(u1)]B ′ ,

⎡
⎢⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎥⎦ = [T(u2)]B ′ , . . . ,

⎡
⎢⎢⎢⎢⎣

a1n

a2n

...

amn

⎤
⎥⎥⎥⎥⎦ = [T(un)]B ′

which shows that the successive columns of A are the coordinate vectors of

T(u1), T(u2), . . . , T(un)

with respect to the basis B ′. Thus, the matrix A that completes the link in Figure 8.4.2a is

A = [[T(u1)]B ′ | [T(u2)]B ′ | · · · | [T(un)]B ′
]

(3)

We will call this the matrix for T relative to the bases B and B′ and will denote it by the
symbol [T ]B ′,B . Using this notation, Formula (3) can be written as

[T ]B ′,B = [[T(u1)]B ′ | [T(u2)]B ′ | · · · | [T(un)]B ′
]

(4)
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and from (1), this matrix has the property

[T ]B ′,B[x]B = [T(x)]B ′ (5)

We leave it as an exercise to show that in the special case where TC : Rn →Rm is multi-
plication by C, and where B and B ′ are the standard bases for Rn and Rm, respectively,
then

[TC]B ′,B = C (6)

Remark Observe that in the notation [T ]B ′,B the right subscript is a basis for the domain of T ,
and the left subscript is a basis for the image space of T (Figure 8.4.3). Moreover, observe how
the subscript B seems to “cancel out” in Formula (5) (Figure 8.4.4).

[T ]
B´,B

Basis for the
image space

Basis for the
domain

Figure 8.4.3

[T ]
B´,B

[x]
B = [T(x)]B´

Cancellation

Figure 8.4.4

EXAMPLE 1 Matrix for a LinearTransformation

Let T : P1 →P2 be the linear transformation defined by

T(p(x)) = xp(x)

Find the matrix for T with respect to the standard bases

B = {u1, u2} and B ′ = {v1, v2, v3}
where

u1 = 1, u2 = x; v1 = 1, v2 = x, v3 = x2

Solution From the given formula for T we obtain

T(u1) = T(1) = (x)(1) = x

T(u2) = T(x) = (x)(x) = x2

By inspection, the coordinate vectors for T(u1) and T(u2) relative to B ′ are

[T(u1)]B ′ =
⎡
⎢⎣0

1

0

⎤
⎥⎦, [T(u2)]B ′ =

⎡
⎢⎣0

0

1

⎤
⎥⎦

Thus, the matrix for T with respect to B and B ′ is

[T ]B ′,B = [[T(u1)]B ′ | [T(u2)]B ′
] =

⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦

EXAMPLE 2 TheThree-Step Procedure

Let T : P1 →P2 be the linear transformation in Example 1, and use the three-step pro-
cedure described in the following figure to perform the computation

T(a + bx) = x(a + bx) = ax + bx2

x

[x]B [T(x)]B´

T(x)Direct
computation

Multiply by [T ]B́ ,B

(1)

(2)

(3)
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Solution

Step 1. The coordinate matrix for x = a + bx relative to the basis B = {1, x} is

[x]B =
[
a

b

]
Step 2. Multiplying [x]B by the matrix [T ]B ′,B found in Example 1 we obtain

Although Example 2 is sim-
ple, the procedure that it illus-
trates is applicable to problems
of great complexity.

[T ]B ′,B[x]B =
⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦[a

b

]
=
⎡
⎢⎣0

a

b

⎤
⎥⎦ = [T(x)]B ′

Step 3. Reconstructing T(x) = T(a + bx) from [T(x)]B ′ we obtain

T(a + bx) = 0 + ax + bx2 = ax + bx2

EXAMPLE 3 Matrix for a LinearTransformation

Let T : R2 →R3 be the linear transformation defined by

T

([
x1

x2

])
=
⎡
⎢⎣ x2

−5x1 + 13x2

−7x1 + 16x2

⎤
⎥⎦ =

⎡
⎢⎣ 0 1

−5 13

−7 16

⎤
⎥⎦[x1

x2

]

Find the matrix for the transformation T with respect to the bases B = {u1, u2} for R2

and B ′ = {v1, v2, v3} for R3, where

u1 =
[

3

1

]
, u2 =

[
5

2

]
; v1 =

⎡
⎢⎣ 1

0

−1

⎤
⎥⎦, v2 =

⎡
⎢⎣−1

2

2

⎤
⎥⎦, v3 =

⎡
⎢⎣0

1

2

⎤
⎥⎦

Solution From the formula for T ,

T(u1) =
⎡
⎢⎣ 1

−2

−5

⎤
⎥⎦, T(u2) =

⎡
⎢⎣ 2

1

−3

⎤
⎥⎦

Expressing these vectors as linear combinations of v1, v2, and v3, we obtain (verify)

T(u1) = v1 − 2v3, T(u2) = 3v1 + v2 − v3

Thus,

[T(u1)]B ′ =
⎡
⎢⎣ 1

0

−2

⎤
⎥⎦, [T(u2)]B ′ =

⎡
⎢⎣ 3

1

−1

⎤
⎥⎦

so

[T ]B ′,B = [[T(u1)]B ′ | [T(u2)]B ′
] =

⎡
⎢⎣ 1 3

0 1

−2 −1

⎤
⎥⎦

Remark Example 3 illustrates that a fixed linear transformation generally has multiple represen-
tations, each depending on the bases chosen. In this case the matrices

[T ] =
⎡
⎢⎣ 0 1

−5 13

−7 16

⎤
⎥⎦ and [T ]B ′,B =

⎡
⎢⎣ 1 3

0 1

−2 −1

⎤
⎥⎦

both represent the transformation T , the first relative to the standard bases for R2 and R3, the
second relative to the bases B and B ′ stated in the example.
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Matrices of Linear
Operators

In the special case where V = W (so that T : V →V is a linear operator), it is usual to
take B = B ′ when constructing a matrix for T . In this case the resulting matrix is called
the matrix for T relative to the basis B and is usually denoted by [T ]B rather than [T ]B,B .
If B = {u1, u2, . . . , un}, then Formulas (4) and (5) become

Phrased informally, Formulas
(7) and (8) state that the ma-
trix for T , when multiplied by
the coordinate vector forx, pro-
duces the coordinate vector for
T(x).

[T ]B = [[T(u1)]B | [T(u2)]B | · · · | [T(un)]B
]

(7)

[T ]B[x]B = [T(x)]B (8)

In the special case where T : Rn →Rn is a matrix operator, say multiplication by A, and
B is the standard basis for Rn, then Formula (7) simplifies to

[T ]B = A (9)

Matrices of Identity
Operators

Recall that the identity operator I : V →V maps every vector in V into itself, that is,
I (x) = x for every vector x in V. The following example shows that if V is n-dimensional,
then the matrix for I relative to any basis B for V is the n × n identity matrix.

EXAMPLE 4 Matrices of Identity Operators

If B = {u1, u2, . . . , un} is a basis for a finite-dimensional vector space V, and if I : V →V

is the identity operator on V, then

I (u1) = u1, I (u2) = u2, . . . , I (un) = un

Therefore,

[I ]B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 1 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦ = I

�

[I (u1)]B

�

[I (u2)]B

�

[I (un)]B

EXAMPLE 5 Linear Operator on P2

Let T : P2 →P2 be the linear operator defined by

T(p(x)) = p(3x − 5)

that is, T(c0 + c1x + c2x
2) = c0 + c1(3x − 5) + c2(3x − 5)2.

(a) Find [T ]B relative to the basis B = {1, x, x2}.
(b) Use the indirect procedure to compute T(1 + 2x + 3x2).

(c) Check the result in (b) by computing T(1 + 2x + 3x2) directly.

Solution (a) From the formula for T ,

T(1) = 1, T(x) = 3x − 5, T(x2) = (3x − 5)2 = 9x2 − 30x + 25

so

[T(1)]B =
⎡
⎢⎣1

0

0

⎤
⎥⎦, [T(x)]B =

⎡
⎢⎣−5

3

0

⎤
⎥⎦, [T(x2)]B =

⎡
⎢⎣ 25

−30

9

⎤
⎥⎦
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Thus,

[T ]B =
⎡
⎢⎣1 −5 25

0 3 −30

0 0 9

⎤
⎥⎦

Solution (b)

Step 1. The coordinate matrix for p = 1 + 2x + 3x2 relative to the basis B = {1, x, x2}
is

[p]B =
⎡
⎢⎣1

2

3

⎤
⎥⎦

Step 2. Multiplying [p]B by the matrix [T ]B found in part (a) we obtain

[T ]B[p]B =
⎡
⎢⎣1 −5 25

0 3 −30

0 0 9

⎤
⎥⎦
⎡
⎢⎣1

2

3

⎤
⎥⎦ =

⎡
⎢⎣ 66

−84

27

⎤
⎥⎦ = [T(p)]B

Step 3. Reconstructing T(p) = T(1 + 2x + 3x2) from [T(p)]B we obtain

T(1 + 2x + 3x2) = 66 − 84x + 27x2

Solution (c) By direct computation,

T(1 + 2x + 3x2) = 1 + 2(3x − 5) + 3(3x − 5)2

= 1 + 6x − 10 + 27x2 − 90x + 75

= 66 − 84x + 27x2

which agrees with the result in (b).

Matrices of Compositions
and Inverse

Transformations

We will conclude this section by mentioning two theorems without proof that are gen-
eralizations of Formulas (4) and (9) of Section 4.10.

THEOREM 8.4.1 If T1: U →V and T2: V →W are linear transformations, and if B,

B ′′, and B ′ are bases for U, V, and W, respectively, then

[T2 ◦ T1]B ′,B = [T2]B ′,B ′′ [T1]B ′′,B (10)

THEOREM 8.4.2 If T : V →V is a linear operator, and if B is a basis for V, then the
following are equivalent.

(a) T is one-to-one.

(b) [T ]B is invertible.

Moreover, when these equivalent conditions hold,

[T −1]B = [T ]−1
B (11)

Remark In (10), observe how the interior subscript B ′′ (the basis for the intermediate space V )
seems to “cancel out,” leaving only the bases for the domain and image space of the composition
as subscripts (Figure 8.4.5). This “cancellation” of interior subscripts suggests the following
extension of Formula (10) to compositions of three linear transformations (Figure 8.4.6):

[T2 ° T1
]
B´,B = [T2

]
B´,B´́  [T1

]
B´́ ,B

Cancellation

Figure 8.4.5
[T3 ◦ T2 ◦ T1]B ′,B = [T3]B ′,B ′′′ [T2]B ′′′,B ′′ [T1]B ′′,B (12)
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Basis B Basis B´́ Basis B´́ ´ Basis B´

T1 T3T2

Figure 8.4.6

The following example illustrates Theorem 8.4.1.

EXAMPLE 6 Composition

Let T1: P1 →P2 be the linear transformation defined by

T1(p(x)) = xp(x)

and let T2: P2 →P2 be the linear operator defined by

T2(p(x)) = p(3x − 5)

Then the composition (T2 ◦ T1): P1 →P2 is given by

(T2 ◦ T1)(p(x)) = T2(T1(p(x))) = T2(xp(x)) = (3x − 5)p(3x − 5)

Thus, if p(x) = c0 + c1x, then

(T2 ◦ T1)(c0 + c1x) = (3x − 5)
(
c0 + c1(3x − 5)

)
= c0(3x − 5) + c1(3x − 5)2 (13)

In this example, P1 plays the role of U in Theorem 8.4.1, and P2 plays the roles of both
V and W ; thus we can take B ′ = B ′′ in (10) so that the formula simplifies to

[T2 ◦ T1]B ′,B = [T2]B ′ [T1]B ′,B (14)

Let us choose B = {1, x} to be the basis for P1 and choose B ′ = {1, x, x2} to be the basis
for P2. We showed in Examples 1 and 5 that

[T1]B ′,B =
⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦ and [T2]B ′ =

⎡
⎢⎣1 −5 25

0 3 −30

0 0 9

⎤
⎥⎦

Thus, it follows from (14) that

[T2 ◦ T1]B ′,B =
⎡
⎢⎣1 −5 25

0 3 −30

0 0 9

⎤
⎥⎦
⎡
⎢⎣0 0

1 0

0 1

⎤
⎥⎦ =

⎡
⎢⎣−5 25

3 −30

0 9

⎤
⎥⎦ (15)

As a check, we will calculate [T2 ◦ T1]B ′,B directly from Formula (4). Since B = {1, x},
it follows from Formula (4) with u1 = 1 and u2 = x that

[T2 ◦ T1]B ′,B = [[(T2 ◦ T1)(1)]B ′ | [(T2 ◦ T1)(x)]B ′
]

(16)

Using (13) yields

(T2 ◦ T1)(1) = 3x − 5 and (T2 ◦ T1)(x) = (3x − 5)2 = 9x2 − 30x + 25

From this and the fact that B ′ = {1, x, x2}, it follows that

[(T2 ◦ T1)(1)]B ′ =
⎡
⎢⎣−5

3

0

⎤
⎥⎦ and [(T2 ◦ T1)(x)]B ′ =

⎡
⎢⎣ 25

−30

9

⎤
⎥⎦

Substituting in (16) yields

[T2 ◦ T1]B ′,B =
⎡
⎢⎣−5 25

3 −30

0 9

⎤
⎥⎦

which agrees with (15).
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Exercise Set 8.4
1. Let T : P2 →P3 be the linear transformation defined by

T(p(x)) = xp(x).

(a) Find the matrix for T relative to the standard bases

B = {u1, u2, u3} and B ′ = {v1, v2, v3, v4}
where

u1 = 1, u2 = x, u3 = x2

v1 = 1, v2 = x, v3 = x2, v4 = x3

(b) Verify that the matrix [T ]B ′,B obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x + c2x

2 in P2.

2. Let T : P2 →P1 be the linear transformation defined by

T(a0 + a1x + a2x
2) = (a0 + a1) − (2a1 + 3a2)x

(a) Find the matrix for T relative to the standard bases
B = {1, x, x2} and B ′ = {1, x} for P2 and P1.

(b) Verify that the matrix [T ]B ′,B obtained in part (a) satisfies
Formula (5) for every vector x = c0 + c1x + c2x

2 in P2.

3. Let T : P2 →P2 be the linear operator defined by

T(a0 + a1x + a2x
2) = a0 + a1(x − 1) + a2(x − 1)2

(a) Find the matrix for T relative to the standard basis
B = {1, x, x2} for P2.

(b) Verify that the matrix [T ]B obtained in part (a) satisfies
Formula (8) for every vector x = a0 + a1x + a2x

2 in P2.

4. Let T : R2 →R2 be the linear operator defined by

T

([
x1

x2

])
=
[
x1 − x2

x1 + x2

]
and let B = {u1, u2} be the basis for which

u1 =
[

1

1

]
and u2 =

[−1

0

]
(a) Find [T ]B .

(b) Verify that Formula (8) holds for every vector x in R2.

5. Let T : R2 →R3 be defined by

T

([
x1

x2

])
=
⎡
⎢⎣x1 + 2x2

−x1

0

⎤
⎥⎦

(a) Find the matrix [T ]B ′,B relative to the bases
B = {u1, u2} and B ′ = {v1, v2, v3}, where

u1 =
[

1

3

]
, u2 =

[−2

4

]

v1 =
⎡
⎢⎣1

1

1

⎤
⎥⎦, v2 =

⎡
⎢⎣2

2

0

⎤
⎥⎦, v3 =

⎡
⎢⎣3

0

0

⎤
⎥⎦

(b) Verify that Formula (5) holds for every vector in R2.

6. Let T : R3 →R3 be the linear operator defined by

T(x1, x2, x3) = (x1 − x2, x2 − x1, x1 − x3)

(a) Find the matrix for T with respect to the basis
B = {v1, v2, v3}, where

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (1, 1, 0)

(b) Verify that Formula (8) holds for every vector
x = (x1, x2, x3) in R3.

(c) Is T one-to-one? If so, find the matrix of T −1 with respect
to the basis B.

7. Let T : P2 →P2 be the linear operator defined by
T(p(x)) = p(2x + 1), that is,

T(c0 + c1x + c2x
2) = c0 + c1(2x + 1) + c2(2x + 1)2

(a) Find [T ]B with respect to the basis B = {1, x, x2}.
(b) Use the three-step procedure illustrated in Example 2 to

compute T(2 − 3x + 4x2).

(c) Check the result obtained in part (b) by computing
T(2 − 3x + 4x2) directly.

8. Let T : P2 →P3 be the linear transformation defined by
T(p(x)) = xp(x − 3), that is,

T(c0 + c1x + c2x
2) = x

(
c0 + c1(x − 3) + c2(x − 3)2

)
(a) Find [T ]B ′,B relative to the bases B = {1, x, x2} and

B ′ = {1, x, x2, x3}.
(b) Use the three-step procedure illustrated in Example 2 to

compute T(1 + x − x2).

(c) Check the result obtained in part (b) by computing
T(1 + x − x2) directly.

9. Let v1 =
[

1

3

]
and v2 =

[−1

4

]
, and let A =

[
1 3

−2 5

]
be the

matrix for T : R2 →R2 relative to the basis B = {v1, v2}.
(a) Find [T(v1)]B and [T(v2)]B .

(b) Find T(v1) and T(v2).

(c) Find a formula for T

([
x1

x2

])
.

(d) Use the formula obtained in (c) to compute T

([
1

1

])
.

10. Let A =
⎡
⎢⎣ 3 −2 1 0

1 6 2 1

−3 0 7 1

⎤
⎥⎦ be the matrix for

T : R4 →R3 relative to the bases B = {v1, v2, v3, v4} and
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B ′ = {w1, w2, w3}, where

v1 =

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦, v2 =

⎡
⎢⎢⎣

2
1

−1
−1

⎤
⎥⎥⎦, v3 =

⎡
⎢⎢⎣

1
4

−1
2

⎤
⎥⎥⎦, v4 =

⎡
⎢⎢⎣

6
9
4
2

⎤
⎥⎥⎦

w1 =
⎡
⎣0

8
8

⎤
⎦, w2 =

⎡
⎣−7

8
1

⎤
⎦, w3 =

⎡
⎣−6

9
1

⎤
⎦

(a) Find [T(v1)]B ′ , [T(v2)]B ′ , [T(v3)]B ′ , and [T(v4)]B ′ .

(b) Find T(v1), T(v2), T(v3), and T(v4).

(c) Find a formula for T

⎛
⎜⎜⎝
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦
⎞
⎟⎟⎠.

(d) Use the formula obtained in (c) to compute T

⎛
⎜⎜⎝
⎡
⎢⎢⎣

2
2
0
0

⎤
⎥⎥⎦
⎞
⎟⎟⎠.

11. Let A =
⎡
⎣1 3 −1

2 0 5
6 −2 4

⎤
⎦ be the matrix for T : P2 →P2 with

respect to the basis B = {v1, v2, v3}, where v1 = 3x + 3x2,
v2 = −1 + 3x + 2x2, v3 = 3 + 7x + 2x2.

(a) Find [T(v1)]B , [T(v2)]B , and [T(v3)]B .

(b) Find T(v1), T(v2), and T(v3).

(c) Find a formula for T(a0 + a1x + a2x
2).

(d) Use the formula obtained in (c) to compute T(1 + x2).

12. Let T1: P1 →P2 be the linear transformation defined by

T1(p(x)) = xp(x)

and let T2: P2 →P2 be the linear operator defined by

T2(p(x)) = p(2x + 1)

Let B = {1, x} and B ′ = {1, x, x2} be the standard bases for
P1 and P2.

(a) Find [T2 ◦ T1]B ′,B , [T2]B ′ , and [T1]B ′,B .

(b) State a formula relating the matrices in part (a).

(c) Verify that the matrices in part (a) satisfy the formula you
stated in part (b).

13. Let T1: P1 →P2 be the linear transformation defined by

T1(c0 + c1x) = 2c0 − 3c1x

and let T2: P2 →P3 be the linear transformation defined by

T2(c0 + c1x + c2x
2) = 3c0x + 3c1x

2 + 3c2x
3

Let B = {1, x}, B ′′ = {1, x, x2}, and B ′ = {1, x, x2, x3}.
(a) Find [T2 ◦ T1]B ′,B , [T2]B ′,B ′′ , and [T1]B ′′,B .

(b) State a formula relating the matrices in part (a).

(c) Verify that the matrices in part (a) satisfy the formula you
stated in part (b).

14. Let B = {v1, v2, v3, v4} be a basis for a vector space V. Find
the matrix with respect to B for the linear operator T : V →V

defined by T(v1) = v2, T(v2) = v3, T(v3) = v4, T(v4) = v1.

15. Let T : P2 →M22 be the linear transformation defined by

T (p) =
[

p(0) p(1)

p(−1) p(0)

]

let B be the standard basis for M22, and let B ′ = {1, x, x2},
B ′′ = {1, 1 + x, 1 + x2} be bases for P2.

(a) Find [T ]B,B ′ and [T ]B,B ′′ .

(b) For the matrices obtained in part (a), compute
T(2 + 2x + x2) using the three-step procedure illustrated
in Example 2.

(c) Check the results obtained in part (b) by computing
T(2 + 2x + x2) directly.

16. Let T : M22 →R2 be the linear transformation given by

T

([
a b

c d

])
=
[
a + b + c

d

]

and let B be the standard basis for M22, B
′ the standard basis

for R2, and

B ′′ =
{[

1

1

]
,

[−1

0

]}
(a) Find [T ]B ′,B and [T ]B ′′,B .

(b) Compute T

([
1 2

3 4

])
using the three-step procedure

that was illustrated in Example 2 for both matrices found
in part (a).

(c) Check the results obtained in part (b) by computing

T

([
1 2

3 4

])
directly.

17. (Calculus required ) Let D: P2 →P2 be the differentiation
operator D(p) = p′(x).

(a) Find the matrix for D relative to the basis B = {p1, p2, p3}
for P2 in which p1 = 1, p2 = x, p3 = x2.

(b) Use the matrix in part (a) to compute D(6 − 6x + 24x2).

18. (Calculus required ) Let D: P2 →P2 be the differentiation
operator D(p) = p′(x).

(a) Find the matrix for D relative to the basis B = {p1, p2, p3}
for P2 in which p1 = 2, p2 = 2 − 3x, p3 = 2 − 3x + 8x2.

(b) Use the matrix in part (a) to compute D(6 − 6x + 24x2).

19. (Calculus required ) Let V be the vector space of real-valued
functions defined on the interval (−�, �), and let D: V →V

be the differentiation operator.

(a) Find the matrix for D relative to the basis B = {f1, f2, f3}
for V in which f1 = 1, f2 = sin x, f3 = cos x
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(b) Use the matrix in part (a) to compute

D(2 + 3 sin x − 4 cos x)

20. Let V be a four-dimensional vector space with basis B, let
W be a seven-dimensional vector space with basis B ′, and
let T : V →W be a linear transformation. Identify the four
vector spaces that contain the vectors at the corners of the
accompanying diagram.

x

[x]B [T(x)]B´

T(x)Direct
computation

Multiply by [T ]B´,B

(1) (3)

(2) Figure Ex-20

21. In each part, fill in the missing part of the equation.

(a) [T2 ◦ T1]B ′,B = [T2] ? [T1]B ′′,B

(b) [T3 ◦ T2 ◦ T1]B ′,B = [T3] ? [T2]B ′′′,B ′′ [T1]B ′′,B

Working with Proofs

22. Prove that if T : V →W is the zero transformation, then the
matrix for T with respect to any bases for V and W is a zero
matrix.

23. Prove that if B and B ′ are the standard bases for Rn and
Rm, respectively, then the matrix for a linear transformation
T : Rn →Rm relative to the bases B and B ′ is the standard
matrix for T .

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) If the matrix of a linear transformation T : V →W relative to

some bases of V and W is

[
2 4

0 3

]
, then there is a nonzero

vector x in V such that T(x) = 2x.

(b) If the matrix of a linear transformation T : V →W relative to

bases for V and W is

[
2 4

0 3

]
, then there is a nonzero vector

x in V such that T(x) = 4x.

(c) If the matrix of a linear transformation T : V →W relative to

certain bases for V and W is

[
1 4

2 3

]
, then T is one-to-one.

(d) If S: V →V and T : V →V are linear operators and B is a
basis for V, then the matrix of S ◦ T relative to B is [T ]B [S]B .

(e) If T : V →V is an invertible linear operator and B is a basis
for V, then the matrix for T −1 relative to B is [T ]−1

B .

8.5 Similarity
The matrix for a linear operator T : V →V depends on the basis selected for V. One of the
fundamental problems of linear algebra is to choose a basis for V that makes the matrix for
T as simple as possible—a diagonal or a triangular matrix, for example. In this section we
will study this problem.

Simple Matrices for Linear
Operators

Standard bases do not necessarily produce the simplest matrices for linear operators. For
example, consider the matrix operator T : R2 →R2 whose matrix relative to the standard
basis B = {e1, e2} for R2 is

[T ]B =
[

1 1

−2 4

]
(1)

Let us compare this matrix to the matrix [T ]B ′ for the same operator T but relative to
the basis B ′ = {u′

1, u′
2} for R2 in which

u′
1 =

[
1

1

]
, u′

2 =
[

1

2

]
(2)

Since

T(u′
1) =

[
1 1

−2 4

] [
1

1

]
=
[

2

2

]
= 2u′

1 and T(u′
2) =

[
1 1

−2 4

] [
1

2

]
=
[

3

6

]
= 3u′

2

it follows that

[T(u′
1)]B ′ =

[
2

0

]
and [T(u′

2)]B ′ =
[

0

3

]
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so the matrix for T relative to the basis B ′ is

[T ]B ′ = [
T(u′

1)B ′ | T(u′
2)B ′

] = [
2 0

0 3

]
This matrix, being diagonal, has a simpler form than [T ]B and conveys clearly that the
operator T scales u′

1 by a factor of 2 and u′
2 by a factor of 3, information that is not

immediately evident from [T ]B .
One of the major themes in more advanced linear algebra courses is to determine

the “simplest possible form” that can be obtained for the matrix of a linear operator by
choosing the basis appropriately. Sometimes it is possible to obtain a diagonal matrix
(as above, for example), whereas other times one must settle for a triangular matrix or
some other form. We will only be able to touch on this important topic in this text.

The problem of finding a basis that produces the simplest possible matrix for a linear
operator T : V →V can be attacked by first finding a matrix for T relative to any basis,
typically a standard basis, where applicable, and then changing the basis in a way that
simplifies the matrix. Before pursuing this idea, it will be helpful to revisit some concepts
about changing bases.

A NewView of Transition
Matrices

Recall from Formulas (7) and (8) of Section 4.6 that if B = {u1, u2, . . . , un} and
B ′ = {u′

1, u′
2, . . . , u′

n} are bases for a vector space V, then the transition matrices from B

to B ′ and from B ′ to B are

PB→B ′ = [[u1]B ′ | [u2]B ′ | · · · | [un]B ′
]

(3)

PB ′→B = [[u′
1]B | [u′

2]B | · · · | [u′
n]B
]

(4)

where the matrices PB→B ′ and PB ′→B are inverses of each other. We also showed in
Formulas (11) and (12) of that section that if v is any vector in V, then

PB→B ′ [v]B = [v]B ′ (5)

PB ′→B[v]B ′ = [v]B (6)

The following theorem shows that transition matrices in Formulas (3) and (4) can be
viewed as matrices for identity operators.

THEOREM 8.5.1 If B and B ′ are bases for a finite-dimensional vector space V, and if
I : V →V is the identity operator on V, then

PB→B ′ = [I ]B ′,B and PB ′→B = [I ]B,B ′

Proof Suppose that B = {u1, u2, . . . , un} and B ′ = {u′
1, u′

2, . . . , u′
n} are bases for V. Us-

ing the fact that I (v) = v for all v in V, it follows from Formula (4) of Section 8.4 that

[I ]B ′,B = [[I (u1)]B ′ | [I (u2)]B ′ | · · · | [I (un)]B ′
]

= [[u1]B ′ | [u2]B ′ | · · · | [un]B ′
]

= PB→B ′ [ Formula (3) above ]

The proof that [I ]B,B ′ = PB ′→B is similar.

Effect of Changing Bases
on Matrices of Linear

Operators

We are now ready to consider the main problem in this section.

Problem If B and B ′ are two bases for a finite-dimensional vector space V, and if
T : V →V is a linear operator, what relationship, if any, exists between the matrices
[T ]B and [T ]B ′?
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The answer to this question can be obtained by considering the composition of the three
linear operators on V pictured in Figure 8.5.1.

Figure 8.5.1 Basis = B
V V V V

Basis = B´Basis = BBasis = B´

I IT

T(v)T(v)vv

In this figure, v is first mapped into itself by the identity operator, then v is mapped
into T(v) by T , and then T(v) is mapped into itself by the identity operator. All four
vector spaces involved in the composition are the same (namely, V ), but the bases for the
spaces vary. Since the starting vector is v and the final vector is T(v), the composition
produces the same result as applying T directly; that is,

T = I ◦ T ◦ I (7)

If, as illustrated in Figure 8.5.1, the first and last vector spaces are assigned the basis B ′
and the middle two spaces are assigned the basis B, then it follows from (7) and For-
mula (12) of Section 8.4 (with an appropriate adjustment to the names of the bases) that

[T ]B ′,B ′ = [I ◦ T ◦ I ]B ′,B ′ = [I ]B ′,B[T ]B,B[I ]B,B ′ (8)

or, in simpler notation,
[T ]B ′ = [I ]B ′,B[T ]B[I ]B,B ′ (9)

We can simplify this formula even further by using Theorem 8.5.1 to rewrite it as

[T ]B ′ = PB→B ′ [T ]BPB ′→B (10)

In summary, we have the following theorem.

THEOREM 8.5.2 Let T : V →V be a linear operator on a finite-dimensional vector
space V, and let B and B ′ be bases for V. Then

[T ]B ′ = P−1[T ]BP (11)

where P = PB ′→B and P−1 = PB→B ′ .

Warning When applying Theorem 8.5.2, it is easy to forget whether P = PB ′→B (correct) or
P = PB→B ′ (incorrect). It may help to use the diagram in Figure 8.5.2 and observe that the
exterior subscripts of the transition matrices match the subscript of the matrix they enclose.

[T ]
B´ = PB→B´ [T ]

B PB´→B

Exterior subscripts

Figure 8.5.2
In the terminology of Definition 1 of Section 5.2, Theorem 8.5.2 tells us that matrices

representing the same linear operator relative to different bases must be similar. The fol-
lowing theorem, which we state without proof, shows that the converse of Theorem 8.5.2
is also true.

THEOREM 8.5.3 If V is a finite-dimensional vector space, then two matrices A and B

represent the same linear operator (but possibly with respect to different bases) if and
only if they are similar. Moreover, if B = P−1AP, then P is the transition matrix from
the basis used for B to the basis used for A.
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EXAMPLE 1 Similar Matrices Represent the Same Linear Operator

We showed at the beginning of this section that the matrices

C =
[

1 1

−2 4

]
and D =

[
2 0

0 3

]

represent the same linear operator T : R2 →R2. Verify that these matrices are similar by
finding a matrix P for which D = P−1CP .

Solution We need to find the transition matrix

P = PB ′→B = [[u′
1]B | [u′

2]B
]

where B ′ = {u′
1, u′

2} is the basis for R2 given by (2) and B = {e1, e2} is the standard basis
for R2. We see by inspection that

u′
1 = e1 + e2

u′
2 = e1 + 2e2

from which it follows that

[u′
1]B =

[
1

1

]
and [u′

2]B =
[

1

2

]

Thus,

P = PB ′→B = [[u′
1]B | [u′

2]B
] = [

1 1

1 2

]
We leave it for you to verify that

P−1 =
[

2 −1

−1 1

]

and hence that [
2 0

0 3

]
=
[

2 −1

−1 1

] [
1 1

−2 4

] [
1 1

1 2

]
D P−1 C P

Similarity Invariants Recall from Section 5.2 that a property of a square matrix is called a similarity invariant
if that property is shared by all similar matrices. In Table 1 of that section we listed
the most important similarity invariants. Since we know from Theorem 8.5.3 that two
matrices are similar if and only if they represent the same linear operator T : V →V, it
follows that if B and B ′ are bases for V, then every similarity invariant property of [T ]B
is also a similarity invariant property of [T ]B ′ . For example, for any two bases B and B ′
we must have

det[T ]B = det[T ]B ′

It follows from this equation that the value of the determinant depends on T , but not on
the particular basis that is used to represent T in matrix form. Thus, the determinant
can be regarded as a property of the linear operator T , and we can define the determinant
of the linear operator T to be

det(T ) = det[T ]B (12)

where B is any basis for V. Table 1 lists the basic similarity invariants of a linear operator
T : V →V.
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Table 1 Similarity Invariants

Property Similarity

Determinant [T ]B and P−1[T ]BP have the same determinant.

Invertibility [T ]B is invertible if and only if P−1[T ]BP is invertible.

Rank [T ]B and P−1[T ]BP have the same rank.

Nullity [T ]B and P−1[T ]BP have the same nullity.

Trace [T ]B and P−1[T ]BP have the same trace.

Characteristic polynomial [T ]B and P−1[T ]BP have the same characteristic polynomial.

Eigenvalues [T ]B and P−1[T ]BP have the same eigenvalues.

Eigenspace dimension If λ is an eigenvalue of [T ]B and P−1[T ]BP, then the eigenspace of
[T ]B corresponding to λ and the eigenspace of P−1[T ]BP corresponding
to λ have the same dimension.

EXAMPLE 2 Determinant of a Linear Operator

At the beginning of this section we showed that the matrices

[T ] =
[

1 1

−2 4

]
and [T ]B ′ =

[
2 0

0 3

]
represent the same linear operator relative to different bases, the first relative to the
standard basis B = {e1, e2} for R2 and the second relative to the basis B ′ = {u′

1, u′
2} for

which

u′
1 =

[
1

1

]
, u′

2 =
[

1

2

]
This means that [T ] and [T ]B ′ must be similar matrices and hence must have the same
similarity invariant properties. In particular, they must have the same determinant. We
leave it for you to verify that

det[T ] =
∣∣∣∣ 1 1

−2 4

∣∣∣∣ = 6 and det[T ]B ′ =
∣∣∣∣2 0

0 3

∣∣∣∣ = 6

EXAMPLE 3 Eigenvalues of a Linear Operator

Find the eigenvalues of the linear operator T : P2 →P2 defined by

T (a + bx + cx2) = −2c + (a + 2b + c)x + (a + 3c)x2

Solution Because eigenvalues are similarity invariants, we can find the eigenvalues of T

by choosing any basis B for P2 and computing the eigenvalues of the matrix [T ]B . We
leave it for you to show that the matrix for T relative to the standard basis B = {1, x, x2}
is

[T ]B =
⎡
⎢⎣0 0 −2

1 2 1

1 0 3

⎤
⎥⎦

Thus, the eigenvalues of T are λ = 1 and λ = 2 (Example 7 of Section 5.1).
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Exercise Set 8.5
In Exercises 1–2, use a property from Table 1 to show that the

matrices A and B are not similar.

1. (a) A =
[

1 3

1 1

]
, B =

[
1 2

1 1

]

(b) A =
[

1 1

1 2

]
, B =

[−1 0

0 −1

]

2. (a) A =
⎡
⎢⎣

1 1 1

1 1 0

1 0 0

⎤
⎥⎦, B =

⎡
⎢⎣

1 1 1

1 1 0

1 1 0

⎤
⎥⎦

(b) A =
⎡
⎢⎣

1 0 1

0 1 0

0 1 0

⎤
⎥⎦, B =

⎡
⎢⎣

0 0 1

0 0 1

1 0 0

⎤
⎥⎦

3. Let T : R2 →R2 be a linear operator, and let B and B ′ be bases
for R2 for which

[T ]B =
[

2 0

1 1

]
and PB→B ′ =

[
3 2

1 1

]

Find the matrix for T relative to the basis B ′.

4. Let T : R2 →R2 be a linear operator, and let B and B ′ be bases
for R2 for which

[T ]B =
[

3 2

−1 1

]
and PB ′→B =

[
4 5

1 −1

]

Find the matrix for T relative to the basis B ′.

5. Let T : R2 →R2 be a linear operator, and let B and B ′ be bases
for R2 for which

[T ]B ′ =
[

2 0

1 1

]
and PB→B ′ =

[
3 2

1 1

]

Find the matrix for T relative to the basis B.

6. Let T : R2 →R2 be a linear operator, and let B and B ′ be bases
for R2 for which

[T ]B ′ =
[

3 2

−1 1

]
and PB ′→B =

[
4 5

1 −1

]

Find the matrix for T relative to the basis B.

In Exercises 7–14, find the matrix for T relative to the basis B,
and use Theorem 8.5.2 to compute the matrix for T relative to the
basis B ′.
7. T : R2 →R2 is defined by

T

([
x1

x2

])
=
[
x1 − 2x2

−x2

]
and B = {u1, u2} and B ′ = {v1, v2}, where

u1 =
[

1

0

]
, u2 =

[
0

1

]
; v1 =

[
4

1

]
, v2 =

[
7

2

]

8. T : R2 →R2 is defined by

T

([
x1

x2

])
=
[

x1 + 7x2

3x1 − 4x2

]
and B = {u1, u2} and B ′ = {v1, v2}, where

u1 =
[

2

2

]
, u2 =

[
4

−1

]
; v1 =

[
18

8

]
, v2 =

[
10

5

]

9. T : R3 →R3 is defined by

T(x1, x2, x3) = (−2x1 − x2, x1 + x3, x2)

B is the standard basis, and B ′ = {v1, v2, v3}, where

v1 = (−2, 1, 0), v2 = (−1, 0, 1), v3 = (0, 1, 0)

10. T : R3 →R3 is defined by

T(x1, x2, x3) = (x1 + 2x2 − x3,−x2, x1 + 7x3)

B is the standard basis, and B ′ = {v1, v2, v3}, where

v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 1, 1)

11. T : R2 →R2 is the rotation about the origin through an angle
of 45◦, B is the standard basis, and B ′ = {v1, v2}, where

v1 =
(

1√
2
, 1√

2

)
, v2 =

(
− 1√

2
, 1√

2

)
12. T : R2 →R2 is the shear in the x-direction by a positive factor

k, B is the standard basis, and B ′ = {v1, v2}, where

v1 = (k, 1), v2 = (1, 0)

13. T : P1 →P1 is defined by

T(a0 + a1x) = −a0 + (a0 + a1)x

B is the standard basis for P1, and B ′ = {q1, q2}, where

q1 = x + 1, q2 = x − 1

14. T : P1 →P1 is defined by T(a0 + a1x) = a0 + a1(x + 1), and
B = {p1, p2} and B ′ = {q1, q2}, where

p1 = 6 + 3x, p2 = 10 + 2x; q1 = 2, q2 = 3 + 2x

15. Let T : P2 →P2 be defined by

T(a0 + a1x + a2x
2) = (5a0 + 6a1 + 2a2)

− (a1 + 8a2)x + (a0 − 2a2)x
2

(a) Find the eigenvalues of T .

(b) Find bases for the eigenspaces of T .

16. Let T : M22 →M22 be defined by

T

([
a b

c d

])
=
[

2c a + c

b − 2c d

]
(a) Find the eigenvalues of T .

(b) Find bases for the eigenspaces of T .
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17. Since the standard basis for Rn is so simple, why would one
want to represent a linear operator on Rn in another basis?

18. Find two nonzero 2 × 2 matrices (different from those in
Exercise 1) that are not similar, and explain why they are not.

In Exercises 19–21, find the determinant and the eigenvalues
of the linear operator T .

19. T : R2 →R2, where
T(x1, x2) = (3x1 − 4x2,−x1 + 7x2)

20. T : R3 →R3, where
T(x1, x2, x3) = (x1 − x2, x2 − x3, x3 − x1)

21. T : P2 →P2, where
T(p(x)) = p(x − 1)

22. Let T : P4 →P4 be the linear operator given by the formula
T(p(x)) = p(2x + 1).

(a) Find a matrix for T relative to some convenient basis, and
then use it to find the rank and nullity of T .

(b) Use the result in part (a) to determine whether T is one-
to-one.

Working with Proofs

23. Complete the proof below by justifying each step.

Hypothesis: A and B are similar matrices.

Conclusion: A and B have the same characteristic polynomial.

Proof: (1) det(λI − B) = det(λI − P−1AP)

(2) = det(λP−1P − P−1AP)

(3) = det(P−1(λI − A)P )

(4) = det(P−1) det(λI − A) det(P )

(5) = det(P−1) det(P ) det(λI − A)

(6) = det(λI − A)

24. If A and B are similar matrices, say B = P−1AP , then it fol-
lows from Exercise 23 that A and B have the same eigenvalues.
Suppose that λ is one of the common eigenvalues and x is a
corresponding eigenvector of A. See if you can find an eigen-
vector of B corresponding to λ (expressed in terms of λ, x,
and P ).

In Exercises 25–28, prove that the stated property is a similarity
invariant.

25. Trace 26. Rank

27. Nullity 28. Invertibility

29. Let λ be an eigenvalue of a linear operator T : V →V. Prove
that the eigenvectors of T corresponding to λ are the nonzero
vectors in the kernel of λI − T .

30. (a) Prove that if A and B are similar matrices, then A2 and B2

are also similar.

(b) If A2 and B2 are similar, must A and B be similar? Ex-
plain.

31. Let C and D be m × n matrices, and let B = {v1, v2, . . . , vn}
be a basis for a vector space V. Prove that if C[x]B = D[x]B
for all x in V, then C = D.

True-False Exercises

TF. In parts (a)–(h) determine whether the statement is true or
false, and justify your answer.

(a) A matrix cannot be similar to itself.

(b) If A is similar to B, and B is similar to C, then A is similar
to C.

(c) If A and B are similar and B is singular, then A is singular.

(d) If A and B are invertible and similar, then A−1 and B−1 are
similar.

(e) If T1 : Rn →Rn and T2 : Rn →Rn are linear operators, and if
[T1]B ′,B = [T2]B ′,B with respect to two bases B and B ′ for Rn,

then T1(x) = T2(x) for every vector x in Rn.

(f ) If T1 : Rn →Rn is a linear operator, and if [T1]B = [T1]B ′ with
respect to two bases B and B ′ for Rn, then B = B ′.

(g) If T : Rn →Rn is a linear operator, and if [T ]B = In with re-
spect to some basis B for Rn, then T is the identity operator
on Rn.

(h) If T : Rn →Rn is a linear operator, and if [T ]B ′,B = In with
respect to two bases B and B ′ for Rn, then T is the identity
operator on Rn.

Working withTechnology

T1. Use the matrices A and P given below to construct a matrix
B = P−1AP that is similar to A, and confirm, in accordance with
Table 1, that A and B have the same determinant, trace, rank,
characteristic equation, and eigenvalues.

A =
⎡
⎢⎣
−13 −60 −60

10 42 40

−5 −20 −18

⎤
⎥⎦ and P =

⎡
⎢⎣

1 −1 1

2 −1 −1

−1 −1 0

⎤
⎥⎦

T2. Let T : R3 →R3 be the linear transformation whose standard
matrix is the matrix A in Exercise T1. Find a basis S for R3 for
which [T ]S is diagonal.
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Chapter 8 Supplementary Exercises

1. Let A be an n × n matrix, B a nonzero n × 1 matrix, and x a
vector in Rn expressed in matrix notation. Is T(x) = Ax + B

a linear operator on Rn? Justify your answer.

2. Let

A =
[

cos θ − sin θ

sin θ cos θ

]
(a) Show that

A2 =
[

cos 2θ − sin 2θ

sin 2θ cos 2θ

]
and A3 =

[
cos 3θ − sin 3θ

sin 3θ cos 3θ

]
(b) Based on your answer to part (a), make a guess at the form

of the matrix An for any positive integer n.

(c) By considering the geometric effect of multiplication by
A, obtain the result in part (b) geometrically.

3. Devise a method for finding two n × n matrices that are not
similar. Use your method to find two 3 × 3 matrices that are
not similar.

4. Let v1, v2, . . . , vm be fixed vectors in Rn, and let T : Rn →Rm

be the function defined by T(x) = (x · v1, x · v2, . . . , x · vm),
where x · vi is the Euclidean inner product on Rn.

(a) Show that T is a linear transformation.

(b) Show that the matrix with row vectors v1, v2, . . . , vm is the
standard matrix for T .

5. Let {e1, e2, e3, e4} be the standard basis for R4, and let
T : R4 →R3 be the linear transformation for which

T(e1) = (1, 2, 1), T(e2) = (0, 1, 0),

T(e3) = (1, 3, 0), T(e4) = (1, 1, 1)

(a) Find bases for the range and kernel of T .

(b) Find the rank and nullity of T .

6. Suppose that vectors in R3 are denoted by 1 × 3 matrices, and
define T : R3 →R3 by

T([x1 x2 x3]) = [x1 x2 x3]
⎡
⎢⎣−1 2 4

3 0 1

2 2 5

⎤
⎥⎦

(a) Find a basis for the kernel of T .

(b) Find a basis for the range of T .

7. Let B = {v1, v2, v3, v4} be a basis for a vector space V, and let
T : V →V be the linear operator for which

T(v1) = v1 + v2 + v3 + 3v4

T(v2) = v1 − v2 + 2v3 + 2v4

T(v3) = 2v1 − 4v2 + 5v3 + 3v4

T(v4) = −2v1 + 6v2 − 6v3 − 2v4

(a) Find the rank and nullity of T .

(b) Determine whether T is one-to-one.

8. Let V and W be vector spaces, let T , T1, and T2 be linear
transformations from V to W , and let k be a scalar. Define
new transformations, T1 + T2 and kT , by the formulas

(T1 + T2)(x) = T1(x) + T2(x)

(kT )(x) = k(T(x))

(a) Show that (T1 + T2): V →W and kT : V →W are both
linear transformations.

(b) Show that the set of all linear transformations from V to
W with the operations in part (a) is a vector space.

9. Let A and B be similar matrices. Prove:

(a) AT and BT are similar.

(b) If A and B are invertible, then A−1 and B−1 are similar.

10. (Fredholm Alternative Theorem) Let T : V →V be a linear op-
erator on an n-dimensional vector space. Prove that exactly
one of the following statements holds:

(i) The equation T(x) = b has a solution for all vectors
b in V.

(ii) Nullity of T > 0.

11. Let T : M22 →M22 be the linear operator defined by

T(X) =
[

1 1

0 0

]
X + X

[
0 0

1 1

]
Find the rank and nullity of T .

12. Prove: If A and B are similar matrices, and if B and C are
also similar matrices, then A and C are similar matrices.

13. Let L: M22 →M22 be the linear operator that is defined by
L(M) = MT . Find the matrix for L with respect to the stan-
dard basis for M22.

14. Let B = {u1, u2, u3} and B ′ = {v1, v2, v3} be bases for a vector
space V, and let

P =
⎡
⎣2 −1 3

1 1 4
0 1 2

⎤
⎦

be the transition matrix from B ′ to B.

(a) Express v1, v2, v3 as linear combinations of u1, u2, u3.

(b) Express u1, u2, u3 as linear combinations of v1, v2, v3.

15. Let B = {u1, u2, u3} be a basis for a vector space V, and let
T : V →V be a linear operator for which

[T ]B =
⎡
⎣−3 4 7

1 0 −2
0 1 0

⎤
⎦

Find [T ]B ′ , where B ′ = {v1, v2, v3} is the basis for V defined
by

v1 = u1, v2 = u1 + u2, v3 = u1 + u2 + u3
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16. Show that the matrices[
1 1

−1 4

]
and

[
2 1

1 3

]
are similar but that[

3 1

−6 −2

]
and

[−1 2

1 0

]
are not.

17. Suppose that T : V →V is a linear operator, and B is a basis
for V for which

[T(x)]B =
⎡
⎢⎣x1 − x2 + x3

x2

x1 − x3

⎤
⎥⎦ if [x]B =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

Find [T ]B .

18. Let T : V →V be a linear operator. Prove that T is one-to-one
if and only if det(T ) �= 0.

19. (Calculus required )

(a) Show that if f = f(x) is twice differentiable, then the
function D: C2(−�, �)→F(−�, �) defined by
D(f ) = f ′′(x) is a linear transformation.

(b) Find a basis for the kernel of D.

(c) Show that the set of functions satisfying the equa-
tion D(f ) = f(x) is a two-dimensional subspace of
C2(−�, �), and find a basis for this subspace.

20. Let T : P2 →R3 be the function defined by the formula

T(p(x)) =
⎡
⎢⎣p(−1)

p(0)

p(1)

⎤
⎥⎦

(a) Find T(x2 + 5x + 6).

(b) Show that T is a linear transformation.

(c) Show that T is one-to-one.

(d) Find T −1(0, 3, 0).

(e) Sketch the graph of the polynomial in part (d).

21. Let x1, x2, and x3 be distinct real numbers such that

x1 < x2 < x3

and let T : P2 →R3 be the function defined by the formula

T(p(x)) =
⎡
⎢⎣p(x1)

p(x2)

p(x3)

⎤
⎥⎦

(a) Show that T is a linear transformation.

(b) Show that T is one-to-one.

(c) Verify that if a1, a2, and a3 are any real numbers, then

T −1

⎛
⎜⎝
⎡
⎢⎣a1

a2

a3

⎤
⎥⎦
⎞
⎟⎠ = a1P1(x) + a2P2(x) + a3P3(x)

where

P1(x) = (x − x2)(x − x3)

(x1 − x2)(x1 − x3)

P2(x) = (x − x1)(x − x3)

(x2 − x1)(x2 − x3)

P3(x) = (x − x1)(x − x2)

(x3 − x1)(x3 − x2)

(d) What relationship exists between the graph of the function

a1P1(x) + a2P2(x) + a3P3(x)

and the points (x1, a1), (x2, a2), and (x3, a3)?

22. (Calculus required ) Let p(x) and q(x) be continuous func-
tions, and let V be the subspace of C(−�, �) consisting of all
twice differentiable functions. Define L: V →V by

L(y(x)) = y ′′(x) + p(x)y ′(x) + q(x)y(x)

(a) Show that L is a linear transformation.

(b) Consider the special case where p(x) = 0 and q(x) = 1.
Show that the function

φ(x) = c1 sin x + c2 cos x

is in the kernel of L for all real values of c1 and c2.

23. (Calculus required ) Let D: Pn →Pn be the differentiation
operator D(p) = p′. Show that the matrix for D relative to
the basis B = {1, x, x2, . . . , xn} is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0

0 0 2 0 · · · 0

0 0 0 3 · · · 0
...

...
...

...
...

0 0 0 0 · · · n

0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

24. (Calculus required ) It can be shown that for any real number
c, the vectors

1, x − c,
(x − c)2

2! , . . . ,
(x − c)n

n!
form a basis for Pn. Find the matrix for the differentiation
operator of Exercise 23 with respect to this basis.

25. (Calculus required ) Let J : Pn →Pn+1 be the integration trans-
formation defined by

J (p) =
∫ x

0
(a0 + a1t + · · · + ant

n) dt

= a0x + a1

2
x2 + · · · + an

n + 1
xn+1

where p = a0 + a1x + · · · + anx
n. Find the matrix for J with

respect to the standard bases for Pn and Pn+1.
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INTRODUCTION This chapter is concerned with “numerical methods” of linear algebra, an area of study
that encompasses techniques for solving large-scale linear systems and for finding
numerical approximations of various kinds. It is not our objective to discuss
algorithms and technical issues in fine detail since there are many excellent books on
the subject. Rather, we will be concerned with introducing some of the basic ideas and
exploring two important contemporary applications that rely heavily on numerical
ideas—singular value decomposition and data compression. A computing utility such
as MATLAB, Mathematica, or Maple is recommended for Sections 9.2 to 9.5.

9.1 LU-Decompositions
Up to now, we have focused on two methods for solving linear systems, Gaussian
elimination (reduction to row echelon form) and Gauss–Jordan elimination (reduction to
reduced row echelon form). While these methods are fine for the small-scale problems
in this text, they are not suitable for large-scale problems in which computer roundoff
error, memory usage, and speed are concerns. In this section we will discuss a method
for solving a linear system of n equations in n unknowns that is based on factoring its
coefficient matrix into a product of lower and upper triangular matrices. This method,
called “LU -decomposition,” is the basis for many computer algorithms in common use.

Solving Linear Systems by
Factoring

Our first goal in this section is to show how to solve a linear system Ax = b of n equations
in n unknowns by factoring the coefficient matrix A. We begin with some terminology.

DEFINITION 1 A factorization of a square matrix A as

A = LU (1)

where L is lower triangular and U is upper triangular, is called an LU-decomposition
(or LU-factorization) of A.

Before we consider the problem of obtaining an LU -decomposition, we will explain
how such decompositions can be used to solve linear systems, and we will give an illus-
trative example.
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The Method of LU -Decomposition

Step 1. Rewrite the system Ax = b as

LUx = b (2)

Step 2. Define a new n × 1 matrix y by

Ux = y (3)

Step 3. Use (3) to rewrite (2) as Ly = b and solve this system for y.

Step 4. Substitute y in (3) and solve for x.

This procedure, which is illustrated in Figure 9.1.1, replaces the single linear system
Ax = b by a pair of linear systems

Ux = y
Ly = b

that must be solved in succession. However, since each of these systems has a triangular
coefficient matrix, it generally turns out to involve no more computation to solve the
two systems than to solve the original system directly.

Figure 9.1.1

Solve Ax = b

Solve Ly = bSolve Ux = y
x b

y

EXAMPLE 1 SolvingAx = b by LU -Decomposition

Later in this section we will derive the factorization⎡
⎣ 2 6 2
−3 −8 0

4 9 2

⎤
⎦ =

⎡
⎣ 2 0 0
−3 1 0

4 −3 7

⎤
⎦
⎡
⎣1 3 1

0 1 3
0 0 1

⎤
⎦

A = L U

(4)

Use this result to solve the linear system⎡
⎣ 2 6 2
−3 −8 0

4 9 2

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2

2
3

⎤
⎦

A x = b

From (4) we can rewrite this system as⎡
⎣ 2 0 0
−3 1 0

4 −3 7

⎤
⎦
⎡
⎣1 3 1

0 1 3
0 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣2

2
3

⎤
⎦

L U x = b

(5)

Historical Note In 1979 an important library of machine-independent linear algebra programs called

LINPACK was developed at Argonne National Laboratories. Many of the programs in that library use

the decomposition methods that we will study in this section. Variations of the LINPACK routines are

used in many computer programs, including MATLAB,Mathematica, and Maple.
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As specified in Step 2 above, let us define y1, y2, and y3 by the equation⎡
⎣1 3 1

0 1 3
0 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣y1

y2

y3

⎤
⎦

U x = y

(6)

which allows us to rewrite (5) as⎡
⎣ 2 0 0
−3 1 0

4 −3 7

⎤
⎦
⎡
⎣y1

y2

y3

⎤
⎦ =

⎡
⎣2

2
3

⎤
⎦

L y = b

(7)

or equivalently as
2y1 = 2

−3y1 + y2 = 2
4y1 − 3y2 + 7y3 = 3

This system can be solved by a procedure that is similar to back substitution, except
that we solve the equations from the top down instead of from the bottom up. This
procedure, called forward substitution, yields

y1 = 1, y2 = 5, y3 = 2

(verify). As indicated in Step 4 above, we substitute these values into (6), which yields
the linear system ⎡

⎣1 3 1
0 1 3
0 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣1

5
2

⎤
⎦

or, equivalently,
x1 + 3x2 + x3 = 1

x2 + 3x3 = 5
x3 = 2

Solving this system by back substitution yields

x1 = 2, x2 = −1, x3 = 2

(verify).

Alan Mathison Turing
(1912–1954)

Historical Note Although the ideas were known earlier, credit for popularizing the matrix formulation of
the LU-decomposition is often given to the British mathematician AlanTuring for his work on the subject
in 1948. Turing, one of the great geniuses of the twentieth century, is the founder of the field of artificial
intelligence. Among his many accomplishments in that field, he developed the concept of an internally
programmed computer before the practical technology had reached the point where the construction of
such a machine was possible. DuringWorldWar II Turing was secretly recruited by the British government’s
Code and Cypher School at Bletchley Park to help break the Nazi Enigma codes; it was Turing’s statistical
approach that provided the breakthrough. In addition to being a brilliant mathematician,Turing was a world-
class runner who competed successfully with Olympic-level competition. Sadly,Turing, a homosexual, was
tried and convicted of “gross indecency” in 1952, in violation of the then-existing British statutes. Depressed,
he committed suicide at age 41 by eating an apple laced with cyanide.

[Image: © National Portrait Gallery ]
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Finding
LU-Decompositions

The preceding example illustrates that once an LU-decomposition of A is obtained,
a linear system Ax = b can be solved by one forward substitution and one backward
substitution. The main advantage of this method over Gaussian and Gauss–Jordan
elimination is that it “decouples” A from b so that for solving a sequence of linear
systems with the same coefficient matrix A, say

Ax = b1, Ax = b2, . . . , Ax = bk

the work in factoring A need only be performed once, after which it can be reused for
each system in the sequence. Such sequences occur in problems in which the matrix A

remains fixed but the matrix b varies with time.
Not every square matrix has an LU-decomposition. However, if it is possible to

reduce a square matrix A to row echelon form by Gaussian elimination without perform-
ing any row interchanges, then A will have an LU-decomposition, though it may not be
unique. To see why this is so, assume that A has been reduced to a row echelon form U

using a sequence of row operations that does not include row interchanges. We know
from Theorem 1.5.1 that these operations can be accomplished by multiplying A on the
left by an appropriate sequence of elementary matrices; that is, there exist elementary
matrices E1, E2, . . . , Ek such that

Ek · · ·E2E1A = U (8)

Since elementary matrices are invertible, we can solve (8) for A as

A = E−1
1 E−1

2 · · ·E−1
k U

or more briefly as
A = LU (9)

where
L = E−1

1 E−1
2 · · ·E−1

k (10)

We now have all of the ingredients to prove the following result.

THEOREM 9.1.1 If A is a square matrix that can be reduced to a row echelon form
U by Gaussian elimination without row interchanges, then A can be factored as
A = LU, where L is a lower triangular matrix.

Proof Let L and U be the matrices in Formulas (10) and (8), respectively. The matrix
U is upper triangular because it is a row echelon form of a square matrix (so all entries
below its main diagonal are zero). To prove that L is lower triangular, it suffices to prove
that each factor on the right side of (10) is lower triangular, since Theorem 1.7.1(b) will
then imply that L itself is lower triangular. Since row interchanges are excluded, each Ej

results either by adding a scalar multiple of one row of an identity matrix to a row below
or by multiplying one row of an identity matrix by a nonzero scalar. In either case, the
resulting matrix Ej is lower triangular and hence so is E−1

j by Theorem 1.7.1(d). This
completes the proof.

EXAMPLE 2 An LU -Decomposition

Find an LU-decomposition of

A =
⎡
⎢⎣ 2 6 2

−3 −8 0

4 9 2

⎤
⎥⎦
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Solution To obtain an LU-decomposition, A = LU , we will reduce A to a row echelon
form U using Gaussian elimination and then calculate L from (10). The steps are as
follows:

Reduction to
Row Echelon Form Row Operation

Inverse of the 
Elementary Matrix

Elementary Matrix
Corresponding to

the Row Operation

  2         6          2 
–3       –8          0
  4         9          2

  1         3          1 
–3       –8          0
  4         9          2

Step 1

1    0     0  
0     1     0
0   – 3    1

Step 2

  1        3        1 
  0        1        3
  4        9        2

        0    0 
  0    1    0
  0    0    1

Step 3

  1        3        1 
  0        1        3
  0      –3      –2

Step 4

  1        3        1 
  0        1        3
  0        0        7

Step 5

  1        3        1 
  0        1        3
  0        0        1

E1 = 

1
2   2    0    0 

  0    1    0
  0    0    1

E1   = –1

E2 = 
    1    0    0 
  –3    1    0
    0    0    1

    1    0    0 
    0    1    0
  –4    0    1

  1    0    0 
  3    1    0
  0    0    1

E2   = –1

E3 = 
    1    0    0 
    0    1    0
    4    0    1

E3   = –1

    1    0    0 
    0    1    0
    0    3    1

E4 = E4   =
–1

E5 = 

= U

    1    0    0 
    0    1    0
    0    0    7

E5   = 
    1    0    0 
    0    1    0
    0    0

–1

1
7

(3 × row 1) + row 2

 × row 1

(−4 × row 1) + row 3

(3 × row 2) + row 3

1
2

 × row 31
7
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and, from (10),

L =
⎡
⎢⎣2 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣ 1 0 0

−3 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0

4 0 1

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0

0 −3 1

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0

0 0 7

⎤
⎥⎦

=
⎡
⎢⎣ 2 0 0

−3 1 0

4 −3 7

⎤
⎥⎦ (11)

so ⎡
⎢⎣ 2 6 2

−3 −8 0

4 9 2

⎤
⎥⎦ =

⎡
⎢⎣ 2 0 0

−3 1 0

4 −3 7

⎤
⎥⎦
⎡
⎢⎣1 3 1

0 1 3

0 0 1

⎤
⎥⎦

is an LU-decomposition of A.

Bookkeeping As Example 2 shows, most of the work in constructing an LU-decomposition is expended
in calculating L. However, all this work can be eliminated by some careful bookkeeping
of the operations used to reduce A to U .

Because we are assuming that no row interchanges are required to reduce A to U ,
there are only two types of operations involved—multiplying a row by a nonzero constant,
and adding a scalar multiple of one row to another. The first operation is used to
introduce the leading 1’s and the second to introduce zeros below the leading 1’s.

In Example 2, a multiplier of 1
2 was needed in Step 1 to introduce a leading 1 in

the first row, and a multiplier of 1
7 was needed in Step 5 to introduce a leading 1 in the

third row. No actual multiplier was required to introduce a leading 1 in the second row
because it was already a 1 at the end of Step 2, but for convenience let us say that the
multiplier was 1. Comparing these multipliers with the successive diagonal entries of L,
we see that these diagonal entries are precisely the reciprocals of the multipliers used to
construct U :

L =
⎡
⎢⎣ 2©
−3

4

0

1©
−3

0

0

7©

⎤
⎥⎦ (12)

Also observe in Example 2 that to introduce zeros below the leading 1 in the first row,
we used the operations

add 3 times the first row to the second

add −4 times the first row to the third

and to introduce the zero below the leading 1 in the second row, we used the operation

add 3 times the second row to the third

Now note in (11) that in each position below the main diagonal of L, the entry is the
negative of the multiplier in the operation that introduced the zero in that position in
U . This suggests the following procedure for constructing an LU -decomposition of a
square matrix A, assuming that this matrix can be reduced to row echelon form without
row interchanges.
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Procedure for Constructing an LU -Decomposition

Step 1. Reduce A to a row echelon form U by Gaussian elimination without row
interchanges, keeping track of the multipliers used to introduce the leading
1’s and the multipliers used to introduce the zeros below the leading 1’s.

Step 2. In each position along the main diagonal of L, place the reciprocal of the
multiplier that introduced the leading 1 in that position in U .

Step 3. In each position below the main diagonal of L, place the negative of the
multiplier used to introduce the zero in that position in U .

Step 4. Form the decomposition A = LU .

EXAMPLE 3 Constructing an LU -Decomposition

Find an LU -decomposition of

A =
⎡
⎣6 −2 0

9 −1 1
3 7 5

⎤
⎦

Solution We will reduce A to a row echelon form U and at each step we will fill in an
entry of L in accordance with the four-step procedure above.

A =
⎡
⎣ 6

9

3

−2

−1

7

0

1

5

⎤
⎦

⎡
⎣• 0 0

• • 0

• • •

⎤
⎦ • denotes an unknown

entry of L.

⎡
⎢⎢⎣
©1 − 1

3 0

9 −1 1

3 7 5

⎤
⎥⎥⎦

←− multiplier = 1
6

⎡
⎣6 0 0

• • 0

• • •

⎤
⎦

⎡
⎢⎣

1 − 1
3 0

©0 2 1
©0 8 5

⎤
⎥⎦←− multiplier = −9

←− multiplier = −3

⎡
⎣6 0 0

9 • 0

3 • •

⎤
⎦

⎡
⎢⎣

1 − 1
3 0

0 ©1 1
2

0 8 5

⎤
⎥⎦←− multiplier = 1

2

⎡
⎣6 0 0

9 2 0

3 • •

⎤
⎦

⎡
⎢⎣

1 − 1
3 0

0 1 1
2

0 ©0 1

⎤
⎥⎦

←− multiplier = −8

⎡
⎣6 0 0

9 2 0

3 8 •

⎤
⎦

U =
⎡
⎢⎣

1 − 1
3 0

0 1 1
2

0 0 ©1

⎤
⎥⎦

←− multiplier = 1
L =

⎡
⎣6 0 0

9 2 0

3 8 1

⎤
⎦ No actual operation is

performed here since
there is already a leading
1 in the third row.

Thus, we have constructed the LU -decomposition

A = LU =
⎡
⎣6 0 0

9 2 0
3 8 1

⎤
⎦
⎡
⎢⎣

1 − 1
3 0

0 1 1
2

0 0 1

⎤
⎥⎦

We leave it for you to confirm this end result by multiplying the factors.
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LU-Decompositions Are
Not Unique

In general, LU-decompositions are not unique. For example, if

A = LU =
⎡
⎢⎣l11 0 0

l21 l22 0

l31 l32 l33

⎤
⎥⎦
⎡
⎢⎣1 u12 u13

0 1 u23

0 0 1

⎤
⎥⎦

and L has nonzero diagonal entries (which will be true if A is invertible), then we can
shift the diagonal entries from the left factor to the right factor by writing

A =
⎡
⎢⎣ 1 0 0

l21/l11 1 0

l31/l11 l32/l22 1

⎤
⎥⎦
⎡
⎢⎣l11 0 0

0 l22 0

0 0 l33

⎤
⎥⎦
⎡
⎢⎣1 u12 u13

0 1 u23

0 0 1

⎤
⎥⎦

=
⎡
⎢⎣ 1 0 0

l21/l11 1 0

l31/l11 l32/l22 1

⎤
⎥⎦
⎡
⎢⎣l11 l11u12 l11u13

0 l22 l22u23

0 0 l33

⎤
⎥⎦

which is another LU -decomposition of A.

LDU-Decompositions The method we have given for computing LU -decompositions may result in an “asym-
metry” in that the matrix U has 1’s on the main diagonal but L need not. However, if
it is preferred to have 1’s on the main diagonal of both the lower triangular factor and
the upper triangular factor, then we can “shift” the diagonal entries of L to a diagonal
matrix D and write L as

L = L′D

where L′ is a lower triangular matrix with 1’s on the main diagonal. For example, a
general 3 × 3 lower triangular matrix with nonzero entries on the main diagonal can be
factored as⎡

⎣a11 0 0
a21 a22 0
a31 a32 a33

⎤
⎦ =

⎡
⎣ 1 0 0

a21/a11 1 0
a31/a11 a32/a22 1

⎤
⎦
⎡
⎣a11 0 0

0 a22 0
0 0 a33

⎤
⎦

L L′ D

Note that the columns of L′ are obtained by dividing each entry in the corresponding

If desired, the diagonal ma-
trix and the upper triangular
matrix in (13) can be mul-
tiplied to produce an LU-
decomposition in which the 1’s
are on the main diagonal of L

rather than U .

column of L by the diagonal entry in the column. Thus, for example, we can rewrite
(4) as ⎡

⎣ 2 6 2
−3 −8 0

4 9 2

⎤
⎦ =

⎡
⎣ 2 0 0
−3 1 0

4 −3 7

⎤
⎦
⎡
⎣1 3 1

0 1 3
0 0 1

⎤
⎦

=
⎡
⎢⎣

1 0 0
− 3

2 1 0

2 −3 1

⎤
⎥⎦
⎡
⎣2 0 0

0 1 0
0 0 7

⎤
⎦
⎡
⎣1 3 1

0 1 3
0 0 1

⎤
⎦ (13)

One can prove that if A is an invertible matrix that can be reduced to row echelon
form without row interchanges, then A can be factored uniquely as

A = LDU
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where L is a lower triangular matrix with 1’s on the main diagonal, D is a diagonal
matrix, and U is an upper triangular matrix with 1’s on the main diagonal. This is called
the LDU-decomposition (or LDU-factorization) of A.

PLU-Decompositions Many computer algorithms for solving linear systems perform row interchanges to re-
duce roundoff error, in which case the existence of an LU -decomposition is not guar-
anteed. However, it is possible to work around this problem by “preprocessing” the
coefficient matrix A so that the row interchanges are performed prior to computing the
LU -decomposition itself. More specifically, the idea is to create a matrix Q (called a
permutation matrix) by multiplying, in sequence, those elementary matrices that produce
the row interchanges and then execute them by computing the product QA. This product
can then be reduced to row echelon form without row interchanges, so it is assured to
have an LU -decomposition

QA = LU (14)

Because the matrix Q is invertible (being a product of elementary matrices), the systems
Ax = b and QAx = Qb will have the same solutions. But it follows from (14) that
the latter system can be rewritten as LUx = Qb and hence can be solved using LU -
decomposition.

It is common to see Equation (14) expressed as

A = PLU (15)

in which P = Q−1. This is called a PLU-decomposition or (PLU-factorization) of A.

Exercise Set 9.1
1. Use the method of Example 1 and the LU-decomposition[

3 −6

−2 5

]
=
[

3 0

−2 1

] [
1 −2

0 1

]
to solve the system

3x1 − 6x2 = 0

−2x1 + 5x2 = 1

2. Use the method of Example 1 and the LU-decomposition⎡
⎢⎣ 3 −6 −3

2 0 6

−4 7 4

⎤
⎥⎦ =

⎡
⎢⎣ 3 0 0

2 4 0

−4 −1 2

⎤
⎥⎦
⎡
⎢⎣1 −2 −1

0 1 2

0 0 1

⎤
⎥⎦

to solve the system

3x1 − 6x2 − 3x3 = −3

2x1 + 6x3 = −22

−4x1 + 7x2 + 4x3 = 3

In Exercises 3–6, find an LU-decomposition of the coefficient
matrix, and then use the method of Example 1 to solve the sys-
tem.

3.
[

2 8

−1 −1

] [
x1

x2

]
=
[−2

−2

]

4.
[−5 −10

6 5

] [
x1

x2

]
=
[−10

19

]

5.

⎡
⎢⎣ 2 −2 −2

0 −2 2

−1 5 2

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣−4

−2

6

⎤
⎥⎦

6.

⎡
⎢⎣−3 12 −6

1 −2 2

0 1 1

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣−33

7

−1

⎤
⎥⎦

In Exercises 7–8, an LU -decomposition of a matrix A is given.

(a) Compute L−1 and U−1.

(b) Use the result in part (a) to find the inverse of A.

7. A =
⎡
⎢⎣

2 −1 3

4 2 1

−6 −1 2

⎤
⎥⎦;

A = LU =
⎡
⎢⎣

1 0 0

2 1 0

−3 −1 1

⎤
⎥⎦
⎡
⎢⎣

2 −1 3

0 4 −5

0 0 6

⎤
⎥⎦

8. The LU-decomposition obtained in Example 2.
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9. Let

A =
⎡
⎢⎣ 2 1 −1

−2 −1 2

2 1 0

⎤
⎥⎦

(a) Find an LU-decomposition of A.

(b) Express A in the form A = L1DU1, where L1 is lower
triangular with 1’s along the main diagonal, U1 is upper
triangular, and D is a diagonal matrix.

(c) Express A in the form A = L2U2, where L2 is lower tri-
angular with 1’s along the main diagonal and U2 is upper
triangular.

10. (a) Show that the matrix

[
0 1

1 0

]

has no LU-decomposition.

(b) Find a PLU-decomposition of this matrix.

In Exercises 11–12, use the given PLU-decomposition of A to
solve the linear system Ax = b by rewriting it as P−1Ax = P−1b
and solving this system by LU-decomposition.

11. b =
⎡
⎢⎣2

1

5

⎤
⎥⎦ ; A =

⎡
⎢⎣0 1 4

1 2 2

3 1 3

⎤
⎥⎦ ;

A =
⎡
⎢⎣0 1 0

1 0 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0

3 −5 17

⎤
⎥⎦
⎡
⎢⎣1 2 2

0 1 4

0 0 1

⎤
⎥⎦ = PLU

12. b =
⎡
⎢⎣3

0

6

⎤
⎥⎦ ; A =

⎡
⎢⎣4 1 2

0 2 1

8 1 8

⎤
⎥⎦ ;

A =
⎡
⎢⎣1 0 0

0 0 1

0 1 0

⎤
⎥⎦
⎡
⎢⎣4 1 2

0 −1 4

0 0 9

⎤
⎥⎦
⎡
⎢⎣1 1

4
1
2

0 1 −4

0 0 1

⎤
⎥⎦ = PLU

In Exercises 13–14, find the LDU-decomposition of A.

13. A =
[

2 2

4 1

]
14. A =

⎡
⎢⎣3 −12 6

0 2 0

6 −28 13

⎤
⎥⎦

In Exercises 15–16, find a PLU-decomposition of A, and use
it to solve the linear system Ax = b by the method of Exercises 11
and 12.

15. A =
⎡
⎢⎣3 −1 0

3 −1 1

0 2 1

⎤
⎥⎦ ; b =

⎡
⎢⎣−2

1

4

⎤
⎥⎦

16. A =
⎡
⎢⎣0 3 −2

1 1 4

2 2 5

⎤
⎥⎦ ; b =

⎡
⎢⎣ 7

5

−2

⎤
⎥⎦

17. Let Ax = b be a linear system of n equations in n unknowns,
and assume that A is an invertible matrix that can be reduced
to row echelon form without row interchanges. How many
additions and multiplications are required to solve the system
by the method of Example 1?

Working with Proofs

18. Let

A =
[
a b

c d

]
(a) Prove: If a �= 0, then the matrix A has a unique LU-

decomposition with 1’s along the main diagonal of L.

(b) Find the LU-decomposition described in part (a).

19. Prove: If A is any n × n matrix, then A can be factored as
A = PLU , where L is lower triangular, U is upper triangular,
and P can be obtained by interchanging the rows of In appro-
priately. [Hint: Let U be a row echelon form of A, and let
all row interchanges required in the reduction of A to U be
performed first.]

True-False Exercises

TF. In parts (a)–(e) determine whether the statement is true or
false, and justify your answer.

(a) Every square matrix has an LU-decomposition.

(b) If a square matrix A is row equivalent to an upper triangular
matrix U , then A has an LU-decomposition.

(c) If L1, L2, . . . , Lk are n × n lower triangular matrices, then the
product L1L2 · · ·Lk is lower triangular.

(d) If an invertible matrix A has an LU-decomposition, then A

has a unique LDU-decomposition.

(e) Every square matrix has a PLU-decomposition.

Working withTechnology

T1. Technology utilities vary in how they handle LU-decompo-
sitions. For example, many utilities perform row interchanges to
reduce roundoff error and hence produce PLU-decompositions,
even when asked for LU-decompositions. See what happens when
you use your utility to find an LU-decomposition of the matrix A

in Example 2.

T2. The accompanying figure shows a metal plate whose edges are
held at the temperatures shown. It follows from thermodynamic
principles that the temperature at each of the six interior nodes will
eventually stabilize at a value that is approximately the average of
the temperatures at the four neighboring nodes. These are called
the steady-state temperatures at the nodes. Thus, for example, if
we denote the steady-state temperatures at the interior nodes in
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the accompanying figure as T1, T2, T3, T4, T5, and T6, then at the
node labeled T1 that temperature will be T1 = 1

4 (0 + 5 + T2 + T3)

or, equivalently,

4T1 − T2 − T3 = 5

Find a linear system whose solution gives the steady-state temper-
atures at the nodes, and use your technology utility to solve that
system by LU -decomposition.

T1 T3 T5

T2 T4 T6

5º

0º 10º

0º 10º

5º 5º

20º 20º 20º Figure Ex-T2

9.2 The Power Method
The eigenvalues of a square matrix can, in theory, be found by solving the characteristic
equation. However, this procedure has so many computational difficulties that it is almost
never used in applications. In this section we will discuss an algorithm that can be used to
approximate the eigenvalue with greatest absolute value and a corresponding eigenvector.
This particular eigenvalue and its corresponding eigenvectors are important because they
arise naturally in many iterative processes. The methods we will study in this section have
recently been used to create Internet search engines such as Google.

The Power Method There are many applications in which some vector x0 in Rn is multiplied repeatedly by
an n × n matrix A to produce a sequence

x0, Ax0, A2x0, . . . , Akx0, . . .

We call a sequence of this form a power sequence generated by A. In this section we
will be concerned with the convergence of power sequences and how such sequences
can be used to approximate eigenvalues and eigenvectors. For this purpose, we make
the following definition.

DEFINITION 1 If the distinct eigenvalues of a matrix A are λ1, λ2, . . . , λk, and if
|λ1| is larger than |λ2|, . . . , |λk|, then λ1 is called a dominant eigenvalue of A. Any
eigenvector corresponding to a dominant eigenvalue is called a dominant eigenvector
of A.

EXAMPLE 1 Dominant Eigenvalues

Some matrices have dominant eigenvalues and some do not. For example, if the distinct
eigenvalues of a matrix are

λ1 = −4, λ2 = −2, λ3 = 1, λ4 = 3

then λ1 = −4 is dominant since |λ1| = 4 is greater than the absolute values of all the
other eigenvalues; but if the distinct eigenvalues of a matrix are

λ1 = 7, λ2 = −7, λ3 = −2, λ4 = 5

then |λ1| = |λ2| = 7, so there is no eigenvalue whose absolute value is greater than the
absolute value of all the other eigenvalues.

The most important theorems about convergence of power sequences apply to n × n

matrices with n linearly independent eigenvectors (symmetric matrices, for example), so
we will limit our discussion to this case in this section.
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THEOREM 9.2.1 Let A be a symmetric n × n matrix that has a positive* dominant
eigenvalue λ. If x0 is a unit vector in Rn that is not orthogonal to the eigenspace
corresponding to λ, then the normalized power sequence

x0, x1 = Ax0

‖Ax0‖ , x2 = Ax1

‖Ax1‖ , . . . , xk = Axk−1

‖Axk−1‖ , . . . (1)

converges to a unit dominant eigenvector, and the sequence

Ax1 · x1, Ax2 · x2, Ax3 · x3, . . . , Axk · xk, . . . (2)

converges to the dominant eigenvalue λ.

Remark In the exercises we will ask you to show that (1) can also be expressed as

x0, x1 = Ax0

‖Ax0‖ , x2 = A2x0

‖A2x0‖ , . . . , xk = Akx0∥∥Akx0

∥∥ , . . . (3)

This form of the power sequence expresses each iterate in terms of the starting vector x0, rather
than in terms of its predecessor.

We will not prove Theorem 9.2.1, but we can make it plausible geometrically in the
2 × 2 case where A is a symmetric matrix with distinct positive eigenvalues, λ1 and λ2,

one of which is dominant. To be specific, assume that λ1 is dominant and

λ1 > λ2 > 0

Since we are assuming that A is symmetric and has distinct eigenvalues, it follows from
Theorem 7.2.2 that the eigenspaces corresponding to λ1 and λ2 are perpendicular lines
through the origin. Thus, the assumption that x0 is a unit vector that is not orthogonal
to the eigenspace corresponding to λ1 implies that x0 does not lie in the eigenspace
corresponding to λ2. To see the geometric effect of multiplying x0 by A, it will be useful
to split x0 into the sum

x0 = v0 + w0 (4)

where v0 and w0 are the orthogonal projections of x0 on the eigenspaces of λ1 and λ2,

respectively (Figure 9.2.1a).

Figure 9.2.1

w0

x0

v0

Eigenspace λ1Eigenspace λ2

(a)

w0

λ2w0 λ1v0

λ1v0 + λ2w0

x0 x1

v0

(b)

x0 x1

x

(c)

Eigenspace λ1Eigenspace λ2

This enables us to express Ax0 as

Ax0 = Av0 + Aw0 = λ1v0 + λ2w0 (5)

*If the dominant eigenvalue is not positive, sequence (2) will still converge to the dominant eigenvalue, but
sequence (1) may not converge to a specific dominant eigenvector because of alternation (see Exercise 11). Nev-
ertheless, each term of (1) will closely approximate some dominant eigenvector for sufficiently large values of k.
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which tells us that multiplying x0 by A “scales” the terms v0 and w0 in (4) by λ1 and λ2,

respectively. However, λ1 is larger than λ2, so the scaling is greater in the direction of v0

than in the direction of w0. Thus, multiplying x0 by A “pulls” x0 toward the eigenspace
of λ1, and normalizing produces a vector x1 = Ax0/‖Ax0‖, which is on the unit circle
and is closer to the eigenspace of λ1 than x0 (Figure 9.2.1b). Similarly, multiplying x1 by
A and normalizing produces a unit vector x2 that is closer to the eigenspace of λ1 than
x1. Thus, it seems reasonable that by repeatedly multiplying by A and normalizing we
will produce a sequence of vectors xk that lie on the unit circle and converge to a unit
vector x in the eigenspace of λ1 (Figure 9.2.1c). Moreover, if xk converges to x, then it
also seems reasonable that Axk · xk will converge to

Ax · x = λ1x · x = λ1‖x‖2 = λ1

which is the dominant eigenvalue of A.

The Power Method with
Euclidean Scaling

Theorem 9.2.1 provides us with an algorithm for approximating the dominant eigenvalue
and a corresponding unit eigenvector of a symmetric matrix A, provided the dominant
eigenvalue is positive. This algorithm, called the power method with Euclidean scaling, is
as follows:

The Power Method with Euclidean Scaling

Step 0. Choose an arbitrary nonzero vector and normalize it, if need be, to obtain a
unit vector x0.

Step 1. Compute Ax0 and normalize it to obtain the first approximation x1 to a dom-
inant unit eigenvector. Compute Ax1 · x1 to obtain the first approximation
to the dominant eigenvalue.

Step 2. Compute Ax1 and normalize it to obtain the second approximation x2 to a
dominant unit eigenvector. Compute Ax2 · x2 to obtain the second approxi-
mation to the dominant eigenvalue.

Step 3. Compute Ax2 and normalize it to obtain the third approximation x3 to a dom-
inant unit eigenvector. Compute Ax3 · x3 to obtain the third approximation
to the dominant eigenvalue.

Continuing in this way will usually generate a sequence of better and better approxi-
mations to the dominant eigenvalue and a corresponding unit eigenvector.*

EXAMPLE 2 The Power Method with Euclidean Scaling

Apply the power method with Euclidean scaling to

A =
[

3 2

2 3

]
with x0 =

[
1

0

]
Stop at x5 and compare the resulting approximations to the exact values of the dominant
eigenvalue and eigenvector.

*If the vector x0 happens to be orthogonal to the eigenspace of the dominant eigenvalue, then the hypotheses
of Theorem 9.2.1 will be violated and the method may fail. However, the reality is that computer roundoff
errors usually perturb x0 enough to destroy any orthogonality and make the algorithm work. This is one
instance in which errors help to obtain correct results!
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Solution We will leave it for you to show that the eigenvalues of A are λ = 1 and λ = 5
and that the eigenspace corresponding to the dominant eigenvalue λ = 5 is the line
represented by the parametric equations x1 = t , x2 = t , which we can write in vector
form as

x = t

[
1

1

]
(6)

Setting t = 1/
√

2 yields the normalized dominant eigenvector

v1 =
[ 1√

2
1√
2

]
≈
[

0.707106781187 . . .

0.707106781187 . . .

]
(7)

Now let us see what happens when we use the power method, starting with the unit
vector x0.

Ax0 =
[

3 2

2 3

] [
1

0

]
=
[

3

2

]
x1 = Ax0

‖Ax0‖ = 1√
13

[
3

2

]
≈ 1

3.60555

[
3

2

]
≈
[

0.83205

0.55470

]

Ax1 ≈
[

3 2

2 3

] [
0.83205

0.55470

]
≈
[

3.60555

3.32820

]
x2 = Ax1

‖Ax1‖ ≈ 1

4.90682

[
3.60555

3.32820

]
≈
[

0.73480

0.67828

]

Ax2 ≈
[

3 2

2 3

] [
0.73480

0.67828

]
≈
[

3.56097

3.50445

]
x3 = Ax2

‖Ax2‖ ≈ 1

4.99616

[
3.56097

3.50445

]
≈
[

0.71274

0.70143

]

Ax3 ≈
[

3 2

2 3

] [
0.71274

0.70143

]
≈
[

3.54108

3.52976

]
x4 = Ax3

‖Ax3‖ ≈ 1

4.99985

[
3.54108

3.52976

]
≈
[

0.70824

0.70597

]

Ax4 ≈
[

3 2

2 3

] [
0.70824

0.70597

]
≈
[

3.53666

3.53440

]
x5 = Ax4

‖Ax4‖ ≈ 1

4.99999

[
3.53666

3.53440

]
≈
[

0.70733

0.70688

]

λ(1) = (Ax1) · x1 = (Ax1)
T x1 ≈ [

3.60555 3.32820
] [0.83205

0.55470

]
≈ 4.84615

λ(2) = (Ax2) · x2 = (Ax2)
T x2 ≈ [

3.56097 3.50445
] [0.73480

0.67828

]
≈ 4.99361

λ(3) = (Ax3) · x3 = (Ax3)
T x3 ≈ [

3.54108 3.52976
] [0.71274

0.70143

]
≈ 4.99974

λ(4) = (Ax4) · x4 = (Ax4)
T x4 ≈ [

3.53666 3.53440
] [0.70824

0.70597

]
≈ 4.99999

λ(5) = (Ax5) · x5 = (Ax5)
T x5 ≈ [

3.53576 3.53531
] [0.70733

0.70688

]
≈ 5.00000

Thus, λ(5) approximates the dominant eigenvalue to five decimal place accuracy and x5

It is accidental that λ(5) (the
fifth approximation) produced
five decimal place accuracy. In
general, n iterations need not
produce n decimal place accu-
racy. approximates the dominant eigenvector in (7) to three decimal place accuracy.

The Power Method with
Maximum Entry Scaling

There is a variation of the power method in which the iterates, rather than being normal-
ized at each stage, are scaled to make the maximum entry 1. To describe this method, it
will be convenient to denote the maximum absolute value of the entries in a vector x by
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max(x). Thus, for example, if

x =

⎡
⎢⎢⎢⎣

5

3

−7

2

⎤
⎥⎥⎥⎦

then max(x) = 7. We will need the following variation of Theorem 9.2.1.

THEOREM 9.2.2 Let A be a symmetric n × n matrix that has a positive dominant*

eigenvalue λ. If x0 is a nonzero vector in Rn that is not orthogonal to the eigenspace
corresponding to λ, then the sequence

x0, x1 = Ax0

max(Ax0)
, x2 = Ax1

max(Ax1)
, . . . , xk = Axk−1

max(Axk−1)
, . . . (8)

converges to an eigenvector corresponding to λ, and the sequence

Ax1 · x1

x1 · x1
,

Ax2 · x2

x2 · x2
,

Ax3 · x3

x3 · x3
, . . . ,

Axk · xk

xk · xk

, . . . (9)

converges to λ.

Remark In the exercises we will ask you to show that (8) can be written in the alternative form

x0, x1 = Ax0

max(Ax0)
, x2 = A2x0

max(A2x0)
, . . . , xk = Akx0

max(Akx0)
, . . . (10)

which expresses the iterates in terms of the initial vector x0.

We will omit the proof of this theorem, but if we accept that (8) converges to an
eigenvector of A, then it is not hard to see why (9) converges to the dominant eigenvalue.
To see this, note that each term in (9) is of the form

Ax · x
x · x

(11)

which is called a Rayleigh quotient of A. In the case where λ is an eigenvalue of A and x
is a corresponding eigenvector, the Rayleigh quotient is

Ax · x
x · x

= λx · x
x · x

= λ(x · x)

x · x
= λ

Thus, if xk converges to a dominant eigenvector x, then it seems reasonable that

Axk · xk

xk · xk

converges to
Ax · x
x · x

= λ

which is the dominant eigenvalue.
Theorem 9.2.2 produces the following algorithm, which is called the power method

with maximum entry scaling.

*As in Theorem 9.2.1, if the dominant eigenvalue is not positive, sequence (9) will still converge to the dominant
eigenvalue, but sequence (8) may not converge to a specific dominant eigenvector. Nevertheless, each term of
(8) will closely approximate some dominant eigenvector for sufficiently large values of k (see Exercise 11).
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The Power Method with Maximum Entry Scaling

Step 0. Choose an arbitrary nonzero vector x0.

Step 1. Compute Ax0 and multiply it by the factor 1/max(Ax0) to obtain the first
approximation x1 to a dominant eigenvector. Compute the Rayleigh quotient
of x1 to obtain the first approximation to the dominant eigenvalue.

Step 2. Compute Ax1 and scale it by the factor 1/max(Ax1) to obtain the second
approximation x2 to a dominant eigenvector. Compute the Rayleigh quotient
of x2 to obtain the second approximation to the dominant eigenvalue.

Step 3. Compute Ax2 and scale it by the factor 1/max(Ax2) to obtain the third ap-
proximation x3 to a dominant eigenvector. Compute the Rayleigh quotient
of x3 to obtain the third approximation to the dominant eigenvalue.

Continuing in this way will generate a sequence of better and better approximations
to the dominant eigenvalue and a corresponding eigenvector.

John William Strutt Rayleigh
(1842–1919)

Historical Note The British math-
ematical physicist John Rayleigh
won the Nobel prize in physics in
1904 for his discovery of the in-
ert gas argon. Rayleigh also made
fundamental discoveries in acous-
tics and optics, and his work in
wave phenomena enabled him to
give the first accurate explanation
of why the sky is blue.

[Image: The Granger Collection,
NewYork ]

EXAMPLE 3 Example 2 Revisited Using Maximum Entry Scaling

Apply the power method with maximum entry scaling to

A =
[

3 2

2 3

]
with x0 =

[
1

0

]
Stop at x5 and compare the resulting approximations to the exact values and to the

Whereas the power method
with Euclidean scaling pro-
duces a sequence that ap-
proaches a unit dominant
eigenvector, maximum entry
scaling produces a sequence
that approaches an eigenvec-
tor whose largest component
is 1.

approximations obtained in Example 2.

Solution We leave it for you to confirm that

Ax0 =
[

3 2

2 3

] [
1

0

]
=
[

3

2

]
x1 = Ax0

max(Ax0)
= 1

3

[
3

2

]
≈
[

1.00000

0.66667

]

Ax1 ≈
[

3 2

2 3

] [
1.00000

0.66667

]
≈
[

4.33333

4.00000

]
x2 = Ax1

max(Ax1)
≈ 1

4.33333

[
4.33333

4.00000

]
≈
[

1.00000

0.92308

]

Ax2 ≈
[

3 2

2 3

] [
1.00000

0.92308

]
≈
[

4.84615

4.76923

]
x3 = Ax2

max(Ax2)
≈ 1

4.84615

[
4.84615

4.76923

]
≈
[

1.00000

0.98413

]

Ax3 ≈
[

3 2

2 3

] [
1.00000

0.98413

]
≈
[

4.96825

4.95238

]
x4 = Ax3

max(Ax3)
≈ 1

4.96825

[
4.96825

4.95238

]
≈
[

1.00000

0.99681

]

Ax4 ≈
[

3 2

2 3

] [
1.00000

0.99681

]
≈
[

4.99361

4.99042

]
x5 = Ax4

max(Ax4)
≈ 1

4.99361

[
4.99361

4.99042

]
≈
[

1.00000

0.99936

]

λ(1) = Ax1 · x1

x1 · x1
= (Ax1)

T x1

xT
1 x1

≈ 7.00000

1.44444
≈ 4.84615

λ(2) = Ax2 · x2

x2 · x2
= (Ax2)

T x2

xT
2 x2

≈ 9.24852

1.85207
≈ 4.99361

λ(3) = Ax3 · x3

x3 · x3
= (Ax3)

T x3

xT
3 x3

≈ 9.84203

1.96851
≈ 4.99974

λ(4) = Ax4 · x4

x4 · x4
= (Ax4)

T x4

xT
4 x4

≈ 9.96808

1.99362
≈ 4.99999

λ(5) = Ax5 · x5

x5 · x5
= (Ax5)

T x5

xT
5 x5

≈ 9.99360

1.99872
≈ 5.00000
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Thus, λ(5) approximates the dominant eigenvalue correctly to five decimal places and x5

closely approximates the dominant eigenvector

x =
[

1

1

]

that results by taking t = 1 in (6).

Rate of Convergence If A is a symmetric matrix whose distinct eigenvalues can be arranged so that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk|
then the “rate” at which the Rayleigh quotients converge to the dominant eigenvalue
λ1 depends on the ratio |λ1|/|λ2|; that is, the convergence is slow when this ratio is
near 1 and rapid when it is large—the greater the ratio, the more rapid the convergence.
For example, if A is a 2 × 2 symmetric matrix, then the greater the ratio |λ1|/|λ2|, the
greater the disparity between the scaling effects of λ1 and λ2 in Figure 9.2.1, and hence
the greater the effect that multiplication by A has on pulling the iterates toward the
eigenspace of λ1. Indeed, the rapid convergence in Example 3 is due to the fact that
|λ1|/|λ2| = 5/1 = 5, which is considered to be a large ratio. In cases where the ratio is
close to 1, the convergence of the power method may be so slow that other methods must
be used.

Stopping Procedures If λ is the exact value of the dominant eigenvalue, and if a power method produces the
approximation λ(k) at the kth iteration, then we call∣∣∣∣λ − λ(k)

λ

∣∣∣∣ (12)

the relative error in λ(k). If this is expressed as a percentage, then it is called the per-
centage error in λ(k). For example, if λ = 5 and the approximation after three iterations
is λ(3) = 5.1, then

relative error in λ(3) =
∣∣∣∣λ − λ(3)

λ

∣∣∣∣ =
∣∣∣∣5 − 5.1

5

∣∣∣∣ = |−0.02| = 0.02

percentage error in λ(3) = 0.02 × 100% = 2%

In applications one usually knows the relative error E that can be tolerated in the
dominant eigenvalue, so the goal is to stop computing iterates once the relative error
in the approximation to that eigenvalue is less than E. However, there is a problem in
computing the relative error from (12) in that the eigenvalue λ is unknown. To circumvent
this problem, it is usual to estimate λ by λ(k) and stop the computations when∣∣∣∣λ(k) − λ(k−1)

λ(k)

∣∣∣∣ < E (13)

The quantity on the left side of (13) is called the estimated relative error in λ(k) and its
percentage form is called the estimated percentage error in λ(k).

EXAMPLE 4 Estimated Relative Error

For the computations in Example 3, find the smallest value of k for which the estimated
percentage error in λ(k) is less than 0.1%.
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Solution The estimated percentage errors in the approximations in Example 3 are as
follows:

APPROXIMATION RELATIVE PERCENTAGE

ERROR ERROR

λ(2):

∣∣∣∣λ(2) − λ(1)

λ(2)

∣∣∣∣ ≈
∣∣∣∣4.99361 − 4.84615

4.99361

∣∣∣∣ ≈ 0.02953 = 2.953%

λ(3):

∣∣∣∣λ(3) − λ(2)

λ(3)

∣∣∣∣ ≈
∣∣∣∣4.99974 − 4.99361

4.99974

∣∣∣∣ ≈ 0.00123 = 0.123%

λ(4):

∣∣∣∣λ(4) − λ(3)

λ(4)

∣∣∣∣ ≈
∣∣∣∣4.99999 − 4.99974

4.99999

∣∣∣∣ ≈ 0.00005 = 0.005%

λ(5):

∣∣∣∣λ(5) − λ(4)

λ(5)

∣∣∣∣ ≈
∣∣∣∣5.00000 − 4.99999

5.00000

∣∣∣∣ ≈ 0.00000 = 0%

Thus, λ(4) = 4.99999 is the first approximation whose estimated percentage error is less
than 0.1%.

Remark A rule for deciding when to stop an iterative process is called a stopping procedure. In
the exercises, we will discuss stopping procedures for the power method that are based on the
dominant eigenvector rather than the dominant eigenvalue.

Exercise Set 9.2
In Exercises 1–2, the distinct eigenvalues of a matrix are given.

Determine whether A has a dominant eigenvalue, and if so, find it.

1. (a) λ1 = 7, λ2 = 3, λ3 = −8, λ4 = 1

(b) λ1 = −5, λ2 = 3, λ3 = 2, λ4 = 5

2. (a) λ1 = 1, λ2 = 0, λ3 = −3, λ4 = 2

(b) λ1 = −3, λ2 = −2, λ3 = −1, λ4 = 3

In Exercises 3–4, apply the power method with Euclidean scal-
ing to the matrix A, starting with x0 and stopping at x4. Compare
the resulting approximations to the exact values of the dominant
eigenvalue and the corresponding unit eigenvector.

3. A =
[

5 −1

−1 −1

]
; x0 =

[
1

0

]

4. A =
⎡
⎢⎣ 7 −2 0

−2 6 −2

0 −2 5

⎤
⎥⎦ ; x0 =

⎡
⎢⎣1

0

0

⎤
⎥⎦

In Exercises 5–6, apply the power method with maximum en-
try scaling to the matrix A, starting with x0 and stopping at x4.
Compare the resulting approximations to the exact values of the
dominant eigenvalue and the corresponding scaled eigenvector.

5. A =
[

1 −3

−3 5

]
; x0 =

[
1

1

]

6. A =
⎡
⎢⎣3 2 2

2 2 0

2 0 4

⎤
⎥⎦ ; x0 =

⎡
⎢⎣1

1

1

⎤
⎥⎦

7. Let

A =
[

2 −1

−1 2

]
; x0 =

[
1

0

]
(a) Use the power method with maximum entry scaling to

approximate a dominant eigenvector of A. Start with x0,
round off all computations to three decimal places, and
stop after three iterations.

(b) Use the result in part (a) and the Rayleigh quotient to
approximate the dominant eigenvalue of A.

(c) Find the exact values of the eigenvector and eigenvalue
approximated in parts (a) and (b).

(d) Find the percentage error in the approximation of the dom-
inant eigenvalue.

8. Repeat the directions of Exercise 7 with

A =
⎡
⎢⎣2 1 0

1 2 0

0 0 10

⎤
⎥⎦ ; x0 =

⎡
⎢⎣1

1

1

⎤
⎥⎦

In Exercises 9–10, a matrix A with a dominant eigenvalue and
a sequence x0, Ax0, . . . , A

5x0 are given. Use Formulas (9) and
(10) to approximate the dominant eigenvalue and a correspond-
ing eigenvector.

9. A =
[

1 2

2 1

]
; x0 =

[
1

0

]
, Ax0 =

[
1

2

]
, A2x0 =

[
5

4

]
,

A3x0 =
[

13

14

]
, A4x0 =

[
41

40

]
, A5x0 =

[
121

122

]
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10. A =
[

1 2

2 1

]
; x0 =

[
0

1

]
, Ax0 =

[
2

1

]
, A2x0 =

[
4

5

]
,

A3x0 =
[

14

13

]
, A4x0 =

[
40

41

]
, A5x0 =

[
122

121

]

11. Consider matrices

A =
[−1 0

0 0

]
and x0 =

[
a

b

]

where x0 is a unit vector and a �= 0. Show that even though
the matrix A is symmetric and has a dominant eigenvalue, the
power sequence (1) in Theorem 9.2.1 does not converge. This
shows that the requirement in that theorem that the dominant
eigenvalue be positive is essential.

12. Use the power method with Euclidean scaling to approximate
the dominant eigenvalue and a corresponding eigenvector of
A. Choose your own starting vector, and stop when the esti-
mated percentage error in the eigenvalue approximation is less
than 0.1%.

(a)

⎡
⎢⎣1 3 3

3 4 −1

3 −1 10

⎤
⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 0 1 1

0 2 −1 1

1 −1 4 1

1 1 1 8

⎤
⎥⎥⎥⎦

13. Repeat Exercise 12, but this time stop when all corresponding
entries in two successive eigenvector approximations differ by
less than 0.01 in absolute value.

14. Repeat Exercise 12 using maximum entry scaling.

Working with Proofs

15. Prove: If A is a nonzero n × n matrix, then ATA and AAT

have positive dominant eigenvalues.

16. (For readers familiar with proof by induction) Let A be an n × n

matrix, let x0 be a unit vector in Rn, and define the sequence
x1, x2, . . . , xk, . . . by

x1 = Ax0

‖Ax0‖ , x2 = Ax1

‖Ax1‖ , . . . , xk = Axk−1

‖Axk−1‖ , . . .

Prove by induction that xk = Akx0/‖Akx0‖.
17. (For readers familiar with proof by induction) Let A be an n × n

matrix, let x0 be a nonzero vector in Rn, and define the sequence
x1, x2, . . . , xk, . . . by

x1 = Ax0

max(Ax0)
, x2 = Ax1

max(Ax1)
, . . . ,

xk = Axk−1

max(Axk−1)
, . . .

Prove by induction that

xk = Akx0

max(Akx0)

Working withTechnology

T1. Use your technology utility to duplicate the computations in
Example 2.

T2. Use your technology utility to duplicate the computations in
Example 3.

9.3 Comparison of Procedures for Solving
Linear Systems
There is an old saying that “time is money.” This is especially true in industry where the
cost of solving a linear system is generally determined by the time it takes for a computer
to perform the required computations. This typically depends both on the speed of the
computer processor and on the number of operations required by the algorithm. Thus,
choosing the right algorithm has important financial implication in an industrial or
research setting. In this section we will discuss some of the factors that affect the choice of
algorithms for solving large-scale linear systems.

Flops and the Cost of
Solving a Linear System

In computer jargon, an arithmetic operation (+, −, ∗, ÷) on two real numbers is called
a flop, which is an acronym for “floating-point operation.”* The total number of flops
required to solve a problem, which is called the cost of the solution, provides a convenient

*Real numbers are stored in computers as numerical approximations called floating-point numbers. In base
10, a floating-point number has the form ±.d1d2 · · · dn × 10m, where m is an integer, called the mantissa, and
n is the number of digits to the right of the decimal point. The value of n varies with the computer. In some
literature the term flop is used as a measure of processing speed and stands for “floating-point operations per
second.” In our usage it is interpreted as a counting unit.
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way of choosing between various algorithms for solving the problem. When needed, the
cost in flops can be converted to units of time or money if the speed of the computer pro-
cessor and the financial aspects of its operation are known. For example, today’s fastest
computers are capable of performing in excess of 17 petaflops/s (1 petaflop = 1015 flops).
Thus, an algorithm that costs 1,000,000 flops would be performed in 0.000000001 sec-
ond. By contrast, today’s personal computers can perform in excess of 80 gigaflops/s
(1 gigaflop = 109 flops). Thus, an algorithm that costs 1,000,000 flops would be per-
formed on a personal computer in 0.0000125 second.

To illustrate how costs (in flops) can be computed, let us count the number of flops

It is now common in computer
jargon to write “FLOPs” to
mean the number of “flops per
second.” However, we will
write “flops” simply as the plu-
ral of “flop.” When needed,
we will write flops per second
as flops/s.

required to solve a linear system of n equations in n unknowns by Gauss–Jordan elim-
ination. For this purpose we will need the following formulas for the sum of the first n

positive integers and the sum of the squares of the first n positive integers:

1 + 2 + 3 + · · · + n = n(n + 1)

2
(1)

12 + 22 + 32 + · · · + n2 = n(n + 1)(2n + 1)

6
(2)

Let Ax = b be a linear system of n equations in n unknowns to be solved by Gauss–
Jordan elimination (or, equivalently, by Gaussian elimination with back substitution).
For simplicity, let us assume that A is invertible and that no row interchanges are re-
quired to reduce the augmented matrix [A | b] to row echelon form. The diagrams that
accompany the following analysis provide a convenient way of counting the operations
required to introduce a leading 1 in the first row and then zeros below it. In our operation
counts, we will lump divisions and multiplications together as “multiplications,” and we
will lump additions and subtractions together as “additions.”

Step 1. It requires n flops (multiplications) to introduce the leading 1 in the first row.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × × · · · × × ×
• • • · · · • • •
• • • · · · • • •
...

...
...

...
...

...

• • • · · · • • •
• • • · · · • • •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣× denotes a quantity that is being computed.

• denotes a quantity that is not being computed.
The augmented matrix size is n × (n + 1).

⎤
⎦

Step 2. It requires n multiplications and n additions to introduce a zero below the leading
1, and there are n − 1 rows below the leading 1, so the number of flops required
to introduce zeros below the leading 1 is 2n(n − 1).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 • • · · · • • •
0 × × · · · × × ×
0 × × · · · × × ×
...

...
...

...
...

...

0 × × · · · × × ×
0 × × · · · × × ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Column 1. Combining Steps 1 and 2, the number of flops required for column
1 is

n + 2n(n − 1) = 2n2 − n
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Column 2. The procedure for column 2 is the same as for column 1, except that
now we are dealing with one less row and one less column. Thus, the number of
flops required to introduce the leading 1 in row 2 and the zeros below it can be
obtained by replacing n by n − 1 in the flop count for the first column. Thus,
the number of flops required for column 2 is

2(n − 1)2 − (n − 1)

Column 3. By the argument for column 2, the number of flops required for
column 3 is

2(n − 2)2 − (n − 2)

Total. The pattern should now be clear. The total number of flops required to
create the n leading 1’s and the associated zeros is

(2n2 − n) + [2(n − 1)2 − (n − 1)] + [2(n − 2)2 − (n − 2)] + · · · + (2 − 1)

which we can rewrite as

2[n2 + (n − 1)2 + · · · + 1] − [n + (n − 1) + · · · + 1]
or on applying Formulas (1) and (2) as

2
n(n + 1)(2n + 1)

6
− n(n + 1)

2
= 2

3
n3 + 1

2
n2 − 1

6
n

Next, let us count the number of operations required to complete the back-
ward phase (the back substitution).

Column n. It requires n − 1 multiplications and n − 1 additions to introduce
zeros above the leading 1 in the nth column, so the total number of flops required
for the column is 2(n − 1).⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 • • · · · • 0 ×
0 1 • · · · • 0 ×
0 0 1 · · · • 0 ×
...

...
...

...
...

...

0 0 0 · · · 1 0 ×
0 0 0 · · · 0 1 •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Column (n − 1). The procedure is the same as for Step 1, except that now we are
dealing with one less row. Thus, the number of flops required for the (n − 1)st
column is 2(n − 2). ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 • • · · · 0 0 ×
0 1 • · · · 0 0 ×
0 0 1 · · · 0 0 ×
...

...
...

...
...

...

0 0 0 · · · 1 0 •
0 0 0 · · · 0 1 •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Column (n − 2). By the argument for column (n − 1), the number of flops
required for column (n − 2) is 2(n − 3).
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Total. The pattern should now be clear. The total number of flops to complete
the backward phase is

2(n − 1) + 2(n − 2) + 2(n − 3) + · · · + 2(n − n) = 2[n2 − (1 + 2 + · · · + n)]
which we can rewrite using Formula (1) as

2

(
n2 − n(n + 1)

2

)
= n2 − n

In summary, we have shown that for Gauss–Jordan elimination the number of flops
required for the forward and backward phases is

flops for forward phase = 2
3 n3 + 1

2 n2 − 1
6 n (3)

flops for backward phase = n2 − n (4)

Thus, the total cost of solving a linear system by Gauss–Jordan elimination is

flops for both phases = 2
3 n3 + 3

2 n2 − 7
6 n (5)

Cost Estimates for Solving
Large Linear Systems

It is a property of polynomials that for large values of the independent variable the term
of highest power makes the major contribution to the value of the polynomial. Thus,
for large linear systems we can use (3) and (4) to approximate the number of flops in the
forward and backward phases as

flops for forward phase ≈ 2
3 n3 (6)

flops for backward phase ≈ n2 (7)

This shows that it is more costly to execute the forward phase than the backward phase
for large linear systems. Indeed, the cost difference between the forward and backward
phases can be enormous, as the next example shows.

We leave it as an exercise for you to confirm the results in Table 1.

The cost in flops for Gaus-
sian elimination is the same as
that for the forward phase of
Gauss–Jordan elimination.

Table 1

Approximate Cost for an n × n Matrix A with Large n

Algorithm Cost in Flops

Gauss–Jordan elimination (forward phase) ≈ 2
3 n3

Gauss–Jordan elimination (backward phase) ≈ n2

LU-decomposition of A ≈ 2
3 n3

Forward substitution to solve Ly = b ≈ n2

Backward substitution to solve Ux = y ≈ n2

A−1 by reducing [A | I ] to [I | A−1] ≈ 2n3

Compute A−1b ≈ 2n3

EXAMPLE 1 Cost of Solving a Large Linear System

Approximate the time required to execute the forward and backward phases of Gauss–
Jordan elimination for a system of one million (= 106) equations in one million unknowns
using a computer that can execute 10 petaflops per second (1 petaflop = 1015 flops).
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Solution We have n = 106 for the given system, so from (6) and (7) the number of
petaflops required for the forward and backward phases is

petaflops for forward phase ≈ 2
3 n3 × 10−15 = 2

3 (106)3 × 10−15 = 2
3 × 103

petaflops for backward phase ≈ n2 × 10−15 = (106)2 × 10−15 = 10−3

Thus, at 10 petaflops/s the execution times for the forward and backward phases are

time for forward phase ≈ (
2
3 × 103

)× 10−1 s ≈ 66.67 s

time for backward phase ≈ (10−3) × 10−1 s ≈ 0.0001 s

Considerations in
Choosing an Algorithm for
Solving a Linear System

For a single linear system Ax = b of n equations in n unknowns, the methods of LU-
decomposition and Gauss–Jordan elimination differ in bookkeeping but otherwise in-
volve the same number of flops. Thus, neither method has a cost advantage over the other.
However, LU -decomposition has the following advantages that make it the method of
choice:

• Gauss–Jordan elimination and Gaussian elimination both use the augmented matrix
[A | b], so b must be known. In contrast, LU -decomposition uses only the matrix A,

so once that decomposition is known it can be used with as many right-hand sides as
are required.

• The LU-decomposition that is computed to solve Ax = b can be used to compute
A−1, if needed, with little additional work.

• For large linear systems in which computer memory is at a premium, one can dispense
with the storage of the 1’s and zeros that appear on or below the main diagonal of
U, since those entries are known from the form of U. The space that this opens up
can then be used to store the entries of L, thereby reducing the amount of memory
required to solve the system.

• If A is a large matrix consisting mostly of zeros, and if the nonzero entries are con-
centrated in a “band” around the main diagonal, then there are techniques that can
be used to reduce the cost of LU-decomposition, giving it an advantage over Gauss–
Jordan elimination.

Exercise Set 9.3
1. A certain computer can execute 10 gigaflops per second. Use

Formula (5) to find the time required to solve the system using
Gauss–Jordan elimination.

(a) A system of 1000 equations in 1000 unknowns.

(b) A system of 10,000 equations in 10,000 unknowns.

(c) A system of 100,000 equations in 100,000 unknowns.

2. A certain computer can execute 100 gigaflops per second. Use
Formula (5) to find the time required to solve the system using
Gauss–Jordan elimination.

(a) A system of 10,000 equations in 10,000 unknowns.

(b) A system of 100,000 equations in 100,000 unknowns.

(c) A system of 1,000,000 equations in 1,000,000 unknowns.

3. A certain computer can execute 70 gigaflops per second. Use
Table 1 to estimate the time required to perform the following
operations on the invertible 10,000 × 10,000 matrix A.

(a) Execute the forward phase of Gauss–Jordan elimination.

(b) Execute the backward phase of Gauss–Jordan elimina-
tion.

(c) LU -decomposition of A.

(d) Find A−1 by reducing [A | I ] to [I | A−1].

4. The IBM Sequoia computer can operate at speeds in excess
of 16 petaflops per second (1 petaflop = 1015 flops). Use Ta-
ble 1 to estimate the time required to perform the following
operations on an invertible 100,000 × 100,000 matrix A.

(a) Execute the forward phase of Gauss–Jordan elimination.

(b) Execute the backward phase of Gauss–Jordan elimina-
tion.

(c) LU-decomposition of A.

(d) Find A−1 by reducing [A | I ] to [I | A−1].



514 Chapter 9 Numerical Methods

5. (a) Approximate the time required to execute the forward
phase of Gauss–Jordan elimination for a system of
100,000 equations in 100,000 unknowns using a com-
puter that can execute 1 gigaflop per second. Do the same
for the backward phase. (See Table 1.)

(b) How many gigaflops per second must a computer be able
to execute to find the LU -decomposition of a matrix of
size 10,000 × 10,000 in less than 0.5 s? (See Table 1.)

6. About how many teraflops per second must a computer
be able to execute to find the inverse of a matrix of size
100,000 × 100,000 in less than 0.5 s? (1 teraflop = 1012 flops.)

In Exercises 7–10, A and B are n × n matrices and c is a real
number.

7. How many flops are required to compute cA?

8. How many flops are required to compute A + B?

9. How many flops are required to compute AB?

10. If A is a diagonal matrix and k is a positive integer, how many
flops are required to compute Ak?

9.4 Singular Value Decomposition
In this section we will discuss an extension of the diagonalization theory for n × n

symmetric matrices to general m × n matrices. The results that we will develop in this
section have applications to compression, storage, and transmission of digitized
information and form the basis for many of the best computational algorithms that are
currently available for solving linear systems.

Decompositions of Square
Matrices

We saw in Formula (2) of Section 7.2 that every symmetric matrix A can be expressed as

A = PDP T (1)

where P is an n × n orthogonal matrix of eigenvectors of A, and D is the diagonal
matrix whose diagonal entries are the eigenvalues corresponding to the column vectors
of P. In this section we will call (1) an eigenvalue decomposition of A (abbreviated EVD
of A).

If an n × n matrix A is not symmetric, then it does not have an eigenvalue decom-
position, but it does have a Hessenberg decomposition

A = PHP T

in which P is an orthogonal matrix and H is in upper Hessenberg form (Theorem 7.2.4).
Moreover, if A has real eigenvalues, then it has a Schur decomposition

A = PSP T

in which P is an orthogonal matrix and S is upper triangular (Theorem 7.2.3).
The eigenvalue, Hessenberg, and Schur decompositions are important in numerical

algorithms not only because the matrices D, H , and S have simpler forms than A, but
also because the orthogonal matrices that appear in these factorizations do not magnify
roundoff error. To see why this is so, suppose that x̂ is a column vector whose entries are
known exactly and that

x = x̂ + e
is the vector that results when roundoff error is present in the entries of x̂. If P is an
orthogonal matrix, then the length-preserving property of orthogonal transformations
implies that

‖P x − P x̂‖ = ‖x − x̂‖ = ‖e‖
which tells us that the error in approximating P x̂ by P x has the same magnitude as the
error in approximating x̂ by x.

There are two main paths that one might follow in looking for other kinds of de-
compositions of a general square matrix A: One might look for decompositions of the
form

A = PJP−1



9.4 SingularValue Decomposition 515

in which P is invertible but not necessarily orthogonal, or one might look for decompo-
sitions of the form

A = U�V T

in which U and V are orthogonal but not necessarily the same. The first path leads to
decompositions in which J is either diagonal or a certain kind of block diagonal matrix,
called a Jordan canonical form in honor of the French mathematician Camille Jordan (see
p. 518). Jordan canonical forms, which we will not consider in this text, are important
theoretically and in certain applications, but they are of lesser importance numerically
because of the roundoff difficulties that result from the lack of orthogonality in P. In
this section we will focus on the second path.

Singular Values Since matrix products of the form ATA will play an important role in our work, we will
begin with two basic theorems about them.

THEOREM 9.4.1 If A is an m × n matrix, then:

(a) A and ATA have the same null space.

(b) A and ATA have the same row space.

(c) AT and ATA have the same column space.

(d ) A and ATA have the same rank.

We will prove part (a) and leave the remaining proofs for the exercises.

Proof (a) We must show that every solution of Ax = 0 is a solution of ATAx = 0, and
conversely. If x0 is any solution of Ax = 0, then x0 is also a solution of ATAx = 0 since

ATAx0 = AT (Ax0) = AT 0 = 0

Conversely, if x0 is any solution of ATAx = 0, then x0 is in the null space of ATA and
hence is orthogonal to all vectors in the row space of ATA by part (q) of Theorem 4.8.8.
However, ATA is symmetric, so x0 is also orthogonal to every vector in the column space
of ATA. In particular, x0 must be orthogonal to the vector (ATA)x0; that is,

x0 · (ATA)x0 = 0

Using the first formula in Table 1 of Section 3.2 and properties of the transpose operation
we can rewrite this as

xT
0 (ATA)x0 = (Ax0)

T(Ax0) = (Ax0) · (Ax0) = ‖Ax0‖2 = 0

which implies that Ax0 = 0, thereby proving that x0 is a solution of Ax0 = 0.

THEOREM 9.4.2 If A is an m × n matrix, then:

(a) ATA is orthogonally diagonalizable.

(b) The eigenvalues of ATA are nonnegative.

Proof (a) The matrix ATA, being symmetric, is orthogonally diagonalizable by Theorem
7.2.1.

Proof (b) Since ATA is orthogonally diagonalizable, there is an orthonormal basis for
Rn consisting of eigenvectors of ATA, say {v1, v2, . . . , vn}. If we let λ1, λ2, . . . , λn be the
corresponding eigenvalues, then for 1 ≤ i ≤ n we have

‖Avi‖2 = Avi · Avi = vi · ATAvi [Formula (26) of Section 3.2]

= vi · λivi = λi(vi · vi ) = λi‖vi‖2 = λi

It follows from this relationship that λi ≥ 0.
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DEFINITION 1 If A is an m × n matrix, and if λ1, λ2, . . . , λn are the eigenvalues of
ATA, then the numbers

σ1 = √
λ1, σ2 = √

λ2, . . . , σn = √
λn

are called the singular values of A.

We will assume throughout
this section that the eigenval-
ues of ATA are named so that

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

and hence that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

EXAMPLE 1 SingularValues

Find the singular values of the matrix ⎡
⎣1 1

0 1

1 0

⎤
⎦

Solution The first step is to find the eigenvalues of the matrix

ATA =
[

1 0 1

1 1 0

]⎡⎣1 1

0 1

1 0

⎤
⎦ =

[
2 1

1 2

]

The characteristic polynomial of ATA is

λ2 − 4λ + 3 = (λ − 3)(λ − 1)

so the eigenvalues of ATA are λ1 = 3 and λ2 = 1 and the singular values of A in order
of decreasing size are

σ1 = √
λ1 = √

3, σ2 = √
λ2 = 1

Singular Value
Decomposition

Before turning to the main result in this section, we will find it useful to extend the notion
of a “main diagonal” to matrices that are not square. We define the main diagonal of an
m × n matrix to be the line of entries shown in Figure 9.4.1—it starts at the upper left

Main diagonal

Figure 9.4.1

corner and extends diagonally as far as it can go. We will refer to the entries on the main
diagonal as the diagonal entries.

We are now ready to consider the main result in this section, which is concerned
with a specific way of factoring a general m × n matrix A. This factorization, called
singular value decomposition (abbreviated SVD) will be given in two forms, a brief form
that captures the main idea, and an expanded form that spells out the details. The proof
is given at the end of this section.

THEOREM 9.4.3 SingularValue Decomposition (Brief Form)

If A is an m × n matrix of rank k, then A can be expressed in the form A = U�V T ,
where � has size m × n and can be expressed in partitioned form as

� =
[

D 0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)

]

in which D is a diagonal k × k matrix whose successive entries are the first k singular
values ofA in nonincreasing order,U is anm × n orthogonal matrix, and V is an n × n

orthogonal matrix.
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THEOREM 9.4.4 SingularValue Decomposition (Expanded Form)

If A is an m × n matrix of rank k, then A can be factored as

A = U�V T = [u1 u2 · · · uk | uk+1 · · · um]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 · · · 0

0 σ2 · · · 0
0k×(n−k)...

...
. . .

...

0 0 · · · σk

0(m−k)×k 0(m−k)×(n−k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vT
1

vT
2
...

vT
k

vT
k+1
...

vT
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in whichU, �, and V have sizesm × m, m × n, and n × n, respectively, and in which:

(a) V = [v1 v2 · · · vn] orthogonally diagonalizes ATA.

(b) The nonzero diagonal entries of � are σ1 = √
λ1, σ2 = √

λ2, . . . , σk = √
λk,

where λ1, λ2, . . . , λk are the nonzero eigenvalues of ATA corresponding to the
column vectors of V.

(c) The column vectors of V are ordered so that σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

(d ) ui = Avi

‖Avi‖ = 1

σi

Avi (i = 1, 2, . . . , k)

(e) {u1, u2, . . . , uk} is an orthonormal basis for col(A).

( f ) {u1, u2, . . . , uk, uk+1, . . . , um} is an extension of {u1, u2, . . . , uk} to an ortho-
normal basis for Rm.

Harry Bateman
(1882–1946)

Historical Note The term singu-
lar value is apparently due to the
British-born mathematician Harry
Bateman, whoused it in a research
paper published in 1908. Bateman
emigrated to the United States in
1910, teaching at Bryn Mawr Col-
lege, Johns Hopkins University,
and finally at the California Insti-
tute of Technology. Interestingly,
he was awarded his Ph.D. in 1913
by Johns Hopkins at which point
in time he was already an emi-
nent mathematician with 60 pub-
lications to his name.
[Image: Courtesy of the Archives,
California Institute ofTechnology ]

The vectors u1, u2, . . . , uk are
called the left singular vec-
tors of A, and the vectors
v1, v2, . . . , vk are called the
right singular vectors of A.

EXAMPLE 2 SingularValue Decomposition ifA Is Not Square

Find a singular value decomposition of the matrix

A =
⎡
⎣1 1

0 1

1 0

⎤
⎦

Solution We showed in Example 1 that the eigenvalues of ATA are λ1 = 3 and λ2 = 1
and that the corresponding singular values of A are σ1 = √

3 and σ2 = 1. We leave it
for you to verify that

v1 =
⎡
⎣

√
2

2
√

2
2

⎤
⎦ and v2 =

⎡
⎣

√
2

2

−
√

2
2

⎤
⎦

are eigenvectors corresponding to λ1 and λ2, respectively, and that V = [v1 | v2] orthog-
onally diagonalizes ATA. From part (d) of Theorem 9.4.4, the vectors

u1 = 1

σ1
Av1 =

√
3

3

⎡
⎣1 1

0 1

1 0

⎤
⎦
⎡
⎣

√
2

2
√

2
2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

√
6

3
√

6
6
√

6
6

⎤
⎥⎥⎥⎥⎦

u2 = 1

σ2
Av2 = (1)

⎡
⎣1 1

0 1

1 0

⎤
⎦
⎡
⎣

√
2

2

−
√

2
2

⎤
⎦ =

⎡
⎢⎢⎣

0

−
√

2
2
√

2
2

⎤
⎥⎥⎦
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are two of the three column vectors of U. Note that u1 and u2 are orthonormal, as
expected. We could extend the set {u1, u2} to an orthonormal basis for R3. However, the
computations will be easier if we first remove the messy radicals by multiplying u1 and
u2 by appropriate scalars. Thus, we will look for a unit vector u3 that is orthogonal to

√
6 u1 =

⎡
⎣2

1

1

⎤
⎦ and

√
2 u2 =

⎡
⎣ 0

−1

1

⎤
⎦

To satisfy these two orthogonality conditions, the vector u3 must be a solution of the
homogeneous linear system

[
2 1 1

0 −1 1

]⎡⎣x1

x2

x3

⎤
⎦ =

[
0

0

]

We leave it for you to show that a general solution of this system is⎡
⎣x1

x2

x3

⎤
⎦ = t

⎡
⎣−1

1

1

⎤
⎦

Normalizing the vector on the right yields

u3 =

⎡
⎢⎢⎣
− 1√

3

1√
3

1√
3

⎤
⎥⎥⎦

Eugenio Beltrami
(1835–1900)

Camille Jordan
(1838–1922)

Herman Klaus Weyl
(1885–1955)

Gene H. Golub
(1932–2007)

Historical Note The theory of singular value decompo-
sitions can be traced back to the work of five people: the
Italianmathematician Eugenio Beltrami, the Frenchmath-
ematician Camille Jordan, the English mathematician
James Sylvester (see p. 35), and the German mathemati-
cians Erhard Schmidt (see p. 371) and the mathematician
Herman Weyl. More recently, the pioneering efforts of
the American mathematician Gene Golub produced a
stable and efficient algorithm for computing it. Beltrami
and Jordan were the progenitors of the decomposition—
Beltrami gave a proof of the result for real, invertible
matrices with distinct singular values in 1873. Subse-
quently, Jordan refined the theory and eliminated the
unnecessary restrictions imposed by Beltrami. Sylvester,
apparently unfamiliar with the work of Beltrami and
Jordan, rediscovered the result in 1889 and suggested its
importance. Schmidtwas the first person to show that the
singular value decomposition could be used to approxi-
mate a matrix by another matrix with lower rank, and, in
so doing, he transformed it from amathematical curiosity
to an important practical tool. Weyl showed how to find
the lower rank approximations in the presence of error.

[Images: http://www-history.mcs.st-andrews.ac.uk/
history/PictDisplay/Beltrami.html (Beltrami );The
Granger Collection, NewYork (Jordan); Courtesy
Electronic Publishing Services, Inc., NewYork City

(Weyl ); Courtesy of Hector Garcia-Molina (Golub)]
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Thus, the singular value decomposition of A is

⎡
⎣1 1

0 1

1 0

⎤
⎦ =

⎡
⎢⎢⎢⎣

√
6

3 0 − 1√
3

√
6

6 −
√

2
2

1√
3

√
6

6

√
2

2
1√
3

⎤
⎥⎥⎥⎦
⎡
⎢⎣
√

3 0

0 1

0 0

⎤
⎥⎦
⎡
⎣

√
2

2

√
2

2
√

2
2 −

√
2

2

⎤
⎦

A = U � V T

You may want to confirm the validity of this equation by multiplying out the matrices
on the right side.

We conclude this section with an optional proof of Theorem 9.4.4.O PT I O NA L

Proof ofTheorem 9.4.4 For notational simplicity we will prove this theorem in the case
where A is an n × n matrix. To modify the argument for an m × n matrix you need only
make the notational adjustments required to account for the possibility that m > n or
n > m.

The matrix ATA is symmetric, so it has an eigenvalue decomposition

ATA = VDV T

in which the column vectors of

V = [v1 | v2 | · · · | vn]
are unit eigenvectors of ATA, and D is a diagonal matrix whose successive diagonal
entries λ1, λ2, . . . , λn are the eigenvalues of ATA corresponding in succession to the
column vectors of V. Since A is assumed to have rank k, it follows from Theorem 9.4.1
that ATA also has rank k. It follows as well that D has rank k, since it is similar to ATA

and rank is a similarity invariant. Thus, D can be expressed in the form

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0
λ2

. . .

λk

0
. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where λ1 ≥ λ2 ≥ · · · ≥ λk > 0. Now let us consider the set of image vectors

{Av1, Av2, . . . , Avn} (3)

This is an orthogonal set, for if i �= j, then the orthogonality of vi and vj implies that

Avi · Avj = vi · ATAvj = vi · λj vj = λj (vi · vj ) = 0

Moreover, the first k vectors in (3) are nonzero since we showed in the proof of Theo-
rem 9.4.2(b) that ‖Avi‖2 = λi for i = 1, 2, . . . , n, and we have assumed that the first k

diagonal entries in (2) are positive. Thus,

S = {Av1, Av2, . . . , Avk}
is an orthogonal set of nonzero vectors in the column space of A. But the column space
of A has dimension k since

rank(A) = rank(ATA) = k
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and hence S, being a linearly independent set of k vectors, must be an orthogonal basis
for col(A). If we now normalize the vectors in S, we will obtain an orthonormal basis
{u1, u2, . . . , uk} for col(A) in which

ui = Avi

‖Avi‖ = 1√
λi

Avi (1 ≤ i ≤ k)

or, equivalently, in which

Av1 = √
λ1u1 = σ1u1, Av2 = √

λ2u2 = σ2u2, . . . , Avk = √
λkuk = σkuk (4)

It follows from Theorem 6.3.6 that we can extend this to an orthonormal basis

{u1, u2, . . . , uk, uk+1, . . . , un}
for Rn. Now let U be the orthogonal matrix

U = [
u1 u2 · · · uk uk+1 · · · un

]
and let � be the diagonal matrix

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
σ2

. . .

σk

0
. . .

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It follows from (4), and the fact that Avi = 0 for i > k, that

U� = [σ1u1 σ2u2 · · · σkuk 0 · · · 0]
= [Av1 Av2 · · · Avk Avk+1 · · · Avn]
= AV

which we can rewrite using the orthogonality of V as A = U�V T .

Exercise Set 9.4
In Exercises 1–4, find the distinct singular values of A.

1. A = [
1 2 0

]
2. A =

[
3 0

0 4

]

3. A =
[

1 −2

2 1

]
4. A =

[√
2 0

1
√

2

]

In Exercises 5–12, find a singular value decomposition of A.

5. A =
[

1 −1

1 1

]
6. A =

[−3 0

0 −4

]

7. A =
[

4 6

0 4

]
8. A =

[
3 3

3 3

]

9. A =
⎡
⎢⎣−2 2

−1 1

2 −2

⎤
⎥⎦ 10. A =

[−2 −1 2

2 1 −2

]

11. A =
⎡
⎢⎣ 1 0

1 1

−1 1

⎤
⎥⎦ 12. A =

⎡
⎢⎣6 4

0 0

4 0

⎤
⎥⎦

Working with Proofs

13. Prove: If A is an m × n matrix, then ATA and AAT have the
same rank.

14. Prove part (d ) of Theorem 9.4.1 by using part (a) of the the-
orem and the fact that A and ATA have n columns.
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15. (a) Prove part (b) of Theorem 9.4.1 by first showing that
row(ATA) is a subspace of row(A).

(b) Prove part (c) of Theorem 9.4.1 by using part (b).

16. Let T : Rn →Rm be a linear transformation whose standard
matrix A has the singular value decomposition A = U�V T ,

and let B = {v1, v2, . . . , vn} and B ′ = {u1, u2, . . . , um} be
the column vectors of V and U, respectively. Prove that
� = [T ]B ′,B .

17. Prove that the singular values of ATA are the squares of the
singular values of A.

18. Prove that if A = U�V T is a singular value decomposition of
A, then U orthogonally diagonalizes AAT .

19. A polar decomposition of an n × n matrix A is a factorization
A = PQ in which P is a positive semidefinite n × n matrix
with the same rank as A, and Q is an orthogonal n × n ma-
trix.

(a) Prove that if A = U�V T is the singular value decompo-
sition of A, then A = (U�UT )(UV T ) is a polar decom-
position of A.

(b) Find a polar decomposition of the matrix in Exercise 5.

True-False Exercises

TF. In parts (a)–(g) determine whether the statement is true or
false, and justify your answer.

(a) If A is an m × n matrix, then ATA is an m × m matrix.

(b) If A is an m × n matrix, then ATA is a symmetric matrix.

(c) If A is an m × n matrix, then the eigenvalues of ATA are posi-
tive real numbers.

(d) If A is an n × n matrix, then A is orthogonally diagonalizable.

(e) If A is an m × n matrix, then ATA is orthogonally diagonaliz-
able.

(f ) The eigenvalues of ATA are the singular values of A.

(g) Every m × n matrix has a singular value decomposition.

Working withTechnology

T1. Use your technology utility to duplicate the computations in
Example 2.

T2. For the given matrix A, use the steps in Example 2 to
find matrices U , �, and V T in a singular value decomposition
A = U�V T .

(a) A =
[−2 −1 2

2 1 −2

]
(b) A =

⎡
⎢⎣

1 0

1 1

−1 1

⎤
⎥⎦

9.5 Data Compression Using Singular
Value Decomposition
Efficient transmission and storage of large quantities of digital data has become a major
problem in our technological world. In this section we will discuss the role that singular
value decomposition plays in compressing digital data so that it can be transmitted more
rapidly and stored in less space. We assume here that you have read Section 9.4.

Reduced Singular Value
Decomposition

Algebraically, the zero rows and columns of the matrix � in Theorem 9.4.4 are su-
perfluous and can be eliminated by multiplying out the expression U�V T using block
multiplication and the partitioning shown in that formula. The products that involve
zero blocks as factors drop out, leaving

A = [u1 u2 · · · uk]

⎡
⎢⎢⎢⎣

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

vT
1

vT
2
...

vT
k

⎤
⎥⎥⎥⎥⎦ (1)

which is called a reduced singular value decomposition of A. In this text we will denote
the matrices on the right side of (1) by U1, �1, and V T

1 , respectively, and we will write
this equation as

A = U1�1V
T

1 (2)
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Note that the sizes of U1, �1, and V T
1 are m × k, k × k, and k × n, respectively, and

that the matrix �1 is invertible since its diagonal entries are positive.
If we multiply out on the right side of (1) using the column-row rule, then we obtain

A = σ1u1vT
1 + σ2u2vT

2 + · · · + σkukvT
k (3)

which is called a reduced singular value expansion of A. This result applies to all ma-
trices, whereas the spectral decomposition [Formula (7) of Section 7.2] applies only to
symmetric matrices.

Remark It can be proved that an m × n matrix M has rank 1 if and only if it can be factored
as M = uvT , where u is a column vector in Rm and V is a column vector in Rn. Thus, a reduced
singular value decomposition expresses a matrix A of rank k as a linear combination of k rank 1
matrices.

EXAMPLE 1 Reduced SingularValue Decomposition

Find a reduced singular value decomposition and a reduced singular value expansion of
the matrix

A =
⎡
⎣1 1

0 1
1 0

⎤
⎦

Solution In Example 2 of Section 9.4 we found the singular value decomposition

⎡
⎣1 1

0 1

1 0

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

√
6

3 0 − 1√
3

√
6

6 −
√

2
2

1√
3

√
6

6

√
2

2
1√
3

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎢⎣
√

3 0

0 1

0 0

⎤
⎥⎦
⎡
⎣

√
2

2

√
2

2
√

2
2 −

√
2

2

⎤
⎦

A = U � V T

(4)

Since A has rank 2 (verify), it follows from (1) with k = 2 that the reduced singular value
decomposition of A corresponding to (4) is

⎡
⎣1 1

0 1

1 0

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

√
6

3 0
√

6
6 −

√
2

2
√

6
6

√
2

2

⎤
⎥⎥⎥⎥⎦
[√

3 0

0 1

]⎡⎣
√

2
2

√
2

2
√

2
2 −

√
2

2

⎤
⎦

This yields the reduced singular value expansion

⎡
⎣1 1

0 1

1 0

⎤
⎦ = σ1u1vT

1 + σ2u2vT
2 = √

3

⎡
⎢⎢⎢⎢⎣

√
6

3
√

6
6
√

6
6

⎤
⎥⎥⎥⎥⎦
[√

2
2

√
2

2

]
+ (1)

⎡
⎢⎢⎣

0

−
√

2
2
√

2
2

⎤
⎥⎥⎦[√

2
2 −

√
2

2

]

= √
3

⎡
⎢⎢⎢⎢⎣

√
3

3

√
3

3
√

3
6

√
3

6
√

3
6

√
3

6

⎤
⎥⎥⎥⎥⎦+ (1)

⎡
⎢⎣

0 0

− 1
2

1
2

1
2 − 1

2

⎤
⎥⎦

Note that the matrices in the expansion have rank 1, as expected.
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Data Compression and
Image Processing

Singular value decompositions can be used to “compress” visual information for the
purpose of reducing its required storage space and speeding up its electronic transmis-
sion. The first step in compressing a visual image is to represent it as a numerical matrix
from which the visual image can be recovered when needed.

For example, a black and white photograph might be scanned as a rectangular array
of pixels (points) and then stored as a matrix A by assigning each pixel a numerical
value in accordance with its gray level. If 256 different gray levels are used (0 = white to
255 = black), then the entries in the matrix would be integers between 0 and 255. The
image can be recovered from the matrix A by printing or displaying the pixels with their
assigned gray levels.

If the matrixAhas sizem × n, then one might store each of itsmn entries individually.
An alternative procedure is to compute the reduced singular value decomposition

A = σ1u1v
T
1 + σ2u2vT

2 + · · · + σkukvT
k (5)

in which σ1 ≥ σ2 ≥ · · · ≥ σk , and store the σ ’s, the u’s, and the v’s. When needed, the
matrix A (and hence the image it represents) can be reconstructed from (5). Since each
uj has m entries and each vj has n entries, this method requires storage space for

km + kn + k = k(m + n + 1)

numbers. Suppose, however, that the singular values σr+1, . . . , σk are sufficiently small
that dropping the corresponding terms in (5) produces an acceptable approximation

Ar = σ1u1vT
1 + σ2u2vT

2 + · · · + σrurvT
r (6)

to A and the image that it represents. We call (6) the rank r approximation of A. This
matrix requires storage space for only

rm + rn + r = r(m + n + 1)

numbers, compared to mn numbers required for entry-by-entry storage of A. For exam-
ple, the rank 100 approximation of a 1000 × 1000 matrix A requires storage for only

100(1000 + 1000 + 1) = 200,100

numbers, compared to the 1,000,000 numbers required for entry-by-entry storage of
A—a compression of almost 80%.

Figure 9.5.1 shows some approximations of a digitized mandrill image obtained
using (6).

Original Reconstruction

Historical Note In 1924 the U.S. Federal Bureau of Inves-

tigation (FBI) began collecting fingerprints and handprints

and now has more than 100 million such prints in its files.

To reduce the storage cost, the FBI began working with the

Los Alamos National Laboratory, the National Bureau of

Standards, and other groups in 1993 to devise rank-based

compression methods for storing prints in digital form. The

following figure shows an original fingerprint and a recon-

struction from digital data that was compressed at a ratio of

26:1.
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Rank 128Rank 50Rank 20Rank 10Rank 4

Figure 9.5.1 [Image: Digital Vision/Age Fotostock America, Inc.]

Exercise Set 9.5
In Exercises 1–4, find a reduced singular value decomposition

of A. [Note: Each matrix appears in Exercise Set 9.4, where you
were asked to find its (unreduced) singular value decomposition.]

1. A =
⎡
⎢⎣−2 2

−1 1

2 −2

⎤
⎥⎦ 2. A =

[−2 −1 2

2 1 −2

]

3. A =
⎡
⎢⎣ 1 0

1 1

−1 1

⎤
⎥⎦ 4. A =

⎡
⎢⎣6 4

0 0

4 0

⎤
⎥⎦

In Exercises 5–8, find a reduced singular value expansion of A.

5. The matrix A in Exercise 1.

6. The matrix A in Exercise 2.

7. The matrix A in Exercise 3.

8. The matrix A in Exercise 4.

9. Suppose A is a 200 × 500 matrix. How many numbers must be
stored in the rank 100 approximation of A? Compare this with
the number of entries of A.

True-False Exercises

TF. In parts (a)–(c) determine whether the statement is true or
false, and justify your answer. Assume that U1�1V

T
1 is a reduced

singular value decomposition of an m × n matrix of rank k.

(a) U1 has size m × k.

(b) �1 has size k × k.

(c) V1 has size k × n.

Chapter 9 Supplementary Exercises

1. Find an LU -decomposition of A =
[−6 2

6 0

]
.

2. Find the LDU -decomposition of the matrix A in Exercise 1.

3. Find an LU -decomposition of A =
⎡
⎢⎣2 4 6

1 4 7

1 3 7

⎤
⎥⎦.

4. Find the LDU -decomposition of the matrix A in Exercise 3.

5. Let A =
[

2 1

1 2

]
and x0 =

[
1

0

]
.

(a) Identify the dominant eigenvalue of A and then find the
corresponding dominant unit eigenvector v with positive
entries.

(b) Apply the power method with Euclidean scaling to A and
x0, stopping at x5. Compare your value of x5 to the eigen-
vector v found in part (a).

(c) Apply the power method with maximum entry scaling to
A and x0, stopping at x5. Compare your result with the

eigenvector

[
1

1

]
.

6. Consider the symmetric matrix

A =
[

0 1

1 0

]

Discuss the behavior of the power sequence

x0, x1, . . . , xk, . . .

with Euclidean scaling for a general nonzero vector x0. What
is it about the matrix that causes the observed behavior?

7. Suppose that a symmetric matrix A has distinct eigenvalues
λ1 = 8, λ2 = 1.4, λ3 = 2.3, and λ4 = −8.1. What can you say
about the convergence of the Rayleigh quotients?

8. Find a singular value decomposition of A =
[

1 1

1 1

]
.
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9. Find a singular value decomposition of A =
⎡
⎢⎣1 1

0 0

1 1

⎤
⎥⎦.

10. Find a reduced singular value decomposition and a reduced
singular value expansion of the matrix A in Exercise 9.

11. Find the reduced singular value decomposition of the matrix
whose singular value decomposition is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2
1
2 − 1

2

1
2

1
2 − 1

2 − 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

24 0 0

0 12 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

2
3 − 1

3
2
3

2
3

2
3 − 1

3

− 1
3

2
3

2
3

⎤
⎥⎥⎥⎥⎦

12. Do orthogonally similar matrices have the same singular val-
ues? Justify your answer.

13. If P is the standard matrix for the orthogonal projection of
Rn onto a subspace W, what can you say about the singular
values of P ?

14. Prove: If A has rank 1, then there exists a scalar k such that
A2 = kA.
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INTRODUCTION This chapter consists of 20 applications of linear algebra. With one clearly marked
exception, each application is in its own independent section, so sections can be deleted
or permuted as desired. Each topic begins with a list of linear algebra prerequisites.

Because our primary objective in this chapter is to present applications of linear
algebra, proofs are often omitted. Whenever results from other fields are needed, they
are stated precisely, with motivation where possible, but usually without proof.
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10.1 Constructing Curves and SurfacesThrough
Specified Points
In this section we describe a technique that uses determinants to construct lines, circles, and
general conic sections through specified points in the plane. The procedure is also used to
pass planes and spheres in 3-space through fixed points.

PREREQUISITES: Linear Systems
Determinants
Analytic Geometry

The following theorem follows from Theorem 2.3.8.

THEOREM 10.1.1 A homogeneous linear system with as many equations as unknowns
has a nontrivial solution if and only if the determinant of the coefficient matrix is zero.

We will now show how this result can be used to determine equations of various curves
and surfaces through specified points.

A LineThroughTwo Points Suppose that (x1, y1) and (x2, y2) are two distinct points in the plane. There exists a
unique line

c1x + c2y + c3 = 0 (1)

that passes through these two points (Figure 10.1.1). Note that c1, c2, and c3 are not ally

x

(x1, y1)

(x2, y2)

Figure 10.1.1

zero and that these coefficients are unique only up to a multiplicative constant. Because
(x1, y1) and (x2, y2) lie on the line, substituting them in (1) gives the two equations

c1x1 + c2y1 + c3 = 0 (2)

c1x2 + c2y2 + c3 = 0 (3)

The three equations, (1), (2), and (3), can be grouped together and rewritten as

xc1 + yc2 + c3 = 0

x1c1 + y1c2 + c3 = 0

x2c1 + y2c2 + c3 = 0

which is a homogeneous linear system of three equations for c1, c2, and c3. Because c1,
c2, and c3 are not all zero, this system has a nontrivial solution, so the determinant of
the coefficient matrix of the system must be zero. That is,∣∣∣∣∣∣∣

x y 1

x1 y1 1

x2 y2 1

∣∣∣∣∣∣∣ = 0 (4)

Consequently, every point (x, y) on the line satisfies (4); conversely, it can be shown that
every point (x, y) that satisfies (4) lies on the line.
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EXAMPLE 1 Equation of a Line

Find the equation of the line that passes through the two points (2, 1) and (3, 7).

Solution Substituting the coordinates of the two points into Equation (4) gives∣∣∣∣∣∣∣
x y 1

2 1 1

3 7 1

∣∣∣∣∣∣∣ = 0

The cofactor expansion of this determinant along the first row then gives

−6x + y + 11 = 0

A CircleThroughThree
Points

Suppose that there are three distinct points in the plane, (x1, y1), (x2, y2), and (x3, y3),
not all lying on a straight line. From analytic geometry we know that there is a unique
circle, say,

c1(x
2 + y2) + c2x + c3y + c4 = 0 (5)

that passes through them (Figure 10.1.2). Substituting the coordinates of the three points
into this equation gives

c1(x
2
1 + y2

1 ) + c2x1 + c3y1 + c4 = 0 (6)

c1(x
2
2 + y2

2 ) + c2x2 + c3y2 + c4 = 0 (7)

c1(x
2
3 + y2

3 ) + c2x3 + c3y3 + c4 = 0 (8)

As before, Equations (5) through (8) form a homogeneous linear system with a nontrivial
solution for c1, c2, c3, and c4. Thus the determinant of the coefficient matrix is zero:∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

∣∣∣∣∣∣∣∣∣
= 0 (9)

This is a determinant form for the equation of the circle.

y

x

(x1, y1)

(x2, y2)

(x3, y3)

Figure 10.1.2

EXAMPLE 2 Equation of a Circle

Find the equation of the circle that passes through the three points (1, 7), (6, 2), and
(4, 6).

Solution Substituting the coordinates of the three points into Equation (9) gives∣∣∣∣∣∣∣∣∣
x2 + y2 x y 1

50 1 7 1

40 6 2 1

52 4 6 1

∣∣∣∣∣∣∣∣∣
= 0

which reduces to
10(x2 + y2) − 20x − 40y − 200 = 0

In standard form this is
(x − 1)2 + (y − 2)2 = 52

Thus the circle has center (1, 2) and radius 5.
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A General Conic Section
Through Five Points

In his momumental work Principia Mathematica, Issac Newton posed and solved the
following problem (Book I, Proposition 22, Problem 14): “To describe a conic that shall
pass through five given points.” Newton solved this problem geometrically, as shown in
Figure 10.1.3, in which he passed an ellipse through the points A, B, D, P, C; however,
the methods of this section can also be applied.

Figure 10.1.3

T

C

A

S
P

BQ

R
D

t

d

ep

r

The general equation of a conic section in the plane (a parabola, hyperbola, or ellipse,
or degenerate forms of these curves) is given by

c1x
2 + c2xy + c3y

2 + c4x + c5y + c6 = 0

This equation contains six coefficients, but we can reduce the number to five if we di-
vide through by any one of them that is not zero. Thus only five coefficients must be
determined, so five distinct points in the plane are sufficient to determine the equation
of the conic section (Figure 10.1.4). As before, the equation can be put in determinant
form (see Exercise 7): ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1

x2
1 x1y1 y2

1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1

x2
3 x3y3 y2

3 x3 y3 1

x2
4 x4y4 y2

4 x4 y4 1

x2
5 x5y5 y2

5 x5 y5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (10)

y

x

(x1, y1)

(x2, y2)
(x3, y3)

(x5, y5)

(x4, y4)

Figure 10.1.4

EXAMPLE 3 Equation of an Orbit

An astronomer who wants to determine the orbit of an asteroid about the Sun sets
up a Cartesian coordinate system in the plane of the orbit with the Sun at the origin.
Astronomical units of measurement are used along the axes (1 astronomical unit = mean
distance of Earth to Sun = 93 million miles). By Kepler’s first law, the orbit must be an
ellipse, so the astronomer makes five observations of the asteroid at five different times
and finds five points along the orbit to be

(8.025, 8.310), (10.170, 6.355), (11.202, 3.212), (10.736, 0.375), (9.092,−2.267)

Find the equation of the orbit.

Solution Substituting the coordinates of the five given points into (10) and rounding to
three decimal places give∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1
64.401 66.688 69.056 8.025 8.310 1

103.429 64.630 40.386 10.170 6.355 1
125.485 35.981 10.317 11.202 3.212 1
115.262 4.026 0.141 10.736 0.375 1
82.664 −20.612 5.139 9.092 −2.267 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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The cofactor expansion of this determinant along the first row yields

386.802x2 − 102.895xy + 446.029y2 − 2476.443x − 1427.998y − 17109.375 = 0

Figure 10.1.5 is an accurate diagram of the orbit, together with the five given points.

Figure 10.1.5
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A PlaneThroughThree
Points

In Exercise 8 we ask you to show the following: The plane in 3-space with equation

c1x + c2y + c3z + c4 = 0

that passes through three noncollinear points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) is
given by the determinant equation∣∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣∣∣∣∣∣∣∣∣
= 0 (11)

EXAMPLE 4 Equation of a Plane

The equation of the plane that passes through the three noncollinear points (1, 1, 0),
(2, 0,−1), and (2, 9, 2) is ∣∣∣∣∣∣∣∣∣

x y z 1

1 1 0 1

2 0 −1 1

2 9 2 1

∣∣∣∣∣∣∣∣∣
= 0

which reduces to
2x − y + 3z − 1 = 0

A SphereThrough Four
Points

In Exercise 9 we ask you to show the following: The sphere in 3-space with equation

c1(x
2 + y2 + z2) + c2x + c3y + c4z + c5 = 0

that passes through four noncoplanar points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and
(x4, y4, z4) is given by the following determinant equation:∣∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1

x2
1 + y2

1 + z2
1 x1 y1 z1 1

x2
2 + y2

2 + z2
2 x2 y2 z2 1

x2
3 + y2

3 + z2
3 x3 y3 z3 1

x2
4 + y2

4 + z2
4 x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (12)



532 Chapter 10 Applications of Linear Algebra

EXAMPLE 5 Equation of a Sphere

The equation of the sphere that passes through the four points (0, 3, 2), (1,−1, 1),
(2, 1, 0), and (5, 1, 3) is∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1

13 0 3 2 1

3 1 −1 1 1

5 2 1 0 1

35 5 1 3 1

∣∣∣∣∣∣∣∣∣∣∣
= 0

This reduces to
x2 + y2 + z2 − 4x − 2y − 6z + 5 = 0

which in standard form is

(x − 2)2 + (y − 1)2 + (z − 3)2 = 9

Exercise Set 10.1
1. Find the equations of the lines that pass through the following

points:

(a) (1,−1), (2, 2) (b) (0, 1), (1,−1)

2. Find the equations of the circles that pass through the follow-
ing points:

(a) (2, 6), (2, 0), (5, 3) (b) (2,−2), (3, 5), (−4, 6)

3. Find the equation of the conic section that passes through the
points (0, 0), (0,−1), (2, 0), (2,−5), and (4,−1).

4. Find the equations of the planes in 3-space that pass through
the following points:

(a) (1, 1,−3), (1,−1, 1), (0,−1, 2)

(b) (2, 3, 1), (2,−1,−1), (1, 2, 1)

5. (a) Alter Equation (11) so that it determines the plane that
passes through the origin and is parallel to the plane that
passes through three specified noncollinear points.

(b) Find the two planes described in part (a) corresponding
to the triplets of points in Exercises 4(a) and 4(b).

6. Find the equations of the spheres in 3-space that pass through
the following points:

(a) (1, 2, 3), (−1, 2, 1), (1, 0, 1), (1, 2,−1)

(b) (0, 1,−2), (1, 3, 1), (2,−1, 0), (3, 1,−1)

7. Show that Equation (10) is the equation of the conic section
that passes through five given distinct points in the plane.

8. Show that Equation (11) is the equation of the plane in 3-space
that passes through three given noncollinear points.

9. Show that Equation (12) is the equation of the sphere in 3-
space that passes through four given noncoplanar points.

10. Find a determinant equation for the parabola of the form

c1y + c2x
2 + c3x + c4 = 0

that passes through three given noncollinear points in the
plane.

11. What does Equation (9) become if the three distinct points are
collinear?

12. What does Equation (11) become if the three distinct points
are collinear?

13. What does Equation (12) become if the four points are co-
planar?

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. The general equation of a quadric surface is given by

a1x
2 + a2y

2 + a3z
2 + a4xy + a5xz

+ a6yz + a7x + a8y + a9z + a10 = 0

Given nine points on this surface, it may be possible to determine
its equation.
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(a) Show that if the nine points (xi, yi) for i = 1, 2, 3, . . . , 9 lie
on this surface, and if they determine uniquely the equation of
this surface, then its equation can be written in determinant
form as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 xy xz yz x y z 1

x2
1 y2

1 z2
1 x1y1 x1z1 y1z1 x1 y1 z1 1

x2
2 y2

2 z2
2 x2y2 x2z2 y2z2 x2 y2 z2 1

x2
3 y2

3 z2
3 x3y3 x3z3 y3z3 x3 y3 z3 1

x2
4 y2

4 z2
4 x4y4 x4z4 y4z4 x4 y4 z4 1

x2
5 y2

5 z2
5 x5y5 x5z5 y5z5 x5 y5 z5 1

x2
6 y2

6 z2
6 x6y6 x6z6 y6z6 x6 y6 z6 1

x2
7 y2

7 z2
7 x7y7 x7z7 y7z7 x7 y7 z7 1

x2
8 y2

8 z2
8 x8y8 x8z8 y8z8 x8 y8 z8 1

x2
9 y2

9 z2
9 x9y9 x9z9 y9z9 x9 y9 z9 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

(b) Use the result in part (a) to determine the equation
of the quadric surface that passes through the points
(1, 2, 3), (2, 1, 7), (0, 4, 6), (3,−1, 4), (3, 0, 11), (−1, 5, 8),
(9,−8, 3), (4, 5, 3), and (−2, 6, 10).

T2. (a) A hyperplane in the n-dimensional Euclidean space Rn

has an equation of the form

a1x1 + a2x2 + a3x3 + · · · + anxn + an+1 = 0

where ai , i = 1, 2, 3, . . . , n + 1, are constants, not all zero,
and xi , i = 1, 2, 3, . . . , n, are variables for which

(x1, x2, x3, . . . , xn) ∈ Rn

A point
(x10, x20, x30, . . . , xn0) ∈ Rn

lies on this hyperplane if

a1x10 + a2x20 + a3x30 + · · · + anxn0 + an+1 = 0

Given that the n points (x1i , x2i , x3i , . . . , xni), i = 1, 2, 3, . . . ,
n, lie on this hyperplane and that they uniquely determine the
equation of the hyperplane, show that the equation of the hy-
perplane can be written in determinant form as∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 x2 x3 · · · xn 1

x11 x21 x31 · · · xn1 1

x12 x22 x32 · · · xn2 1

x13 x23 x33 · · · xn3 1
...

...
...

. . .
...

...

x1n x2n x3n · · · xnn 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(b) Determine the equation of the hyperplane in R9 that goes
through the following nine points:

(1, 2, 3, 4, 5, 6, 7, 8, 9) (2, 3, 4, 5, 6, 7, 8, 9, 1)

(3, 4, 5, 6, 7, 8, 9, 1, 2) (4, 5, 6, 7, 8, 9, 1, 2, 3)

(5, 6, 7, 8, 9, 1, 2, 3, 4) (6, 7, 8, 9, 1, 2, 3, 4, 5)

(7, 8, 9, 1, 2, 3, 4, 5, 6) (8, 9, 1, 2, 3, 4, 5, 6, 7)

(9, 1, 2, 3, 4, 5, 6, 7, 8)

10.2 The Earliest Applications of Linear Algebra
Linear systems can be found in the earliest writings of many ancient civilizations. In this
section we give some examples of the types of problems that they used to solve.

PREREQUISITES: Linear Systems

The practical problems of early civilizations included the measurement of land, the
distribution of goods, the tracking of resources such as wheat and cattle, and taxation and
inheritance calculations. In many cases, these problems led to linear systems of equations
since linearity is one of the simplest relationships that can exist among variables. In this
section we present examples from five diverse ancient cultures illustrating how they used
and solved systems of linear equations. We restrict ourselves to examples before A.D.

500. These examples consequently predate the development of the field of algebra by
Islamic/Arab mathematicians, a field that ultimately led in the nineteenth century to the
branch of mathematics now called linear algebra.
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EXAMPLE 1 Egypt (about 1650 B.C.)

Problem 40 of the Ahmes Papyrus
[Image: © The Trustees of the British Museum]

The Ahmes (or Rhind) Papyrus is the source of most of our information about ancient
Egyptian mathematics. This 5-meter-long papyrus contains 84 short mathematical prob-
lems, together with their solutions, and dates from about 1650 B.C. Problem 40 in this
papyrus is the following:

Divide 100 hekats of barley among five men in arithmetic progression so that the sum of
the two smallest is one-seventh the sum of the three largest.

Let a be the least amount that any man obtains, and let d be the common difference of
the terms in the arithmetic progression. Then the other four men receive a + d, a + 2d,
a + 3d, and a + 4d hekats. The two conditions of the problem require that

a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) = 100
1
7 [(a + 2d) + (a + 3d) + (a + 4d)] = a + (a + d)

These equations reduce to the following system of two equations in two unknowns:

5a + 10d = 100

11a − 2d = 0
(1)

The solution technique described in the papyrus is known as the method of false posi-
tion or false assumption. It begins by assuming some convenient value of a (in our case
a = 1), substituting that value into the second equation, and obtaining d = 11/2. Sub-
stituting a = 1 and d = 11/2 into the left-hand side of the first equation gives 60, whereas
the right-hand side is 100. Adjusting the initial guess for a by multiplying it by 100/60
leads to the correct value a = 5/3. Substituting a = 5/3 into the second equation then
gives d = 55/6, so the quantities of barley received by the five men are 10/6, 65/6, 120/6,
175/6, and 230/6 hekats. This technique of guessing a value of an unknown and later
adjusting it has been used by many cultures throughout the ages.

EXAMPLE 2 Babylonia (1900–1600 B.C.)

The Old Babylonian Empire flourished in Mesopotamia between 1900 and 1600 B.C.

Babylonian clay tablet Ca MLA
1950 [Image: American Oriental
Society/American Schools of Ori-
ental Research]

Many clay tablets containing mathematical tables and problems survive from that period,
one of which (designated Ca MLA 1950) contains the next problem. The statement of
the problem is a bit muddled because of the condition of the tablet, but the diagram and
the solution on the tablet indicate that the problem is as follows:
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y

x

20

Area = 320

30

A trapezoid with an area of 320 square units is cut off from a right triangle by a line
parallel to one of its sides. The other side has length 50 units, and the height of the
trapezoid is 20 units. What are the upper and the lower widths of the trapezoid?

Let x be the lower width of the trapezoid and y its upper width. The area of the trapezoid
is its height times its average width, so 20

(
x+y

2

) = 320. Using similar triangles, we also
have x

50 = y

30 . The solution on the tablet uses these relations to generate the linear system

1
2 (x + y) = 16

1
2 (x − y) = 4

(2)

Adding and subtracting these two equations then gives the solution x = 20 and y = 12.

EXAMPLE 3 China (A.D. 263)

The most important treatise in the history of Chinese mathematics is the Chiu Chang

Chiu Chang Suan Shu in Chinese
characters

Suan Shu, or “The Nine Chapters of the Mathematical Art.” This treatise, which is a
collection of 246 problems and their solutions, was assembled in its final form by Liu
Hui in A.D. 263. Its contents, however, go back to at least the beginning of the Han
dynasty in the second century B.C. The eighth of its nine chapters, entitled “The Way of
Calculating by Arrays,” contains 18 word problems that lead to linear systems in three
to six unknowns. The general solution procedure described is almost identical to the
Gaussian elimination technique developed in Europe in the nineteenth century by Carl
Friedrich Gauss (see page 15). The first problem in the eighth chapter is the following:

There are three classes of corn, of which three bundles of the first class, two of the second,
and one of the third make 39 measures. Two of the first, three of the second, and one
of the third make 34 measures. And one of the first, two of the second, and three of the
third make 26 measures. How many measures of grain are contained in one bundle of
each class?

Let x, y, and z be the measures of the first, second, and third classes of corn. Then the
conditions of the problem lead to the following linear system of three equations in three
unknowns:

3x + 2y + z = 39

2x + 3y + z = 34

x + 2y + 3z = 26

(3)
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The solution described in the treatise represented the coefficients of each equation by
an appropriate number of rods placed within squares on a counting table. Positive
coefficients were represented by black rods, negative coefficients were represented by red
rods, and the squares corresponding to zero coefficients were left empty. The counting
table was laid out as follows so that the coefficients of each equation appear in columns
with the first equation in the rightmost column:

1 2 3

2 3 2

3 1 1

26 34 39

Next, the numbers of rods within the squares were adjusted to accomplish the following
two steps: (1) two times the numbers of the third column were subtracted from three
times the numbers in the second column and (2) the numbers in the third column were
subtracted from three times the numbers in the first column. The result was the following
array:

3

4 5 2

8 1 1

39 24 39

In this array, four times the numbers in the second column were subtracted from five
times the numbers in the first column, yielding

3

5 2

36 1 1

99 24 39

This last array is equivalent to the linear system

3x + 2y + z = 39

5y + z = 24

36z = 99

This triangular system was solved by a method equivalent to back substitution to obtain
x = 37/4, y = 17/4, and z = 11/4.

EXAMPLE 4 Greece (third century B.C.)

Perhaps the most famous system of linear equations from antiquity is the one associated

Archimedes c. 287–212 B.C.

with the first part of Archimedes’ celebrated Cattle Problem. This problem supposedly
was posed by Archimedes as a challenge to his colleague Eratosthenes. No solution has
come down to us from ancient times, so that it is not known how, or even whether, either
of these two geometers solved it.
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If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who
once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four
herds of different colors, one milk white, another glossy black, a third yellow, and the
last dappled. In each herd were bulls, mighty in number according to these proportions:
Understand, stranger, that the white bulls were equal to a half and a third of the black
together with the whole of the yellow, while the black were equal to the fourth part of
the dappled and a fifth, together with, once more, the whole of the yellow. Observe
further that the remaining bulls, the dappled, were equal to a sixth part of the white and
a seventh, together with all of the yellow. These were the proportions of the cows: The
white were precisely equal to the third part and a fourth of the whole herd of the black;
while the black were equal to the fourth part once more of the dappled and with it a fifth
part, when all, including the bulls, went to pasture together. Now the dappled in four
parts were equal in number to a fifth part and a sixth of the yellow herd. Finally the
yellow were in number equal to a sixth part and a seventh of the white herd. If thou canst
accurately tell, O stranger, the number of cattle of the Sun, giving separately the number
of well-fed bulls and again the number of females according to each color, thou wouldst
not be called unskilled or ignorant of numbers, but not yet shalt thou be numbered among
the wise.

The conventional designation of the eight variables in this problem is

W = number of white bulls

B = number of black bulls

Y = number of yellow bulls

D = number of dappled bulls

w = number of white cows

b = number of black cows

y = number of yellow cows

d = number of dappled cows

The problem can now be stated as the following seven homogeneous equations in eight
unknowns:

1. W = (
1
2 + 1

3

)
B + Y (The white bulls were equal to a half and a third of

the black [bulls] together with the whole of the yellow
[bulls].)

2. B = (
1
4 + 1

5

)
D + Y (The black [bulls] were equal to the fourth part of the

dappled [bulls] and a fifth, together with, once more,
the whole of the yellow [bulls].)

3. D = (
1
6 + 1

7

)
W + Y (The remaining bulls, the dappled, were equal to a sixth

part of the white [bulls] and a seventh, together with all
of the yellow [bulls].)

4. w = (
1
3 + 1

4

)
(B + b) (The white [cows] were precisely equal to the third part

and a fourth of the whole herd of the black.)

5. b = (
1
4 + 1

5

)
(D + d) (The black [cows] were equal to the fourth part once

more of the dappled and with it a fifth part, when all,
including the bulls, went to pasture together.)
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6. d = (
1
5 + 1

6

)
(Y + y) (The dappled [cows] in four parts [that is, in totality]

were equal in number to a fifth part and a sixth of the
yellow herd.)

7. y = (
1
6 + 1

7

)
(W + w) (The yellow [cows] were in number equal to a sixth part

and a seventh of the white herd.)

As we ask you to show in the exercises, this system has infinitely many solutions of the
form

W = 10,366,482k

B = 7,460,514k

Y = 4,149,387k

D = 7,358,060k

w = 7,206,360k

b = 4,893,246k

y = 5,439,213k

d = 3,515,820k

(4)

where k is any real number. The values k = 1, 2, . . . give infinitely many positive integer
solutions to the problem, with k = 1 giving the smallest solution.

EXAMPLE 5 India (fourth century A.D.)

The Bakhshali Manuscript is an ancient work of Indian/Hindu mathematics dating from

Fragment III-5-3v of the
Bakhshali Manuscript
[Image: Bodleian Library, University

of Oxford, MS. Sansk. d. 14,
fragment III 5 3v.]

around the fourth century A.D., although some of its materials undoubtedly come from
many centuries before. It consists of about 70 leaves or sheets of birch bark containing
mathematical problems and their solutions. Many of its problems are so-called equal-
ization problems that lead to systems of linear equations. One such problem on the frag-
ment shown is the following:

One merchant has seven asava horses, a second has nine haya horses, and a third has ten
camels. They are equally well off in the value of their animals if each gives two animals,
one to each of the others. Find the price of each animal and the total value of the animals
possessed by each merchant.

Let x be the price of an asava horse, let y be the price of a haya horse, let z be the price
of a camel, and the let K be the total value of the animals possessed by each merchant.
Then the conditions of the problem lead to the following system of equations:

5x + y + z = K

x + 7y + z = K

x + y + 8z = K

(5)

The method of solution described in the manuscript begins by subtracting the quan-
tity (x + y + z) from both sides of the three equations to obtain 4x = 6y = 7z = K −
(x + y + z). This shows that if the prices x, y, and z are to be integers, then the quantity
K − (x + y + z) must be an integer that is divisible by 4, 6, and 7. The manuscript
takes the product of these three numbers, or 168, for the value of K − (x + y + z),
which yields x = 42, y = 28, and z = 24 for the prices and K = 262 for the total value.
(See Exercise 6 for more solutions to this problem.)
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Exercise Set 10.2
1. The following lines from Book 12 of Homer’s Odyssey relate a

precursor of Archimedes’ Cattle Problem:

Thou shalt ascend the isle triangular,

Where many oxen of the Sun are fed,

And fatted flocks. Of oxen fifty head

In every herd feed, and their herds are seven;

And of his fat flocks is their number even.

The last line means that there are as many sheep in all the flocks
as there are oxen in all the herds. What is the total number of
oxen and sheep that belong to the god of the Sun? (This was a
difficult problem in Homer’s day.)

2. Solve the following problems from the Bakhshali Manuscript.

(a) B possesses two times as much as A; C has three times as
much as A and B together; D has four times as much as A,
B, and C together. Their total possessions are 300. What is
the possession of A?

(b) B gives 2 times as much as A; C gives 3 times as much as B;
D gives 4 times as much as C. Their total gift is 132. What
is the gift of A?

3. A problem on a Babylonian tablet requires finding the length
and width of a rectangle given that the length and the width
add up to 10, while the length and one-fourth of the width add
up to 7. The solution provided on the tablet consists of the
following four statements:

Multiply 7 by 4 to obtain 28.

Take away 10 from 28 to obtain 18.

Take one-third of 18 to obtain 6, the length.

Take away 6 from 10 to obtain 4, the width.

Explain how these steps lead to the answer.

4. The following two problems are from “The Nine Chapters of
the Mathematical Art.” Solve them using the array technique
described in Example 3.

(a) Five oxen and two sheep are worth 10 units and two oxen
and five sheep are worth 8 units. What is the value of each
ox and sheep?

(b) There are three kinds of corn. The grains contained in two,
three, and four bundles, respectively, of these three classes
of corn, are not sufficient to make a whole measure. How-
ever, if we added to them one bundle of the second, third,
and first classes, respectively, then the grains would become
on full measure in each case. How many measures of grain
does each bundle of the different classes contain?

5. This problem in part (a) is known as the “Flower of Thymari-
das,” named after a Pythagorean of the fourth century B.C.

(a) Given the n numbers a1, a2, . . . , an, solve for

x1, x2, . . . , xn in the following linear system:

x1 + x2 + · · · + xn = a1

x1 + x2 = a2

x1 + x3 = a3
...

x1 + xn = an

(b) Identify a problem in this exercise set that fits the pattern
in part (a), and solve it using your general solution.

6. For Example 5 from the Bakhshali Manuscript:

(a) Express Equations (5) as a homogeneous linear system of
three equations in four unknowns (x, y, z, and K) and show
that the solution set has one arbitrary parameter.

(b) Find the smallest solution for which all four variables are
positive integers.

(c) Show that the solution given in Example 5 is included
among your solutions.

7. Solve the problems posed in the following three epigrams, which
appear in a collection entitled “The Greek Anthology,” com-
piled in part by a scholar named Metrodorus around A.D. 500.
Some of its 46 mathematical problems are believed to date as
far back as 600 B.C. [Note: Before solving parts (a) and (c), you
will have to formulate the question.]

(a) I desire my two sons to receive the thousand staters of which
I am possessed, but let the fifth part of the legitimate one’s
share exceed by ten the fourth part of what falls to the ille-
gitimate one.

(b) Make me a crown weighing sixty minae, mixing gold and
brass, and with them tin and much-wrought iron. Let the
gold and brass together form two-thirds, the gold and tin
together three-fourths, and the gold and iron three-fifths.
Tell me how much gold you must put in, how much brass,
how much tin, and how much iron, so as to make the whole
crown weigh sixty minae.

(c) First person: I have what the second has and the third of
what the third has. Second person: I have what the third
has and the third of what the first has. Third person: And
I have ten minae and the third of what the second has.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.



540 Chapter 10 Applications of Linear Algebra

T1. (a) Solve Archimedes’ Cattle Problem using a symbolic alge-
bra program.

(b) The Cattle Problem has a second part in which two additional
conditions are imposed. The first of these states that “When
the white bulls mingled their number with the black, they stood
firm, equal in depth and breadth.” This requires that W + B

be a square number, that is, 1, 4, 9, 16, 25, and so on. Show
that this requires that the values of k in Eq. (4) be restricted as
follows:

k = 4,456,749r2, r = 1, 2, 3, . . .
and find the smallest total number of cattle that satisfies this
second condition.

Remark The second condition imposed in the second part of
the Cattle Problem states that “When the yellow and the dappled
bulls were gathered into one herd, they stood in such a manner
that their number, beginning from one, grew slowly greater ’til it
completed a triangular figure.” This requires that the quantity
Y + D be a triangular number—that is, a number of the form 1,

1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, . . . . This final part of the prob-
lem was not completely solved until 1965 when all 206,545 digits
of the smallest number of cattle that satisfies this condition were
found using a computer.

T2. The following problem is from “The Nine Chapters of the
Mathematical Art” and determines a homogeneous linear system
of five equations in six unknowns. Show that the system has in-
finitely many solutions, and find the one for which the depth of
the well and the lengths of the five ropes are the smallest possible
positive integers.

Suppose that five families share a well. Suppose further that

2 of A’s ropes are short of the well’s depth by one of B’s ropes.

3 of B’s ropes are short of the well’s depth by one of C’s ropes.

4 of C’s ropes are short of the well’s depth by one of D’s ropes.

5 of D’s ropes are short of the well’s depth by one of E’s ropes.

6 of E’s ropes are short of the well’s depth by one of A’s ropes.

10.3 Cubic Spline Interpolation
In this section an artist’s drafting aid is used as a physical model for the mathematical
problem of finding a curve that passes through specified points in the plane. The
parameters of the curve are determined by solving a linear system of equations.

PREREQUISITES: Linear Systems
Matrix Algebra
Differential Calculus

Curve Fitting Fitting a curve through specified points in the plane is a common problem encountered in
analyzing experimental data, in ascertaining the relations among variables, and in design
work. A ubiquitous application is in the design and description of computer and printer
fonts, such as PostScriptTM and TrueTypeTM fonts (Figure 10.3.1). In Figure 10.3.2

Figure 10.3.1
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seven points in the xy-plane are displayed, and in Figure 10.3.4 a smooth curve has been
drawn that passes through them. A curve that passes through a set of points in the plane
is said to interpolate those points, and the curve is called an interpolating curve for those
points. The interpolating curve in Figure 10.3.4 was drawn with the aid of a drafting
spline (Figure 10.3.3). This drafting aid consists of a thin, flexible strip of wood or other
material that is bent to pass through the points to be interpolated. Attached sliding
weights hold the spline in position while the artist draws the interpolating curve. The
drafting spline will serve as the physical model for a mathematical theory of interpolation
that we will discuss in this section.

y

x

Figure 10.3.2 Figure 10.3.3

y

x

Figure 10.3.4

Statement of the Problem Suppose that we are given n points in the xy-plane,

(x1, y1), (x2, y2), . . . , (xn, yn)

which we wish to interpolate with a “well-behaved” curve (Figure 10.3.5). For conve-
nience, we take the points to be equally spaced in the x-direction, although our results
can easily be extended to the case of unequally spaced points. If we let the common
distance between the x-coordinates of the points be h, then we have

x2 − x1 = x3 − x2 = · · · = xn − xn−1 = h

Let y = S(x), x1 ≤ x ≤ xn denote the interpolating curve that we seek. We assume that
this curve describes the displacement of a drafting spline that interpolates the n points
when the weights holding down the spline are situated precisely at the n points. It is
known from linear beam theory that for small displacements, the fourth derivative of the
displacement of a beam is zero along any interval of the x-axis that contains no external
forces acting on the beam. If we treat our drafting spline as a thin beam and realize that
the only external forces acting on it arise from the weights at the n specified points, then
it follows that

S(iv)(x) ≡ 0 (1)

for values of x lying in the n − 1 open intervals

(x1, x2), (x2, x3), . . . , (xn−1, xn)

between the n points.

Figure 10.3.5

y

x

(x1, y1)

(x2, y2)

(x3, y3)

(xn–1, yn–1)

(xn, yn)

h h h h

y = S(x)
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We also need the result from linear beam theory that states that for a beam acted
upon only by external forces, the displacement must have two continuous derivatives.
In the case of the interpolating curve y = S(x) constructed by the drafting spline, this
means that S(x), S ′(x), and S ′′(x) must be continuous for x1 ≤ x ≤ xn.

The condition that S ′′(x) be continuous is what causes a drafting spline to produce
a pleasing curve, as it results in continuous curvature. The eye can perceive sudden
changes in curvature—that is, discontinuities in S ′′(x)—but sudden changes in higher
derivatives are not discernible. Thus, the condition that S ′′(x) be continuous is the
minimal prerequisite for the interpolating curve to be perceptible as a single smooth
curve, rather than as a series of separate curves pieced together.

To determine the mathematical form of the function S(x), we observe that because
S(iv)(x) ≡ 0 in the intervals between the n specified points, it follows by integrating this
equation four times that S(x) must be a cubic polynomial in x in each such interval. In
general, however, S(x) will be a different cubic polynomial in each interval, so S(x) must
have the form

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1(x), x1 ≤ x ≤ x2

S2(x), x2 ≤ x ≤ x3
...

Sn−1(x), xn−1 ≤ x ≤ xn

(2)

where S1(x), S2(x), . . . , Sn−1(x) are cubic polynomials. For convenience, we will write
these in the form

S1(x) = a1(x − x1)
3 + b1(x − x1)

2 + c1(x − x1) + d1, x1 ≤ x ≤ x2

S2(x) = a2(x − x2)
3 + b2(x − x2)

2 + c2(x − x2) + d2, x2 ≤ x ≤ x3
...

Sn−1(x) = an−1(x − xn−1)
3 + bn−1(x − xn−1)

2

+ cn−1(x − xn−1) + dn−1, xn−1 ≤ x ≤ xn

(3)

The ai’s, bi’s, ci’s, and di’s constitute a total of 4n − 4 coefficients that we must determine
to specify S(x) completely. If we choose these coefficients so that S(x) interpolates the n

specified points in the plane and S(x), S ′(x), and S ′′(x) are continuous, then the resulting
interpolating curve is called a cubic spline.

Derivation of the Formula
of a Cubic Spline

From Equations (2) and (3), we have

S(x) = S1(x) = a1(x − x1)
3 + b1(x − x1)

2 + c1(x − x1) + d1, x1 ≤ x ≤ x2

S(x) = S2(x) = a2(x − x2)
3 + b2(x − x2)

2 + c2(x − x2) + d2, x2 ≤ x ≤ x3
...

...

S(x) = Sn−1(x) = an−1(x − xn−1)
3 + bn−1(x − xn−1)

2

+ cn−1(x − xn−1) + dn−1, xn−1 ≤ x ≤ xn

(4)
so

S ′(x) = S ′
1(x) = 3a1(x − x1)

2 + 2b1(x − x1) + c1, x1 ≤ x ≤ x2

S ′(x) = S ′
2(x) = 3a2(x − x2)

3 + 2b2(x − x2) + c2, x2 ≤ x ≤ x3
...

...

S ′(x) = S ′
n−1(x) = 3an−1(x − xn−1)

2 + 2bn−1(x − xn−1) + cn−1, xn−1 ≤ x ≤ xn

(5)
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and
S ′′(x) = S ′′

1 (x) = 6a1(x − x1) + 2b1, x1 ≤ x ≤ x2

S ′′(x) = S ′′
2 (x) = 6a2(x − x2) + 2b2, x2 ≤ x ≤ x3

...
...

S ′′(x) = S ′′
n−1(x) = 6an−1(x − xn−1) + 2bn−1, xn−1 ≤ x ≤ xn

(6)

We will now use these equations and the four properties of cubic splines stated below
to express the unknown coefficients ai , bi , ci , di , i = 1, 2, . . . , n − 1, in terms of the
known coordinates y1, y2, . . . , yn.

1. S(x) interpolates the points (xi, yi), i = 1, 2, . . . , n.

Because S(x) interpolates the points (xi, yi), i = 1, 2, . . . , n, we have

S(x1) = y1, S(x2) = y2, . . . , S(xn) = yn (7)

From the first n − 1 of these equations and (4), we obtain

d1 = y1

d2 = y2
...

dn−1 = yn−1

(8)

From the last equation in (7), the last equation in (4), and the fact that xn − xn−1 = h,
we obtain

an−1h
3 + bn−1h

2 + cn−1h + dn−1 = yn (9)

2. S(x) is continuous on [x1, xn].
Because S(x) is continuous for x1 ≤ x ≤ xn, it follows that at each point xi in the
set x2, x3, . . . , xn−1 we must have

Si−1(xi) = Si(xi), i = 2, 3, . . . , n − 1 (10)

Otherwise, the graphs of Si−1(x) and Si(x) would not join together to form a con-
tinuous curve at xi . When we apply the interpolating property Si(xi) = yi , it follows
from (10) that Si−1(xi) = yi , i = 2, 3, . . . , n − 1, or from (4) that

a1h
3 + b1h

2 + c1h + d1 = y2

a2h
3 + b2h

2 + c2h + d2 = y3
...

an−2h
3 + bn−2h

2 + cn−2h + dn−2 = yn−1

(11)

3. S ′(x) is continuous on [x1, xn].
Because S ′(x) is continuous for x1 ≤ x ≤ xn, it follows that

S ′
i−1(xi) = S ′

i (xi), i = 2, 3, . . . , n − 1
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or, from (5),

3a1h
2 + 2b1h + c1 = c2

3a2h
2 + 2b2h + c2 = c3

...

3an−2h
2 + 2bn−2h + cn−2 = cn−1

(12)

4. S ′′(x) is continuous on [x1, x2].
Because S ′′(x) is continuous for x1 ≤ x ≤ xn, it follows that

S ′′
i−1(xi) = S ′′

i (xi), i = 2, 3, . . . , n − 1

or, from (6),

6a1h + 2b1 = 2b2

6a2h + 2b2 = 2b3
...

6an−2h + 2bn−2 = 2bn−1

(13)

Equations (8), (9), (11), (12), and (13) constitute a system of 4n − 6 linear equations
in the 4n − 4 unknown coefficients ai , bi , ci , di , i = 1, 2, . . . , n − 1. Consequently,
we need two more equations to determine these coefficients uniquely. Before obtaining
these additional equations, however, we can simplify our existing system by expressing
the unknowns ai , bi , ci , and di in terms of new unknown quantities

M1 = S ′′(x1), M2 = S ′′(x2), . . . , Mn = S ′′(xn)

and the known quantities

y1, y2, . . . , yn

For example, from (6) it follows that

M1 = 2b1

M2 = 2b2
...

Mn−1 = 2bn−1

so

b1 = 1
2M1, b2 = 1

2M2, . . . , bn−1 = 1
2Mn−1

Moreover, we already know from (8) that

d1 = y1, d2 = y2, . . . , dn−1 = yn−1

We leave it as an exercise for you to derive the expressions for the ai’s and ci’s in terms
of the Mi’s and yi’s. The final result is as follows:



10.3 Cubic Spline Interpolation 545

THEOREM 10.3.1 Cubic Spline Interpolation

Given n points (x1, y1), (x2, y2), . . . , (xn, yn) with xi+1 − xi = h, i = 1, 2, . . . ,

n − 1, the cubic spline

S(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1(x − x1)
3 + b1(x − x1)

2 + c1(x − x1) + d1, x1 ≤ x ≤ x2

a2(x − x2)
3 + b2(x − x2)

2 + c2(x − x2) + d2, x2 ≤ x ≤ x3
...

an−1(x − xn−1)
3 + bn−1(x − xn−1)

2

+ cn−1(x − xn−1) + dn−1, xn−1 ≤ x ≤ xn

that interpolates these points has coefficients given by

ai = (Mi+1 − Mi)/6h

bi = Mi/2

ci = (yi+1 − yi)/h − [(Mi+1 + 2Mi)h/6]
di = yi

(14)

for i = 1, 2, . . . , n − 1, where Mi = S ′′(xi), i = 1, 2, . . . , n.

From this result, we see that the quantities M1, M2, . . . , Mn uniquely determine the
cubic spline. To find these quantities, we substitute the expressions for ai , bi , and ci

given in (14) into (12). After some algebraic simplification, we obtain

M1 + 4M2 + M3 = 6(y1 − 2y2 + y3)/h2

M2 + 4M3 + M4 = 6(y2 − 2y3 + y4)/h2

...

Mn−2 + 4Mn−1 + Mn = 6(yn−2 − 2yn−1 + yn)/h2

(15)

or, in matrix form,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 0 · · · 0 0 0 0

0 1 4 1 · · · 0 0 0 0

0 0 1 4 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 4 1 0 0

0 0 0 0 · · · 1 4 1 0

0 0 0 0 · · · 0 1 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

M4
...

Mn−3

Mn−2

Mn−1

Mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is a linear system of n − 2 equations for the n unknowns M1, M2, . . . , Mn. Thus, we
still need two additional equations to determine M1, M2, . . . , Mn uniquely. The reason
for this is that there are infinitely many cubic splines that interpolate the given points,
so we simply do not have enough conditions to determine a unique cubic spline passing
through the points. We discuss below three possible ways of specifying the two additional
conditions required to obtain a unique cubic spline through the points. (The exercises
present two more.) They are summarized in Table 1.
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Table 1

The second
derivative of the
spline is zero at the
endpoints.

The spline reduces
to a parabolic curve
on the first and last
intervals.

The spline is a
single cubic curve
on the first two and
last two intervals.

Natural
Spline

Parabolic
Runout
Spline

Cubic
Runout
Spline

M1 = 2M2 – M3

Mn = 2Mn–1 – Mn–2

M1 = M2

Mn = Mn–1

M1 = 0
Mn = 0

4    1    0    ...    0    0    0
1    4    1    ...    0    0    0

0    0    0    ...    1    4    1
0    0    0    ...    0    1    4 

  M2

  M3

Mn–2

Mn–1

    y1 – 2y2 + y3

     y2 – 2y3 + y4

yn–2 – 2yn–1 + yn

=
6
h2

5    1    0    ...    0    0    0
1    4    1    ...    0    0    0

0    0    0    ...    1    4    1

0    0    0    ...    0    1    5 

  M2

  M3

Mn–2

Mn–1

    y1 – 2y2 + y3

     y2 – 2y3 + y4

yn–2 – 2yn–1 + yn

=
6
h2

6    0    0    ...    0    0    0
1    4    1    ...    0    0    0

0    0    0    ...    1    4    1
0    0    0    ...    0    0    6 

  M2

  M3

Mn–2

Mn–1

    y1 – 2y2 + y3

     y2 – 2y3 + y4

yn–2 – 2yn–1 + yn

=
6
h2

...... ...

... ...... ... ... ...

... ... ... ...... ...

...
...

... ...
...

...... ... ...

The Natural Spline The two simplest mathematical conditions we can impose are

M1 = Mn = 0

These conditions together with (15) result in an n × n linear system for M1, M2, . . . , Mn,
which can be written in matrix form as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3
...

Mn−1

Mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

y1 − 2y2 + y3

y2 − 2y3 + y4
...

yn−2 − 2yn−1 + yn

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

For numerical calculations it is more convenient to eliminate M1 and Mn from this system
and write⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2

M3

M4
...

Mn−2

Mn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

together with

M1 = 0 (17)

Mn = 0 (18)

Thus, the (n − 2) × (n − 2) linear system can be solved for the n − 2 coefficients M2,

M3, . . . , Mn−1, and M1 and Mn are determined by (17) and (18).
Physically, the natural spline results when the ends of a drafting spline extend freely

beyond the interpolating points without constraint. The end portions of the spline
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outside the interpolating points will fall on straight line paths, causing S ′′(x) to vanish
at the endpoints x1 and xn and resulting in the mathematical conditions M1 = Mn = 0.

The natural spline tends to flatten the interpolating curve at the endpoints, which
may be undesirable. Of course, if it is required that S ′′(x) vanish at the endpoints, then
the natural spline must be used.

The Parabolic Runout
Spline

The two additional constraints imposed for this type of spline are

M1 = M2 (19)

Mn = Mn−1 (20)

If we use the preceding two equations to eliminate M1 and Mn from (15), we obtain the
(n − 2) × (n − 2) linear system⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 0 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 0 1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2

M3

M4
...

Mn−2

Mn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

for M2, M3, . . . , Mn−1. Once these n − 2 values have been determined, M1 and Mn are
determined from (19) and (20).

From (14) we see that M1 = M2 implies that a1 = 0, and Mn = Mn−1 implies that
an−1 = 0. Thus, from (3) there are no cubic terms in the formula for the spline over the
end intervals [x1, x2] and [xn−1, xn]. Hence, as the name suggests, the parabolic runout
spline reduces to a parabolic curve over these end intervals.

The Cubic Runout Spline For this type of spline, we impose the two additional conditions

M1 = 2M2 − M3 (22)

Mn = 2Mn−1 − Mn−2 (23)

Using these two equations to eliminate M1 and Mn from (15) results in the following
(n − 2) × (n − 2) linear system for M2, M3, . . . , Mn−1:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 · · · 0 0 0

1 4 1 0 · · · 0 0 0

0 1 4 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 4 1

0 0 0 0 · · · 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M2

M3

M4
...

Mn−2

Mn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5
...

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

After we solve this linear system for M2, M3, . . . , Mn−1, we can use (22) and (23) to
determine M1 and Mn.

If we rewrite (22) as
M2 − M1 = M3 − M2

it follows from (14) that a1 = a2. Because S ′′′(x) = 6a1 on [x1, x2] and S ′′′(x) = 6a2 on
[x2, x3], we see that S ′′′(x) is constant over the entire interval [x1, x3]. Consequently,
S(x) consists of a single cubic curve over the interval [x1, x3] rather than two different
cubic curves pieced together at x2. [To see this, integrate S ′′′(x) three times.] A similar
analysis shows that S(x) consists of a single cubic curve over the last two intervals.
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Whereas the natural spline tends to produce an interpolating curve that is flat at the
endpoints, the cubic runout spline has the opposite tendency: it produces a curve with
pronounced curvature at the endpoints. If neither behavior is desired, the parabolic
runout spline is a reasonable compromise.

EXAMPLE 1 Using a Parabolic Runout Spline

The density of water is well known to reach a maximum at a temperature slightly above
freezing. Table 2, from the Handbook of Chemistry and Physics (CRC Press, 2009), gives
the density of water in grams per cubic centimeter for five equally spaced temperatures
from −10◦C to 30◦C. We will interpolate these five temperature–density measurements
with a parabolic runout spline and attempt to find the maximum density of water in
this range by finding the maximum value on this cubic spline. In the exercises we ask
you to perform similar calculations using a natural spline and a cubic runout spline to
interpolate the data points.

Table 2

Temperature (°C) Density (g/cm3)

–10
    0
  10
  20
  30

.99815

.99987

.99973

.99823

.99567

Set
x1 = −10, y1 = .99815

x2 = 0, y2 = .99987

x3 = 10, y3 = .99973

x4 = 20, y4 = .99823

x5 = 30, y5 = .99567

Then
6[y1 − 2y2 + y3]/h2 = −.0001116

6[y2 − 2y3 + y4]/h2 = −.0000816

6[y3 − 2y4 + y5]/h2 = −.0000636

and the linear system (21) for the parabolic runout spline becomes⎡
⎢⎣5 1 0

1 4 1

0 1 5

⎤
⎥⎦
⎡
⎢⎣M2

M3

M4

⎤
⎥⎦ =

⎡
⎢⎣−.0001116

−.0000816

−.0000636

⎤
⎥⎦

Solving this system yields
M2 = −.00001973

M3 = −.00001293

M4 = −.00001013

From (19) and (20), we have

M1 = M2 = −.00001973

M5 = M4 = −.00001013
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Solving for the ai’s, bi’s, ci’s, and di’s in (14), we obtain the following expression for the
interpolating parabolic runout spline:

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−.00000987(x + 10)2 + .0002707(x + 10) + .99815, −10 ≤ x ≤ 0

.000000113(x − 0)3 −.00000987(x − 0)2 + .0000733(x − 0) + .99987, 0 ≤ x ≤ 10

.000000047(x − 10)3 −.00000647(x − 10)2 − .0000900(x − 10) + .99973, 10 ≤ x ≤ 20

−.00000507(x − 20)2 − .0002053(x − 20) + .99823, 20 ≤ x ≤ 30

This spline is plotted in Figure 10.3.6. From that figure we see that the maximum is
attained in the interval [0, 10]. To find this maximum, we set S ′(x) equal to zero in the
interval [0, 10]:

S ′(x) = .000000339x2 − .0000197x + .0000733 = 0

To three significant digits the root of this quadratic in the interval [0, 10] is x = 3.99,
and for this value of x, S(3.99) = 1.00001. Thus, according to our interpolated estimate,
the maximum density of water is 1.00001 g/cm3 attained at 3.99◦C. This agrees well with
the experimental maximum density of 1.00000 g/cm3 attained at 3.98◦C. (In the original
metric system, the gram was defined as the mass of one cubic centimeter of water at its
maximum density.)

Figure 10.3.6
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Closing Remarks In addition to producing excellent interpolating curves, cubic splines and their gen-
eralizations are useful for numerical integration and differentiation, for the numerical
solution of differential and integral equations, and in optimization theory.

Exercise Set 10.3
1. Derive the expressions for ai and ci in Equations (14) of Theo-

rem 10.3.1.

2. The six points

(0, .00000), (.2, .19867), (.4, .38942),

(.6, .56464), (.8, .71736), (1.0, .84147)

lie on the graph of y = sin x, where x is in radians.

(a) Find the portion of the parabolic runout spline that interpo-
lates these six points for .4 ≤ x ≤ .6. Maintain an accuracy
of five decimal places in your calculations.

(b) Calculate S(.5) for the spline you found in part (a). What
is the percentage error of S(.5) with respect to the “exact”
value of sin(.5) = .47943?
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3. The following five points

(0, 1), (1, 7), (2, 27), (3, 79), (4, 181)

lie on a single cubic curve.

(a) Which of the three types of cubic splines (natural, parabolic
runout, or cubic runout) would agree exactly with the single
cubic curve on which the five points lie?

(b) Determine the cubic spline you chose in part (a), and verify
that it is a single cubic curve that interpolates the five points.

4. Repeat the calculations in Example 1 using a natural spline to
interpolate the five data points.

5. Repeat the calculations in Example 1 using a cubic runout spline
to interpolate the five data points.

6. Consider the five points (0, 0), (.5, 1), (1, 0), (1.5,−1), and
(2, 0) on the graph of y = sin(πx).

(a) Use a natural spline to interpolate the data points (0, 0),
(.5, 1), and (1, 0).

(b) Use a natural spline to interpolate the data points (.5, 1),
(1, 0), and (1.5,−1).

(c) Explain the unusual nature of your result in part (b).

7. (The Periodic Spline) If it is known or if it is desired that the n

points (x1, y1), (x2, y2), . . . , (xn, yn) to be interpolated lie on
a single cycle of a periodic curve with period xn − x1, then an
interpolating cubic spline S(x) must satisfy

S(x1) = S(xn)

S ′(x1) = S ′(xn)

S ′′(x1) = S ′′(xn)

(a) Show that these three periodicity conditions require that

y1 = yn

M1 = Mn

4M1 + M2 + Mn−1 = 6(yn−1 − 2y1 + y2)/h2

(b) Using the three equations in part (a) and Equations (15),
construct an (n − 1) × (n − 1) linear system for
M1, M2, . . . , Mn−1 in matrix form.

8. (The Clamped Spline) Suppose that, in addition to the n points
to be interpolated, we are given specific values y ′

1 and y ′
n for the

slopes S ′(x1) and S ′(xn) of the interpolating cubic spline at the
endpoints x1 and xn.

(a) Show that

2M1 + M2 = 6(y2 − y1 − hy ′
1)/h2

2Mn + Mn−1 = 6(yn−1 − yn + hy ′
n)/h2

(b) Using the equations in part (a) and Equations (15), con-
struct an n × n linear system for M1, M2, . . . , Mn in matrix
form.

Remark The clamped spline described in this exercise is
the most accurate type of spline for interpolation work if
the slopes at the endpoints are known or can be estimated.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. In the solution of the natural cubic spline problem, it is nec-
essary to solve a system of equations having coefficient matrix

An =

⎡
⎢⎢⎢⎢⎢⎣

4 1 0 · · · 0 0 0

1 4 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 4 1

0 0 0 · · · 0 1 4

⎤
⎥⎥⎥⎥⎥⎦

If we can present a formula for the inverse of this matrix, then
the solution for the natural cubic spline problem can be easily ob-
tained. In this exercise and the next, we use a computer to discover
this formula. Toward this end, we first determine an expression
for the determinant of An, denoted by the symbol Dn. Given that

A1 = [4] and A2 =
[

4 1

1 4

]

we see that
D1 = det(A1) = det[4] = 4

and

D2 = det(A2) = det

[
4 1

1 4

]
= 15

(a) Use the cofactor expansion of determinants to show that

Dn = 4Dn−1 − Dn−2

for n = 3, 4, 5, . . . . This says, for example, that

D3 = 4D2 − D1 = 4(15) − 4 = 56

D4 = 4D3 − D2 = 4(56) − 15 = 209

and so on. Using a computer, check this result for 5 ≤ n ≤ 10.

(b) By writing
Dn = 4Dn−1 − Dn−2

and the identity, Dn−1 = Dn−1, in matrix form,[
Dn

Dn−1

]
=
[

4 −1

1 0

][
Dn−1

Dn−2

]

show that[
Dn

Dn−1

]
=
[

4 −1

1 0

]n−2 [
D2

D1

]
=
[

4 −1

1 0

]n−2 [
15

4

]
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(c) Use the methods in Section 5.2 and a computer to show that

[
4 −1

1 0

]n−2

=

[
(2 +√

3 )n−1 − (2 −√
3 )n−1 (2 −√

3 )n−2 − (2 +√
3 )n−2

(2 +√
3 )n−2 − (2 −√

3 )n−2 (2 −√
3 )n−3 − (2 +√

3 )n−3

]

2
√

3

and hence

Dn = (2 +√
3 )n+1 − (2 −√

3 )n+1

2
√

3
for n = 1, 2, 3, . . . .

(d) Using a computer, check this result for 1 ≤ n ≤ 10.

T2. In this exercise, we determine a formula for calculating A−1
n

from Dk for k = 0, 1, 2, 3, . . . , n, assuming that D0 is defined to
be 1.

(a) Use a computer to compute A−1
k for k = 1, 2, 3, 4, and 5.

(b) From your results in part (a), discover the conjecture that

A−1
n = [αij ]

where αij = αji and

αij = (−1)i+j

(
Dn−jDi−1

Dn

)

for i ≤ j .

(c) Use the result in part (b) to compute A−1
7 and compare it to

the result obtained using the computer.

10.4 Markov Chains
In this section we describe a general model of a system that changes from state to state. We
then apply the model to several concrete problems.

PREREQUISITES: Linear Systems
Matrices
Intuitive Understanding of Limits

A Markov Process Suppose a physical or mathematical system undergoes a process of change such that at
any moment it can occupy one of a finite number of states. For example, the weather
in a certain city could be in one of three possible states: sunny, cloudy, or rainy. Or
an individual could be in one of four possible emotional states: happy, sad, angry, or
apprehensive. Suppose that such a system changes with time from one state to another
and at scheduled times the state of the system is observed. If the state of the system
at any observation cannot be predicted with certainty, but the probability that a given
state occurs can be predicted by just knowing the state of the system at the preceding
observation, then the process of change is called a Markov chain or Markov process.

DEFINITION 1 If a Markov chain has k possible states, which we label as 1, 2, . . . , k,
then the probability that the system is in state i at any observation after it was in state j

at the preceding observation is denoted by pij and is called the transition probability
from state j to state i. The matrix P = [pij ] is called the transition matrix of the
Markov chain.

For example, in a three-state Markov chain, the transition matrix has the form

Preceding State

1 2 3⎡
⎢⎣p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎥⎦ 1

2

3

New State

In this matrix, p32 is the probability that the system will change from state 2 to state 3,
p11 is the probability that the system will still be in state 1 if it was previously in state 1,
and so forth.
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EXAMPLE 1 Transition Matrix of the Markov Chain

A car rental agency has three rental locations, denoted by 1, 2, and 3. A customer may
rent a car from any of the three locations and return the car to any of the three locations.
The manager finds that customers return the cars to the various locations according to
the following probabilities:

Rented from Location

1 2 3⎡
⎢⎣.8 .3 .2

.1 .2 .6

.1 .5 .2

⎤
⎥⎦1

2

3

Returned
to

Location

This matrix is the transition matrix of the system considered as a Markov chain. From
this matrix, the probability is .6 that a car rented from location 3 will be returned to
location 2, the probability is .8 that a car rented from location 1 will be returned to
location 1, and so forth.

EXAMPLE 2 Transition Matrix of the Markov Chain

By reviewing its donation records, the alumni office of a college finds that 80% of its
alumni who contribute to the annual fund one year will also contribute the next year,
and 30% of those who do not contribute one year will contribute the next. This can be
viewed as a Markov chain with two states: state 1 corresponds to an alumnus giving a
donation in any one year, and state 2 corresponds to the alumnus not giving a donation
in that year. The transition matrix is

P =
[
.8 .3

.2 .7

]

In the examples above, the transition matrices of the Markov chains have the property
that the entries in any column sum to 1. This is not accidental. If P = [pij ] is the
transition matrix of any Markov chain with k states, then for each j we must have

p1j + p2j + · · · + pkj = 1 (1)

because if the system is in state j at one observation, it is certain to be in one of the k

possible states at the next observation.
A matrix with property (1) is called a stochastic matrix, a probability matrix, or a

Markov matrix. From the preceding discussion, it follows that the transition matrix for
a Markov chain must be a stochastic matrix.

In a Markov chain, the state of the system at any observation time cannot generally
be determined with certainty. The best one can usually do is specify probabilities for
each of the possible states. For example, in a Markov chain with three states, we might
describe the possible state of the system at some observation time by a column vector

x =
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦

in which x1 is the probability that the system is in state 1, x2 the probability that it is
in state 2, and x3 the probability that it is in state 3. In general we make the following
definition.
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DEFINITION 2 The state vector for an observation of a Markov chain with k states is
a column vector x whose ith component xi is the probability that the system is in the
ith state at that time.

Observe that the entries in any state vector for a Markov chain are nonnegative and have
a sum of 1. (Why?) A column vector that has this property is called a probability vector.

Let us suppose now that we know the state vector x(0) for a Markov chain at some
initial observation. The following theorem will enable us to determine the state vectors

x(1), x(2), . . . , x(n), . . .

at the subsequent observation times.

THEOREM 10.4.1 If P is the transition matrix of a Markov chain and x(n) is the state
vector at the nth observation, then x(n+1) = P x(n).

The proof of this theorem involves ideas from probability theory and will not be given
here. From this theorem, it follows that

x(1) = P x(0)

x(2) = P x(1) = P 2x(0)

x(3) = P x(2) = P 3x(0)

...

x(n) = P x(n−1) = P nx(0)

In this way, the initial state vector x(0) and the transition matrix P determine x(n) for
n = 1, 2, . . . .

EXAMPLE 3 Example 2 Revisited

The transition matrix in Example 2 was

P =
[
.8 .3

.2 .7

]
We now construct the probable future donation record of a new graduate who did not
give a donation in the initial year after graduation. For such a graduate the system is
initially in state 2 with certainty, so the initial state vector is

x(0) =
[

0

1

]
From Theorem 10.4.1 we then have

x(1) = P x(0) =
[
.8 .3

.2 .7

] [
0

1

]
=
[
.3

.7

]

x(2) = P x(1) =
[
.8 .3

.2 .7

] [
.3

.7

]
=
[
.45

.55

]

x(3) = P x(2) =
[
.8 .3

.2 .7

] [
.45

.55

]
=
[
.525

.475

]
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Thus, after three years the alumnus can be expected to make a donation with probability
.525. Beyond three years, we find the following state vectors (to three decimal places):

x(4) =
[
.563

.438

]
, x(5) =

[
.581

.419

]
, x(6) =

[
.591

.409

]
, x(7) =

[
.595

.405

]

x(8) =
[
.598

.402

]
, x(9) =

[
.599

.401

]
, x(10) =

[
.599

.401

]
, x(11) =

[
.600

.400

]
For all n beyond 11, we have

x(n) =
[
.600

.400

]
to three decimal places. In other words, the state vectors converge to a fixed vector as
the number of observations increases. (We will discuss this further below.)

EXAMPLE 4 Example 1 Revisited

The transition matrix in Example 1 was⎡
⎢⎣.8 .3 .2

.1 .2 .6

.1 .5 .2

⎤
⎥⎦

If a car is rented initially from location 2, then the initial state vector is

x(0) =
⎡
⎢⎣0

1

0

⎤
⎥⎦

Using this vector and Theorem 10.4.1, one obtains the later state vectors listed in Table 1.

Table 1

0 1

0
1
0

.300

.200

.500

.400

.370

.230

.477

.252

.271

.511

.261

.228

x1

x2

x3

n

x(n)

(n)

(n)

(n)

2 3 4

.533

.240

.227

5

.544

.238

.219

6

.550

.233

.217

7

.553

.232

.215

8

.555

.231

.214

9

.556

.230

.214

10

.557

.230

.213

11

For all values of n greater than 11, all state vectors are equal to x(11) to three decimal
places.

Two things should be observed in this example. First, it was not necessary to know
how long a customer kept the car. That is, in a Markov process the time period between
observations need not be regular. Second, the state vectors approach a fixed vector as n

increases, just as in the first example.

EXAMPLE 5 UsingTheorem 10.4.1

A traffic officer is assigned to control the traffic at the eight intersections indicated in
Figure 10.4.1.She is instructed to remain at each intersection for an hour and then to
either remain at the same intersection or move to a neighboring intersection. To avoid
establishing a pattern, she is told to choose her new intersection on a random basis,
with each possible choice equally likely. For example, if she is at intersection 5, her next
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intersection can be 2, 4, 5, or 8, each with probability 1
4 . Every day she starts at the

location where she stopped the day before. The transition matrix for this Markov chain
is

1 2

543

876

Figure 10.4.1

Old Intersection

1 2 3 4 5 6 7 8⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3

1
3 0 1

5 0 0 0 0
1
3

1
3 0 0 1

4 0 0 0

0 0 1
3

1
5 0 1

3 0 0
1
3 0 1

3
1
5

1
4 0 1

4 0

0 1
3 0 1

5
1
4 0 0 1

3

0 0 1
3 0 0 1

3
1
4 0

0 0 0 1
5 0 1

3
1
4

1
3

0 0 0 0 1
4 0 1

4
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

2

3

4

5

6

7

8

New
Intersection

If the traffic officer begins at intersection 5, her probable locations, hour by hour, are
given by the state vectors given in Table 2. For all values of n greater than 22, all state
vectors are equal to x(22) to three decimal places. Thus, as with the first two examples,
the state vectors approach a fixed vector as n increases.

Table 2

0 1

0
0
0
0
1
0
0
0

.000

.250

.000

.250

.250

.000

.000

.250

.133

.146

.050

.113

.279

.000

.133

.146

.116

.163

.039

.187

.190

.050

.104

.152

.130

.140

.067

.162

.190

.056

.131

.124

x1

x2

x3

x4

x5

x6

x7

x8

n

x(n)

(n)

(n)

(n)

(n)

(n)

(n)

(n)

(n)

2 3 4

.123

.138

.073

.178

.168

.074

.125

.121

5

.113

.115

.100

.178

.149

.099

.138

.108

10

.109

.109

.106

.179

.144

.105

.142

.107

15

.108

.108

.107

.179

.143

.107

.143

.107

20

.107

.107

.107

.179

.143

.107

.143

.107

22

Limiting Behavior of the
State Vectors

In our examples we saw that the state vectors approached some fixed vector as the number
of observations increased. We now ask whether the state vectors always approach a fixed
vector in a Markov chain. A simple example shows that this is not the case.

EXAMPLE 6 System Oscillates BetweenTwo StateVectors

Let

P =
[

0 1

1 0

]
and x(0) =

[
1

0

]
Then, because P 2 = I and P 3 = P , we have that

x(0) = x(2) = x(4) = · · · =
[

1

0

]
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and

x(1) = x(3) = x(5) = · · · =
[

0

1

]
This system oscillates indefinitely between the two state vectors

[
1

0

]
and

[
0

1

]
, so it does

not approach any fixed vector.

However, if we impose a mild condition on the transition matrix, we can show that
a fixed limiting state vector is approached. This condition is described by the following
definition.

DEFINITION 3 A transition matrix is regular if some integer power of it has all positive
entries.

Thus, for a regular transition matrix P , there is some positive integer m such that all
entries of P m are positive. This is the case with the transition matrices of Examples 1 and
2 for m = 1. In Example 5 it turns out that P 4 has all positive entries. Consequently, in
all three examples the transition matrices are regular.

A Markov chain that is governed by a regular transition matrix is called a regular
Markov chain. We will see that every regular Markov chain has a fixed state vector q such
that P nx(0) approaches q as n increases for any choice of x(0). This result is of major
importance in the theory of Markov chains. It is based on the following theorem.

THEOREM 10.4.2 Behavior of Pn as n → �

If P is a regular transition matrix, then as n → �,

P n →

⎡
⎢⎢⎢⎣

q1 q1 · · · q1

q2 q2 · · · q2
...

...
...

qk qk · · · qk

⎤
⎥⎥⎥⎦

where the qi are positive numbers such that q1 + q2 + · · · + qk = 1.

We will not prove this theorem here. We refer you to a more specialized text, such as
J. Kemeny and J. Snell, Finite Markov Chains (New York: Springer-Verlag, 1976).

Let us set

Q =

⎡
⎢⎢⎢⎣

q1 q1 · · · q1

q2 q2 · · · q2
...

...
...

qk qk · · · qk

⎤
⎥⎥⎥⎦ and q =

⎡
⎢⎢⎢⎣

q1

q2
...
qk

⎤
⎥⎥⎥⎦

Thus, Q is a transition matrix, all of whose columns are equal to the probability vector
q. Q has the property that if x is any probability vector, then

Qx =

⎡
⎢⎢⎢⎣

q1 q1 · · · q1

q2 q2 · · · q2
...

...
...

qk qk · · · qk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...
xk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

q1x1 + q1x2 + · · ·+ q1xk

q2x1 + q2x2 + · · ·+ q2xk

...
...

...
qkx1 + qkx2 + · · ·+ qkxk

⎤
⎥⎥⎥⎦

= (x1 + x2 + · · · + xk)

⎡
⎢⎢⎢⎣

q1

q2
...
qk

⎤
⎥⎥⎥⎦ = (1)q = q
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That is, Q transforms any probability vector x into the fixed probability vector q. This
result leads to the following theorem.

THEOREM 10.4.3 Behavior of Pnx as n → �

If P is a regular transition matrix and x is any probability vector, then as n → �,

P nx →

⎡
⎢⎢⎢⎣

q1

q2
...
qk

⎤
⎥⎥⎥⎦ = q

where q is a fixed probability vector, independent of n, all of whose entries are positive.

This result holds since Theorem 10.4.2 implies that P n → Q as n → �. This in turn
implies that P nx → Qx = q as n → �. Thus, for a regular Markov chain, the system
eventually approaches a fixed state vector q. The vector q is called the steady-state vector
of the regular Markov chain.

For systems with many states, usually the most efficient technique of computing the
steady-state vector q is simply to calculate P nx for some large n. Our examples illustrate
this procedure. Each is a regular Markov process, so that convergence to a steady-state
vector is ensured. Another way of computing the steady-state vector is to make use of
the following theorem.

THEOREM 10.4.4 Steady-StateVector

The steady-state vector q of a regular transition matrix P is the unique probability
vector that satisfies the equation P q = q.

To see this, consider the matrix identity PP n = P n+1. By Theorem 10.4.2, both P n and
P n+1 approach Q as n → �. Thus, we have PQ = Q. Any one column of this matrix
equation gives P q = q. To show that q is the only probability vector that satisfies this
equation, suppose r is another probability vector such that P r = r. Then also P nr = r
for n = 1, 2, . . . . When we let n → �, Theorem 10.4.3 leads to q = r.

Theorem 10.4.4 can also be expressed by the statement that the homogeneous linear
system

(I − P)q = 0

has a unique solution vector q with nonnegative entries that satisfy the condition q1 +
q2 + · · · + qk = 1. We can apply this technique to the computation of the steady-state
vectors for our examples.

EXAMPLE 7 Example 2 Revisited

In Example 2 the transition matrix was

P =
[
.8 .3

.2 .7

]
so the linear system (I − P)q = 0 is[

.2 −.3

−.2 .3

] [
q1

q2

]
=
[

0

0

]
(2)
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This leads to the single independent equation

.2q1 − .3q2 = 0

or
q1 = 1.5q2

Thus, when we set q2 = s, any solution of (2) is of the form

q = s

[
1.5

1

]
where s is an arbitrary constant. To make the vector q a probability vector, we set
s = 1/(1.5 + 1) = .4. Consequently,

q =
[
.6

.4

]
is the steady-state vector of this regular Markov chain. This means that over the long
run, 60% of the alumni will give a donation in any one year, and 40% will not. Observe
that this agrees with the result obtained numerically in Example 3.

EXAMPLE 8 Example 1 Revisited

In Example 1 the transition matrix was

P =
⎡
⎢⎣.8 .3 .2

.1 .2 .6

.1 .5 .2

⎤
⎥⎦

so the linear system (I − P)q = 0 is⎡
⎢⎣ .2 −.3 −.2

−.1 .8 −.6

−.1 −.5 .8

⎤
⎥⎦
⎡
⎢⎣q1

q2

q3

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦

The reduced row echelon form of the coefficient matrix is (verify)⎡
⎢⎢⎣

1 0 − 34
13

0 1 − 14
13

0 0 0

⎤
⎥⎥⎦

so the original linear system is equivalent to the system

q1 = (
34
13

)
q3

q2 = (
14
13

)
q3

When we set q3 = s, any solution of the linear system is of the form

q = s

⎡
⎢⎢⎣

34
13

14
13

1

⎤
⎥⎥⎦

To make this a probability vector, we set

s = 1
34
13 + 14

13 + 1
= 13

61
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Thus, the steady-state vector of the system is

q =

⎡
⎢⎢⎣

34
61
14
61
13
61

⎤
⎥⎥⎦ =

⎡
⎢⎣.5573 . . .

.2295 . . .

.2131 . . .

⎤
⎥⎦

This agrees with the result obtained numerically in Table 1. The entries of q give the
long-run probabilities that any one car will be returned to location 1, 2, or 3, respectively.
If the car rental agency has a fleet of 1000 cars, it should design its facilities so that there
are at least 558 spaces at location 1, at least 230 spaces at location 2, and at least 214
spaces at location 3.

EXAMPLE 9 Example 5 Revisited

We will not give the details of the calculations but simply state that the unique probability
vector solution of the linear system (I − P)q = 0 is

q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
28
3
28
3
28
5
28
4
28
3
28
4
28
3
28

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.1071…

.1071…

.1071…

.1785…

.1428…

.1071…

.1428…

.1071…

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The entries in this vector indicate the proportion of time the traffic officer spends at
each intersection over the long term. Thus, if the objective is for her to spend the same
proportion of time at each intersection, then the strategy of random movement with equal
probabilities from one intersection to another is not a good one. (See Exercise 5.)

Exercise Set 10.4
1. Consider the transition matrix

P =
[
.4 .5

.6 .5

]

(a) Calculate x(n) for n = 1, 2, 3, 4, 5 if x(0) =
[

1

0

]
.

(b) State why P is regular and find its steady-state vector.

2. Consider the transition matrix

P =
⎡
⎢⎣.2 .1 .7

.6 .4 .2

.2 .5 .1

⎤
⎥⎦

(a) Calculate x(1), x(2), and x(3) to three decimal places if

x(0) =
⎡
⎢⎣0

0

1

⎤
⎥⎦

(b) State why P is regular and find its steady-state vector.

3. Find the steady-state vectors of the following regular transition
matrices:

(a)

[
1
3

3
4

2
3

1
4

]
(b)

[
.81 .26

.19 .74

]
(c)

⎡
⎢⎢⎣

1
3

1
2 0

1
3 0 1

4
1
3

1
2

3
4

⎤
⎥⎥⎦

4. Let P be the transition matrix[
1
2 0
1
2 1

]

(a) Show that P is not regular.

(b) Show that as n increases, P nx(0) approaches

[
0

1

]
for any

initial state vector x(0).

(c) What conclusion of Theorem 10.4.3 is not valid for the
steady state of this transition matrix?
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5. Verify that if P is a k × k regular transition matrix all of whose
row sums are equal to 1, then the entries of its steady-state
vector are all equal to 1/k.

6. Show that the transition matrix

P =

⎡
⎢⎢⎣

0 1
2

1
2

1
2

1
2 0

1
2 0 1

2

⎤
⎥⎥⎦

is regular, and use Exercise 5 to find its steady-state vector.

7. John is either happy or sad. If he is happy one day, then he is
happy the next day four times out of five. If he is sad one day,
then he is sad the next day one time out of three. Over the long
term, what are the chances that John is happy on any given day?

8. A country is divided into three demographic regions. It is found
that each year 5% of the residents of region 1 move to region 2,
and 5% move to region 3. Of the residents of region 2, 15% move
to region 1 and 10% move to region 3. And of the residents of
region 3, 10% move to region 1 and 5% move to region 2. What
percentage of the population resides in each of the three regions
after a long period of time?

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Consider the sequence of transition matrices

{P2, P3, P4, . . .}

with

P2 =
[

0 1
2

1 1
2

]
, P3 =

⎡
⎢⎢⎣

0 0 1
3

0 1
2

1
3

1 1
2

1
3

⎤
⎥⎥⎦,

P4 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1
4

0 0 1
3

1
4

0 1
2

1
3

1
4

1 1
2

1
3

1
4

⎤
⎥⎥⎥⎥⎥⎦, P5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
5

0 0 0 1
4

1
5

0 0 1
3

1
4

1
5

0 1
2

1
3

1
4

1
5

1 1
2

1
3

1
4

1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and so on.

(a) Use a computer to show that each of these four matrices is
regular by computing their squares.

(b) Verify Theorem 10.4.2 by computing the 100th power of Pk

for k = 2, 3, 4, 5. Then make a conjecture as to the limiting
value of P n

k as n → � for all k = 2, 3, 4, . . . .

(c) Verify that the common column qk of the limiting matrix you
found in part (b) satisfies the equation Pkqk = qk , as required
by Theorem 10.4.4.

T2. A mouse is placed in a box with nine rooms as shown in the ac-
companying figure. Assume that it is equally likely that the mouse
goes through any door in the room or stays in the room.

(a) Construct the 9 × 9 transition matrix for this problem and
show that it is regular.

(b) Determine the steady-state vector for the matrix.

(c) Use a symmetry argument to show that this problem may be
solved using only a 3 × 3 matrix.

1

4

7 8 9

5 6

2 3

Figure Ex-T2
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10.5 GraphTheory
In this section we introduce matrix representations of relations among members of a set.
We use matrix arithmetic to analyze these relationships.

PREREQUISITES: Matrix Addition and Multiplication

Relations Among Members
of a Set

There are countless examples of sets with finitely many members in which some relation
exists among members of the set. For example, the set could consist of a collection of
people, animals, countries, companies, sports teams, or cities; and the relation between
two members, A and B, of such a set could be that person A dominates person B,
animal A feeds on animal B, country A militarily supports country B, company A sells
its product to company B, sports team A consistently beats sports team B, or city A has
a direct airline flight to city B.

We will now show how the theory of directed graphs can be used to mathematically
model relations such as those in the preceding examples.

Directed Graphs A directed graph is a finite set of elements, {P1, P2, . . . , Pn}, together with a finite collec-
tion of ordered pairs (Pi, Pj ) of distinct elements of this set, with no ordered pair being
repeated. The elements of the set are called vertices, and the ordered pairs are called
directed edges, of the directed graph. We use the notation Pi → Pj (which is read “Pi

is connected to Pj ”) to indicate that the directed edge (Pi, Pj ) belongs to the directed
graph. Geometrically, we can visualize a directed graph (Figure 10.5.1) by representing

P1

P2

P3

P4

P5

P7

P6

Figure 10.5.1

the vertices as points in the plane and representing the directed edge Pi → Pj by drawing
a line or arc from vertex Pi to vertex Pj , with an arrow pointing from Pi to Pj . If both
Pi → Pj and Pj → Pi hold (denoted Pi ↔ Pj ), we draw a single line between Pi and
Pj with two oppositely pointing arrows (as with P2 and P3 in the figure).

As in Figure 10.5.1, for example, a directed graph may have separate “components”
of vertices that are connected only among themselves; and some vertices, such as P5,
may not be connected with any other vertex. Also, because Pi → Pi is not permitted in
a directed graph, a vertex cannot be connected with itself by a single arc that does not
pass through any other vertex.

Figure 10.5.2 shows diagrams representing three more examples of directed graphs.
With a directed graph having n vertices, we may associate an n × n matrix M = [mij ],
called the vertex matrix of the directed graph. Its elements are defined by

mij =
{

1, if Pi → Pj

0, otherwise

Figure 10.5.2

P1

P1

P2 P2

P1

P2

P3

P3

P4

P4

P3

P4

P5

(a) (b) (c)
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for i, j = 1, 2, . . . , n. For the three directed graphs in Figure 10.5.2, the corresponding
vertex matrices are

Figure 10.5.2a: M =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 0

⎤
⎥⎥⎥⎦

Figure 10.5.2b: M =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 1

0 0 1 1 0

0 0 0 1 0

0 1 0 0 1

0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

Figure 10.5.2c: M =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎦

By their definition, vertex matrices have the following two properties:

(i) All entries are either 0 or 1.

(ii) All diagonal entries are 0.

Conversely, any matrix with these two properties determines a unique directed graph
having the given matrix as its vertex matrix. For example, the matrix

M =

⎡
⎢⎢⎢⎣

0 1 1 0

0 0 1 0

1 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦

determines the directed graph in Figure 10.5.3.

P1

P2

P3

P4

Figure 10.5.3

EXAMPLE 1 InfluencesWithin a Family

A certain family consists of a mother, father, daughter, and two sons. The family members
have influence, or power, over each other in the following ways: the mother can influence
the daughter and the oldest son; the father can influence the two sons; the daughter can
influence the father; the oldest son can influence the youngest son; and the youngest son
can influence the mother. We may model this family influence pattern with a directed
graph whose vertices are the five family members. If family member A influences family
member B, we write A → B. Figure 10.5.4 is the resulting directed graph, where we

M

D F

YS

OS

Figure 10.5.4

have used obvious letter designations for the five family members. The vertex matrix of
this directed graph is

M F D OS YS
M
F
D

OS
YS

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 1 0
0 0 0 1 1
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
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EXAMPLE 2 Vertex Matrix: Moves on a Chessboard

In chess the knight moves in an “L”-shaped pattern about the chessboard. For the
board in Figure 10.5.5 it may move horizontally two squares and then vertically one

Figure 10.5.5

square, or it may move vertically two squares and then horizontally one square. Thus,
from the center square in the figure, the knight may move to any of the eight marked
shaded squares. Suppose that the knight is restricted to the nine numbered squares in
Figure 10.5.6. If by i → j we mean that the knight may move from square i to square
j , the directed graph in Figure 10.5.7 illustrates all possible moves that the knight may
make among these nine squares. In Figure 10.5.8 we have “unraveled” Figure 10.5.7 to
make the pattern of possible moves clearer.

1 2 3

4 5 6

7 8 9

Figure 10.5.6

1

4

7 8 9

2

5
6

3

Figure 10.5.7

5

8

2

6 4

1 3

97

Figure 10.5.8

The vertex matrix of this directed graph is given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In Example 1 the father cannot directly influence the mother; that is, F → M is not
true. But he can influence the youngest son, who can then influence the mother. We write
this as F → YS → M and call it a 2-step connection from F to M . Analogously, we call
M → D a 1-step connection, F → OS → YS → M a 3-step connection, and so forth.
Let us now consider a technique for finding the number of all possible r-step connections
(r = 1, 2, . . .) from one vertex Pi to another vertex Pj of an arbitrary directed graph.
(This will include the case when Pi and Pj are the same vertex.) The number of 1-step
connections from Pi to Pj is simply mij . That is, there is either zero or one 1-step
connection from Pi to Pj , depending on whether mij is zero or one. For the number
of 2-step connections, we consider the square of the vertex matrix. If we let m

(2)
ij be the

(i, j)-th element of M2, we have

m
(2)
ij = mi1m1j + mi2m2j + · · · + minmnj (1)

Now, if mi1 = m1j = 1, there is a 2-step connection Pi → P1 → Pj from Pi to Pj . But if
either mi1 or m1j is zero, such a 2-step connection is not possible. Thus Pi → P1 → Pj

is a 2-step connection if and only if mi1m1j = 1. Similarly, for any k = 1, 2, . . . , n,
Pi → Pk → Pj is a 2-step connection from Pi to Pj if and only if the term mikmkj on
the right side of (1) is one; otherwise, the term is zero. Thus, the right side of (1) is the
total number of two 2-step connections from Pi to Pj .

A similar argument will work for finding the number of 3-, 4-, . . . , r-step connections
from Pi to Pj . In general, we have the following result.

THEOREM 10.5.1 Let M be the vertex matrix of a directed graph and let m
(r)
ij be the

(i, j)-th element of Mr . Then m
(r)
ij is equal to the number of r-step connections from

Pi to Pj .
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EXAMPLE 3 UsingTheorem 10.5.1

Figure 10.5.9 is the route map of a small airline that services the four cities P1, P2, P3,

P1

P2

P3

P4

Figure 10.5.9

P4. As a directed graph, its vertex matrix is

M =

⎡
⎢⎢⎢⎣

0 1 1 0

1 0 1 0

1 0 0 1

0 1 1 0

⎤
⎥⎥⎥⎦

We have that

M2 =

⎡
⎢⎢⎢⎣

2 0 1 1

1 1 1 1

0 2 2 0

2 0 1 1

⎤
⎥⎥⎥⎦ and M3 =

⎡
⎢⎢⎢⎣

1 3 3 1

2 2 3 1

4 0 2 2

1 3 3 1

⎤
⎥⎥⎥⎦

If we are interested in connections from city P4 to city P3, we may use Theorem 10.5.1 to
find their number. Because m43 = 1, there is one 1-step connection; because m

(2)
43 = 1,

there is one 2-step connection; and because m
(3)
43 = 3, there are three 3-step connections.

To verify this, from Figure 10.5.9 we find

1-step connections from P4 to P3: P4 → P3

2-step connections from P4 to P3: P4 → P2 → P3

3-step connections from P4 to P3: P4 → P3 → P4 → P3

P4 → P2 → P1 → P3

P4 → P3 → P1 → P3

Cliques In everyday language a “clique” is a closely knit group of people (usually three or more)
that tends to communicate within itself and has no place for outsiders. In graph theory
this concept is given a more precise meaning.

DEFINITION 1 A subset of a directed graph is called a clique if it satisfies the following
three conditions:

(i) The subset contains at least three vertices.

(ii) For each pair of vertices Pi and Pj in the subset, both Pi → Pj and Pj → Pi

are true.

(iii) The subset is as large as possible; that is, it is not possible to add another vertex
to the subset and still satisfy condition (ii).

This definition suggests that cliques are maximal subsets that are in perfect “commu-
nication” with each other. For example, if the vertices represent cities, and Pi → Pj

means that there is a direct airline flight from city Pi to city Pj , then there is a direct
flight between any two cities within a clique in either direction.

EXAMPLE 4 A Directed Graph withTwo Cliques

The directed graph illustrated in Figure 10.5.10 (which might represent the route map

P1

P2

P3

P7

P4

P6

P5

Figure 10.5.10

of an airline) has two cliques:

{P1, P2, P3, P4} and {P3, P4, P6}
This example shows that a directed graph may contain several cliques and that a vertex
may simultaneously belong to more than one clique.
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For simple directed graphs, cliques can be found by inspection. But for large directed
graphs, it would be desirable to have a systematic procedure for detecting cliques. For
this purpose, it will be helpful to define a matrix S = [sij ] related to a given directed
graph as follows:

sij =
{

1, if Pi ↔ Pj

0, otherwise

The matrix S determines a directed graph that is the same as the given directed graph,
with the exception that the directed edges with only one arrow are deleted. For example,
if the original directed graph is given by Figure 10.5.11a, the directed graph that has S

as its vertex matrix is given in Figure 10.5.11b. The matrix S may be obtained from the

P1 P5

P2

P3

P4

(a)

P1 P5

P2

P3

P4

(b)

Figure 10.5.11

vertex matrix M of the original directed graph by setting sij = 1 if mij = mji = 1 and
setting sij = 0 otherwise.

The following theorem, which uses the matrix S, is helpful for identifying cliques.

THEOREM 10.5.2 Identifying Cliques

Let s
(3)
ij be the (i, j)-th element of S3. Then a vertex Pi belongs to some clique if and

only if s(3)
ii �= 0.

Proof If s
(3)
ii �= 0, then there is at least one 3-step connection from Pi to itself in the

modified directed graph determined by S. Suppose it is Pi → Pj → Pk → Pi . In the
modified directed graph, all directed relations are two-way, so we also have the connec-
tions Pi ↔ Pj ↔ Pk ↔ Pi . But this means that {Pi, Pj , Pk} is either a clique or a subset
of a clique. In either case, Pi must belong to some clique. The converse statement, “if
Pi belongs to a clique, then s

(3)
ii �= 0,” follows in a similar manner.

EXAMPLE 5 UsingTheorem 10.5.2

Suppose that a directed graph has as its vertex matrix

M =

⎡
⎢⎢⎢⎣

0 1 1 1

1 0 1 0

0 1 0 1

1 0 0 0

⎤
⎥⎥⎥⎦

Then

S =

⎡
⎢⎢⎢⎣

0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎦ and S3 =

⎡
⎢⎢⎢⎣

0 3 0 2

3 0 2 0

0 2 0 1

2 0 1 0

⎤
⎥⎥⎥⎦

Because all diagonal entries of S3 are zero, it follows from Theorem 10.5.2 that the
directed graph has no cliques.

EXAMPLE 6 UsingTheorem 10.5.2

Suppose that a directed graph has as its vertex matrix

M =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 1

1 0 0 1 0

1 1 0 1 0

1 1 0 0 0

1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦



566 Chapter 10 Applications of Linear Algebra

Then

S =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 1

1 0 0 1 0

0 0 0 0 0

1 1 0 0 0

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ and S3 =

⎡
⎢⎢⎢⎢⎢⎣

2 4 0 4 3

4 2 0 3 1

0 0 0 0 0

4 3 0 2 1

3 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

The nonzero diagonal entries of S3 are s
(3)
11 , s

(3)
22 , and s

(3)
44 . Consequently, in the given

directed graph, P1, P2, and P4 belong to cliques. Because a clique must contain at least
three vertices, the directed graph has only one clique, {P1, P2, P4}.

Dominance-Directed
Graphs

In many groups of individuals or animals, there is a definite “pecking order” or domi-
nance relation between any two members of the group. That is, given any two individuals
A and B, either A dominates B or B dominates A, but not both. In terms of a directed
graph in which Pi → Pj means Pi dominates Pj , this means that for all distinct pairs,
either Pi → Pj or Pj → Pi , but not both. In general, we have the following definition.

DEFINITION 2 A dominance-directed graph is a directed graph such that for any dis-
tinct pair of vertices Pi and Pj , either Pi → Pj or Pj → Pi , but not both.

An example of a directed graph satisfying this definition is a league of n sports teams
that play each other exactly one time, as in one round of a round-robin tournament in
which no ties are allowed. If Pi → Pj means that team Pi beat team Pj in their single
match, it is easy to see that the definition of a dominance-directed group is satisfied. For
this reason, dominance-directed graphs are sometimes called tournaments.

P1 P3

(a)

P2

P1 P4

(b)

P3

P5 P4

P2

P1 P3

P2

(c)

Figure 10.5.12

Figure 10.5.12 illustrates some dominance-directed graphs with three, four, and five
vertices, respectively. In these three graphs, the circled vertices have the following in-
teresting property: from each one there is either a 1-step or a 2-step connection to any
other vertex in its graph. In a sports tournament, these vertices would correspond to the
most “powerful” teams in the sense that these teams either beat any given team or beat
some other team that beat the given team. We can now state and prove a theorem that
guarantees that any dominance-directed graph has at least one vertex with this property.

THEOREM 10.5.3 Connections in Dominance-Directed Graphs

In any dominance-directed graph, there is at least one vertex from which there is a 1-step
or 2-step connection to any other vertex.

Proof Consider a vertex (there may be several) with the largest total number of 1-step
and 2-step connections to other vertices in the graph. By renumbering the vertices, we
may assume that P1 is such a vertex. Suppose there is some vertex Pi such that there is no
1-step or 2-step connection fromP1 toPi . Then, in particular, P1 → Pi is not true, so that
by definition of a dominance-directed graph, it must be that Pi → P1. Next, let Pk be any
vertex such that P1 → Pk is true. Then we cannot have Pk → Pi , as then P1 → Pk → Pi

would be a 2-step connection from P1 to Pi . Thus, it must be that Pi → Pk . That
is, Pi has 1-step connections to all the vertices to which P1 has 1-step connections.
The vertex Pi must then also have 2-step connections to all the vertices to which P1
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has 2-step connections. But because, in addition, we have that Pi → P1, this means that
Pi has more 1-step and 2-step connections to other vertices than does P1. However, this
contradicts the way in which P1 was chosen. Hence, there can be no vertex Pi to which
P1 has no 1-step or 2-step connection.

This proof shows that a vertex with the largest total number of 1-step and 2-step
connections to other vertices has the property stated in the theorem. There is a simple
way of finding such vertices using the vertex matrix M and its square M2. The sum of
the entries in the ith row of M is the total number of 1-step connections from Pi to other
vertices, and the sum of the entries of the ith row of M2 is the total number of 2-step
connections from Pi to other vertices. Consequently, the sum of the entries of the ith
row of the matrix A = M + M2 is the total number of 1-step and 2-step connections
from Pi to other vertices. In other words, a row of A = M + M2 with the largest row
sum identifies a vertex having the property stated in Theorem 10.5.3.

EXAMPLE 7 UsingTheorem 10.5.3

Suppose that five baseball teams play each other exactly once, and the results are as
indicated in the dominance-directed graph of Figure 10.5.13. The vertex matrix of the

P5

P4

P2

P1

P3

Figure 10.5.13

graph is

M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 1 0

1 0 1 0 1

0 0 0 1 0

0 1 0 0 0

1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

so

A = M + M2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 1 0

1 0 1 0 1

0 0 0 1 0

0 1 0 0 0

1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 0

1 0 2 3 0

0 1 0 0 0

1 0 1 0 1

0 1 1 2 0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 2 0

2 0 3 3 1

0 1 0 1 0

1 1 1 0 1

1 1 2 3 0

⎤
⎥⎥⎥⎥⎥⎦

The row sums of A are

1st row sum = 4

2nd row sum = 9

3rd row sum = 2

4th row sum = 4

5th row sum = 7

Because the second row has the largest row sum, the vertex P2 must have a 1-step or
2-step connection to any other vertex. This is easily verified from Figure 10.5.13.

We have informally suggested that a vertex with the largest number of 1-step and 2-
step connections to other vertices is a “powerful” vertex. We can formalize this concept
with the following definition.
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DEFINITION 3 The power of a vertex of a dominance-directed graph is the total num-
ber of 1-step and 2-step connections from it to other vertices. Alternatively, the power
of a vertex Pi is the sum of the entries of the ith row of the matrix A = M + M2,
where M is the vertex matrix of the directed graph.

EXAMPLE 8 Example 7 Revisited

Let us rank the five baseball teams in Example 7 according to their powers. From the
calculations for the row sums in that example, we have

Power of team P1 = 4

Power of team P2 = 9

Power of team P3 = 2

Power of team P4 = 4

Power of team P5 = 7

Hence, the ranking of the teams according to their powers would be

P2 (first), P5 (second), P1 and P4 (tied for third), P3 (last)

Exercise Set 10.5
1. Construct the vertex matrix for each of the directed graphs

illustrated in Figure Ex-1.

P1

P1

P1

P2

P2

P5

P5
P6

P3

P3

P4

P4

P2

P4

P3

(a) (b)

(c)

Figure Ex-1

2. Draw a diagram of the directed graph corresponding to each
of the following vertex matrices.

(a)

⎡
⎢⎢⎣

0 1 1 0
1 0 0 0
0 0 0 1
1 0 1 0

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 0 0 1
0 1 0 1 1
0 0 0 0 0
1 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎦

(c)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1
1 0 0 0 1 0
0 0 0 0 0 0
1 1 0 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3. Let M be the following vertex matrix of a directed graph:⎡
⎢⎢⎣

0 1 1 1
1 0 0 0
0 1 0 1
0 1 1 0

⎤
⎥⎥⎦

(a) Draw a diagram of the directed graph.

(b) Use Theorem 10.5.1 to find the number of 1-, 2-, and 3-step
connections from the vertex P1 to the vertex P2. Verify your
answer by listing the various connections as in Example 3.

(c) Repeat part (b) for the 1-, 2-, and 3-step connections from
P1 to P4.

4. (a) Compute the matrix product MTM for the vertex matrix M

in Example 1.

(b) Verify that the kth diagonal entry of MTM is the number
of family members who influence the kth family member.
Why is this true?

(c) Find a similar interpretation for the values of the nondiag-
onal entries of MTM .

5. By inspection, locate all cliques in each of the directed graphs
illustrated in Figure Ex-5.
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P1

P1

P1

P3

P3

P2

P2

P5

P8

P7 P6 P5

P4

P4

P2

P4

P3

(a) (b)

(c)

Figure Ex-5

6. For each of the following vertex matrices, use Theorem 10.5.2
to find all cliques in the corresponding directed graphs.

(a)

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 0

1 0 1 0 1

0 1 0 1 1

1 0 0 0 1

1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 0

1 0 1 0 1 1

0 1 0 1 0 1

1 0 1 0 1 1

0 1 0 1 0 0

0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

7. For the dominance-directed graph illustrated in Figure Ex-7
construct the vertex matrix and find the power of each vertex.

P1

P3

P4

P2 Figure Ex-7

8. Five baseball teams play each other one time with the following
results:

A beats B, C, D

B beats C, E

C beats D, E

D beats B

E beats A, D

Rank the five baseball teams in accordance with the powers
of the vertices they correspond to in the dominance-directed
graph representing the outcomes of the games.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. A graph having n vertices such that every vertex is connected
to every other vertex has a vertex matrix given by

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 · · · 1

1 0 1 1 1 · · · 1

1 1 0 1 1 · · · 1

1 1 1 0 1 · · · 1

1 1 1 1 0 · · · 1
...

...
...

...
...

. . .
...

1 1 1 1 1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this problem we develop a formula for Mk
n whose (i, j)-th entry

equals the number of k-step connections from Pi to Pj .

(a) Use a computer to compute the eight matrices Mk
n for n = 2, 3

and for k = 2, 3, 4, 5.

(b) Use the results in part (a) and symmetry arguments to show
that Mk

n can be written as

Mk
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 · · · 1

1 0 1 1 1 · · · 1

1 1 0 1 1 · · · 1

1 1 1 0 1 · · · 1

1 1 1 1 0 · · · 1
...

...
...

...
...

. . .
...

1 1 1 1 1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αk βk βk βk βk · · · βk

βk αk βk βk βk · · · βk

βk βk αk βk βk · · · βk

βk βk βk αk βk · · · βk

βk βk βk βk αk · · · βk

...
...

...
...

...
. . .

...

βk βk βk βk βk · · · αk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Using the fact that Mk
n = MnM

k−1
n , show that[

αk

βk

]
=
[

0 n − 1

1 n − 2

] [
αk−1

βk−1

]

with [
α1

β1

]
=
[

0

1

]
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(d) Using part (c), show that[
αk

βk

]
=
[

0 n − 1

1 n − 2

]k−1 [
0

1

]
(e) Use the methods of Section 5.2 to compute[

0 n − 1

1 n − 2

]k−1

and thereby obtain expressions for αk and βk , and eventually
show that

Mk
n =

(
(n − 1)k − (−1)k

n

)
Un + (−1)kIn

where Un is the n × n matrix all of whose entries are ones and
In is the n × n identity matrix.

(f ) Show that for n > 2, all vertices for these directed graphs
belong to cliques.

T2. Consider a round-robin tournament among n players (labeled
a1, a2, a3, . . . , an) where a1 beats a2, a2 beats a3, a3 beats a4, . . . ,

an−1 beats an, and an beats a1. Compute the “power” of each
player, showing that they all have the same power; then determine
that common power. [Hint: Use a computer to study the cases
n = 3, 4, 5, 6; then make a conjecture and prove your conjecture
to be true.]

10.6 Games of Strategy
In this section we discuss a general game in which two competing players choose separate
strategies to reach opposing objectives. The optimal strategy of each player is found in
certain cases with the use of matrix techniques.

PREREQUISITES: Matrix Multiplication
Basic Probability Concepts

GameTheory To introduce the basic concepts in the theory of games, we will consider the following
carnival-type game that two people agree to play. We will call the participants in the
game player R and player C. Each player has a stationary wheel with a movable pointer
on it as in Figure 10.6.1. For reasons that will become clear, we will call player R’s wheel
the row-wheel and player C’s wheel the column-wheel. The row-wheel is divided into
three sectors numbered 1, 2, and 3, and the column-wheel is divided into four sectors
numbered 1, 2, 3, and 4. The fractions of the area occupied by the various sectors are
indicated in the figure. To play the game, each player spins the pointer of his or her wheel
and lets it come to rest at random. The number of the sector in which each pointer comes
to rest is called the move of that player. Thus, player R has three possible moves and

1

3

2
1/3 1/6

1/2

Row-wheel
of player R

1

3
4

2

1/4 1/4

1/3
1/6

Column-wheel
of player C

Figure 10.6.1

player C has four possible moves. Depending on the move each player makes, player C

then makes a payment of money to player R according to Table 1.

Table 1 Payment to Player R

Player R’s

Move

Player C ’s Move

1

1 2 3 4

2

3

$3 $5

$4

$0 $3$6

–$2

–$3 –$4–$2

–$5

–$1

For example, if the row-wheel pointer comes to rest in sector 1 (player R makes
move 1), and the column-wheel pointer comes to rest in sector 2 (player C makes move 2),
then player C must pay player R the sum of $5. Some of the entries in this table are
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negative, indicating that player C makes a negative payment to player R. By this we
mean that player R makes a positive payment to player C. For example, if the row-wheel
shows 2 and the column-wheel shows 4, then player R pays player C the sum of $4,
because the corresponding entry in the table is −$4. In this way the positive entries of
the table are the gains of player R and the losses of player C, and the negative entries
are the gains of player C and the losses of player R.

In this game the players have no control over their moves; each move is determined
by chance. However, if each player can decide whether he or she wants to play, then each
would want to know how much he or she can expect to win or lose over the long term
if he or she chooses to play. (Later in the section we will discuss this question and also
consider a more complicated situation in which the players can exercise some control
over their moves by varying the sectors of their wheels.)

Two-Person Zero-Sum
Matrix Games

The game described above is an example of a two-person zero-sum matrix game. The
term zero-sum means that in each play of the game, the positive gain of one player is
equal to the negative gain (loss) of the other player. That is, the sum of the two gains is
zero. The term matrix game is used to describe a two-person game in which each player
has only a finite number of moves, so that all possible outcomes of each play, and the
corresponding gains of the players, can be displayed in tabular or matrix form, as in
Table 1.

In a general game of this type, let player R have m possible moves and let player C

have n possible moves. In a play of the game, each player makes one of his or her possible
moves, and then a payoff is made from player C to player R, depending on the moves.
For i = 1, 2, . . . , m, and j = 1, 2, . . . , n, let us set

aij = payoff that player C makes to player R if player R

makes move i and player C makes move j

This payoff need not be money; it can be any type of commodity to which we can attach
a numerical value. As before, if an entry aij is negative, we mean that player C receives
a payoff of |aij | from player R. We arrange these mn possible payoffs in the form of an
m × n matrix

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦

which we will call the payoff matrix of the game.
Each player is to make his or her moves on a probabilistic basis. For example, for

the game discussed in the introduction, the ratio of the area of a sector to the area of
the wheel would be the probability that the player makes the move corresponding to
that sector. Thus, from Figure 10.6.1, we see that player R would make move 2 with
probability 1

3 , and player C would make move 2 with probability 1
4 . In the general case

we make the following definitions:

pi = probability that player R makes move i (i = 1, 2, . . . , m)

qj = probability that player C makes move j (j = 1, 2, . . . , n)

It follows from these definitions that

p1 + p2 + · · · + pm = 1

and
q1 + q2 + · · · + qn = 1
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With the probabilities pi and qj we form two vectors:

p = [p1 p2 · · · pm] and q =

⎡
⎢⎢⎢⎣

q1

q2
...
qn

⎤
⎥⎥⎥⎦

We call the row vector p the strategy of playerR and the column vector q the strategy of
player C. For example, from Figure 10.6.1 we have

p = [
1
6

1
3

1
2

]
and q =

⎡
⎢⎢⎢⎢⎢⎣

1
4
1
4
1
3
1
6

⎤
⎥⎥⎥⎥⎥⎦

for the carnival game described earlier.
From the theory of probability, if the probability that player R makes move i is pi ,

and independently the probability that player C makes move j is qj , then piqj is the
probability that for any one play of the game, player R makes move i and player C

makes move j . The payoff to player R for such a pair of moves is aij . If we multiply
each possible payoff by its corresponding probability and sum over all possible payoffs,
we obtain the expression

a11p1q1 + a12p1q2 + · · · + a1np1qn + a21p2q1 + · · · + amnpmqn (1)

Equation (1) is a weighted average of the payoffs to player R; each payoff is weighted
according to the probability of its occurrence. In the theory of probability, this weighted
average is called the expected payoff to player R. It can be shown that if the game is
played many times, the long-term average payoff per play to player R is given by this
expression. We denote this expected payoff by E(p, q) to emphasize the fact that it
depends on the strategies of the two players. From the definition of the payoff matrix A

and the strategies p and q, it can be verified that we may express the expected payoff in
matrix notation as

E(p, q) = [p1 p2 · · · pm]

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

q1

q2
...
qn

⎤
⎥⎥⎥⎦ = pAq (2)

Because E(p, q) is the expected payoff to player R, it follows that−E(p, q) is the expected
payoff to player C.

EXAMPLE 1 Expected Payoff to Player R

For the carnival game described earlier, we have

E(p, q) = pAq = [
1
6

1
3

1
2

]⎡⎢⎣ 3 5 −2 −1

−2 4 −3 −4

6 −5 0 3

⎤
⎥⎦
⎡
⎢⎢⎢⎢⎢⎣

1
4
1
4
1
3
1
6

⎤
⎥⎥⎥⎥⎥⎦ = 13

72 = .1805 . . .

Thus, in the long run, player R can expect to receive an average of about 18 cents from
player C in each play of the game.
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So far we have been discussing the situation in which each player has a predeter-
mined strategy. We will now consider the more difficult situation in which both players
can change their strategies independently. For example, in the game described in the
introduction, we would allow both players to alter the areas of the sectors of their wheels
and thereby control the probabilities of their respective moves. This qualitatively changes
the nature of the problem and puts us firmly in the field of true game theory. It is under-
stood that neither player knows what strategy the other will choose. It is also assumed
that each player will make the best possible choice of strategy and that the other player
knows this. Thus, player R attempts to choose a strategy p such that E(p, q) is as large as
possible for the best strategy q that player C can choose; and similarly, player C attempts
to choose a strategy q such that E(p, q) is as small as possible for the best strategy p that
player R can choose. To see that such choices are actually possible, we will need the fol-
lowing theorem, called the Fundamental Theorem of Two-Person Zero-SumGames. (The
general proof, which involves ideas from the theory of linear programming, will be omit-
ted. However, below we will prove this theorem for what are called strictly determined
games and 2 × 2 matrix games.)

THEOREM 10.6.1 FundamentalTheorem of Zero-Sum Games

There exist strategies p∗ and q∗ such that

E(p∗, q) ≥ E(p∗, q∗) ≥ E(p, q∗) (3)

for all strategies p and q.

The strategies p∗ and q∗ in this theorem are the best possible strategies for players R

and C, respectively. To see why this is so, let v = E(p∗, q∗). The left-hand inequality of
Equation (3) then reads

E(p∗, q) ≥ v for all strategies q

This means that if player R chooses the strategy p∗, then no matter what strategy q
player C chooses, the expected payoff to player R will never be below v. Moreover, it
is not possible for player R to achieve an expected payoff greater than v. To see why,
suppose there is some strategy p∗∗ that player R can choose such that

E(p∗∗, q) > v for all strategies q

Then, in particular,
E(p∗∗, q∗) > v

But this contradicts the right-hand inequality of Equation (3), which requires that
v ≥ E(p∗∗, q∗). Consequently, the best player R can do is prevent his or her expected
payoff from falling below the value v. Similarly, the best player C can do is ensure
that player R’s expected payoff does not exceed v, and this can be achieved by using
strategy q∗.

On the basis of this discussion, we arrive at the following definitions.

DEFINITION 1 If p∗ and q∗ are strategies such that

E(p∗, q) ≥ E(p∗, q∗) ≥ E(p, q∗) (4)

for all strategies p and q, then

(i) p∗ is called an optimal strategy for player R.

(ii) q∗ is called an optimal strategy for player C.

(iii) v = E(p∗, q∗) is called the value of the game.
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The wording in this definition suggests that optimal strategies are not necessarily unique.
This is indeed the case, and in Exercise 2 we ask you to show this. However, it can be
proved that any two sets of optimal strategies always result in the same value v of the
game. That is, if p∗, q∗ and p∗∗, q∗∗ are optimal strategies, then

E(p∗, q∗) = E(p∗∗, q∗∗) (5)

The value of a game is thus the expected payoff to player R when both players choose
any possible optimal strategies.

To find optimal strategies, we must find vectors p∗ and q∗ that satisfy Equation (4).
This is generally done by using linear programming techniques. Next, we discuss special
cases for which optimal strategies may be found by more elementary techniques.

We now introduce the following definition.

DEFINITION 2 An entry ars in a payoff matrix A is called a saddle point if

(i) ars is the smallest entry in its row, and

(ii) ars is the largest entry in its column.

A game whose payoff matrix has a saddle point is called strictly determined .

For example, the shaded element in each of the following payoff matrices is a saddle
point:

3 1
4 0

,
30 50 5
60 90 75
10 60 30

,

0 3 5 9
15 8 2 10
7 10 6 9
6 11 3 2

If a matrix has a saddle point ars , it turns out that the following strategies are optimal
strategies for the two players:

p∗ = [0 0 · · · 1
↗

rth entry

· · · 0], q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦← sth entry

That is, an optimal strategy for player R is to always make the rth move, and an optimal
strategy for player C is to always make the sth move. Such strategies for which only one
move is possible are called pure strategies. Strategies for which more than one move is
possible are called mixed strategies. To show that the above pure strategies are optimal,
you can verify the following three equations (see Exercise 6):

E(p∗, q∗) = p∗Aq∗ = ars (6)

E(p∗, q) = p∗Aq ≥ ars for any strategy q (7)

E(p, q∗) = pAq∗ ≤ ars for any strategy p (8)

Together, these three equations imply that

E(p∗, q) ≥ E(p∗, q∗) ≥ E(p, q∗)

for all strategies p and q. Because this is exactly Equation (4), it follows that p∗ and q∗
are optimal strategies.
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From Equation (6) the value of a strictly determined game is simply the numerical
value of a saddle point ars . It is possible for a payoff matrix to have several saddle points,
but then the uniqueness of the value of a game guarantees that the numerical values of
all saddle points are the same.

EXAMPLE 2 Optimal Strategies to Maximize aViewing Audience

Two competing television networks, R and C, are scheduling one-hour programs in the
same time period. Network R can schedule one of three possible programs, and network
C can schedule one of four possible programs. Neither network knows which program
the other will schedule. Both networks ask the same outside polling agency to give them
an estimate of how all possible pairings of the programs will divide the viewing audience.
The agency gives them each Table 2, whose (i, j)-th entry is the percentage of the viewing
audience that will watch network R if network R’s program i is paired against network
C’s program j . What program should each network schedule in order to maximize its
viewing audience?

Table 2 Audience Percentage for
Network R

Network R’s

Program

Network C ’s 
Program

1

1 2 3 4

2

3

60

50

70

20

75

45

30

45

35

55

60

30

Solution Subtract 50 from each entry in Table 2 to construct the following matrix:⎡
⎢⎣10 −30 −20 5

0 25 −5 10

20 −5 −15 −20

⎤
⎥⎦

This is the payoff matrix of the two-person zero-sum game in which each network is
considered to start with 50% of the audience, and the (i, j)-th entry of the matrix is the
percentage of the viewing audience that network C loses to network R if programs i and
j are paired against each other. It is easy to see that the entry

a23 = −5

is a saddle point of the payoff matrix. Hence, the optimal strategy of network R is to
schedule program 2, and the optimal strategy of network C is to schedule program 3.
This will result in network R’s receiving 45% of the audience and network C’s receiving
55% of the audience.

2 × 2 Matrix Games Another case in which the optimal strategies can be found by elementary means occurs
when each player has only two possible moves. In this case, the payoff matrix is a 2 × 2
matrix

A =
[
a11 a12

a21 a22

]
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If the game is strictly determined, at least one of the four entries of A is a saddle point,
and the techniques discussed above can then be applied to determine optimal strategies
for the two players. If the game is not strictly determined, we first compute the expected
payoff for arbitrary strategies p and q:

E(p, q) = pAq = [p1 p2]
[
a11 a12

a21 a22

] [
q1

q2

]
= a11p1q1 + a12p1q2 + a21p2q1 + a22p2q2 (9)

Because

p1 + p2 = 1 and q1 + q2 = 1 (10)

we may substitute p2 = 1 − p1 and q2 = 1 − q1 into (9) to obtain

E(p, q) = a11p1q1 + a12p1(1 − q1) + a21(1 − p1)q1 + a22(1 − p1)(1 − q1) (11)

If we rearrange the terms in Equation (11), we can write

E(p, q) = [(a11 + a22 − a12 − a21)p1 − (a22 − a21)]q1 + (a12 − a22)p1 + a22 (12)

By examining the coefficient of the q1 term in (12), we see that if we set

p1 = p∗
1 = a22 − a21

a11 + a22 − a12 − a21
(13)

then that coefficient is zero, and (12) reduces to

E(p∗, q) = a11a22 − a12a21

a11 + a22 − a12 − a21
(14)

Equation (14) is independent of q; that is, if player R chooses the strategy determined
by (13), player C cannot change the expected payoff by varying his or her strategy.

In a similar manner, it can be verified that if player C chooses the strategy determined
by

q1 = q∗
1 = a22 − a12

a11 + a22 − a12 − a21
(15)

then substituting in (12) gives

E(p, q∗) = a11a22 − a12a21

a11 + a22 − a12 − a21
(16)

Equations (14) and (16) show that

E(p∗, q) = E(p∗, q∗) = E(p, q∗) (17)

for all strategies p and q. Thus, the strategies determined by (13), (15), and (10) are
optimal strategies for players R and C, respectively, and so we have the following result.
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THEOREM 10.6.2 Optimal Strategies for a 2 × 2 Matrix Game

For a 2 × 2 game that is not strictly determined, optimal strategies for playersR and C

are

p∗ =
[

a22 − a21

a11 + a22 − a12 − a21

a11 − a12

a11 + a22 − a12 − a21

]
and

q∗ =

⎡
⎢⎢⎣

a22 − a12

a11 + a22 − a12 − a21

a11 − a21

a11 + a22 − a12 − a21

⎤
⎥⎥⎦

The value of the game is

v = a11a22 − a12a21

a11 + a22 − a12 − a21

In order to be complete, we must show that the entries in the vectors p∗ and q∗ are
numbers strictly between 0 and 1. In Exercise 8 we ask you to show that this is the case
as long as the game is not strictly determined.

Equation (17) is interesting in that it implies that either player can force the expected
payoff to be the value of the game by choosing his or her optimal strategy, regardless of
which strategy the other player chooses. This is not true, in general, for games in which
either player has more than two moves.

EXAMPLE 3 UsingTheorem 10.6.2

The federal government desires to inoculate its citizens against a certain flu virus. The
virus has two strains, and the proportions in which the two strains occur in the virus
population is not known. Two vaccines have been developed and each citizen is given
only one of them. Vaccine 1 is 85% effective against strain 1 and 70% effective against
strain 2. Vaccine 2 is 60% effective against strain 1 and 90% effective against strain 2.
What inoculation policy should the government adopt?

Solution We can consider this a two-person game in which player R (the government)
desires to make the payoff (the fraction of citizens resistant to the virus) as large as
possible, and player C (the virus) desires to make the payoff as small as possible. The
payoff matrix is

Strain
1 2

Vaccine
1

2

[
.85 .70

.60 .90

]
This matrix has no saddle points, so Theorem 10.6.2 is applicable. Consequently,

p∗
1 = a22 − a21

a11 + a22 − a12 − a21
= .90 − .60

.85 + .90 − .70 − .60
= .30

.45
= 2

3

p∗
2 = 1 − p∗

1 = 1 − 2

3
= 1

3

q∗
1 = a22 − a12

a11 + a22 − a12 − a21
= .90 − .70

.85 + .90 − .70 − .60
= .20

.45
= 4

9

q∗
2 = 1 − q∗

1 = 1 − 4

9
= 5

9

v = a11a22 − a12a21

a11 + a22 − a12 − a21
= (.85)(.90) − (.70)(.60)

.85 + .90 − .70 − .60
= .345

.45
= .7666 . . .
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Thus, the optimal strategy for the government is to inoculate 2
3 of the citizens with vaccine

1 and 1
3 of the citizens with vaccine 2. This will guarantee that about 76.7% of the citizens

will be resistant to a virus attack regardless of the distribution of the two strains.
In contrast, a virus distribution of 4

9 of strain 1 and 5
9 of strain 2 will result in the

same 76.7% of resistant citizens, regardless of the inoculation strategy adopted by the
government (see Exercise 7).

Exercise Set 10.6
1. Suppose that a game has a payoff matrix

A =
⎡
⎢⎣−4 6 −4 1

5 −7 3 8

−8 0 6 −2

⎤
⎥⎦

(a) If players R and C use strategies

p = [
1
2 0 1

2

]
and q =

⎡
⎢⎢⎢⎢⎢⎣

1
4
1
4
1
4
1
4

⎤
⎥⎥⎥⎥⎥⎦

respectively, what is the expected payoff of the game?

(b) If player C keeps his strategy fixed as in part (a), what
strategy should player R choose to maximize his expected
payoff ?

(c) If player R keeps her strategy fixed as in part (a), what strat-
egy should player C choose to minimize the expected payoff
to player R?

2. Construct a simple example to show that optimal strategies are
not necessarily unique. For example, find a payoff matrix with
several equal saddle points.

3. For the strictly determined games with the following payoff
matrices, find optimal strategies for the two players, and find
the values of the games.

(a)

[
5 2

7 3

]
(b)

⎡
⎢⎣−3 −2

2 4

−4 1

⎤
⎥⎦

(c)

⎡
⎢⎣ 2 −2 0

−6 0 −5

5 2 3

⎤
⎥⎦ (d)

⎡
⎢⎢⎢⎣
−3 2 −1

−2 −1 5

−4 1 0

−3 4 6

⎤
⎥⎥⎥⎦

4. For the 2 × 2 games with the following payoff matrices, find
optimal strategies for the two players, and find the values of the
games.

(a)

[
6 3

−1 4

]
(b)

[
40 20

−10 30

]
(c)

[
3 7

−5 4

]

(d)

[
3 5

5 2

]
(e)

[
7 −3

−5 −2

]

5. Player R has two playing cards: a black ace and a red four.
Player C also has two cards: a black two and a red three. Each
player secretly selects one of his or her cards. If both selected
cards are the same color, player C pays player R the sum of the
face values in dollars. If the cards are different colors, player
R pays player C the sum of the face values. What are optimal
strategies for both players, and what is the value of the game?

6. Verify Equations (6), (7), and (8).

7. Verify the statement in the last paragraph of Example 3.

8. Show that the entries of the optimal strategies p∗ and q∗ given
in Theorem 10.6.2 are numbers strictly between zero and one.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Consider a game between two players where each player can
make up to n different moves (n > 1). If the ith move of player
R and the j th move of player C are such that i + j is even, then
C pays R $1. If i + j is odd, then R pays C $1. Assume that
both players have the same strategy—that is, pn = [ρi]1×n and
qn = [ρi]n×1, where ρ1 + ρ2 + ρ3 + · · · + ρn = 1. Use a com-
puter to show that

E(p2, q2) = (ρ1 − ρ2)
2

E(p3, q3) = (ρ1 − ρ2 + ρ3)
2

E(p4, q4) = (ρ1 − ρ2 + ρ3 − ρ4)
2

E(p5, q5) = (ρ1 − ρ2 + ρ3 − ρ4 + ρ5)
2

Using these results as a guide, prove in general that the expected
payoff to player R is

E(pn, qn) =
⎛
⎝ n∑

j=1

(−1)j+1ρj

⎞
⎠2

≥ 0

which shows that in the long run, player R will not lose in this
game.
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T2. Consider a game between two players where each player can
make up to n different moves (n > 1). If both players make the
same move, then player C pays player R $(n − 1). However, if
both players make different moves, then player R pays player C

$1. Assume that both players have the same strategy—that is,
pn = [ρi]1×n and qn = [ρi]n×1, where ρ1 + ρ2 + ρ3 + · · · + ρn =
1. Use a computer to show that

E(p2, q2) = 1
2 (ρ1 − ρ1)

2 + 1
2 (ρ1 − ρ2)

2 + 1
2 (ρ2 − ρ1)

2

+ 1
2 (ρ2 − ρ2)

2

E(p3, q3) = 1
2 (ρ1 − ρ1)

2 + 1
2 (ρ1 − ρ2)

2 + 1
2 (ρ1 − ρ3)

2

+ 1
2 (ρ2 − ρ1)

2 + 1
2 (ρ2 − ρ2)

2 + 1
2 (ρ2 − ρ3)

2

+ 1
2 (ρ3 − ρ1)

2 + 1
2 (ρ3 − ρ2)

2 + 1
2 (ρ3 − ρ3)

2

E(p4, q4) = 1
2 (ρ1 − ρ1)

2 + 1
2 (ρ1 − ρ2)

2 + 1
2 (ρ1 − ρ3)

2

+ 1
2 (ρ1 − ρ4)

2 + 1
2 (ρ2 − ρ1)

2 + 1
2 (ρ2 − ρ2)

2

+ 1
2 (ρ2 − ρ3)

2 + 1
2 (ρ2 − ρ4)

2 + 1
2 (ρ3 − ρ1)

2

+ 1
2 (ρ3 − ρ2)

2 + 1
2 (ρ3 − ρ3)

2 + 1
2 (ρ3 − ρ4)

2

+ 1
2 (ρ4 − ρ1)

2 + 1
2 (ρ4 − ρ2)

2 + 1
2 (ρ4 − ρ3)

2

+ 1
2 (ρ4 − ρ4)

2

Using these results as a guide, prove in general that the expected
payoff to player R is

E(pn, qn) = 1

2

n∑
i=1

n∑
j=1

(ρi − ρj )
2 ≥ 0

which shows that in the long run, player R will not lose in this
game.

10.7 Leontief Economic Models
In this section we discuss two linear models for economic systems. Some results about
nonnegative matrices are applied to determine equilibrium price structures and outputs
necessary to satisfy demand.

PREREQUISITES: Linear Systems
Matrices

Economic Systems Matrix theory has been very successful in describing the interrelations among prices,
outputs, and demands in economic systems. In this section we discuss some simple
models based on the ideas of Nobel laureate Wassily Leontief. We examine two different
but related models: the closed or input-output model, and the open or production
model. In each, we are given certain economic parameters that describe the interrelations
between the “industries” in the economy under consideration. Using matrix theory, we
then evaluate certain other parameters, such as prices or output levels, in order to satisfy
a desired economic objective. We begin with the closed model.

Leontief Closed
(Input-Output) Model

First we present a simple example; then we proceed to the general theory of the model.

EXAMPLE 1 An Input-Output Model

Three homeowners—a carpenter, an electrician, and a plumber—agree to make repairs
in their three homes. They agree to work a total of 10 days each according to the following
schedule:
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Days of Work in Home of Carpenter

Days of Work in Home of Electrician

Days of Work in Home of Plumber

Work Performed by

Carpenter Electrician Plumber

2

4

4

1

5

4

6

1

3

For tax purposes, they must report and pay each other a reasonable daily wage, even
for the work each does on his or her own home. Their normal daily wages are about
$100, but they agree to adjust their respective daily wages so that each homeowner will
come out even—that is, so that the total amount paid out by each is the same as the total
amount each receives. We can set

p1 = daily wage of carpenter

p2 = daily wage of electrician

p3 = daily wage of plumber

To satisfy the “equilibrium” condition that each homeowner comes out even, we require
that

total expenditures = total income

for each of the homeowners for the 10-day period. For example, the carpenter pays a
total of 2p1 + p2 + 6p3 for the repairs in his own home and receives a total income of
10p1 for the repairs that he performs on all three homes. Equating these two expressions
then gives the first of the following three equations:

2p1 + p2 + 6p3 = 10p1

4p1 + 5p2 + p3 = 10p2

4p1 + 4p2 + 3p3 = 10p3

The remaining two equations are the equilibrium equations for the electrician and the
plumber. Dividing these equations by 10 and rewriting them in matrix form yields⎡

⎢⎣.2 .1 .6

.4 .5 .1

.4 .4 .3

⎤
⎥⎦
⎡
⎢⎣p1

p2

p3

⎤
⎥⎦ =

⎡
⎢⎣p1

p2

p3

⎤
⎥⎦ (1)

Equation (1) can be rewritten as a homogeneous system by subtracting the left side from
the right side to obtain ⎡

⎢⎣ .8 −.1 −.6

−.4 .5 −.1

−.4 −.4 .7

⎤
⎥⎦
⎡
⎢⎣p1

p2

p3

⎤
⎥⎦ =

⎡
⎢⎣0

0

0

⎤
⎥⎦

The solution of this homogeneous system is found to be (verify)⎡
⎢⎣p1

p2

p3

⎤
⎥⎦ = s

⎡
⎢⎣31

32

36

⎤
⎥⎦

where s is an arbitrary constant. This constant is a scale factor, which the homeowners
may choose for their convenience. For example, they can set s = 3 so that the corre-
sponding daily wages—$93, $96, and $108—are about $100.
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This example illustrates the salient features of the Leontief input-output model of a
closed economy. In the basic Equation (1), each column sum of the coefficient matrix is 1,
corresponding to the fact that each of the homeowners’ “output” of labor is completely
distributed among these same homeowners in the proportions given by the entries in the
column. Our problem is to determine suitable “prices” for these outputs so as to put the
system in equilibrium—that is, so that each homeowner’s total expenditures equal his or
her total income.

In the general model we have an economic system consisting of a finite number of
“industries,” which we number as industries 1, 2, . . . , k. Over some fixed period of time,
each industry produces an “output” of some good or service that is completely utilized
in a predetermined manner by the k industries. An important problem is to find suitable
“prices” to be charged for these k outputs so that for each industry, total expenditures
equal total income. Such a price structure represents an equilibrium position for the
economy.

For the fixed time period in question, let us set

pi = price charged by the ith industry for its total output

eij = fraction of the total output of the j th industry purchased by the
ith industry

for i, j = 1, 2, . . . , k. By definition, we have

(i) pi ≥ 0, i = 1, 2, . . . , k

(ii) eij ≥ 0, i, j = 1, 2, . . . , k

(iii) e1j + e2j + · · · + ekj = 1, j = 1, 2, . . . , k

With these quantities, we form the price vector

p =

⎡
⎢⎢⎢⎣

p1

p2
...

pk

⎤
⎥⎥⎥⎦

and the exchange matrix or input-output matrix

E =

⎡
⎢⎢⎢⎣

e11 e12 · · · e1k

e21 e22 · · · e2k
...

...
...

ek1 ek2 · · · ekk

⎤
⎥⎥⎥⎦

Condition (iii) expresses the fact that all the column sums of the exchange matrix are 1.
As in the example, in order that the expenditures of each industry be equal to its

income, the following matrix equation must be satisfied [see (1)]:

Ep = p (2)

or

(I − E)p = 0 (3)

Equation (3) is a homogeneous linear system for the price vector p. It will have a
nontrivial solution if and only if the determinant of its coefficient matrix I − E is zero.
In Exercise 7 we ask you to show that this is the case for any exchange matrix E. Thus,
(3) always has nontrivial solutions for the price vector p.

Actually, for our economic model to make sense, we need more than just the fact
that (3) has nontrivial solutions for p. We also need the prices pi of the k outputs to
be nonnegative numbers. We express this condition as p ≥ 0. (In general, if A is any
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vector or matrix, the notation A ≥ 0 means that every entry of A is nonnegative, and
the notation A > 0 means that every entry of A is positive. Similarly, A ≥ B means
A − B ≥ 0, and A > B means A − B > 0.) To show that (3) has a nontrivial solution
for which p ≥ 0 is a bit more difficult than showing merely that some nontrivial solution
exists. But it is true, and we state this fact without proof in the following theorem.

THEOREM 10.7.1 If E is an exchange matrix, then Ep = p always has a nontrivial
solution p whose entries are nonnegative.

Let us consider a few simple examples of this theorem.

EXAMPLE 2 UsingTheorem 10.7.1

Let

E =
[

1
2 0
1
2 1

]

Then (I − E)p = 0 is [
1
2 0

− 1
2 0

][
p1

p2

]
=
[

0

0

]
which has the general solution

p = s

[
0

1

]
where s is an arbitrary constant. We then have nontrivial solutions p ≥ 0 for any s > 0.

EXAMPLE 3 UsingTheorem 10.7.1

Let

E =
[

1 0

0 1

]
Then (I − E)p = 0 has the general solution

p = s

[
1

0

]
+ t

[
0

1

]
where s and t are independent arbitrary constants. Nontrivial solutions p ≥ 0 then result
from any s ≥ 0 and t ≥ 0, not both zero.

Example 2 indicates that in some situations one of the prices must be zero in order
to satisfy the equilibrium condition. Example 3 indicates that there may be several lin-
early independent price structures available. Neither of these situations describes a truly
interdependent economic structure. The following theorem gives sufficient conditions
for both cases to be excluded.

THEOREM 10.7.2 Let E be an exchange matrix such that for some positive integer m

all the entries ofEm are positive. Then there is exactly one linearly independent solution
of (I − E)p = 0, and it may be chosen so that all its entries are positive.
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We will not give a proof of this theorem. If you have read Section 10.4 on Markov
chains, observe that this theorem is essentially the same as Theorem 10.4.4. What we
are calling exchange matrices in this section were called stochastic or Markov matrices
in Section 10.4.

EXAMPLE 4 UsingTheorem 10.7.2

The exchange matrix in Example 1 was

E =
⎡
⎢⎣.2 .1 .6

.4 .5 .1

.4 .4 .3

⎤
⎥⎦

Because E > 0, the condition Em > 0 in Theorem 10.7.2 is satisfied for m = 1. Con-
sequently, we are guaranteed that there is exactly one linearly independent solution of
(I − E)p = 0, and it can be chosen so that p > 0. In that example, we found that

p =
⎡
⎢⎣31

32

36

⎤
⎥⎦

is such a solution.

Leontief Open (Production)
Model

In contrast with the closed model, in which the outputs of k industries are distributed only
among themselves, the open model attempts to satisfy an outside demand for the outputs.
Portions of these outputs can still be distributed among the industries themselves, to keep
them operating, but there is to be some excess, some net production, with which to satisfy
the outside demand. In the closed model the outputs of the industries are fixed, and
our objective is to determine prices for these outputs so that the equilibrium condition,
that expenditures equal incomes, is satisfied. In the open model it is the prices that are
fixed, and our objective is to determine levels of the outputs of the industries needed to
satisfy the outside demand. We will measure the levels of the outputs in terms of their
economic values using the fixed prices. To be precise, over some fixed period of time, let

xi = monetary value of the total output of the ith industry

di = monetary value of the output of the ith industry needed to satisfy
the outside demand

cij = monetary value of the output of the ith industry needed by the j th
industry to produce one unit of monetary value of its own output

With these quantities, we define the production vector

x =

⎡
⎢⎢⎢⎣

x1

x2
...
xk

⎤
⎥⎥⎥⎦

the demand vector

d =

⎡
⎢⎢⎢⎣

d1

d2
...

dk

⎤
⎥⎥⎥⎦
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and the consumption matrix

C =

⎡
⎢⎢⎢⎣

c11 c12 · · · c1k

c21 c22 · · · c2k
...

...
...

ck1 ck2 · · · ckk

⎤
⎥⎥⎥⎦

By their nature, we have that

x ≥ 0, d ≥ 0, and C ≥ 0

From the definition of cij and xj , it can be seen that the quantity

ci1x1 + ci2x2 + · · · + cikxk

is the value of the output of the ith industry needed by all k industries to produce a total
output specified by the production vector x. Because this quantity is simply the ith entry
of the column vector Cx, we can say further that the ith entry of the column vector

x − Cx

is the value of the excess output of the ith industry available to satisfy the outside demand.
The value of the outside demand for the output of the ith industry is the ith entry of the
demand vector d. Consequently, we are led to the following equation

x − Cx = d

or
(I − C)x = d (4)

for the demand to be exactly met, without any surpluses or shortages. Thus, given C

and d, our objective is to find a production vector x ≥ 0 that satisfies Equation (4).

EXAMPLE 5 ProductionVector for aTown

A town has three main industries: a coal-mining operation, an electric power-generating
plant, and a local railroad. To mine $1 of coal, the mining operation must purchase
$.25 of electricity to run its equipment and $.25 of transportation for its shipping needs.
To produce $1 of electricity, the generating plant requires $.65 of coal for fuel, $.05 of
its own electricity to run auxiliary equipment, and $.05 of transportation. To provide
$1 of transportation, the railroad requires $.55 of coal for fuel and $.10 of electricity
for its auxiliary equipment. In a certain week the coal-mining operation receives orders
for $50,000 of coal from outside the town, and the generating plant receives orders for
$25,000 of electricity from outside. There is no outside demand for the local railroad.
How much must each of the three industries produce in that week to exactly satisfy their
own demand and the outside demand?

Solution For the one-week period let

x1 = value of total output of coal-mining operation

x2 = value of total output of power-generating plant

x3 = value of total output of local railroad

From the information supplied, the consumption matrix of the system is

C =
⎡
⎢⎣ 0 .65 .55

.25 .05 .10

.25 .05 0

⎤
⎥⎦
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The linear system (I − C)x = d is then⎡
⎢⎣ 1.00 −.65 −.55

−.25 .95 −.10

−.25 −.05 1.00

⎤
⎥⎦
⎡
⎢⎣x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣50,000

25,000

0

⎤
⎥⎦

The coefficient matrix on the left is invertible, and the solution is given by

x = (I − C)−1d = 1

503

⎡
⎢⎣756 542 470

220 690 190

200 170 630

⎤
⎥⎦
⎡
⎢⎣50,000

25,000

0

⎤
⎥⎦ =

⎡
⎢⎣102,087

56,163

28,330

⎤
⎥⎦

Thus, the total output of the coal-mining operation should be $102,087, the total output
of the power-generating plant should be $56,163, and the total output of the railroad
should be $28,330.

Let us reconsider Equation (4):

(I − C)x = d

If the square matrix I − C is invertible, we can write

x = (I − C)−1d (5)

In addition, if the matrix (I − C)−1 has only nonnegative entries, then we are guaranteed
that for any d ≥ 0, Equation (5) has a unique nonnegative solution for x. This is a
particularly desirable situation, as it means that any outside demand can be met. The
terminology used to describe this case is given in the following definition.

DEFINITION 1 A consumption matrix C is said to be productive if (I − C)−1 exists
and

(I − C)−1 ≥ 0

We will now consider some simple criteria that guarantee that a consumption matrix
is productive. The first is given in the following theorem.

THEOREM 10.7.3 Productive Consumption Matrix

A consumption matrix C is productive if and only if there is some production vector
x ≥ 0 such that x > Cx.

(The proof is outlined in Exercise 9.) The condition x > Cx means that there is some
production schedule possible such that each industry produces more than it consumes.

Theorem 10.7.3 has two interesting corollaries. Suppose that all the row sums of C

are less than 1. If

x =

⎡
⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎦

then Cx is a column vector whose entries are these row sums. Therefore, x > Cx, and
the condition of Theorem 10.7.3 is satisfied. Thus, we arrive at the following corollary:

COROLLARY 10.7.4 A consumption matrix is productive if each of its row sums is less
than 1.
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As we ask you to show in Exercise 8, this corollary leads to the following:

COROLLARY 10.7.5 A consumption matrix is productive if each of its column sums is
less than 1.

Recalling the definition of the entries of the consumption matrix C, we see that the j th
column sum of C is the total value of the outputs of all k industries needed to produce
one unit of value of output of the j th industry. The j th industry is thus said to be
profitable if that j th column sum is less than 1. In other words, Corollary 10.7.5 says
that a consumption matrix is productive if all k industries in the economic system are
profitable.

EXAMPLE 6 Using Corollary 10.7.5

The consumption matrix in Example 5 was

C =
⎡
⎢⎣ 0 .65 .55

.25 .05 .10

.25 .05 0

⎤
⎥⎦

All three column sums in this matrix are less than 1, so all three industries are profitable.
Consequently, by Corollary 10.7.5, the consumption matrix C is productive. This can
also be seen in the calculations in Example 5, as (I − C)−1 is nonnegative.

Exercise Set 10.7
1. For the following exchange matrices, find nonnegative price

vectors that satisfy the equilibrium condition (3).

(a)

[
1
2

1
3

1
2

2
3

]
(b)

⎡
⎢⎢⎣

1
2 0 1

2
1
3 0 1

2
1
6 1 0

⎤
⎥⎥⎦

(c)

⎡
⎣.35 .50 .30

.25 .20 .30

.40 .30 .40

⎤
⎦

2. Using Theorem 10.7.3 and its corollaries, show that each of the
following consumption matrices is productive.

(a)

[
.8 .1

.3 .6

]
(b)

⎡
⎢⎣.70 .30 .25

.20 .40 .25

.05 .15 .25

⎤
⎥⎦

(c)

⎡
⎣.7 .3 .2

.1 .4 .3

.2 .4 .1

⎤
⎦

3. Using Theorem 10.7.2, show that there is only one linearly in-
dependent price vector for the closed economic system with
exchange matrix

E =
⎡
⎣0 .2 .5

1 .2 .5
0 .6 0

⎤
⎦

4. Three neighbors have backyard vegetable gardens. Neighbor
A grows tomatoes, neighbor B grows corn, and neighbor C

grows lettuce. They agree to divide their crops among them-
selves as follows: A gets 1

2 of the tomatoes, 1
3 of the corn, and

1
4 of the lettuce. B gets 1

3 of the tomatoes, 1
3 of the corn, and

1
4 of the lettuce. C gets 1

6 of the tomatoes, 1
3 of the corn, 1

2 of
the lettuce. What prices should the neighbors assign to their
respective crops if the equilibrium condition of a closed econ-
omy is to be satisfied, and if the lowest-priced crop is to have a
price of $100?

5. Three engineers—a civil engineer (CE), an electrical engineer
(EE), and a mechanical engineer (ME)—each have a consulting
firm. The consulting they do is of a multidisciplinary nature,
so they buy a portion of each others’ services. For each $1
of consulting the CE does, she buys $.10 of the EE’s services
and $.30 of the ME’s services. For each $1 of consulting the
EE does, she buys $.20 of the CE’s services and $.40 of the
ME’s services. And for each $1 of consulting the ME does, she
buys $.30 of the CE’s services and $.40 of the EE’s services.
In a certain week the CE receives outside consulting orders of
$500, the EE receives outside consulting orders of $700, and
the ME receives outside consulting orders of $600. What dollar
amount of consulting does each engineer perform in that week?

6. (a) Suppose that the demand di for the output of the ith indus-
try increases by one unit. Explain why the ith column of
the matrix (I − C)−1 is the increase that must be made to
the production vector x to satisfy this additional demand.
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(b) Referring to Example 5, use the result in part (a) to de-
termine the increase in the value of the output of the
coal-mining operation needed to satisfy a demand of one
additional unit in the value of the output of the power-
generating plant.

7. Using the fact that the column sums of an exchange matrixE are
all 1, show that the column sums of I − E are zero. From this,
show that I − E has zero determinant, and so (I − E)p = 0
has nontrivial solutions for p.

8. Show that Corollary 10.7.5 follows from Corollary 10.7.4.
[Hint: Use the fact that (AT )−1 = (A−1)T for any invertible
matrix A.]

9. (Calculus required ) Prove Theorem 10.7.3 as follows:

(a) Prove the “only if ” part of the theorem; that is, show that
if C is a productive consumption matrix, then there is a
vector x ≥ 0 such that x > Cx.

(b) Prove the “if ” part of the theorem as follows:

Step 1. Show that if there is a vector x∗ ≥ 0 such that
Cx∗ < x∗, then x∗ > 0.

Step 2. Show that there is a number λ such that 0 < λ < 1
and Cx∗ < λx∗.

Step 3. Show that Cnx∗ < λnx∗ for n = 1, 2, . . . .

Step 4. Show that Cn → 0 as n → �.

Step 5. By multiplying out, show that

(I − C)(I + C + C2 + · · · + Cn−1) = I − Cn

for n = 1, 2, . . . .

Step 6. By letting n → � in Step 5, show that the matrix
infinite sum

S = I + C + C2 + · · ·
exists and that (I − C)S = I .

Step 7. Show that S ≥ 0 and that S = (I − C)−1.

Step 8. Show that C is a productive consumption matrix.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques

in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Consider a sequence of exchange matrices
{E2, E3, E4, E5, . . . , En}, where

E2 =
[

0 1
2

1 1
2

]
, E3 =

⎡
⎢⎢⎣

0 1
2

1
3

1 0 1
3

0 1
2

1
3

⎤
⎥⎥⎦,

E4 =

⎡
⎢⎢⎢⎢⎢⎣

0 1
2

1
3

1
4

1 0 1
3

1
4

0 1
2 0 1

4

0 0 1
3

1
4

⎤
⎥⎥⎥⎥⎥⎦, E5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

1
3

1
4

1
5

1 0 1
3

1
4

1
5

0 1
2 0 1

4
1
5

0 0 1
3 0 1

5

0 0 0 1
4

1
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and so on. Use a computer to show that E2
2 > 02, E3

3 > 03, E4
4 >

04, E5
5 > 05, and make the conjecture that although En

n > 0n is
true, Ek

n > 0n is not true for k = 1, 2, 3, . . . , n − 1. Next, use a
computer to determine the vectors pn such that Enpn = pn (for
n = 2, 3, 4, 5, 6), and then see if you can discover a pattern that
would allow you to compute pn+1 easily from pn. Test your dis-
covery by first constructing p8 from

p7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2520

3360

1890

672

175

36

7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and then checking to see whether E8p8 = p8.

T2. Consider an open production model having n industries with
n > 1. In order to produce $1 of its own output, the j th industry
must spend $(1/n) for the output of the ith industry (for all i �= j ),
but the j th industry (for all j = 1, 2, 3, . . . , n) spends nothing
for its own output. Construct the consumption matrix Cn, show
that it is productive, and determine an expression for (In − Cn)

−1.
In determining an expression for (In − Cn)

−1, use a computer to
study the cases when n = 2, 3, 4, and 5; then make a conjecture
and prove your conjecture to be true. [Hint: If Fn = [1]n×n (i.e.,
the n × n matrix with every entry equal to 1), first show that

F 2
n = nFn

and then express your value of (In − Cn)
−1 in terms of n, In,

and Fn.]
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10.8 Forest Management
In this section we discuss a matrix model for the management of a forest where trees are
grouped into classes according to height. The optimal sustainable yield of a periodic harvest
is calculated when the trees of different height classes can have different economic values.

PREREQUISITES: Matrix Operations

Optimal SustainableYield Our objective is to introduce a simplified model for the sustainable harvesting of a forest
whose trees are classified by height. The height of a tree is assumed to determine its
economic value when it is cut down and sold. Initially, there is a distribution of trees
of various heights. The forest is then allowed to grow for a certain period of time, after
which some of the trees of various heights are harvested. The trees left unharvested
are to be of the same height configuration as the original forest, so that the harvest is
sustainable. As we will see, there are many such sustainable harvesting procedures. We
want to find one for which the total economic value of all the trees removed is as large
as possible. This determines the optimal sustainable yield of the forest and is the largest
yield that can be attained continually without depleting the forest.

The Model Suppose that a harvester has a forest of Douglas fir trees that are to be sold as Christmas
trees year after year. Every December the harvester cuts down some of the trees to be
sold. For each tree cut down, a seedling is planted in its place. In this way the total
number of trees in the forest is always the same. (In this simplified model, we will not
take into account trees that die between harvests. We assume that every seedling planted
survives and grows until it is harvested.)

In the marketplace, trees of different heights have different economic values. Suppose
that there are n different price classes corresponding to certain height intervals, as shown
in Table 1 and Figure 10.8.1. The first class consists of seedlings with heights in the
interval [0, h1), and these seedlings are of no economic value. The nth class consists of
trees with heights greater than or equal to hn−1.

Table 1

[0, h1)

[h1, h2)

[h2, h3)

[hn – 2, hn – 1)

[hn – 1, ) 

Class Value (dollars) Height Interval

1 (seedlings)

2

3

n – 1

n 

None

p2

p3

pn – 1

pn

. .
 .

. .
 .

. .
 .

H
ei

gh
t 

of
 T

re
e

hn–1

hn–2

h3

h2

h1

0
0 p2 p3 pn–1 pn

…

…

Value of Tree

Figure 10.8.1
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Let xi (i = 1, 2, . . . , n) be the number of trees within the ith class that remain after
each harvest. We form a column vector with the numbers and call it the nonharvest
vector:

x =

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦

For a sustainable harvesting policy, the forest is to be returned after each harvest to the
fixed configuration given by the nonharvest vector x. Part of our problem is to find those
nonharvest vectors x for which sustainable harvesting is possible.

Because the total number of trees in the forest is fixed, we can set

x1 + x2 + · · · + xn = s (1)

where s is predetermined by the amount of land available and the amount of space each
tree requires. Referring to Figure 10.8.2, we have the following situation. The forest
configuration is given by the vector x after each harvest. Between harvests the trees
grow and produce a new forest configuration before each harvest. A certain number of
trees are removed from each class at the harvest. Finally, a seedling is planted in place
of each tree removed, to return the forest again to the configuration x.

G
ro

w
th Forest after growth Trees not removed

Trees
removed

Forest before growth
(nonharvest vector x)

Forest after harvest
(nonharvest vector x)

Same
forest

configuration

P
la

nt
 s

ee
dl

in
gs

H
ar

ve
st

Figure 10.8.2

Consider first the growth of the forest between harvests. During this period a tree
in the ith class may grow and move up to a higher height class. Or its growth may be
retarded for some reason, and it will remain in the same class. We consequently define
the following growth parameters gi for i = 1, 2, . . . , n − 1:

gi = the fraction of trees in the ith class that grow into

the (i + 1)-st class during a growth period

For simplicity we assume that a tree can move at most one height class upward in one
growth period. With this assumption, we have

1 − gi = the fraction of trees in the ith class that remain in

the ith class during a growth period
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With these n − 1 growth parameters, we form the following n × n growth matrix:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − g1 0 0 · · · 0

g1 1 − g2 0 · · · 0

0 g2 1 − g3 · · · 0
...

...
...

...
...

0 0 0 · · · 1 − gn−1 0

0 0 0 · · · gn−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Because the entries of the vector x are the numbers of trees in the n classes before the
growth period, you can verify that the entries of the vector

Gx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − g1)x1

g1x1 + (1 − g2)x2

g2x2 + (1 − g3)x3
...

gn−2xn−2 + (1 − gn−1)xn−1

gn−1xn−1 + xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

are the numbers of trees in the n classes after the growth period.
Suppose that during the harvest we remove yi (i = 1, 2, . . . , n) trees from the ith

class. We will call the column vector

y =

⎡
⎢⎢⎢⎣

y1

y2
...
yn

⎤
⎥⎥⎥⎦

the harvest vector. Thus, a total of

y1 + y2 + · · · + yn

trees are removed at each harvest. This is also the total number of trees added to the first
class (the new seedlings) after each harvest. If we define the following n × n replacement
matrix

R =

⎡
⎢⎢⎢⎣

1 1 · · · 1

0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎥⎦ (4)

then the column vector

Ry =

⎡
⎢⎢⎢⎢⎢⎣

y1 + y2 + · · · + yn

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦ (5)

specifies the configuration of trees planted after each harvest.
At this point we are ready to write the following equation, which characterizes a

sustainable harvesting policy:⎡
⎣ configuration

at end of
growth period

⎤
⎦− [harvest] +

[
new seedling
replacement

]
=
⎡
⎣ configuration

at beginning of
growth period

⎤
⎦

or mathematically,
Gx − y + Ry = x
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This equation can be rewritten as

(I − R)y = (G − I )x (6)

or more comprehensively as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 · · · −1 −1

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3
...

yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g1 0 0 · · · 0 0

g1 −g2 0 · · · 0 0

0 g2 −g3 · · · 0 0
...

...
...

...
...

0 0 0 · · · −gn−1 0
0 0 0 · · · gn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We will refer to Equation (6) as the sustainable harvesting condition. Any vectors x and y
with nonnegative entries, and such that x1 + x2 + · · · + xn = s, which satisfy this matrix
equation, determine a sustainable harvesting policy for the forest. Note that if y1 > 0,
then the harvester is removing seedlings of no economic value and replacing them with
new seedlings. Because there is no point in doing this, we assume that

y1 = 0 (7)

With this assumption, it can be verified that (6) is the matrix form of the following set
of equations:

y2 + y3 + · · · + yn = g1x1

y2 = g1x1 − g2x2

y3 = g2x2 − g3x3
...

yn−1 = gn−2xn−2 − gn−1xn−1

yn = gn−1xn−1

(8)

Note that the first equation in (8) is the sum of the remaining n − 1 equations.
Because we must have yi ≥ 0 for i = 2, 3, . . . , n, Equations (8) require that

g1x1 ≥ g2x2 ≥ · · · ≥ gn−1xn−1 ≥ 0 (9)

Conversely, if x is a column vector with nonnegative entries that satisfy Equation (9),
then (7) and (8) define a column vector y with nonnegative entries. Furthermore, x and
y then satisfy the sustainable harvesting condition (6). In other words, a necessary and
sufficient condition for a nonnegative column vector x to determine a forest configuration
that is capable of sustainable harvesting is that its entries satisfy (9).

Optimal SustainableYield Because we remove yi trees from the ith class (i = 2, 3, . . . , n) and each tree in the ith
class has an economic value of pi , the total yield of the harvest, Y ld, is given by

Y ld = p2y2 + p3y3 + · · · + pnyn (10)

Using (8), we may substitute for the yi’s in (10) to obtain

Y ld = p2g1x1 + (p3 − p2)g2x2 + · · · + (pn − pn−1)gn−1xn−1 (11)
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Combining (11), (1), and (9), we can now state the problem of maximizing the yield
of the forest over all possible sustainable harvesting policies as follows:

Problem Find nonnegative numbers x1, x2, . . . , xn that maximize

Y ld = p2g1x1 + (p3 − p2)g2x2 + · · · + (pn − pn−1)gn−1xn−1

subject to
x1 + x2 + · · · + xn = s

and
g1x1 ≥ g2x2 ≥ · · · ≥ gn−1xn−1 ≥ 0

As formulated above, this problem belongs to the field of linear programming. However,
we will illustrate the following result, without linear programming theory, by actually
exhibiting a sustainable harvesting policy.

THEOREM 10.8.1 Optimal SustainableYield

The optimal sustainable yield is achieved by harvesting all the trees from one particular
height class and none of the trees from any other height class.

Let us first set

Y ldk = yield obtained by harvesting all of the kth

class and none of the other classes

The largest value of Y ldk for k = 2, 3, . . . , n will then be the optimal sustainable yield,
and the corresponding value of k will be the class that should be completely harvested to
attain the optimal sustainable yield. Because no class but the kth is harvested, we have

y2 = y3 = · · · = yk−1 = yk+1 = · · · = yn = 0 (12)

In addition, because all of the kth class is harvested, no trees are ever present in the
height classes above the kth class. Thus,

xk = xk+1 = · · · = xn = 0 (13)

Substituting (12) and (13) into the sustainable harvesting condition (8) gives

yk = g1x1

0 = g1x1 − g2x2

0 = g2x2 − g3x3
...

0 = gk−2xk−2 − gk−1xk−1

yk = gk−1xk−1

(14)

Equations (14) can also be written as

yk = g1x1 = g2x2 = · · · = gk−1xk−1 (15)

from which it follows that
x2 = g1x1/g2

x3 = g1x1/g3
...

xk−1 = g1x1/gk−1

(16)
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If we substitute Equations (13) and (16) into

x1 + x2 + · · · + xn = s

[which is Equation (1)], we can solve for x1 and obtain

x1 = s

1 + g1

g2
+ g1

g3
+ · · · + g1

gk−1

(17)

For the yield Y ldk , we combine (10), (12), (15), and (17) to obtain

Y ldk = p2y2 + p3y3 + · · · + pnyn

= pkyk

= pkg1x1

= pks

1

g1
+ 1

g2
+ · · · + 1

gk−1

(18)

Equation (18) determines Y ldk in terms of the known growth and economic parameters
for any k = 2, 3, . . . , n. Thus, the optimal sustainable yield is found as follows.

THEOREM 10.8.2 Finding the Optimal SustainableYield

The optimal sustainable yield is the largest value of

pks

1

g1
+ 1

g2
+ · · · + 1

gk−1

for k = 2, 3, . . . , n. The corresponding value of k is the number of the class that is
completely harvested.

In Exercise 4 we ask you to show that the nonharvest vector x for the optimal sustainable
yield is

x = s

1

g1
+ 1

g2
+ · · · + 1

gk−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/g1

1/g2
...

1/gk−1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

Theorem 10.8.2 implies that it is not necessarily the highest-priced class of trees that
should be totally cropped. The growth parameters gi must also be taken into account
to determine the optimal sustainable yield.

EXAMPLE 1 UsingTheorem 10.8.2

For a Scots pine forest in Scotland with a growth period of six years, the following
growth matrix was found (see M. B. Usher, “A Matrix Approach to the Management of
Renewable Resources, with Special Reference to Selection Forests,” Journal of Applied
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Ecology, vol. 3, 1966, pp. 355–367):

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

.72 0 0 0 0 0

.28 .69 0 0 0 0

0 .31 .75 0 0 0

0 0 .25 .77 0 0

0 0 0 .23 .63 0

0 0 0 0 .37 1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Suppose that the prices of trees in the five tallest height classes are

p2 = $50, p3 = $100, p4 = $150, p5 = $200, p6 = $250

Which class should be completely harvested to obtain the optimal sustainable yield, and
what is that yield?

Solution From matrix G we have that

g1 = .28, g2 = .31, g3 = .25, g4 = .23, g5 = .37

Equation (18) then gives

Y ld2 = 50s/(.28−1) = 14.0s

Y ld3 = 100s/(.28−1 + .31−1) = 14.7s

Y ld4 = 150s/(.28−1 + .31−1 + .25−1) = 13.9s

Y ld5 = 200s/(.28−1 + .31−1 + .25−1 + .23−1) = 13.2s

Y ld6 = 250s/(.28−1 + .31−1 + .25−1 + .23−1 + .37−1) = 14.0s

We see that Y ld3 is the largest of these five quantities, so from Theorem 10.8.2 the third
class should be completely harvested every six years to maximize the sustainable yield.
The corresponding optimal sustainable yield is $14.7s, where s is the total number of
trees in the forest.

Exercise Set 10.8
1. A certain forest is divided into three height classes and has a

growth matrix between harvests given by

G =

⎡
⎢⎢⎣

1
2 0 0
1
2

1
3 0

0 2
3 1

⎤
⎥⎥⎦

If the price of trees in the second class is $30 and the price of
trees in the third class is $50, which class should be completely
harvested to attain the optimal sustainable yield? What is the
optimal yield if there are 1000 trees in the forest?

2. In Example 1, to what level must the price of trees in the fifth
class rise so that the fifth class is the one to harvest completely
in order to attain the optimal sustainable yield?

3. In Example 1, what must the ratio of the prices p2: p3: p4: p5: p6

be in order that the yields Y ldk , k = 2, 3, 4, 5, 6, all be the same?
(In this case, any sustainable harvesting policy will produce the
same optimal sustainable yield.)

4. Derive Equation (19) for the nonharvest vector x correspond-
ing to the optimal sustainable harvesting policy described in
Theorem 10.8.2.

5. For the optimal sustainable harvesting policy described in The-
orem 10.8.2, how many trees are removed from the forest during
each harvest?

6. If all the growth parameters g1, g2, . . . , gn−1 in the growth
matrix G are equal, what should the ratio of the prices
p2: p3: . . . : pn be in order that any sustainable harvesting policy
be an optimal sustainable harvesting policy? (See Exercise 3.)

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
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of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. A particular forest has growth parameters given by

gi = 1

i

for i = 1, 2, 3, . . . , n − 1, where n (the total number of height
classes) can be chosen as large as needed. Suppose that the value
of a tree in the kth height interval is given by

pk = a(k − 1)ρ

where a is a constant (in dollars) and ρ is a parameter satisfying
1 ≤ ρ ≤ 2.

(a) Show that the yield Y ldk is given by

Y ldk = 2a(k − 1)ρ−1s

k

(b) For

ρ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

use a computer to determine the class number that should be
completely harvested, and determine the optimal sustainable
yield in each case. Make sure that you allow k to take on only
integer values in your calculations.

(c) Repeat the calculations in part (b) using

ρ = 1.91, 1.92, 1.93, 1.94, 1.95,
1.96, 1.97, 1.98, 1.99

(d) Show that if ρ = 2, then the optimal sustainable yield can
never be larger than 2as.

(e) Compare the values of k determined in parts (b) and (c) to
1/(2 − ρ), and use some calculus to explain why

k � 1

2 − ρ

T2. A particular forest has growth parameters given by

gi = 1

2i

for i = 1, 2, 3, . . . , n − 1, where n (the total number of height
classes) can be chosen as large as needed. Suppose that the value
of a tree in the kth height interval is given by

pk = a(k − 1)ρ

where a is a constant (in dollars) and ρ is a parameter satisfying
1 ≤ ρ.

(a) Show that the yield Y ldk is given by

Y ldk = a(k − 1)ρs

2k − 2

(b) For
ρ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

use a computer to determine the class number that should be
completely harvested in order to obtain an optimal yield, and
determine the optimal sustainable yield in each case. Make
sure that you allow k to take on only integer values in your
calculations.

(c) Compare the values of k determined in part (b) to 1 + ρ/ ln(2)

and use some calculus to explain why

k � 1 + ρ

ln(2)

10.9 Computer Graphics
In this section we assume that a view of a three-dimensional object is displayed on a video
screen and show how matrix algebra can be used to obtain new views of the object by
rotation, translation, and scaling.

PREREQUISITES: Matrix Algebra
Analytic Geometry

Visualization of a
Three-Dimensional Object

Suppose that we want to visualize a three-dimensional object by displaying various views
of it on a video screen. The object we have in mind to display is to be determined by a finite
number of straight line segments. As an example, consider the truncated right pyramid
with hexagonal base illustrated in Figure 10.9.1. We first introduce an xyz-coordinate
system in which to embed the object. As in Figure 10.9.1, we orient the coordinate
system so that its origin is at the center of the video screen and the xy-plane coincides
with the plane of the screen. Consequently, an observer will see only the projection of
the view of the three-dimensional object onto the two-dimensional xy-plane.
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Figure 10.9.1
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In the xyz-coordinate system, the endpoints P1, P2, . . . , Pn of the straight line seg-
ments that determine the view of the object will have certain coordinates—say,

(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

These coordinates, together with a specification of which pairs are to be connected by
straight line segments, are to be stored in the memory of the video display system. For
example, assume that the 12 vertices of the truncated pyramid in Figure 10.9.1 have the
following coordinates (the screen is 4 units wide by 3 units high):

P1: (1.000,−.800, .000), P2: (.500,−.800,−.866),

P3: (−.500,−.800,−.866), P4: (−1.000,−.800, .000),

P5: (−.500,−.800, .866), P6: (.500,−.800, .866),

P7: (.840,−.400, .000), P8: (.315, .125,−.546),

P9: (−.210, .650,−.364), P10: (−.360, .800, .000),

P11: (−.210, .650, .364), P12: (.315, .125, .546)

These 12 vertices are connected pairwise by 18 straight line segments as follows, where
Pi ↔ Pj denotes that point Pi is connected to point Pj :

P1 ↔ P2, P2 ↔ P3, P3 ↔ P4, P4 ↔ P5, P5 ↔ P6, P6 ↔ P1,

P7 ↔ P8, P8 ↔ P9, P9 ↔ P10, P10 ↔ P11, P11 ↔ P12, P12 ↔ P7,

P1 ↔ P7, P2 ↔ P8, P3 ↔ P9, P4 ↔ P10, P5 ↔ P11, P6 ↔ P12

In View 1 these 18 straight line segments are shown as they would appear on the video

0

–1

1

–2 –1 0 1 2

View 1

screen. It should be noticed that only the x- and y-coordinates of the vertices are needed
by the video display system to draw the view, because only the projection of the object
onto the xy-plane is displayed. However, we must keep track of the z-coordinates to
carry out certain transformations discussed later.

We now show how to form new views of the object by scaling, translating, or rotating
the initial view. We first construct a 3 × n matrix P , referred to as the coordinate matrix
of the view, whose columns are the coordinates of the n points of a view:

P =
⎡
⎢⎣x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn

⎤
⎥⎦
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For example, the coordinate matrix P corresponding to View 1 is the 3 × 12 matrix⎡
⎢⎢⎣

1.000 .500 −.500 −1.000 −.500 .500 .840 .315 −.210 −.360 −.210 .315

−.800 −.800 −.800 −.800 −.800 −.800 −.400 .125 .650 .800 .650 .125

.000 −.866 −.866 .000 .866 .866 .000 −.546 −.364 .000 .364 .546

⎤
⎥⎥⎦

We will show below how to transform the coordinate matrix P of a view to a new
coordinate matrixP ′ corresponding to a new view of the object.The straight line segments
connecting the various points move with the points as they are transformed. In this way,
each view is uniquely determined by its coordinate matrix once we have specified which
pairs of points in the original view are to be connected by straight lines.

Scaling The first type of transformation we consider consists of scaling a view along the x,
y, and z directions by factors of α, β, and γ , respectively. By this we mean that if a
point Pi has coordinates (xi, yi, zi) in the original view, it is to move to a new point P ′

i

with coordinates (αxi, βyi, γ zi) in the new view. This has the effect of transforming a
unit cube in the original view to a rectangular parallelepiped of dimensions α × β × γ

(Figure 10.9.2). Mathematically, this may be accomplished with matrix multiplication

y

x

z

(a)

1

1

1

y

x

z

(b)

α

β

Figure 10.9.2

as follows. Define a 3 × 3 diagonal matrix

S =
⎡
⎢⎣α 0 0

0 β 0

0 0 γ

⎤
⎥⎦

Then, if a point Pi in the original view is represented by the column vector⎡
⎢⎣xi

yi

zi

⎤
⎥⎦

then the transformed point P ′
i is represented by the column vector⎡
⎢⎣x ′

i

y ′
i

z′i

⎤
⎥⎦ =

⎡
⎢⎣α 0 0

0 β 0

0 0 γ

⎤
⎥⎦
⎡
⎢⎣xi

yi

zi

⎤
⎥⎦

Using the coordinate matrix P , which contains the coordinates of all n points of the
original view as its columns, we can transform these n points simultaneously to produce
the coordinate matrix P ′ of the scaled view, as follows:

SP =
⎡
⎢⎣α 0 0

0 β 0

0 0 γ

⎤
⎥⎦
⎡
⎢⎣x1 x2 · · · xn

y1 y2 · · · yn

z1 z2 · · · zn

⎤
⎥⎦

=
⎡
⎢⎣αx1 αx2 · · · αxn

βy1 βy2 · · · βyn

γ z1 γ z2 · · · γ zn

⎤
⎥⎦ = P ′

The new coordinate matrix can then be entered into the video display system to produce
the new view of the object. As an example, View 2 is View 1 scaled by setting α = 1.8,

0

–1

1

–2 –1 0 1 2

View 2 View 1 scaled by
α = 1.8, β = 0.5, γ = 3.0.

β = 0.5, and γ = 3.0. Note that the scaling γ = 3.0 along the z-axis is not visible in
View 2, since we see only the projection of the object onto the xy-plane.
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Translation We next consider the transformation of translating or displacing an object to a new
position on the screen. Referring to Figure 10.9.3, suppose we desire to change an
existing view so that each point Pi with coordinates (xi, yi, zi) moves to a new point P ′

i

with coordinates (xi + x0, yi + y0, zi + z0). The vector⎡
⎢⎣x0

y0

z0

⎤
⎥⎦

is called the translation vector of the transformation. By defining a 3 × n matrix T as

T =
⎡
⎢⎣x0 x0 · · · x0

y0 y0 · · · y0

z0 z0 · · · z0

⎤
⎥⎦

we can translate all n points of the view determined by the coordinate matrix P by matrix
addition via the equation

P ′ = P + T

The coordinate matrix P ′ then specifies the new coordinates of the n points. For example,
if we wish to translate View 1 according to the translation vector⎡

⎢⎣1.2

0.4

1.7

⎤
⎥⎦

the result is View 3. Note, again, that the translation z0 = 1.7 along the z-axis does not
show up explicitly in View 3.

0

–1

1

–2 –1 0 1 2

View 3 View 1 translated by
x0 = 1.2, y0 = 0.4, z0 = 1.7.

In Exercise 7, a technique of performing translations by matrix multiplication rather
than by matrix addition is explained.

Figure 10.9.3

y

x

z

P í(xi + x0, yi + y0, zi + z0)

Pi (xi, yi, zi)

Rotation A more complicated type of transformation is a rotation of a view about one of the three
coordinate axes. We begin with a rotation about the z-axis (the axis perpendicular to
the screen) through an angle θ . Given a point Pi in the original view with coordinates
(xi, yi, zi), we wish to compute the new coordinates (x ′

i , y
′
i , z

′
i ) of the rotated point P ′

i .
Referring to Figure 10.9.4 and using a little trigonometry, you should be able to derive

Pi (xi, yi, zi)

Pí(xí, yí, z í)
y

xφ

θ

ρ

ρ

Figure 10.9.4

the following:

x ′
i = ρ cos(φ + θ) = ρ cos φ cos θ − ρ sin φ sin θ = xi cos θ − yi sin θ

y ′
i = ρ sin(φ + θ) = ρ cos φ sin θ + ρ sin φ cos θ = xi sin θ + yi cos θ

z′i = zi
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These equations can be written in matrix form as⎡
⎢⎣x ′

i

y ′
i

z′i

⎤
⎥⎦ =

⎡
⎢⎣cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣xi

yi

zi

⎤
⎥⎦

If we let R denote the 3 × 3 matrix in this equation, all n points can be rotated by the
matrix product

P ′ = RP

to yield the coordinate matrix P ′ of the rotated view.
Rotations about thex- andy-axes can be accomplished analogously, and the resulting

rotation matrices are given with Views 4, 5, and 6. These three new views of the truncated
pyramid correspond to rotations of View 1 about the x-, y-, and z-axes, respectively, each
through an angle of 90◦.

0

–1

1

–2 –1 0 1 2

z

y

x
θ

0   cos θ   –sin θ
0 cos θsin θ

0 01

Rotation about the x-axis

View 4 View 1 rotated 90◦ about the x-axis.

0

–1

1

–2 –1 0 1 2

z

y

x

θ

0 01
–sin θ 0 cos θ

0 sin θcos θ

Rotation about the y-axis

View 5 View 1 rotated 90◦ about the y-axis.

0

–1

1

–2 –1 0 1 2

z

y

x

θ

sin θ 0cos θ
00 1

0–sin θcos θ

Rotation about the z-axis

View 6 View 1 rotated 90◦ about the z-axis.
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Rotations about three coordinate axes may be combined to give oblique views of
an object. For example, View 7 is View 1 rotated first about the x-axis through 30◦,

0

–1

1

–2 –1 0 1 2

View 7 Oblique view of
truncated pyramid.

then about the y-axis through −70◦, and finally about the z-axis through −27◦. Mathe-
matically, these three successive rotations can be embodied in the single transformation
equation P ′ = RP , where R is the product of three individual rotation matrices:

R1 =
⎡
⎢⎣1 0 0

0 cos(30◦) − sin(30◦)
0 sin(30◦) cos(30◦)

⎤
⎥⎦

R2 =
⎡
⎢⎣

cos(−70◦) 0 sin(−70◦)
0 1 0

− sin(−70◦) 0 cos(−70◦)

⎤
⎥⎦

R3 =
⎡
⎢⎣cos(−27◦) − sin(−27◦) 0

sin(−27◦) cos(−27◦) 0

0 0 1

⎤
⎥⎦

in the order

R = R3R2R1 =
⎡
⎢⎣ .305 −.025 −.952

−.155 .985 −.076

.940 .171 .296

⎤
⎥⎦

As a final illustration, in View 8 we have two separate views of the truncated pyramid,
which constitute a stereoscopic pair. They were produced by first rotating View 7 about
the y-axis through an angle of −3◦ and translating it to the right, then rotating the
same View 7 about the y-axis through an angle of +3◦ and translating it to the left.
The translation distances were chosen so that the stereoscopic views are about 2 1

2 inches
apart—the approximate distance between a pair of eyes.

View 8 Stereoscopic figure of truncated pyramid. The three-dimensionality of the
diagram can be seen by holding the book about one foot away and focusing on a distant
object. Then by shifting your gaze to View 8 without refocusing, you can make the two
views of the stereoscopic pair merge together and produce the desired effect.
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Exercise Set 10.9
1. View 9 is a view of a square with vertices (0, 0, 0), (1, 0, 0),

(1, 1, 0), and (0, 1, 0).

(a) What is the coordinate matrix of View 9?

(b) What is the coordinate matrix of View 9 after it is scaled
by a factor 1 1

2 in the x-direction and 1
2 in the y-direction?

Draw a sketch of the scaled view.

(c) What is the coordinate matrix of View 9 after it is trans-
lated by the following vector?⎡

⎣−2
−1

3

⎤
⎦

Draw a sketch of the translated view.

(d) What is the coordinate matrix of View 9 after it is rotated
through an angle of −30◦ about the z-axis? Draw a sketch
of the rotated view.

0

–1

1

–2 –1 0 1 2

View 9 Square with vertices
(0, 0, 0), (1, 0, 0), (1, 1, 0), and
(0, 1, 0) (Exercises 1 and 2).

2. (a) If the coordinate matrix of View 9 is multiplied by the
matrix ⎡

⎢⎣1 1
2 0

0 1 0
0 0 1

⎤
⎥⎦

the result is the coordinate matrix of View 10. Such a trans-
formation is called a shear in the x-direction with factor 1

2
with respect to the y-coordinate. Show that under such a
transformation, a point with coordinates (xi, yi, zi) has
new coordinates (xi + 1

2 yi, yi, zi).

(b) What are the coordinates of the four vertices of the shear
square in View 10?

0

–1

1

–2 –1 0 1 2

View 10 View 9 sheared
along the x-axis by 1

2 with
respect to the y-coordinate
(Exercise 2).

(c) The matrix ⎡
⎣ 1 0 0

.6 1 0
0 0 1

⎤
⎦

determines a shear in the y-direction with factor .6 with re-
spect to the x-coordinate (an example appears in View 11).
Sketch a view of the square in View 9 after such a shearing
transformation, and find the new coordinates of its four
vertices.

0

–1

1

–2 –1 0 1 2

View 11 View 1 sheared
along the y-axis by .6 with
respect to the x-coordinate
(Exercise 2).

3. (a) The reflection about the xz-plane is defined as the trans-
formation that takes a point (xi, yi, zi) to the point
(xi,−yi, zi) (e.g., View 12). If P and P ′ are the coor-
dinate matrices of a view and its reflection about the xz-
plane, respectively, find a matrix M such that P ′ = MP .

(b) Analogous to part (a), define the reflection about the yz-
plane and construct the corresponding transformation
matrix. Draw a sketch of View 1 reflected about the yz-
plane.

(c) Analogous to part (a), define the reflection about the xy-
plane and construct the corresponding transformation
matrix. Draw a sketch of View 1 reflected about the xy-
plane.

0

–1

1

–2 –1 0 1 2

View 12 View 1 reflected
about the xz-plane (Exercise 3).

4. (a) View 13 is View 1 subject to the following five transforma-
tions:

1. Scale by a factor of 1
2 in the x-direction, 2 in the y-

direction, and 1
3 in the z-direction.
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2. Translate 1
2 unit in the x-direction.

3. Rotate 20◦ about the x-axis.

4. Rotate −45◦ about the y-axis.

5. Rotate 90◦ about the z-axis.

Construct the five matrices M1, M2, M3, M4, and M5

associated with these five transformations.

(b) If P is the coordinate matrix of View 1 and P ′ is the coor-
dinate matrix of View 13, express P ′ in terms of M1, M2,
M3, M4, M5, and P .

0

–1

1

–2 –1 0 1 2

View 13 View 1 scaled,
translated, and rotated
(Exercise 4).

5. (a) View 14 is View 1 subject to the following seven transfor-
mations:

1. Scale by a factor of .3 in the x-direction and by a
factor of .5 in the y-direction.

2. Rotate 45◦ about the x-axis.

3. Translate 1 unit in the x-direction.

4. Rotate 35◦ about the y-axis.

5. Rotate −45◦ about the z-axis.

6. Translate 1 unit in the z-direction.

7. Scale by a factor of 2 in the x-direction.

Construct the matrices M1, M2, . . . , M7 associated with
these seven transformations.

(b) If P is the coordinate matrix of View 1 and P ′ is the
coordinate matrix of View 14, express P ′ in terms of
M1, M2, . . . , M7, and P .

0

–1

1

–2 –1 0 1 2

View 14 View 1 scaled,
translated, and rotated
(Exercise 5).

6. Suppose that a view with coordinate matrix P is to be rotated
through an angle θ about an axis through the origin and spec-
ified by two angles α and β (see Figure Ex-6). If P ′ is the
coordinate matrix of the rotated view, find rotation matrices
R1, R2, R3, R4, and R5 such that

P ′ = R5R4R3R2R1P

[Hint: The desired rotation can be accomplished in the fol-
lowing five steps:

1. Rotate through an angle of β about the y-axis.

2. Rotate through an angle of α about the z-axis.

3. Rotate through an angle of θ about the y-axis.

4. Rotate through an angle of −α about the z-axis.

5. Rotate through an angle of −β about the y-axis.]

z

y

x

θ

α

β

Figure Ex-6

7. This exercise illustrates a technique for translating a point with
coordinates (xi, yi, zi) to a point with coordinates (xi + x0,

yi + y0, zi + z0) by matrix multiplication rather than matrix
addition.

(a) Let the point (xi, yi, zi) be associated with the column
vector

vi =

⎡
⎢⎢⎢⎣

xi

yi

zi

1

⎤
⎥⎥⎥⎦

and let the point (xi + x0, yi + y0, zi + z0) be associated
with the column vector

v′i =

⎡
⎢⎢⎢⎣

xi + x0

yi + y0

zi + z0

1

⎤
⎥⎥⎥⎦

Find a 4 × 4 matrix M such that v′i = Mvi .

(b) Find the specific 4 × 4 matrix of the above form that
will effect the translation of the point (4,−2, 3) to the
point (−1, 7, 0).

8. For the three rotation matrices given with Views 4, 5, and 6,
show that

R−1 = RT

(A matrix with this property is called an orthogonal matrix.
See Section 7.1.)
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Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Let (a, b, c) be a unit vector normal to the plane ax + by +
cz = 0, and let r = (x, y, z) be a vector. It can be shown that the
mirror image of the vector r through the above plane has coordi-
nates rm = (xm, ym, zm), where⎡

⎢⎣xm

ym

zm

⎤
⎥⎦ = M

⎡
⎢⎣x

y

z

⎤
⎥⎦

with

M = I − 2nnT =
⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦− 2

⎡
⎢⎣a

b

c

⎤
⎥⎦ [a b c]

(a) Show that M2 = I and give a physical reason why this must
be so. [Hint: Use the fact that (a, b, c) is a unit vector to show
that nTn = 1.]

(b) Use a computer to show that det(M) = −1.

(c) The eigenvectors of M satisfy the equation⎡
⎢⎣xm

ym

zm

⎤
⎥⎦ = M

⎡
⎢⎣x

y

z

⎤
⎥⎦ = λ

⎡
⎢⎣x

y

z

⎤
⎥⎦

and therefore correspond to those vectors whose direction is
not affected by a reflection through the plane. Use a computer
to determine the eigenvectors and eigenvalues of M , and then
give a physical argument to support your answer.

T2. A vector v = (x, y, z) is rotated by an angle θ about an axis
having unit vector (a, b, c), thereby forming the rotated vector
vR = (xR, yR, zR). It can be shown that⎡

⎢⎣xR

yR

zR

⎤
⎥⎦ = R(θ)

⎡
⎢⎣x

y

z

⎤
⎥⎦

with

R(θ) = cos(θ)

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦+ (1 − cos(θ))

⎡
⎢⎣a

b

c

⎤
⎥⎦ [a b c]

+ sin(θ)

⎡
⎢⎣ 0 −c b

c 0 −a

−b a 0

⎤
⎥⎦

(a) Use a computer to show thatR(θ)R(ϕ) = R(θ + ϕ),and then
give a physical reason why this must be so. Depending on the
sophistication of the computer you are using, you may have to
experiment using different values of a, b, and

c =
√

1 − a2 − b2

(b) Show also that R−1(θ) = R(−θ) and give a physical reason
why this must be so.

(c) Use a computer to show that det(R(θ)) = +1.

10.10 EquilibriumTemperature Distributions
In this section we will see that the equilibrium temperature distribution within a trapezoidal
plate can be found when the temperatures around the edges of the plate are specified. The
problem is reduced to solving a system of linear equations. Also, an iterative technique for
solving the problem and a “random walk” approach to the problem are described.

PREREQUISITES: Linear Systems
Matrices
Intuitive Understanding of Limits

Boundary Data Suppose that the two faces of the thin trapezoidal plate shown in Figure 10.10.1a are
insulated from heat. Suppose that we are also given the temperature along the four edges
of the plate. For example, let the temperature be constant on each edge with values of
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0◦, 0◦, 1◦, and 2◦, as in the figure. After a period of time, the temperature inside the
plate will stabilize. Our objective in this section is to determine this equilibrium temper-
ature distribution at the points inside the plate. As we will see, the interior equilibrium
temperature is completely determined by the boundary data—that is, the temperature
along the edges of the plate.

Figure 10.10.1
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The equilibrium temperature distribution can be visualized by the use of curves that
connect points of equal temperature. Such curves are called isotherms of the temperature
distribution. In Figure 10.10.1bwe have sketched a few isotherms, using information we
derive later in the chapter.

Although all our calculations will be for the trapezoidal plate illustrated, our tech-
niques generalize easily to a plate of any practical shape. They also generalize to the
problem of finding the temperature within a three-dimensional body. In fact, our “plate”
could be the cross section of some solid object if the flow of heat perpendicular to the
cross section is negligible. For example, Figure 10.10.1 could represent the cross section
of a long dam. The dam is exposed to three different temperatures: the temperature of
the ground at its base, the temperature of the water on one side, and the temperature of
the air on the other side. A knowledge of the temperature distribution inside the dam is
necessary to determine the thermal stresses to which it is subjected.

Next we will consider a certain thermodynamic principle that characterizes the tem-
perature distribution we are seeking.

The Mean-Value Property There are many different ways to obtain a mathematical model for our problem. The
approach we use is based on the following property of equilibrium temperature distri-
butions.

THEOREM 10.10.1 The Mean-Value Property

Let a plate be in thermal equilibrium and let P be a point inside the plate. Then if C is
any circle with center at P that is completely contained in the plate, the temperature at
P is the average value of the temperature on the circle (Figure 10.10.2).

P C

Figure 10.10.2

This property is a consequence of certain basic laws of molecular motion, and we will not
attempt to derive it. Basically, this property states that in equilibrium, thermal energy
tends to distribute itself as evenly as possible consistent with the boundary conditions.
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It can be shown that the mean-value property uniquely determines the equilibrium tem-
perature distribution of a plate.

Unfortunately, determining the equilibrium temperature distribution from the mean-
value property is not an easy matter. However, if we restrict ourselves to finding the
temperature only at a finite set of points within the plate, the problem can be reduced to
solving a linear system. We pursue this idea next.

Discrete Formulation of the
Problem

We can overlay our trapezoidal plate with a succession of finer and finer square nets or
meshes (Figure 10.10.3). In (a) we have a rather coarse net; in (b) we have a net with half
the spacing as in (a); and in (c) we have a net with the spacing again reduced by half.
The points of intersection of the net lines are called mesh points. We classify them as
boundary mesh points if they fall on the boundary of the plate or as interior mesh points
if they lie in the interior of the plate. For the three net spacings we have chosen, there
are 1, 9, and 49 interior mesh points, respectively.

2

2

2

0

0
t0

1 1 1

1 interior mesh point(a)
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2

2

2

2

2

0

0

0

0

0

t5 t6

t8 t9

t3

t4

t7

t2

t1

1 1 11 1

9 interior mesh points(b)

2
2
2
2
2
2
2
2
2
2
2
2

0
0

0
0

0
0
0
0

0
0

0

1 1 1 1 1 1 1 1 1

49 interior mesh points(c)

Figure 10.10.3

In the discrete formulation of our problem, we try to find the temperature only at
the interior mesh points of some particular net. For a rather fine net, as in (c), this will
provide an excellent picture of the temperature distribution throughout the entire plate.

At the boundary mesh points, the temperature is given by the boundary data. (In
Figure 10.10.3 we have labeled all the boundary mesh points with their corresponding
temperatures.) At the interior mesh points, we will apply the following discrete version
of the mean-value property.

THEOREM 10.10.2 Discrete Mean-Value Property

At each interior mesh point, the temperature is approximately the average of the tem-
peratures at the four neighboring mesh points.

This discrete version is a reasonable approximation to the true mean-value property. But
because it is only an approximation, it will provide only an approximation to the true
temperatures at the interior mesh points. However, the approximations will get better as
the mesh spacing decreases. In fact, as the mesh spacing approaches zero, the approxi-
mations approach the exact temperature distribution, a fact proved in advanced courses
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in numerical analysis. We will illustrate this convergence by computing the approximate
temperatures at the mesh points for the three mesh spacings given in Figure 10.10.3.

Case (a) of Figure 10.10.3 is simple, for there is only one interior mesh point. If we let
t0 be the temperature at this mesh point, the discrete mean-value property immediately
gives

t0 = 1
4 (2 + 1 + 0 + 0) = 0.75

In case (b) we can label the temperatures at the nine interior mesh points t1, t2, . . . , t9,
as in Figure 10.10.3b. (The particular ordering is not important.) By applying the
discrete mean-value property successively to each of these nine mesh points, we obtain
the following nine equations:

t1 = 1
4 (t2 + 2 + 0 + 0)

t2 = 1
4 (t1 + t3 + t4 + 2)

t3 = 1
4 (t2 + t5 + 0 + 0)

t4 = 1
4 (t2 + t5 + t7 + 2)

t5 = 1
4 (t3 + t4 + t6 + t8)

t6 = 1
4 (t5 + t9 + 0 + 0)

t7 = 1
4 (t4 + t8 + 1 + 2)

t8 = 1
4 (t5 + t7 + t9 + 1)

t9 = 1
4 (t6 + t8 + 1 + 0)

(1)

This is a system of nine linear equations in nine unknowns. We can rewrite it in matrix
form as

t = Mt + b (2)

where

t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1

t2

t3

t4

t5

t6

t7

t8

t9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
4 0 0 0 0 0 0 0

1
4 0 1

4
1
4 0 0 0 0 0

0 1
4 0 0 1

4 0 0 0 0

0 1
4 0 0 1

4 0 1
4 0 0

0 0 1
4

1
4 0 1

4 0 1
4 0

0 0 0 0 1
4 0 0 0 1

4

0 0 0 1
4 0 0 0 1

4 0

0 0 0 0 1
4 0 1

4 0 1
4

0 0 0 0 0 1
4 0 1

4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
2

0
1
2

0

0
3
4
1
4
1
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To solve Equation (2), we write it as

(I − M)t = b

The solution for t is thus

t = (I − M)−1b (3)

as long as the matrix (I − M) is invertible. This is indeed the case, and the solution for
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t as calculated by (3) is

t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7846
1.1383
0.4719
1.2967
0.7491
0.3265
1.2995
0.9014
0.5570

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Figure 10.10.4 is a diagram of the plate with the nine interior mesh points labeled with
their temperatures as given by this solution.

Figure 10.10.4
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1.2995 0.9014 0.5570

For case (c) of Figure 10.10.3, we repeat this same procedure. We label the temper-
atures at the 49 interior mesh points as t1, t2, . . . , t49 in some manner. For example, we
may begin at the top of the plate and proceed from left to right along each row of mesh
points. Applying the discrete mean-value property to each mesh point gives a system of
49 linear equations in 49 unknowns:

t1 = 1
4 (t2 + 2 + 0 + 0)

t2 = 1
4 (t1 + t3 + t4 + 2)

...

t48 = 1
4 (t41 + t47 + t49 + 1)

t49 = 1
4 (t42 + t48 + 0 + 1)

(5)

In matrix form, Equations (5) are
t = Mt + b

where t and b are column vectors with 49 entries, and M is a 49 × 49 matrix. As in (3),
the solution for t is

t = (I − M)−1b (6)
In Figure 10.10.5 we display the temperatures at the 49 mesh points found by Equa-
tion (6). The nine unshaded temperatures in this figure fall on the mesh points of
Figure 10.10.4. In Table 1 we compare the temperatures at these nine common mesh
points for the three different mesh spacings used.
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Figure 10.10.5
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1.01221.4844

1.5627

0.6064

0.7896

0.9210

0.2710

0.2162

0.6342 0.3868 0.17561.24881.6131

1.6409 1.0114 0.5214 0.1344

0.22210.43120.63180.83801.06571.33011.6426

1.5994 1.0834 0.7365 0.3227

0.51350.73110.85560.95481.06051.20391.4508

0.8048

Table 1

Temperatures at Common
Mesh Points

t1

t2

t3

t4

t5

t6

t7

t8

t9

Case (a) Case (b) Case (c)

—
—
—
—

0.7500
—
—
—
—

0.7846
1.1383
0.4719
1.2967
0.7491
0.3265
1.2995
0.9014
0.5570

0.8048
1.1533
0.4778
1.3078 
0.7513
0.3157
1.3042
0.9032
0.5554
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Knowing that the temperatures of the discrete problem approach the exact tempera-
tures as the mesh spacing decreases, we may surmise that the nine temperatures obtained
in case (c) are closer to the exact values than those in case (b).

A NumericalTechnique To obtain the 49 temperatures in case (c) of Figure 10.10.3, it was necessary to solve a
linear system with 49 unknowns. A finer net might involve a linear system with hundreds
or even thousands of unknowns. Exact algorithms for the solutions of such large systems
are impractical, and for this reason we now discuss a numerical technique for the practical
solution of these systems.

To describe this technique, we look again at Equation (2):

t = Mt + b (7)

The vector t we are seeking appears on both sides of this equation. We consider a way
of generating better and better approximations to the vector solution t. For the initial
approximation t(0) we can take t(0) = 0 if no better choice is available. If we substitute
t(0) into the right side of (7) and label the resulting left side as t(1), we have

t(1) = Mt(0) + b (8)

If we substitute t(1) into the right side of (7), we generate another approximation, which
we label t(2):

t(2) = Mt(1) + b (9)

Continuing in this way, we generate a sequence of approximations as follows:

t(1) = Mt(0) + b

t(2) = Mt(1) + b

t(3) = Mt(2) + b
...

t(n) = Mt(n−1) + b
...

(10)

One would hope that this sequence of approximations t(0), t(1), t(2), . . . converges to
the exact solution of (7). We do not have the space here to go into the theoretical
considerations necessary to show this. Suffice it to say that for the particular problem
we are considering, the sequence converges to the exact solution for any mesh size and
for any initial approximation t(0).

This technique of generating successive approximations to the solution of (7) is a
variation of a technique called Jacobi iteration; the approximations themselves are called
iterates. As a numerical example, let us apply Jacobi iteration to the calculation of the
nine mesh point temperatures of case (b). Setting t(0) = 0, we have, from Equation (2),

t(1) = Mt(0) + b = M0 + b = b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5000

.5000

.0000

.5000

.0000

.0000

.7500

.2500

.2500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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t(2) = Mt(1) + b

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
4 0 0 0 0 0 0 0

1
4 0 1

4
1
4 0 0 0 0 0

0 1
4 0 0 1

4 0 0 0 0

0 1
4 0 0 1

4 0 1
4 0 0

0 0 1
4

1
4 0 1

4 0 1
4 0

0 0 0 0 1
4 0 0 0 1

4

0 0 0 1
4 0 0 0 1

4 0

0 0 0 0 1
4 0 1

4 0 1
4

0 0 0 0 0 1
4 0 1

4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5000

.5000

.0000

.5000

.0000

.0000

.7500

.2500

.2500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.5000

.5000

.0000

.5000

.0000

.0000

.7500

.2500

.2500

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.6250

.7500

.1250

.8125

.1875

.0625

.9375

.5000

.3125

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Some additional iterates are

t(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6875
0.8906
0.2344
0.9688
0.3750
0.1250
1.0781
0.6094
0.3906

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t(10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7791
1.1230
0.4573
1.2770
0.7236
0.3131
1.2848
0.8827
0.5446

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t(20) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7845
1.1380
0.4716
1.2963
0.7486
0.3263
1.2992
0.9010
0.5567

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t(30) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7846
1.1383
0.4719
1.2967
0.7491
0.3265
1.2995
0.9014
0.5570

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

All iterates beginning with the thirtieth are equal to t(30) to four decimal places. Conse-
quently, t(30) is the exact solution to four decimal places. This agrees with our previous
result given in Equation (4).

The Jacobi iteration scheme applied to the linear system (5) with 49 unknowns pro-
duces iterates that begin repeating to four decimal places after 119 iterations. Thus, t(119)

would provide the 49 temperatures of case (c) correct to four decimal places.

A Monte CarloTechnique In this section we describe a so-called Monte Carlo technique for computing the temper-
ature at a single interior mesh point of the discrete problem without having to compute
the temperatures at the remaining interior mesh points. First we define a discrete random
walk along the net. By this we mean a directed path along the net lines (Figure 10.10.6)

2

2

2

2

2

2

0

0

0

0

0

t5

1 1 11 1

Figure 10.10.6

that joins a succession of mesh points such that the direction of departure from each
mesh point is chosen at random. Each of the four possible directions of departure from
each mesh point along the path is to be equally probable.

By the use of random walks, we can compute the temperature at a specified interior
mesh point on the basis of the following property.

THEOREM 10.10.3 RandomWalk Property

Let W1, W2, . . . , Wn be a succession of random walks, all of which begin at a specified
interior mesh point. Let t∗1 , t∗2 , . . . , t∗n be the temperatures at the boundary mesh
points first encountered along each of these random walks. Then the average value
(t∗1 + t∗2 + · · · + t∗n )/n of these boundary temperatures approaches the temperature at
the specified interior mesh point as the number of random walks n increases without
bound.
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This property is a consequence of the discrete mean-value property that the mesh point
temperatures satisfy. The proof of the random walk property involves elementary con-
cepts from probability theory, and we will not give it here.

In Table 2 we display the results of a large number of computer-generated random
walks for the evaluation of the temperature t5 of the nine-point mesh of case (b) in Fig-
ure 10.10.6. The first column lists the number n of the random walk. The second column
lists the temperature t∗n of the boundary point first encountered along the corresponding
random walk. The last column contains the cumulative average of the boundary tem-
peratures encountered along the n random walks. Thus, after 1000 random walks we
have the approximation t5 � .7550. This compares with the exact value t5 = .7491 that
we had previously evaluated. As can be seen, the convergence to the exact value is not
too rapid.

Table 2

n t*

1
2
3
4
5
6
7
8
9

10

1.0000
1.5000
1.3333
1.0000
1.2000
1.0000
1.1429
1.0000
1.1111
1.0000

n (t* + ... + t*)/n (t* + ... + t*)/nn1

1
2
1
0
2
0
2
0
2
0

n t*

20
30
40
50

100
150
200
250
500

1000

0.9500
0.8000
0.8250
0.8400
0.8300
0.8000
0.8050
0.8240
0.7860
0.7550

n n1

1
0
0
2
0
1
0
1
1
0

Exercise Set 10.10
1. A plate in the form of a circular disk has boundary tempera-

tures of 0◦ on the left of its circumference and 1◦ on the right
half of its circumference. A net with four interior mesh points
is overlaid on the disk (see Figure Ex-1).

(a) Using the discrete mean-value property, write the 4 × 4
linear system t = Mt + b that determines the approximate
temperatures at the four interior mesh points.

(b) Solve the linear system in part (a).

(c) Use the Jacobi iteration scheme with t(0) = 0 to generate
the iterates t(1), t(2), t(3), t(4), and t(5) for the linear system in
part (a). What is the “error vector” t(5) − t, where t is the
solution found in part (b)?

(d) By certain advanced methods, it can be determined that the
exact temperatures to four decimal places at the four mesh
points are t1 = t3 = .2871 and t2 = t4 = .7129. What are
the percentage errors in the values found in part (b)?

0

0

1

0

0 1

1

1
t1 t2

t3 t4

Figure Ex-1

2. Use Theorem 10.10.1 to find the exact equilibrium temperature
at the center of the disk in Exercise 1.

3. Calculate the first two iterates t(1) and t(2) for case (b) of Figure
10.10.3 with nine interior mesh points [Equation (2)] when the
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initial iterate is chosen as

t(0) = [1 1 1 1 1 1 1 1 1]T

4. The random walk illustrated in Figure Ex-4a can be described
by six arrows

←↓→→↑→
that specify the directions of departure from the successive
mesh points along the path. Figure Ex-4b is an array of 100
computer-generated, randomly oriented arrows arranged in a
10 × 10 array. Use these arrows to determine random walks
to approximate the temperature t5, as in Table 2. Proceed as
follows:

1. Take the last two digits of your telephone number. Use
the last digit to specify a row and the other to specify a
column.

2. Go to the arrow in the array with that row and column
number.

3. Using this arrow as a starting point, move through the ar-
ray of arrows as you would read a book (left to right and top
to bottom). Beginning at the point labeled t5 in Figure Ex-
4a and using this sequence of arrows to specify a sequence
of directions, move from mesh point to mesh point until
you reach a boundary mesh point. This completes your
first random walk. Record the temperature at the bound-
ary mesh point. (If you reach the end of the arrow array,
continue with the arrow in the upper left corner.)

4. Return to the interior mesh point labeled t5 and begin
where you left off in the arrow array; generate your next
random walk. Repeat this process until you have com-
pleted 10 random walks and have recorded 10 boundary
temperatures.

5. Calculate the average of the 10 boundary temperatures
recorded. (The exact value is t5 = .7491.)

2

2

2

2

2

2

0

0

0

0

0

t5

1 1 11 1

(a)

0

9

8

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9

(b)

Figure Ex-4

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra

capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Suppose that we have the square region described by

R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
and suppose that the equilibrium temperature distribution u(x, y)

along the boundary is given by u(x, 0) = TB , u(x, 1) = TT ,
u(0, y) = TL, and u(1, y) = TR . Suppose next that this region
is partitioned into an (n + 1) × (n + 1) mesh using

xi = i

n
and yj = j

n

for i = 0, 1, 2, . . . , n and j = 0, 1, 2, . . . , n. If the temperatures
of the interior mesh points are labeled by

ui,j = u(xi, yi) = u(i/n, j/n)

then show that

ui,j = 1
4 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

for i = 1, 2, 3, . . . , n − 1 and j = 1, 2, 3, . . . , n − 1. To handle
the boundary points, define

u0,j = TL, un,j = TR, ui,0 = TB, and ui,n = TT

for i = 1, 2, 3, . . . , n − 1 and j = 1, 2, 3, . . . , n − 1. Next let

Fn+1 =
[

0 In

1 0

]

be the (n + 1) × (n + 1) matrix with the n × n identity matrix in
the upper right-hand corner, a one in the lower left-hand corner,
and zeros everywhere else. For example,

F2 =
[

0 1

1 0

]
, F3 =

⎡
⎢⎣0 1 0

0 0 1

1 0 0

⎤
⎥⎦,

F4 =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎤
⎥⎥⎥⎦, F5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

and so on. By defining the (n + 1) × (n + 1) matrix

Mn+1 = Fn+1 + F T
n+1 =

[
0 In

1 0

]
+
[

0 In

1 0

]T

show that if Un+1 is the (n + 1) × (n + 1) matrix with entries uij ,
then the set of equations

ui,j = 1
4 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)

for i = 1, 2, 3, . . . , n − 1 and j = 1, 2, 3, . . . , n − 1 can be writ-
ten as the matrix equation

Un+1 = 1
4 (Mn+1Un+1 + Un+1Mn+1)

where we consider only those elements of Un+1 with
i = 1, 2, 3, . . . , n − 1 and j = 1, 2, 3, . . . , n − 1.
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T2. The results of the preceding exercise and the discussion in the
text suggest the following algorithm for solving for the equilibrium
temperature in the square region

R = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
given the boundary conditions

u(x, 0) = TB, u(x, 1) = TT ,

u(0, y) = TL, u(1, y) = TR

1. Choose a value for n, and then choose an initial guess, say

U(0)
n+1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 TL · · · TL 0

TB 0 · · · 0 TT

...
...

...
...

TB 0 · · · 0 TT

0 TR · · · TR 0

⎤
⎥⎥⎥⎥⎥⎥⎦

2. For each value of k = 0, 1, 2, 3, . . . , compute U
(k+1)
n+1 using

U
(k+1)
n+1 = 1

4 (Mn+1U
(k)
n+1 + U

(k)
n+1Mn+1)

where Mn+1 is as defined in Exercise T1. Then adjust U
(k+1)
n+1

by replacing all edge entries by the initial edge entries in U
(0)
n+1.

[Note: The edge entries of a matrix are the entries in the first
and last columns and first and last rows.]

3. Continue this process until U
(k+1)
n+1 − U

(k)
n+1 is approximately

the zero matrix. This suggests that

Un+1 = lim
k→�

U
(k)
n+1

Use a computer and this algorithm to solve for u(x, y) given that

u(x, 0) = 0, u(x, 1) = 0, u(0, y) = 0, u(1, y) = 2

Choose n = 6 and compute up to U
(30)
n+1 . The exact solution can

be expressed as

u(x, y) = 8

π

�∑
m=1

sinh[(2m − 1)πx] sin[(2m − 1)πy]
(2m − 1) sinh[(2m − 1)π ]

Use a computer to compute u(i/6, j/6) for i, j = 0, 1, 2, 3, 4, 5,
6, and then compare your results to the values of u(i/6, j/6) in
U

(30)
n+1 .

T3. Using the exact solution u(x, y) for the temperature distribu-
tion described in Exercise T2, use a graphing program to do the
following:

(a) Plot the surface z = u(x, y) in three-dimensional xyz-space
in which z is the temperature at the point (x, y) in the square
region.

(b) Plot several isotherms of the temperature distribution (curves
in the xy-plane over which the temperature is a constant).

(c) Plot several curves of the temperature as a function of x with
y held constant.

(d) Plot several curves of the temperature as a function of y with
x held constant.

10.11 ComputedTomography
In this section we will see how constructing a cross-sectional view of a human body by
analyzing X-ray scans leads to an inconsistent linear system. We present an iteration
technique that provides an “approximate solution” of the linear system.

PREREQUISITES: Linear Systems
Natural Logarithms
Euclidean Space Rn

The basic problem of computed tomography is to construct an image of a cross section
of the human body using data collected from many individual beams of X rays that
are passed through the cross section. These data are processed by a computer, and the
computed cross section is displayed on a video monitor. Figure 10.11.1 is a diagram of

Figure 10.11.1
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General Electric’s CT system showing a patient prepared to have a cross section of his
head scanned by X-ray beams.

Such a system is also known as a CAT scanner, for Computer-Aided Tomography
scanner. Figure 10.11.2 shows a typical cross section of a human head produced by the

Figure 10.11.2
[Image: Edward Kinsman/Photo
Researchers/Getty Images]

system.
The first commercial system of computed tomography for medical use was developed

in 1971 by G. N. Hounsfield of EMI, Ltd., in England. In 1979, Houndsfield and
A. M. Cormack were awarded the Nobel Prize for their pioneering work in the field. As
we will see in this section, the construction of a cross section, or tomograph, requires
the solution of a large linear system of equations. Certain algorithms, called algebraic
reconstruction techniques (ARTs), can be used to solve these linear systems, whose
solutions yield the cross sections in digital form.

Scanning Modes Unlike conventional X-ray pictures that are formed by X rays that are projected per-
pendicular to the plane of the picture, tomographs are constructed from thousands of
individual, hairline-thin X-ray beams that lie in the plane of the cross section. After
they pass through the cross section, the intensities of the X-ray beams are measured by
an X-ray detector, and these measurements are relayed to a computer where they are
processed. Figures 10.11.3 and 10.11.4 illustrate two possible modes of scanning the
cross section: the parallel mode and the fan-beam mode. In the parallel mode a single
X-ray source and X-ray detector pair are translated across the field of view containing
the cross section, and many measurements of the parallel beams are recorded. Then
the source and detector pair are rotated through a small angle, and another set of mea-
surements is taken. This is repeated until the desired number of beam measurements
is completed. For example, in the original 1971 machine, 160 parallel measurements
were taken through 180 angles spaced 1◦ apart: a total of 160 × 180 = 28,800 beam
measurements. Each such scan took approximately 5 1

2 minutes.

PatientRotation

X-ray
source

X-ray
detector

Translation

Figure 10.11.3 Parallel mode.

X-ray
source

X-ray
detector

array

Rotation

Patient

Figure 10.11.4 Fan-beam mode.

In the fan-beam mode of scanning, a single X-ray tube generates a fan of collimated
beams whose intensities are measured simultaneously by an array of detectors on the
other side of the field of view. The X-ray tube and detector array are rotated through many
angles, and a set of measurements is taken at each angle until the scan is completed. In
the General Electric CT system, which uses the fan-beam mode, each scan takes 1 second.
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Derivation of Equations To see how the cross section is reconstructed from the many individual beam measure-
ments, refer to Figure 10.11.5. Here the field of view in which the cross section is situated

X-ray
detector

X-ray
source

1st
pixel ith beam

Nth 
pixel

jth 
pixel

Figure 10.11.5

has been divided into many square pixels (picture elements) numbered 1 through N as
indicated. It is our desire to determine the X-ray density of each pixel. In the EMI
system, 6400 pixels were used, arranged in a square 80 × 80 array. The G.E. CT system
uses 262,144 pixels in a 512 × 512 array, each pixel being about 1 mm on a side. Af-
ter the densities of the pixels are determined by the method we will describe, they are
reproduced on a video monitor, with each pixel shaded a level of gray proportional to
its X-ray density. Because different tissues within the human body have different X-ray
densities, the video display clearly distinguishes the various tissues and organs within
the cross section.

Figure 10.11.6 shows a single pixel with an X-ray beam of roughly the same width
as the pixel passing squarely through it. The photons constituting the X-ray beam are
absorbed by the tissue within the pixel at a rate proportional to the X-ray density of the
tissue. Quantitatively, the X-ray density of the j th pixel is denoted by xj and is defined by

xj = ln

(
number of photons entering the j th pixel

number of photons leaving the j th pixel

)
where “ln” denotes the natural logarithmic function. Using the logarithm property
ln(a/b) = − ln(b/a), we also have

xj = − ln

(
fraction of photons that pass through
the j th pixel without being absorbed

)
If the X-ray beam passes through an entire row of pixels (Figure 10.11.7), then the
number of photons leaving one pixel is equal to the number of photons entering the next
pixel in the row. If the pixels are numbered 1, 2, . . . , n, then the additive property of the
logarithmic function gives

x1 + x2 + · · · + xn = ln

(
number of photons entering the first pixel

number of photons leaving the nth pixel

)

= − ln

⎛
⎝fraction of photons that pass

through the row of n pixels
without being absorbed

⎞
⎠ (1)

Thus, to determine the total X-ray density of a row of pixels, we simply sum the individual
pixel densities.

Figure 10.11.6

jth
pixel

Photons entering
jth pixel

Photons leaving
jth pixel

First
pixel

Second
pixel

Third
pixel

nth
pixel

Photons entering
first pixel

Photons leaving
nth pixel

Figure 10.11.7
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Next, consider the X-ray beam in Figure 10.11.5. By the beam density of the ith
beam of a scan, denoted by bi , we mean

bi = ln

⎛
⎜⎜⎝

number of photons of the ith beam entering the detector
without the cross section in the field of view

number of photons of the ith beam entering the detector
with the cross section in the field of view

⎞
⎟⎟⎠

= − ln

⎛
⎝fraction of photons of the ith beam that
pass through the cross section without

being absorbed

⎞
⎠ (2)

The numerator in the first expression for bi is obtained by performing a calibration scan
without the cross section in the field of view. The resulting detector measurements are
stored within the computer’s memory. Then a clinical scan is performed with the cross
section in the field of view, the bi’s of all the beams constituting the scan are computed,
and the values are stored for further processing.

For each beam that passes squarely through a row of pixels, we must have

⎛
⎜⎜⎝
fraction of photons of the
beam that pass through the
row of pixels without being

absorbed

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
fraction of photons of the
beam that pass through the
cross section without being

absorbed

⎞
⎟⎟⎠

Thus, if the ith beam passes squarely through a row of n pixels, then it follows from
Equations (1) and (2) that

x1 + x2 + · · · + xn = bi

In this equation, bi is known from the clinical and calibration measurements, and
x1, x2, . . . , xn are unknown pixel densities that must be determined.

More generally, if the ith beam passes squarely through a row (or column) of pixels
with numbers j1, j2, . . . , ji , then we have

xj1 + xj2 + · · · + xji
= bi

If we set

aij =
{

1, if j = j1, j2, . . . , ji

0, otherwise

then we can write this equation as

ai1x1 + ai2x2 + · · · + aiNxN = bi (3)

We will refer to Equation (3) as the ith beam equation.
Referring to Figure 10.11.5, however, we see that the beams of a scan do not neces-

sarily pass through a row or column of pixels squarely. Instead, a typical beam passes
diagonally through each pixel in its path. There are many ways to take this into account.
In Figure 10.11.8 we outline three methods of defining the quantities aij that appear in
Equation (3), each of which reduces to our previous definition when the beam passes
squarely through a row or column of pixels. Reading down the figure, each method is
more exact than its predecessor, but with successively more computational difficulty.
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Center-of-Pixel Method

Center Line Method

Area Method

jth pixel

ith beam
if the ith beam passes 
through the center of 
the jth pixel

otherwise

length of the center line
of the ith beam that lies 

in the jth pixel

area of the ith beam that lies in the jth pixel
area of the ith beam that would lie in the jth pixel

if  the ith beam were to cross the pixel squarely

width of the jth pixel

Length of
center line

Area in the
numerator of aij

aij = 

aij = 

aij = 

Area in the
denominator of aij

Width of 
pixel

1

0

Figure 10.11.8

Using any one of the three methods to define the aij’s in the ith beam equation, we
can write the set of M beam equations in a complete scan as

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2
...

...
...

...

aM1x1 + aM2x2 + · · ·+ aMNxN = bM

(4)

In this way we have a linear system of M equations (the M beam equations) in N

unknowns (the N pixel densities).
Depending on the number of beams and pixels used, we can have M > N , M = N ,

or M < N . We will consider only the case M > N , the so-called overdetermined case,
in which there are more beams in the scan than pixels in the field of view. Because of
inherent modeling and experimental errors in the problem, we should not expect our
linear system to have an exact mathematical solution for the pixel densities. In the next
section we attempt to find an “approximate” solution to this linear system.

Algebraic Reconstruction
Techniques

There have been many mathematical algorithms devised to treat the overdetermined
linear system (4). The one we will describe belongs to the class of so-called Algebraic
Reconstruction Techniques (ARTs). This method, which can be traced to an iterative
technique originally introduced by S. Kaczmarz in 1937, was the one used in the first
commercial machine. To introduce this technique, consider the following system of three
equations in two unknowns:

L1: x1 + x2 = 2

L2: x1 − 2x2 = −2

L3: 3x1 − x2 = 3

(5)
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x2

x1

3x1 – x2 = 3

x1 + x2 = 2
x1 – 2x2 = –2

L2

L1L3

(a)

x2 x0

x1

x1

L2

L1L3

(b)

x2

x1

L2

L1L3

(c)

(1)

x2
(1)

x3
(1)

x2
(2)

x1
(2)

x3
(2)

x2
*

x1
*

x3
*

Limit cycle

Figure 10.11.9

The lines L1, L2, L3 determined by these three equations are plotted in the x1x2-plane.
As shown in Figure 10.11.9a, the three lines do not have a common intersection, and
so the three equations do not have an exact solution. However, the points (x1, x2) on
the shaded triangle formed by the three lines are all situated “near” these three lines
and can be thought of as constituting “approximate” solutions to our system. The
following iterative procedure describes a geometric construction for generating points
on the boundary of that triangular region (Figure 10.11.9b):

Algorithm 1

Step 0. Choose an arbitrary starting point x0 in the x1x2-plane.

Step 1. Project x0 orthogonally onto the first line L1 and call the projection x(1)
1 . The

superscript (1) indicates that this is the first of several cycles through the steps.

Step 2. Project x(1)
1 orthogonally onto the second line L2 and call the projection x(1)

2 .

Step 3. Project x(1)
2 orthogonally onto the third line L3 and call the projection x(1)

3 .

Step 4. Take x(1)
3 as the new value of x0 and cycle through Steps 1 through 3 again. In

the second cycle, label the projected points x(2)
1 , x(2)

2 , x(2)
3 ; in the third cycle, label

the projected points x(3)
1 , x(3)

2 , x(3)
3 ; and so forth.

This algorithm generates three sequences of points

L1: x(1)
1 , x(2)

1 , x(3)
1 , . . .

L2: x(1)
2 , x(2)

2 , x(3)
2 , . . .

L3: x(1)
3 , x(2)

3 , x(3)
3 , . . .

that lie on the three lines L1, L2, and L3, respectively. It can be shown that as long as
the three lines are not all parallel, then the first sequence converges to a point x∗

1 on L1,
the second sequence converges to a point x∗

2 on L2, and the third sequence converges to
a point x∗

3 on L3 (Figure 10.11.9c). These three limit points form what is called the limit
cycle of the iterative process. It can be shown that the limit cycle is independent of the
starting point x0.

Next we discuss the specific formulas needed to effect the orthogonal projections in
Algorithm 1. First, because the equation of a line in x1x2-space is

a1x1 + a2x2 = b

we can express it in vector form as
aT x = b
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where

a =
[
a1

a2

]
and x =

[
x1

x2

]
The following theorem gives the necessary projection formula (Exercise 5).

L

x*

xp

x2

x1

Figure 10.11.10

THEOREM 10.11.1 Orthogonal Projection Formula

Let L be a line in R2 with equation aT x = b, and let x∗ be any point in R2 (Figure
10.11.10). Then the orthogonal projection, xp, of x∗ onto L is given by

xp = x∗ + (b − aT x∗)
aT a

a

EXAMPLE 1 Using Algorithm 1

We can use Algorithm 1 to find an approximate solution of the linear system given in (5)
and illustrated in Figure 10.11.9. If we write the equations of the three lines as

L1: aT
1 x = b1

L2: aT
2 x = b2

L3: aT
3 x = b3

where

x =
[
x1

x2

]
, a1 =

[
1

1

]
, a2 =

[
1

−2

]
, a3 =

[
3

−1

]
,

b1 = 2, b2 = −2, b3 = 3

then, using Theorem 10.11.1, we can express the iteration scheme in Algorithm 1 as

x(p)

k = x(p)

k−1 + (bk − aT
k x(p)

k−1)

aT
k ak

ak, k = 1, 2, 3

where p = 1 for the first cycle of iterates, p = 2 for the second cycle of iterates, and so
forth. After each cycle of iterates (i.e., after x(p)

3 is computed), the next cycle of iterates
is begun with x(p+1)

0 set equal to x(p)

3 .
Table 1 gives the numerical results of six cycles of iterations starting with the initial

Table 1

x1 x2

1.00000

.00000

.40000
1.30000

1.20000
.88000

1.42000

1.08000
.83200

1.40800

1.09200
.83680

1.40920

1.09080
.83632

1.40908

1.09092
.83637

1.40909

3.00000

2.00000
1.20000
.90000

.80000
1.44000
1.26000

.92000
1.41600
1.22400

.90800
1.41840
1.22760

.90920
1.41816
1.22724

.90908
1.41818
1.22728

x0

x1

x2

x3

(1)

(1)

(1)

(2)

(2)

(2)

x1

x2

x3

(3)

(3)

(3)

x1

x2

x3

(4)

(4)

(4)

x1

x2

x3

(5)

(5)

(5)

x1

x2

x3

(6)

(6)

(6)

x1

x2

x3

point x0 = (1, 3).
Using certain techniques that are impractical for large linear systems, we can show

the exact values of the points of the limit cycle in this example to be

x∗
1 = (

12
11 ,

10
11

) = (1.09090 . . . , .90909 . . .)

x∗
2 = (

46
55 ,

78
55

) = (.83636 . . . , 1.41818 . . .)

x∗
3 = (

31
22 ,

27
22

) = (1.40909 . . . , 1.22727 . . .)

It can be seen that the sixth cycle of iterates provides an excellent approximation to the

limit cycle. Any one of the three iterates x(6)
1 , x(6)

2 , x(6)
3 can be used as an approximate

solution of the linear system. (The large discrepancies in the values of x(6)
1 , x(6)

2 , and x(6)
3

are due to the artificial nature of this illustrative example. In practical problems, these
discrepancies would be much smaller.)



620 Chapter 10 Applications of Linear Algebra

To generalize Algorithm 1 so that it applies to an overdetermined system of M

equations in N unknowns,

a11x1 + a12x2 + · · ·+ a1NxN = b1

a21x1 + a22x2 + · · ·+ a2NxN = b2
...

...
...

...

aM1x1 + aM2x2 + · · ·+ aMNxN = bM

(6)

we introduce column vectors x and ai as follows:

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xN

⎤
⎥⎥⎥⎦, ai =

⎡
⎢⎢⎢⎣

ai1

ai2
...

aiN

⎤
⎥⎥⎥⎦, i = 1, 2, . . . , M

With these vectors, the M equations constituting our linear system (6) can be written in
vector form as

aT
i x = bi, i = 1, 2, . . . , M

Each of these M equations defines what is called a hyperplane in the N -dimensional
Euclidean space RN . In general these M hyperplanes have no common intersection, and
so we seek instead some point in RN that is reasonably “close” to all of them. Such a
point will constitute an approximate solution of the linear system, and its N entries will
determine approximate pixel densities with which to form the desired cross section.

As in the two-dimensional case, we will introduce an iterative process that generates
cycles of successive orthogonal projections onto the M hyperplanes beginning with some
arbitrary initial point in RN . Our notation for these successive iterates is

x(p)

k =
(

the iterate lying on the kth hyperplane
generated during the pth cycle of iterations

)

The algorithm is as follows:

Algorithm 2

Step 0. Choose any point in RN and label it x0.

Step 1. For the first cycle of iterates, set p = 1.

Step 2. For k = 1, 2, . . . , M , compute

x(p)

k = x(p)

k−1 + (bk − aT
k x(p)

k−1)

aT
k ak

ak

Step 3. Set x(p+1)
0 = x(p)

M .

Step 4. Increase the cycle number p by 1 and return to Step 2.

In Step 2 the iterate x(p)

k is called the orthogonal projection of x(p)

k−1 onto the hyperplane
aT

k x = bk . Consequently, as in the two-dimensional case, this algorithm determines a
sequence of orthogonal projections from one hyperplane onto the next in which we cycle
back to the first hyperplane after each projection onto the last hyperplane.

It can be shown that if the vectors a1, a2, . . . , aM span RN , then the iterates x(1)
M , x(2)

M ,
x(3)

M , . . . lying on the Mth hyperplane will converge to a point x∗
M on that hyperplane

which does not depend on the choice of the initial point x0. In computed tomography,
one of the iterates x(p)

M for p sufficiently large is taken as an approximate solution of the
linear system for the pixel densities.
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Note that for the center-of-pixel method, the scalar quantity aT
k ak appearing in the

equation in Step 2 of the algorithm is simply the number of pixels in which the kth beam
passes through the center. Similarly, note that the scalar quantity

bk − aT
k x(p)

k−1

in that same equation can be interpreted as the excess kth beam density that results
if the pixel densities are set equal to the entries of x(p)

k−1. This provides the following
interpretation of our ART iteration scheme for the center-of-pixel method: Generate the
pixel densities of each iterate by distributing the excess beam density of successive beams
in the scan evenly among those pixels in which the beam passes through the center. When
the last beam in the scan has been reached, return to the first beam and continue.

EXAMPLE 2 Using Algorithm 2

We can use Algorithm 2 to find the unknown pixel densities of the 9 pixels arranged in the
3 × 3 array illustrated in Figure 10.11.11. These 9 pixels are scanned using the parallel
mode with 12 beams whose measured beam densities are indicated in the figure. We
choose the center-of-pixel method to set up the 12 beam equations. (In Exercises 7 and
8, you are asked to set up the beam equations using the center line and area methods.)
As you can verify, the beam equations are

x7 + x8 + x9 = 13.00 x3 + x6 + x9 = 18.00

x4 + x5 + x6 = 15.00 x2 + x5 + x8 = 12.00

x1 + x2 + x3 = 8.00 x1 + x4 + x7 = 6.00

x6 + x8 + x9 = 14.79 x2 + x3 + x6 = 10.51

x3 + x5 + x7 = 14.31 x1 + x5 + x9 = 16.13

x1 + x2 + x4 = 3.81 x4 + x7 + x8 = 7.04

Table 2 illustrates the results of the iteration scheme starting with an initial iterate x0 = 0.
The table gives the values of each of the first cycle of iterates, x(1)

1 through x(1)
12 , but

thereafter gives the iterates x(p)

12 only for various values of p. The iterates x(p)

12 start

repeating to two decimal places for p ≥ 45, and so we take the entries of x(45)
12 as approx-

imate values of the 9 pixel densities.

1 2

4 5 6

7 8 9

3 b3 = 8.00

b2 = 15.00

b1 = 13.00

1 2

4 5 6

7 8 9

3

b8 = 12.00
b9 = 6.00 b7 = 18.00

1 2

4 5 6

7 8 9

3

b6 = 3.81
b5 = 14.31

b4 = 14.79
1 2

4 5 6

7 8 9

3

b10 = 10.51
b11 = 16.13

b12 = 7.04

Figure 10.11.11

We close this section by noting that the field of computed tomography is presently a
very active research area. In fact, the ART scheme discussed here has been replaced in
commercial systems by more sophisticated techniques that are faster and provide a more
accurate view of the cross section. However, all the new techniques address the same basic
mathematical problem: finding a good approximate solution of a large overdetermined
inconsistent linear system of equations.
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Table 2

F
ir

st
 C

yc
le

 o
f 

It
er

at
es

.00
4.33
4.33
4.33
4.71
4.71
4.71
6.20
6.20
6.20
6.20
7.58
7.58

6.61

6.86

6.82

6.85

6.96

7.15

7.26

7.31

7.32

x1 x3x2

.00

.00

.00
2.67
2.67
2.67
.49
.49
.49

–.31
–.31
1.06
1.06

2.03

1.78

1.82

1.79

1.68

1.49

1.38

1.33

1.32

.00

.00

.00
2.67
2.67
2.67
.49
.49
.84
.84
.13
.13
.13

.69

.51

.52

.49

.44

.48

.55

.59

.60

.00

.00

.00
2.67
2.67
3.44
3.44
4.93
4.93
4.93
4.22
4.22
4.22

4.42

4.52

4.62

4.71

5.03

5.29

5.34

5.33

5.32

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x12

x12

x12

x12

x12

x12

x12

x12

x12

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(3)

(4)

(5)

(10)

(20)

(30)

(40)

(45)

x4

Pixel Densities

x5

.00

.00
5.00
5.00
5.00
5.00
2.83
2.83
2.83
2.02
2.02
2.02
.58

1.34

1.26

1.37

1.43

1.70

2.00

2.11

2.14

2.15

x6

.00

.00
5.00
5.00
5.37
5.37
5.37
6.87
6.87
6.87
6.16
6.16
6.16

5.39

5.48

5.37

5.31

5.03

4.73

4.62

4.59

4.59

x7

.00
4.33
4.33
4.33
4.33
5.10
5.10
5.10
5.10
4.30
4.30
4.30
2.85

2.65

2.56

2.45

2.37

2.04

1.79

1.74

1.75

1.76

x8

.00
4.33
4.33
4.33
4.71
4.71
4.71
4.71
5.05
5.05
5.05
5.05
3.61

3.04

3.22

3.22

3.25

3.29

3.25

3.19

3.15

3.14

x9

.00

.00
5.00
5.00
5.00
5.77
5.77
5.77
6.11
6.11
6.11
7.49
7.49

7.49

7.49

7.49

7.49

7.49

7.49

7.49

7.49

7.49

Exercise Set 10.11
1. (a) Setting x(p)

k = (x
(p)

k1 , x
(p)

k2 ), show that the three projection
equations

x(p)

k = x(p)

k−1 +
(bk − aT

k x(p)

k−1)

aT
k ak

ak, k = 1, 2, 3

for the three lines in Equation (5) can be written as

k = 1:
x

(p)

11 = 1
2 [2 + x

(p)

01 − x
(p)

02 ]
x

(p)

12 = 1
2 [2 − x

(p)

01 + x
(p)

02 ]

k = 2:
x

(p)

21 = 1
5 [−2 + 4x

(p)

11 + 2x
(p)

12 ]
x

(p)

22 = 1
5 [4 + 2x

(p)

11 + x
(p)

12 ]

k = 3:
x

(p)

31 = 1
10 [9 + x

(p)

21 + 3x(p)

22 ]
x

(p)

32 = 1
10 [−3 + 3x(p)

21 + 9x(p)

22 ]
where (x

(p+1)
01 , x

(p+1)
02 ) = (x

(p)

31 , x
(p)

32 ) for p = 1, 2, . . . .

(b) Show that the three pairs of equations in part (a) can be
combined to produce

x
(p)

31 = 1
20 [28 + x

(p−1)
31 − x

(p−1)
32 ]

x
(p)

32 = 1
20 [24 + 3x(p−1)

31 − 3x(p−1)
32 ]

p = 1, 2, . . .

where (x
(0)
31 , x

(0)
32 ) = (x

(1)
01 , x

(1)
02 ) = x(1)

0 . [Note: Using this
pair of equations, we can perform one complete cycle of
three orthogonal projections in a single step.]

(c) Because x(p)

3 tends to the limit point x∗
3 as p → �, the equa-

tions in part (b) become

x∗
31 = 1

20 [28 + x∗
31 − x∗

32]
x∗

32 = 1
20 [24 + 3x∗

31 − 3x∗
32]

as p → �. Solve this linear system for x∗
3 = (x∗

31, x
∗
32).

[Note: The simplifications of the ART formulas described
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in this exercise are impractical for the large linear systems
that arise in realistic computed tomography problems.]

2. Use the result of Exercise 1(b) to find x(1)
3 , x(2)

3 , . . . , x(6)
3 to five

decimal places in Example 1 using the following initial points:

(a) x0 = (0, 0) (b) x0 = (1, 1)

(c) x0 = (148,−15)

3. (a) Show directly that the points of the limit cycle in Example 1,

x∗
1 = (

12
11 ,

10
11

)
, x∗

2 = (
46
55 ,

78
55

)
, x∗

3 = (
31
22 ,

27
22

)
form a triangle whose vertices lie on the lines L1, L2, and
L3 and whose sides are perpendicular to these lines (Fig-
ure 10.11.9c).

(b) Using the equations derived in Exercise 1(a), show that if
x(1)

0 = x∗
3 = (

31
22 ,

27
22

)
, then

x(1)
1 = x∗

1 = (
12
11 ,

10
11

)
x(1)

2 = x∗
2 = (

46
55 ,

78
55

)
x(1)

3 = x∗
3 = (

31
22 ,

27
22

)
[Note: Either part of this exercise shows that successive
orthogonal projections of any point on the limit cycle will
move around the limit cycle indefinitely.]

4. The following three lines in the x1x2-plane,

L1: x2 = 1

L2: x1 − x2 = 2

L3: x1 − x2 = 0

do not have a common intersection. Draw an accurate sketch of
the three lines and graphically perform several cycles of the or-
thogonal projections described in Algorithm 1, beginning with
the initial point x0 = (0, 0). On the basis of your sketch, deter-
mine the three points of the limit cycle.

5. Prove Theorem 10.11.1 by verifying that

(a) the point xp as defined in the theorem lies on the line
aT x = b (i.e., aT xp = b).

(b) the vector xp − x∗ is orthogonal to the line aT x = b (i.e.,
xp − x∗ is parallel to a).

6. As stated in the text, the iterates x(1)
M , x(2)

M , x(3)
M , . . . defined in

Algorithm 2 will converge to a unique limit point x∗
M if the vec-

tors a1, a2, . . . , aM span RN . Show that if this is the case and
if the center-of-pixel method is used, then the center of each of
the N pixels in the field of view is crossed by at least one of the
M beams in the scan.

7. Construct the 12 beam equations in Example 2 using the center
line method. Assume that the distance between the center lines
of adjacent beams is equal to the width of a single pixel.

8. Construct the 12 beam equations in Example 2 using the area
method. Assume that the width of each beam is equal to the
width of a single pixel and that the distance between the center
lines of adjacent beams is also equal to the width of a single
pixel.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Given the set of equations

akx + bky = ck

for k = 1, 2, 3, . . . , n (with n > 2), let us consider the following
algorithm for obtaining an approximate solution to the system.

1. Solve all possible pairs of equations

aix + biy = ci and ajx + bjy = cj

for i, j = 1, 2, 3, . . . , n and i < j for their unique solutions.
This leads to

1
2 n(n − 1)

solutions, which we label as

(xij , yij )

for i, j = 1, 2, 3, . . . , n and i < j .

2. Construct the geometric center of these points defined by

(xC, yC) =
⎛
⎝ 2

n(n − 1)

n−1∑
i=1

n∑
j= i+1

xij ,
2

n(n − 1)

n−1∑
i=1

n∑
j= i+1

yij

⎞
⎠

and use this as the approximate solution to the original
system.

Use this algorithm to approximate the solution to the system

x + y = 2

x − 2y = −2

3x − y = 3

and compare your results to those in this section.

T2. (Calculus required ) Given the set of equations

akx + bky = ck

for k = 1, 2, 3, . . . , n (with n > 2), let us consider the follow-
ing least squares algorithm for obtaining an approximate solu-
tion (x∗, y∗) to the system. Given a point (α, β) and the line
aix + biy = ci , the distance from this point to the line is given by

|aiα + biβ − ci |√
a2

i + b2
i
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If we define a function f (x, y) by

f (x, y) =
n∑

i=1

(aix + biy − ci)
2

a2
i + b2

i

and then determine the point (x∗, y∗) that minimizes this func-
tion, we will determine the point that is closest to each of these
lines in a summed least squares sense. Show that x∗ and y∗ are
solutions to the system(

n∑
i=1

a2
i

a2
i + b2

i

)
x∗ +

(
n∑

i=1

aibi

a2
i + b2

i

)
y∗ =

n∑
i=1

aici

a2
i + b2

i

and (
n∑

i=1

aibi

a2
i + b2

i

)
x∗ +

(
n∑

i=1

b2
i

a2
i + b2

i

)
y∗ =

n∑
i=1

bici

a2
i + b2

i

Apply this algorithm to the system

x + y = 2

x − 2y = −2

3x − y = 3

and compare your results to those in this section.

10.12 Fractals
In this section we will use certain classes of linear transformations to describe and generate
intricate sets in the Euclidean plane. These sets, called fractals, are currently the focus of
much mathematical and scientific research.

PREREQUISITES: Geometry of Linear Operators on R2 (Section 4.11)
Euclidean Space Rn

Natural Logarithms
Intuitive Understanding of Limits

Fractals in the Euclidean
Plane

At the end of the nineteenth century and the beginning of the twentieth century, various
bizarre and wild sets of points in the Euclidean plane began appearing in mathemat-
ics. Although they were initially mathematical curiosities, these sets, called fractals, are
rapidly growing in importance. It is now recognized that they reveal a regularity in phys-
ical and biological phenomena previously dismissed as “random,” “noisy,” or “chaotic.”
For example, fractals are all around us in the shapes of clouds, mountains, coastlines,
trees, and ferns.

In this section we give a brief description of certain types of fractals in the Euclidean
plane R2. Much of this description is an outgrowth of the work of two mathematicians,
Benoit B. Mandelbrot and Michael Barnsley, who are both active researchers in the field.

Self-Similar Sets To begin our study of fractals, we need to introduce some terminology about sets in
R2. We will call a set in R2 bounded if it can be enclosed by a suitably large circle
(Figure 10.12.1) and closed if it contains all of its boundary points (Figure 10.12.2). Two
sets in R2 will be called congruent if they can be made to coincide exactly by translating
and rotating them appropriately within R2 (Figure 10.12.3). We will also rely on your
intuitive concept of overlapping and nonoverlapping sets, as illustrated in Figure 10.12.4.

If T : R2 → R2 is the linear operator that scales by a factor of s (see Table 7 of
Section 4.9), and if Q is a set in R2, then the set T (Q) (the set of images of points in Q

under T ) is called a dilation of the set Q if s > 1 and a contraction of Q if 0 < s < 1
(Figure 10.12.5). In either case we say that T (Q) is the set Q scaled by the factor s.
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Figure 10.12.1
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The types of fractals we will consider first are called self-similar. In general, we define
a self-similar set in R2 as follows:

DEFINITION 1 A closed and bounded subset of the Euclidean plane R2 is said to be
self-similar if it can be expressed in the form

S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk (1)

where S1, S2, S3, . . . , Sk are nonoverlapping sets, each of which is congruent to S

scaled by the same factor s (0 < s < 1).

If S is a self-similar set, then (1) is sometimes called a decomposition of S into nonover-
lapping congruent sets.

EXAMPLE 1 Line Segment

A line segment in R2 (Figure 10.12.6a) can be expressed as the union of two nonoverlap-
ping congruent line segments (Figure 10.12.6b). In Figure 10.12.6b we have separated

(a)

(b)

Figure 10.12.6

the two line segments slightly so that they can be seen more easily. Each of these two
smaller line segments is congruent to the original line segment scaled by a factor of 1

2 .
Hence, a line segment is a self-similar set with k = 2 and s = 1

2 .
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EXAMPLE 2 Square

A square (Figure 10.12.7a) can be expressed as the union of four nonoverlapping con-
gruent squares (Figure 10.12.7b), where we have again separated the smaller squares

(a)

(b)

Figure 10.12.7

slightly. Each of the four smaller squares is congruent to the original square scaled by a
factor of 1

2 . Hence, a square is a self-similar set with k = 4 and s = 1
2 .

EXAMPLE 3 Sierpinski Carpet

The set suggested by Figure 10.12.8a,the Sierpinski “carpet,” was first described by the
Polish mathematician Waclaw Sierpinski (1882–1969). It can be expressed as the union
of eight nonoverlapping congruent subsets (Figure 10.12.8b), each of which is congruent
to the original set scaled by a factor of 1

3 . Hence, it is a self-similar set with k = 8 and
s = 1

3 . Note that the intricate square-within-a-square pattern continues forever on a
smaller and smaller scale (although this can only be suggested in a figure such as the one
shown).

Figure 10.12.8 (a) (b)

EXAMPLE 4 SierpinskiTriangle

Figure 10.12.9a illustrates another set described by Sierpinski. It is a self-similar set
with k = 3 and s = 1

2 (Figure 10.12.9b). As with the Sierpinski carpet, the intricate
triangle-within-a-triangle pattern continues forever on a smaller and smaller scale.

Figure 10.12.9 (a) (b)

The Sierpinski carpet and triangle have a more intricate structure than the line seg-
ment and the square in that they exhibit a pattern that is repeated indefinitely. This
difference will be explored later in this section.

Topological Dimension of a
Set

In Section 4.5 we defined the dimension of a subspace of a vector space to be the number
of vectors in a basis, and we found that definition to coincide with our intuitive sense of
dimension. For example, the origin of R2 is zero-dimensional, lines through the origin
are one-dimensional, and R2 itself is two-dimensional. This definition of dimension is a
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special case of a more general concept called topological dimension, which is applicable
to sets in Rn that are not necessarily subspaces. A precise definition of this concept is
studied in a branch of mathematics called topology. Although that definition is beyond
the scope of this text, we can state informally that

• a point in R2 has topological dimension zero;

• a curve in R2 has topological dimension one;

• a region in R2 has topological dimension two.

It can be proved that the topological dimension of a set in Rn must be an integer between
0 and n, inclusive. In this text we will denote the topological dimension of a set S by
dT (S).

EXAMPLE 5 Topological Dimensions of Sets

Table 1 gives the topological dimensions of the sets studied in our earlier examples.
The first two results in this table are intuitively obvious; however, the last two are not.
Informally stated, the Sierpinski carpet and triangle both contain so many “holes” that
those sets resemble web-like networks of lines rather than regions. Hence they have
topological dimension one. The proofs are quite difficult.

Table 1

Set S dT(S)

Line segment

Square

Sierpinski carpet

Sierpinski triangle

1

2

1

1

Hausdorff Dimension of a
Self-Similar Set

In 1919 the German mathematician Felix Hausdorff (1868–1942) gave an alternative
definition for the dimension of an arbitrary set in Rn. His definition is quite complicated,
but for a self-similar set, it reduces to something rather simple:

DEFINITION 2 The Hausdorff dimension of a self-similar set S of form (1) is denoted
by dH (S) and is defined by

dH (S) = ln k

ln(1/s)
(2)

In this definition, “ln” denotes the natural logarithm function. Equation (2) can also be
expressed as

sdH (S) = 1

k
(3)

in which the Hausdorff dimension dH (S) appears as an exponent. Formula (3) is more
helpful for interpreting the concept of Hausdorff dimension; it states, for example, that
if you scale a self-similar set by a factor of s = 1

2 , then its area (or more properly its

measure) decreases by a factor of
(

1
2

)dH (S)
. Thus, scaling a line segment by a factor of

1
2 reduces its measure (length) by a factor of

(
1
2

)1 = 1
2 , and scaling a square region by a

factor of 1
2 reduces its measure (area) by a factor of

(
1
2

)2 = 1
4 .

Before proceeding to some examples, we should note a few facts about the Hausdorff
dimension of a set:

• The topological dimension and Hausdorff dimension of a set need not be the same.

• The Hausdorff dimension of a set need not be an integer.

• The topological dimension of a set is less than or equal to its Hausdorff dimension;
that is, dT (S) ≤ dH (S).
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EXAMPLE 6 Hausdorff Dimensions of Sets

Table 2 lists the Hausdorff dimensions of the sets studied in our earlier examples.

Table 2

Set S s k dH(S) = 

Line segment

Square

Sierpinski carpet

Sierpinski triangle

2

4

8

3

ln 2/ln 2 = 1 

ln 4/ln 2 = 2

ln 8/ln 3 = 1.892 . . .

ln 3/ln 2 = 1.584 . . .

ln k

ln (1/s)
1
2

1
2

1
2

1
3

Fractals Comparing Tables 1 and 2, we see that the Hausdorff and topological dimensions are
equal for both the line segment and square but are unequal for the Sierpinski carpet and
triangle. In 1977 Benoit B. Mandelbrot suggested that sets for which the topological
and Hausdorff dimensions differ must be quite complicated (as Hausdorff had earlier
suggested in 1919). Mandelbrot proposed calling such sets fractals, and he offered the
following definition.

DEFINITION 3 A fractal is a subset of a Euclidean space whose Hausdorff dimension
and topological dimension are not equal.

According to this definition, the Sierpinski carpet and Sierpinski triangle are fractals,
whereas the line segment and square are not.

It follows from the preceding definition that a set whose Hausdorff dimension is not
an integer must be a fractal (why?). However, we will see later that the converse is not
true; that is, it is possible for a fractal to have an integer Hausdorff dimension.

Similitudes We will now show how some techniques from linear algebra can be used to generate
fractals. This linear algebra approach also leads to algorithms that can be exploited to
draw fractals on a computer. We begin with a definition.

DEFINITION 4 A similitude with scale factor s is a mapping of R2 into R2 of the form

T

([
x

y

])
= s

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
+
[

e

f

]
where s, θ , e, and f are scalars.

Geometrically, a similitude is a composition of three simpler mappings: a scaling by
a factor of s, a rotation about the origin through an angle θ , and a translation (e units
in the x-direction and f units in the y-direction). Figure 10.12.10 illustrates the effect
of a similitude on the unit square U .

For our application to fractals, we will need only similitudes that are contractions, by
which we mean that the scale factor s is restricted to the range 0 < s < 1. Consequently,
when we refer to similitudes we will always mean similitudes subject to this restriction.
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Figure 10.12.10

1
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Similitudes are important in the study of fractals because of the following fact:

If T : R2 → R2 is a similitude with scale factor s and if S is a closed and bounded set in
R2, then the image T (S) of the set S under T is congruent to S scaled by s.

Recall from the definition of a self-similar set in R2 that a closed and bounded set S in
R2 is self-similar if it can be expressed in the form

S = S1 ∪ S2 ∪ S3 ∪ · · · ∪ Sk

where S1, S2, S3, . . . , Sk are nonoverlapping sets each of which is congruent to S scaled
by the same factor s (0 < s < 1) [see (1)]. In the following examples, we will find
similitudes that produce the sets S1, S2, S3, . . . , Sk from S for the line segment, square,
Sierpinski carpet, and Sierpinski triangle.

EXAMPLE 7 Line Segment

We will take as our line segment the line segment S connecting the points (0, 0) and
(1, 0) in the xy-plane (Figure 10.12.11a). Consider the two similitudes

T1

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]

T2

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

1
2

0

] (4)

both of which have s = 1
2 and θ = 0. In Figure 10.12.11b we show how these two

(0, 0)

(1, 0)(   , 0)

(0,   )

U

S(0, 0)

(0, 1) (1, 1)

U

(1, 0)

y

x

y

x
T1(U) T2(U)

T1(S) T2(S)

1
2

1
2

(b)

(a)

Figure 10.12.11

similitudes map the unit square U . The similitude T1 maps U onto the smaller square
T1(U), and the similitude T2 maps U onto the smaller square T2(U). At the same
time, T1 maps the line segment S onto the smaller line segment T1(S), and T2 maps S

onto the smaller nonoverlapping line segment T2(S). The union of these two smaller
nonoverlapping line segments is precisely the original line segment S; that is,

S = T1(S) ∪ T2(S) (5)

EXAMPLE 8 Square

Let us consider the unit square U in the xy-plane (Figure 10.12.12a) and the following
four similitudes, all having s = 1

2 and θ = 0:

T1

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
T2

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

1
2

0

]

T3

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

0
1
2

]
T4

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

1
2
1
2

] (6)
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The images of the unit square U under these four similitudes are the four squares shown
in Figure 10.12.12b. Thus,

U
U

(0, 0) (1, 0)(   , 0)

(0,   )

(0, 0)

(0, 1)

(0, 1)

(1, 1)

(1, 1)

(1, 0)

y

x

y

x

1
2

1
2

T3(U) T4(U)

T1(U) T2(U)

(b)

(a)

Figure 10.12.12

U = T1(U) ∪ T2(U) ∪ T3(U) ∪ T4(U) (7)

is a decomposition of U into four nonoverlapping squares that are congruent to U scaled
by the same scale factor

(
s = 1

2

)
.

EXAMPLE 9 Sierpinski Carpet

Let us consider a Sierpinski carpet S over the unit square U of the xy-plane (Figure
10.12.13a) and the following eight similitudes, all having s = 1

3 and θ = 0:

Ti

([
x

y

])
= 1

3

[
1 0

0 1

] [
x

y

]
+
[

ei

fi

]
, i = 1, 2, 3, . . . , 8 (8)

where the eight values of

[
ei

fi

]
are[

0

0

]
,

[
1
3

0

]
,

[
2
3

0

]
,

[
0
1
3

]
,

[
2
3
1
3

]
,

[
0
2
3

]
,

[
1
3
2
3

]
,

[
2
3
2
3

]

The images of S under these eight similitudes are the eight sets shown in Figure 10.12.13b.
Thus,

S = T1(S) ∪ T2(S) ∪ T3(S) ∪ · · · ∪ T8(S) (9)
is a decomposition of S into eight nonoverlapping sets that are congruent to S scaled by
the same scale factor

(
s = 1

3

)
.

Figure 10.12.13

S(0, 0)

(0, 1) (1, 1)

(1, 0)

y

x x

y

T1(S)

T2(S)

T7(S)

T4(S)

T6(S)

T3(S)

T5(S)

T8(S)

(b)(a)

EXAMPLE 10 SierpinskiTriangle

Let us consider a Sierpinski triangle S fitted inside the unit square U of the xy-plane,
as shown in Figure 10.12.14a, and the following three similitudes, all having s = 1

2 and
θ = 0:

T1

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]

T2

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

1
2

0

]

T3

([
x

y

])
= 1

2

[
1 0

0 1

] [
x

y

]
+
[

0
1
2

]
(10)
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The images of S under these three similitudes are the three sets in Figure 10.12.14b.
Thus,

S = T1(S) ∪ T2(S) ∪ T3(S) (11)

is a decomposition of S into three nonoverlapping sets that are congruent to S scaled by
the same scale factor

(
s = 1

2

)
.

Figure 10.12.14

S U

(0, 0)

(0, 1) (1, 1)

(1, 0) (0, 0)

(0, 1)

(1, 0)

y

x x

y

T1(S)

T3(S)

T2(S)

(   , 0)

(0,   )1
2

1
2

(b)(a)

In the preceding examples we started with a specific set S and showed that it was
self-similar by finding similitudes T1, T2, T3, . . . , Tk with the same scale factor such that
T1(S), T2(S), T3(S), . . . , Tk(S) were nonoverlapping sets and such that

S = T1(S) ∪ T2(S) ∪ T3(S) ∪ · · · ∪ Tk(S) (12)

The following theorem addresses the converse problem of determining a self-similar set
from a collection of similitudes.

THEOREM 10.12.1 If T1, T2, T3, . . . , Tk are contracting similitudes with the same scale
factor, then there is a unique nonempty closed and bounded set S in the Euclidean plane
such that

S = T1(S) ∪ T2(S) ∪ T3(S) ∪ · · · ∪ Tk(S)

Furthermore, if the sets T1(S), T2(S), T3(S), . . . , Tk(S) are nonoverlapping, then S is
self-similar.

Algorithms for Generating
Fractals

In general, there is no simple way to obtain the set S in the preceding theorem directly.
We now describe an iterative procedure that will determine S from the similitudes that
define it. We first give an example of the procedure and then give an algorithm for the
general case.

EXAMPLE 11 Sierpinski Carpet

Figure 10.12.15 shows the unit square region S0 in the xy-plane, which will serve as
an “initial” set for an iterative procedure for the construction of the Sierpinski carpet.
The set S1 in the figure is the result of mapping S0 with each of the eight similitudes Ti

(i = 1, 2, . . . , 8) in (8) that determine the Sierpinski carpet. It consists of eight square
regions, each of side length 1

3 , surrounding an empty middle square. Next we apply the
eight similitudes to S1 and arrive at the set S2. Similarly, applying the eight similitudes
to S2 results in the set S3. It we continue this process indefinitely, the sequence of sets
S1, S2, S3, . . . will “converge” to a set S, which is the Sierpinski carpet.
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Figure 10.12.15

S0 S1 S2

S3 S4 S

(0, 0)

(0, 1)
(1, 1)

(1, 0)

y

x

Remark Although we should properly give a definition of what it means for a sequence of sets
to “converge” to a given set, an intuitive interpretation will suffice in this introductory treatment.

Although we started in Figure 10.12.15 with the unit square region to arrive at the
Sierpinski carpet, we could have started with any nonempty set S0. The only restriction
is that the set S0 be closed and bounded. For example, if we start with the particular
set S0 shown in Figure 10.12.16, then S1 is the set obtained by applying each of the eight

Figure 10.12.16

S0 S1 S2

S3 S4 S

(0, 0)

(0, 1)

(1, 0)

y

x
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similitudes in (8). Applying the eight similitudes to S1 results in the set S2. As before,
applying the eight similitudes indefinitely yields the Sierpinski carpet S as the limiting
set.

The general algorithm illustrated in the preceding example is as follows: Let T1, T2,

T3, . . . , Tk be contracting similitudes with the same scale factor, and for an arbitrary
set Q in R2, define the set J(Q) by

J(Q) = T1(Q) ∪ T2(Q) ∪ T3(Q) ∪ · · · ∪ Tk(Q)

The following algorithm generates a sequence of sets S0, S1, . . . , Sn, . . . that converges
to the set S in Theorem 10.12.1.

Algorithm 1

Step 0. Choose an arbitrary nonempty closed and bounded set S0 in R2.

Step 1. Compute S1 = J(S0).

Step 2. Compute S2 = J(S1).

Step 3. Compute S3 = J(S2).
...

Step n.Compute Sn = J(Sn−1).
...

EXAMPLE 12 SierpinskiTriangle

Let us construct the Sierpinski triangle determined by the three similitudes given in (10).
The corresponding set mapping is J(Q) = T1(Q) ∪ T2(Q) ∪ T3(Q). Figure 10.12.17
shows an arbitrary closed and bounded set S0; the first four iterates S1, S2, S3, S4; and
the limiting set S (the Sierpinski triangle).

S0 S1 S2

S3 S4 S

(0, 0)

(0, 1)

(1, 0)

y

x

Figure 10.12.17
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EXAMPLE 13 Using Algorithm 1

Consider the following two similitudes:

T1

([
x

y

])
= 1

2

[
1 0

0 1

]

T2

([
x

y

])
= 1

2

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
+
[
.3

.3

]
The actions of these two similitudes on the unit squareU are illustrated in Figure 10.12.18.
Here, the rotation angle θ is a parameter that we will vary to generate different self-
similar sets. The self-similar sets determined by these two similitudes are shown in
Figure 10.12.19 for various values of θ . For simplicity, we have not drawn the xy-axes,
but in each case the origin is the lower left point of the set. These sets were generated on
a computer using Algorithm 1 for the various values of θ . Because k = 2 and s = 1

2 , it
follows from (2) that the Hausdorff dimension of these sets for any value of θ is 1. It can
be shown that the topological dimension of these sets is 1 for θ = 0 and 0 for all other
values of θ . It follows that the self-similar set for θ = 0 is not a fractal [it is the straight
line segment from (0, 0) to (.6, .6)], while the self-similar sets for all other values of θ are
fractals. In particular, they are examples of fractals with integer Hausdorff dimension.

Figure 10.12.18 (a) (b)

(0, 0)

(0, 1) (1, 1)

(.3, .3)

U

(1, 0)

y

x

y

x

θ

(0, 0) (   , 0)

(0,   )

T1(U)

T2(U)
1
2

1
2

1
2

Figure 10.12.19

(0, 0)

(.6, .6)

θ = 60° θ = 50° θ = 40° θ = 30° θ = 20° θ = 10° θ = 0°

A Monte Carlo Approach The set-mapping approach of constructing self-similar sets described in Algorithm 1 is
rather time-consuming on a computer because the similitudes involved must be applied
to each of the many computer screen pixels in the successive iterated sets. In 1985 Michael
Barnsley described an alternative, more practical method of generating a self-similar set
defined through its similitudes. It is a so-calledMonteCarlomethod that takes advantage
of probability theory. Barnsley refers to it as the Random Iteration Algorithm.

Let T1, T2, T3, . . . , Tk be contracting similitudes with the same scale factor. The
following algorithm generates a sequence of points[

x0

y0

]
,

[
x1

y1

]
, . . . ,

[
xn

yn

]
, . . .

that collectively converge to the set S in Theorem 10.12.1.
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Algorithm 2

Step 0. Choose an arbitrary point

[
x0

y0

]
in S.

Step 1. Choose one of the k similitudes at random, say Tk1 , and compute[
x1

y1

]
= Tk1

([
x0

y0

])
Step 2. Choose one of the k similitudes at random, say Tk2 , and compute[

x2

y2

]
= Tk2

([
x1

y1

])
...

Step n.Choose one of the k similitudes at random, say Tkn
, and compute[

xn

yn

]
= Tkn

([
xn−1

yn−1

])
...

On a computer screen the pixels corresponding to the points generated by this algorithm
will fill out the pixel representation of the limiting set S.

Figure 10.12.20 shows four stages of the Random Iteration Algorithm that generate

the Sierpinski carpet, starting with the initial point

[
0

0

]
.

5000 iterations 15,000 iterations 45,000 iterations 100,000 iterations

Figure 10.12.20

Remark Although Step 0 in the preceding algorithm requires the selection of an initial point in
the set S, which may not be known in advance, this is not a serious problem. In practice, one can
usually start with any point in R2 and after a few iterations (say ten or so), the point generated
will be sufficiently close to S that the algorithm will work correctly from that point on.

More General Fractals So far, we have discussed fractals that are self-similar sets according to the definition
of a self-similar set in R2. However, Theorem 10.12.1 remains true if the similitudes
T1, T2, . . . , Tk are replaced by more general transformations, called contracting affine
transformations. An affine transformation is defined as follows:

DEFINITION 5 An affine transformation is a mapping of R2 into R2 of the form

T

([
x

y

])
=
[
a b

c d

] [
x

y

]
+
[

e

f

]
where a, b, c, d, e, and f are scalars.
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Figure 10.12.21 shows how an affine transformation maps the unit square U onto a

(a)  Unit square

(b)  Unit square after
affine transformation

(0, 0)

(0, 1) (1, 1)

U

(1, 0)

y

x

y

x

T(U)

(e, f )

(a + e, c + f )

(b + e, d + f )

(a + b + e, c + d + f )

Figure 10.12.21

parallelogram T (U). An affine transformation is said to be contracting if the Euclidean
distance between any two points in the plane is strictly decreased after the two points
are mapped by the transformation. It can be shown that any k contracting affine trans-
formations T1, T2, . . . , Tk determine a unique closed and bounded set S satisfying the
equation

S = T1(S) ∪ T2(S) ∪ T3(S) ∪ · · · ∪ Tk(S) (13)

Equation (13) has the same form as Equation (12), which we used to find self-similar
sets. Although Equation (13), which uses contracting affine transformations, does not
determine a self-similar set S, the set it does determine has many of the features of self-
similar sets. For example, Figure 10.12.22 shows how a set in the plane resembling a fern
(an example made famous by Barnsley) can be generated through four contracting affine
transformations. Note that the middle fern is the slightly overlapping union of the four
smaller affine-image ferns surrounding it. Note also how T3, because the determinant of
its matrix part is zero, maps the entire fern onto the small straight line segment between
the points (.50, 0) and (.50, .16). Figure 10.12.22 contains a wealth of information and
should be studied carefully.

Figure 10.12.22

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(.400, .045)

(.600, .275)(.140, .265)

(.340, .495)

(.115, 1.030)

(.075, .180)

(.965, .990)

(.925, .140)

(.705, .414)

(.855, .154)

(.575, ––.086)
(.50, 0)

(.50, .16)

x
y

x
y

.575
–.086

T4 = ––.15
.26

.28

.24
+(   )x

y
x
y

.50
0

T3 = 0
0

0
.16

+(   )

x
y

x
y

.075

.180
T2 = .85

––.04
.04
.85

+(   )x
y

x
y

.400

.045
T1 = .20

.23
––.26

.22
+(   )

(.425, .174)

Michael Barnsley has applied the above theory to the field of data compression and
transmission. The fern, for example, is completely determined by the four affine trans-
formations T1, T2, T3, T4. These four transformations, in turn, are determined by the 24
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numbers given in Figure 10.12.22 defining their corresponding values of a, b, c, d, e, and
f . In other words, these 24 numbers completely encode the picture of the fern. Storing
these 24 numbers in a computer requires considerably less memory space than storing a
pixel-by-pixel description of the fern. In principle, any picture represented by a pixel map
on a computer screen can be described through a finite number of affine transformations,
although it is not easy to determine which transformations to use. Nevertheless, once
encoded, the affine transformations generally require several orders of magnitude less
computer memory than a pixel-by-pixel description of the pixel map.

FURTHER
READINGS

Readers interested in learning more about fractals are referred to the following books, the first of
which elaborates on the linear transformation approach of this section.

1. MICHAEL BARNSLEY, Fractals Everywhere (New York: Academic Press, 1993).

2. BENOIT B. MANDELBROT, The Fractal Geometry of Nature (New York: W. H. Freeman, 1982).

3. HEINZ-OTTO PEITGEN AND P. H. RICHTER,TheBeauty of Fractals (New York: Springer-Verlag,
1986).

4. HEINZ-OTTO PEITGEN AND DIETMAR SAUPE,TheScienceofFractal Images (New York: Springer-
Verlag, 2011).

Exercise Set 10.12
1. The self-similar set in Figure Ex-1 has the sizes indicated.

Given that its lower left corner is situated at the origin of the
xy-plane, find the similitudes that determine the set. What is
its Hausdorff dimension? Is it a fractal?

1
1
25

1
25

1

Figure Ex-1

2. Find the Hausdorff dimension of the self-similar set shown
in Figure Ex-2. Use a ruler to measure the figure and deter-
mine an approximate value of the scale factor s. What are the
rotation angles of the similitudes determining this set?

Figure Ex-2

3. Each of the 12 self-similar sets in Figure Ex-3 results from
three similitudes with scale factor of 1

2 , and so all have Haus-
dorff dimension ln 3/ ln 2 = 1.584 . . . . The rotation angles of
the three similitudes are all multiples of 90◦. Find these rota-
tion angles for each set and express them as a triplet of integers
(n1, n2, n3), where ni is the corresponding integer multiple of
90◦ in the order upper right, lower left, lower right. For exam-
ple, the first set (the Sierpinski triangle) generates the triplet
(0, 0, 0).

Figure Ex-3
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4. For each of the self-similar sets in Figure Ex-4, find: (i) the
scale factor s of the similitudes describing the set; (ii) the rota-
tion angles θ of all similitudes describing the set (all rotation
angles are multiples of 90◦); and (iii) the Hausdorff dimension
of the set. Which of the sets are fractals and why?

(a) (b)

(c) (d)

Figure Ex-4

5. Show that of the four affine transformations shown in Fig-
ure 10.12.22, only the transformation T2 is a similitude. De-
termine its scale factor s and rotation angle θ .

6. Find the coordinates of the tip of the fern in Figure 10.12.22.
[Hint: The transformation T2 maps the tip of the fern to itself.]

7. The square in Figure 10.12.7a was expressed as the union of 4
nonoverlapping squares as in Figure 10.12.7b. Suppose that it
is expressed instead as the union of 16 nonoverlapping squares.
Verify that its Hausdorff dimension is still 2, as determined by
Equation (2).

8. Show that the four similitudes

T1

([
x

y

])
= 3

4

[
1 0

0 1

][
x

y

]

T2

([
x

y

])
= 3

4

[
1 0

0 1

][
x

y

]
+
[

1
4

0

]

T3

([
x

y

])
= 3

4

[
1 0

0 1

][
x

y

]
+
[

0
1
4

]

T4

([
x

y

])
= 3

4

[
1 0

0 1

][
x

y

]
+
[

1
4
1
4

]

express the unit square as the union of four overlapping
squares. Evaluate the right-hand side of Equation (2) for the
values of k and s determined by these similitudes, and show
that the result is not the correct value of the Hausdorff di-
mension of the unit square. [Note: This exercise shows the
necessity of the nonoverlapping condition in the definition of
a self-similar set and its Hausdorff dimension.]

9. All of the results in this section can be extended to Rn. Com-
pute the Hausdorff dimension of the unit cube in R3 (see Fig-
ure Ex-9). Given that the topological dimension of the unit
cube is 3, determine whether it is a fractal. [Hint: Express the
unit cube as the union of eight smaller congruent nonoverlap-
ping cubes.]

z

y

x

1

1

1

Figure Ex-9

10. The set in R3 in Figure Ex-10 is called the Menger sponge.
It is a self-similar set obtained by drilling out certain square
holes from the unit cube. Note that each face of the Menger
sponge is a Sierpinski carpet and that the holes in the Sierpin-
ski carpet now run all the way through the Menger sponge.
Determine the values of k and s for the Menger sponge and
find its Hausdorff dimension. Is the Menger sponge a fractal?

z

y

x

Figure Ex-10
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11. The two similitudes

T1

([
x

y

])
= 1

3

[
1 0

0 1

][
x

y

]
and

T2

([
x

y

])
= 1

3

[
1 0

0 1

][
x

y

]
+
[

2
3

0

]

determine a fractal known as theCantor set. Starting with the
unit square region U as an initial set, sketch the first four sets
that Algorithm 1 determines. Also, find the Hausdorff dimen-
sion of the Cantor set. (This famous set was the first example
that Hausdorff gave in his 1919 paper of a set whose Hausdorff
dimension is not equal to its topological dimension.)

12. Compute the areas of the sets S0, S1, S2, S3, and S4 in Fig-
ure 10.12.15.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Use similitudes of the form

Ti

⎛
⎜⎝
⎡
⎢⎣x

y

z

⎤
⎥⎦
⎞
⎟⎠ = 1

3

⎡
⎢⎣1 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣x

y

z

⎤
⎥⎦+

⎡
⎢⎣ai

bi

ci

⎤
⎥⎦

to show that the Menger sponge (see Exercise 10) is the set S sat-
isfying

S =
20⋃

i=1

Ti(S)

for appropriately chosen similitudes Ti (for i = 1, 2, 3, . . . , 20).
Determine these similitudes by determining the collection of 3 × 1
matrices ⎧⎪⎨

⎪⎩
⎡
⎢⎣ai

bi

ci

⎤
⎥⎦
∣∣∣∣∣∣∣ for i = 1, 2, 3, . . . , 20

⎫⎪⎬
⎪⎭

T2. Generalize the ideas involved in the Cantor set (in R1), the
Sierpinski carpet (in R2), and the Menger sponge (in R3) to Rn by
considering the set S satisfying

S =
mn⋃
i=1

Ti(S)

with

Ti

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...
xn

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

a1i

a2i

a3i
...

ani

⎤
⎥⎥⎥⎥⎥⎥⎦

where each aki equals 0, 1
3 , or 2

3 , and no two of them ever equal 1
3

at the same time. Use a computer to construct the set⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

a1i

a2i

a3i
...

ani

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
for i = 1, 2, 3, . . . , mn

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

thereby determining the value of mn for n = 2, 3, 4. Then develop
an expression for mn.

10.13 Chaos
In this section we use a map of the unit square in the xy-plane onto itself to describe the
concept of a chaotic mapping.

PREREQUISITES: Geometry of Linear Operators on R2 (Section 4.11)
Eigenvalues and Eigenvectors
Intuitive Understanding of Limits and Continuity

Chaos The word chaos was first used in a mathematical sense in 1975 by Tien-Yien Li and
James Yorke in a paper entitled “Period Three Implies Chaos.” The term is now used to
describe the behavior of certain mathematical mappings and physical phenomena that
at first glance seem to behave in a random or disorderly fashion but actually have an
underlying element of order (examples include random-number generation, shuffling
cards, cardiac arrhythmia, fluttering airplane wings, changes in the red spot of Jupiter,
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and deviations in the orbit of Pluto). In this section we discuss a particular chaotic
mapping called Arnold’s cat map, after the Russian mathematician Vladimir I. Arnold
who first described it using a diagram of a cat.

Arnold’s Cat Map To describe Arnold’s cat map, we need a few ideas about modular arithmetic. If x is a
real number, then the notation x mod 1 denotes the unique number in the interval [0, 1)
that differs from x by an integer. For example,

2.3 mod 1 = 0.3, 0.9 mod 1 = 0.9, −3.7 mod 1 = 0.3, 2.0 mod 1 = 0

Note that if x is a nonnegative number, then x mod 1 is simply the fractional part of
x. If (x, y) is an ordered pair of real numbers, then the notation (x, y) mod 1 denotes
(x mod 1, y mod 1). For example,

(2.3,−7.9) mod 1 = (0.3, 0.1)

Observe that for every real number x, the point x mod 1 lies in the unit interval [0, 1)
and that for every ordered pair (x, y), the point (x, y) mod 1 lies in the unit square

S = {(x, y) | 0 ≤ x < 1, 0 ≤ y < 1}
Also observe that the upper boundary and the right-hand boundary of the square are
not included in S.

Arnold’s cat map is the transformation �: R2 → R2 defined by the formula

�: (x, y) → (x + y, x + 2y) mod 1

or, in matrix notation,

�

([
x

y

])
=
[

1 1

1 2

] [
x

y

]
mod 1 (1)

To understand the geometry of Arnold’s cat map, it is helpful to write (1) in the factored
form

�

([
x

y

])
=
[

1 0

1 1

] [
1 1

0 1

] [
x

y

]
mod 1

which expresses Arnold’s cat map as the composition of a shear in the x-direction with
factor 1, followed by a shear in the y-direction with factor 1. Because the computations
are performed mod 1, � maps all points of R2 into the unit square S.

We will illustrate the effect of Arnold’s cat map on the unit square S, which is shaded
in Figure 10.13.1a and contains a picture of a cat. It can be shown that it does not matter
whether the mod 1 computations are carried out after each shear or at the very end. We
will discuss both methods, first performing them at the end. The steps are as follows:

1

2

3

210

1

2

3

210

1

2

3

210

1

2

3

210

1

2

3

210

Step 2:
(x, y) → (x, x + y)

Step 1:
(x, y) → (x + y, y)

Step 3:
(x, y) → (x, y) mod 1

(a) (b) (c) (d)

Figure 10.13.1
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Step 1. Shear in the x-direction with factor 1 (Figure 10.13.1b):

(x, y) → (x + y, y)

or in matrix notation [
1 1

0 1

] [
x

y

]
=
[
x + y

y

]
Step 2. Shear in the y-direction with factor 1 (Figure 10.13.1c):

(x, y) → (x, x + y)

or, in matrix notation, [
1 0

1 1

] [
x

y

]
=
[

x

x + y

]
Step 3. Reassembly into S (Figure 10.13.1d ):

(x, y) → (x, y) mod 1

The geometric effect of the mod 1 arithmetic is to break up the parallelogram in Fig-
ure 10.13.1c and reassemble the pieces of S as shown in Figure 10.13.1d.

For computer implementation, it is more convenient to perform the mod 1 arithmetic
at each step, rather than at the end. With this approach there is a reassembly at each
step, but the net effect is the same. The steps are as follows:

Step 1. Shear in the x-direction with factor 1, followed by a reassembly into S (Figure
10.13.2b):

(x, y) → (x + y, y) mod 1

Step 2. Shear in the y-direction with factor 1, followed by a reassembly into S (Figure
10.13.2c):

(x, y) → (x, x + y) mod 1

1

2

210

1

2

210

1

2

210

1

2

210

1

2

210

Step 1: Step 2:

(x, y) → (x + y, y) (x, y) → (x, y) mod 1

(x, y) → (x, x + y)

(x, y) → (x, y) mod 1

(a) (b) (c)

Figure 10.13.2

Repeated Mappings Chaotic mappings such as Arnold’s cat map usually arise in physical models in which an
operation is performed repeatedly. For example, cards are mixed by repeated shuffles,
paint is mixed by repeated stirs, water in a tidal basin is mixed by repeated tidal changes,
and so forth. Thus, we are interested in examining the effect on S of repeated applications
(or iterations) of Arnold’s cat map. Figure 10.13.3, which was generated on a computer,
shows the effect of 25 iterations of Arnold’s cat map on the cat in the unit square S. Two
interesting phenomena occur:

• The cat returns to its original form at the 25th iteration.

• At some of the intermediate iterations, the cat is decomposed into streaks that seem
to have a specific direction.

Much of the remainder of this section is devoted to explaining these phenomena.
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Figure 10.13.3

Periodic Points Our first goal is to explain why the cat in Figure 10.13.3 returns to its original configu-
ration at the 25th iteration. For this purpose it will be helpful to think of a picture in the
xy-plane as an assignment of colors to the points in the plane. For pictures generated on
a computer screen or other digital device, hardware limitations require that a picture be
broken up into discrete squares, called pixels. For example, in the computer-generated
pictures in Figure 10.13.3 the unit square S is divided into a grid with 101 pixels on a
side for a total of 10,201 pixels, each of which is black or white (Figure 10.13.4). An
assignment of colors to pixels to create a picture is called a pixel map.

Figure 10.13.4

Enlarged view of  cat's face

showing individual pixels
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As shown in Figure 10.13.5, each pixel in S can be assigned a unique pair of coor-
dinates of the form (m/101, n/101) that identifies its lower left-hand corner, where m

and n are integers in the range 0, 1, 2, . . . , 100. We call these points pixel points because
each such point identifies a unique pixel. Instead of restricting the discussion to the case
where S is subdivided into an array with 101 pixels on a side, let us consider the more
general case where there are p pixels per side. Thus, each pixel map in S consists of p2

pixels uniformly spaced 1/p units apart in both the x- and the y-directions. The pixel
points in S have coordinates of the form (m/p, n/p), where m and n are integers ranging
from 0 to p − 1.

Figure 10.13.5
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Under Arnold’s cat map each pixel point of S is transformed into another pixel point
of S. To see why this is so, observe that the image of the pixel point (m/p, n/p) under
� is given in matrix form by

�

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

m

p

n

p

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

[
1 1

1 2

]⎡⎢⎢⎢⎣
m

p

n

p

⎤
⎥⎥⎥⎦mod 1 =

⎡
⎢⎢⎢⎣

m + n

p

m + 2n

p

⎤
⎥⎥⎥⎦mod 1 (2)

The ordered pair ((m + n)/p, (m + 2n)/p) mod 1 is of the form (m′/p, n′/p), where
m′ and n′ lie in the range 0, 1, 2, . . . , p − 1. Specifically, m′ and n′ are the remainders
when m + n and m + 2n are divided by p, respectively. Consequently, each point in S

of the form (m/p, n/p) is mapped onto another point of the same form.
Because Arnold’s cat map transforms every pixel point of S into another pixel point of

S, and because there are only p2 different pixel points in S, it follows that any given pixel
point must return to its original position after at most p2 iterations of Arnold’s cat map.

EXAMPLE 1 Using Formula (2)

If p = 76, then (2) becomes

�

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

m

76
n

76

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

m + n

76
m + 2n

76

⎤
⎥⎥⎥⎦mod 1

In this case the successive iterates of the point
(

27
76 ,

58
76

)
are

0 1 2 3 4 5 6 7 8
27
76
58
76

9
76
67
76

0
76
67
76

67
76
58
76

49
76
31
76

4
76
35
76

39
76
74
76

37
76
35
76

72
76
31
76
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(verify). Because the point returns to its initial position on the ninth application of
Arnold’s cat map (but no sooner), the point is said to have period 9, and the set of nine
distinct iterates of the point is called a 9-cycle. Figure 10.13.6 shows this 9-cycle with
the initial point labeled 0 and its successive iterates labeled accordingly.0

1
2

8

7

6

5
4

3

Figure 10.13.6

In general, a point that returns to its initial position after n applications of Arnold’s
cat map, but does not return with fewer than n applications, is said to have period n, and
its set of n distinct iterates is called an n-cycle. Arnold’s cat map maps (0, 0) into (0, 0),
so this point has period 1. Points with period 1 are also called fixed points. We leave it as
an exercise (Exercise 11) to show that (0, 0) is the only fixed point of Arnold’s cat map.

PeriodVersus PixelWidth If P1 and P2 are points with periods q1 and q2, respectively, then P1 returns to its
initial position in q1 iterations (but no sooner), and P2 returns to its initial position in
q2 iterations (but no sooner); thus, both points return to their initial positions in any
number of iterations that is a multiple of both q1 and q2. In general, for a pixel map with
p2 pixel points of the form (m/p, n/p), we let �(p) denote the least common multiple
of the periods of all the pixel points in the map [i.e., �(p) is the smallest integer that
is divisible by all of the periods]. It follows that the pixel map will return to its initial
configuration in �(p) iterations of Arnold’s cat map (but no sooner). For this reason, we
call �(p) the period of the pixel map. In Exercise 4 we ask you to show that if p = 101,
then all pixel points have period 1, 5, or 25, so �(101) = 25. This explains why the cat
in Figure 10.13.3 returned to its initial configuration in 25 iterations.

Figure 10.13.7 shows how the period of a pixel map varies with p. Although the
general tendency is for the period to increase as p increases, there is a surprising amount
of irregularity in the graph. Indeed, there is no simple function that specifies this rela-
tionship (see Exercise 1).

Figure 10.13.7
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Although a pixel map with p pixels on a side does not return to its initial config-
uration until �(p) iterations have occurred, various unexpected things can occur at
intermediate iterations. For example, Figure 10.13.8 shows a pixel map with p = 250 of
the famous Hungarian-American mathematician John von Neumann. It can be shown
that �(250) = 750; hence, the pixel map will return to its initial configuration after
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750 iterations of Arnold’s cat map (but no sooner). However, after 375 iterations the
pixel map is turned upside down, and after another 375 iterations (for a total of 750)
the pixel map is returned to its initial configuration. Moreover, there are so many pixel
points with periods that divide 750 that multiple ghostlike images of the original likeness
occur at intermediate iterations; at 195 iterations numerous miniatures of the original
likeness occur in diagonal rows.

250 pixels

5 iterations

25
0 

pi
xe

ls

10 iterations 75 iterations

195 iterations 250 iterations 375 iterations125 iterations

Figure 10.13.8 [Image: Photographer unknown. Courtesy of The Shelby White and Leon Levy Archives Center,
Institute for Advanced Study, Princeton, NJ, USA]

TheTiled Plane Our next objective is to explain the cause of the linear streaks that occur in Figure 10.13.3.
For this purpose it will be helpful to view Arnold’s cat map another way. As defined,
Arnold’s cat map is not a linear transformation because of the mod 1 arithmetic. How-
ever, there is an alternative way of defining Arnold’s cat map that avoids the mod 1
arithmetic and results in a linear transformation. For this purpose, imagine that the
unit square S with its picture of the cat is a “tile,” and suppose that the entire plane is
covered with such tiles, as in Figure 10.13.9. We say that the xy-plane has been tiled
with the unit square. If we apply the matrix transformation in (1) to the entire tiled
plane without performing the mod 1 arithmetic, then it can be shown that the portion
of the image within S will be identical to the image that we obtained using the mod 1
arithmetic (Figure 10.13.9). In short, the tiling results in the same pixel map in S as the
mod 1 arithmetic, but in the tiled case Arnold’s cat map is a linear transformation.

It is important to understand, however, that tiling and mod 1 arithmetic produce
periodicity in different ways. If a pixel map in S has period n, then in the case of mod 1
arithmetic, each point returns to its original position at the end of n iterations. In the
case of tiling, points need not return to their original positions; rather, each point is
replaced by a point of the same color at the end of n iterations.
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Step 1:
(x, y) → (x + y, y)

Step 2:
(x, y) → (x, x + y)

Step 3:
(x, y) → (x, y) mod 1

Figure 10.13.9

Properties of Arnold’s Cat
Map

To understand the cause of the streaks in Figure 10.13.3, think of Arnold’s cat map as a
linear transformation on the tiled plane. Observe that the matrix

C =
[

1 1

1 2

]
that defines Arnold’s cat map is symmetric and has a determinant of 1. The fact that the
determinant is 1 means that multiplication by this matrix preserves areas; that is, the area
of any figure in the plane and the area of its image are the same. This is also true for figures
in S in the case of mod 1 arithmetic, since the effect of the mod 1 arithmetic is to cut up
the figure and reassemble the pieces without any overlap, as shown in Figure 10.13.1d.
Thus, in Figure 10.13.3 the area of the cat (whatever it is) is the same as the total area of
the blotches in each iteration.

The fact that the matrix is symmetric means that its eigenvalues are real and the
corresponding eigenvectors are perpendicular. We leave it for you to show that the
eigenvalues and corresponding eigenvectors of C are

λ1 = 3 +√
5

2
= 2.6180 . . . , λ2 = 3 −√

5

2
= 0.3819 . . . ,

v1 =
⎡
⎢⎣ 1

1 +√
5

2

⎤
⎥⎦ =

[
1

1.6180 . . .

]
, v2 =

⎡
⎢⎣−1 −√

5

2

1

⎤
⎥⎦ =

[−1.6180 . . .

1

]

For each application of Arnold’s cat map, the eigenvalue λ1 causes a stretching in the
direction of the eigenvector v1 by a factor of 2.6180 . . . , and the eigenvalue λ2 causes
a compression in the direction of the eigenvector v2 by a factor of 0.3819 . . . . Fig-
ure 10.13.10 shows a square centered at the origin whose sides are parallel to the two
eigenvector directions. Under the above mapping, this square is deformed into the rect-
angle whose sides are also parallel to the two eigenvector directions. The area of the
square and rectangle are the same.

To explain the cause of the streaks in Figure 10.13.3, consider S to be part of the
tiled plane, and let p be a point of S with period n. Because we are considering tiling,
there is a point q in the plane with the same color as p that on successive iterations moves
toward the position initially occupied by p, reaching that position on the nth iteration.
This point is q = (A−1)np = A−np, since

Anq = An(A−np) = p

Thus, with successive iterations, points of S flow away from their initial positions, while
at the same time other points in the plane (with corresponding colors) flow toward those
initial positions, completing their trip on the final iteration of the cycle. Figure 10.13.11
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illustrates this in the case where n = 4, q = (− 8
3 ,

5
3

)
, and p = A4q = (

1
3 ,

2
3

)
. Note that

p mod 1 = q mod 1 = (
1
3 ,

2
3

)
, so both points occupy the same positions on their respec-

tive tiles. The outgoing point moves in the general direction of the eigenvector v1, as
indicated by the arrows in Figure 10.13.11, and the incoming point moves in the gen-
eral direction of eigenvector v2. It is the “flow lines” in the general directions of the
eigenvectors that form the streaks in Figure 10.13.3.

Figure 10.13.10 1 2 30–1–2–3

–2

–1

0

1

2

3

v2 =

1

–1 – 5
2

v1 =
1

1 + 5
2

Figure 10.13.11 20–2–4 4

0

2

4

–2

–4

q

p = A4q

Nonperiodic Points Thus far we have considered the effect of Arnold’s cat map on pixel points of the form
(m/p, n/p) for an arbitrary positive integer p. We know that all such points are periodic.
We now consider the effect of Arnold’s cat map on an arbitrary point (a, b) in S. We
classify such points as rational if the coordinates a and b are both rational numbers,
and irrational if at least one of the coordinates is irrational. Every rational point is
periodic, since it is a pixel point for a suitable choice of p. For example, the rational
point (r1/s1, r2/s2) can be written as (r1s2/s1s2, r2s1/s1s2), so it is a pixel point with
p = s1s2. It can be shown (Exercise 13) that the converse is also true: Every periodic
point must be a rational point.

It follows from the preceding discussion that the irrational points in S are nonperi-
odic, so that successive iterates of an irrational point (x0, y0) in S must all be distinct
points in S. Figure 10.13.12, which was computer generated, shows an irrational point
and selected iterates up to 100,000. For the particular irrational point that we selected,
the iterates do not seem to cluster in any particular region of S; rather, they appear to
be spread throughout S, becoming denser with successive iterations.

The behavior of the iterates in Figure 10.13.12 is sufficiently important that there is
some terminology associated with it. We say that a set D of points in S is dense in S
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if every circle centered at any point of S encloses points of D, no matter how small the
radius of the circle is taken (Figure 10.13.13). It can be shown that the rational points
are dense in S and the iterates of most (but not all) of the irrational points are dense in S.

Initial point

1000 iterations 2000 iterations 5000 iterations

100,000 iterations50,000 iterations25,000 iterations10,000 iterations

Figure 10.13.12

Figure 10.13.13

Arbitrary circle in S

Points of set D

Definition of Chaos We know that under Arnold’s cat map, the rational points of S are periodic and dense in
S and that some but not all of the irrational points have iterates that are dense in S. These
are the basic ingredients of chaos. There are several definitions of chaos in current use, but
the following one, which is an outgrowth of a definition introduced by Robert L. Devaney
in 1986 in his bookAn Introduction toChaoticDynamical Systems (Benjamin/Cummings
Publishing Company), is most closely related to our work.

DEFINITION 1 A mapping T of S onto itself is said to be chaotic if:

(i) S contains a dense set of periodic points of the mapping T .

(ii) There is a point in S whose iterates under T are dense in S.
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Thus Arnold’s cat map satisfies the definition of a chaotic mapping. What is noteworthy
about this definition is that a chaotic mapping exhibits an element of order and an
element of disorder—the periodic points move regularly in cycles, but the points with
dense iterates move irregularly, often obscuring the regularity of the periodic points.
This fusion of order and disorder characterizes chaotic mappings.

Dynamical Systems Chaotic mappings arise in the study ofdynamical systems. Informally stated, a dynamical
system can be viewed as a system that has a specific state or configuration at each point of
time but that changes its state with time. Chemical systems, ecological systems, electrical
systems, biological systems, economic systems, and so forth can be looked at in this way.
In a discrete-time dynamical system, the state changes at discrete points of time rather
than at each instant. In a discrete-time chaotic dynamical system, each state results from
a chaotic mapping of the preceding state. For example, if one imagines that Arnold’s cat
map is applied at discrete points of time, then the pixel maps in Figure 10.13.3 can be
viewed as the evolution of a discrete-time chaotic dynamical system from some initial
set of states (each point of the cat is a single initial state) to successive sets of states.

One of the fundamental problems in the study of dynamical systems is to predict
future states of the system from a known initial state. In practice, however, the exact
initial state is rarely known because of errors in the devices used to measure the initial
state. It was believed at one time that if the measuring devices were sufficiently accurate
and the computers used to perform the iteration were sufficiently powerful, then one
could predict the future states of the system to any degree of accuracy. But the discovery
of chaotic systems shattered this belief because it was found that for such systems the
slightest error in measuring the initial state or in the computation of the iterates becomes
magnified exponentially, thereby preventing an accurate prediction of future states. Let
us demonstrate this sensitivity to initial conditions with Arnold’s cat map.

Suppose that P0 is a point in the xy-plane whose exact coordinates are (0.77837,
0.70904). A measurement error of 0.00001 is made in the y-coordinate, such that the
point is thought to be located at (0.77837, 0.70905), which we denote by Q0. Both P0

and Q0 are pixel points with p = 100,000 (why?), and thus, since �(100,000) = 75,000,
both return to their initial positions after 75,000 iterations. In Figure 10.13.14 we show
the first 50 iterates of P0 under Arnold’s cat map as crosses and the first 50 iterates of
Q0 as circles. Although P0 and Q0 are close enough that their symbols overlap initially,
only their first eight iterates have overlapping symbols; from the ninth iteration on their
iterates follow divergent paths.

It is possible to quantify the growth of the error from the eigenvalues and eigenvectors
of Arnold’s cat map. For this purpose we will think of Arnold’s cat map as a linear
transformation on the tiled plane. Recall from Figure 10.13.10 and the related discussion
that the projected distance between two points in S in the direction of the eigenvector v1

increases by a factor of 2.6180 . . . (= λ1)with each iteration (Figure 10.13.15). After nine
iterations this projected distance increases by a factor of (2.6180 . . .)9 = 5777.99 . . . ,

and with an initial error of roughly 1/100,000 in the direction of v1, this distance is
0.05777 . . . , or about 1

17 the width of the unit square S. After 12 iterations this small
initial error grows to (2.6180 . . .)12/100,000 = 1.0368 . . . , which is greater than the
width of S. Thus, we completely lose track of the true iterates within S after 12 iterations
because of the exponential growth of the initial error.

Although sensitivity to initial conditions limits the ability to predict the future evo-
lution of dynamical systems, new techniques are presently being investigated to describe
this future evolution in alternative ways.
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Exercise Set 10.13
1. In a journal article [F. J. Dyson and H. Falk, “Period of a Dis-

crete Cat Mapping,”TheAmericanMathematicalMonthly, 99
(August–September 1992), pp. 603–614] the following results
concerning the nature of the function �(p) were established:

(i) �(p) = 3p if and only if p = 2 · 5k for k = 1, 2, . . . .

(ii) �(p) = 2p if and only if p = 5k for k = 1, 2, . . . or
p = 6 · 5k for k = 0, 1, 2, . . . .

(iii) �(p) ≤ 12p/7 for all other choices of p.

Find �(250), �(25), �(125), �(30), �(10), �(50),
�(3750), �(6), and �(5).

2. Find all the n-cycles that are subsets of the 36 points in S of
the form (m/6, n/6) with m and n in the range 0, 1, 2, 3, 4, 5.
Then find �(6).

3. (Fibonacci Shift-Register Random-Number Generator) A well-
known method of generating a sequence of “pseudorandom”
integers x0, x1, x2, x3, . . . in the interval from 0 to p − 1 is
based on the following algorithm:

(i) Pick any two integers x0 and x1 from the range
0, 1, 2, . . . , p − 1.

(ii) Set xn+1 = (xn + xn−1) mod p for n = 1, 2, . . . .

Here x mod p denotes the number in the interval from 0 to
p − 1 that differs from x by a multiple of p. For example, 35
mod 9 = 8 (because 8 = 35 − 3 · 9); 36 mod 9 = 0 (because
0 = 36 − 4 · 9); and −3 mod 9 = 6 (because
6 = −3 + 1 · 9).

(a) Generate the sequence of pseudorandom numbers that re-
sults from the choices p = 15, x0 = 3, and x1 = 7 until the
sequence starts repeating.

(b) Show that the following formula is equivalent to step (ii)
of the algorithm:[

xn+1

xn+2

]
=
[

1 1

1 2

] [
xn−1

xn

]
mod p for n = 1, 2, 3, . . .

(c) Use the formula in part (b) to generate the sequence of
vectors for the choices p = 21, x0 = 5, and x1 = 5 until
the sequence starts repeating.

Remark If we take p = 1 and pick x0 and x1 from the inter-
val [0, 1), then the above random-number generator produces
pseudorandom numbers in the interval [0, 1). The resulting
scheme is precisely Arnold’s ct map. Furthermore, if we elim-
inate the modular arithmetic in the algorithm and take x0 =
x1 = 1, then the resulting sequence of integers is the famous
Fibonacci sequence, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . , in
which each number after the first two is the sum of the pre-
ceding two numbers.

4. For C =
[

1 1

1 2

]
, it can be verified that

C25 =
[

7,778,742,049 12,586,269,025

12,586,269,025 20,365,011,074

]
It can also be verified that 12,586,269,025 is divisible by 101
and that when 7,778,742,049 and 20,365,011,074 are divided
by 101, the remainder is 1.

(a) Show that every point in S of the form (m/101, n/101)
returns to its starting position after 25 iterations under
Arnold’s cat map.

(b) Show that every point in S of the form (m/101, n/101)
has period 1, 5, or 25.

(c) Show that the point
(

1
101 , 0

)
has period greater than 5 by

iterating it five times.

(d) Show that �(101) = 25.

5. Show that for the mapping T : S → S defined by
T (x, y) = (

x + 5
12 , y

)
mod 1, every point in S is a periodic

point. Why does this show that the mapping is not chaotic?

6. An Anosov automorphism on R2 is a mapping from the unit
square S onto S of the form[

x

y

]
→

[
a b

c d

] [
x

y

]
mod 1

in which (i) a, b, c, and d are integers, (ii) the determinant
of the matrix is ±1, and (iii) the eigenvalues of the matrix



10.13 Chaos 651

do not have magnitude 1. It can be shown that all Anosov
automorphisms are chaotic mappings.

(a) Show that Arnold’s cat map is an Anosov automorphism.

(b) Which of the following are the matrices of an Anosov
automorphism?[

0 1

1 0

]
,

[
3 2

1 1

]
,

[
1 0

0 1

]
,

[
5 7

2 3

]
,

[
6 2

5 2

]
(c) Show that the following mapping of S onto S is not an

Anosov automorphism.[
x

y

]
→

[
0 1

−1 0

] [
x

y

]
mod 1

What is the geometric effect of this transformation on S?
Use your observation to show that the mapping is not a
chaotic mapping by showing that all points in S are peri-
odic points.

7. Show that Arnold’s cat map is one-to-one over the unit square
S and that its range is S.

8. Show that the inverse of Arnold’s cat map is given by

�−1(x, y) = (2x − y,−x + y) mod 1

9. Show that the unit square S can be partitioned into four tri-
angular regions on each of which Arnold’s cat map is a trans-
formation of the form[

x

y

]
→

[
1 1

1 2

] [
x

y

]
+
[
a

b

]
where a and b need not be the same for each region. [Hint:
Find the regions in S that map onto the four shaded regions
of the parallelogram in Figure 10.13.1d.]

10. If (x0, y0) is a point in S and (xn, yn) is its nth iterate under
Arnold’s cat map, show that[

xn

yn

]
=
[

1 1

1 2

]n [
x0

y0

]
mod 1

This result implies that the modular arithmetic need only be
performed once rather than after each iteration.

11. Show that (0, 0) is the only fixed point of Arnold’s cat map by
showing that the only solution of the equation[

x0

y0

]
=
[

1 1

1 2

] [
x0

y0

]
mod 1

with 0 ≤ x0 < 1 and 0 ≤ y0 < 1 is x0 = y0 = 0. [Hint: For
appropriate nonnegative integers, r and s, we can write[

x0

y0

]
=
[

1 1

1 2

] [
x0

y0

]
−
[
r

s

]
for the preceding equation.]

12. Find all 2-cycles of Arnold’s cat map by finding all solutions
of the equation [

x0

y0

]
=
[

1 1

1 2

]2 [
x0

y0

]
mod 1

with 0 ≤ x0 < 1 and 0 ≤ y0 < 1. [Hint: For appropriate non-
negative integers, r and s, we can write[

x0

y0

]
=
[

2 3

3 5

] [
x0

y0

]
−
[
r

s

]
for the preceding equation.]

13. Show that every periodic point of Arnold’s cat map must be a
rational point by showing that for all solutions of the equation[

x0

y0

]
=
[

1 1

1 2

]n [
x0

y0

]
mod 1

the numbers x0 and y0 are quotients of integers.

14. Let T be the Arnold’s cat map applied five times in a row;
that is, T = �5. Figure Ex-14 represents four successive map-
pings of T on the first image, each image having a resolution
of 101 × 101 pixels. The fifth mapping returns to the first im-
age because this cat map has a period of 25. Explain how you
might generate this particular sequence of images.

Figure Ex-14

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. The methods of Exercise 4 show that for the cat map, �(p)

is the smallest integer satisfying the equation[
1 1

1 2

]�(p)

mod p =
[

1 0

0 1

]
This suggests that one way to determine �(p) is to compute[

1 1

1 2

]n

mod p

starting with n = 1 and stopping when this produces the iden-
tity matrix. Use this idea to compute �(p) for p = 2, 3, . . . , 10.
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Compare your results to the formulas given in Exercise 1, if they
apply. What can you conjecture about[

1 1

1 2

] 1
2 �(p)

mod p

when �(p) is even?

T2. The eigenvalues and eigenvectors for the cat map matrix

C =
[

1 1

1 2

]
are

λ1 = 3 + √
5

2
, λ2 = 3 −√

5

2
,

v1 =
⎡
⎢⎣ 1

1 +√
5

2

⎤
⎥⎦, v2 =

⎡
⎢⎣ 1

1 −√
5

2

⎤
⎥⎦

Using these eigenvalues and eigenvectors, we can define

D =

⎡
⎢⎢⎢⎣

3 +√
5

2
0

0
3 −√

5

2

⎤
⎥⎥⎥⎦ and P =

⎡
⎢⎣ 1 1

1 +√
5

2

1 −√
5

2

⎤
⎥⎦

and write C = PDP−1; hence, Cn = PDnP−1. Use a computer to
show that

Cn =
⎡
⎣c

(n)
11 c

(n)
12

c
(n)
21 c

(n)
22

⎤
⎦

where

c
(n)
11 =

(
1 +√

5

2
√

5

)(
3 −√

5

2

)n

−
(

1 −√
5

2
√

5

)(
3 +√

5

2

)n

c
(n)
22 =

(
1 +√

5

2
√

5

)(
3 +√

5

2

)n

−
(

1 −√
5

2
√

5

)(
3 −√

5

2

)n

and

c
(n)
12 = c

(n)
21 = 1√

5

{(
3 +√

5

2

)n

−
(

3 −√
5

2

)n}

How can you use these results and your conclusions in Exercise
T1 to simplify the method for computing �(p)?

10.14 Cryptography
In this section we present a method of encoding and decoding messages. We also examine
modular arithmetic and show how Gaussian elimination can sometimes be used to break an
opponent’s code.

PREREQUISITES: Matrices
Gaussian Elimination
Matrix Operations
Linear Independence
Linear Transformations (Section 4.9)

Ciphers The study of encoding and decoding secret messages is called cryptography. Although
secret codes date to the earliest days of written communication, there has been a recent
surge of interest in the subject because of the need to maintain the privacy of information
transmitted over public lines of communication. In the language of cryptography, codes
are called ciphers, uncoded messages are called plaintext, and coded messages are called
ciphertext. The process of converting from plaintext to ciphertext is called enciphering,
and the reverse process of converting from ciphertext to plaintext is called deciphering.

The simplest ciphers, called substitution ciphers, are those that replace each letter of
the alphabet by a different letter. For example, in the substitution cipher

Plain A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

the plaintext letter A is replaced by D, the plaintext letter B by E, and so forth. With
this cipher the plaintext message

ROMEWAS NOT BUILT IN A DAY
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becomes
URPH ZDV QRW EXLOW LQ D GDB

Hill Ciphers A disadvantage of substitution ciphers is that they preserve the frequencies of individual
letters, making it relatively easy to break the code by statistical methods. One way to
overcome this problem is to divide the plaintext into groups of letters and encipher the
plaintext group by group, rather than one letter at a time. A system of cryptography
in which the plaintext is divided into sets of n letters, each of which is replaced by a
set of n cipher letters, is called a polygraphic system. In this section we will study a
class of polygraphic systems based on matrix transformations. [The ciphers that we will
discuss are called Hill ciphers after Lester S. Hill, who introduced them in two papers:
“Cryptography in an Algebraic Alphabet,” American Mathematical Monthly, 36 (June–
July 1929), pp. 306–312; and “Concerning Certain Linear Transformation Apparatus of
Cryptography,” American Mathematical Monthly, 38 (March 1931), pp. 135–154.]

In the discussion to follow, we assume that each plaintext and ciphertext letter except
Z is assigned the numerical value that specifies its position in the standard alphabet
(Table 1). For reasons that will become clear later, Z is assigned a value of zero.

Table 1

A

1

B

2

C

3

D

4

E

5

F

6

G

7

H

8

I

9

J

10

K

11

L

12

M

13

N

14

O

15

P

16

Q

17

R

18

S

19

T

20

U

21

V

22

W

23

X

24

Y

25

Z

0

In the simplest Hill ciphers, successive pairs of plaintext are transformed into cipher-
text by the following procedure:

Step 1. Choose a 2 × 2 matrix with integer entries

A =
[
a11 a12

a21 a22

]
to perform the encoding. Certain additional conditions on A will be imposed
later.

Step 2. Group successive plaintext letters into pairs, adding an arbitrary “dummy” letter
to fill out the last pair if the plaintext has an odd number of letters, and replace
each plaintext letter by its numerical value.

Step 3. Successively convert each plaintext pair p1p2 into a column vector

p =
[
p1

p2

]
and form the product Ap. We will call p a plaintext vector and Ap the corre-
sponding ciphertext vector.

Step 4. Convert each ciphertext vector into its alphabetic equivalent.

EXAMPLE 1 Hill Cipher of a Message

Use the matrix [
1 2

0 3

]
to obtain the Hill cipher for the plaintext message

I AM HIDING
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Solution If we group the plaintext into pairs and add the dummy letter G to fill out the
last pair, we obtain

IA MH ID IN GG

or, equivalently, from Table 1,

9 1 13 8 9 4 9 14 7 7

To encipher the pair IA, we form the matrix product[
1 2

0 3

] [
9

1

]
=
[

11

3

]
which, from Table 1, yields the ciphertext KC.

To encipher the pair MH , we form the product[
1 2

0 3

] [
13

8

]
=
[

29

24

]
(1)

However, there is a problem here, because the number 29 has no alphabet equivalent
(Table 1). To resolve this problem, we make the following agreement:

Whenever an integer greater than 25 occurs, it will be
replaced by the remainder that results when this
integer is divided by 26.

Because the remainder after division by 26 is one of the integers 0, 1, 2, . . . , 25, this
procedure will always yield an integer with an alphabet equivalent.

Thus, in (1) we replace 29 by 3, which is the remainder after dividing 29 by 26. It
now follows from Table 1 that the ciphertext for the pair MH is CX.

The computations for the remaining ciphertext vectors are[
1 2

0 3

] [
9

4

]
=
[

17

12

]
[

1 2

0 3

] [
9

14

]
=
[

37

42

]
or

[
11

16

]
[

1 2

0 3

] [
7

7

]
=
[

21

21

]
These correspond to the ciphertext pairs QL, KP , and UU , respectively. In summary,
the entire ciphertext message is

KC CX QL KP UU

which would usually be transmitted as a single string without spaces:

KCCXQLKPUU

Because the plaintext was grouped in pairs and enciphered by a 2 × 2 matrix, the
Hill cipher in Example 1 is referred to as a Hill 2-cipher. It is obviously also possible to
group the plaintext in triples and encipher by a 3 × 3 matrix with integer entries; this is
called a Hill 3-cipher. In general, for a Hill n-cipher, plaintext is grouped into sets of n

letters and enciphered by an n × n matrix with integer entries.

Modular Arithmetic In Example 1, integers greater than 25 were replaced by their remainders after division
by 26. This technique of working with remainders is at the core of a body of mathematics
calledmodular arithmetic. Because of its importance in cryptography, we will digress for
a moment to touch on some of the main ideas in this area.
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In modular arithmetic we are given a positive integer m, called the modulus, and
any two integers whose difference is an integer multiple of the modulus are regarded
as “equal” or “equivalent” with respect to the modulus. More precisely, we make the
following definition.

DEFINITION 1 If m is a positive integer and a and b are any integers, then we say that
a is equivalent to b modulo m, written

a = b (mod m)

if a − b is an integer multiple of m.

EXAMPLE 2 Various Equivalences

7 = 2 (mod 5)

19 = 3 (mod 2)

−1 = 25 (mod 26)

12 = 0 (mod 4)

For any modulus m it can be proved that every integer a is equivalent, modulo m, to
exactly one of the integers

0, 1, 2, . . . , m − 1

We call this integer the residue of a modulo m, and we write

Zm = {0, 1, 2, . . . , m − 1}
to denote the set of residues modulo m.

If a is a nonnegative integer, then its residue modulo m is simply the remainder that
results when a is divided by m. For an arbitrary integer a, the residue can be found using
the following theorem.

THEOREM 10.14.1 For any integer a and modulus m, let

R = remainder of
|a|
m

Then the residue r of a modulo m is given by

r =

⎧⎪⎨
⎪⎩

R if a ≥ 0

m − R if a < 0 and R �= 0

0 if a < 0 and R = 0

EXAMPLE 3 Residues mod 26

Find the residue modulo 26 of (a) 87, (b) −38, and (c) −26.

Solution (a) Dividing |87| = 87 by 26 yields a remainder of R = 9, so r = 9. Thus,

87 = 9 (mod 26)

Solution (b) Dividing |−38| = 38 by 26 yields a remainder of R = 12, so r = 26 − 12 =
14. Thus,

−38 = 14 (mod 26)
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Solution (c) Dividing |−26| = 26 by 26 yields a remainder of R = 0. Thus,

−26 = 0 (mod 26)

In ordinary arithmetic every nonzero number a has a reciprocal or multiplicative
inverse, denoted by a−1, such that

aa−1 = a−1a = 1

In modular arithmetic we have the following corresponding concept:

DEFINITION 2 If a is a number in Zm, then a number a−1 in Zm is called a reciprocal
or multiplicative inverse of a modulo m if aa−1 = a−1a = 1 (mod m).

It can be proved that if a and m have no common prime factors, then a has a unique
reciprocal modulo m; conversely, if a and m have a common prime factor, then a has no
reciprocal modulo m.

EXAMPLE 4 Reciprocal of 3 mod 26

The number 3 has a reciprocal modulo 26 because 3 and 26 have no common prime
factors. This reciprocal can be obtained by finding the number x in Z26 that satisfies the
modular equation

3x = 1 (mod 26)

Although there are general methods for solving such modular equations, it would take
us too far afield to study them. However, because 26 is relatively small, this equation
can be solved by trying the possible solutions, 0 to 25, one at a time. With this approach
we find that x = 9 is the solution, because

3 · 9 = 27 = 1 (mod 26)

Thus,
3−1 = 9 (mod 26)

EXAMPLE 5 A Number with No Reciprocal mod 26

The number 4 has no reciprocal modulo 26, because 4 and 26 have 2 as a common prime
factor (see Exercise 9).

For future reference, in Table 2 we provide the following reciprocals modulo 26:

Table 2 Reciprocals Modulo 26

a

a–1

1 3 5

1 9

7 9 11

21 15 19 23 11 17 253 7 5

15 17 19 21 23 25

Deciphering Every useful cipher must have a procedure for decipherment. In the case of a Hill cipher,
decipherment uses the inverse (mod 26) of the enciphering matrix. To be precise, if m

is a positive integer, then a square matrix A with entries in Zm is said to be invertible
modulo m if there is a matrix B with entries in Zm such that

AB = BA = I (mod m)
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Suppose now that

A =
[
a11 a12

a21 a22

]
is invertible modulo 26 and this matrix is used in a Hill 2-cipher. If

p =
[
p1

p2

]
is a plaintext vector, then

c = Ap (mod 26)

is the corresponding ciphertext vector and

p = A−1c (mod 26)

Thus, each plaintext vector can be recovered from the corresponding ciphertext vector
by multiplying it on the left by A−1 (mod 26).

In cryptography it is important to know which matrices are invertible modulo 26 and
how to obtain their inverses. We now investigate these questions.

In ordinary arithmetic, a square matrix A is invertible if and only if det(A) �= 0, or,
equivalently, if and only if det(A) has a reciprocal. The following theorem is the analog
of this result in modular arithmetic.

THEOREM 10.14.2 A square matrix A with entries in Zm is invertible modulo m if and
only if the residue of det(A) modulo m has a reciprocal modulo m.

Because the residue of det(A) modulo m will have a reciprocal modulo m if and only
if this residue and m have no common prime factors, we have the following corollary.

COROLLARY 10.14.3 A square matrix A with entries in Zm is invertible modulo m if
and only if m and the residue of det(A) modulo m have no common prime factors.

Because the only prime factors of m = 26 are 2 and 13, we have the following corol-
lary, which is useful in cryptography.

COROLLARY 10.14.4 A square matrix A with entries in Z26 is invertible modulo 26 if
and only if the residue of det(A) modulo 26 is not divisible by 2 or 13.

We leave it for you to verify that if

A =
[
a b

c d

]
has entries in Z26 and the residue of det(A) = ad − bc modulo 26 is not divisible by 2
or 13, then the inverse of A (mod 26) is given by

A−1 = (ad − bc)−1

[
d −b

−c a

]
(mod 26) (2)

where (ad − bc)−1 is the reciprocal of the residue of ad − bc (mod 26).
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EXAMPLE 6 Inverse of a Matrix mod 26

Find the inverse of

A =
[

5 6

2 3

]
modulo 26.

Solution

det(A) = ad − bc = 5 · 3 − 6 · 2 = 3

so from Table 2,
(ad − bc)−1 = 3−1 = 9 (mod 26)

Thus, from (2),

A−1 = 9

[
3 −6

−2 5

]
=
[

27 −54

−18 45

]
=
[

1 24

8 19

]
(mod 26)

As a check,

AA−1 =
[

5 6

2 3

] [
1 24

8 19

]
=
[

53 234

26 105

]
=
[

1 0

0 1

]
(mod 26)

Similarly, A−1A = I .

EXAMPLE 7 Decoding a Hill 2-Cipher

Decode the following Hill 2-cipher, which was enciphered by the matrix in Example 6:

GTNKGKDUSK

Solution From Table 1 the numerical equivalent of this ciphertext is

7 20 14 11 7 11 4 21 19 11

To obtain the plaintext pairs, we multiply each ciphertext vector by the inverse of A

(obtained in Example 6):[
1 24

8 19

] [
7

20

]
=
[

487

436

]
=
[

19

20

]
(mod 26)[

1 24

8 19

] [
14

11

]
=
[

278

321

]
=
[

18

9

]
(mod 26)[

1 24

8 19

] [
7

11

]
=
[

271

265

]
=
[

11

5

]
(mod 26)[

1 24

8 19

] [
4

21

]
=
[

508

431

]
=
[

14

15

]
(mod 26)[

1 24

8 19

] [
19

11

]
=
[

283

361

]
=
[

23

23

]
(mod 26)

From Table 1, the alphabet equivalents of these vectors are

ST RI KE NO WW

which yields the message
STRIKE NOW
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Breaking a Hill Cipher Because the purpose of enciphering messages and information is to prevent “opponents”
from learning their contents, cryptographers are concerned with the security of their
ciphers—that is, how readily they can be broken (deciphered by their opponents). We
will conclude this section by discussing one technique for breaking Hill ciphers.

Suppose that you are able to obtain some corresponding plaintext and ciphertext
from an opponent’s message. For example, on examining some intercepted ciphertext,
you may be able to deduce that the message is a letter that beginsDEARSIR. We will show
that with a small amount of such data, it may be possible to determine the deciphering
matrix of a Hill code and consequently obtain access to the rest of the message.

It is a basic result in linear algebra that a linear transformation is completely deter-
mined by its values at a basis. This principle suggests that if we have a Hill n-cipher, and
if

p1, p2, . . . , pn

are linearly independent plaintext vectors whose corresponding ciphertext vectors

Ap1, Ap2, . . . , Apn

are known, then there is enough information available to determine the matrix A and
hence A−1 (mod m).

The following theorem, whose proof is discussed in the exercises, provides a way to
do this.

THEOREM 10.14.5 Determining the Deciphering Matrix

Let p1, p2, . . . , pn be linearly independent plaintext vectors, and let c1, c2, . . . , cn be the
corresponding ciphertext vectors in a Hill n-cipher. If

P =

⎡
⎢⎢⎢⎢⎣

pT
1

pT
2
...

pT
n

⎤
⎥⎥⎥⎥⎦

is the n × n matrix with row vectors pT
1 , pT

2 , . . . , pT
n and if

C =

⎡
⎢⎢⎢⎢⎣

cT
1

cT
2
...

cT
n

⎤
⎥⎥⎥⎥⎦

is the n × n matrix with row vectors cT
1 , cT

2 , . . . , cT
n , then the sequence of elementary

row operations that reduces C to I transforms P to (A−1)T .

This theorem tells us that to find the transpose of the deciphering matrix A−1, we
must find a sequence of row operations that reduces C to I and then perform this same
sequence of operations on P . The following example illustrates a simple algorithm for
doing this.

EXAMPLE 8 UsingTheorem 10.14.5

The following Hill 2-cipher is intercepted:

IOSBTGXESPXHOPDE

Decipher the message, given that it starts with the word DEAR.
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Solution From Table 1, the numerical equivalent of the known plaintext is

DE AR

4 5 1 18

and the numerical equivalent of the corresponding ciphertext is

IO SB

9 15 19 2

so the corresponding plaintext and ciphertext vectors are

p1 =
[

4

5

]
↔ c1 =

[
9

15

]

p2 =
[

1

18

]
↔ c2 =

[
19

2

]
We want to reduce

C =
[

cT
1

cT
2

]
=
[

9 15

19 2

]
to I by elementary row operations and simultaneously apply these operations to

P =
[

pT
1

pT
2

]
=
[

4 5

1 18

]
to obtain (A−1)T (the transpose of the deciphering matrix). This can be accomplished by
adjoining P to the right of C and applying row operations to the resulting matrix [C | P ]
until the left side is reduced to I . The final matrix will then have the form [I | (A−1)T ].
The computations can be carried out as follows:[

9 15 4 5

19 2 1 18

]
We formed the matrix [C | P ].

[
1 45 12 15

19 2 1 18

]
We multiplied the first row by 9−1 = 3.

[
1 19 12 15

19 2 1 18

]
We replaced 45 by its residue modulo 26.

[
1 19 12 15

0 −359 −227 −267

]
We added −19 times the first row to the second.

[
1 19 12 15

0 5 7 19

]
We replaced the entries in the second row by their
residues modulo 26.[

1 19 12 15

0 1 147 399

]
We multiplied the second row by 5−1 = 21.

[
1 19 12 15

0 1 17 9

]
We replaced the entries in the second row by their
residues modulo 26.[

1 0 −311 −156

0 1 17 9

]
We added −19 times the second row to the first.

[
1 0 1 0

0 1 17 9

]
We replaced the entries in the first row by their
residues modulo 26.

Thus,

(A−1)T =
[

1 0

17 9

]
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so the deciphering matrix is

A−1 =
[

1 17

0 9

]
To decipher the message, we first group the ciphertext into pairs and find the numerical
equivalent of each letter:

IO SB TG XE SP XH OP DE

9 15 19 2 20 7 24 5 19 16 24 8 15 16 4 5

Next, we multiply successive ciphertext vectors on the left by A−1 and find the alphabet
equivalents of the resulting plaintext pairs:

[
1 17

0 9

] [
9

15

]
=
[

4

5

]
D

E[
1 17

0 9

] [
19

2

]
=
[

1

18

]
A

R[
1 17

0 9

] [
20

7

]
=
[

9

11

]
I

K[
1 17

0 9

] [
24

5

]
=
[

5

19

]
E

S[
1 17

0 9

] [
19

16

]
=
[

5

14

]
E

N[
1 17

0 9

] [
24

8

]
=
[

4

20

]
D

T[
1 17

0 9

] [
15

16

]
=
[

1

14

]
A

N[
1 17

0 9

] [
4

5

]
=
[

11

19

]
K

S

(mod 26)

Finally, we construct the message from the plaintext pairs:

DE AR IK ES EN DT AN KS

DEAR IKE SEND TANKS

FURTHER
READINGS

Readers interested in learning more about mathematical cryptography are referred to the following
books, the first of which is elementary and the second more advanced.

1. ABRAHAM SINKOV, Elementary Cryptanalysis, a Mathematical Approach (Mathematical Asso-
ciation of America, 2009).

2. ALAN G. KONHEIM, Cryptography, a Primer (New York: Wiley-Interscience, 1981).
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Exercise Set 10.14
1. Obtain the Hill cipher of the message

DARK NIGHT

for each of the following enciphering matrices:

(a)

[
1 3

2 1

]
(b)

[
4 3

1 2

]
2. In each part determine whether the matrix is invertible mod-

ulo 26. If so, find its inverse modulo 26 and check your work
by verifying that AA−1 = A−1A = I (mod 26).

(a) A =
[

9 1

7 2

]
(b) A =

[
3 1

5 3

]
(c) A =

[
8 11

1 9

]

(d) A =
[

2 1

1 7

]
(e) A =

[
3 1

6 2

]
(f ) A =

[
1 8

1 3

]
3. Decode the message

SAKNOXAOJX

given that it is a Hill cipher with enciphering matrix[
4 1

3 2

]
4. A Hill 2-cipher is intercepted that starts with the pairs

SL HK

Find the deciphering and enciphering matrices, given that the
plaintext is known to start with the word ARMY.

5. Decode the following Hill 2-cipher if the last four plaintext
letters are known to be ATOM.

LNGIHGYBVRENJYQO

6. Decode the following Hill 3-cipher if the first nine plaintext
letters are IHAVECOME:

HPAFQGGDUGDDHPGODYNOR

7. All of the results of this section can be generalized to the case
where the plaintext is a binary message; that is, it is a sequence
of 0’s and 1’s. In this case we do all of our modular arithmetic
using modulus 2 rather than modulus 26. Thus, for example,
1 + 1 = 0 (mod 2). Suppose we want to encrypt the message
110101111. Let us first break it into triplets to form the three

vectors

⎡
⎢⎣1

1

0

⎤
⎥⎦,

⎡
⎢⎣1

0

1

⎤
⎥⎦,

⎡
⎢⎣1

1

1

⎤
⎥⎦, and let us take

⎡
⎢⎣1 1 0

0 1 1

1 1 1

⎤
⎥⎦ as our

enciphering matrix.

(a) Find the encoded message.

(b) Find the inverse modulo 2 of the enciphering matrix, and
verify that it decodes your encoded message.

8. If, in addition to the standard alphabet, a period, comma, and
question mark were allowed, then 29 plaintext and ciphertext

symbols would be available and all matrix arithmetic would
be done modulo 29. Under what conditions would a matrix
with entries in Z29 be invertible modulo 29?

9. Show that the modular equation 4x = 1 (mod 26) has no
solution in Z26 by successively substituting the values x =
0, 1, 2, . . . , 25.

10. (a) Let P and C be the matrices in Theorem 10.14.5. Show
that P = C(A−1)T .

(b) To prove Theorem 10.14.5, let E1, E2, . . . , En be the ele-
mentary matrices that correspond to the row operations
that reduce C to I , so

En · · ·E2E1C = I

Show that
En · · ·E2E1P = (A−1)T

from which it follows that the same sequence of row oper-
ations that reduces C to I converts P to (A−1)T .

11. (a) If A is the enciphering matrix of a Hill n-cipher, show that

A−1 = (C−1P)T (mod 26)

where C and P are the matrices defined in Theorem
10.14.5.

(b) Instead of using Theorem 10.14.5 as in the text, find the
deciphering matrix A−1 of Example 8 by using the result
in part (a) and Equation (2) to compute C−1. [Note: Al-
though this method is practical for Hill 2-ciphers, Theo-
rem 10.14.5 is more efficient for Hill n-ciphers with n > 2.]

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Two integers that have no common factors (except 1) are
said to be relatively prime. Given a positive integer n, let Sn =
{a1, a2, a3, . . . , am}, where a1 < a2 < a3 < · · · < am, be the set
of all positive integers less than n and relatively prime to n. For
example, if n = 9, then

S9 = {a1, a2, a3, . . . , a6} = {1, 2, 4, 5, 7, 8}
(a) Construct a table consisting of n and Sn for n = 2, 3, . . . , 15,

and then compute
m∑

k=1

ak and

(
m∑

k=1

ak

)
(mod n)
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in each case. Draw a conjecture for n > 15 and prove your
conjecture to be true. [Hint: Use the fact that if a is relatively
prime to n, then n − a is also relatively prime to n.]

(b) Given a positive integer n and the set Sn, let Pn be the m × m

matrix

Pn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · am−1 am

a2 a3 a4 · · · am a1

a3 a4 a5 · · · a1 a2
...

...
...

. . .
...

...

am−1 am a1 · · · am−3 am−2

am a1 a2 · · · am−2 am−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that, for example,

P9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4 5 7 8

2 4 5 7 8 1

4 5 7 8 1 2

5 7 8 1 2 4

7 8 1 2 4 5

8 1 2 4 5 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Use a computer to compute det(Pn) and det(Pn)(mod n) for
n = 2, 3, . . . , 15, and then use these results to construct a con-
jecture.

(c) Use the results of part (a) to prove your conjecture to be true.
[Hint: Add the first m − 1 rows of Pn to its last row and then

use Theorem 2.2.3.] What do these results imply about the
inverse of Pn (mod n)?

T2. Given a positive integer n greater than 1, the number of posi-
tive integers less than n and relatively prime to n is called theEuler
phi function of n and is denoted by ϕ(n). For example, ϕ(6) = 2
since only two positive integers (1 and 5) are less than 6 and have
no common factor with 6.

(a) Using a computer, for each value of n = 2, 3, . . . , 25 com-
pute and print out all positive integers that are less than n and
relatively prime to n. Then use these integers to determine
the values of ϕ(n) for n = 2, 3, . . . , 25. Can you discover a
pattern in the results?

(b) It can be shown that if {p1, p2, p3, . . . , pm} are all the distinct
prime factors of n, then

ϕ(n) = n

(
1 − 1

p1

)(
1 − 1

p2

)(
1 − 1

p3

)
· · ·
(

1 − 1

pm

)
For example, since {2, 3} are the distinct prime factors of 12,
we have

ϕ(12) = 12

(
1 − 1

2

)(
1 − 1

3

)
= 4

which agrees with the fact that {1, 5, 7, 11} are the only positive
integers less than 12 and relatively prime to 12. Using a com-
puter, print out all the prime factors of n for n = 2, 3, . . . , 25.
Then compute ϕ(n) using the formula above and compare it
to your results in part (a).

10.15 Genetics
In this section we investigate the propagation of an inherited trait in successive generations
by computing powers of a matrix.

PREREQUISITES: Eigenvalues and Eigenvectors
Diagonalization of a Matrix
Intuitive Understanding of Limits

InheritanceTraits In this section we examine the inheritance of traits in animals or plants. The inherited
trait under consideration is assumed to be governed by a set of two genes, which we
designate by A and a. Under autosomal inheritance each individual in the population of
either gender possesses two of these genes, the possible pairings being designated AA,
Aa, and aa. This pair of genes is called the individual’s genotype, and it determines
how the trait controlled by the genes is manifested in the individual. For example,
in snapdragons a set of two genes determines the color of the flower. Genotype AA

produces red flowers, genotype Aa produces pink flowers, and genotype aa produces
white flowers. In humans, eye coloration is controlled through autosomal inheritance.
Genotypes AA and Aa have brown eyes, and genotype aa has blue eyes. In this case we
say that gene A dominates gene a, or that gene a is recessive to gene A, because genotype
Aa has the same outward trait as genotype AA.

In addition to autosomal inheritance we will also discuss X-linked inheritance. In
this type of inheritance, the male of the species possesses only one of the two possible
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genes (A or a), and the female possesses a pair of the two genes (AA, Aa, or aa). In
humans, color blindness, hereditary baldness, hemophilia, and muscular dystrophy, to
name a few, are traits controlled by X-linked inheritance.

Below we explain the manner in which the genes of the parents are passed on to
their offspring for the two types of inheritance. We construct matrix models that give
the probable genotypes of the offspring in terms of the genotypes of the parents, and
we use these matrix models to follow the genotype distribution of a population through
successive generations.

Autosomal Inheritance In autosomal inheritance an individual inherits one gene from each of its parents’ pairs
of genes to form its own particular pair. As far as we know, it is a matter of chance
which of the two genes a parent passes on to the offspring. Thus, if one parent is of
genotype Aa, it is equally likely that the offspring will inherit the A gene or the a gene
from that parent. If one parent is of genotype aa and the other parent is of genotype
Aa, the offspring will always receive an a gene from the aa parent and will receive either
an A gene or an a gene, with equal probability, from the Aa parent. Consequently, each
of the offspring has equal probability of being genotype aa or Aa. In Table 1 we list the
probabilities of the possible genotypes of the offspring for all possible combinations of
the genotypes of the parents.

Table 1

Genotypes of Parents
Genotype 
of Offspring AAAA–AAAA AAAA–Aa AAAA–aa Aa–Aa Aa–aa aa–aa

AAAA

Aa

aa

1

0

0

0

1

0

0

0

10

01
2

1
2

1
4

1
2

1
4

1
2

1
2

EXAMPLE 1 Distribution of Genotypes in a Population

Suppose that a farmer has a large population of plants consisting of some distribution
of all three possible genotypes AA, Aa, and aa. The farmer desires to undertake a
breeding program in which each plant in the population is always fertilized with a plant
of genotype AA and is then replaced by one of its offspring. We want to derive an
expression for the distribution of the three possible genotypes in the population after
any number of generations.

For n = 0, 1, 2, . . . , let us set

an = fraction of plants of genotype AA in nth generation

bn = fraction of plants of genotype Aa in nth generation

cn = fraction of plants of genotype aa in nth generation

Thus a0, b0, and c0 specify the initial distribution of the genotypes. We also have that

an + bn + cn = 1 for n = 0, 1, 2, . . .

From Table 1 we can determine the genotype distribution of each generation from the
genotype distribution of the preceding generation by the following equations:

an = an−1 + 1
2bn−1

bn = cn−1 + 1
2bn−1 n = 1, 2, . . .

cn = 0

(1)
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For example, the first of these three equations states that all the offspring of a plant of
genotype AA will be of genotype AA under this breeding program and that half of the
offspring of a plant of genotype Aa will be of genotype AA.

Equations (1) can be written in matrix notation as

x(n) = Mx(n−1), n = 1, 2, . . . (2)

where

x(n) =
⎡
⎢⎣an

bn

cn

⎤
⎥⎦, x(n−1) =

⎡
⎢⎣an−1

bn−1

cn−1

⎤
⎥⎦, and M =

⎡
⎢⎣

1 1
2 0

0 1
2 1

0 0 0

⎤
⎥⎦

Note that the three columns of the matrix M are the same as the first three columns of
Table 1.

From Equation (2) it follows that

x(n) = Mx(n−1) = M2x(n−2) = · · · = Mnx(0) (3)

Consequently, if we can find an explicit expression for Mn, we can use (3) to obtain an
explicit expression for x(n). To find an explicit expression for Mn, we first diagonalize
M . That is, we find an invertible matrix P and a diagonal matrix D such that

M = PDP−1 (4)

With such a diagonalization, we then have (see Exercise 1)

Mn = PDnP−1 for n = 1, 2, . . .

where

Dn =

⎡
⎢⎢⎢⎣

λ1 0 0 · · · 0

0 λ2 0 · · · 0
...

...
...

...

0 0 0 · · · λk

⎤
⎥⎥⎥⎦

n

=

⎡
⎢⎢⎢⎣

λn
1 0 0 · · · 0

0 λn
2 0 · · · 0

...
...

...
...

0 0 0 · · · λn
k

⎤
⎥⎥⎥⎦

The diagonalization of M is accomplished by finding its eigenvalues and corresponding
eigenvectors. These are as follows (verify):

Eigenvalues: λ1 = 1, λ2 = 1
2 , λ3 = 0

Corresponding eigenvectors: v1 =
⎡
⎢⎣1

0

0

⎤
⎥⎦, v2 =

⎡
⎢⎣ 1

−1

0

⎤
⎥⎦, v3 =

⎡
⎢⎣ 1

−2

1

⎤
⎥⎦

Thus, in Equation (4) we have

D =
⎡
⎢⎣λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦ =

⎡
⎢⎣1 0 0

0 1
2 0

0 0 0

⎤
⎥⎦

and

P = [v1 | v2 | v3] =
⎡
⎢⎣1 1 1

0 −1 −2

0 0 1

⎤
⎥⎦

Therefore,

x(n) = PDnP−1x(0) =
⎡
⎢⎣1 1 1

0 −1 −2

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0
(

1
2

)n
0

0 0 0

⎤
⎥⎦
⎡
⎢⎣1 1 1

0 −1 −2

0 0 1

⎤
⎥⎦
⎡
⎢⎣a0

b0

c0

⎤
⎥⎦
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or

x(n) =
⎡
⎢⎣an

bn

cn

⎤
⎥⎦ =

⎡
⎢⎢⎣

1 1 − (
1
2

)n
1 − (

1
2

)n−1

0
(

1
2

)n (
1
2

)n−1

0 0 0

⎤
⎥⎥⎦
⎡
⎢⎣a0

b0

c0

⎤
⎥⎦

=

⎡
⎢⎢⎣

a0 + b0 + c0 − (
1
2

)n
b0 − (

1
2

)n−1
c0(

1
2

)n
b0 + (

1
2

)n−1
c0

0

⎤
⎥⎥⎦

Using the fact that a0 + b0 + c0 = 1, we thus have

an = 1 − (
1
2

)n
b0 − (

1
2

)n−1
c0

bn = (
1
2

)n
b0 + (

1
2

)n−1
c0

cn = 0

n = 1, 2, . . . (5)

These are explicit formulas for the fractions of the three genotypes in the nth generation
of plants in terms of the initial genotype fractions.

Because
(

1
2

)n
tends to zero as n approaches infinity, it follows from these equations

that

an → 1

bn → 0

cn = 0

as n approaches infinity. That is, in the limit all plants in the population will be genotype
AA.

EXAMPLE 2 Modifying Example 1

We can modify Example 1 so that instead of each plant being fertilized with one of
genotype AA, each plant is fertilized with a plant of its own genotype. Using the same
notation as in Example 1, we then find

x(n) = Mnx(0)

where

M =

⎡
⎢⎢⎣

1 1
4 0

0 1
2 0

0 1
4 1

⎤
⎥⎥⎦

The columns of this new matrix M are the same as the columns of Table 1 corresponding
to parents with genotypes AA–AA, Aa–Aa, and aa–aa.

The eigenvalues of M are (verify)

λ1 = 1, λ2 = 1, λ3 = 1
2

The eigenvalue λ1 = 1 has multiplicity two and its corresponding eigenspace is two-
dimensional. Picking two linearly independent eigenvectors v1 and v2 in that eigenspace,
and a single eigenvector v3 for the simple eigenvalue λ3 = 1

2 , we have (verify)

v1 =
⎡
⎢⎣1

0

0

⎤
⎥⎦, v2 =

⎡
⎢⎣0

0

1

⎤
⎥⎦, v3 =

⎡
⎢⎣ 1

−2

1

⎤
⎥⎦
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The calculations for x(n) are then

x(n) = Mnx(0) = PDnP−1x(0)

=
⎡
⎢⎣1 0 1

0 0 −2

0 1 1

⎤
⎥⎦
⎡
⎢⎣1 0 0

0 1 0

0 0
(

1
2

)n
⎤
⎥⎦
⎡
⎢⎢⎣

1 1
2 0

0 1
2 1

0 − 1
2 0

⎤
⎥⎥⎦
⎡
⎢⎣a0

b0

c0

⎤
⎥⎦

=

⎡
⎢⎢⎣

1 1
2 − (

1
2

)n+1
0

0
(

1
2

)n
0

0 1
2 − (

1
2

)n+1
1

⎤
⎥⎥⎦
⎡
⎢⎣a0

b0

c0

⎤
⎥⎦

Thus,

an = a0 +
[

1
2 − (

1
2

)n+1
]
b0

bn = (
1
2

)n
b0 n = 1, 2, . . .

cn = c0 +
[

1
2 − (

1
2

)n+1
]
b0

(6)

In the limit, as n tends to infinity,
(

1
2

)n → 0 and
(

1
2

)n+1 → 0, so

an → a0 + 1
2b0

bn → 0

cn → c0 + 1
2b0

Thus, fertilization of each plant with one of its own genotype produces a population that
in the limit contains only genotypes AA and aa.

Autosomal Recessive
Diseases

There are many genetic diseases governed by autosomal inheritance in which a normal
gene A dominates an abnormal gene a. Genotype AA is a normal individual; genotype
Aa is a carrier of the disease but is not afflicted with the disease; and genotype aa is
afflicted with the disease. In humans such genetic diseases are often associated with a
particular racial group—for instance, cystic fibrosis (predominant among Caucasians),
sickle-cell anemia (predominant among people of African origin), Cooley’s anemia (pre-
dominant among people of Mediterranean origin), and Tay-Sachs disease (predominant
among Eastern European Jews).

Suppose that an animal breeder has a population of animals that carries an autosomal
recessive disease. Suppose further that those animals afflicted with the disease do not
survive to maturity. One possible way to control such a disease is for the breeder to
always mate a female, regardless of her genotype, with a normal male. In this way, all
future offspring will either have a normal father and a normal mother (AA–AA matings)
or a normal father and a carrier mother (AA–Aa matings). There can be no AA–aa

matings since animals of genotype aa do not survive to maturity. Under this type of
mating program no future offspring will be afflicted with the disease, although there will
still be carriers in future generations. Let us now determine the fraction of carriers in
future generations. We set

x(n) =
[
an

bn

]
, n = 1, 2, . . .

where

an = fraction of population of genotype AA in nth generation

bn = fraction of population of genotype Aa (carriers) in nth generation
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Because each offspring has at least one normal parent, we may consider the controlled
mating program as one of continual mating with genotype AA, as in Example 1. Thus,
the transition of genotype distributions from one generation to the next is governed by
the equation

x(n) = Mx(n−1), n = 1, 2, . . .

where

M =
[

1 1
2

0 1
2

]

Because we know the initial distribution x(0), the distribution of genotypes in the nth
generation is thus given by

x(n) = Mnx(0), n = 1, 2, . . .

The diagonalization of M is easily carried out (see Exercise 4) and leads to

x(n) = PDnP−1x(0) =
[

1 1

0 −1

][
1 0

0
(

1
2

)n
][

1 1

0 −1

] [
a0

b0

]

=
[

1 1 − (
1
2

)n
0

(
1
2

)n
][

a0

b0

]
=
[
a0 + b0 − (

1
2

)n
b0(

1
2

)n
b0

]

Because a0 + b0 = 1, we have

an = 1 − (
1
2

)n
b0

bn = (
1
2

)n
b0

n = 1, 2, . . . (7)

Thus, as n tends to infinity, we have

an → 1

bn → 0

so in the limit there will be no carriers in the population.
From (7) we see that

bn = 1
2bn−1, n = 1, 2, . . . (8)

That is, the fraction of carriers in each generation is one-half the fraction of carriers in
the preceding generation. It would be of interest also to investigate the propagation of
carriers under random mating, when two animals mate without regard to their genotypes.
Unfortunately, such random mating leads to nonlinear equations, and the techniques of
this section are not applicable. However, by other techniques it can be shown that under
random mating, Equation (8) is replaced by

bn = bn−1

1 + 1
2bn−1

, n = 1, 2, . . . (9)

As a numerical example, suppose that the breeder starts with a population in which
10% of the animals are carriers. Under the controlled-mating program governed by
Equation (8), the percentage of carriers can be reduced to 5% in one generation. But
under random mating, Equation (9) predicts that 9.5% of the population will be carriers
after one generation (bn = .095 if bn−1 = .10). In addition, under controlled mating no
offspring will ever be afflicted with the disease, but with random mating it can be shown
that about 1 in 400 offspring will be born with the disease when 10% of the population
are carriers.

X-Linked Inheritance As mentioned in the introduction, in X-linked inheritance the male possesses one gene
(A or a) and the female possesses two genes (AA, Aa, or aa). The term X-linked is used
because such genes are found on the X-chromosome, of which the male has one and the
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female has two. The inheritance of such genes is as follows: A male offspring receives
one of his mother’s two genes with equal probability, and a female offspring receives
the one gene of her father and one of her mother’s two genes with equal probability.
Readers familiar with basic probability can verify that this type of inheritance leads to
the genotype probabilities in Table 2.

Table 2

Genotypes of Parents (Father, Mother)

(A, AAAA)

AA

M
al

e
Fe

m
al

eO
ff

sp
ri

ng
AAAA

Aa

aa

a

(AA, Aa)

1

0

1

0

0

(A, aa) (a, AAAA)

0

1

0

1

0

1

0

0

1

0

(a, Aa)

0

(a, aa)

0

1

0

0

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0

We will discuss a program of inbreeding in connection with X-linked inheritance. We
begin with a male and female; select two of their offspring at random, one of each gender,
and mate them; select two of the resulting offspring and mate them; and so forth. Such
inbreeding is commonly performed with animals. (Among humans, such brother-sister
marriages were used by the rulers of ancient Egypt to keep the royal line pure.)

The original male-female pair can be one of the six types, corresponding to the six
columns of Table 2:

(A, AA), (A, Aa), (A, aa), (a, AA), (a, Aa), (a, aa)

The sibling pairs mated in each successive generation have certain probabilities of being
one of these six types. To compute these probabilities, for n = 0, 1, 2, . . . , let us set

an = probability sibling-pair mated in nth generation is type (A, AA)

bn = probability sibling-pair mated in nth generation is type (A, Aa)

cn = probability sibling-pair mated in nth generation is type (A, aa)

dn = probability sibling-pair mated in nth generation is type (a, AA)

en = probability sibling-pair mated in nth generation is type (a, Aa)

fn = probability sibling-pair mated in nth generation is type (a, aa)

With these probabilities we form a column vector

x(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

an

bn

cn

dn

en

fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, n = 0, 1, 2, . . .

From Table 2 it follows that

x(n) = Mx(n−1), n = 1, 2, . . . (10)
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where

(A, AA) (A, Aa) (A, aa) (a, AA) (a, Aa) (a, aa)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
4 0 0 0 0

0 1
4 0 1 1

4 0

0 0 0 0 1
4 0

0 1
4 0 0 0 0

0 1
4 1 0 1

4 0

0 0 0 0 1
4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A, AA)

(A, Aa)

(A, aa)

(a, AA)

(a, Aa)

(a, aa)

For example, suppose that in the (n − 1)-st generation, the sibling pair mated is type
(A, Aa). Then their male offspring will be genotype A or a with equal probability, and
their female offspring will be genotype AA or Aa with equal probability. Because one
of the male offspring and one of the female offspring are chosen at random for mating,
the next sibling pair will be one of type (A, AA), (A, Aa), (a, AA), or (a, Aa) with
equal probability. Thus, the second column of M contains “ 1

4 ” in each of the four rows
corresponding to these four sibling pairs. (See Exercise 9 for the remaining columns.)

As in our previous examples, it follows from (10) that

x(n) = Mnx(0), n = 1, 2, . . . (11)

After lengthy calculations, the eigenvalues and eigenvectors of M turn out to be

λ1 = 1, λ2 = 1, λ3 = 1
2 , λ4 = − 1

2 , λ5 = 1
4 (1 +√

5 ), λ6 = 1
4 (1 −√

5 )

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

2

−1

1

−2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−6

−3

3

6

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

v5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 (−3 −√

5 )

1
1
4 (−1 +√

5 )

1
4 (−1 +√

5 )

1
1
4 (−3 −√

5 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 (−3 +√

5 )

1
1
4 (−1 −√

5 )

1
4 (−1 −√

5 )

1
1
4 (−3 +√

5 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The diagonalization of M then leads to

x(n) = PDnP−1x(0), n = 1, 2, . . . (12)

where

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 1 1
4 (−3 −√

5 ) 1
4 (−3 +√

5 )

0 0 2 −6 1 1

0 0 −1 −3 1
4 (−1 +√

5 ) 1
4 (−1 −√

5 )

0 0 1 3 1
4 (−1 +√

5 ) 1
4 (−1 −√

5 )

0 0 −2 6 1 1

0 1 1 −1 1
4 (−3 −√

5 ) 1
4 (−3 +√

5 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Dn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0
(

1
2

)n
0 0 0

0 0 0
(− 1

2

)n
0 0

0 0 0 0
[

1
4 (1 +√

5 )
]n

0

0 0 0 0 0
[

1
4 (1 −√

5 )
]n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
3

1
3

2
3

1
3 0

0 1
3

2
3

1
3

2
3 1

0 1
8 − 1

4
1
4 − 1

8 0

0 − 1
24 − 1

12
1

12
1

24 0

0 1
20 (5 +√

5 ) 1
5

√
5 1

5

√
5 1

20 (5 +√
5 ) 0

0 1
20 (5 −√

5 ) − 1
5

√
5 − 1

5

√
5 1

20 (5 −√
5 ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will not write out the matrix product in (12), as it is rather unwieldy. However, if a
specific vector x(0) is given, the calculation for x(n) is not too cumbersome (see Exer-
cise 6).

Because the absolute values of the last four diagonal entries of D are less than 1, we
see that as n tends to infinity,

Dn →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

And so, from Equation (12),

x(n) → P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P−1x(0)

Performing the matrix multiplication on the right, we obtain (verify)

x(n) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 + 2
3b0 + 1

3c0 + 2
3d0 + 1

3e0

0

0

0

0

f0 + 1
3b0 + 2

3c0 + 1
3d0 + 2

3e0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)
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That is, in the limit all sibling pairs will be either type (A, AA) or type (a, aa). For
example, if the initial parents are type (A, Aa) (that is, b0 = 1 and a0 = c0 = d0 = e0 =
f0 = 0), then as n tends to infinity,

x(n) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3

0

0

0

0
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, in the limit there is probability 2
3 that the sibling pairs will be (A, AA), and pro-

bability 1
3 that they will be (a, aa).

Exercise Set 10.15
1. Show that if M = PDP−1, then Mn = PDnP−1 for n =

1, 2, . . . .

2. In Example 1 suppose that the plants are always fertilized with
a plant of genotype Aa rather than one of genotype AA. Derive
formulas for the fractions of the plants of genotypes AA, Aa,
and aa in the nth generation. Also, find the limiting genotype
distribution as n tends to infinity.

3. In Example 1 suppose that the initial plants are fertilized with
genotype AA, the first generation is fertilized with genotype
Aa, the second generation is fertilized with genotype AA, and
this alternating pattern of fertilization is kept up. Find formu-
las for the fractions of the plants of genotypes AA, Aa, and aa

in the nth generation.

4. In the section on autosomal recessive diseases, find the eigenval-
ues and eigenvectors of the matrix M and verify Equation (7).

5. Suppose that a breeder has an animal population in which 25%
of the population are carriers of an autosomal recessive disease.
If the breeder allows the animals to mate irrespective of their
genotype, use Equation (9) to calculate the number of genera-
tions required for the percentage of carriers to fall from 25% to
10%. If the breeder instead implements the controlled-mating
program determined by Equation (8), what will the percentage
of carriers be after the same number of generations?

6. In the section on X-linked inheritance, suppose that the ini-
tial parents are equally likely to be of any of the six possible
genotype parents; that is,

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6
1
6
1
6
1
6
1
6
1
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using Equation (12), calculate x(n) and also calculate the limit
of x(n) as n tends to infinity.

7. From (13) show that under X-linked inheritance with inbreed-
ing, the probability that the limiting sibling pairs will be of type

(A, AA) is the same as the proportion of A genes in the initial
population.

8. In X-linked inheritance suppose that none of the females of
genotype Aa survive to maturity. Under inbreeding the possi-
ble sibling pairs are then

(A, AA), (A, aa), (a, AA), and (a, aa)

Find the transition matrix that describes how the genotype dis-
tribution changes in one generation.

9. Derive the matrix M in Equation (10) from Table 2.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. (a) Use a computer to verify that the eigenvalues and eigen-
vectors of

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
4 0 0 0 0

0 1
4 0 1 1

4 0

0 0 0 0 1
4 0

0 1
4 0 0 0 0

0 1
4 1 0 1

4 0

0 0 0 0 1
4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

as given in the text are correct.

(b) Starting with x(n) = Mx(n−1) and the assumption that

lim
n→�

x(n) = x

exists, we must have

lim
n→�

x(n) = M lim
n→�

x(n−1) or x = Mx
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This suggests that x can be solved directly using the equa-
tion (M − I )x = 0. Use a computer to solve the equation
x = Mx, where

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and a + b + c + d + e + f = 1; compare your results to
Equation (13). Explain why the solution to (M − I )x = 0
along with a + b + c + d + e + f = 1 is not specific enough
to determine limn→� x(n).

T2. (a) Given

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 1 1
4 (−3 −√

5 ) 1
4 (−3 +√

5 )

0 0 2 −6 1 1

0 0 −1 −3 1
4 (−1 +√

5 ) 1
4 (−1 −√

5 )

0 0 1 3 1
4 (−1 +√

5 ) 1
4 (−1 −√

5 )

0 0 −2 6 1 1

0 1 1 −1 1
4 (−3 −√

5 ) 1
4 (−3 +√

5 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

from Equation (12) and

lim
n→�

Dn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

use a computer to show that

lim
n→�

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
3

1
3

2
3

1
3 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1
3

2
3

1
3

2
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) Use a computer to calculate Mn for n = 10, 20, 30, 40, 50, 60,
70, and then compare your results to the limit in part (a).

10.16 Age-Specific Population Growth
In this section we investigate, using the Leslie matrix model, the growth over time of a
female population that is divided into age classes. We then determine the limiting age
distribution and growth rate of the population.

PREREQUISITES: Eigenvalues and Eigenvectors
Diagonalization of a Matrix
Intuitive Understanding of Limits

One of the most common models of population growth used by demographers is the
so-called Leslie model developed in the 1940s. This model describes the growth of the
female portion of a human or animal population. In this model the females are divided
into age classes of equal duration. To be specific, suppose that the maximum age attained
by any female in the population is L years (or some other time unit) and we divide the
population into n age classes. Then each class is L/n years in duration. We label the age
classes according to Table 1.

Table 1

Age Class Age Interval

1
2
3

n – 1
n

. .
 .

[0, L/n)
[L/n, 2L/n)
[2L/n, 3L/n)

[(n – 2)L/n, (n – 1)L/n)
[(n – 1)L/n, L]

. .
 .
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Suppose that we know the number of females in each of the n classes at time t = 0. In
particular, let there be x

(0)
1 females in the first class, x

(0)
2 females in the second class, and

so forth. With these n numbers we form a column vector:

x(0) =

⎡
⎢⎢⎢⎢⎢⎣

x
(0)
1

x
(0)
2
...

x(0)
n

⎤
⎥⎥⎥⎥⎥⎦

We call this vector the initial age distribution vector.
As time progresses, the number of females within each of the n classes changes

because of three biological processes: birth, death, and aging. By describing these three
processes quantitatively, we will see how to project the initial age distribution vector into
the future.

The easiest way to study the aging process is to observe the population at discrete
times—say, t0, t1, t2, . . . , tk, . . . . The Leslie model requires that the duration between
any two successive observation times be the same as the duration of the age intervals.
Therefore, we set

t0 = 0

t1 = L/n

t2 = 2L/n
...

tk = kL/n
...

With this assumption, all females in the (i + 1)-st class at time tk+1 were in the ith class
at time tk .

The birth and death processes between two successive observation times can be de-
scribed by means of the following demographic parameters:

ai
(i = 1, 2, . . . , n)

The average number of daughters
born to each female during the
time she is in the ith age class

The fraction of females in the ith 
age class that can be expected to
survive and pass into the (i +1)-st
age class

bi
(i = 1, 2, . . . , n – 1)

By their definitions, we have that

(i) ai ≥ 0 for i = 1, 2, . . . , n

(ii) 0 < bi ≤ 1 for i = 1, 2, . . . , n − 1

Note that we do not allow any bi to equal zero, because then no females would survive
beyond the ith age class. We also assume that at least one ai is positive so that some
births occur. Any age class for which the corresponding value of ai is positive is called
a fertile age class.
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We next define the age distribution vector x(k) at time tk by

x(k) =

⎡
⎢⎢⎢⎢⎢⎣

x
(k)
1

x
(k)
2
...

x(k)
n

⎤
⎥⎥⎥⎥⎥⎦

where x
(k)
i is the number of females in the ith age class at time tk . Now, at time tk , the

females in the first age class are just those daughters born between times tk−1 and tk .
Thus, we can write

⎧⎪⎪⎨
⎪⎪⎩

number of
females

in class 1
at time tk

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

number of
daughters

born to
females in

class 1
between times

tk−1 and tk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

number of
daughters

born to
females in

class 2
between times

tk−1 and tk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ · · · +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

number of
daughters

born to
females in

class n

between times
tk−1 and tk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

or, mathematically,

x
(k)
1 = a1x

(k−1)
1 + a2x

(k−1)
2 + · · · + anx

(k−1)
n (1)

The females in the (i + 1)-st age class (i = 1, 2, . . . , n − 1) at time tk are those females
in the ith class at time tk−1 who are still alive at time tk . Thus,

⎧⎪⎪⎨
⎪⎪⎩

number of
females in
class i + 1
at time tk

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fraction of
females in

class i

who survive
and pass into

class i + 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

number of
females in

class i

at time tk−1

⎫⎪⎪⎬
⎪⎪⎭

or, mathematically,
x

(k)
i+1 = bix

(k−1)
i , i = 1, 2, . . . , n − 1 (2)

Using matrix notation, we can write Equations (1) and (2) as⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
(k)
1

x
(k)
2

x
(k)
3
...

x(k)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · an−1 an

b1 0 0 · · · 0 0

0 b2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · bn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
(k−1)
1

x
(k−1)
2

x
(k−1)
3
...

x(k−1)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

or more compactly as
x(k) = Lx(k−1), k = 1, 2, . . . (3)

where L is the Leslie matrix

L =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · an−1 an

b1 0 0 · · · 0 0

0 b2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · bn−1 0

⎤
⎥⎥⎥⎥⎥⎦ (4)
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From Equation (3) it follows that

x(1) = Lx(0)

x(2) = Lx(1) = L2x(0)

x(3) = Lx(2) = L3x(0)

...

x(k) = Lx(k−1) = Lkx(0)

(5)

Thus, if we know the initial age distribution x(0) and the Leslie matrixL, we can determine
the female age distribution at any later time.

EXAMPLE 1 Female Age Distribution for Animals

Suppose that the oldest age attained by the females in a certain animal population is 15
years and we divide the population into three age classes with equal durations of five
years. Let the Leslie matrix for this population be

L =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦

If there are initially 1000 females in each of the three age classes, then from Equation (3)
we have

x(0) =
⎡
⎢⎣1,000

1,000

1,000

⎤
⎥⎦

x(1) = Lx(0) =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦
⎡
⎢⎣1,000

1,000

1,000

⎤
⎥⎦ =

⎡
⎢⎣7,000

500

250

⎤
⎥⎦

x(2) = Lx(1) =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦
⎡
⎢⎣7,000

500

250

⎤
⎥⎦ =

⎡
⎢⎣2,750

3,500

125

⎤
⎥⎦

x(3) = Lx(2) =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦
⎡
⎢⎣2,750

3,500

125

⎤
⎥⎦ =

⎡
⎢⎣14,375

1,375

875

⎤
⎥⎦

Thus, after 15 years there are 14,375 females between 0 and 5 years of age, 1375 females
between 5 and 10 years of age, and 875 females between 10 and 15 years of age.

Limiting Behavior Although Equation (5) gives the age distribution of the population at any time, it does
not immediately give a general picture of the dynamics of the growth process. For this we
need to investigate the eigenvalues and eigenvectors of the Leslie matrix. The eigenvalues
of L are the roots of its characteristic polynomial. As we ask you to verify in Exercise 2,
this characteristic polynomial is

p(λ) = |λI − L|
= λn − a1λ

n−1 − a2b1λ
n−2 − a3b1b2λ

n−3 − · · · − anb1b2 · · · bn−1

To analyze the roots of this polynomial, it will be convenient to introduce the function

q(λ) = a1

λ
+ a2b1

λ2
+ a3b1b2

λ3
+ · · · + anb1b2 · · · bn−1

λn
(6)
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Using this function, the characteristic equation p(λ) = 0 can be written (verify)

q(λ) = 1 for λ �= 0 (7)

Because all the ai and bi are nonnegative, we see that q(λ) is monotonically decreasing for
λ greater than zero. Furthermore, q(λ) has a vertical asymptote at λ = 0 and approaches
zero as λ → �. Consequently, as Figure 10.16.1 indicates, there is a unique λ, say λ = λ1,q(λ)

λ

λ10

1

Figure 10.16.1

such that q(λ1) = 1. That is, the matrix L has a unique positive eigenvalue. It can also
be shown (see Exercise 3) that λ1 has multiplicity 1; that is, λ1 is not a repeated root of
the characteristic equation. Although we omit the computational details, you can verify
that an eigenvector corresponding to λ1 is

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1/λ1

b1b2/λ
2
1

b1b2b3/λ
3
1

...

b1b2 · · · bn−1/λ
n−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Because λ1 has multiplicity 1, its corresponding eigenspace has dimension 1 (Exercise 3),
and so any eigenvector corresponding to it is some multiple of x1. We can summarize
these results in the following theorem.

THEOREM 10.16.1 Existence of a Positive Eigenvalue

A Leslie matrix L has a unique positive eigenvalue λ1. This eigenvalue has multiplicity
1 and an eigenvector x1 all of whose entries are positive.

We will now show that the long-term behavior of the age distribution of the population
is determined by the positive eigenvalue λ1 and its eigenvector x1.

In Exercise 9 we ask you to prove the following result.

THEOREM 10.16.2 Eigenvalues of a Leslie Matrix

If λ1 is the unique positive eigenvalue of a Leslie matrix L, and λk is any other real or
complex eigenvalue of L, then |λk| ≤ λ1.

For our purposes the conclusion in Theorem 10.16.2 is not strong enough; we need λ1 to
satisfy |λk| < λ1. In this case λ1 would be called the dominant eigenvalue of L. However,
as the following example shows, not all Leslie matrices satisfy this condition.

EXAMPLE 2 Leslie Matrix with No Dominant Eigenvalue

Let

L =
⎡
⎢⎣

0 0 6
1
2 0 0

0 1
3 0

⎤
⎥⎦

Then the characteristic polynomial of L is

p(λ) = |λI − L| = λ3 − 1
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The eigenvalues of L are thus the solutions of λ3 = 1—namely,

λ = 1, −1

2
+

√
3

2
i, −1

2
−

√
3

2
i

All three eigenvalues have absolute value 1, so the unique positive eigenvalue λ1 = 1 is
not dominant. Note that this matrix has the property that L3 = I . This means that for
any choice of the initial age distribution x(0), we have

x(0) = x(3) = x(6) = · · · = x(3k) = · · ·
The age distribution vector thus oscillates with a period of three time units. Such oscil-
lations (or population waves, as they are called) could not occur if λ1 were dominant, as
we will see below.

It is beyond the scope of this book to discuss necessary and sufficient conditions for
λ1 to be a dominant eigenvalue. However, we will state the following sufficient condition
without proof.

THEOREM 10.16.3 Dominant Eigenvalue

If two successive entries ai and ai+1 in the first row of a Leslie matrix L are nonzero,
then the positive eigenvalue of L is dominant.

Thus, if the female population has two successive fertile age classes, then its Leslie matrix
has a dominant eigenvalue. This is always the case for realistic populations if the duration
of the age classes is sufficiently small. Note that in Example 2 there is only one fertile age
class (the third), so the condition of Theorem 10.16.3 is not satisfied. In what follows,
we always assume that the condition of Theorem 10.16.3 is satisfied.

Let us assume that L is diagonalizable. This is not really necessary for the con-
clusions we will draw, but it does simplify the arguments. In this case, L has n eigen-
values, λ1, λ2, . . . , λn, not necessarily distinct, and n linearly independent eigenvectors,
x1, x2, . . . , xn, corresponding to them. In this listing we place the dominant eigenvalue
λ1 first. We construct a matrix P whose columns are the eigenvectors of L:

P = [x1 | x2 | x3 | · · · | xn]
The diagonalization of L is then given by the equation

L = P

⎡
⎢⎢⎢⎣

λ1 0 0 · · · 0

0 λ2 0 · · · 0
...

...
...

...

0 0 0 · · · λn

⎤
⎥⎥⎥⎦P−1

From this it follows that

Lk = P

⎡
⎢⎢⎢⎢⎣

λk
1 0 0 · · · 0

0 λk
2 0 · · · 0

...
...

...
...

0 0 0 · · · λk
n

⎤
⎥⎥⎥⎥⎦P−1
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for k = 1, 2, . . . . For any initial age distribution vector x(0), we then have

Lkx(0) = P

⎡
⎢⎢⎢⎢⎣

λk
1 0 0 · · · 0

0 λk
2 0 · · · 0

...
...

...
...

0 0 0 · · · λk
n

⎤
⎥⎥⎥⎥⎦P−1x(0)

for k = 1, 2, . . . . Dividing both sides of this equation by λk
1 and using the fact that

x(k) = Lkx(0), we have

1

λk
1

x(k) = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0

(
λ2

λ1

)k

0 · · · 0

...
...

...
...

0 0 0 · · ·
(

λn

λ1

)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P−1x(0) (9)

Because λ1 is the dominant eigenvalue, we have |λi/λ1| < 1 for i = 2, 3, . . . , n. It fol-
lows that

(λi/λ1)
k → 0 as k → � for i = 2, 3, . . . , n

Using this fact, we can take the limit of both sides of (9) to obtain

lim
k→�

{
1

λk
1

x(k)

}
= P

⎡
⎢⎢⎢⎣

1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0

⎤
⎥⎥⎥⎦P−1x(0) (10)

Let us denote the first entry of the column vector P−1x(0) by the constant c. As we ask
you to show in Exercise 4, the right side of (10) can be written as cx1, where c is a positive
constant that depends only on the initial age distribution vector x(0). Thus, (10) becomes

lim
k→�

{
1

λk
1

x(k)

}
= cx1 (11)

Equation (11) gives us the approximation

x(k) � cλk
1x1 (12)

for large values of k. From (12) we also have

x(k−1) � cλk−1
1 x1 (13)

Comparing Equations (12) and (13), we see that

x(k) � λ1x(k−1) (14)

for large values of k. This means that for large values of time, each age distribution vector
is a scalar multiple of the preceding age distribution vector, the scalar being the positive
eigenvalue of the Leslie matrix. Consequently, the proportion of females in each of the
age classes becomes constant. As we will see in the following example, these limiting
proportions can be determined from the eigenvector x1.
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EXAMPLE 3 Example 1 Revisited

The Leslie matrix in Example 1 was

L =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦

Its characteristic polynomial is p(λ) = λ3 − 2λ − 3
8 , and you can verify that the positive

eigenvalue is λ1 = 3
2 . From (8) the corresponding eigenvector x1 is

x1 =
⎡
⎢⎣ 1

b1/λ1

b1b2/λ
2
1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
3
2( 1

2

)( 1
4

)
( 3

2

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

1
1
3
1
18

⎤
⎥⎥⎦

From (14) we have
x(k) � 3

2 x(k−1)

for large values of k. Hence, every five years the number of females in each of the three
classes will increase by about 50%, as will the total number of females in the population.

From (12) we have

x(k) � c
(

3
2

)k
⎡
⎢⎢⎣

1
1
3
1
18

⎤
⎥⎥⎦

Consequently, eventually the females will be distributed among the three age classes in
the ratios 1: 1

3 : 1
18 . This corresponds to a distribution of 72% of the females in the first

age class, 24% of the females in the second age class, and 4% of the females in the third
age class.

EXAMPLE 4 Female Age Distribution for Humans

In this example we use birth and death parameters from the year 1965 for Canadian
females. Because few women over 50 years of age bear children, we restrict ourselves
to the portion of the female population between 0 and 50 years of age. The data are
for 5-year age classes, so there are a total of 10 age classes. Rather than writing out the
10 × 10 Leslie matrix in full, we list the birth and death parameters as follows:

ai biAge Interval

[0, 5)
[5, 10)
[10, 15)
[15, 20)
[20, 25)
[25, 30)
[30, 35)
[35, 40)
[40, 45)
[45, 50)

0.00000
0.00024
0.05861
0.28608
0.44791
0.36399
0.22259
0.10457
0.02826
0.00240

0.99651
0.99820
0.99802
0.99729
0.99694
0.99621
0.99460
0.99184
0.98700
     —
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Using numerical techniques, we can approximate the positive eigenvalue and correspond-
ing eigenvector by

λ1 = 1.07622 and x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00000

0.92594

0.85881

0.79641

0.73800

0.68364

0.63281

0.58482

0.53897

0.49429

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus, if Canadian women continued to reproduce and die as they did in 1965, eventually
every 5 years their numbers would increase by 7.622%. From the eigenvector x1, we see
that, in the limit, for every 100,000 females between 0 and 5 years of age, there will be
92,594 females between 5 and 10 years of age, 85,881 females between 10 and 15 years
of age, and so forth.

Let us look again at Equation (12), which gives the age distribution vector of the
population for large times:

x(k) � cλk
1x1 (15)

Three cases arise according to the value of the positive eigenvalue λ1:

(i) The population is eventually increasing if λ1 > 1.

(ii) The population is eventually decreasing if λ1 < 1.

(iii) The population eventually stabilizes if λ1 = 1.

The case λ1 = 1 is particularly interesting because it determines a population that has
zero population growth. For any initial age distribution, the population approaches a
limiting age distribution that is some multiple of the eigenvector x1. From Equations (6)
and (7), we see that λ1 = 1 is an eigenvalue if and only if

a1 + a2b1 + a3b1b2 + · · · + anb1b2 · · · bn−1 = 1 (16)

The expression
R = a1 + a2b1 + a3b1b2 + · · · + anb1b2 · · · bn−1 (17)

is called the net reproduction rate of the population. (See Exercise 5 for a demographic
interpretation of R.) Thus, we can say that a population has zero population growth if
and only if its net reproduction rate is 1.

Exercise Set 10.16
1. Suppose that a certain animal population is divided into two

age classes and has a Leslie matrix

L =
[

1 3
2

1
2 0

]

(a) Calculate the positive eigenvalue λ1 of L and the corre-
sponding eigenvector x1.

(b) Beginning with the initial age distribution vector

x(0) =
[

100

0

]

calculate x(1), x(2), x(3), x(4), and x(5), rounding off to the
nearest integer when necessary.

(c) Calculate x(6) using the exact formula x(6) = Lx(5) and
using the approximation formula x(6) � λ1x(5).
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2. Find the characteristic polynomial of a general Leslie matrix
given by Equation (4).

3. (a) Show that the positive eigenvalue λ1 of a Leslie matrix is
always simple. Recall that a root λ0 of a polynomial q(λ)

is simple if and only if q ′(λ0) �= 0.

(b) Show that the eigenspace corresponding to λ1 has dimen-
sion 1.

4. Show that the right side of Equation (10) is cx1, where c is the
first entry of the column vector P−1x(0).

5. Show that the net reproduction rate R, defined by (17), can be
interpreted as the average number of daughters born to a single
female during her expected lifetime.

6. Show that a population is eventually decreasing if and only if its
net reproduction rate is less than 1. Similarly, show that a popu-
lation is eventually increasing if and only if its net reproduction
rate is greater than 1.

7. Calculate the net reproduction rate of the animal population in
Example 1.

8. (For readers with a hand calculator) Calculate the net reproduc-
tion rate of the Canadian female population in Example 4.

9. (For readers who have read Sections 10.1–10.3) Prove Theo-
rem 10.16.2. [Hint: Write λk = reiθ , substitute into (7), take
the real parts of both sides, and show that r ≤ λ1.]

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Consider the sequence of Leslie matrices

L2 =
[

0 a

b1 0

]
, L3 =

⎡
⎢⎣ 0 0 a

b1 0 0

0 b2 0

⎤
⎥⎦,

L4 =

⎡
⎢⎢⎢⎣

0 0 0 a

b1 0 0 0

0 b2 0 0

0 0 b3 0

⎤
⎥⎥⎥⎦, L5 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 a

b1 0 0 0 0

0 b2 0 0 0

0 0 b3 0 0

0 0 0 b4 0

⎤
⎥⎥⎥⎥⎥⎦, . . .

(a) Use a computer to show that

L2
2 = I2, L3

3 = I3, L4
4 = I4, L5

5 = I5, . . .

for a suitable choice of a in terms of b1, b2, . . . , bn−1.

(b) From your results in part (a), conjecture a relationship between
a and b1, b2, . . . , bn−1 that will make Ln

n = In, where

Ln =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 a

b1 0 0 · · · 0 0

0 b2 0 · · · 0 0

0 0 b3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · bn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(c) Determine an expression for pn(λ) = |λIn − Ln| and use it to
show that all eigenvalues of Ln satisfy |λ| = 1 when a and b1,
b2, . . . , bn−1 are related by the equation determined in part (b).

T2. Consider the sequence of Leslie matrices

L2 =
[
a ap

b 0

]
, L3 =

⎡
⎢⎣a ap ap2

b 0 0

0 b 0

⎤
⎥⎦,

L4 =

⎡
⎢⎢⎢⎢⎣

a ap ap2 ap3

b 0 0 0

0 b 0 0

0 0 b 0

⎤
⎥⎥⎥⎥⎦,

L5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

a ap ap2 ap3 ap4

b 0 0 0 0

0 b 0 0 0

0 0 b 0 0

0 0 0 b 0

⎤
⎥⎥⎥⎥⎥⎥⎦, . . .

Ln =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a ap ap2 · · · apn−2 apn−1

b 0 0 · · · 0 0

0 b 0 · · · 0 0

0 0 b · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · b 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 0 < p < 1, 0 < b < 1, and 1 < a.

(a) Choose a value for n (say, n = 8). For various values of a, b,
and p, use a computer to determine the dominant eigenvalue
of Ln, and then compare your results to the value of a + bp.

(b) Show that

pn(λ) = |λIn − Ln| = λn − a

(
λn − (bp)n

λ − bp

)

which means that the eigenvalues of Ln must satisfy

λn+1 − (a + bp)λn + a(bp)n = 0

(c) Can you now provide a rough proof to explain the fact that
λ1 � a + bp?
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T3. Suppose that a population of mice has a Leslie matrix L over
a 1-month period and an initial age distribution vector x(0) given
by

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
2

4
5

3
10 0

4
5 0 0 0 0 0

0 9
10 0 0 0 0

0 0 9
10 0 0 0

0 0 0 4
5 0 0

0 0 0 0 3
10 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

50

40

30

20

10

5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(a) Compute the net reproduction rate of the population.

(b) Compute the age distribution vector after 100 months and 101
months, and show that the vector after 101 weeks is approxi-
mately a scalar multiple of the vector after 100 months.

(c) Compute the dominant eigenvalue of L and its corresponding
eigenvector. How are they related to your results in part (b)?

(d) Suppose you wish to control the mouse population by feed-
ing it a substance that decreases its age-specific birthrates (the
entries in the first row of L) by a constant fraction. What
range of fractions would cause the population eventually to
decrease?

10.17 Harvesting of Animal Populations
In this section we employ the Leslie matrix model of population growth to model the
sustainable harvesting of an animal population. We also examine the effect of harvesting
different fractions of different age groups.

PREREQUISITES: Age-Specific Population Growth (Section 10.16)

Harvesting In Section 10.16 we used the Leslie matrix model to examine the growth of a female
population that was divided into discrete age classes. In this section, we investigate
the effects of harvesting an animal population growing according to such a model. By
harvesting we mean the removal of animals from the population. (The word harvesting
is not necessarily a euphemism for “slaughtering”; the animals may be removed from
the population for other purposes.)

In this section we restrict ourselves to sustainable harvesting policies. By this we mean
the following:

DEFINITION 1 A harvesting policy in which an animal population is periodically
harvested is said to be sustainable if the yield of each harvest is the same and the age
distribution of the population remaining after each harvest is the same.

Thus, the animal population is not depleted by a sustainable harvesting policy; only the
excess growth is removed.

As in Section 10.16, we will discuss only the females of the population. If the number
of males in each age class is equal to the number of females—a reasonable assumption
for many populations—then our harvesting policies will also apply to the male portion
of the population.

The Harvesting Model Figure 10.17.1 illustrates the basic idea of the model. We begin with a population having
a particular age distribution. It undergoes a growth period that will be described by the
Leslie matrix. At the end of the growth period, a certain fraction of each age class is
harvested in such a way that the unharvested population has the same age distribution
as the original population. This cycle repeats after each harvest so that the yield is
sustainable. The duration of the harvest is assumed to be short in comparison with the
growth period so that any growth or change in the population during the harvest period
can be neglected.
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Figure 10.17.1

Growth

Population
harvested

Population before growth period Population after growth period

Not harvested

Harvested

To describe this harvesting model mathematically, let

x =

⎡
⎢⎢⎢⎣

x1

x2
...
xn

⎤
⎥⎥⎥⎦

be the age distribution vector of the population at the beginning of the growth period.
Thus xi is the number of females in the ith class left unharvested. As in Section 10.16,
we require that the duration of each age class be identical with the duration of the growth
period. For example, if the population is harvested once a year, then the population is
divided into 1-year age classes.

If L is the Leslie matrix describing the growth of the population, then the vector
Lx is the age distribution vector of the population at the end of the growth period,
immediately before the periodic harvest. Let hi , for i = 1, 2, . . . , n, be the fraction of
females from the ith class that is harvested. We use these n numbers to form an n × n

diagonal matrix

H =

⎡
⎢⎢⎢⎢⎢⎣

h1 0 0 · · · 0

0 h2 0 · · · 0

0 0 h3 · · · 0
...

...
...

...

0 0 0 · · · hn

⎤
⎥⎥⎥⎥⎥⎦

which we will call the harvesting matrix. By definition, we have

0 ≤ hi ≤ 1 (i = 1, 2, . . . , n)

That is, we can harvest none (hi = 0), all (hi = 1), or some fraction (0 < hi < 1) of
each of the n classes. Because the number of females in the ith class immediately before
each harvest is the ith entry (Lx)i of the vector Lx, the ith entry of the column vector

HLx =

⎡
⎢⎢⎢⎢⎣

h1(Lx)1

h2(Lx)2
...

hn(Lx)n

⎤
⎥⎥⎥⎥⎦

is the number of females harvested from the ith class.
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From the definition of a sustainable harvesting policy, we have⎡
⎣age distribution

at end of
growth period

⎤
⎦− [harvest] =

⎡
⎣age distribution

at beginning of
growth period

⎤
⎦

or, mathematically,
Lx − HLx = x (1)

If we write Equation (1) in the form

(I − H)Lx = x (2)

we see that x must be an eigenvector of the matrix (I − H)L corresponding to the eigen-
value 1. As we will now show, this places certain restrictions on the values of hi and x.

Suppose that the Leslie matrix of the population is

L =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 a3 · · · an−1 an

b1 0 0 · · · 0 0

0 b2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · bn−1 0

⎤
⎥⎥⎥⎥⎥⎦ (3)

Then the matrix (I − H)L is (verify)

(I − H)L =

⎡
⎢⎢⎢⎢⎢⎢⎣

(1 − h1)a1 (1 − h1)a2 (1 − h1)a3 · · · (1 − h1)an−1 (1 − h1)an

(1 − h2)b1 0 0 · · · 0 0

0 (1 − h3)b2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · (1 − hn)bn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus, we see that (I − H)L is a matrix with the same mathematical form as a Leslie
matrix. In Section 10.16 we showed that a necessary and sufficient condition for a Leslie
matrix to have 1 as an eigenvalue is that its net reproduction rate also be 1 [see Eq. (16) of
Section 10.16]. Calculating the net reproduction rate of (I − H)L and setting it equal
to 1, we obtain (verify)

(1 − h1)[a1 + a2b1(1 − h2) + a3b1b2(1 − h2)(1 − h3) + · · ·
+ anb1b2 · · · bn−1(1 − h2)(1 − h3) · · · (1 − hn)] = 1 (4)

This equation places a restriction on the allowable harvesting fractions. Only those
values of h1, h2, . . . , hn that satisfy (4) and that lie in the interval [0, 1] can produce a
sustainable yield.

If h1, h2, . . . , hn do satisfy (4), then the matrix (I − H)L has the desired eigenvalue
λ1 = 1. Furthermore, this eigenvalue has multiplicity 1, because the positive eigenvalue
of a Leslie matrix always has multiplicity 1 (Theorem 10.16.1). This means that there is
only one linearly independent eigenvector x satisfying Equation (2). [See Exercise 3(b)
of Section 10.16.] One possible choice for x is the following normalized eigenvector:

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1(1 − h2)

b1b2(1 − h2)(1 − h3)

b1b2b3(1 − h2)(1 − h3)(1 − h4)
...

b1b2b3 · · · bn−1(1 − h2)(1 − h3) · · · (1 − hn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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Any other solution x of (2) is a multiple of x1. Thus, the vector x1 determines the propor-
tion of females within each of the n classes after a harvest under a sustainable harvesting
policy. But there is an ambiguity in the total number of females in the population after
each harvest. This can be determined by some auxiliary condition, such as an ecological
or economic constraint. For example, for a population economically supported by the
harvester, the largest population the harvester can afford to raise between harvests would
determine the particular constant that x1 is multiplied by to produce the appropriate vec-
tor x in Equation (2). For a wild population, the natural habitat of the population would
determine how large the total population could be between harvests.

Summarizing our results so far, we see that there is a wide choice in the values of
h1, h2, . . . , hn that will produce a sustainable yield. But once these values are selected,
the proportional age distribution of the population after each harvest is uniquely deter-
mined by the normalized eigenvector x1 defined by Equation (5). We now consider a
few particular harvesting strategies of this type.

Uniform Harvesting With many populations it is difficult to distinguish or catch animals of specific ages. If
animals are caught at random, we can reasonably assume that the same fraction of each
age class is harvested. We therefore set

h = h1 = h2 = · · · = hn

Equation (2) then reduces to (verify)

Lx =
(

1

1 − h

)
x

Hence, 1/(1 − h) must be the unique positive eigenvalue λ1 of the Leslie growth matrix
L. That is,

λ1 = 1

1 − h

Solving for the harvesting fraction h, we obtain

h = 1 − (1/λ1) (6)

The vector x1, in this case, is the same as the eigenvector of L corresponding to the
eigenvalue λ1. From Equation (8) of Section 10.16, this is

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1/λ1

b1b2/λ
2
1

b1b2b3/λ
3
1

...

b1b2 · · · bn−1/λ
n−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

From (6) we can see that the larger λ1 is, the larger is the fraction of animals we can
harvest without depleting the population. Note that we need λ1 > 1 in order for the
harvesting fraction h to lie in the interval (0, 1). This is to be expected, because λ1 > 1
is the condition that the population be increasing.

EXAMPLE 1 Harvesting Sheep

For a certain species of domestic sheep in New Zealand with a growth period of 1 year,
the following Leslie matrix was found (see G. Caughley, “Parameters for Seasonally
Breeding Populations,” Ecology, 48, 1967, pp. 834–839).
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L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.000 .045 .391 .472 .484 .546 .543 .502 .468 .459 .433 .421

.845 0 0 0 0 0 0 0 0 0 0 0

0 .975 0 0 0 0 0 0 0 0 0 0

0 0 .965 0 0 0 0 0 0 0 0 0

0 0 0 .950 0 0 0 0 0 0 0 0

0 0 0 0 .926 0 0 0 0 0 0 0

0 0 0 0 0 .895 0 0 0 0 0 0

0 0 0 0 0 0 .850 0 0 0 0 0

0 0 0 0 0 0 0 .786 0 0 0 0

0 0 0 0 0 0 0 0 .691 0 0 0

0 0 0 0 0 0 0 0 0 .561 0 0

0 0 0 0 0 0 0 0 0 0 .370 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The sheep have a lifespan of 12 years, so they are divided into 12 age classes of duration
1 year each. By the use of numerical techniques, the unique positive eigenvalue of L can
be found to be

λ1 = 1.176

From Equation (6), the harvesting fraction h is

h = 1 − (1/λ1) = 1 − (1/1.176) = .150

Thus, the uniform harvesting policy is one in which 15.0% of the sheep from each of the
12 age classes is harvested every year. From (7) the age distribution vector of the sheep
after each harvest is proportional to

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000

0.719

0.596

0.489

0.395

0.311

0.237

0.171

0.114

0.067

0.032

0.010

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

From (8) we see that for every 1000 sheep between 0 and 1 year of age that are not
harvested, there are 719 sheep between 1 and 2 years of age, 596 sheep between 2 and 3
years of age, and so forth.

Harvesting Only the
Youngest Age Class

In some populations only the youngest females are of any economic value, so the har-
vester seeks to harvest only the females from the youngest age class. Accordingly, let us
set

h1 = h

h2 = h3 = · · · = hn = 0
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Equation (4) then reduces to

(1 − h)(a1 + a2b1 + a3b1b2 + · · · + anb1b2 · · · bn−1) = 1

or
(1 − h)R = 1

where R is the net reproduction rate of the population. [See Equation (17) of Sec-
tion 10.16.] Solving for h, we obtain

h = 1 − (1/R) (9)

Note from this equation that a sustainable harvesting policy is possible only if R > 1.
This is reasonable because only if R > 1 is the population increasing. From Equation (5),
the age distribution vector after each harvest is proportional to the vector

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

b1

b1b2

b1b2b3
...

b1b2b3 · · · bn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

EXAMPLE 2 Sustainable Harvesting Policy

Let us apply this type of sustainable harvesting policy to the sheep population in Exam-
ple 1. For the net reproduction rate of the population we find

R = a1 + a2b1 + a3b1b2 + · · · + anb1b2 · · · bn−1

= (.000) + (.045)(.845) + · · · + (.421)(.845)(.975) · · · (.370)

= 2.514

From Equation (9), the fraction of the first age class harvested is

h = 1 − (1/R) = 1 − (1/2.514) = .602

From Equation (10), the age distribution of the sheep population after the harvest is
proportional to the vector

x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000

.845

(.845)(.975)

(.845)(.975)(.965)

...

(.845)(.975) · · · (.370)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000

0.845

0.824

0.795

0.755

0.699

0.626

0.532

0.418

0.289

0.162

0.060

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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A direct calculation gives us the following (see also Exercise 3):

Lx1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.514

0.845

0.824

0.795

0.755

0.699

0.626

0.532

0.418

0.289

0.162

0.060

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The vector Lx1 is the age distribution vector immediately before the harvest. The total
of all entries in Lx1 is 8.520, so the first entry 2.514 is 29.5% of the total. This means that
immediately before each harvest, 29.5% of the population is in the youngest age class.
Since 60.2% of this class is harvested, it follows that 17.8% (= 60.2% of 29.5%) of the
entire sheep population is harvested each year. This can be compared with the uniform
harvesting policy of Example 1, in which 15.0% of the sheep population is harvested
each year.

Optimal SustainableYield We saw in Example 1 that a sustainable harvesting policy in which the same fraction
of each age class is harvested produces a yield of 15.0% of the sheep population. In
Example 2 we saw that if only the youngest age class is harvested, the resulting yield is
17.8% of the population. There are many other possible sustainable harvesting policies,
and each generally provides a different yield. It would be of interest to find a sustainable
harvesting policy that produces the largest possible yield. Such a policy is called an opti-
mal sustainable harvesting policy, and the resulting yield is called the optimal sustainable
yield. However, determining the optimal sustainable yield requires linear programming
theory, which we will not discuss here. We refer you to the following result, which ap-
pears in J. R. Beddington and D. B. Taylor, “Optimum Age Specific Harvesting of a
Population,” Biometrics, 29, 1973, pp. 801–809.

THEOREM 10.17.1 Optimal SustainableYield

An optimal sustainable harvesting policy is one in which either one or two age classes
are harvested. If two age classes are harvested, then the older age class is completely
harvested.

As an illustration, it can be shown that the optimal sustainable yield of the sheep popu-
lation is attained when

h1 = 0.522

h9 = 1.000
(13)

and all other values of hi are zero. Thus, 52.2% of the sheep between 0 and 1 year of age
and all the sheep between 8 and 9 years of age are harvested. As we ask you to show in
Exercise 2, the resulting optimal sustainable yield is 19.9% of the population.
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Exercise Set 10.17
1. Let a certain animal population be divided into three 1-year

age classes and have as its Leslie matrix

L =
⎡
⎢⎣

0 4 3
1
2 0 0

0 1
4 0

⎤
⎥⎦

(a) Find the yield and the age distribution vector after each
harvest if the same fraction of each of the three age classes
is harvested every year.

(b) Find the yield and the age distribution vector after each
harvest if only the youngest age class is harvested every
year. Also, find the fraction of the youngest age class that
is harvested.

2. For the optimal sustainable harvesting policy described by
Equations (13), find the vector x1 that specifies the age dis-
tribution of the population after each harvest. Also calculate
the vector Lx1 and verify that the optimal sustainable yield is
19.9% of the population.

3. Use Equation (10) to show that if only the first age class of an
animal population is harvested,

Lx1 − x1 =

⎡
⎢⎢⎢⎢⎢⎣

R − 1

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

where R is the net reproduction rate of the population.

4. If only the I th class of an animal population is to be periodically
harvested (I = 1, 2, . . . , n), find the corresponding harvesting
fraction hI .

5. Suppose that all of the J th class and a certain fraction hI of the
I th class of an animal population is to be periodically harvested
(1 ≤ I < J ≤ n). Calculate hI .

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques

in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. The results of Theorem 10.17.1 suggest the following algo-
rithm for determining the optimal sustainable yield.

(i) For each value of i = 1, 2, . . . , n, set hi = h and hk = 0 for
k �= i and calculate the respective yields. These n calcula-
tions give the one-age-class results. Of course, any calcula-
tion leading to a value of h not between 0 and 1 is rejected.

(ii) For each value of i = 1, 2, . . . , n − 1 and j = i + 1, i +
2, . . . , n, set hi = h, hj = 1, and hk = 0 for k �= i, j and
calculate the respective yields. These 1

2 n(n − 1) calculations
give the two-age-class results. Of course, any calculation
leading to a value of h not between 0 and 1 is again rejected.

(iii) Of the yields calculated in parts (i) and (ii), the largest is the
optimal sustainable yield. Note that there will be at most

n + 1
2 n(n − 1) = 1

2 n(n + 1)

calculations in all. Once again, some of these may lead to a
value of h not between 0 and 1 and must therefore be rejected.

If we use this algorithm for the sheep example in the text, there
will be at most 1

2 (12)(12 + 1) = 78 calculations to consider. Use a
computer to do the two-age-class calculations for h1 = h, hj = 1,
and hk = 0 for k �= 1 or j for j = 2, 3, . . . , 12. Construct a sum-
mary table consisting of the values of h1 and the percentage yields
using j = 2, 3, . . . , 12, which will show that the largest of these
yields occurs when j = 9.

T2. Using the algorithm in Exercise T1, do the one-age-class cal-
culations for hi = h and hk = 0 for k �= i for i = 1, 2, . . . , 12.

Construct a summary table consisting of the values of hi and the
percentage yields using i = 1, 2, . . . , 12, which will show that the
largest of these yields occurs when i = 9.

T3. Referring to the mouse population in Exercise T3 of Section
10.16, suppose that reducing the birthrates is not practical, so you
instead decide to control the population by uniformly harvesting
all of the age classes monthly.

(a) What fraction of the population must be harvested monthly
to bring the mouse population to equilibrium eventually?

(b) What is the equilibrium age distribution vector under this uni-
form harvesting policy?

(c) The total number of mice in the original mouse population
was 155. What would be the total number of mice after 5, 10,
and 200 months under your uniform harvesting policy?
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10.18 A Least Squares Model for Human Hearing
In this section we apply the method of least squares approximation to a model for human
hearing. The use of this method is motivated by energy considerations.

PREREQUISITES: Inner Product Spaces
Orthogonal Projection
Fourier Series (Section 6.6)

Anatomy of the Ear We begin with a brief discussion of the nature of sound and human hearing. Figure
10.18.1 is a schematic diagram of the ear showing its three main components: the outer
ear, middle ear, and inner ear. Sound waves enter the outer ear where they are channeled
to the eardrum, causing it to vibrate. Three tiny bones in the middle ear mechanically
link the eardrum with the snail-shaped cochlea within the inner ear. These bones pass
on the vibrations of the eardrum to a fluid within the cochlea. The cochlea contains
thousands of minute hairs that oscillate with the fluid. Those near the entrance of the
cochlea are stimulated by high frequencies, and those near the tip are stimulated by low
frequencies. The movements of these hairs activate nerve cells that send signals along
various neural pathways to the brain, where the signals are interpreted as sound.

Figure 10.18.1
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The sound waves themselves are variations in time of the air pressure. For the
auditory system, the most elementary type of sound wave is a sinusoidal variation in the
air pressure. This type of sound wave stimulates the hairs within the cochlea in such a
way that a nerve impulse along a single neural pathway is produced (Figure 10.18.2). A
sinusoidal sound wave can be described by a function of time

q(t) = A0 + A sin(ωt − δ) (1)

Figure 10.18.2
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where q(t) is the atmospheric pressure at the eardrum, A0 is the normal atmospheric pres-
sure, A is the maximum deviation of the pressure from the normal atmospheric pressure,
ω/2π is the frequency of the wave in cycles per second, and δ is the phase angle of the
wave. To be perceived as sound, such sinusoidal waves must have frequencies within a
certain range. For humans this range is roughly 20 cycles per second (cps) to 20,000 cps.
Frequencies outside this range will not stimulate the hairs within the cochlea enough to
produce nerve signals.

To a reasonable degree of accuracy, the ear is a linear system. This means that if a
complex sound wave is a finite sum of sinusoidal components of different amplitudes,
frequencies, and phase angles, say,

q(t) = A0 + A1 sin(ω1t − δ1) + A2 sin(ω2t − δ2) + · · · + An sin(ωnt − δn) (2)

then the response of the ear consists of nerve impulses along the same neural pathways
that would be stimulated by the individual components (Figure 10.18.3).

q(t)

t

+

+

=

Figure 10.18.3

Let us now consider some periodic sound wave p(t) with period T [i.e., p(t) ≡
p(t + T )] that is not a finite sum of sinusoidal waves. If we examine the response of
the ear to such a periodic wave, we find that it is the same as the response to some wave
that is the sum of sinusoidal waves. That is, there is some sound wave q(t) as given by
Equation (2) that produces the same response as p(t), even though p(t) and q(t) are
different functions of time.

We now want to determine the frequencies, amplitudes, and phase angles of the
sinusoidal components of q(t). Because q(t) produces the same response as the periodic
wave p(t), it is reasonable to expect that q(t) has the same period T as p(t). This
requires that each sinusoidal term in q(t) have period T . Consequently, the frequencies
of the sinusoidal components must be integer multiples of the basic frequency 1/T of
the function p(t). Thus, the ωk in Equation (2) must be of the form

ωk = 2kπ/T , k = 1, 2, . . .

But because the ear cannot perceive sinusoidal waves with frequencies greater than
20,000 cps, we may omit those values of k for which ωk/2π = k/T is greater than
20,000. Thus, q(t) is of the form

q(t) = A0 + A1 sin

(
2πt

T
− δ1

)
+ · · · + An sin

(
2nπt

T
− δn

)
(3)

where n is the largest integer such that n/T is not greater than 20,000.
We now turn our attention to the values of the amplitudes A0, A1, . . . , An and the

phase angles δ1, δ2, . . . , δn that appear in Equation (3). There is some criterion by which
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the auditory system “picks” these values so that q(t) produces the same response as p(t).
To examine this criterion, let us set

e(t) = p(t) − q(t)

If we consider q(t) as an approximation to p(t), then e(t) is the error in this approx-
imation, an error that the ear cannot perceive. In terms of e(t), the criterion for the
determination of the amplitudes and the phase angles is that the quantity∫ T

0
[e(t)]2 dt =

∫ T

0
[p(t) − q(t)]2 dt (4)

be as small as possible. We cannot go into the physiological reasons for this, but we note
that this expression is proportional to the acoustic energy of the error wave e(t) over one
period. In other words, it is the energy of the difference between the two sound waves
p(t) and q(t) that determines whether the ear perceives any difference between them.
If this energy is as small as possible, then the two waves produce the same sensation of
sound. Mathematically, the function q(t) in (4) is the least squares approximation to
p(t) from the vector space C[0, T ] of continuous functions on the interval [0, T ]. (See
Section 6.6.)

Least squares approximations by continuous functions arise in a wide variety of
engineering and scientific approximation problems. Apart from the acoustics problem
just discussed, some other examples follow.

1. Let S(x) be the axial strain distribution in a uniform rod lying along the x-axis from
x = 0 to x = l (Figure 10.18.4). The strain energy in the rod is proportional to the

S(x)
axial strain

x = 0 x = l

x

Figure 10.18.4

integral ∫ l

0
[S(x)]2 dx

The closeness of an approximation q(x) to S(x) can be judged according to the strain
energy of the difference of the two strain distributions. That energy is proportional
to ∫ l

0
[S(x) − q(x)]2 dx

which is a least squares criterion.

2. Let E(t) be a periodic voltage across a resistor in an electrical circuit (Figure 10.18.5).
E(t)
voltage

0 T

t

Figure 10.18.5

The electrical energy transferred to the resistor during one period T is proportional
to ∫ T

0
[E(t)]2 dt

If q(t) has the same period as E(t) and is to be an approximation to E(t), then the
criterion of closeness might be taken as the energy of the difference voltage. This is
proportional to ∫ T

0
[E(t) − q(t)]2 dt

which is again a least squares criterion.

3. Let y(x) be the vertical displacement of a uniform flexible string whose equilibrium
position is along thex-axis fromx = 0 tox = l (Figure 10.18.6). The elastic potential

y(x)
displacement

x = 0 x = l

x

Figure 10.18.6

energy of the string is proportional to∫ l

0
[y(x)]2 dx
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If q(x) is to be an approximation to the displacement, then as before, the energy
integral ∫ l

0
[y(x) − q(x)]2 dx

determines a least squares criterion for the closeness of the approximation.

Least squares approximation is also used in situations where there is no a priori justi-
fication for its use, such as for approximating business cycles, population growth curves,
sales curves, and so forth. It is used in these cases because of its mathematical simplic-
ity. In general, if no other error criterion is immediately apparent for an approximation
problem, the least squares criterion is the one most often chosen.

The following result was obtained in Section 6.6.

THEOREM 10.18.1 Minimizing Mean Square Error on [0, 2π ]

If f (t) is continuous on [0, 2π ], then the trigonometric function g(t) of the form

g(t) = 1
2a0 + a1 cos t + · · · + an cos nt + b1 sin t + · · · + bn sin nt

that minimizes the mean square error∫ 2π

0
[f (t) − g(t)]2 dt

has coefficients

ak = 1

π

∫ 2π

0
f (t) cos kt dt, k = 0, 1, 2, . . . , n

bk = 1

π

∫ 2π

0
f (t) sin kt dt, k = 1, 2, . . . , n

If the original function f (t) is defined over the interval [0, T ] instead of [0, 2π ], a
change of scale will yield the following result (see Exercise 8):

THEOREM 10.18.2 Minimizing Mean Square Error on [0,T ]

If f (t) is continuous on [0, T ], then the trigonometric function g(t) of the form

g(t) = 1

2
a0 + a1 cos

2π

T
t + · · · + an cos

2nπ

T
t + b1 sin

2π

T
t + · · · + bn sin

2nπ

T
t

that minimizes the mean square error∫ T

0
[f (t) − g(t)]2 dt

has coefficients

ak = 2

T

∫ T

0
f (t) cos

2kπt

T
dt, k = 0, 1, 2, . . . , n

bk = 2

T

∫ T

0
f (t) sin

2kπt

T
dt, k = 1, 2, . . . , n
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EXAMPLE 1 Least Squares Approximation to a SoundWave

Let a sound wave p(t) have a saw-tooth pattern with a basic frequency of 5000 cps
(Figure 10.18.7). Assume units are chosen so that the normal atmospheric pressure is

p(t)

T = .0002 2T

t

A

–A

0

Figure 10.18.7

at the zero level and the maximum amplitude of the wave is A. The basic period of the
wave is T = 1/5000 = .0002 second. From t = 0 to t = T , the function p(t) has the
equation

p(t) = 2A

T

(
T

2
− t

)
Theorem 10.18.2 then yields the following (verify):

a0 = 2

T

∫ T

0
p(t) dt = 2

T

∫ T

0

2A

T

(
T

2
− t

)
dt = 0

ak = 2

T

∫ T

0
p(t) cos

2kπt

T
dt = 2

T

∫ T

0

2A

T

(
T

2
− t

)
cos

2kπt

T
dt = 0, k = 1, 2, . . .

bk = 2

T

∫ T

0
p(t) sin

2kπt

T
dt = 2

T

∫ T

0

2A

T

(
T

2
− t

)
sin

2kπt

T
dt = 2A

kπ
, k = 1, 2, . . .

We can now investigate how the sound wave p(t) is perceived by the human ear. We note
that 4/T = 20,000 cps, so we need only go up to k = 4 in the formulas above. The least
squares approximation to p(t) is then

q(t) = 2A

π

[
sin

2π

T
t + 1

2
sin

4π

T
t + 1

3
sin

6π

T
t + 1

4
sin

8π

T
t

]
The four sinusoidal terms have frequencies of 5000, 10,000, 15,000, and 20,000 cps,
respectively. In Figure 10.18.8 we have plotted p(t) and q(t) over one period. Although
q(t) is not a very good point-by-point approximation to p(t), to the ear, both p(t) and
q(t) produce the same sensation of sound.

Figure 10.18.8

t

y

T = .0002

q(t)

p(t)
1
2
A

1
2
A

–A

A

0

–

As discussed in Section 6.6, the least squares approximation becomes better as the
number of terms in the approximating trigonometric polynomial becomes larger. More
precisely, ∫ 2π

0

[
f (t) − 1

2
a0 −

n∑
k=1

(ak cos kt + bk sin kt)

]2

dt
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tends to zero as n approaches infinity. We denote this by writing

f (t) ∼ 1

2
a0 +

�∑
k=1

(ak cos kt + bk sin kt)

where the right side of this equation is the Fourier series of f (t). Whether the Fourier
series of f (t) converges to f (t) for each t is another question, and a more difficult
one. For most continuous functions encountered in applications, the Fourier series does
indeed converge to its corresponding function for each value of t .

Exercise Set 10.18
1. Find the trigonometric polynomial of order 3 that is the least

squares approximation to the function f (t) = (t − π)2 over
the interval [0, 2π ].

2. Find the trigonometric polynomial of order 4 that is the least
squares approximation to the function f (t) = t2 over the in-
terval [0, T ].

3. Find the trigonometric polynomial of order 4 that is the least
squares approximation to the function f (t) over the interval
[0, 2π ], where

f (t) =
{

sin t, 0 ≤ t ≤ π

0, π < t ≤ 2π

4. Find the trigonometric polynomial of arbitrary order n that is
the least squares approximation to the function f (t) = sin 1

2 t

over the interval [0, 2π ].
5. Find the trigonometric polynomial of arbitrary order n that is

the least squares approximation to the function f (t) over the
interval [0, T ], where

f (t) =
{

t, 0 ≤ t ≤ 1
2 T

T − t, 1
2 T < t ≤ T

6. For the inner product

〈u, v〉 =
∫ 2π

0
u(t)v(t) dt

show that

(a) ‖1‖ = √
2π

(b) ‖ cos kt‖ = √
π for k = 1, 2, . . .

(c) ‖ sin kt‖ = √
π for k = 1, 2, . . .

7. Show that the 2n + 1 functions

1, cos t, cos 2t, . . . , cos nt, sin t, sin 2t, . . . , sin nt

are orthogonal over the interval [0, 2π ] relative to the inner
product 〈u, v〉 defined in Exercise 6.

8. If f (t) is defined and continuous on the interval [0, T ], show
that f (T τ/2π) is defined and continuous for τ in the interval
[0, 2π ]. Use this fact to show how Theorem 10.18.2 follows
from Theorem 10.18.1.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. Let g be the function

g(t) = 3 + 4 sin t

5 − 4 cos t

for 0 ≤ t ≤ 2π . Use a computer to determine the Fourier coeffi-
cients {

ak

bk

}
= 1

π

∫ 2π

0

(
3 + 4 sin t

5 − 4 cos t

){
cos kt

sin kt

}
dt

for k = 0, 1, 2, 3, 4, 5. From your results, make a conjecture
about the general expressions for ak and bk . Test your conjecture
by calculating

1

2
a0 +

�∑
k=1

(ak cos kt + bk sin kt)

on the computer and see whether it converges to g(t).

T2. Let g be the function

g(t) = ecos t [cos(sin t) + sin(sin t)]
for 0 ≤ t ≤ 2π . Use a computer to determine the Fourier coeffi-
cients {

ak

bk

}
= 1

π

∫ 2π

0
g(t)

{
cos kt

sin kt

}
dt

for k = 0, 1, 2, 3, 4, 5. From your results, make a conjecture
about the general expressions for ak and bk . Test your conjecture
by calculating

1

2
a0 +

�∑
k=1

(ak cos kt + bk sin kt)

on the computer and see whether it converges to g(t).
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10.19 Warps and Morphs
Among the more interesting image-manipulation techniques available for computer
graphics are warps and morphs. In this section we show how linear transformations can be
used to distort a single picture to produce a warp, or to distort and blend two pictures to
produce a morph.

PREREQUISITES: Geometry of Linear Operators on R2 (Section 4.11)
Linear Independence
Bases in R2

Computer graphics software enables you to manipulate an image in various ways, such
as by scaling, rotating, or slanting the image. Distorting an image by separately moving
the corners of a rectangle containing the image is another basic image-manipulation
technique. Distorting various pieces of an image in different ways is a more complicated
procedure that results in a warp of the picture. In addition, warping two different images
in complementary ways and blending the warps results in a morph of the two pictures
(from the Greek root meaning “shape” or “form”). An example is Figure 10.19.1 in which
four photographs of a woman taken over a 50-year period (the four diagonal pictures
from top left to bottom right) have been pairwise morphed by different amounts to
suggest the gradual aging of the woman.

Figure 10.19.1
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The most visible application of warping and morphing images has been the produc-
tion of special effects in motion pictures and television. However, many scientific and
technological applications of such techniques have also arisen—for example, studying
the evolution, growth, and development of living organisms, assisting in reconstructive
and cosmetic surgery, exploring various designs of a product, and “aging” photographs
of missing persons or police suspects.

Warps We begin by describing a simple warp of a triangular region in the plane. Let the three
vertices of a triangle be given by the three noncollinear points v1, v2, and v3 (Figure
10.19.2a). We will call this triangle the begin-triangle. If v is any point in the begin-

v

w

y

x

y

x

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v1

v2

v3

w1
w2

w3

(a)

(b)

Figure 10.19.2

triangle, then there are unique constants c1 and c2 such that

v − v3 = c1(v1 − v3) + c2(v2 − v3) (1)

Equation (1) expresses the vector v − v3 as a (unique) linear combination of the two
linearly independent vectors v1 − v3 and v2 − v3 with respect to an origin at v3. If we set
c3 = 1 − c1 − c2, then we can rewrite (1) as

v = c1v1 + c2v2 + c3v3 (2)

where
c1 + c2 + c3 = 1 (3)

from the definition of c3. We say that v is a convex combination of the vectors v1, v2, and v3

if (2) and (3) are satisfied and, in addition, the coefficients c1, c2, and c3 are nonnegative.
It can be shown (Exercise 6) that v lies in the triangle determined by v1, v2, and v3 if and
only if it is a convex combination of those three vectors.

Next, given three noncollinear points w1, w2, and w3 of an end-triangle (Figure
10.19.2b), there is a unique affine transformation that maps v1 to w1, v2 to w2, and
v3 to w3. That is, there is a unique 2 × 2 invertible matrix M and a unique vector b such
that

wi = Mvi + b for i = 1, 2, 3 (4)

(See Exercise 5 for the evaluation of M and b.) Moreover, it can be shown (Exercise 3)
that the image w of the vector v in (2) under this affine transformation is

w = c1w1 + c2w2 + c3w3 (5)

This is a basic property of affine transformations: They map a convex combination of
vectors to the same convex combination of the images of the vectors.

Now suppose that the begin-triangle contains a picture within it (Figure 10.19.3a).

y

x

y

x

w1

v1

v = c1v1 + c2v2 + c3v3

w = c1w1 + c2w2 + c3w3

v2

v3
v

w2

w3

w

ρ1(w) = ρ0(v)

(a)

(b)

Figure 10.19.3

That is, to each point in the begin-triangle we assign a gray level, say 0 for white and
100 for black, with any other gray level lying between 0 and 100. In particular, let a
scalar-valued function ρ0, called the picture-density of the begin-triangle, be defined so
that ρ0(v) is the gray level at the point v in the begin-triangle. We can now define a
picture in the end-triangle, called a warp of the original picture, with a picture-density
ρ1 by defining the gray level at the point w within the end-triangle to be the gray level of
the point v in the begin-triangle that maps onto w. In equation form, the picture-density
ρ1 is determined by

ρ1(w) = ρ0(c1v1 + c2v2 + c3v3) (6)

In this way, as c1, c2, and c3 vary over all nonnegative values that add to one, (5) generates
all points w in the end-triangle, and (6) generates the gray levels ρ1(w) of the warped
picture at those points (Figure 10.19.3b).

Equation (6) determines a very simple warp of a picture within a single triangle.
More generally, we can break up a picture into many triangular regions and warp each
triangular region differently. This gives us much freedom in designing a warp through
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our choice of triangular regions and how we change them. To this end, suppose we are
given a picture contained within some rectangular region of the plane. We choose n

points v1, v2, . . . , vn within the rectangle, which we call vertex points, so that they fall
on key elements or features of the picture we wish to warp (Figure 10.19.4a). Once the
vertex points are chosen, we complete a triangulation of the rectangular region; that is,
we draw line segments between the vertex points in such a way that we have the following
conditions (Figure 10.19.4b):

1. The line segments form the sides of a set of triangles.

2. The line segments do not intersect.

3. Each vertex point is the vertex of at least one triangle.

4. The union of the triangles is the rectangle.

5. The set of triangles is maximal (i.e., no more vertices can be connected).

Note that condition 4 requires that each corner of the rectangle containing the picture
be a vertex point.

One can always form a triangulation from any n vertex points, but the triangulation
is not necessarily unique. For example, Figures 10.19.4b and 10.19.4c are two different
triangulations of the set of vertex points in Figure 10.19.4a. Since there are various
computer algorithms that perform triangulations very quickly, it is not necessary to
perform the tiresome triangulation task by hand; one need only specify the desired vertex
points and let a computer generate a triangulation from them. If n is the number of vertex
points chosen, it can be shown that the number of triangles m of any triangulation of
those points is given by

m = 2n − 2 − k (7)

where k is the number of vertex points lying on the boundary of the rectangle, including
the four situated at the corner points.

The warp is specified by moving the n vertex points v1, v2, . . . , vn to new locations
w1, w2, . . . , wn according to the changes we desire in the picture (Figures 10.19.5a and
10.19.5b). However, we impose two restrictions on the movements of the vertex points:

v6 v7

v1

v4 v5

v2

v3

v6 v7

v1

v4 v5

v2

v3

v6 v7

v1

v4 v5

v2

v3

(a)

(b)

(c)

Figure 10.19.4 1. The four vertex points at the corners of the rectangle are to remain fixed, and any
vertex point on a side of the rectangle is to remain fixed or move to another point on
the same side of the rectangle. All other vertex points are to remain in the interior
of the rectangle.

2. The triangles determined by the triangulation are not to overlap after their vertices
have been moved.

The first restriction guarantees that the rectangular shape of the begin-picture is pre-
served. The second restriction guarantees that the displaced vertex points still form a
triangulation of the rectangle and that the new triangulation is similar to the original one.
For example, Figure 10.19.5c is not an allowable movement of the vertex points shown

Figure 10.19.5

v6 v7 w6 w7

v1

v4 v5

v2

v3

w1

w4 w5

w2

w6 w7

w1 w2

w3

w4 w5

w3

(a) (b) (c)
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in Figure 10.19.5a. Although a violation of this condition can be handled mathemati-
cally without too much additional effort, the resulting warps usually produce unnatural
results and we will not consider them here.

Figure 10.19.6 is a warp of a photograph of a woman using a triangulation with 94
vertex points and 179 triangles. Note that the vertex points in the begin-triangulation
are chosen to lie along key features of the picture (hairline, eyes, lips, etc.). These vertex
points were moved to final positions corresponding to those same features in a picture of
the woman taken 20 years after the begin-picture. Thus, the warped picture represents
the woman forced into her older shape but using her younger gray levels.

Figure 10.19.6

Begin-picture Warped picture 

Begin-triangulation Warped triangulation 

Begin-triangulation Warped triangulation 

Time-VaryingWarps A time-varying warp is the set of warps generated when the vertex points of the begin-
picture are moved continually in time from their original positions to specified final
positions. This gives us a motion picture in which the begin-picture is continually warped
to a final warp. Let us choose time units so that t = 0 corresponds to our begin-picture
and t = 1 corresponds to our final warp. The simplest way of moving the vertex points
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from time 0 to time 1 is with constant velocity along straight-line paths from their initial
positions to their final positions.

To describe such a motion, let ui (t) denote the position of the ith vertex point at
any time t between 0 and 1. Thus ui (0) = vi (its given position in the begin-picture) and
ui (1) = wi (its given position in the final warp). In between, we determine its position
by

ui (t) = (1 − t)vi + twi (8)

Note that (8) expresses ui (t) as a convex combination of vi and wi for each t in [0, 1].
Figure 10.19.7 illustrates a time-varying triangulation of a plain rectangular region with
six vertex points. The lines connecting the vertex points at the different times are the
space-time paths of these vertex points in this space-time diagram.

Figure 10.19.7

Time = 0

Time = t

Time = 1

w1

u1(t)

v1

w5

u5(t)

v5

w2

w3

w4

u2(t)

u3(t) u4(t)

v2

v3

v4

w6

u6(t)

v6

Once the positions of the vertex points are computed at time t , a warp is performed
between the begin-picture and the triangulation at time t determined by the displaced
vertex points at that time. Figure 10.19.8 shows a time-varying warp at five values of t

generated from the warp between t = 0 and t = 1 shown in Figure 10.19.6.

Figure 10.19.8 t = 0.00 t = 0.25 t = 0.50 t = 0.75 t = 1.00

Morphs A time-varying morph can be described as a blending of two time-varying warps of two
different pictures using two triangulations that match corresponding features in the two
pictures. One of the two pictures is designated as the begin-picture and the other as the
end-picture. First, a time-varying warp from t = 0 to t = 1 is generated in which the
begin-picture is warped into the shape of the end-picture. Then a time-varying warp
from t = 1 to t = 0 is generated in which the end-picture is warped into the shape of
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the begin-picture. Finally, a weighted average of the gray levels of the two warps at each
time t is produced to generate the morph of the two images at time t .

Figure 10.19.9 shows two photographs of a woman taken 20 years apart. Below the
pictures are two corresponding triangulations in which corresponding features of the
two photographs are matched. The time-varying morph between these two pictures for
five values of t between 0 and 1 is shown in Figure 10.19.10.

Figure 10.19.9

Begin-picture End-picture

Begin-triangulation End-triangulation

Figure 10.19.10 t = 0.00 t = 0.25 t = 0.50 t = 0.75 t = 1.00

The procedure for producing such a morph is outlined in the following nine steps
(Figure 10.19.11):

Step 1. Given a begin-picture with picture-density ρ0 and an end-picture with picture-
density ρ1, position n vertex points v1, v2, . . . , vn in the begin-picture at key
features of that picture.

Step 2. Position n corresponding vertex points w1, w2, . . . , wn in the end-picture at the
corresponding key features of that picture.

Step 3. Triangulate the begin- and end-pictures in similar ways by drawing lines between
corresponding vertex points in both pictures.

Step 4. For any time t between 0 and 1, find the vertex points u1(t), u2(t), . . . , un(t) in
the morph picture at that time, using the formula

ui (t) = (1 − t)vi + twi , i = 1, 2, . . . , n (9)

Step 5. Triangulate the morph picture at time t similar to the begin- and end-picture
triangulations.
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Figure 10.19.11

wJ

wI

vI
vJv

u

wK

vK

uK(t)

uJ(t)

uI(t)

w

Time = 0
Begin-picture
Given density: ρ0(v)

Time = t
Morph-picture
Computed density: 
ρt(u) = (1 – t)ρ0(v) + tρ1(w)

Time = 1
End-picture
Given density: ρ1(w)

Step 6. For any point u in the morph picture at time t , find the triangle in the triangula-
tion of the morph picture in which it lies and the vertices uI (t), uJ (t), and uK(t)

of that triangle. (See Exercise 1 to determine whether a given point lies in a given
triangle.)

Step 7. Express u as a convex combination of uI (t), uJ (t), and uK(t) by finding the
constants cI , cJ , and cK such that

u = cI uI (t) + cJ uJ (t) + cKuK(t) (10)

and
cI + cJ + cK = 1 (11)

Step 8. Determine the locations of the point u in the begin- and end-pictures using

v = cI vI + cJ vJ + cKvK (in the begin-picture) (12)

and
w = cI wI + cJ wJ + cKwK (in the end-picture) (13)

Step 9. Finally, determine the picture-density ρt (u) of the morph-picture at the point u
using

ρt (u) = (1 − t)ρ0(v) + tρ1(w) (14)

Step 9 is the key step in distinguishing a warp from a morph. Equation (14) takes
weighted averages of the gray levels of the begin- and end-pictures to produce the gray
levels of the morph-picture. The weights depend on the fraction of the distances that the
vertex points have moved from their beginning positions to their ending positions. For
example, if the vertex points have moved one-fourth of the way to their destinations (i.e.,
if t = 0.25), then we use one-fourth of the gray levels of the end-picture and three-fourths
of the gray levels of the begin-picture. Thus, as time progresses, not only does the shape
of the begin-picture gradually change into the shape of the end-picture (as in a warp)
but the gray levels of the begin-picture also gradually change into the gray levels of the
end-picture.

The procedure described above to generate a morph is cumbersome to perform by
hand, but it is the kind of dull, repetitive procedure at which computers excel. A suc-
cessful morph demands good preparation and requires more artistic ability than mathe-
matical ability. (The software designer is required to have the mathematical ability.) The
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two photographs to be morphed should be carefully chosen so that they have matching
features, and the vertex points in the two photographs also should be carefully chosen so
that the triangles in the two resulting triangulations contain similar features of the two
pictures. When the procedure is done correctly, each frame of the morph should look
just as “real” as the begin- and end-pictures.

The techniques we have discussed in this section can be generalized in numerous ways
to produce much more elaborate warps and morphs. For example:

1. If the pictures are in color, the three components of the picture colors (red, green,
and blue) can be morphed separately to produce a color morph.

2. Rather than following straight-line paths to their destinations, the vertices of a tri-
angulation can be directed separately along more complicated paths to produce a
variety of results.

3. Rather than travel with constant speeds along their paths, the vertices of a triangu-
lation can be directed to have different speeds at different times. For example, in a
morph between two faces, the hairline can be made to change first, then the nose,
and so forth.

4. Similarly, the gray-level mixing of the begin-picture and end-picture at different times
and different vertices can be varied in a more complicated way than that in Equation
(14).

5. One can morph two surfaces in three-dimensional space (representing two complete
heads, for example) by triangulating the surfaces and using the techniques in this
section.

6. One can morph two solids in three-dimensional space (for example, two three-
dimensional tomographs of a beating human heart at two different times) by dividing
the two solids into corresponding tetrahedral regions.

7. Two film strips can be morphed frame by frame by different amounts between each
pair of frames to produce a morphed film strip in which, say, an actor walking along
a set is gradually morphed into an ape walking along the set.

8. Instead of using straight lines to triangulate two pictures to be morphed, more com-
plicated curves, such as spline curves, can be matched between the two pictures.

9. Three or more pictures can be morphed together by generalizing the formulas given
in this section.

These and other generalizations have made warping and morphing two of the most active
areas in computer graphics.

Exercise Set 10.19
1. Determine whether the vector v is a convex combination of the

vectors v1, v2, and v3. Do this by solving Equations (1) and (3)
for c1, c2, and c3 and ascertaining whether these coefficients are
nonnegative.

(a) v =
[

3

3

]
, v1 =

[
1

1

]
, v2 =

[
3

5

]
, v3 =

[
4

2

]

(b) v =
[

2

4

]
, v1 =

[
1

1

]
, v2 =

[
3

5

]
, v3 =

[
4

2

]

(c) v =
[

0

0

]
, v1 =

[
3

3

]
, v2 =

[−2

−2

]
, v3 =

[
3

0

]

(d) v =
[

1

0

]
, v1 =

[
3

3

]
, v2 =

[−2

−2

]
, v3 =

[
3

0

]
2. Verify Equation (7) for the two triangulations given in Fig-

ure 10.19.4.

3. Let an affine transformation be given by a 2 × 2 matrix M and
a two-dimensional vector b. Let v = c1v1 + c2v2 + c3v3, where
c1 + c2 + c3 = 1; let w = Mv + b; and let wi = Mvi + b for
i = 1, 2, 3. Show that w = c1w1 + c2w2 + c3w3. (This shows
that an affine transformation maps a convex combination of
vectors to the same convex combination of the images of the
vectors.)
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4. (a) Exhibit a triangulation of the points in Figure 10.19.4 in
which the points v3, v5, and v6 form the vertices of a single
triangle.

(b) Exhibit a triangulation of the points in Figure 10.19.4 in
which the points v2, v5, and v7 do not form the vertices of a
single triangle.

5. Find the 2 × 2 matrix M and two-dimensional vector b that
define the affine transformation that maps the three vectors v1,
v2, and v3 to the three vectors w1, w2, and w3. Do this by setting
up a system of six linear equations for the four entries of the
matrix M and the two entries of the vector b.

(a) v1 =
[

1

1

]
, v2 =

[
2

3

]
, v3 =

[
2

1

]
,

w1 =
[

4

3

]
, w2 =

[
9

5

]
, w3 =

[
5

3

]

(b) v1 =
[−2

2

]
, v2 =

[
0

0

]
, v3 =

[
2

1

]
,

w1 =
[−8

1

]
, w2 =

[
0

1

]
, w3 =

[
5

4

]

(c) v1 =
[−2

1

]
, v2 =

[
3

5

]
, v3 =

[
1

0

]
,

w1 =
[

0

−2

]
, w2 =

[
5

2

]
, w3 =

[
3

−3

]

(d) v1 =
[

0

2

]
, v2 =

[
2

2

]
, v3 =

[−4

−2

]
,

w1 =
[ 5

2

−1

]
, w2 =

[ 7
2

3

]
, w3 =

[− 7
2

−9

]
6. (a) Let a and b be linearly independent vectors in the plane.

Show that if c1 and c2 are nonnegative numbers such that
c1 + c2 = 1, then the vector c1a + c2b lies on the line seg-
ment connecting the tips of the vectors a and b.

(b) Let a and b be linearly independent vectors in the plane.
Show that if c1 and c2 are nonnegative numbers such that
c1 + c2 ≤ 1, then the vector c1a + c2b lies in the triangle
connecting the origin and the tips of the vectors a and b.
[Hint: First examine the vector c1a + c2b multiplied by the
scale factor 1/(c1 + c2).]

(c) Let v1, v2, and v3 be noncollinear points in the plane. Show
that if c1, c2, and c3 are nonnegative numbers such that
c1 + c2 + c3 = 1, then the vector c1v1 + c2v2 + c3v3 lies in
the triangle connecting the tips of the three vectors. [Hint:
Let a = v1 − v3 and b = v2 − v3, and then use Equation (1)
and part (b) of this exercise.]

7. (a) What can you say about the coefficients c1, c2, and c3 that
determine a convex combination v = c1v1 + c2v2 + c3v3 if
v lies on one of the three vertices of the triangle determined
by the three vectors v1, v2, and v3?

(b) What can you say about the coefficients c1, c2, and c3 that
determine a convex combination v = c1v1 + c2v2 + c3v3 if

v lies on one of the three sides of the triangle determined by
the three vectors v1, v2, and v3?

(c) What can you say about the coefficients c1, c2, and c3 that
determine a convex combination v = c1v1 + c2v2 + c3v3 if
v lies in the interior of the triangle determined by the three
vectors v1, v2, and v3?

8. (a) The centroid of a triangle lies on the line segment connect-
ing any one of the three vertices of the triangle with the
midpoint of the opposite side. Its location on this line seg-
ment is two-thirds of the distance from the vertex. If the
three vertices are given by the vectors v1, v2, and v3, write
the centroid as a convex combination of these three vectors.

(b) Use your result in part (a) to find the vector defining the

centroid of the triangle with the three vertices

[
2

3

]
,

[
5

2

]
,

and

[
1

1

]
.

Working withTechnology

The following exercises are designed to be solved using a technol-
ogy utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear
algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal
of these exercises is to provide you with a basic proficiency with
your technology utility. Once you have mastered the techniques
in these exercises, you will be able to use your technology utility
to solve many of the problems in the regular exercise sets.

T1. To warp or morph a surface in R3 we must be able to triangu-

late the surface. Let v1 =
⎡
⎢⎣v11

v12

v13

⎤
⎥⎦, v2 =

⎡
⎢⎣v21

v22

v23

⎤
⎥⎦, and v3 =

⎡
⎢⎣v31

v32

v33

⎤
⎥⎦

be three noncollinear vectors on the surface. Then a vector

v =
⎡
⎢⎣v1

v2

v3

⎤
⎥⎦ lies in the triangle formed by these three vectors if and

only if v is a convex combination of the three vectors; that is,
v = c1v1 + c2v2 + c3v3 for some nonnegative coefficients c1, c2,
and c3 whose sum is 1.

(a) Show that in this case, c1, c2, and c3 are solutions of the fol-
lowing linear system:⎡

⎢⎢⎢⎣
v11 v21 v31

v12 v22 v32

v13 v23 v33

1 1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎣c1

c2

c3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

v1

v2

v3

1

⎤
⎥⎥⎥⎦

In parts (b)–(d) determine whether the vector v is a convex combi-

nation of the vectors v1 =
⎡
⎢⎣ 2

7

−5

⎤
⎥⎦, v2 =

⎡
⎢⎣3

0

9

⎤
⎥⎦, and v3 =

⎡
⎢⎣ 2

2

−4

⎤
⎥⎦.
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(b) v = 1

4

⎡
⎢⎣9

9

9

⎤
⎥⎦ (c) v = 1

4

⎡
⎢⎣10

9

9

⎤
⎥⎦ (d) v = 1

4

⎡
⎢⎣ 13

−7

50

⎤
⎥⎦

T2. To warp or morph a solid object in R3 we first partition the

object into disjoint tetrahedrons. Let v1 =
⎡
⎢⎣v11

v12

v13

⎤
⎥⎦, v2 =

⎡
⎢⎣v21

v22

v23

⎤
⎥⎦,

v3 =
⎡
⎢⎣v31

v32

v33

⎤
⎥⎦, and v4 =

⎡
⎢⎣v41

v42

v43

⎤
⎥⎦ be four noncoplanar vectors. Then

a vector v =
⎡
⎢⎣v1

v2

v3

⎤
⎥⎦ lies in the solid tetrahedron formed by these

four vectors if and only if v is a convex combination of the three
vectors; that is, v = c1v1 + c2v2 + c3v3 + c4v4 for some nonnega-
tive coefficients c1, c2, c3, and c4 whose sum is one.

(a) Show that in this case, c1, c2, c3, and c4 are solutions of the
following linear system:⎡

⎢⎢⎢⎣
v11 v21 v31 v41

v12 v22 v32 v42

v13 v23 v33 v43

1 1 1 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1

c2

c3

c4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v1

v2

v3

1

⎤
⎥⎥⎥⎦

In parts (b)–(d) determine whether the vector v is a convex

combination of the vectors v1 =
⎡
⎢⎣ 2

−6

1

⎤
⎥⎦, v2 =

⎡
⎢⎣−3

4

2

⎤
⎥⎦, v3 =

⎡
⎢⎣7

2

3

⎤
⎥⎦,

and v4 =
⎡
⎢⎣−1

3

2

⎤
⎥⎦.

(b) v =
⎡
⎢⎣5

0

7

⎤
⎥⎦ (c) v =

⎡
⎢⎣1

1

2

⎤
⎥⎦ (d) v =

⎡
⎢⎣1

2

2

⎤
⎥⎦

10.20 Internet Search Engines
In this section we describe a basic technique used by Internet search engines to rank web
pages according to their importance.

PREREQUISITES: Basic Probability Concepts
Intuitive Understanding of Limits
Eigenvalues and Eigenvectors
Dynamical Systems and Markov Chains (Section 5.5) or
Markov Chains (Section 10.4)

Web Surfing Assume that Alice and Bob are each given a set of six web pages containing key words on
a topic of common interest. Each has his or her own strategy for establishing an order
of importance for the pages.

Alice’s Strategy Alice decides that the network of links (references) between the pages can provide a
means of measuring their relative importance, so she draws a diagram called a webgraph
that shows the links among the six web pages (Figure 10.20.1). A directed path from the

1

4

2

5

3

6

Figure 10.20.1

ith page to the j th page means that the ith page has an outgoing link to the j th page
(i.e., it references that page).

Alice proceeds as follows:

• She disregards links to or from pages outside the six given pages.

• She disregards links from a page to itself.

• She disregards duplicate links.

• She assumes there are no dangling pages (i.e., pages with no outgoing links).

Alice then designs a “web surfing” strategy in which she picks one of the pages (say
Page 2), clicks on one of its links, and connects to another page. She then repeats the



10.20 Internet Search Engines 707

procedure starting from the new page, and thereby surfs from page to page. She tracks
how many times she visits each page in the set after 10, 100, 1000, 10,000, and 20,000
mouse clicks and creates Table 1. (Notice that the number of pages visited is one more
than the number of mouse clicks.)

Table 1 Number of Visits to Each Page

Total Number of Mouse Clicks

Page 0 10 100 1,000 10,000 20,000

1 0 3 21 165 1,504 3,012
2 1 2 16 148 1,391 2,790
3 0 3 27 271 2,706 5,424
4 0 0 4 100 1,096 2,206
5 0 2 22 155 1,415 2,745
6 0 1 11 162 1,889 3,824

She also creates Table 2 in which she computes the fraction of visits to each page to four
decimal places.

Table 2 Fraction of Visits to Each Page

Total Number of Mouse Clicks

Page 0 10 100 1,000 10,000 20,000

1 0.0000 0.2727 0.2079 0.1648 0.1504 0.1506
2 1.0000 0.1818 0.1584 0.1479 0.1391 0.1395
3 0.0000 0.2727 0.2673 0.2707 0.2706 0.2712
4 0.0000 0.0000 0.0396 0.0999 0.1096 0.1103
5 0.0000 0.1818 0.2178 0.1548 0.1415 0.1372
6 0.0000 0.0909 0.1089 0.1618 0.1889 0.1912

Based on 20,000 repetitions she identifies Page 3 as the most important since it was
visited the most often, and she ranks the pages in decreasing order of importance:

3, 6, 1, 2, 5, 4 (1)

Markov Matrix Approach Observe that for each page listed in Table 2 the fractions seem to stabilize. This is not
accidental; we will see that for this example regardless of which page is chosen initially
and which outgoing links are chosen subsequently, the fraction of visits to each page will
converge to a limiting value that depends only on the structure of the webgraph. The
limiting values of these fractions, called page ranks, can be taken as a measure of the
relative importance of the pages.

Although the procedure used by Alice is satisfactory for her small webgraph, it is not
workable for large webgraphs such as the World Wide Web (WWW). For large webgraphs,
the same ranking that Alice obtained can be accomplished more efficiently usingMarkov
chains (see Section 5.5 or 10.4). As a first step in explaining that method, we define the
adjacency matrix of a webgraph with n pages to be the n × n matrix A whose ijth entry
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aij is 1 if the j th page has an outgoing link to the ith page and 0 otherwise. For example,
you should be able to see that the adjacency matrix for the webgraph in Figure 10.20.1 is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1

0 0 1 0 1 0

1 0 0 1 0 1

0 1 0 0 0 1

0 1 1 0 0 0

0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Notice that

• The sum of the entries of the ith row of an adjacency matrix is the number of incoming
links to the ith page from the other pages.

• The sum of the entries in the j th column is the number of outgoing links on the j th
page to other pages.

We make the following definition.

DEFINITION 1 If a webgraph with n pages is “surfed” by clicking a mouse, then the
state vector x(k) is the n × 1 column vector whose ith entry is the probability that the
surfer is on the ith page after k random mouse clicks.

To illustrate this idea, suppose that it is known with certainty that a surfer is on the
j th page after k mouse clicks, in which case the j th entry of x(k) is 1 and all other entries
are 0. It follows from this that the product Ax(k) is the j th column vector of A (verify).
For example, if we know with certainty that Alice begins surfing from Page 2, then her
initial state vector x(0) and the product Ax(0) would be

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ax(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1

0 0 1 0 1 0

1 0 0 1 0 1

0 1 0 0 0 1

0 1 1 0 0 0

0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0

1

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The unit entries of Ax(0) tell us that from Page 2 Alice has the option of going to
either Page 1, 4, or 5 since these are the only pages to which there are outgoing links.
Assuming that Alice chooses outgoing links randomly, each of these three pages would
have probability 1/3 of being chosen.

To formalize Alice’s idea of choosing outgoing links randomly, we make the follow-
ing definition.

DEFINITION 2 The probability transition matrix B = [
bij

]
associated with an adja-

cency matrix A = [
aij

]
is the matrix obtained by dividing each entry of A by the sum

of the entries in the same column; that is,

bij = aij∑n
k=1 akj
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You should be able to see that 0 ≤ bij ≤ 1 and that the entries in each column of B sum
up to 1. As an example, the probability transition matrix associated with (2) is

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/3 0 0 1/3 1/3

0 0 1/3 0 1/3 0

1 0 0 1/2 0 1/3

0 1/3 0 0 0 1/3

0 1/3 1/3 0 0 0

0 0 1/3 1/2 1/3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

This matrix incorporates the probability information for advancing randomly from one
page to the next with a mouse click. For example, if we know with certainty that Alice
is initially on Page 2, then her initial state vector is

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Her state vector to four decimal places after one mouse click will be

x(1) = Bx(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/3 0 0 1/3 1/3

0 0 1/3 0 1/3 0

1 0 0 1/2 0 1/3

0 1/3 0 0 0 1/3

0 1/3 1/3 0 0 0

0 0 1/3 1/2 1/3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3

0

0

1/3

1/3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3333

0

0

0.3333

0.3333

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and her state vectors resulting from successive mouse clicks will form the sequence

x(k) = Bx(k−1), k = 1, 2, 3, . . . (4)

It follows from this that her successive state vectors rounded to four decimal places will
be

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3333

0

0

0.3333

0.3333

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1111

0.1111

0.5000

0

0

0.2778

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1296

0.1667

0.2037

0.1296

0.2037

0.1667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

x(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1533

0.1245

0.3014

0.1121

0.1286

0.1800

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1562

0.1366

0.2700

0.1101

0.1366

0.1905

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(15) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1544

0.1365

0.2727

0.1090

0.1365

0.1910

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Eigenvector of the
Transition Matrix

If we accept that the state vector x(k) approaches a limit x as k (the number of mouse
clicks) increases without bound, then it follows from (4) that

x = Bx (5)

That is, x is an eigenvector of B corresponding to the eigenvalue 1. If x is scaled so that
its entries sum to 1, then the entries of x can be interpreted as the fraction of times that
we can expect each page to be visited as the number of mouse clicks increases without
bound. For example, with the help of a computer algebra system such as MATLAB,
Mathematica, or Maple one can show that for the matrix B in (3) such an eigenvector is

x = 1

110

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

17

15

30

12

15

21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1545

0.1364

0.2727

0.1091

0.1364

0.1909

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Compare this to the results that Alice obtained in Table 2.

Bob’s Strategy Although Bob agrees with Alice’s definition of page rank, he realizes that it can be
misleading for certain webgraphs. For example, in Figure 10.20.2a the webgraph consists
of two unlinked page clusters. In this case should the initial state vector have zero
probabilities for all of the pages in one of the clusters, then so will all subsequent state
vectors so that no pages in that cluster will ever be accessed. A more subtle example is
illustrated in Figure 10.20.2b. In this case the cluster of Pages 1, 2, and 3 has no outgoing
links to the cluster of Pages 4, 5, and 6, so once a surfer exits cluster 4, 5, 6 the surfer
will be “trapped” in cluster 1, 2, 3 and the fractional page counts for Pages 4, 5, and 6
will approach zero, thereby assigning the pages in that cluster a page rank of 0.

Figure 10.20.2

1

4

2

5

3

6

1

4

2

5

3

6

(a) (b)

Bob’s solution to this problem is to assume that he is not required to follow only
the links on his current page but can with a certain probability choose any page in the
network to go to next. Specifically, Bob assumes that there is a probability of δ, called
the damping factor, that he will go to the next page by choosing a link on the current
page and a probability of 1 − δ that he will choose the next page at random. If there
are n pages in the network, then in the latter case the probability that he will choose any
particular page at random is

1 − δ

n
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To implement his strategy Bob creates a new probability transition matrix M = [mij ] in
which

mij = δbij + 1 − δ

n
(6)

with bij as given in Definition 2. He then replaces (4) with the iterative scheme

x(k) = Mx(k−1), k = 1, 2, 3, . . . (7)

In Exercise 4 we will ask you to show that M is a probability transition matrix; that
is, its entries are nonnegative and the entries in each column sum to 1. We will also ask
you to show that M can be written as

M = δB + 1 − δ

n

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎦ (8)

with B as given in Definition 2. It follows from this that the iterative scheme in (7) can
be written in the form

x(k) = δBx(k−1) + 1 − δ

n

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦ (9)

As an example, consider the webgraph in Figure 10.20.2b. Its adjacency matrix and
accompanying transition matrix are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1

0 0 1 0 1 1

1 1 0 1 0 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 0 1/3 1/4

0 0 1 0 1/3 1/4

1 1/2 0 1/2 0 1/4

0 0 0 0 0 1/4

0 0 0 0 0 0

0 0 0 1/2 1/3 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

As is common, we will choose an initial state vector in which all entries are equal:

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/6

1/6

1/6

1/6

1/6

1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Alice’s iterative strategy x(k+1) = Bx(k) yields

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1667

0.1667

0.1667

0.1667

0.1667

0.1667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1999

0.4043

0.3930

0.0007

0.0000

0.0022

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1992

0.4015

0.3992

0.0000

0.0000

0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(15) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1998

0.4002

0.4000

0.0000

0.0000

0.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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By comparison, when Bob implements his revised iterative scheme beginning with the
same initial page state vector but with δ = 0.85, he obtains

x(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1667

0.1667

0.1667

0.1667

0.1667

0.1667

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(5) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1891

0.3480

0.3550

0.0352

0.0250

0.0477

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(10) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1890

0.3464

0.3576

0.0350

0.0250

0.0469

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x(15) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1892

0.3462

0.3578

0.0350

0.0250

0.0469

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

From these computations we see that whereas Alice’s scheme leads to ranks of 0 for
Pages 4, 5, and 6, Bob’s strategy leads to more reasonable nonzero ranks for these pages.

Mathematically, including a damping factor δ (0 ≤ δ < 1) ensures that the matrix
M is regular (Definition 2 of Section 5.5 or Definition 3 of Section 10.4) and that for any
normalized initial state vector the iterates x(k) converge to an eigenvector with positive
entries and which corresponds to the eigenvalue 1 (Theorem 5.5.1 or Theorem 10.4.3).

A Final Note Although Markov chain theory had long been used in ranking nodes of networks, the
introduction of a damping factor was the main innovation of the PageRank algorithm
used by the Google search engine. This algorithm is named for Larry Page who, along
with Sergey Brin, founded the Google company in the late 1990s.

Exercise Set 10.20
1. Without damping, find the page ranks of the following web-

graphs of three pages by determining their normalized eigen-
vectors for the eigenvalue 1.

1

1

2

2

3

3

(a)

(b)

Figure Ex-1

2. Show that starting with an initial state vector with equal en-
tries in the iterative scheme x(k) = Mx(k−1) is equivalent to
averaging the iterates obtained by starting with each of the
pages in the webgraph individually.

3. Show that if every page in a webgraph is linked to every other
page, then all the pages have the same rank for any damping
factor δ in [0, 1].

4. Show that the matrix M in Equation (7) is a transition matrix;
that is, its entries are nonnegative and its column sums are all
equal to 1. Also show that M can be written as in Equation (8).

5. Show that iteration scheme x(k) = Mx(k−1) in Equation (7)
with the damping factor δ can be written as in Equation (9).

6. A dangling page (one with no outgoing links) can be dealt with
by inserting virtual links to all of the pages in the webgraph,
including itself. How does this change the adjacency matrix
and the transition matrix for any damping factor δ?

7. Suppose a webgraph has only two pages and each page has a
link to the other.

(a) Without damping (Alice’s strategy), find the eigenvalues
of the transition matrix and the eigenvector for the eigen-
value 1. Show that if the initial page state vector is
x(0) = [1 0]T , the iteration scheme x(k) = Bx(k−1) does
not converge. However, show that the fractional page
count converges to [1/2 1/2]T .

(b) With damping δ in [0, 1) (Bob’s strategy), find the eigen-
values of the transition matrix and the eigenvector for the
eigenvalue 1. Show that for any initial page state vector x(0)

the iteration scheme x(k) = Mx(k−1) converges. Do this by
finding an explicit expression for Mk for k = 1, 2, . . . .

8. By using the fact that a matrix and its transpose have the same
set of eigenvalues, show that any transition probability matrix
(a square matrix with nonnegative entries, all of whose column
sums are 1) has the eigenvalue 1.
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In Exercises 9–13, a series of web pages constitutes a slide show.
Each page has one or more of the following navigation buttons,
each of which is a link to another web page in the webgraph, as
described:

NEXT (go to next slide/page)

PREVIOUS (go to previous slide/page)

FIRST (go to first slide/page)

Draw the directed graph for each example and construct its tran-
sition matrix, assuming no damping. Then find the normalized
eigenvector corresponding to the eigenvalue 1, which determines
the ranks of the slides.

9. Slide show with 4 slides in which

Slide 1 contains a NEXT button

Slide 2 contains NEXT and PREVIOUS buttons

Slide 3 contains NEXT, PREVIOUS, and FIRST buttons

Slide 4 contains PREVIOUS and FIRST buttons

10. Slide show with n slides in which

Slide 1 contains a NEXT button

Slides 2 to n − 1 contain NEXT and FIRST buttons

Slide n contains a FIRST button

[Note: The transition matrix is of the form of a Leslie matrix,
used in models of population growth. See Section 10.16.]

11. Slide show with n slides in which

Slide 1 contains a NEXT button

Slides 2 to n − 1 contain PREVIOUS and NEXT buttons

Slide n contains a PREVIOUS button

12. Slide show with 5 slides in which

Slide 1 contains a NEXT button

Slide 2 contains NEXT and PREVIOUS buttons

Slide 3 contains NEXT, PREVIOUS, and FIRST buttons

Slide 4 contains NEXT, PREVIOUS, and FIRST buttons

Slide 5 contains PREVIOUS and FIRST buttons

13. Slide show with 4 slides in which

Slide 1 contains a NEXT button

Slide 2 contains NEXT and PREVIOUS buttons

Slide 3 contains NEXT and PREVIOUS buttons

Slide 4 contains PREVIOUS and FIRST buttons





A1

A P P E N D I X A W O R K I N G W I T H P R O O F S

Linear algebra is different from other mathematics courses that you may encounter in that it
is more than a collection of problem-solving techniques. Even if you learn to solve all of the
computational problems in this text, you will have fallen short in your mastery of the subject.
This is because innovative uses of linear algebra typically require new techniques based on an
understanding of its theorems, their interrelationships, and their proofs. While it is impossible
to teach you everything you will need to do proofs, this appendix will provide some guidelines
that may help.

What Is a Proof? In essence, a proof is a “convincing argument” that justifies the truth of a mathematical
statement. Although what may be convincing to one person may not be convincing to
another, experience has led mathematicians to establish clear standards on what is to be
considered an acceptable proof and what is not. We will try to explain here some of the
logical steps required of an acceptable proof.

Formality In high-school geometry you may have been asked to prove theorems by formally listing
statements on the left and justifications on the right. That level of formality is not
required in linear algebra. Rather, a proof need only be an argument, written in complete
sentences, that leads step by step to a logical conclusion, and in which each step is justified
by referencing some statement whose validity is either self-evident or has been previously
proved.

How to ReadTheorems Most theorems are of the form

If H is true, then C is true. (1)

where H is a statement called the hypothesis and C is a statement called the conclusion.
In formal logic one denotes a theorem of this form as

H ⇒ C (2)

which is read, “H implies C.” A statement of this type is considered to be true if the
conclusion C is true in all cases where the hypothesis H is true, and it is considered to be
false if there is at least one case where H is true and C is false. As an example, consider
the statement

If a and b are both positive numbers, then ab is a positive number. (3)

In this statement,

H = a and b are both positive numbers (4)

C = ab is a positive number (5)

Statement (3) is true because C is true in all cases where H is true. On the other hand,
the statement

If a and b are positive integers, then
√

ab is a positive integer. (6)

is not true because there exist cases where the hypothesis is true and the conclusion is
false—for example, if a = 2 and b = 3.

Sometimes it is desirable to phrase statements in a negative way. For example, state-
ment (3) can be rephrased equivalently as

If ab is not a positive number, then a and b are not both positive numbers. (7)
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If we write ∼H to mean that H is false and ∼C to mean that C is false, then the structure
of statement (7) is

∼C ⇒ ∼H (8)

This is called the contrapositive form of (2). It can be shown that a statement and its
contrapositive are logically equivalent; that is, if the statement is true, then so is its
contrapositive and vice versa.

The converse of a theorem is the statement that results when the hypothesis and con-
clusion are interchanged. Thus, the converse of the statement H ⇒ C is the statement
C ⇒ H . Whereas the contrapositive of a true statement must itself be true, the con-
verse of a true statement may or may not be true. For example, the converse of the true
statement (3) is the false statement

If ab is a positive number, then a and b are both positive numbers.

whereas the converse of the true statement

If the numbers a and b are both positive or both negative, then
ab is a positive number.

is a true statement.

WARNING Do not confuse the terms “contrapositive” and “converse.”

In those special cases where a statement H ⇒ C and its converse C ⇒ H are both
true, we say that H and C are equivalent statements. We denote this by writing

H ⇐⇒ C (9)

which is read, “H is equivalent to C” or, more commonly, “H is true if and only if C is
true.” For example, if a and b are real numbers, then

a > b if and only if (a − b) > 0 (10)

To prove an “if and only if” statement of form (9), you must prove both H ⇒ C and
C ⇒ H .

Equivalent statements are often phrased in other ways. For example, statement (10)
might also be expressed as

If a > b, then (a − b) > 0 and conversely.

Sometimes two true statements will give you a third true statement for free. Specif-
ically, if it is true that H ⇒ C and C ⇒ D, then it follows that H ⇒ D must also be
true. For example, consider the following two theorems from geometry.

THEOREM 1 lf opposite sides of a quadrilateral are parallel, then the quadrilateral is a
parallelogram.

THEOREM 2 Opposite sides of a parallelogram have equal lengths.

Because the conclusion of the first theorem is essentially the hypothesis of the second,
the two theorems together yield the following third theorem.

THEOREM 3 If opposite sides of a quadrilateral are parallel, then they have equal
lengths.
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To take this idea a step further, three true statements can sometimes yield three other

H

CD

Figure A.1

true statements for free. Specifically, if

H ⇒ C, C ⇒ D, D ⇒ H (11)

then we have the implication loop in Figure A.1, from which we see that

C ⇒ H, D ⇒ C, H ⇒ D

By combining this result with (11) we obtain

H ⇐⇒ C, C ⇐⇒ D, D ⇐⇒ H (12)

In summary, if you want to prove the three equivalences in (12) you need only prove the
three implications in (11).

Reductio ad Absurdum It is a matter of logic that a statement cannot be both true and false. This fact is the
basis for a method of proof, called “reductio ad absurdum” or, more commonly, “proof
by contradiction,” the idea of which is to make the assumption that the conclusion of a
statement is false and show that this leads to a contradiction of some sort. The underlying
logic is that if H ⇒ C is a true statement, then the statement

(H and ∼C) ⇒ C

must be false, for otherwise C would be both true and false.

Sets Many of the proofs in this text are concerned with sets (or collections) of objects, the
objects being called the elements of the set. Although a set can generally include any kinds
of objects, in linear algebra the objects are typically “scalars,” “matrices,” or “vectors”
(terms that are all defined in the text). We assume that you are already familiar with the
basic terminology and notation of sets, but we will review it quickly here.

Sets are generally denoted by capital letters and their elements by lowercase letters.
One way to describe a set is to simply list its elements enclosed by braces; for example,

S = {1, 3, 5} (13)

By agreement, the elements of a setmust all be different, and the order in which the elements
are listed does not matter. Thus, for example, the above set might also be written as

S = {3, 5, 1} or S = {5, 1, 3}
To indicate that an element a is a member of a set S we write a ∈ S (read, “a belongs
to S”), and to indicate that a is not a member of S we write a �∈ S (read, “a does not
belong to S”). Thus, for the set in (13) we have

3 ∈ S and 4 �∈ S

There are two common ways of denoting sets with infinitely many elements: If the
elements have some obvious notational pattern, then the set can be denoted by explicitly
specifying some initial elements and using dots to indicate that the remaining elements
follow the same pattern. For example, the set of positive integers might be denoted as

S = {1, 2, 3, . . .} (14)

An alternative method for denoting the set S in (14) is to write

S = {x: x is a positive integer}
where the right side is read, ”the set of all x such that x is a positive integer.” This is
called set-builder notation. In general, set-builder notation has the form

S = {x: } (15)
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where the blank line is replaced by a description that defines those and only those elements
in the set S. Of particular interest in this text are the set of real numbers, denoted by R,
the set of points in the plane, denoted by R2, and the set of points in three-dimensional
space, denoted by R3. The latter two can be described in set-builder notation as

R2 = {(x, y): x, y ∈ R} and R3 = {(x, y, z): x, y, z ∈ R}

Operations on Sets If A and B are arbitrary sets, then the union of A and B, denoted by A ∪ B, is the set
of elements that belong to A or B or both; and the intersection of A and B, denoted
by A ∩ B, is the set of elements that belong to both A and B. These operations are
illustrated in Figure A.2 using Venn Diagrams, named for the British logician John A.
Venn (1834–1923). In those diagrams the sets A and B are the regions enclosed by the
circles, and the sets A ∪ B and A ∩ B are shaded. In the event that the sets A and B have
no common elements, then we say that the sets are disjoint and we write A ∩ B = Ø,
where the symbol Ø denotes a set with no elements called the empty set.

Figure A.2
A ∪ B is shaded.

BA

A ∩ B is shaded.

BA

If every element of a set A belongs as well to a set B, then we say that A is a subset
of B and we write A ⊂ B. If A ⊂ B and B ⊂ A, then A and B have exactly the same
elements, so we say that A and B are equal and we write A = B.

Ordered Sets In certain linear algebra problems the order in which elements are listed is important,
so we will want to consider ordered sets, that is, sets in which duplicate elements are not
allowed but order matters. Thus, for example,

S1 = {3, 5, 1} and S2 = {5, 1, 3}
are the same sets, but not the same ordered sets.

How to Do Proofs • A good first step in a proof is to write down in complete sentences what is given (i.e.,
the hypothesis H ) and what is to be proved (i.e., the conclusion C).

• Once you clearly understand what is given and what is to be proved, you must decide
whether you want to prove the theorem directly, or in contrapositive form, or by
reductio ad absurdum. You might restate the theorem in the three ways and see which
form seems most promising.

• Next, you might want to review earlier theorems that could be relevant to your proof.

• From this point on it is a matter of experience and intuition, but keep in mind that
proving theorems is not an easy task, so don’t be discouraged. As you read through
the proofs in the text, observe the techniques and try to make them part of your own
repertoire.
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Complex numbers arise naturally in the course of solving polynomial equations. For example,
the solutions of the quadratic equation ax2 + bx + c = 0, which are given by the quadratic
formula

x = −b ±√
b2 − 4ac

2a

are complex numbers if the expression inside the radical is negative. In this appendix we will
review some of the basic ideas about complex numbers that are used in this text.

Complex Numbers To deal with the problem that the equation x2 = −1 has no real solutions, mathemati-
cians of the eighteenth century invented the “imaginary” number

i = √−1

which is assumed to have the property

i2 = (
√−1)2 = −1

but which otherwise has the algebraic properties of a real number. An expression of the
form

a + bi or a + ib

in which a and b are real numbers is called a complex number. Sometimes it will be
convenient to use a single letter, typically z, to denote a complex number, in which case
we write

z = a + bi or z = a + ib

The number a is called the real part of z and is denoted by Re(z), and the number b is
called the imaginary part of z and is denoted by Im(z). Thus,

Re(3 + 2i) = 3, Im(3 + 2i) = 2

Re(1 − 5i) = 1, Im(1 − 5i) = Im(1 + (−5)i) = −5

Re(7i) = Re(0 + 7i) = 0, Im(7i) = Im(0 + 7i) = 7

Re(4) = Re(4 + 0i) = 4, Im(4) = Im(4 + 0i) = 0

Two complex numbers are considered equal if and only if their real parts are equal and
their imaginary parts are equal; that is,

a + bi = c + di if and only if a = c and b = d

A complex number z = bi whose real part is zero is said to be pure imaginary. A complex
number z = a whose imaginary part is zero is a real number, so the real numbers can be
viewed as a subset of the complex numbers.

Complex numbers are added, subtracted, and multiplied in accordance with the
standard rules of algebra but with i2 = −1:

(a + bi) + (c + di) = (a + c) + (b + d)i (1)

(a + bi) − (c + di) = (a − c) + (b − d)i (2)

(a + bi)(c + di) = (ac − bd) + (ad + bc)i (3)

Multiplication formula (3) is obtained by expanding the left side and using the fact that
i2 = −1. Also note that if b = 0, then the multiplication formula simplifies to

a(c + di) = ac + adi (4)

The set of complex numbers with these operations is commonly denoted by the symbol
C and is called the complex number system.
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EXAMPLE 1 Multiplying Complex Numbers

As a practical matter, it is usually more convenient to compute products of complex
numbers by expansion, rather than substituting in (3). For example,

(3 − 2i)(4 + 5i) = 12 + 15i − 8i − 10i2 = (12 + 10) + 7i = 22 + 7i

The Complex Plane A complex number z = a + bi can be associated with the ordered pair (a, b) of real
numbers and represented geometrically by a point or a vector in the xy-plane (Figure
B.1). We call this the complex plane. Points on the x-axis have an imaginary part of zero
and hence correspond to real numbers, whereas points on the y-axis have a real part of
zero and correspond to pure imaginary numbers. Accordingly, we call the x-axis the real
axis and the y-axis the imaginary axis (Figure B.2).

a + bi
b

a

y

x

a + bi
b

a

y

x

Figure B.1

z = a + bi

(Real part of z)

(Imaginary

part of z)

Real axis

b

Imaginary axis

a

Figure B.2

Complex numbers can be added, subtracted, or multiplied by real numbers geo-
metrically by performing these operations on their associated vectors (Figure B.3, for
example). In this sense the complex number system C is closely related to R2, the main
difference being that complex numbers can be multiplied to produce other complex num-
bers, whereas there is no multiplication operation on R2 that produces other vectors in
R2 (the dot product defined in Section 3.2 produces a scalar, not a vector in R2).

Figure B.3

y

x

z1 z1 + z2

z2

The sum of two

complex numbers

y

x

z1
z1 – z2

z2

The difference of two

complex numbers

If z = a + bi is a complex number, then the complex conjugate of z, or more simply,
the conjugate of z, is denoted by z̄ (read, “z bar”) and is defined by

z̄ = a − bi (5)

Numerically, z̄ is obtained from z by reversing the sign of the imaginary part, and
geometrically it is obtained by reflecting the vector for z about the real axis (Figure B.4).

z = a + bi

x

y

z = a – bi

(a, b)

(a, –b)

Figure B.4
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EXAMPLE 2 Some Complex Conjugates

z = 3 + 4i z̄ = 3 − 4i

z = −2 − 5i z̄ = −2 + 5i

z = i z̄ = −i

z = 7 z̄ = 7

Remark The last computation in this example illustrates the fact that a real number is equal to
its complex conjugate. More generally, z = z̄ if and only if z is a real number.

The following computation shows that the product of a complex number z = a + bi

and its conjugate z = a − bi is a nonnegative real number:

zz̄ = (a + bi)(a − bi) = a2 − abi + bai − b2i2 = a2 + b2 (6)

You will recognize that √
zz̄ =

√
a2 + b2

is the length of the vector corresponding to z (Figure B.5); we call this length themodulusz = a + bi

b

a

|z|

|z| = √a2 + b2

Figure B.5

(or absolute value of z) and denote it by |z|. Thus,

|z| = √
zz̄ =

√
a2 + b2 (7)

Note that if b = 0, then z = a is a real number and |z| = √
a2 = |a|, which tells us that

the modulus of a real number is the same as its absolute value.

EXAMPLE 3 Some Modulus Computations

z = 3 + 4i |z| = √
32 + 42 = 5

z = −4 − 5i |z| = √
(−4)2 + (−5)2 = √

41

z = i |z| = √
02 + 12 = 1

Reciprocals and Division If z �= 0, then the reciprocal (or multiplicative inverse) of z is denoted by 1/z ( or z−1)
and is defined by the property (

1

z

)
z = 1

This equation has a unique solution for 1/z, which we can obtain by multiplying both
sides by z̄ and using the fact that zz̄ = |z|2 [see (7)]. This yields

1

z
= z̄

|z|2 (8)

If z2 �= 0, then the quotient z1/z2 is defined to be the product of z1 and 1/z2. This
yields the formula

z1

z2
= z̄2

|z2|2 z1 = z1z̄2

|z2|2 (9)

Observe that the expression on the right side of (9) results if the numerator and
denominator of z1/z2 are multiplied by z̄2. As a practical matter, this is often the best
way to perform divisions of complex numbers.
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EXAMPLE 4 Division of Complex Numbers

Let z1 = 3 + 4i and z2 = 1 − 2i. Express z1/z2 in the form a + bi.

Solution We will multiply the numerator and denominator of z1/z2 by z̄2 = 1 + 2i.
This yields

z1

z2
= z1z̄2

z2z̄2
= 3 + 4i

1 − 2i
· 1 + 2i

1 + 2i

= 3 + 6i + 4i + 8i2

1 − 4i2

= −5 + 10i

5
= −1 + 2i

The following theorems list some useful properties of the modulus and conjugate
operations.

THEOREM 1 The following results hold for any complex numbers z, z1, and z2.

(a) z1 + z2 = z̄1 + z̄2

(b) z1 − z2 = z̄1 − z̄2

(c) z1z2 = z̄1z̄2

(d ) z1/z2 = z̄1/z̄2

(e) ¯̄z = z

THEOREM 2 The following results hold for any complex numbers z, z1, and z2.

(a) |z̄| = |z|
(b) |z1z2| = |z1||z2|
(c) |z1/z2| = |z1|/|z2|
(d ) |z1 + z2| ≤ |z1| + |z2|

Polar Form of a Complex
Number

If z = a + bi is a nonzero complex number, and if φ is an angle from the real axis to
the vector z, then, as suggested in Figure B.6, the real and imaginary parts of z can be

b = |z| sin φ

a = |z| cos φ

|z|

(a, b)

φ

Figure B.6

expressed as
a = |z| cos φ and b = |z| sin φ (10)

Thus, the complex number z = a + bi can be expressed as

z = |z|(cos φ + i sin φ) (11)

which is called a polar form of z. The angle φ in this formula is called an argument of z.
The argument of z is not unique because we can add or subtract any multiple of 2π to it
to obtain a different argument of z. However, there is only one argument whose radian
measure satisfies

−π < φ ≤ π (12)

This is called the principal argument of z.
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EXAMPLE 5 Polar Form of a Complex Number

Express z = 1 −√
3i in polar form using the principal argument.

Solution The modulus of z is

|z| =
√

12 + (−√
3)2 = √

4 = 2

Thus, it follows from (10) with a = 1 and b = −√
3 that

1 = 2 cos φ and −√
3 = 2 sin φ

and this implies that

cos φ = 1

2
and sin φ = −

√
3

2
The unique angle φ that satisfies these equations and whose radian measure satisfies (12)
is φ = −π/3 (Figure B.7). Thus, a polar form of z is

1

2 √3

3
π

(1, – √3)

Figure B.7 z = 2
(

cos
(
−π

3

)
+ i sin

(
−π

3

))
= 2

(
cos

π

3
− i sin

π

3

)

Geometric Interpretation of
Multiplication and Division

of Complex Numbers

We will now show how polar forms of complex numbers provide geometric interpreta-
tions of multiplication and division. Let

z1 = |z1|(cos φ1 + i sin φ1) and z2 = |z2|(cos φ2 + i sin φ2)

be polar forms of the nonzero complex numbers z1 and z2. Multiplying, we obtain

z1z2 = |z1||z2|[(cos φ1 cos φ2 − sin φ1 sin φ2) + i(sin φ1 cos φ2 + cos φ1 sin φ2)]
Now applying the trigonometric identities

cos(φ1 + φ2) = cos φ1 cos φ2 − sin φ1 sin φ2

sin(φ1 + φ2) = sin φ1 cos φ2 + cos φ1 sin φ2

yields

z1z2 = |z1||z2|[cos(φ1 + φ2) + i sin(φ1 + φ2)] (13)

which is a polar form of the complex number that has modulus |z1||z2| and argument
φ1 + φ2. Thus, we have shown that multiplying two complex numbers has the geometric
effect of multiplying their moduli and adding their arguments (Figure B.8).

x

y

φ1

φ1 + φ2

φ2 |z1|

z1

z1z2

z2

|z1||z2|
|z2|

Figure B.8

Similar kinds of computations show that

z1

z2
= |z1|

|z2| [cos(φ1 − φ2) + i sin(φ1 − φ2)] (14)

which tells us that dividing complex numbers has the geometric effect of dividing their
moduli and subtracting their arguments (each in the appropriate order).

EXAMPLE 6 Multiplying and Dividing in Polar Form

Use polar forms of the complex numbers z1 = 1 +√
3i and z2 = √

3 + i to compute
z1z2 and z1/z2.
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Solution Polar forms of these complex numbers are

z1 = 2
(

cos
π

3
+ i sin

π

3

)
and z2 = 2

(
cos

π

6
+ i sin

π

6

)
(verify). Thus, it follows from (13) that

z1z2 = 4
[
cos

(π

3
+ π

6

)
+ i sin

(π

3
+ π

6

)]
= 4

[
cos

(π

2

)
+ i sin

(π

2

)]
= 4i

and from (14) that

z1

z2
= 1 ·

[
cos

(π

3
− π

6

)
+ i sin

(π

3
− π

6

)]
= cos

(π

6

)
+ i sin

(π

6

)
=

√
3

2
+ 1

2
i

As a check, let us calculate z1z2 and z1/z2 directly:

z1z2 = (1 +√
3i)(

√
3 + i) = √

3 + i + 3i +√
3i2 = 4i

z1

z2
= 1 +√

3i√
3 + i

= 1 +√
3i√

3 + i
·
√

3 − i√
3 − i

=
√

3 − i + 3i −√
3i2

3 − i2
= 2

√
3 + 2i

4
=

√
3

2
+ 1

2
i

which agrees with the results obtained using polar forms.

Remark The complex number i has a modulus of 1 and a principal argument of π/2. Thus,
if z is a complex number, then iz has the same modulus as z but its argument is greater by π/2
(= 90◦); that is, multiplication by i has the geometric effect of rotating the vector z counterclock-
wise by 90◦ (Figure B.9).

x

y

z

iz

90°

Figure B.9

DeMoivre’s Formula If n is a positive integer, and if z is a nonzero complex number with polar form

z = |z|(cos φ + i sin φ)

then raising z to the nth power yields

zn = z · z · · · · · z
n factors

= |z|n[cos(φ + φ + · · · + φ
n terms

)] + i[sin(φ + φ + · · · + φ
n terms

)]

which we can write more succinctly as

zn = |z|n(cos nφ + i sin nφ) (15)

In the special case where |z| = 1 this formula simplifies to

zn = cos nφ + i sin nφ

which, using the polar form for z, becomes

(cos φ + i sin φ)n = cos nφ + i sin nφ (16)

This result is calledDeMoivre’s formula, named for the French mathematician Abraham
de Moivre (1667–1754).

Euler’s Formula If θ is a real number, say the radian measure of some angle, then the complex exponential
function eiθ is defined to be

eiθ = cos θ + i sin θ (17)

which is sometimes calledEuler’s formula, named for the Swiss mathematician Leonhard
Euler (1707–1783). One motivation for this formula comes from the Maclaurin series in
calculus. Readers who have studied infinite series in calculus can deduce (17) by formally
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substituting iθ for x in the Maclaurin series for ex and writing

eiθ = 1 + iθ + (iθ)2

2! + (iθ)3

3! + (iθ)4

4! + (iθ)5

5! + (iθ)6

6! + · · ·

= 1 + iθ − θ 2

2! − i
θ 3

3! + θ 4

4! + i
θ 5

5! − θ 6

6! + · · ·

=
(

1 − θ 2

2! + θ 4

4! − θ 6

6! + · · ·
)

+ i

(
θ − θ 3

3! + θ 5

5! − · · ·
)

= cos θ + i sin θ

where the last step follows from the Maclaurin series for cos θ and sin θ .
If z = a + bi is any complex number, then the complex exponential e z is defined to

be
ez = ea+bi = eaeib = ea(cos b + i sin b) (18)

It can be proved that complex exponentials satisfy the standard laws of exponents. Thus,
for example,

ez1ez2 = ez1+z2 ,
ez1

ez2
= ez1−z2 ,

1

ez
= e−z
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A N S W E R S T O E X E R C I S E S

Exercise Set 1.1 (page 8)

1. (a), (c), and (f) are linear equations; (b), (d), and (e) are not linear equations

3. (a) a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

(b) a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

(c) a11x1 + a12x2 + a13x3 + a14x4 = b1

a21x1 + a22x2 + a23x3 + a24x4 = b2

5. (a) 2x1 = 0
3x1 − 4x2 = 0

x2 = 1

(b) 3x1 − 2x3 = 5
7x1 + x2 + 4x3 = −3

− 2x2 + x3 = 7

7. (a)

⎡
⎣−2 6

3 8
9 −3

⎤
⎦ (b)

[
6 −1 3 4
0 5 −1 1

]
(b)

⎡
⎣ 0 2 0 −3 1 0
−3 −1 1 0 0 −1

6 2 −1 2 −3 6

⎤
⎦

9. (a), (d), and (e) are solutions; (b) and (c) are not solutions

11. (a) No points of intersection
(b) Infinitely many points of intersection: x = 1

2 + 2t, y = t

(c) One point of intersection: (−8,−4)

13. (a) x = 3
7 + 5

7 t, y = t

(b) x1 = 7
3 + 5

3 r − 4
3 s, x2 = r, x3 = s

(c) x1 = − 1
8 + 1

4 r − 5
8 s + 3

4 t, x2 = r, x3 = s, x4 = t

(d) v = 8
3 t1 − 2

3 t2 + 1
3 t3 − 4

3 t4, w = t1, x = t2, y = t3, z = t4

15. (a) x = 1
2 + 3

2 t, y = t

(b) x1 = −4 − 3r + s, x2 = r, x3 = s

17. (a) Add 2 times the second row to the first row.
(b) Add the third row to the first row, or interchange the first row and the third row.

19. (a) All values of k �= 2
(b) All values of k

25. 2x + 3y + z = 7
2x + y + 3z = 9
4x + 2y + 5z = 16

27. x + y + z = 12
2x + y + 2z = 5
−x + z = 1

True/False 1.1

(a) True (b) False (c) True (d) True (e) False (f) False (g) True (h) False

Exercise Set 1.2 (page 22)

1. (a) Both (b) Both (c) Both (d) Both (e) Both (f) Both (g) Row echelon form

3. (a) x = −37, y = −8, z = 5
(b) w = −10 + 13t , x = −5 + 13t , y = 2 − t , z = t

(c) x1 = −11 − 7s + 2t, x2 = s, x3 = −4 − 3t, x4 = 9 − 3t, x5 = t

(d) No solution

5. x1 = 3, x2 = 1, x3 = 2 7. x = −1 + t, y = 2s, z = s, w = t 9. x1 = 3, x2 = 1, x3 = 2

11. x = −1 + t, y = 2s, z = s, w = t 13. Has nontrivial solutions 15. x1 = 0, x2 = 0, x3 = 0

17. x1 = − 1
4 s, x2 = − 1

4 s − t, x3 = s, x4 = t 19. w = t, x = −t, y = t, z = 0 21. I1 = −1, I2 = 0, I3 = 1, I4 = 2.

23. (a) Consistent; unique solution
(b) Consistent; infinitely many solutions
(c) Inconsistent
(d) Insufficient information provided
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25. No solutions when a = −4;
infinitely many solutions when a = 4;
one solution for all values a �= −4 and a �= 4

27. −a + b + c = 0 29. x = 2
3 a − 1

9 b, y = − 1
3 a + 2

9 b

31. E.g.,

[
1 3
0 1

]
and

[
1 0
0 1

]
(other answers are possible) 35. x = ±1, y = ±√

3, z = ±√
2

37. a = 1, b = −6, c = 2, d = 10 39. The nonhomogeneous system has only one solution.

True/False 1.2

(a) True (b) False (c) False (d) True (e) True (f) False (g) True (h) False (i) False

Exercise Set 1.3 (page 36)
1. (a) Undefined (b) Defined; 4 × 4 matrix (c) Defined; 4 × 2 matrix

(d) Defined; 5 × 2 matrix (e) Defined; 4 × 5 matrix (f) Defined; 5 × 5 matrix

3. (a)

⎡
⎢⎣ 7 6 5

−2 1 3

7 3 7

⎤
⎥⎦ (b)

⎡
⎢⎣−5 4 −1

0 −1 −1

−1 1 1

⎤
⎥⎦ (c)

⎡
⎢⎣ 15 0

−5 10

5 5

⎤
⎥⎦ (d)

[
−7 −28 −14

−21 −7 −35

]

(e) Undefined (f)

⎡
⎢⎣ 22 −6 8

−2 4 6

10 0 4

⎤
⎥⎦ (g)

⎡
⎢⎣−39 −21 −24

9 −6 −15

−33 −12 −30

⎤
⎥⎦ (h)

⎡
⎢⎣0 0

0 0

0 0

⎤
⎥⎦

(i) 5 (j) −25 (k) 168 (l) Undefined

5. (a)

⎡
⎣ 12 −3
−4 5

4 1

⎤
⎦ (b) Undefined (c)

⎡
⎢⎣42 108 75

12 −3 21

36 78 63

⎤
⎥⎦ (d)

⎡
⎢⎣ 3 45 9

11 −11 17

7 17 13

⎤
⎥⎦ (e)

⎡
⎢⎣ 3 45 9

11 −11 17

7 17 13

⎤
⎥⎦

(f)

[
21 17

17 35

]
(g)

[
0 −2 11

12 1 8

]
(h)

⎡
⎢⎣12 6 9

48 −20 14

24 8 16

⎤
⎥⎦ (i) 61 (j) 35 (k) 28 (l) 99

7. (a)
[
67 41 41

]
(b)

[
63 67 57

]
(c)

⎡
⎢⎣41

21

67

⎤
⎥⎦ (d)

⎡
⎢⎣ 6

6

63

⎤
⎥⎦ (e)

[
24 56 97

]
(f)

⎡
⎢⎣76

98

97

⎤
⎥⎦

9. (a) first column of AA = 3

⎡
⎢⎣3

6

0

⎤
⎥⎦+ 6

⎡
⎢⎣−2

5

4

⎤
⎥⎦+ 0

⎡
⎢⎣7

4

9

⎤
⎥⎦

second column of AA = −2

⎡
⎢⎣3

6

0

⎤
⎥⎦+ 5

⎡
⎢⎣−2

5

4

⎤
⎥⎦+ 4

⎡
⎢⎣7

4

9

⎤
⎥⎦

third column of AA = 7

⎡
⎢⎣3

6

0

⎤
⎥⎦+ 4

⎡
⎢⎣−2

5

4

⎤
⎥⎦+ 9

⎡
⎢⎣7

4

9

⎤
⎥⎦

(b) first column of BB = 6

⎡
⎢⎣6

0

7

⎤
⎥⎦+ 0

⎡
⎢⎣−2

1

7

⎤
⎥⎦+ 7

⎡
⎢⎣4

3

5

⎤
⎥⎦

second column of BB = −2

⎡
⎢⎣6

0

7

⎤
⎥⎦+ 1

⎡
⎢⎣−2

1

7

⎤
⎥⎦+ 7

⎡
⎢⎣4

3

5

⎤
⎥⎦

third column of BB = 4

⎡
⎢⎣6

0

7

⎤
⎥⎦+ 3

⎡
⎢⎣−2

1

7

⎤
⎥⎦+ 5

⎡
⎢⎣4

3

5

⎤
⎥⎦

11. (a) A =
⎡
⎢⎣2 −3 5

9 −1 1

1 5 4

⎤
⎥⎦, x =

⎡
⎢⎣x1

x2

x3

⎤
⎥⎦, b =

⎡
⎢⎣ 7

−1

0

⎤
⎥⎦;

⎡
⎢⎣2 −3 5

9 −1 1

1 5 4

⎤
⎥⎦
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎢⎣ 7

−1

0

⎤
⎥⎦

(b) A =

⎡
⎢⎢⎢⎣

4 0 −3 1

5 1 0 −8

2 −5 9 −1

0 3 −1 7

⎤
⎥⎥⎥⎦, x =

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

1

3

0

2

⎤
⎥⎥⎥⎦;

⎡
⎢⎢⎢⎣

4 0 −3 1

5 1 0 −8

2 −5 9 −1

0 3 −1 7

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1

3

0

2

⎤
⎥⎥⎥⎦
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13. (a) 5x1 + 6x2 − 7x3 = 2
−x1 − 2x2 + 3x3 = 0

4x2 − x3 = 3

(b) x + y + z = 2
2x + 3y = 2
5x − 3y − 6z = −9

15. k = −1

17.

[
4

2

] [
0 1 2

]+
[
−3

−1

] [−2 3 1
] =

[
0 4 8

0 2 4

]
+
[

6 −9 −3

2 −3 −1

]
=
[

6 −5 5

2 −1 3

]

19.

[
1

4

] [
1 2

]+
[

2

5

] [
3 4

]+
[

3

6

] [
5 6

] =
[

1 2

4 8

]
+
[

6 8

15 20

]
+
[

15 18

30 36

]
=
[

22 28

49 64

]

21.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0
1
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3

1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ s

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4

0

−2

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

23. a = 4 , b = −6 , c = −1 , d = 1

27. The only matrix satisfying the given condition is A =
⎡
⎢⎣1 1 0

1 −1 0

0 0 0

⎤
⎥⎦.

29. (a)

[
1 1

1 1

]
and

[
−1 −1

−1 −1

]

(b) Four square roots can be found:

[√
5 0

0 3

]
,

[
−√

5 0

0 3

]
,

[√
5 0

0 −3

]
, and

[
−√

5 0

0 −3

]
.

33. The matrix product represents

⎡
⎢⎢⎣

the total cost of items purchased in January
the total cost of items purchased in February
the total cost of items purchased in March
the total cost of items purchased in April

⎤
⎥⎥⎦.

True/False 1.3

(a) True (b) False (c) False (d) False (e) True (f) False (g) False (h) True (i) True (j) True (k) True
(l) False (m) True (n) True (o) False

Exercise Set 1.4 (page 49)

5.

[ 1
5

3
20

− 1
5

1
10

]
7.

[
1
2 0

0 1
3

]
9.

[ 1
2

(
ex + e−x

) − 1
2

(
ex − e−x

)
− 1

2

(
ex − e−x

)
1
2

(
ex + e−x

)
]

15.

[
2
7 1
1
7

3
7

]
17.

[− 9
13

1
13

2
13 − 6

13

]

19. (a)

[
41 15

30 11

]
(b)

[
11 −15

−30 41

]
(c)

[
6 2

4 2

]
21. (a)

[
1 1

2 −1

]
(b)

[
20 7

14 6

]
(c)

[
36 13

26 10

]

23. The matrices commute if c = 0 and a = d. 25. x1 = 1
23 , x2 = 13

23 27. x1 = − 1
11 , x2 = 6

11

31. (a) E.g., A =
[

1 0
0 0

]
and B =

[
0 1
0 0

]
(b) (A + B) (A − B) = A (A − B) + B (A − B) = A2 − AB + BA − B2

(c) AB = BA
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35. No 37. Invertible; A−1 =

⎡
⎢⎢⎣

1
2

1
2 − 1

2

− 1
2

1
2

1
2

1
2 − 1

2
1
2

⎤
⎥⎥⎦ 39. B−1

True/False 1.4

(a) False (b) False (c) False (d) False (e) False (f) True (g) True (h) True (i) False (j) True (k) False

Exercise Set 1.5 (page 58)

1. (a) Elementary (b) Not elementary (c) Not elementary (d) Not elementary

3. (a) Add 3 times the second row to the first row:

[
1 3

0 1

]
(b) Multiply the first row by − 1

7 :

⎡
⎢⎣− 1

7 0 0

0 1 0

0 0 1

⎤
⎥⎦

(c) Add 5 times the first row to the third row:

⎡
⎢⎣1 0 0

0 1 0

5 0 1

⎤
⎥⎦ (d) Interchange the first and third rows:

⎡
⎢⎢⎢⎣

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

5. (a) Interchange the first and second rows: EA =
[

3 −6 −6 −6

−1 −2 5 −1

]

(b) Add −3 times the second row to the third row: EA =
⎡
⎢⎣

2 −1 0 −4 −4

1 −3 −1 5 3

−1 9 4 −12 −10

⎤
⎥⎦

(c) Add 4 times the third row to the first row: EA =
⎡
⎢⎣13 28

2 5

3 6

⎤
⎥⎦

7. (a)

⎡
⎢⎣0 0 1

0 1 0

1 0 0

⎤
⎥⎦ (b)

⎡
⎢⎣0 0 1

0 1 0

1 0 0

⎤
⎥⎦ (c)

⎡
⎢⎣ 1 0 0

0 1 0

−2 0 1

⎤
⎥⎦ (d)

⎡
⎢⎣1 0 0

0 1 0

2 0 1

⎤
⎥⎦ 9. (a)

[
−7 4

2 −1

]
(b) Not invertible

11. (a) The inverse is

⎡
⎢⎣−40 16 9

13 −5 −3

5 −2 −1

⎤
⎥⎦. (b) Not invertible 13.

⎡
⎢⎢⎣

1
2 − 1

2
1
2

− 1
2

1
2

1
2

1
2

1
2 − 1

2

⎤
⎥⎥⎦ 15.

⎡
⎢⎣

7
2 0 −3

−1 1 0

0 −1 1

⎤
⎥⎦

17.

⎡
⎢⎢⎢⎣

1
4

1
2 −3 0

− 1
8

1
4 − 3

2 0

0 0 1
2 0

1
40 − 1

20 − 1
10 − 1

5

⎤
⎥⎥⎥⎦ 19. (a)

⎡
⎢⎢⎢⎢⎣

1
k1

0 0 0

0 1
k2

0 0

0 0 1
k3

0

0 0 0 1
k4

⎤
⎥⎥⎥⎥⎦ (b)

⎡
⎢⎢⎣

1
k

− 1
k

0 0
0 1 0 0
0 0 1

k
− 1

k

0 0 0 1

⎤
⎥⎥⎦

21. Any value of c other than 0 and 1

23. A =
[

1 −2

0 1

][
1 0

2 1

][
1 0

0 −8

][
1 5

0 1

]
; A−1 =

[
1 −5

0 1

][
1 0

0 − 1
8

][
1 0

−2 1

][
1 2

0 1

]

(answer is not unique)
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25. A =
⎡
⎢⎣

1 0 0

0 4 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 1 3
4

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 −2

0 1 0

0 0 1

⎤
⎥⎦; A−1 =

⎡
⎢⎣

1 0 2

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 1 − 3
4

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 1
4 0

0 0 1

⎤
⎥⎦

(answer is not unique)

27. Add −1 times the first row to the second row; add −1 times the second row to the first row; add −1 times the first row to the third
row (answer is not unique)

True/False 1.5

(a) False (b) True (c) True (d) True (e) True (f) True (g) False

Exercise Set 1.6 (page 66)

1. x1 = 3, x2 = −1 3. x1 = −1, x2 = 4, x3 = −7 5. x = 1, y = 5, and z = −1 7. x1 = 2b1 − 5b2, x2 = −b1 + 3b2

9. (i) x1 = 22
17 , x2 = 1

17 (ii) x1 = 21
17 , x2 = 11

17

11. (i) x1 = 7
15 , x2 = 4

15 (ii) x1 = 34
15 , x2 = 28

15 (iii) x1 = 19
15 , x2 = 13

15 (iv) x1 = − 1
5 , x2 = 3

5

13. The system is consistent for all values of b1 and b2. 15. b1 = b2 + b3 17. b1 = b3 + b4 and b2 = 2b3 + b4

19. X =
⎡
⎢⎣

11 12 −3 27 26

−6 −8 1 −18 −17

−15 −21 9 −38 −35

⎤
⎥⎦

True/False 1.6

(a) True (b) True (c) True (d) True (e) True (f) True (g) True

Exercise Set 1.7 (page 72)

1. (a) Upper triangular and invertible
(b) Lower triangular and not invertible
(c) Diagonal, upper triangular, lower triangular, and invertible
(d) Upper triangular and not invertible

3.

⎡
⎢⎣

6 3

4 −1

4 10

⎤
⎥⎦ 5.

⎡
⎢⎣
−15 10 0 20 −20

2 −10 6 0 6

18 −6 −6 −6 −6

⎤
⎥⎦ 7. A2 =

[
1 0

0 4

]
, A−2 =

[
1 0

0 1
4

]
, A−k =

[
1 0

0 1
(−2)k

]

9. A2 =
⎡
⎢⎣

1
4 0 0

0 1
9 0

0 0 1
16

⎤
⎥⎦, A−2 =

⎡
⎢⎣

4 0 0

0 9 0

0 0 16

⎤
⎥⎦, A−k =

⎡
⎢⎣

2k 0 0

0 3k 0

0 0 4k

⎤
⎥⎦ 11.

⎡
⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎦ 13.

[
1 0

0 −1

]

15. (a)

⎡
⎢⎣

au av

bw bx

cy cz

⎤
⎥⎦ (b)

⎡
⎢⎣

ra sb tc

ua vb wc

xa yb zc

⎤
⎥⎦ 17. (a)

[
2 −1

−1 3

]
(b)

⎡
⎢⎢⎢⎣

1 3 7 2

3 1 −8 −3

7 −8 0 9

2 −3 9 0

⎤
⎥⎥⎥⎦

19. Not invertible 21. Invertible 23. −3, 5,−6 25. a = −8 27. All x such that x �= 1 , x �= −2 , and x �= 4

29. They are reciprocals of the corresponding diagonal entries of the matrix A. 31.

⎡
⎢⎣

1 0 0

0 −1 0

0 0 −1

⎤
⎥⎦
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37. (a) Symmetric (b) Not symmetric (unless n = 1) (c) Symmetric (d) Not symmetric (unless n = 1)

39.

[
1 10

0 −2

]
41. (a)

⎡
⎢⎣

0 0 4

0 0 1

−4 −1 0

⎤
⎥⎦ (b)

⎡
⎢⎣

0 0 −8

0 0 −4

8 4 0

⎤
⎥⎦ 43. No

True/False 1.7

(a) True (b) False (c) False (d) True (e) True (f) False (g) False (h) True (i) True (j) False (k) False
(l) False (m) True

Exercise Set 1.8 (page 82)

1. (a) Domain: R2; codomain: R3

(b) Domain: R3; codomain: R2

(c) Domain: R3; codomain: R3

(d) Domain: R6; codomain: R

3. (a) Domain: R2; codomain: R2

(b) Domain: R2; codomain: R3
5. (a) Domain: R3; codomain: R2

(b) Domain: R2; codomain: R3

7. (a) Domain: R2; codomain: R2

(b) Domain: R3; codomain: R2
9. Domain: R2; codomain: R3 11. (a)

[
2 −3 1

3 5 −1

]
(b)

⎡
⎢⎣

7 2 −8

0 −1 5

4 7 −1

⎤
⎥⎦

13. (a)

⎡
⎢⎢⎢⎣

0 1

−1 0

1 3

1 −1

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎣

7 2 −1 1

0 1 1 0

−1 0 0 0

⎤
⎥⎦ (c)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (d)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

15.

⎡
⎢⎣

3 5 −1

4 −1 1

3 2 −1

⎤
⎥⎦; T (−1, 2, 4) = (3,−2,−3)

17. (a)

[−1 1

0 1

]
; T (−1, 4)= (5, 4) (b)

⎡
⎣2 −1 1

0 1 1
0 0 0

⎤
⎦; T (2, 1,−3)= (0,−2, 0)

19. (a) TA (x) =
[

1 2

3 4

][
3

−2

]
=
[−1

1

]
(b) TA (x) =

[−1 2 0

3 1 5

]⎡⎢⎣
−1

1

3

⎤
⎥⎦ =

[
3

13

]
25. No, unless b = 0

27.

⎡
⎢⎣

1 0 4

3 0 −3

0 1 −1

⎤
⎥⎦ ; T (x) =

⎡
⎢⎣

2

6

1

⎤
⎥⎦ 29. (a + c, b + d)

31. (a) TA (e1) =
⎡
⎢⎣
−1

2

4

⎤
⎥⎦, TA (e2) =

⎡
⎢⎣

3

1

5

⎤
⎥⎦, TA (e3) =

⎡
⎢⎣

0

2

−3

⎤
⎥⎦ (b)

⎡
⎢⎣

2

5

6

⎤
⎥⎦ (c)

⎡
⎢⎣

0

14

−21

⎤
⎥⎦

True/False 1.8

(a) False (b) False (c) True (d) False (e) True (f) False (g) False



Answers to Exercises A19

Exercise Set 1.9 (page 94)

1.

40

40

10

10

50

50

6030

3. (a) x2 − x3 = 100
x3 − x4 = −500

x1 − x2 = 300
−x1 + x4 = 100

(b) x1 = −100 + s, x2 = −400 + s , x3 = −500 + s, x4 = s

(c) To keep the traffic flowing on all roads, the flow from A to B

must exceed 500 vehicles per hour.

5. I1 = 2.6A , I2 = −0.4A , I3 = 2.2A 7. I1 = I4 = I5 = I6 = 0.5A, I2 = I3 = 0A 9. C3H8 + 5O2 → 3CO2 + 4H2O

11. CH3COF + H2O → CH3COOH + HF 13. 2 − 2x + x2 15. 1 + 13
6 x − 1

6 x
3

17. (a) p (x) = 1 + (1 − t) x + tx2

(b)

x

y

4

3

2

–1 1–2

t =
 2

t =
 –2

t = –1

t =
 1

True/False 1.9

(a) False (b) False (c) True (d) False (e) False

Exercise Set 1.10 (page 100)

1. (a)
[

0.50 0.25
0.25 0.10

]
(b) M must produce approximately $25,290.32 worth of mechanical work and B must produce approximately $22,580.65 worth of
body work

3. (a)

⎡
⎣0.10 0.60 0.40

0.30 0.20 0.30
0.40 0.10 0.20

⎤
⎦ (b)

⎡
⎣$31,500

$26,500
$26,300

⎤
⎦ 5. x ≈

[
123.08
202.56

]

True/False 1.10

(a) False (b) True (c) False (d) True (e) True

Chapter 1 Supplementary Exercises (page 101)

1. 3x1 − x2 + 4x4 = 1
2x1 + 3x3 + 3x4 = −1

x1 = − 3
2 s − 3

2 t − 1
2 , x2 = − 9

2 s − 1
2 t − 5

2 , x3 = s, x4 = t

3. 2x1 − 4x2 + x3 = 6
−4x1 + 3x3 = −1

x2 − x3 = 3

x1 = − 17
2 , x2 = − 26

3 , x3 = − 35
3

5. x ′ = 3
5 x + 4

5 y, y ′ = − 4
5 x + 3

5 y 7. x = 4, y = 2, z = 3

9. (a) a �= 0 and b �= 2 (b) a �= 0 and b = 2 (c) a = 0 and b = 2 (d) a = 0 and b �= 2

11.
[

0 2
1 1

]
13. (a)

[−1 3 −1
6 0 1

]
(b)

[
1 −2
3 1

]
(c)

[− 113
37 − 160

37

− 20
37 − 46

37

]
15. a = 1, b = −2, c = 3
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Exercise Set 2.1 (page 111)

1. M11= 29, C11= 29
M12 = 21, C12 = −21
M13 = 27, C13 = 27
M21 = −11, C21 = 11
M22 = 13, C22 = 13
M23 = −5, C23 = 5
M31 = −19, C31 = −19
M32 = −19, C32 = 19
M33 = 19, C33 = 19

3. (a) M13 = 0, C13 = 0
(b) M23 = −96, C23 = 96
(c) M22 = −48, C22 = −48
(d) M21 = 72, C21 = −72

5. 22;

[ 2
11

−5
22

1
11

3
22

]
7. 59;

[−2
59

−7
59

7
59

−5
59

]

9. a2−5a+21 11. −65 13. −123 15. λ = −3 or λ = 1 17. λ = 1 or λ = −1 19. (all parts) −123 21. −40

23. 0 25. −240 27. −1 29. 0 31. 6 33. (a) The determinant is 1. (b) The determinant is 1. 35. d1 + λ = d2

37. If n = 1 then the determinant is 1. If n ≥ 2 then the determinant is 0.

True/False 2.1

(a) False (b) False (c) True (d) True (e) True (f) True (g) False (h) False (i) False (j) True

Exercise Set 2.2 (page 117)

5. −5 7. −1 9. 33 11. 6 13. −2 15. −6 17. 72 19. −6

21. 18 31. −24 33. det(B) = (−1) n/2" det(A)

True/False 2.2

(a) True (b) True (c) False (d) False (e) True (f) True

Exercise Set 2.3 (page 127)

5. det(A + B) �= det(A) + det(B) 7. Invertible 9. Invertible 11. Not invertible 13. Invertible

15. k �= 5−√
17

2 and k �= 5+√
17

2 17. k �= −1 19. Invertible; A−1 =
⎡
⎣ 3 −5 −5
−3 4 5

2 −2 −3

⎤
⎦ 21. Invertible; A−1 =

⎡
⎢⎢⎣

1
2

3
2 1

0 1 3
2

0 0 1
2

⎤
⎥⎥⎦

23. Invertible; A−1 =

⎡
⎢⎢⎢⎣
−4 3 0 −1

2 −1 0 0

−7 0 −1 8

6 0 1 −7

⎤
⎥⎥⎥⎦ 25. x = 3

11 , y = 2
11 , z = − 1

11 27. x1 = − 30
11 , x2 = − 38

11 , x3 = − 40
11

29. Cramer’s rule does not apply. 31. y = 0 33. (a) −189 (b) − 1
7 (c) − 8

7 (d) − 1
56 (e) 7

35. (a) 189 (b) 1
7 (c) 8

7 (d) 1
56

True/False 2.3

(a) False (b) False (c) True (d) False (e) True (f) True (g) True (h) True (i) True (j) True (k) True
(l) False
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Chapter 2 Supplementary Exercises (page 129)

1. −18 3. 24 5. −10 7. 329 9. Exercise 3: 24; Exercise 4: 0; Exercise 5: −10; Exercise 6: −48

11. The matrices in Exercises 1–3 are invertible; the matrix in Exercise 4 is not. 13. −b2 + 5b − 21 15. −120

17.

[− 1
6

1
9

1
6

2
9

]
19.

⎡
⎢⎢⎣

1
8 − 1

8 − 3
8

1
8

5
24 − 1

24

1
4 − 7

12 − 1
12

⎤
⎥⎥⎦ 21.

⎡
⎢⎢⎣

1
5

2
5 − 1

10

1
5 − 3

5
2
5

− 2
5

6
5 − 3

10

⎤
⎥⎥⎦ 23.

⎡
⎢⎢⎢⎢⎢⎣

10
329 − 2

329
52
329 − 27

329

55
329 − 11

329 − 43
329

16
329

− 3
47

10
47 − 25

47 − 6
47

− 31
329

72
329

102
329 − 15

329

⎤
⎥⎥⎥⎥⎥⎦

25. x ′ = 3
5 x + 4

5 y, y ′ = 3
5 y − 4

5 x 29. (b) cos β = a2+c2−b2

2ac
, cos γ = a2+b2−c2

2ab

Exercise Set 3.1 (page 140)

1. (a) (3,−4) (b) (2,−3, 4) 3. (a) (−1, 3) (b) (−3, 6, 1) 5. (a) (2, 3) (b) (−2,−2,−1)

7. (a) (−1, 2,−4) is one possible answer (b) (7,−2,−6) is one possible answer

9. (a) (1,−4) (b) (−12, 8) (c) (38, 28) (d) (4, 29)

11. (a) (−1, 9,−11, 1) (b) (−13, 13,−36,−2) (c) (−90,−114, 60,−36) (d) (27, 29,−27, 9)

13.
(− 25

3 , 7,− 32
3 ,− 2

3

)
15. (a) Not parallel to u (b) Parallel to u (c) Parallel to u 17. a = 3, b = −1

19. c1 = 2, c2 = −1, c3 = 5 23. (a)
(

9
2 ,− 1

2 ,− 1
2

)
(b)

(
23
4 ,− 9

4 ,
1
4

)
25. (a) (−2, 5) (b) (3,−8) 27. (7,−3,−19)

29. (a) 0 (b) 0 (c) −a 31. Magnitude of F is
√

84 lb ≈ 9.17 lb; the angle with the positive x-axis ≈ −70.9◦

33. 500
1+√

3
lb ≈ 183.01 lb and 750

√
2

3+√
3

lb ≈ 224.14 lb

True/False 3.1

(a) False (b) False (c) False (d) True (e) True (f) False (g) False (h) True (i) False (j) True (k) False

Exercise Set 3.2 (page 153)

1. (a) ‖v‖= 2
√

3 ; 1
‖v‖ v =

(
1√
3
, 1√

3
, 1√

3

)
; − 1

‖v‖ v =
(
− 1√

3
,− 1√

3
,− 1√

3

)
(b) ‖v‖ = √

15 ; 1
‖v‖ v =

(
1√
15

, 0, 2√
15

, 1√
15

, 3√
15

)
; − 1

‖v‖ v =
(
− 1√

15
, 0,− 2√

15
,− 1√

15
,− 3√

15

)
3. (a)

√
83 (b)

√
17+√

26 (c) 2
√

3 (d)
√

466 5. (a)
√

2570 (b) 3
√

46 − 10
√

21 +√
42 (c) 2

√
966

7. k = 5
7 or k= − 5

7 9. (a) u · v = −8; u · u = 26; v · v = 24 (b) u · v = 0; u · u = 54; v · v = 21

11. (a) d (u, v) = √
14; cos θ= 5√

51
; the angle is acute

(b) d (u, v) = √
59; cos θ = −4√

6
√

45
; the angle is obtuse

13. 45
√

3
2

15. (a) Does not make sense; v · w is a scalar, whereas the dot product is only defined for vectors
(b) Makes sense
(c) Does not make sense; u · v is a scalar, whereas the norm is only defined for vectors
(d) Makes sense

25. 71◦, 61◦, 36◦

True/False 3.2

(a) True (b) True (c) False (d) True (e) True (f) False (g) False (h) False (i) True (j) True
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Exercise Set 3.3 (page 162)
1. (a) Orthogonal (b) Not orthogonal (c) Not orthogonal (d) Not orthogonal

3. −2 (x+1)+ (y−3)− (z+2)= 0 5. 2z = 0 7. Not parallel 9. Parallel 11. Not perpendicular

13. (a) 2
5 (b) 18√

22
15. (0, 0), (6, 2) 17.

(− 16
13 , 0,− 80

13

)
,
(

55
13 , 1,− 11

13

)
19.

(
1
5 ,− 1

5 ,
1
10 ,− 1

10

)
,
(

9
5 ,

6
5 ,

9
10 ,

21
10

)
21. 1 23. 1√

17
25. 5

3 27. 11√
6

29.
(

1√
3
, 1√

3
,− 1√

3

)
is one possible answer 31. Yes 37. 50,000√

2
Nm ≈ 35,355 Nm

True/False 3.3

(a) True (b) True (c) True (d) True (e) True (f) False (g) False

Exercise Set 3.4 (page 170)
1. Vector equation: (x, y) = (−4, 1) + t (0,−8);

parametric equations: x = −4, y = 1 − 8t

3. Vector equation: (x, y, z) = t (−3, 0, 1);
parametric equations: x = −3t , y = 0, z = t

5. Point: (3,−6); vector: (−5,−1)

7. Point: (4, 6); vector: (−6,−6)

9. Vector equation: (x, y, z) = (−3, 1, 0) + t1 (0,−3, 6) + t2(−5, 1, 2);
parametric equations: x = −3 − 5t2, y = 1 − 3t1 + t2, z = 6t1 + 2t2

11. Vector equation: (x, y, z) = (−1, 1, 4) + t1 (6,−1, 0) + t2(−1, 3, 1);
parametric equations: x = −1 + 6t1 − t2, y = 1 − t1 + 3t2, z = 4 + t2

13. Vector equation: (x, y) = t (3, 2);
parametric equations: x = 3t and y = 2t

15. Vector equation: (x, y, z) = t1 (5, 0, 4) + t2(0, 1, 0);
parametric equations: x = 5t1, y = t2, and z = 4t1

17. x1 = −s − t , x2 = s , x3 = t

19. x1 = 3
7 r − 19

7 s − 8
7 t , x2 = − 2

7 r + 1
7 s + 3

7 t , x3 = r , x4 = s, x5 = t

21. (a) (x, y, z) = (1, 0, 0) + (−s − t, s, t)

(b) A plane passing through the point (1, 0, 0) and parallel to the vectors (−1, 1, 0) and (−1, 0, 1).

23. (a) x + y + z = 0

−2x + 3y = 0

(b) A straight line passing through the origin (c) x = − 3
5 t , y = − 2

5 t , z = t

25. (a) x1 = − 2
3 s + 1

3 t , x2 = s, x3 = t (c) (x1, x2, x3) = (1, 0, 1) + (− 2
3 s + 1

3 t, s, t
)

27. x1 = 1
3 − 4

3 r − 1
3 s, x2 = r , x3 = s, x4 = 1;

general solution of the associated homogeneous system:
(− 4

3 r − 1
3 s, r, s, 0

)
;

particular solution of the nonhomogeneous system:
(

1
3 , 0, 0, 1

)
29. If T (v) = 0 then the image is a single point; otherwise the image is a line.

True/False 3.4

(a) True (b) False (c) True (d) True (e) False (f) True

Exercise Set 3.5 (page 179)
1. (a) (32,−6,−4) (b) (−32, 6, 4) (c) (52,−29, 10) (d) 0 (e) (0, 0, 0) (f) (0, 0, 0)

3. ‖u × w‖2 = 1125 5. u × (v × w) = (−14,−20,−82) 7. u × v = (18, 36,−18) 9.
√

59 11. 3
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13. 7 15.
√

374
2 17. 16 19. The vectors do not lie in the same plane. 21. −92 23. abc 25. (a) −3 (b) 3 (c) 3

27. (a)
√

26
2 (b)

√
26
3 29. 2(v × u) 31. (a) 1500

√
2 Nm ≈ 2121.32 Nm (b) 132◦, 109◦, 132◦ 39. (a) 17

6 (b) 1
2

True/False 3.5

(a) True (b) True (c) False (d) True (e) False (f) False

Chapter 3 Supplementary Exercises (page 181)

1. (a) (13,−3, 10) (b)
√

70 (c) 3
√

86 (d)
(− 8

9 ,
20
9 , 20

9

)
(e) −122 (f) (−3150,−2430, 1170)

3. (a) (−5,−12, 20,−2) (b)
√

106 (c)
√

2810 (d)
(− 135

77 ,− 15
77 ,

90
77 ,

90
77

)
5. The plane containing A, B, and C. 7. (−1,−1, 5) 9.

√
14
17 11. 11√

35

13. Vector equation: (x, y, z) = (−2, 1, 3) + t1 (1,−2,−2) + t2(5,−1,−5);
parametric equations: x = −2 + t1 + 5t2, y = 1 − 2t1 − t2, z = 3 − 2t1 − 5t2

15. Vector equation: (x, y) = (0,−3) + t (8,−1);
parametric equations: x = 8t , y = −3 − t

17. Vector equation: (x, y) = (0,−5) + t (1, 3);
parametric equations: x = t , y = −5 + 3t

19. 3 (x + 1) + 6 (y − 5) + 2 (z − 6) = 0 21. −18 (x − 9) − 51y − 24 (z − 4) = 0 25. A plane through the origin

Exercise Set 4.1 (page 190)

1. (a) u + v = (2, 6); ku = (0, 6) (c) Axioms 1-5 3. Vector space 5. Not a vector space; Axioms 5 and 6 fail.

7. Not a vector space; Axiom 8 fails. 9. Vector space 11. Vector space 19. 1
u
= u−1

True/False 4.1

(a) True (b) False (c) False (d) False (e) True (f) False

Exercise Set 4.2 (page 200)

1. (a), (c), (e) 3. (a), (b), (d) 5. (a), (c), (d) 7. (a), (c) 9. (a), (b)

11. (a) The vectors span R3 (b) The vectors do not span R3 13. The polynomials do not span P2

15. (a) Line; x = − 1
2 t , y = − 3

2 t , z = t (b) Origin (c) Plane; x − 3y + z = 0 (d) Line; x = −3t , y = −2t , z = t

19. (a) The set spans R2 (b) The set does not span R2

True/False 4.2

(a) True (b) True (c) False (d) False (e) False (f) True (g) True (h) False (i) False (j) True (k) False

Exercise Set 4.3 (page 210)

1. (a) u2 = −5u1 (b) A set of 3 vectors in R2 must be linearly dependent by Theorem 4.3.3.

(c) p2 = 2p1 (d) A = (−1) B 3. (a) Linearly dependent (b) Linearly independent

5. (a) Linearly independent (b) Linearly independent
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7. (a) The vectors do not lie in a plane (b) The vectors lie in a plane

9. (b) v1 = 2
7 v2 − 3

7 v3; v2 = 7
2 v1 + 3

2 v3; v3 = − 7
3 v1 + 2

3 v2 11. λ = − 1
2 , λ = 1

13. (a) Linearly independent (b) Linearly dependent 15. (a) Linearly independent (b) Linearly dependent

True/False 4.3

(a) False (b) True (c) False (d) True (e) True (f) False (g) True (h) False

Exercise Set 4.4 (page 219)

11. (a)
(

5
28 ,

3
14

)
(b)

(
a, b−a

2

)
13. (a) (3,−2, 1) (b) (−2, 0, 1) 15. A = 1A1 − 1A2 + 1A3 − 1A4;

(A)S = (1,−1, 1,−1)

17. p = 7p1 − 8p2 + 3p3;
(p)S = (7,−8, 3)

21. (a) Linearly independent (b) Linearly dependent

23. (a) (2, 0) (b)
(

2√
3
,− 1√

3

)
(c) (0, 1) (d)

(
2a√

3
, b − a√

3

)
25. (b) (3, 4, 2, 1)

27. (a) (20, 17, 2) (b) 3x2 + 8x − 1 (c)
[ −21 −103
−106 30

]

True/False 4.4

(a) False (b) False (c) True (d) True (e) False

Exercise Set 4.5 (page 228)

1. Basis: {(1, 0, 1)}; dimension: 1 3. No basis; dimension: 0 5. Basis: {(3, 1, 0) , (−1, 0, 1)}; dimension: 2

7. (a) Basis:
{(

2
3 , 1, 0

)
,
(− 5

3 , 0, 1
)}

; dimension: 2 (b) Basis: {(1, 1, 0) , (0, 0, 1)}; dimension: 2

(c) Basis: {(2,−1, 4)}; dimension: 1 (d) Basis: S = {(1, 1, 0) , (0, 1, 1)}; dimension: 2 9. (a) n (b) n(n+1)
2 (c) n(n+1)

2

11. (b) Dimension: 2 (c) Basis: {−1 + x,−1 + x2} 13. e2 and e3 (the answer is not unique)

15. v1, v2, and e1 form a basis for R3 (the answer is not unique) 17. {v1, v2} (the answer is not unique)

19. (a) 1 (b) 2 (c) 1

27. (a) {−1 + x − 2x2, 3 + 3x + 6x2, 9} (the answer is not unique)
(b) {1 + x, x2} (the answer is not unique)
(c) {1 + x − 3x2} (the answer is not unique)

True/False 4.5

(a) True (b) True (c) False (d) True (e) True (f) True (g) True (h) True (i) True (j) False (k) False

Exercise Set 4.6 (page 235)

1. (a)

[
13
10 − 1

2

− 2
5 0

]
(b)

[
0 − 5

2

−2 − 13
2

]
(c) [w]B =

[− 17
10

8
5

]
; [w]B ′ =

[−4

−7

]

3. (a)

⎡
⎢⎣

3 2 5
2

−2 −3 − 1
2

5 1 6

⎤
⎥⎦ (b) [w]B =

⎡
⎢⎣

9

−9

−5

⎤
⎥⎦; [w]

B
′ =

⎡
⎢⎣
− 7

2
23
2

6

⎤
⎥⎦

5. (b)
[

2 0
1 3

]
(c)

[
1
2 0

− 1
6

1
3

]
(d) [h]B =

[
2

−5

]
; [h]

B
′ =

[
1

−2

]
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7. (a)
[

3 5
−1 −2

]
(b)

[
2 5

−1 −3

]
(d) [w]B1

=
[

2

−1

]
; [w]B2

=
[−1

1

]
(e) [w]B2

=
[

3

−1

]
; [w]B1

=
[

4

−1

]

9. (a)

⎡
⎢⎣

1 2 3

2 5 3

1 0 8

⎤
⎥⎦ (b)

⎡
⎢⎣
−40 16 9

13 −5 −3

5 −2 −1

⎤
⎥⎦ (d) [w]B =

⎡
⎢⎣
−239

77

30

⎤
⎥⎦; [w]S =

⎡
⎢⎣

5

−3

1

⎤
⎥⎦ (e) [w]S =

⎡
⎢⎣

3

−5

0

⎤
⎥⎦; [w]B =

⎡
⎢⎣
−200

64

25

⎤
⎥⎦

11. (a)

[
cos (2θ) sin (2θ)

sin (2θ) − cos (2θ)

]
13. P−1Q−1

15. (a) B = {(1, 1, 0) (1, 0, 2) (0, 2, 1)} (b) B = {(
4
5 ,

1
5 ,− 2

5

)
,
(

1
5 ,− 1

5 ,
2
5

)
,
(− 2

5 ,
2
5 ,

1
5

)}
17.

[
2 3

5 −1

]
19. B must be the standard basis.

True/False 4.6

(a) True (b) True (c) True (d) True (e) False (f) False

Exercise Set 4.7 (page 246)

1. (a) 1

[
2

−1

]
+ 2

[
3

4

]
(b) −2

⎡
⎢⎣

4

3

0

⎤
⎥⎦+ 3

⎡
⎢⎣

0

6

−1

⎤
⎥⎦+ 5

⎡
⎢⎣
−1

2

4

⎤
⎥⎦

3. (a) b is not in the column space of A (b) b is in the column space of A;

⎡
⎢⎣

1

9

1

⎤
⎥⎦− 3

⎡
⎢⎣
−1

3

1

⎤
⎥⎦+

⎡
⎢⎣

1

1

1

⎤
⎥⎦ =

⎡
⎢⎣

5

1

−1

⎤
⎥⎦

5. (a) r

⎡
⎢⎢⎢⎣

5

0

0

0

⎤
⎥⎥⎥⎦+ s

⎡
⎢⎢⎢⎣
−2

1

1

0

⎤
⎥⎥⎥⎦+ t

⎡
⎢⎢⎢⎣

0

0

1

1

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

3

0

−1

5

⎤
⎥⎥⎥⎦+ r

⎡
⎢⎢⎢⎣

5

0

0

0

⎤
⎥⎥⎥⎦+ s

⎡
⎢⎢⎢⎣
−2

1

1

0

⎤
⎥⎥⎥⎦+ t

⎡
⎢⎢⎢⎣

0

0

1

1

⎤
⎥⎥⎥⎦

7. (a) (1, 0) + t (3, 1); t (3, 1) (b) (−2, 7, 0) + t (−1,−1, 1); t (−1,−1, 1)

9. (a) Basis for the null space:

⎧⎪⎨
⎪⎩
⎡
⎢⎣

16

19

1

⎤
⎥⎦
⎫⎪⎬
⎪⎭; basis for the row space:

{[
1 0 −16

]
,
[
0 1 −19

]}

(b) Basis for the null space:

⎧⎪⎨
⎪⎩
⎡
⎢⎣

0

1

0

⎤
⎥⎦ ,

⎡
⎢⎣

1
2

0

1

⎤
⎥⎦
⎫⎪⎬
⎪⎭; basis for the row space:

{[
1 0 − 1

2

]}

11. (a) Basis for the column space:

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1

0

0

⎤
⎥⎦ ,

⎡
⎢⎣

2

1

0

⎤
⎥⎦
⎫⎪⎬
⎪⎭; basis for the row space:

{[
1 0 2

]
,
[
0 0 1

]}

(b) Basis for the column space:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
−3

1

0

0

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭; basis for the row space:

{[
1 −3 0 0

]
,
[
0 1 0 0

]}
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13. (a) Basis for the row space:
{[

1 0 11 0 3
]
,
[
0 1 3 0 0

]
,
[
0 0 0 1 0

]}
;

basis for the column space:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1

−2

−1

−3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣
−2

5

3

8

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

0

0

1

1

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b)
{[

1 −2 5 0 3
]
,
[−2 5 −7 0 −6

]
,
[−1 3 −2 1 −3

]}
15. {(1, 1, 0, 0) , (0, 0, 1, 1) , (−2, 0, 2, 2) , (0,−3, 0, 3)} 17. Basis: {v1, v2, v4}; v3 = 2v1 − v2; v5 = −v1 + 3v2 + 2v4

19.
{[

1 4 5 6 9
]
,
[
3 −2 1 4 −1

]}
21. Since TA (x) = Ax, we are seeking the general solution of the linear system Ax = b.

(a) x = t
(− 8

3 ,
4
3 , 1

)
(b) x = (

7
3 ,− 2

3 , 0
)+ t

(− 8
3 ,

4
3 , 1

)
(c) x = (

1
3 ,− 2

3 , 0
)+ t

(− 8
3 ,

4
3 , 1

)

23. (b)

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦ is an example of such a matrix

25. (a)
[

3a −5a
3b −5b

]
where a and b are not both zero

(b) Only the zero vector forms the null space for both A and B.
The line 3x + y = 0 forms the null space for C.
The entire plane forms the null space for D.

True/False 4.7

(a) True (b) False (c) False (d) False (e) False (f) True (g) True (h) False (i) True (j) False

Exercise Set 4.8 (page 256)

1. (a) rank(A) = 1; nullity(A) = 3 (b) rank(A) = 2; nullity(A) = 3

3. (a) rank(A) = 3; nullity(A) = 0 (c) 3 leading variables; 0 parameters in the general solution (the solution is unique)

5. (a) rank(A) = 1; nullity(A) = 2 (c) 1 leading variable; 2 parameters in the general solution

7. (a) largest possible value for the rank: 4; smallest possible value for the nullity: 0
(b) largest possible value for the rank: 3; smallest possible value for the nullity: 2
(c) largest possible value for the rank: 3; smallest possible value for the nullity: 0

9. (a) (b) (c) (d) (e) (f) (g)

(i) dimension of the row space of A 3 2 1 2 2 0 2

dimension of the column space of A 3 2 1 2 2 0 2

dimension of the null space of A 0 1 2 7 7 4 0

dimension of the null space of AT 0 1 2 3 3 4 4

(ii) is the system Ax = b consistent? Yes No Yes Yes No Yes Yes

(iii) number of parameters in the
general solution of Ax = b

0 — 2 7 — 4 0

11. (a) nullity(A) − nullity
(
AT
) = 1 (b) nullity(A) − nullity

(
AT
) = n − m 13. (a) 3 (b) 2

15. The matrix cannot have rank 1. It has rank 2 if r = 2 and s = 1.
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17. No, both row and column spaces of A must be planes.

19. (a) 3 (b) 5 (c) 3 (d) 3 21. (a) 3 (b) No

27. (a) Overdetermined; inconsistent if 3b1 + b2 + 2b3 �= 0
(b) Underdetermined; infinitely many solutions for all b’s; (cannot be inconsistent)
(c) Underdetermined; infinitely many solutions for all b’s; (cannot be inconsistent)

True/False 4.8

(a) False (b) True (c) False (d) False (e) True (f) False (g) False (h) False (i) True (j) False

Exercise Set 4.9 (page 268)

1. (a)

[
1 0

0 −1

][−1

2

]
=
[−1

−2

]
(b)

[−1 0

0 1

][−1

2

]
=
[

1

2

]
(c)

[
0 1

1 0

][−1

2

]
=
[

2

−1

]

3. (a)

⎡
⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎦
⎡
⎢⎣

2

−5

3

⎤
⎥⎦ =

⎡
⎢⎣

2

−5

−3

⎤
⎥⎦ (b)

⎡
⎢⎣

1 0 0

0 −1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

2

−5

3

⎤
⎥⎦ =

⎡
⎢⎣

2

5

3

⎤
⎥⎦ (c)

⎡
⎢⎣
−1 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

2

−5

3

⎤
⎥⎦ =

⎡
⎢⎣
−2

−5

3

⎤
⎥⎦

5. (a)

[
1 0

0 0

][
2

−5

]
=
[

2

0

]
(b)

[
0 0

0 1

][
2

−5

]
=
[

0

−5

]

7. (a)

⎡
⎢⎣

1 0 0

0 1 0

0 0 0

⎤
⎥⎦
⎡
⎢⎣
−2

1

3

⎤
⎥⎦ =

⎡
⎢⎣
−2

1

0

⎤
⎥⎦ (b)

⎡
⎢⎣

1 0 0

0 0 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
−2

1

3

⎤
⎥⎦ =

⎡
⎢⎣
−2

0

3

⎤
⎥⎦ (c)

⎡
⎢⎣

0 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣
−2

1

3

⎤
⎥⎦ =

⎡
⎢⎣

0

1

3

⎤
⎥⎦

9. (a)

[√
3

2 − 1
2

1
2

√
3

2

][
3

−4

]
=
[

3
√

3
2 + 2

3
2 − 2

√
3

]
≈
[

4.60

−1.96

]
(b)

[
1
2

√
3

2

−
√

3
2

1
2

][
3

−4

]
=
[

3
2−2

√
3

− 3
√

3
2 −2

]
≈
[−1.96

−4.60

]

(c)

[√
2

2 −
√

2
2√

2
2

√
2

2

][
3

−4

]
=
[

7
√

2
2

−
√

2
2

]
≈
[

4.95

−0.71

]
(d)

[
0 −1

1 0

][
3

−4

]
=
[

4

3

]

11. (a)

⎡
⎢⎢⎣

1 0 0

0
√

3
2

1
2

0 − 1
2

√
3

2

⎤
⎥⎥⎦
⎡
⎢⎣

2

−1

2

⎤
⎥⎦ =

⎡
⎢⎣

2

1 −
√

3
2

1
2 +√

3

⎤
⎥⎦ (b)

⎡
⎢⎢⎣

√
3

2 0 1
2

0 1 0

− 1
2 0

√
3

2

⎤
⎥⎥⎦
⎡
⎢⎣

2

−1

2

⎤
⎥⎦ =

⎡
⎢⎣

√
3 + 1

−1

−1 +√
3

⎤
⎥⎦

(c)

⎡
⎢⎢⎣

√
2

2 0 −
√

2
2

0 1 0
√

2
2 0

√
2

2

⎤
⎥⎥⎦
⎡
⎢⎣

2

−1

2

⎤
⎥⎦ =

⎡
⎢⎣ 0

−1
2
√

2

⎤
⎥⎦ (d)

⎡
⎢⎣

0 −1 0

1 0 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

2

−1

2

⎤
⎥⎦ =

⎡
⎢⎣

1

2

2

⎤
⎥⎦

13. (a)

[
1
2 0

0 1
2

][−1

2

]
=
[− 1

2

1

]
(b)

[
3 0

0 3

][−1

2

]
=
[−3

6

]

15. (a)

⎡
⎢⎣

1
4 0 0

0 1
4 0

0 0 1
4

⎤
⎥⎦
⎡
⎢⎣

2

−1

3

⎤
⎥⎦ =

⎡
⎢⎣

1
2

− 1
4
3
4

⎤
⎥⎦ (b)

⎡
⎢⎣

2 0 0

0 2 0

0 0 2

⎤
⎥⎦
⎡
⎢⎣

2

−1

3

⎤
⎥⎦ =

⎡
⎢⎣

4

−2

6

⎤
⎥⎦

17. (a)

[
1
2 0

0 1

][−1
2

]
=
[− 1

2

2

]
(b)

[
1 0

0 1
2

][−1

2

]
=
[−1

1

]

19. (a)

[
1/α 0

0 1

][
a

b

]
=
[
a/α

b

]
(b)

[
1 0

0 α

][
a

b

]
=
[

a

αb

]
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21. (a) the matrix A1

corresponds to the
contraction with
factor 1

2

(b) the matrix A2

corresponds to the
compression in the
y-direction with
factor 1

2

(c) the matrix A3

corresponds to the
shear in the
y-direction by a
factor 1

2

(d) the matrix A4

corresponds to the
shear in the
y-direction by a
factor − 1

2

x

y

1

1

–

0

3
2

1
2

1
2

1
2

x

y

1

1

–

0

3
2

1
2

1
2

1
2

x

y

1

1

–

0

3
2

1
2

1
2

1
2

x

y

1

1

–

0

3
2

1
2

1
2

1
2

23. (a)

[
2 0

0 2

]
(dilation with factor 2)

(b)

[
1 2

0 1

]
(shear in the x-direction by a factor 2)

25. The standard matrix:

[
1
4

√
3

4√
3

4
3
4

]
; Pπ/3 (3, 4) =

(
3
4 +√

3, 3
√

3
4 + 3

)
≈ (2.48, 4.30)

27. The standard matrix:

[− 1
2

√
3

2√
3

2
1
2

]
; Hπ/3 (3, 4) =

(
− 3

2 + 2
√

3, 3
√

3
2 + 2

)
≈ (1.96, 4.60)

29. Reflection about the xy-plane: T (1, 2, 3) =
⎡
⎢⎣

1 0 0

0 1 0

0 0 −1

⎤
⎥⎦
⎡
⎢⎣

1

2

3

⎤
⎥⎦ =

⎡
⎢⎣

1

2

−3

⎤
⎥⎦;

Reflection about the xz-plane: T (1, 2, 3) =
⎡
⎢⎣

1 0 0

0 −1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1

2

3

⎤
⎥⎦ =

⎡
⎢⎣

1

−2

3

⎤
⎥⎦;

Reflection about the yz-plane: T (1, 2, 3) =
⎡
⎢⎣
−1 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎣

1

2

3

⎤
⎥⎦ =

⎡
⎢⎣
−1

2

3

⎤
⎥⎦

31. (a)

⎡
⎢⎢⎣

√
3

2 − 1
2 0

1
2

√
3

2 0

0 0 1

⎤
⎥⎥⎦ (b)

⎡
⎢⎣

1 0 0

0 1
2 − 1√

2

0 1√
2

1√
2

⎤
⎥⎦ (c)

⎡
⎢⎣

0 0 1

0 1 0

−1 0 0

⎤
⎥⎦ 33.

⎡
⎢⎣
− 1

9
8
9

4
9

8
9 − 1

9
4
9

4
9

4
9 − 7

9

⎤
⎥⎦

37. Rotation through the angle 2θ

39. Rotation through the angle θ , then translation by x0; not a matrix transformation

Exercise Set 4.10 (page 277)

1. (a) Operators do not commute (b) Operators do not commute 3. Operators commute

5. [TB ◦ TA] =
[−10 −7

5 −10

]
; [TA ◦ TB ] =

[−8 −3

13 −12

]
7. (a)

[
1 0

0 −1

]
(b)

[
0 0

0 1
2

]
(c)

[
3
2

3
√

3
2

3
√

3
2 − 3

2

]

9. (a)

⎡
⎢⎣
−1 0 0

0 0 0

0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣

1 0 1

0
√

2 0

−1 0 1

⎤
⎥⎦ (c)

⎡
⎢⎣
−1 0 0

0 1 0

0 0 0

⎤
⎥⎦
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11. (a) [T1] =
[

1 1
1 −1

]
; [T2] =

[
3 0

2 4

]

(b) [T2 ◦ T1] =
[

3 3

6 −2

]
; [T1 ◦ T2] =

[
5 4

1 −4

]
(c) T1 (T2 (x1,x2)) = (5x1 + 4x2, x1 − 4x2); T2 (T1 (x1,x2))= (3x1 + 3x2, 6x1 − 2x2)

13. (a) Not one-to-one (b) One-to-one (c) One-to-one (d) One-to-one

15. (a) Reflection about the x-axis (b) Rotation through an angle of −π/4 (c) Contraction by a factor of 1
3

17. (a)

[
w1

w2

]
=
[

8 4

2 1

][
x1

x2

]
; the operator is not one-to-one

(b)

⎡
⎢⎣

w1

w2

w3

⎤
⎥⎦ =

⎡
⎣−1 3 2

2 0 4
1 3 6

⎤
⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦; the operator is not one-to-one

19. (a) One-to-one; standard matrix of T −1:

[
1
3 − 2

3
1
3

1
3

]
; T −1 (w1, w2) = (

1
3 w1 − 2

3 w2,
1
3 w1 + 1

3 w2

)
(b) Not one-to-one

21. (a) One-to-one (b) Not one-to-one

23. (a)

⎧⎪⎨
⎪⎩
⎡
⎣ 1

5
7

⎤
⎦ ,

⎡
⎢⎣
−1

6

4

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (b) {(−14, 19, 11)} (c) rank(T ) = 2; nullity(T ) = 1 (d) rank(A) = 2; nullity(A) = 1

25. Basis for ker(TA): {(10, 2, 0, 7)}; basis for R(TA):

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1

−3

−3

⎤
⎥⎦ ,

⎡
⎢⎣

2

1

8

⎤
⎥⎦ ,

⎡
⎢⎣
−1

3

4

⎤
⎥⎦
⎫⎪⎬
⎪⎭

27. (a) Range of T must be a proper subset of Rn (b) T maps infinitely many vectors into 0

29. (a) Yes (b) Yes

True/False 4.10

(a) False (b) True (c) True (d) False (e) True (f) True (g) True

Exercise Set 4.11 (page 287)
1. y ′ = 6

13 x
′ 3. y ′ = 2

7 x
′

5.

x

y

x

y

(1, 1)

(2, –1)

(3, 1)

(1, 0)(0, 0)

(0, 0)

(–1, –2)

(0, 1) 3

3

1

1
4

4

2

2

7. (a)

[
1
2 0

0 5

]
(b)

[
1 0

2 5

]
(c)

[
0 −1

−1 0

]
9. (a) Operators commute (b) Operators do not commute

11. Shearing by a factor of 1 in the x-direction, then reflection about the x-axis, then expanding by a factor of 2 in the y-direction,
then expanding by a factor of 4 in the x-direction.
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13. Reflection about the x-axis, then expanding by a factor of 2 in the y-direction, then expanding by a factor of 4 in the x-direction,
then reflection about the line y = x.

15. (a) The unit square is expanded in the x-direction by a factor of 3.
(b) The unit square is reflected about the x-axis and expanded in the y-direction by a factor of 5.

17. (b) No, Theorem 4.11.1 applies only to invertible matrices.

21. (a)

x

y

x

y

(1, 1)

(0, 0)(0, 0) (1, 0)

(   , 1)1
2

(–   ,    )1
2

3
2

(b) Shearing by a factor of −1 in the x-direction, then expanding by a factor of 2 in the y-direction, then shearing by a factor of 1
in the y-direction.

23.
(   , 1)5

4(0, 1) (1, 1)

11

11
(   , 1)1

4

x

y

x

y

25. The line segment from (0,0) to (2,0). Theorem 4.11.1 does not apply here because A is singular.

True/False 4.11

(a) False (b) True (c) True (d) True (e) False (f) False (g) True

Chapter 4 Supplementary Exercises (page 289)

1. (a) u + v = (4, 3, 2); ku = (−3, 0, 0) (c) Axioms 1–5 3. a plane if s= 1; a line if s= −2; the origin if s �= −2 and s �= 1

7. A must be invertible

9. (a) rank is 2; nullity is 1
(b) rank is 2; nullity is 2
(c) For n = 1, rank is 1 and nullity is 0; for n ≥ 2, rank is 2 and nullity is n − 2.

11. (a)
{
1, x2, x4, . . . , x2 n/2"} (b)

{
1, x − xn, x2 − xn, . . . , xn−1 − xn

}

13. (a)

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 1 0

1 0 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 1

0 0 0

1 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 0

0 1 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 0

0 0 1

0 1 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(b)

⎧⎪⎨
⎪⎩
⎡
⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 1

0 0 0

−1 0 0

⎤
⎥⎦ ,

⎡
⎢⎣

0 0 0

0 0 1

0 −1 0

⎤
⎥⎦
⎫⎪⎬
⎪⎭

15. Possible ranks are 0, 1, and 2. 17. (a) Yes (b) No (c) Yes
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Exercise Set 5.1 (page 302)
1. eigenvalue: −1 3. eigenvalue: 5

5. (a) Characteristic equation: (λ−5) (λ+1)= 0;
eigenvalue: 5, basis for eigenspace: {(1, 1)};
eigenvalue: −1, basis for eigenspace: {(−2, 1)}
(b) Characteristic equation: λ2 + 3 = 0; no real eigenvalues
(c) Characteristic equation: (λ − 1)2 = 0;
eigenvalue: 1, basis for eigenspace: {(1, 0) , (0, 1)}
(d) Characteristic equation: (λ − 1)2 = 0;
eigenvalue: λ = 1, basis for eigenspace: {(1, 0)}

7. Characteristic equation: (λ−1) (λ−2) (λ−3)= 0;
eigenvalue: 1, basis for eigenspace: {(0, 1, 0)};
eigenvalue: 2, basis for eigenspace: {(−1, 2, 2)};
eigenvalue: 3, basis for eigenspace: {(−1, 1, 1)}

9. Characteristic equation: (λ+2)2 (λ−5)= 0;
eigenvalue: −2, basis for eigenspace: {(1, 0, 1)} ;
eigenvalue: 5, basis for eigenspace: {(8, 0, 1)}

11. Characteristic equation: (λ−3)3 = 0;
eigenvalue: 3, basis for eigenspace: {(0, 1, 0) , (1, 0, 1)}

13. (λ − 3) (λ − 7) (λ − 1) = 0

15. Eigenvalue: 5, basis for eigenspace: {(1, 1)};
eigenvalue: −1, basis for eigenspace: {(−2, 1)}

17. (b) λ= −ω is the eigenvalue associated with given eigenvectors.

19. (a) Eigenvalue: 1, eigenspace: span{(1, 1)};
eigenvalue: −1, eigenspace: span{(−1, 1)}
(b) Eigenvalue: 1, eigenspace: span{(1, 0)};
eigenvalue: 0, eigenspace: span{(0, 1)}
(c) No real eigenvalues
(d) Eigenvalue: k, eigenspace: R2

(e) Eigenvalue: 1, eigenspace: span{(1, 0)}
21. (a) Eigenvalue: 1, eigenspace: span{(1, 0, 0) , (0, 1, 0)};

eigenvalue: −1, eigenspace: span{(0, 0, 1)}
(b) Eigenvalue: 1, eigenspace: span{(1, 0, 0) , (0, 0, 1)};
eigenvalue: 0, eigenspace: span{(0, 1, 0)}
(c) Eigenvalue: 1, eigenspace: span{(1, 0, 0)}
(d) Eigenvalue: k, eigenspace: R3

23. (a) y = 2x and y = x (b) No invariant lines 25. (a) 6 × 6 (b) Yes (c) Three

27.

⎡
⎢⎣
− 1

2 − 1
2 1

− 1
2 − 1

2 −1

0 0 1

⎤
⎥⎦

True/False 5.1

(a) False (b) False (c) True (d) False (e) False (f) False

Exercise Set 5.2 (page 313)

5. P =
[

1 0

3 1

]
(answer is not unique) 7. P =

⎡
⎢⎣

1 0 −2

0 1 0

0 0 1

⎤
⎥⎦ (answer is not unique)
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9. (a) 3 and 5 (b) rank (3I − A) = 1; rank (5I − A) = 2 (c) Yes

11. eigenvalues: 1, 2 and 3; each has algebraic multiplicity 1 and geometric multiplicity 1;

A is diagonalizable; P =
⎡
⎢⎣

1 2 1

1 3 3

1 3 4

⎤
⎥⎦ (answer is not unique); P−1AP =

⎡
⎢⎣

1 0 0

0 2 0

0 0 3

⎤
⎥⎦

13. eigenvalue λ = 0 has both algebraic and geometric multiplicity 2;
eigenvalue λ = 1 has both algebraic and geometric multiplicity 1;

A is diagonalizable; P =
⎡
⎢⎣

0 −1 0

1 0 0

0 3 1

⎤
⎥⎦ (answer is not unique); P−1AP =

⎡
⎢⎣

0 0 0

0 0 0

0 0 1

⎤
⎥⎦

15. (a) A is a 3 × 3 matrix;
all three eigenspaces (for λ = 1, λ = −3, and λ = 5) must have dimension 1.
(b) A is a 6 × 6 matrix;
the possible dimensions of the eigenspace corresponding to λ = 0 are 1 or 2;
the dimension of the eigenspace corresponding to λ = 1 must be 1;
the possible dimensions of the eigenspace corresponding to λ = 2 are 1, 2, or 3.

17.
[

24,234 −34,815
−23,210 35,839

]
19. A11 =

⎡
⎢⎣
−1 10,237 −2,047

0 1 0

0 10,245 −2,048

⎤
⎥⎦ 21.

⎡
⎢⎣

1 −1 1

2 0 −1

1 1 1

⎤
⎥⎦
⎡
⎢⎣

1 0 0

0 3n 0

0 0 4n

⎤
⎥⎦
⎡
⎢⎣

1
6

1
3

1
6

− 1
2 0 1

2
1
3 − 1

3
1
3

⎤
⎥⎦

25. Yes

27. (a) The dimension of the eigenspace corresponding to λ = 1 must be 1; the possible dimensions of the eigenspace corresponding
to λ = 3 are 1 or 2; the possible dimensions of the eigenspace corresponding to λ = 4 are 1, 2, or 3.
(b) The dimension of the eigenspace corresponding to λ = 1 must be 1; the dimension of the eigenspace corresponding to λ = 3
must be 2; the dimension of the eigenspace corresponding to λ = 4 must be 3.
(c) This eigenvalue must be λ = 4.

31. Standard matrix:

[
0 −1

−1 0

]
; diagonalizable; P =

[−1 1

1 1

]
(answer is not unique)

33. Standard matrix:

⎡
⎢⎣

3 0 0

0 1 0

1 −1 0

⎤
⎥⎦; diagonalizable; P =

⎡
⎢⎣

0 0 3

0 −1 0

1 1 1

⎤
⎥⎦ (answer is not unique)

True/False 5.2

(a) False (b) True (c) True (d) False (e) True (f) True (g) True (h) True (i) True

Exercise Set 5.3 (page 326)

1. u = (2 + i,−4i, 1 − i); Re (u)= (2, 0, 1); Im (u)= (−1, 4, 1); ‖u‖ = √
23 5. x = (7 − 6i,−4 − 8i, 6 − 12i)

7. A =
[

5i 4

2 + i 1 − 5i

]
; Re (A) =

[
0 4

2 1

]
; Im (A) =

[−5 0

−1 5

]
; det (A)= 17−i; tr (A)= 1

11. u · v = −1 + i; u · w = 18 − 7i; v · w = 12 + 6i 13. −11 − 14i

15. Eigenvalue: 2 + i, basis for eigenspace:

{[
2 + i

1

]}
; eigenvalue: 2 − i, basis for eigenspace:

{[
2 − i

1

]}

17. Eigenvalue: 4 + i, basis for eigenspace:

{[
1 + i

1

]}
; eigenvalue: 4 − i, basis for eigenspace:

{[
1 − i

1

]}
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19. |λ| = √
2; φ = π

4 21. |λ| = 2; φ = − π

3 23. P =
[−2 −1

2 0

]
; C =

[
3 −2

2 3

]
25. P =

[−1 1

1 0

]
; C =

[
5 −3

3 5

]

27. (a) k= − 8
3 i (b) None

True/False 5.3

(a) False (b) True (c) False (d) True (e) False (f) False

Exercise Set 5.4 (page 332)
1. (a) y1 = c1e

5x − 2c2e
−x , y2 = c1e

5x + c2e
−x

(b) y1 = 0, y2 = 0

3. (a) y1 = −c2e
2x − c3e

3x , y2 = c1e
x + 2c2e

2x + c3e
3x , y3 = 2c2e

2x + c3e
3x

(b) y1 = e2x − 2e3x , y2 = ex − 2e2x + 2e3x , y3 = −2e2x + 2e3x

7. y = c1e
3x − c2e

−2x 9. y = c1e
x + c2e

2x + c3e
3x

15. (b) y′ = Ay where y =
⎡
⎢⎣

y1

y2

y3

⎤
⎥⎦ and A =

⎡
⎢⎣

0 1 0

0 0 1

−2 1 2

⎤
⎥⎦

(c) The solution of the system: y1 = c1e
2x + c2e

x + c3e
−x , y2 = 2c1e

2x + c2e
x − c3e

−x , and y3 = 4c1e
2x + c2e

x + c3e
−x ;

The solution of the differential equation: y = c1e
2x + c2e

x + c3e
−x

True/False 5.4

(a) True (b) False (c) True (d) True (e) False

Exercise Set 5.5 (page 342)
1. (a) Stochastic (b) Not stochastic (c) Stochastic (d) Not stochastic

3. x4 =
[

0.54545

0.45455

]
5. (a) Regular (b) Not regular (c) Regular 7.

[
8
17
9

17

]
9.

⎡
⎢⎣

4
11
4
11
3

11

⎤
⎥⎦

11. (a) Probability that the system will stay in state 1 when it is in state 1
(b) Probability that the system will move to state 1 when it is in state 2
(c) 0.8
(d) 0.85

13. (a)

[
0.95 0.55

0.05 0.45

]
(b) 0.93 (c) 0.142 (d) 0.63

15. (a) initial after after after after after
state 1 year 2 years 3 years 4 years 5 years

city population 100,000 95,750 91,840 88,243 84,933 81,889
suburb population 25,000 29,250 33,160 36,757 40,067 43,111

(b) City population will approach 46,875 and the suburbs population will approach 78,125.

17. P =
⎡
⎢⎣

7
10

1
10

1
5

1
5

3
10

1
2

1
10

3
5

3
10

⎤
⎥⎦; steady-state vector:

⎡
⎢⎣

1
3
1
3
1
3

⎤
⎥⎦ 19. For any positive integer k, P kq = q.

True/False 5.5

(a) True (b) True (c) True (d) False (e) True (f) False (g) True
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Chapter 5 Supplementary Exercises (page 345)

1. (b) A is the standard matrix of the rotation in the plane about the origin through a positive angle θ . Unless the angle is an integer
multiple of π , no vector resulting from such a rotation is a scalar multiple of the original nonzero vector.

3. (c)

⎡
⎢⎣

1 1 0

0 2 1

0 0 3

⎤
⎥⎦ 9. A2 =

[
15 30

5 10

]
, A3 =

[
75 150

25 50

]
, A4 =

[
375 750

125 250

]
, A5 =

[
1875 3750

625 1250

]

11. 0, tr(A) 13. All eigenvalues must be 0 15.

⎡
⎢⎣

1 0 0

−1 − 1
2 − 1

2

1 − 1
2 − 1

2

⎤
⎥⎦

17. The only possible eigenvalues are −1, 0, and 1.

19. The remaining eigenvalues are 2 and 3.

Exercise Set 6.1 (page 353)

1. (a) 12 (b) −18 (c) −9 (d)
√

30 (e)
√

11 (f)
√

203

3. (a) 34 (b) −39 (c) −18 (d)
√

89 (e)
√

34 (f)
√

610

5.
[√

2 0
0

√
3

]
7. −24 9. 3 11 −29 13.

[√
3 0

0
√

5

]
15. −50 17. ‖u‖ = √

30, d(u, v) = √
107

19. ‖p‖ = √
14 , d(p, q) = √

137 21. ‖U‖ = √
93, d(U, V ) = √

99 = 3
√

11 23. ‖p‖ = 6
√

3 , d(p, q) = 11
√

2

25. ‖u‖ = √
65, d(u, v) = 12

√
5 27. (a) −101 (b) 3

29.

x

y

2

–4

4

–2

31. 〈u, v〉 = 1
9 u1v1 + u2v2 33. Axioms 2 and 3 do not hold. 35. 14〈u, v〉 − 4 ‖u‖2 − 6 ‖v‖2

37. (a) 2
3 (b) 4√

15
(c)

√
2 (d)

√
2
5 39. 0 43. (b) k1 and k2 must both be positive.

True/False 6.1

(a) True (b) False (c) True (d) True (e) False (f) True (g) False

Exercise Set 6.2 (page 361)

1. (a) − 1√
2

(b) 0 (c) − 1√
2

3. 0 5. 19
10

√
7

7. (a) Orthogonal (b) Not orthogonal (c) Orthogonal

13. Orthogonal if k = 4
3 15. The weights must be positive numbers such that w1 = 4w2. 17. No 25. No
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27.
{
(−1,−1, 1, 0),

(
2
7 ,− 4

7 , 0, 1
)}

29. (a) y = − 1
2 x (b) x = t , y = −2t , z = −3t

31. (a) 1
4 (b) ‖p‖ = 1√

3

‖q‖ = 1√
5

33. (a) 0 (b) ‖p‖ = 4√
15

‖q‖ = 2
√

2
3

51. (a) v = a (1,−1) (b) v = a(1,−2)

True/False 6.2

(a) False (b) True (c) True (d) True (e) False (f) False

Exercise Set 6.3 (page 376)

1. (a) Orthogonal but not orthonormal (b) Orthogonal and orthonormal
(c) Not orthogonal and not orthonormal (d) Orthogonal but not orthonormal

3. (a) Orthogonal (b) Not orthogonal

5. An orthonormal basis:
{(

1√
2
, 0,− 1√

2

)
,
(

1√
2
, 0, 1√

2

)
(0, 1, 0)

}
7. u = − 11

5 v1 − 2
5 v2 + 2v3 9. u = 0v1 − 2

3 v2 + 1
3 v3 11.

(− 11
5 ,− 2

5 , 2
)

13.
(
0,− 2

3 ,
1
3

)
15. (a)

(
63
25 ,

84
25

)
(b)

(− 88
25 ,

66
25

)
17. (a)

(
5
2 ,

5
2

)
(b)

(− 1
2 ,

1
2

)
19. (a)

(
10
3 , 8

3 ,
4
3

)
(b)

(
2
3 ,− 2

3 ,− 1
3

)
21. (a)

(
22
15 ,− 14

15 ,
2
3

)
(b)

(− 7
15 ,

14
15 ,

7
3

)
23.

(
3
2 ,

3
2 ,−1,−1

)
25.

(
23
18 ,

11
6 ,− 1

18 ,− 17
18

)
27. q1 =

(
1√
10

,− 3√
10

)
, q2 =

(
3√
10

, 1√
10

)

x

y

q1

u1

q2

u2

29.
{(

1√
3
, 1√

3
, 1√

3

)
,
(
− 1√

2
, 1√

2
, 0
)

,
(

1√
6
, 1√

6
,− 2√

6

)}

31.
{(

0, 2√
5
, 1√

5
, 0
)

,
(

5√
30

,− 1√
30

, 2√
30

, 0
)

,
(

1√
10

, 1√
10

,− 2√
10

,− 2√
10

)
,
(

1√
15

, 1√
15

,− 2√
15

, 3√
15

)}
33. From Exercise 23, w1 = projW b = (

3
2 ,

3
2 ,−1,−1

)
, so w2 = b − projW b = (− 1

2 ,
1
2 , 1,−1

)
.

35. w1 = (
13
14 ,

31
14 ,

20
7

)
, w2 = (

1
14 ,− 3

14 ,
1
7

)
37. An orthonormal basis:

{(
1√
6
, 1√

6
, 1√

6

)
,
(

1√
6
, 1√

6
,− 1√

6

)
,
(

2√
6
,− 1√

6
, 0
)}

39. For example, x =
(

1√
3
, 0
)

and y =
(

0, 1√
2

)
41. (b) projW u = (2, 1, 2) (using both methods)

43. An orthonormal basis: {1,√3 (−1 + 2x) ,
√

5
(
1 − 6x + 6x2

)}
45. R =

[√
5

√
5

0
√

5

]
(Q is given) 47. R =

⎡
⎢⎣
√

2
√

2
√

2

0
√

3 − 1√
3

0 0 4√
6

⎤
⎥⎦ (Q is given)

49. A does not have a QR-decomposition. 55. (b) The range of T is W ; the kernel of T is W⊥.

True/False 6.3

(a) False (b) False (c) True (d) True (e) False (f) True
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Exercise Set 6.4 (page 386)

1.

[
21 25

25 35

][
x1

x2

]
=
[

20

20

]
3. x1 = 20

11 , x2 = − 8
11 5. x1 = 12, x2 = −3, x3 = 9

7. Least squares error vector:

⎡
⎢⎣
− 6

11

− 27
11
15
11

⎤
⎥⎦; least squares error: 3

11

√
110 ≈ 2.86

9. Least squares error vector:

⎡
⎢⎢⎢⎣

3

−3

0

3

⎤
⎥⎥⎥⎦; least squares error: 3

√
3 ≈ 5.196

11. Least squares solutions: x1 = 1
2 − 1

2 t , x2 = t ; error vector:

⎡
⎢⎣

2

0

2

⎤
⎥⎦

13. Least squares solutions: x1 = − 7
6 − t , x2 = 7

6 − t , x3 = t ; error vector:

⎡
⎢⎢⎣

7
3

7
6

− 49
6

⎤
⎥⎥⎦

15.

⎡
⎢⎣
− 92

285
439
285
94
57

⎤
⎥⎦ 17.

⎡
⎢⎣

3

−4

−1

⎤
⎥⎦ 19.

[
1 0

0 0

]
21.

⎡
⎢⎣

1 0 0

0 0 0

0 0 1

⎤
⎥⎦ 23.

[
1
7

18
7

]

25. (a) {(1, 0,−5) , (0, 1, 3)} (b) 1
35

⎡
⎢⎣

10 15 −5

15 26 3

−5 3 34

⎤
⎥⎦ 27.

⎡
⎢⎢⎢⎣

0

−1

1

1

⎤
⎥⎥⎥⎦ 29. AT

(
AAT

)−1
A

True/False 6.4

(a) True (b) False (c) True (d) True (e) False (f) True (g) False (h) True

Exercise Set 6.5 (page 393)

1. y = − 1
2 + 7

2 x

x

y

21

7

3. y = 2 + 5x−3x2

x

y

8765421

–50

5. y = 5
21 + 48

7x

True/False 6.5

(a) False (b) True (c) True (d) False



Answers to Exercises A37

Exercise Set 6.6 (page 399)

1. (a) 1 + π − 2 sin x − sin 2x (b) 1 + π − 2

1
sin x − 2

2
sin (2x) − · · · − 2

n
sin(nx)

3. (a)
ex

e − 1
− 1

2
(b)

7e − 19

12e − 12
≈ 0.00136

5. (a)
3x

π
(b) 1 − 6

π 2
≈ 0.392 9.

1

2
+

�∑
k=1

1

kπ

(
1 − (−1)k

)
sin kx

True/False 6.6

(a) False (b) True (c) True (d) False (e) True

Chapter 6 Supplementary Exercises (page 399)

1. (a) (0, a, a, 0) with a �= 0 (b) ±
(

0, 2√
5
, 1√

5
, 0
)

3. (a) The subspace of all matrices in M22 with zeros on the main diagonal.
(b) The subspace of all 2 × 2 skew-symmetric matrices.

7. ±
(

1√
2
, 0, 1√

2

)
9. No 11. (b) θ approaches π

2 17. No

Exercise Set 7.1 (page 407)

1. (a) Orthogonal; A−1 =
[

1 0
0 −1

]
(b) Orthogonal; A−1 =

[ 1√
2

1√
2

− 1√
2

1√
2

]

3. (a) Not orthogonal (b) Orthogonal; A−1 =

⎡
⎢⎢⎣
− 1√

2
0 1√

2

1√
6

− 2√
6

1√
6

1√
3

1√
3

1√
3

⎤
⎥⎥⎦ 7. TA (x) =

⎡
⎢⎢⎣
− 23

5

18
25

101
25

⎤
⎥⎥⎦; ‖TA (x)‖ = ‖x‖ = √

38

9. Yes 11. a2 + b2 = 1
2 13. (a)

[−1 + 3
√

3

3 +√
3

]
(b)

[
5
2 −√

3

1 + 5
2

√
3

]
15. (a)

⎡
⎢⎢⎣

1√
2

3√
2

5

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣
− 5√

2

7√
2

−3

⎤
⎥⎥⎦

17. (a)

⎡
⎢⎢⎣
− 1

2 − 5
√

3
2

2

−
√

3
2 + 5

2

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣

1
2 − 3

√
3

2

6

−
√

3
2 − 3

2

⎤
⎥⎥⎦ 19.

⎡
⎣1 0 0

0 cos θ sin θ

0 − sin θ cos θ

⎤
⎦

21. (a) Rotations about the origin, reflections about any line through the origin, and any combination of these
(b) Rotations about the origin, dilations, contractions, reflections about lines through the origin, and combinations of these
(c) No; dilations and contractions

23. (a) (p)S =
(

5√
3
,
√

2,
√

2√
3

)
, (q)S =

(
− 2√

3
, 2

√
2,−

√
2√
3

)
(b) ‖p‖ = √

11, d(p, q) = √
21, 〈p, q〉 = 0

True/False 7.1

(a) False (b) False (c) False (d) False (e) True (f) True (g) True (h) True
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Exercise Set 7.2 (page 416)

1. λ2 − 5λ = 0; λ = 0: one-dimensional; λ = 5: one-dimensional

3. λ3 − 3λ2 = 0; λ = 3: one-dimensional; λ = 0: two-dimensional

5. λ4 − 8λ3 = 0; λ = 0: three-dimensional; λ = 8: one-dimensional

7. P =
⎡
⎣− 2√

7

√
3√
7

√
3√
7

2√
7

⎤
⎦; P−1AP =

[
3 0

0 10

]
9. P =

⎡
⎢⎣
− 4

5 0 3
5

0 1 0
3
5 0 4

5

⎤
⎥⎦; P−1AP =

⎡
⎢⎣

25 0 0

0 −3 0

0 0 −50

⎤
⎥⎦

11. P =

⎡
⎢⎢⎣
− 1√

2
− 1√

6
1√
3

1√
2

− 1√
6

1√
3

0 2√
6

1√
3

⎤
⎥⎥⎦; P−1AP =

⎡
⎢⎣

3 0 0

0 3 0

0 0 0

⎤
⎥⎦

13. P =

⎡
⎢⎢⎢⎢⎢⎣

− 4
5 0 3

5 0

3
5 0 4

5 0

0 − 4
5 0 3

5

0 3
5 0 4

5

⎤
⎥⎥⎥⎥⎥⎦; P−1AP =

⎡
⎢⎢⎢⎣
−25 0 0 0

0 −25 0 0

0 0 25 0

0 0 0 25

⎤
⎥⎥⎥⎦

15. (2)

[− 1√
2

1√
2

] [
− 1√

2
1√
2

]
+ (4)

[ 1√
2

1√
2

] [
1√
2

1√
2

]
= (2)

[ 1
2 − 1

2

− 1
2

1
2

]
+ (4)

[ 1
2

1
2

1
2

1
2

]

17. (−4)

⎡
⎢⎢⎣
− 1√

2

1√
2

0

⎤
⎥⎥⎦[− 1√

2
1√
2

0
]
+ (−4)

⎡
⎢⎢⎣
− 1√

3

− 1√
3

1√
3

⎤
⎥⎥⎦[− 1√

3
− 1√

3
1√
3

]
+ (2)

⎡
⎢⎢⎣

1√
6

1√
6

2√
6

⎤
⎥⎥⎦[ 1√

6
1√
6

2√
6

]

= (−4)

⎡
⎢⎢⎣

1
2 − 1

2 0

− 1
2

1
2 0

0 0 0

⎤
⎥⎥⎦+ (−4)

⎡
⎢⎢⎣

1
3

1
3 − 1

3

1
3

1
3 − 1

3

− 1
3 − 1

3
1
3

⎤
⎥⎥⎦+ (2)

⎡
⎢⎢⎣

1
6

1
6

1
3

1
6

1
6

1
3

1
3

1
3

2
3

⎤
⎥⎥⎦

19.

⎡
⎢⎣

3 0 0

0 3 4

0 4 3

⎤
⎥⎦ 21. Yes 23. (a)

⎡
⎣

√
2−1

4−2
√

2

1
4−2

√
2

⎤
⎦ ,

⎡
⎣−√

2−1
4+2

√
2

1
4+2

√
2

⎤
⎦ (b)

[ −1√
2

1√
2

]
,

[ 1√
2

1√
2

]

True/False 7.2

(a) True (b) True (c) False (d) True (e) True (f) True (g) True

Exercise Set 7.3 (page 427)

1. (a) [x1 x2]
[

3 0

0 7

][
x1

x2

]
(b) [x1 x2]

[
4 −3

−3 −9

][
x1

x2

]
(c) [x1 x2 x3]

⎡
⎢⎢⎣

9 3 −4

3 −1 1
2

−4 1
2 4

⎤
⎥⎥⎦
⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦

3. 2x2 + 5y2 − 6xy 5.

[
x1

x2

]
=
[− 1√

2
1√
2

1√
2

1√
2

][
y1

y2

]
; Q = 3y2

1 + y2
2

7.

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎢⎣
− 2

3
2
3 − 1

3

2
3

1
3 − 2

3

1
3

2
3

2
3

⎤
⎥⎥⎦
⎡
⎣y1

y2

y3

⎤
⎦; Q = y2

1 + 4y2
2 + 7y2

3
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9. (a)
[
x y

] [2 1
2

1
2 0

][
x

y

]
+ [

1 −6
] [x

y

]
+ (2) = 0 (b)

[
x y

] [0 0

0 1

][
x

y

]
+ [

7 −8
] [x

y

]
+ (−5) = 0

11. (a) Ellipse (b) Hyperbola (c) Parabola (d) Circle 13. Hyperbola: 3y ′2 − 2x ′2 = 8; θ = sin−1
(

2√
5

)
≈ 63.4◦

15. Hyperbola: 4x ′2 − y ′2 = 3; θ = sin−1
(

3
5

) ≈ 36.9◦

17. (a) Positive definite (b) Negative definite (c) Indefinite (d) Positive semidefinite (e) Negative semidefinite

19. Positive definite 21. Positive semidefinite 23. Indefinite 27. (a) Indefinite (b) Negative definite 29. k > 2

33. (a) s2
x = xT

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
n

− 1
n(n−1) · · · − 1

n(n−1)

− 1
n(n−1)

1
n

· · · − 1
n(n−1)

...
...

. . .
...

− 1
n(n−1) − 1

n(n−1) · · · 1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x 35. A must have a positive eigenvalue of multiplicity 2.

True/False 7.3

(a) True (b) False (c) True (d) True (e) False (f) True (g) True (h) True (i) True (j) True (k) True
(l) False

Exercise Set 7.4 (page 436)

1. Maximum: 5 at (x, y) = (±1, 0); minimum: −1 at (x, y) = (0,±1)

3. Maximum: 7 at (x, y) = (0,±1); minimum: 3 at (x, y) = (±1, 0)

5. Maximum: 9 at (x, y, z) = (±1, 0, 0); minimum: 3 at (x, y, z) = (0, 0,±1)

7. Maximum:
√

2 at (x, y) =
(√

2, 1
)

and (x, y) =
(
−√

2,−1
)

; minimum: −√
2 at (x, y) =

(
−√

2, 1
)

and (x, y) =
(√

2,−1
)

9.

x

y

(–1, 0) (1, 0)

5x2 – y2 = 5

x

y

(0, 1)

(0, –1)

5x2 – y2 = –1

13. Saddle point at (0, 0); relative maximum at (−1, 1)

15. Relative minimum at (0, 0); saddle point at (2, 1); saddle point at (−2, 1) 17. x = 5√
2
, y = 1√

2
21. q(x) = λ

True/False 7.4

(a) False (b) True (c) True (d) False (e) True

Exercise Set 7.5 (page 443)

1.

[−2i 4 5 − i

1 + i 3 − i 0

]
3.

⎡
⎢⎣

1 i 2 − 3i

−i −3 1

2 + 3i 1 2

⎤
⎥⎦ 5. (a) (A)13 �= (A∗)13 (b) (A)22 �= (A∗)22

9. A−1 =
[ 3

5 − 4
5

− 4
5 i − 3

5 i

]
11. A−1 =

⎡
⎣ 1

2
√

2

(√
3 − i

)
1

2
√

2

(
1−i

√
3
)

1
2
√

2

(
1+i

√
3
)

1
2
√

2

(
−i −√

3
)
⎤
⎦ 13. P =

[−1+i√
3

1−i√
6

1√
3

2√
6

]
; P−1AP =

[
3 0

0 6

]
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15. P =
[−1−i√

6
1+i√

3

2√
6

1√
3

]
; P−1AP =

[
2 0

0 8

]
17. P =

⎡
⎢⎢⎣

0 0 1
1−i√

3
−1+i√

6
0

1√
3

2√
6

0

⎤
⎥⎥⎦; P−1AP =

⎡
⎢⎣
−2 0 0

0 1 0

0 0 5

⎤
⎥⎦

19.

⎡
⎢⎣

0 i 2 − 3i

i 0 1

−2 − 3i −1 4i

⎤
⎥⎦ 27. (c) B and C must commute 35.

[ 1√
2

− i√
2

i√
2

− 1√
2

]

True/False 7.5

(a) False (b) False (c) True (d) False (e) False

Chapter 7 Supplementary Exercises (page 445)

1. (a)

[ 3
5 − 4

5

4
5

3
5

]−1

=
[ 3

5
4
5

− 4
5

3
5

]
(b)

⎡
⎢⎢⎣

4
5 0 − 3

5

− 9
25

4
5 − 12

25

12
25

3
5

16
25

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

4
5 − 9

25
12
25

0 4
5

3
5

− 3
5 − 12

25 − 16
25

⎤
⎥⎥⎦

5. P =

⎡
⎢⎢⎣
− 1√

2
1√
2

0

0 0 1

1√
2

1√
2

0

⎤
⎥⎥⎦; P T AP =

⎡
⎢⎣

0 0 0

0 2 0

0 0 1

⎤
⎥⎦

7. Positive definite 9. (a) Parabola (b) Parabola

13. Two possible solutions: a = 0, b =
√

2
3 , c = − 1√

3
and a = 0, b = −

√
2
3 , c = 1√

3

Exercise Set 8.1 (page 456)

1. (a) Nonlinear

(b) Linear; kernel consists of all matrices of the form

[
a b

c −a

]

(c) Linear; kernel consists of all matrices of the form

[
0 b

−b 0

]

3. Nonlinear 5. Linear; kernel consists of all 2 × 2 matrices whose rows are orthogonal to all columns of B

7. (a) Linear; ker(T ) = {0} (b) Nonlinear 9. Linear; ker(T ) = {(0, 0, 0, . . .)} 11. (a) and (d)

13. (a) 2 (b) 4 (c) mn − 3 (d) 1 15. (a)

[
3 6

−12 9

]
(b) rank(T ) = 4; nullity(T ) = 0

17. (a) (1, 0, 1) (b) ker(T ) = {0} (c) R(T ) = R3 19. T (x1, x2) = (−4x1 + 5x2, x1 − 3x2); T (5,−3) = (−35, 14)

19. T (x1, x2, x3) = (−x1 + 4x2 − x3, 5x1 − 5x2 − x3, x1 + 3x3); T (2, 4,−1) = (15,−9,−1)

23. (b) {x, x2} (c) {5, x2}
25. (a) ker(D) consists of all constant polynomials

(b) ker(J ) consists of all polynomials of the form a1x

27. (a) T (f (x)) = f (4)(x)

(b) T (f (x)) = f (n+1)(x)
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29. (a) The origin, a line through the origin, a plane through the origin, or the entire space R3

(b) The origin, a line through the origin, a plane through the origin, or the entire space R3

31. (−10,−7, 6)

True/False 8.1

(a) True (b) False (c) True (d) False (e) True (f) True (g) False (h) False (i) False

Exercise Set 8.2 (page 464)
1. (a) ker(T ) = {0}; T is one-to-one (b) ker(T ) = {0}; T is one-to-one (c) ker(T ) = {span(0, 1, 1)}; T is not one-to-one

3. (a) nullity(A) = 1; not one-to-one (b) nullity(A) = 1; not one-to-one

5. (a) One-to-one (b) One-to-one (c) Not one-to-one

7. For example, T
(
1 − x2

) = (0, 0); T is onto

9. No; T is not one-to-one because ker(T ) �= {0} as T (a) = a × a = 0

11. (T2 ◦ T1)(x, y) = (2x − 3y, 2x + 3y) 13. (T3 ◦ T2 ◦ T1) (x, y) = (3x − 2y, x)

15. (a) a + d (b) (T2 ◦ T1)(A) does not exist because T1(A) is not a 2 × 2 matrix

17. a0x + a1x (x + 1) + a2x (x + 1)2

19. (a) (1,−1) (d) T −1(2, 3) = 2 + x

x

y

2
p(x) = 2 + x

21. (a) all the ai ’s must be nonzero (b) T −1(x1, x2, . . . , xn) =
(

1
a1

x1,
1
a2

x2, . . . ,
1
an

xn

)
23. (a) T −1

1 (p (x)) = 1
x
p (x); T −1

2 (p(x)) = p(x − 1); (T −1
1 ◦ T −1

2 )(p(x)) = 1
x
p(x − 1)

25. T2(v) = 1
4 v 31. Since ker(J ) �= {0}, J is not one-to-one.

True/False 8.2

(a) True (b) False (c) True (d) True (e) False (f) True

Exercise Set 8.3 (page 471)
1. Isomorphism 3. Isomorphism 5. Not an isomorphism 7. Isomorphism

9. (a) T

⎛
⎜⎝
⎡
⎢⎣

a b c

b d e

c e f

⎤
⎥⎦
⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(b) T1

([
a b

c d

])
=

⎡
⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎦ ; T2

([
a b

c d

])
=

⎡
⎢⎢⎢⎣

a

c

b

d

⎤
⎥⎥⎥⎦

11. Isomorphism 13. dim (W) = 3; (−r − s − t, r, s, t) → (r, s, t) is an isomorphism between W and R3

15. Isomorphism 17. Yes 19. No

True/False 8.3

(a) False (b) True (c) False (d) True (e) True (f) True
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Exercise Set 8.4 (page 479)

1. (a)

⎡
⎢⎢⎢⎣

0 0 0

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ 3. (a)

⎡
⎢⎣

1 −1 1

0 1 −2

0 0 1

⎤
⎥⎦ 5. (a)

⎡
⎢⎢⎣

0 0

− 1
2 1

8
3

4
3

⎤
⎥⎥⎦ 7. (a)

⎡
⎢⎣

1 1 1

0 2 4

0 0 4

⎤
⎥⎦ (b), (c) 3 + 10x + 16x2

9. (a) [T (v1)]B =
[

1

−2

]
; [T (v2)]B =

[
3

5

]
(b) T (v1) =

[
3

−5

]
; T (v2) =

[−2

29

]

(c) T

([
x1

x2

])
=
[ 18

7
1
7

− 107
7

24
7

][
x1

x2

]
(d) T

([
1

1

])
=
[ 19

7

− 83
7

]

11. (a) [T (v1)]B =
⎡
⎢⎣

1

2

6

⎤
⎥⎦ ; [T (v2)]B =

⎡
⎢⎣

3

0

−2

⎤
⎥⎦; [T (v3)]B =

⎡
⎢⎣
−1

5

4

⎤
⎥⎦

(b) T(v1) = 16 + 51x + 19x2; T(v2) = −6 − 5x + 5x2; T (v3) = 7 + 40x + 15x2

(c) T
(
a0 + a1x + a2x

2
) = 239a0 − 161a1 + 289a2

24
+ 201a0 − 111a1 + 247a2

8
x + 61a0 − 31a1 + 107a2

12
x2

(d) T (1 + x2) = 22 + 56x+14x2

13. (a) [T2 ◦ T1]B ′
,B =

⎡
⎢⎢⎢⎣

0 0

6 0

0 −9

0 0

⎤
⎥⎥⎥⎦; [T1]B ′′

,B =
⎡
⎢⎣

2 0

0 −3

0 0

⎤
⎥⎦; [T2]B ′

,B
′′ =

⎡
⎢⎢⎢⎣

0 0 0

3 0 0

0 3 0

0 0 3

⎤
⎥⎥⎥⎦ (b) [T2 ◦ T1]B ′

,B = [T2]B ′
,B

′′ [T1]B ′′
,B

15. (a) [T ]
B,B

′ =

⎡
⎢⎢⎢⎣

1 0 0

1 1 1

1 −1 1

1 0 0

⎤
⎥⎥⎥⎦; [T ]

B,B
′′ =

⎡
⎢⎢⎢⎣

1 1 1

1 2 2

1 0 2

1 1 1

⎤
⎥⎥⎥⎦ (b), (c)

[
2 5

1 2

]

17. (a)

⎡
⎢⎣

0 1 0

0 0 2

0 0 0

⎤
⎥⎦ (b) −6 + 48x 19. (a)

⎡
⎢⎣

0 0 0

0 0 −1

0 1 0

⎤
⎥⎦ (b) 4 sin x + 3 cos x

21. (a) [T2 ◦ T1]B ′
,B = [T2]B ′

,B
′′ [T1]B ′′

,B (b) [T3 ◦ T2 ◦ T1]B ′
,B = [T3]B ′

,B
′′′ [T2]B ′′′

,B
′′ [T1]B ′′

,B

23. The matrix for T relative to B is the matrix whose columns are the transforms of the basis vectors in B in terms of the standard
basis. Since B is the standard basis for Rn, this matrix is the standard matrix for T . Also, since B ′ is the standard basis for Rm, the
resulting transformation will give vector components relative to the standard basis.

True/False 8.4

(a) False (b) False (c) True (d) False (e) True

Exercise Set 8.5 (page 486)

1. (a) det(A) = −2 does not equal det(B) = −1 (b) tr(A) = 3 does not equal tr(B) = −2

3.

[
6 −10

2 −3

]
5.

[−2 −2

6 5

]
7. [T ]B =

[
1 −2

0 −1

]
; [T ]

B
′ =

[
11 20

−6 −11

]

9. [T ]B =
⎡
⎢⎣
−2 −1 0

1 0 1

0 1 0

⎤
⎥⎦; [T ]

B
′ =

⎡
⎢⎣
−2 −1 0

1 0 1

0 1 0

⎤
⎥⎦ 11. [T ]B =

[ 1√
2

− 1√
2

1√
2

1√
2

]
; [T ]

B
′ =

[ 1√
2

− 1√
2

1√
2

1√
2

]
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13. [T ]B =
[−1 0

1 1

]
; [T ]

B
′ =

[ 1
2

1
2

3
2 − 1

2

]

15. (a) −4, 3
(b) A basis for the eigenspace corresponding to λ = −4 is {−2 + 8

3 x + x2};
A basis for the eigenspace corresponding to λ = 3 is {5 − 2x + x2}

19. det(T ) = 17; eigenvalues: 5 ± 2
√

2 21. det(T ) = 1; eigenvalue: 1

True/False 8.5

(a) False (b) True (c) True (d) True (e) True (f) False (g) True (h) False

Chapter 8 Supplementary Exercises (page 488)
1. No

5. (a) T (e3) and any two of T (e1), T (e2), T (e4) form a basis for the range; a basis for ker(T ) is

⎡
⎢⎢⎢⎣
−1

1

0

1

⎤
⎥⎥⎥⎦

(b) rank(T ) = 3; nullity(T ) = 1

7. (a) rank(T ) = 2; nullity(T ) = 2 (b) T is not one-to-one

11. rank(T ) = 3; nullity(T ) = 1 13.

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎦ 15.

⎡
⎢⎣
−4 0 9

1 0 −2

0 1 1

⎤
⎥⎦ 17.

⎡
⎢⎣

1 −1 1

0 1 0

1 0 −1

⎤
⎥⎦ 19. (b) {1, x}

25.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1
2 0 · · · 0 0

0 0 1
3 · · · 0 0

...
...

...
. . .

...
...

0 0 · · · 1
n

0

0 0 0 · · · 0 1
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercise Set 9.1 (page 499)
1. x1 = 2, x2 = 1 3. x1 = 3, x2 = −1 5. x1 = −1, x2 = 1, x3 = 0

7. (a) L−1 =
⎡
⎢⎣ 1 0 0

−2 1 0

1 1 1

⎤
⎥⎦; U−1 =

⎡
⎢⎢⎣

1
2

1
8 − 7

48

0 1
4

5
24

0 0 1
6

⎤
⎥⎥⎦ (b) A−1 =

⎡
⎢⎢⎣

5
48 − 1

48 − 7
48

− 7
24

11
24

5
24

1
6

1
6

1
6

⎤
⎥⎥⎦

9. (a) A = LU =
⎡
⎢⎣

2 0 0

−2 1 0

2 0 1

⎤
⎥⎦
⎡
⎢⎢⎣

1 1
2 − 1

2

0 0 1

0 0 1

⎤
⎥⎥⎦ (b) A = L1DU1 =

⎡
⎢⎣

1 0 0

−1 1 0

1 0 1

⎤
⎥⎦
⎡
⎢⎣

2 0 0

0 1 0

0 0 1

⎤
⎥⎦
⎡
⎢⎢⎣

1 1
2 − 1

2

0 0 1

0 0 1

⎤
⎥⎥⎦

(c) A = L2U2 =
⎡
⎢⎣

1 0 0

−1 1 0

1 0 1

⎤
⎥⎦
⎡
⎢⎣

2 1 −1

0 0 1

0 0 1

⎤
⎥⎦
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11. x1 = 21
17 , x2= − 14

17 , x3 = 12
17 13. A = LDU =

[
1 0

2 1

][
2 0

0 −3

][
1 1

0 1

]

15. A = PLU =
⎡
⎢⎣

1 0 0

0 0 1

0 1 0

⎤
⎥⎦
⎡
⎢⎣

3 0 0

0 2 0

3 0 1

⎤
⎥⎦
⎡
⎢⎢⎣

1 − 1
3 0

0 1 1
2

0 0 1

⎤
⎥⎥⎦ ; x1 = − 1

2 , x2 = 1
2 x3= 3

17. Approximately 2
3 n

3additions and multiplications are required

True/False 9.1

(a) False (b) False (c) True (d) True (e) True

Exercise Set 9.2 (page 508)

1. (a) λ3 = −8 is the dominant eigenvalue (b) no dominant eigenvalue

3. x1≈
[

0.98058

−0.19612

]
, λ(1)≈ 5.15385; x2≈

[
0.98837

−0.15206

]
, λ(2)≈ 5.16185;

x3≈
[

0.98679

−0.16201

]
, λ(3)≈ 5.16226; x4≈

[
0.98715

−0.15977

]
, λ(4)≈ 5.16228;

dominant eigenvalue: 2 +√
10 ≈ 5.16228 ;

corresponding unit eigenvector: 1√
20+6

√
10

(3
√

10,−1) ≈ (0.98709,−0.16018)

5. x1 =
[−1

1

]
, λ(1) = 6; x2 =

[−0.5

1

]
, λ(2)= 6.6; x3≈

[−0.53846

1

]
, λ(3)≈ 6.60550;

x4≈
[−0.53488

1

]
, λ(4)≈ 6.60555;

dominant eigenvalue: 3+√
13≈ 6.60555 ;

corresponding scaled eigenvector:
(

2−√
13

3 , 1
)
≈ (−0.53518, 1)

7. (a) x1 =
[

1

−0.5

]
; x2 =

[
1

−0.8

]
; x3≈

[
1

−0.929

]

(b) λ(1)= 2.8 ; λ(2)≈ 2.976 ; λ(3)≈ 2.997
(c) eigenvector: (1,−1); eigenvalue: 3
(d) 0.1%

9. 2.99993 ;

[
0.99180

1.00000

]

13. (a) Starting with x0 =
⎡
⎢⎣

1

0

0

⎤
⎥⎦ it takes 8 iterations. (b) Starting with x0 =

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦ it takes 8 iterations.

Exercise Set 9.3 (page 513)

1. (a) ≈ 0.067 second (b) ≈ 66.68 seconds (c) ≈ 66,668 seconds, or about 18.5 hours

3. (a) ≈ 9.52 seconds (b) ≈ 0.0014 second (c) ≈ 9.52 seconds (d) ≈ 28.57 seconds

5. (a) about 6.67 × 105 seconds for forward phase; about 10 seconds for backward phase
(b) 1334 gigaflops per second

7. n2 flops 9. 2n3 − n2 flops
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Exercise Set 9.4 (page 520)

1.
√

5, 0 3.
√

5 5. A =
[ 1√

2
− 1√

2

1√
2

1√
2

][√
2 0

0
√

2

][
1 0

0 1

]
7. A =

[ 2√
5

− 1√
5

1√
5

2√
5

][
8 0

0 2

][ 1√
5

2√
5

− 2√
5

1√
5

]

9. A =

⎡
⎢⎢⎢⎣

2
3

1√
2

√
2

6

1
3 0 − 2

√
2

3

− 2
3

1√
2

−
√

2
6

⎤
⎥⎥⎥⎦
⎡
⎢⎣3

√
2 0

0 0

0 0

⎤
⎥⎦
[− 1√

2
1√
2

1√
2

1√
2

]
11. A =

⎡
⎢⎢⎣

1√
3

0 2√
6

1√
3

1√
2

− 1√
6

− 1√
3

1√
2

1√
6

⎤
⎥⎥⎦
⎡
⎢⎣
√

3 0

0
√

2

0 0

⎤
⎥⎦
[

1 0

0 1

]

19. (b) A =
[√

2 0

0
√

2

][ 1√
2

− 1√
2

1√
2

1√
2

]

True/False 9.4

(a) False (b) True (c) False (d) False (e) True (f) False (g) True

Exercise Set 9.5 (page 524)

1. A =

⎡
⎢⎢⎣

2
3

1
3

− 2
3

⎤
⎥⎥⎦[3

√
2
] [

− 1√
2

1√
2

]
3. A =

⎡
⎢⎢⎣

1√
3

0

1√
3

1√
2

− 1√
3

1√
2

⎤
⎥⎥⎦
[√

3 0

0
√

2

][
1 0

0 1

]
5. A = 3

√
2

⎡
⎢⎢⎣

2
3

1
3

− 2
3

⎤
⎥⎥⎦[− 1√

2
1√
2

]

7. A = √
3

⎡
⎢⎢⎣

1√
3

1√
3

− 1√
3

⎤
⎥⎥⎦ [1 0] + √

2

⎡
⎢⎢⎣

0

1√
2

1√
2

⎤
⎥⎥⎦ [0 1] 9. 70,100 numbers must be stored; A has 100,000 entries

True/False 9.5

(a) True (b) True (c) False

Chapter 9 Supplementary Exercises (page 524)

1. A =
[

2 0

−2 1

][−3 1

0 2

]
3. A =

⎡
⎢⎣

2 0 0

1 2 0

1 1 2

⎤
⎥⎦
⎡
⎢⎣

1 2 3

0 1 2

0 0 1

⎤
⎥⎦

5. (a) dominant eigenvalue: 3, corresponding positive unit eigenvector:

[ 1√
2

1√
2

]

(b) x5 ≈
[

0.7100

0.7042

]
; v ≈

[
0.7071

0.7071

]

(c) x5 ≈
[

1

0.9918

]

7. The Rayleigh quotients will slowly converge to the dominant eigenvalue λ4= −8.1.

9. A =

⎡
⎢⎢⎣
− 1√

2
0 1√

2

0 1 0

− 1√
2

0 − 1√
2

⎤
⎥⎥⎦
⎡
⎢⎣

2 0

0 0

0 0

⎤
⎥⎦
[− 1√

2
− 1√

2

− 1√
2

1√
2

]
11. A =

⎡
⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2 − 1

2

1
2 − 1

2

1
2

1
2

⎤
⎥⎥⎥⎥⎥⎦
[

24 0

0 12

][ 2
3 − 1

3
2
3

2
3

2
3 − 1

3

]
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Exercise Set 10.1 (page 532)
1. (a) y = 3x − 4 (b) y = −2x + 1

2. (a) x2 + y2 − 4x − 6y + 4 = 0 or (x − 2)2 + (y − 3)2 = 9 (b) x2 + y2 + 2x − 4y − 20 = 0 or (x + 1)2 + (y − 2)2 = 25

3. x2 + 2xy + y2 − 2x + y = 0 (a parabola) 4. (a) x + 2y + z = 0 (b) −x + y − 2z + 1 = 0

5. (a)

⎡
⎢⎢⎣

x y z 0
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

⎤
⎥⎥⎦ = 0 (b) x + 2y + z = 0; −x + y − 2z = 0

6. (a) x2 + y2 + z2 − 2x − 4y − 2z = −2 or (x − 1)2 + (y − 2)2 + (z − 1)2 = 4
(b) x2 + y2 + z2 − 2x − 2y = 3 or (x − 1)2 + (y − 1)2 + z2 = 5

10.

∣∣∣∣∣∣∣∣∣
y x2 x 1

y1 x2
1 x1 1

y2 x2
2 x2 1

y3 x2
3 x3 1

∣∣∣∣∣∣∣∣∣
= 0 11. The equation of the line through the three collinear points 12. 0 = 0

13. The equation of the plane through the four coplanar points

Exercise Set 10.2 (page 539)
1. 700 2. (a) 5 (b) 4

4. (a) Ox, 34
21 units; sheep, 20

21 unit
(b) First kind, 9

25 measure; second kind, 7
25 measure; third kind, 4

25 measure

5. (a) x1 = (a2 + a3 + · · · + an) − a1

n − 2
, xi = ai − x1, i = 2, 3, . . . , n

(b) Exercise 7(b); gold, 30 1
2 minae; brass, 9 1

2 minae; tin, 14 1
2 minae; iron, 5 1

2 minae

6. (a) 5x + y + z − K = 0
x + 7y + z − K = 0
x + y + 8z − K = 0
x = 21t

131 , y = 14t

131 , z = 12t

131 , K = t where t is an arbitrary number

(b) Take t = 131, so that x = 21, y = 14, z = 12, K = 131.
(c) Take t = 262, so that x = 42, y = 28, z = 24, K = 262.

7. (a) Legitimate son, 577 7
9 staters; illegitimate son, 422 2

9 staters
(b) Gold, 30 1

2 minae; brass, 9 1
2 minae; tin, 14 1

2 minae; iron, 5 1
2 minae

(c) First person, 45; second person, 37 1
2 ; third person, 22 1

2

Exercise Set 10.3 (page 549)
2. (a) S(x) = −.12643(x − .4)3 − .20211(x − .4)2 + .92158(x − .4) + .38942

(b) S(.5) = .47943; error = 0%

3. (a) The cubic runout spline (b) S(x) = 3x3 − 2x2 + 5x + 1

4. S(x) =
⎧⎨
⎩

−.00000042(x + 10)3 + .000214(x + 10) + .99815, −10 ≤ x ≤ 0
.00000024(x)3 − .0000126(x)2 + .000088(x) + .99987, 0 ≤ x ≤ 10

−.00000004(x − 10)3 − .0000054(x − 10)2 − .000092(x − 10) + .99973, 10 ≤ x ≤ 20
.00000022(x − 20)3 − .0000066(x − 20)2 − .000212(x − 20) + .99823, 20 ≤ x ≤ 30

Maximum at (x, S(x)) = (3.93, 1.00004)

5. S(x) =
⎧⎨
⎩

.00000009(x + 10)3 − .0000121(x + 10)2 + .000282(x + 10) + .99815, −10 ≤ x ≤ 0

.00000009(x)3 − .0000093(x)2 + .000070(x) + .99987, 0 ≤ x ≤ 10

.00000004(x − 10)3 − .0000066(x − 10)2 − .000087(x − 10) + .99973, 10 ≤ x ≤ 20

.00000004(x − 20)3 − .0000053(x − 20)2 − .000207(x − 20) + .99823, 20 ≤ x ≤ 30

Maximum at (x, S(x)) = (4.00, 1.00001)
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6. (a) S(x) =
{−4x3 + 3x 0 ≤ x ≤ 0.5

4x3 − 12x2 + 9x − 1 0.5 ≤ x ≤ 1

(b) S(x) =
{

2 − 2x 0.5 ≤ x ≤ 1
2 − 2x 1 ≤ x ≤ 1.5

(c) The three data points are collinear.

7. (b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 · · · 0 0 0 1

1 4 1 0 · · · 0 0 0 0

0 1 4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · 0 1 4 1

1 0 0 0 · · · 0 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

...

Mn−2

Mn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yn−1 − 2y1 + y2

y1 − 2y2 + y3

y2 − 2y3 + y4

...

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + y1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8. (b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0 0 1

1 4 1 0 · · · 0 0 0 0

0 1 4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 . . . 0 0 4 1

0 0 0 0 . . . 0 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

M3

...

Mn−1

Mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 6

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− hy ′
1 − y1 + y2

y1 − 2y2 + y3

y2 − 2y3 + y4

...

yn−2 − 2yn−1 + yn

yn−1 − yn + hy ′
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Exercise Set 10.4 (page 559)

1. (a) x(1) =
[
.4

.6

]
, x(2) =

[
.46

.54

]
, x(3) =

[
.454

.546

]
, x(4) =

[
.4546

.5454

]
, x(5) =

[
.45454

.54546

]

(b) P is regular since all entries of P are positive; q =
[ 5

11

6
11

]

2. (a) x(1) =
⎡
⎢⎣.7

.2

.1

⎤
⎥⎦, x(2) =

⎡
⎢⎣.23

.52

.25

⎤
⎥⎦, x(3) =

⎡
⎢⎣.273

.396

.331

⎤
⎥⎦ (b) P is regular, since all entries of P are positive: q =

⎡
⎢⎢⎣

22
72

29
72

21
72

⎤
⎥⎥⎦

3. (a)

[ 9
17

8
17

]
(b)

[ 26
45

19
45

]
(c)

⎡
⎢⎢⎣

3
19

4
19

12
19

⎤
⎥⎥⎦

4. (a) P n =
⎡
⎢⎣

(
1
2

)n

0

1 −
(

1
2

)n

1

⎤
⎥⎦, n = 1, 2, . . . . Thus, no integer power of P has all positive entries.

(b) P n →
[

0 0

1 1

]
as n increases, so P nx(0) →

[
0

1

]
for any x(0) as n increases.

(c) The entries of the limiting vector

[
0

1

]
are not all positive.

6. P 2 =

⎡
⎢⎢⎣

1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2

⎤
⎥⎥⎦ has all positive entries; q =

⎡
⎢⎢⎣

1
3

1
3

1
3

⎤
⎥⎥⎦ 7. 10

13

8. 54 1
6 % in region 1, 16 2

3 % in region 2, and 29 1
6 % in region 3
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Exercise Set 10.5 (page 568)

1. (a)

⎡
⎢⎢⎢⎣

0 0 0 1

1 0 1 1

1 1 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎢⎢⎣

0 1 1 0 0

0 0 0 0 1

1 0 0 1 0

0 0 1 0 0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ (c)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0

1 0 0 0 0 0

0 1 0 1 1 1

0 0 0 0 0 1

0 0 0 0 0 1

0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

2. (a)

P3

P1

P4

P2 (b)

P2

P5

P3

P4 P1 (c)

P5 P4

P1

P6

P2 P3

3. (a)

P3P2

P4

P1 (b) 1-step: P1 → P2

2-step: P1 → P4 → P2

P1 → P3 → P2

3-step: P1 → P2 → P1 → P2

P1 → P3 → P4 → P2

P1 → P4 → P3 → P2

(c) 1-step: P1 → P4

2-step: P1 → P3 → P4

3-step: P1 → P2 → P1 → P4

P1 → P4 → P3 → P4

4. (a)

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 2 1
0 0 0 1 2

⎤
⎥⎥⎥⎥⎦

(c) The ij th entry is the number of family members who influence both the ith and j th family members.

5. (a) {P1, P2, P3} (b) {P3, P4, P5} (c) {P2, P4, P6, P8} and {P4, P5, P6} 6. (a) None (b) {P3, P4, P6}

7.

⎡
⎢⎢⎢⎣

0 0 1 1

1 0 0 0

0 1 0 1

0 1 0 0

⎤
⎥⎥⎥⎦

Power of P1 = 5

Power of P2 = 3

Power of P3 = 4

Power of P4 = 2

8. First, A; second, B and E (tie); fourth, C; fifth, D

Exercise Set 10.6 (page 578)

1. (a) −5/8 (b) [0 1 0] (c) [1 0 0 0]T 2. Let A =
[

1 1

1 1

]
, for example.

3. (a) p∗ = [0 1], q∗ =
[

0

1

]
, v = 3 (b) p∗ = [0 1 0], q∗ =

[
1

0

]
, v = 2

(c) p∗ = [0 0 1], q∗ =
⎡
⎢⎣0

1

0

⎤
⎥⎦, v = 2 (d) p∗ = [0 1 0 0], q∗ =

⎡
⎢⎣1

0

0

⎤
⎥⎦, v = −2

4. (a) p∗ = [
5
8

3
8

]
, q∗ =

[ 1
8

7
8

]
, v = 27

8 (b) p∗ = [
2
3

1
3

]
, q∗ =

[ 1
6

5
6

]
, v = 70

3
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(c) p∗ = [1 0], q∗ =
[

1

0

]
, v = 3 (d) p∗ = [

3
5

2
5

]
, q∗ =

[ 3
5

2
5

]
, v = 19

5

(e) p∗ = [
3
13

10
13

]
, q∗ =

[ 1
13

12
13

]
, v = − 29

13

5. p∗ = [
13
20

7
20

]
, q∗ =

[ 11
20

9
20

]
, v = − 3

20

Exercise Set 10.7 (page 586)

1. (a)

[
2

3

]
(b)

⎡
⎢⎣6

5

6

⎤
⎥⎦ (c)

⎡
⎢⎣78

54

79

⎤
⎥⎦

2. (a) Use Corollary 10.8.4; all row sums are less than one.
(b) Use Corollary 10.8.5; all column sums are less than one.

(c) Use Theorem 10.8.3, with x =
⎡
⎢⎣2

1

1

⎤
⎥⎦ > Cx =

⎡
⎢⎣1.9

.9

.9

⎤
⎥⎦.

3. E2 has all positive entries. 4. Price of tomatoes, $120.00; price of corn, $100.00; price of lettuce, $106.67

5. $1256 for the CE, $1448 for the EE, $1556 for the ME 6. (b) 542
503

Exercise Set 10.8 (page 594)

1. The second class; $15,000 2. $223 3. 1 : 1.90 : 3.02 : 4.24 : 5.00

5. s/(g−1
1 + g−1

2 + · · · + g−1
k−1) 6. 1 : 2 : 3 : · · · : n − 1

Exercise Set 10.9 (page 601)

1. (a)

⎡
⎢⎢⎣

0 1 1 0

0 0 1 1

0 0 0 0

⎤
⎥⎥⎦ (b)

⎡
⎢⎢⎣

0 3
2

3
2 0

0 0 1
2

1
2

0 0 0 0

⎤
⎥⎥⎦

–2 –1 0

0

1

–1

1 2

(c)

⎡
⎢⎣−2 −1 −1 −2

−1 −1 0 0

3 3 3 3

⎤
⎥⎦

–2 –1 0

0

1

–1

1 2

(d)

⎡
⎢⎣0 .866 1.366 .500

0 −.500 .366 .866

0 0 0 0

⎤
⎥⎦

–2 –1 0

0

1

–1

1 2
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2. (b) (0, 0, 0), (1, 0, 0),
(
1 1

2 , 1, 0
)
, and

(
1
2 , 1, 0

) –2 –1 0

0

1

–1

1 2

(c) (0, 0, 0), (1, .6, 0), (1, 1.6, 0), (0, 1, 0)

3. (a)

⎡
⎢⎣1 0 0

0 −1 0

0 0 1

⎤
⎥⎦ (b)

⎡
⎢⎣−1 0 0

0 1 0

0 0 1

⎤
⎥⎦

–2 –1 0

0

1

–1

1 2

(c)

⎡
⎢⎣1 0 0

0 1 0

0 0 −1

⎤
⎥⎦

–2 –1 0

0

1

–1

1 2

4. (a) M1 =

⎡
⎢⎢⎣

1
2 0 0

0 2 0

0 0 1
3

⎤
⎥⎥⎦, M2 =

⎡
⎢⎢⎣

1
2

1
2 · · · 1

2

0 0 · · · 0

0 0 · · · 0

⎤
⎥⎥⎦, M3 =

⎡
⎢⎢⎣

1 0 0

0 cos 20◦ − sin 20◦

0 sin 20◦ cos 20◦

⎤
⎥⎥⎦,

M4 =
⎡
⎢⎣ cos(−45◦) 0 sin(−45◦)

0 1 0

− sin(−45◦) 0 cos(−45◦)

⎤
⎥⎦, M5 =

⎡
⎢⎣0 −1 0

1 0 0

0 0 1

⎤
⎥⎦

(b) P ′ = M5M4M3(M1P + M2)

5. (a) M1 =
⎡
⎢⎣.3 0 0

0 .5 0

0 0 1

⎤
⎥⎦, M2 =

⎡
⎢⎣1 0 0

0 cos 45◦ − sin 45◦

0 sin 45◦ cos 45◦

⎤
⎥⎦, M3 =

⎡
⎢⎣1 1 · · · 1

0 0 · · · 0

0 0 · · · 0

⎤
⎥⎦,

M4 =
⎡
⎢⎣ cos 35◦ 0 sin 35◦

0 1 0

− sin 35◦ 0 cos 35◦

⎤
⎥⎦, M5 =

⎡
⎢⎣cos(−45◦) − sin(−45◦) 0

sin(−45◦) cos(−45◦) 0

0 0 1

⎤
⎥⎦,

M6 =
⎡
⎢⎣0 0 · · · 0

0 0 · · · 0

1 1 · · · 1

⎤
⎥⎦, M7 =

⎡
⎢⎣2 0 0

0 1 0

0 0 1

⎤
⎥⎦

(b) P ′ = M7(M5M4(M2M1P + M3) + M6)

6. R1 =
⎡
⎢⎣ cos β 0 sin β

0 1 0

− sin β 0 cos β

⎤
⎥⎦, R2 =

⎡
⎢⎣cos α − sin α 0

sin α cos α 0

0 0 1

⎤
⎥⎦,

R3 =
⎡
⎢⎣ cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎤
⎥⎦, R4 =

⎡
⎢⎣ cos α sin α 0

− sin α cos α 0

0 0 1

⎤
⎥⎦, R5 =

⎡
⎢⎣cos β 0 − sin β

0 1 0

sin β 0 cos β

⎤
⎥⎦

7. (a) M =

⎡
⎢⎢⎢⎣

1 0 0 x0

0 1 0 y0

0 0 1 z0

0 0 0 1

⎤
⎥⎥⎥⎦ (b)

⎡
⎢⎢⎢⎣

1 0 0 −5

0 1 0 9

0 0 1 −3

0 0 0 1

⎤
⎥⎥⎥⎦
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Exercise Set 10.10 (page 611)

1. (a)

⎡
⎢⎢⎢⎢⎢⎣

t1

t2

t3

t4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1
4

1
4 0

1
4 0 0 1

4

1
4 0 0 1

4

0 1
4

1
4 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

t1

t2

t3

t4

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0

1
2

0

1
2

⎤
⎥⎥⎥⎥⎥⎦ (b) t =

⎡
⎢⎢⎢⎢⎢⎣

1
4

3
4

1
4

3
4

⎤
⎥⎥⎥⎥⎥⎦

(c) t(1) =

⎡
⎢⎢⎢⎢⎢⎣

0

1
2

0

1
2

⎤
⎥⎥⎥⎥⎥⎦, t(2) =

⎡
⎢⎢⎢⎢⎢⎣

1
8

5
8

1
8

5
8

⎤
⎥⎥⎥⎥⎥⎦, t(3) =

⎡
⎢⎢⎢⎢⎢⎣

3
16

11
16

3
16

11
16

⎤
⎥⎥⎥⎥⎥⎦, t(4) =

⎡
⎢⎢⎢⎢⎢⎣

7
32

23
32

7
32

23
32

⎤
⎥⎥⎥⎥⎥⎦, t(5) =

⎡
⎢⎢⎢⎢⎢⎣

15
64

47
64

15
64

47
64

⎤
⎥⎥⎥⎥⎥⎦, t(5) − t =

⎡
⎢⎢⎢⎢⎢⎣

− 1
64

− 1
64

− 1
64

− 1
64

⎤
⎥⎥⎥⎥⎥⎦

(d) for t1 and t3, −12.9%;
for t2 and t4, 5.2%

2. 1
2 3. t(1) = [

3
4

5
4

1
2

5
4 1 1

2
5
4 1 3

4

]T
t(2) = [

13
16

9
8

9
16

11
8

13
16

7
16

21
16 1 5

8

]T

Exercise Set 10.11 (page 622)
1. (c) x∗

3 = (
31
22 ,

27
22

)
2. (a) x(1)

3 = (1.40000, 1.20000)

x(2)
3 = (1.41000, 1.23000)

x(3)
3 = (1.40900, 1.22700)

x(4)
3 = (1.40910, 1.22730)

x(5)
3 = (1.40909, 1.22727)

x(6)
3 = (1.40909, 1.22727)

(b) Same as part (a) (c) x(1)
3 = (9.55000, 25.65000)

x(2)
3 = (.59500,−1.21500)

x(3)
3 = (1.49050, 1.47150)

x(4)
3 = (1.40095, 1.20285)

x(5)
3 = (1.40991, 1.22972)

x(6)
3 = (1.40901, 1.22703)

4. x∗
1 = (1, 1), x∗

2 = (2, 0), x∗
3 = (1, 1)

7. x7 + x8 + x9 = 13.00

x4 + x5 + x6 = 15.00

x1 + x2 + x3 = 8.00

.82843(x6 + x8) + .58579x9 = 14.79

1.41421(x3 + x5 + x7) = 14.31

.82843(x2 + x4) + .58579x1 = 3.81

x3 + x6 + x9 = 18.00

x2 + x5 + x8 = 12.00

x1 + x4 + x7 = 6.00

.82843(x2 + x6) + .58579x3 = 10.51

1.41421(x1 + x5 + x9) = 16.13

.82843(x4 + x8) + .58579x7 = 7.04

8. x7 + x8 + x9 = 13.00

x4 + x5 + x6 = 15.00

x1 + x2 + x3 = 8.00

.04289(x3 + x5 + x7) + .75000(x6 + x8) + .61396x9 = 14.79

.91421(x3 + x5 + x7) + .25000(x2 + x4 + x6 + x8) = 14.31

.04289(x3 + x5 + x7) + .75000(x2 + x4) + .61396x1 = 3.81

x3 + x6 + x9 = 18.00

x2 + x5 + x8 = 12.00

x1 + x4 + x7 = 6.00

.04289(x1 + x5 + x9) + .75000(x2 + x6) + .61396x3 = 10.51

.91421(x1 + x5 + x9) + .25000(x2 + x4 + x6 + x8) = 16.13

.04289(x1 + x5 + x9) + .75000(x4 + x8) + .61396x7 = 7.04

Exercise Set 10.12 (page 637)

1. Ti

([
x

y

])
= 12

25

[
1 0

0 1

] [
x

y

]
+
[

ei

fi

]
, i = 1, 2, 3, 4, where the four values of

[
ei

fi

]
are

[
0

0

]
,

[
13
25

0

]
,

[
0
13
25

]
, and

[
13
25
13
25

]
; dH (S) = ln(4)/ ln

(
25
12

) = 1.888 . . .
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2. s ≈ .47; dH (S) ≈ ln(4)/ ln(1/.47) = 1.8. . . . Rotation angles: 0◦ (upper left);
−90◦ (upper right); 180◦ (lower left); 180◦ (lower right)

3. (0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (0, 0, 1), (0, 0, 2), (1, 2, 0), (2, 1, 3), (2, 0, 1), (2, 0, 2), (2, 2, 0), (0, 3, 3)

4. (a) (i) s = 1
3 ; (ii) all rotation angles are 0◦; (iii) dH (S) = ln(7)/ ln(3) = 1.771. . . .

This set is a fractal.

(b) (i) s = 1
2 ; (ii) all rotation angles are 180◦; (iii) dH (S) = ln(3)/ ln(2) = 1.584. . . .

This set is a fractal.

(c) (i) s = 1
2 ; (ii) rotation angles: −90◦ (top); 180◦ (lower left); 180◦ (lower right);

(iii) dH (S) = ln(3)/ ln(2) = 1.584. . . . This set is a fractal.

(d) (i) s = 1
2 ; (ii) rotation angles: 90◦ (upper left); 180◦ (upper right); 180◦ (lower right);

(iii) dH (S) = ln(3)/ ln(2) = 1.584. . . . This set is a fractal.

5. s = .8509 . . . , θ = −2.69◦ . . . 6. (0.766, 0.996) rounded to three decimal places 7. dH (S) = ln(16)/ ln(4) = 2

8. ln(4)/ ln
(

4
3

) = 4.818 . . . 9. dH (S) = ln(8)/ ln(2) = 3; the cube is not a fractal.

10. k = 20; s = 1
3 ; dH (S) = ln(20)/ ln(3) = 2.726 . . .; the set is a fractal.

11.

Initial set

First iterate

Second iterate

Third iterate
Fourth iterate

dH (S) = ln(2)/ ln(3) = 0.6309 . . .

12. Area of S0 = 1; area of S1 = 8
9 = 0.888 . . . ; area of S2 = (

8
9

)2 = 0.790 . . . ;

area of S3 = (
8
9

)3 = 0.702 . . . ; area of S4 = (
8
9

)4 = 0.624 . . .

Exercise Set 10.13 (page 650)

1. �(250) = 750, �(25) = 50, �(125) = 250, �(30) = 60, �(10) = 30, �(50) = 150,
�(3750) = 7500, �(6) = 12, �(5) = 10

2. One 1-cycle: {(0, 0)}; one 3-cycle:
{(

3
6 , 0

)
,
(

3
6 ,

3
6

)
,
(
0, 3

6

)}
;

two 4-cycles:
{(

4
6 , 0

)
,
(

4
6 ,

4
6

)
,
(

2
6 , 0

)
,
(

2
6 ,

2
6

)}
and

{(
0, 2

6

)
,
(

2
6 ,

4
6

)
,
(
0, 4

6

)
,
(

4
6 ,

2
6

)}
;

two 12-cycles:
{(

0, 1
6

)
,
(

1
6 ,

2
6

)
,
(

3
6 ,

5
6

)
,
(

2
6 ,

1
6

)
,
(

3
6 ,

4
6

)
,
(

1
6 ,

5
6

)
,
(
0, 5

6

)
,
(

5
6 ,

4
6

)
,
(

3
6 ,

1
6

)
,(

4
6 ,

5
6

)
,
(

3
6 ,

2
6

)
,
(

5
6 ,

1
6

)}
and

{(
1
6 , 0

)
,
(

1
6 ,

1
6

)
,
(

2
6 ,

3
6

)
,
(

5
6 ,

2
6

)
,
(

1
6 ,

3
6

)
,
(

4
6 ,

1
6

)
,
(

5
6 , 0

)
,(

5
6 ,

5
6

)
,
(

4
6 ,

3
6

)
,
(

1
6 ,

4
6

)
,
(

5
6 ,

3
6

)
,
(

2
6 ,

5
6

)}
. �(6) = 12

3. (a) 3, 7, 10, 2, 12, 14, 11, 10, 6, 1, 7, 8, 0, 8, 8, 1, 9, 10, 4, 14, 3, 2, 5, 7, 12, 4, 1, 5, 6, 11,
2, 13, 0, 13, 13, 11, 9, 5, 14, 4, 3, 7, . . .

(c) (5, 5), (10, 15), (4, 19), (2, 0), (2, 2), (4, 6), (10, 16), (5, 0), (5, 5), . . .

4. (c) The first five iterates of
(

1
101 , 0

)
are

(
1

101 ,
1

101

)
,
(

2
101 ,

3
101

)
,
(

5
101 ,

8
101

)
,
(

13
101 ,

21
101

)
, and

(
34
101 ,

55
101

)
.
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6. (b) The matrices of Anosov automorphisms are

[
3 2

1 1

]
and

[
5 7

2 3

]
.

(c) The geometric effect of this transformation is to rotate each point in the interior of S clockwise by 90◦

about the center point

[ 1
2

1
2

]
of S.

9.

I

II
III

IV

(1, 1)(0, 1)

(1, 0)(0, 0)

(0, 1/2) (1, 1/2)

[
x

y

]
→

[
1 1

1 2

] [
x

y

]
+
[
a

b

] I´

II´

III´

IV´

(1, 1)(0, 1) (1/2, 1)

(1/2, 0) (1, 0)(0, 0)

In region I:

[
a

b

]
=
[

0

0

]
; in region II:

[
a

b

]
=
[

0

−1

]
;

in region III:

[
a

b

]
=
[
−1

−1

]
; in region IV:

[
a

b

]
=
[
−1

−2

]

12.
(

1
5 ,

3
5

)
and

(
4
5 ,

2
5

)
form one 2-cycle, and

(
2
5 ,

1
5

)
and

(
3
5 ,

4
5

)
form another 2-cycle.

14. Begin with a 101 × 101 array of white pixels and add the letter ‘A’ in black pixels to it. Apply the mapping to this image, which will
scatter the black pixels throughout the image. Then superimpose the letter ‘B’ in black pixels onto this image. Apply the mapping
again and then superimpose the letter ‘C’ in black pixels onto the resulting image. Repeat this procedure with the letters ‘D’ and
‘E’. The next application of the mapping will return you to the letter ‘A’ with the pixels for the letters ‘B’ through ‘E’ scattered in
the background. Four subsequent applications of T to this image will produce the remaining images.

Exercise Set 10.14 (page 662)

1. (a) GIYUOKEVBH (b) SFANEFZWJH

2. (a) A−1 =
[

12 7

23 15

]
(b) Not invertible (c) A−1 =

[
1 19

23 24

]
(d) Not invertible (e) Not invertible

(f) A−1 =
[

15 12

21 5

]

3. WE LOVEMATH 4. Deciphering matrix =
[

7 15

6 5

]
; enciphering matrix =

[
7 5

2 15

]

5. THEY SPLIT THE ATOM 6. I HAVE COME TO BURY CAESAR 7. (a) 010110001 (b)

⎡
⎣0 1 1

1 1 1
1 0 1

⎤
⎦

8. A is invertible modulo 29 if and only if det(A) �= 0 (mod 29).

Exercise Set 10.15 (page 672)

2.

an = 1
4 + (

1
2

)n+1
(a0 − c0)

bn = 1
2

cn = 1
4 − (

1
2

)n+1
(a0 − c0)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ n = 1, 2, . . .

an → 1
4

bn = 1
2

cn → 1
4

⎫⎪⎪⎬
⎪⎪⎭ as n → �
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3.

a2n+1 = 2

3
+ 1

6(4)n
(2a0 − b0 − 4c0)

b2n+1 = 1

3
− 1

6(4)n
(2a0 − b0 − 4c0)

c2n+1 = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n = 0, 1, 2, . . .

a2n = 5

12
+ 1

6(4)n
(2a0 − b0 − 4c0)

b2n = 1

2

c2n = 1

12
− 1

6(4)n
(2a0 − b0 − 4c0)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

n = 1, 2, . . .

4. Eigenvalues: λ1 = 1, λ2 = 1
2 ; eigenvectors: e1 =

[
1

0

]
, e2 =

[
1

−1

]

5. 12 generations; .006%

6. x(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
+ 1

3
· 1

4n+2
[(−3 −√

5 )(1 +√
5 )n+1 + (−3 +√

5 )(1 −√
5 )n+1]

1

3
· 1

4n+1
[(1 +√

5 )n+1 + (1 −√
5 )n+1]

1

3
· 1

4n+1
[(1 +√

5 )n + (1 −√
5 )n]

1

3
· 1

4n+1
[(1 +√

5 )n + (1 −√
5 )n]

1

3
· 1

4n+1
[(1 +√

5 )n+1 + (1 −√
5 )n+1]

1

2
+ 1

3
· 1

4n+2
[(−3 −√

5 )(1 +√
5 )n+1 + (−3 +√

5 )(1 −√
5 )n+1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; x(n) →

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

0

0

0

0

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

as n → �

8.

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎤
⎥⎥⎥⎦

Exercise Set 10.16 (page 681)

1. (a) λ1 = 3
2 , x1 =

[
1

1
3

]
(b) x(1) =

[
100

50

]
, x(2) =

[
175

50

]
, x(3) ≈

[
250

88

]
, x(4) ≈

[
382

125

]
, x(5) ≈

[
570

191

]

(c) x(6) ≈ Lx(5) ≈
[

857

285

]
, x(6) ≈ λ1x(5) ≈

[
855

287

]

7. 2.375 8. 1.49611

Exercise Set 10.17 (page 690)

1. (a) Yield = 33 1
3 % of population; x1 =

⎡
⎢⎢⎣

1
1
3

1
18

⎤
⎥⎥⎦

(b) Yield = 45.8% of population; x1 =

⎡
⎢⎢⎣

1
1
2

1
8

⎤
⎥⎥⎦; harvest 57.9% of youngest age class
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2. x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000

.845

.824

.795

.755

.699

.626

.532

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Lx1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.090

.845

.824

.795

.755

.699

.626

.532

.418

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
1.090 + .418

7.584
= .199

4. hI = (R − 1)/(aI b1b2 · · · bI−1 + · · · + anb1b2 · · · bn−1)

5. hI = a1 + a2b1 + · · · + (aJ−1b1b2 · · · bJ−2) − 1

aI b1b2 · · · bI−1 + · · · + aJ−1b1b2 · · · bJ−2

Exercise Set 10.18 (page 696)

1.
π 2

3
+ 4 cos t + cos 2t + 4

9
cos 3t

2.
T 2

3
+ T 2

π 2

(
cos

2π

T
t + 1

22
cos

4π

T
t + 1

32
cos

6π

T
t + 1

42
cos

8π

T
t

)
− T 2

π

(
sin

2π

T
t + 1

2
sin

4π

T
t + 1

3
sin

6π

T
t + 1

4
sin

8π

T
t

)

3.
1

π
+ 1

2
sin t − 2

3π
cos 2t − 2

15π
cos 4t 4.

4

π

(
1

2
− 1

1 · 3
cos t − 1

3 · 5
cos 2t − 1

5 · 7
cos 3t − · · · − 1

(2n − 1)(2n + 1)
cos nt

)

5.
T

4
− 8T

π 2

(
1

22
cos

2πt

T
+ 1

62
cos

6πt

T
+ 1

102
cos

10πt

T
+ · · · + 1

(2n)2
cos

2nπt

T

)

Exercise Set 10.19 (page 704)

1. (a) Yes; v = 1
5 v1 + 2

5 v2 + 2
5 v3 (b) No; v = 2

5 v1 + 4
5 v2 − 1

5 v3

(c) Yes; v = 2
5 v1 + 3

5 v2 + 0v3 (d) Yes; v = 4
15 v1 + 6

15 v2 + 5
15 v3

2. m = number of triangles = 7, n = number of vertex points = 7,
k = number of boundary vertex points = 5; Equation (7) is 7 = 2(7) − 2 − 5.

3. w = Mv + b = M(c1v1 + c2v2 + c3v3) + (c1 + c2 + c3)b
= c1(Mv1 + b) + c2(Mv2 + b) + c3(Mv3 + b) = c1w1 + c2w2 + c3w3

4. (a)

v6

v4 v5

v7

v3

v1 v2 (b)

v6

v4

v5

v7

v3

v1 v2
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5. (a) M =
[

1 2

0 1

]
, b =

[
1

2

]
(b) M =

[
3 −1

1 1

]
, b =

[
0

1

]

(c) M =
[

1 0

0 1

]
, b =

[
2

−3

]
(d) M =

[
1
2 1

2 0

]
, b =

[
1
2

−1

]

7. (a) Two of the coefficients are zero. (b) At least one of the coefficients is zero.
(c) None of the coefficients are zero.

8. (a) 1
3 v1 + 1

3 v2 + 1
3 v3 (b)

[
8/3
2

]

Exercise Set 10.20 (page 712)

1. (a) [1/5 2/5 2/5]T (b) [1/2 0 1/2]T

3. The matrix M in Equation (8) is

M = δB + (1 − δ)

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ = δ

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦+ (1 − δ)

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ = 1

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

which has the normalized eigenvector [1/n 1/n · · · 1/n]T . Thus all pages have page rank 1/n.

5.

x(k) = Mx(k−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δB + (1 − δ)

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

x(k−1) = δBx(k−1) + (1 − δ)

n

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1 · · · 1

...
...

. . .
...

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ x(k−1)

= δBx(k−1) + (1 − δ)

n

⎡
⎢⎢⎢⎢⎢⎣

1

1

...

1

⎤
⎥⎥⎥⎥⎥⎦

where the last equality is true because for each row in the last matrix product we have [1 1 · · · 1]x(k−1) = 1 since the sum of the
entries of the state vector x(k−1) is 1.

7. (a) Eigenvalues are 1 and −1. Eigenvector for eigenvalue 1 is [1 1]T . The iterates alternate between [1 0]T and [0 1]T and

so do not converge. The total page count is

[
1

0

]
,

[
1

1

]
,

[
2

1

]
,

[
2

2

]
,

[
3

2

]
,

[
3

3

]
, . . . ,

[
k

k − 1

]
,

[
k

k

]
,

[
k + 1

k

]
, . . . and the

fractional page count is

[
1

0

]
,

1

2

[
1

1

]
,

1

3

[
2

1

]
,

1

4

[
2

2

]
,

1

5

[
3

2

]
,

1

6

[
3

3

]
, . . . ,

1

2k − 1

[
k

k − 1

]
,

1

2k

[
k

k

]
,

1

2k + 1

[
k + 1

k

]
, . . .

which converges to [1/2 1/2]T .

(b) Eigenvalues are 1 and −δ. Eigenvector for eigenvalue 1 is [1 1]T for any δ. Thus both pages have the same rank (as is obvious by

symmetry). M = 1

2

[
1 − δ 1 + δ

1 + δ 1 − δ

]
, Mk = 1

2

[
1 + (−δ)k 1 − (−δ)k

1 − (−δ)k 1 + (−δ)k

]
, and so Mk converges to

1

2

[
1 1

1 1

]
as k goes to infinity.

Therefore, for any initial vector we have that x(k) = Mx(k−1) = Mk−1x(1) → 1

2

[
1 1

1 1

][
x

(1)
1

x
(1)
2

]
= 1

2

[
x

(1)
1 + x

(1)
2

x
(1)
1 + x

(1)
2

]
= 1

2

[
1

1

]
.
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9.

1 2 3 4

Transition matrix =

⎡
⎢⎢⎢⎣

0 1/2 1/3 1/2

1 0 1/3 0

0 1/2 0 1/2

0 0 1/3 0

⎤
⎥⎥⎥⎦ ; eigenvector =

⎡
⎢⎢⎢⎣

4/13

5/13

3/13

1/13

⎤
⎥⎥⎥⎦

11.

1 2 3 4 5

Transition matrix =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1/2 0 · · · 0 0 0

1 0 1/2 · · · 0 0 0

0 1/2 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 0 1/2 0

0 0 0 · · · 1/2 0 1

0 0 0 · · · 0 1/2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; eigenvector = 1

2 (n − 1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

2

...

2

2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

13.

1 2 3 4

Transition matrix =

⎡
⎢⎢⎢⎣

0 1/2 0 1/2

1 0 1/2 0

0 1/2 0 1/2

0 0 1/2 0

⎤
⎥⎥⎥⎦ ; normalized eigenvector =

⎡
⎢⎢⎢⎣

2/8

3/8

2/8

1/8

⎤
⎥⎥⎥⎦





I1

I N D E X

A
Absolute value:

of complex number, 313, A7
of determinant, 178

Addition:
associative law for, 39, 134
by scalars, 184
of vectors in R2 and R3, 132, 134
of vectors in Rn, 138

Additivity property, of linear
transformation, 448

Adjacency matrix, 705–706
Adjoint, of a matrix, 122–124
Aeronautics, yaw, pitch, and roll, 263
Affine transformations, 633–635

contracting, 633–634
with warps, 696

Age-specific population growth, 671–679
female age distribution of animals, 674
female age distribution of humans,

678–679
Leslie matrix, 673, 675–679
limiting behavior, 674–679

Ahmes Papyrus, 532
Algebraic multiplicity, 309–310
Algebraic operations, using vector

components, 138–139
Algebraic properties of matrices, 39–49
Algebraic properties of vectors, dot

product, 147–148
Algebraic Reconstruction Techniques

(ARTs), 612, 615–618
Alleles, 342
Amps (unit), 86
Angle:

in Rn, 148–149, 155
between vectors, 146–149, 356–357

Animal population harvesting, 681–687
model for, 682–684
only in youngest age class, 685–687
optimal sustainable yield, 687
uniform, 684–685

Anosov automorphism, 648–649
Anticommutativity, 325
Antihomogeneity property, of complex

Euclidean inner product, 316
Antisymmetry property:

of complex Euclidean inner product,
316

of dot product, 316
Approximate integration, 93–94
Approximations, best, 379–380
Approximation problems, 394–396
Archimedes, 534–535

Area:
of parallelogram, 176
of triangle, 176–177

Argument, of complex number, 314, A8
Arithmetic average, 347
Arithmetic operations:

matrices, 27–35, 39–43
vectors in R2 and R3, 132–134
vectors in Rn, 137–139

Arnold, Vladimir I., 638
Arnold’s cat map, 638–640, 644–646
Artificial intelligence, 493
ARTs (Algebraic Reconstruction

Techniques), 612, 615–618
Associative law for addition, 39, 134
Associative law for matrix multiplication,

39, 40–41
Astronautics, yaw, pitch, and roll, 263
Augmented matrices, 6–7, 11, 12, 18, 25,

34
Autosomal inheritance, 661–665
Autosomal recessive diseases, 665–666
Axes:

rotation of, in 2-space, 404–406
rotation of, in 3-space, 406–407

Axis of rotation, 262

B
Babylonia, early applications in, 532–533
Back-substitution, 19–20
Backward phase, 15
Bakhshali Manuscript, 536
Balancing (of chemical equation), 89
Barnsley, Michael, 622, 632, 634
Basis, 221–223

change of, 229–234, 482–484
coordinate system for vector space,

214–216
for eigenvectors and eigenspaces,

295–298
finite basis, 214
by inspection, 224–225
linear combinations and, 245
number of vectors in, 222
ordered basis, 217
orthogonal basis, 365
for orthogonal complement, 360
orthonormal basis, 365–367
for row and column spaces, 241
by row reduction, 242–244
for row space of a matrix, 244–245
standard basis, 214–216, 218
transition matrix, 231–234
uniqueness of basis representation, 216

Basis vectors, 214, 450–451
Bateman, Harry, 517
Battery, 86
Beam density, computed tomography, 614
Begin-triangle, warps, 696
Beltrami, Eugenio, 518
Best approximation theorem, 379–380
Block triangular form, 118
Block upper triangular form, 103
Bôcher, Maxime, 7, 196
Books, ISBN number of, 153
Boundary data, temperature distribution,

601–602
Boundary mesh points, 603
Bounded sets, 622–623
Branches (network), 84
Brightness, graphical images, 136
Bunyakovsky, Viktor Yakovlevich, 149

C
Cn, 317–320
Calculus of variations, 174
Cancellation law, 42
Cantor set, 637
Carroll, Lewis, 108
Cat map (Arnold’s), 638–640, 644–646
CAT scanner, 612
Cattle Problem, 534–536
Cauchy, Augustin, 122, 149, 184
Cauchy-Schwarz inequality, 148–149,

355–356
Cayley, Arthur, 30, 35, 44
Central conic, 421–422
Central conic in standard position, 421
Central ellipsoid in standard position, 428
Central quadrics in standard position, 422
Change-of-basis problem, 230–231, 482
Change of variable, 419
Chaos, 637–648

Arnold’s cat map, 638–640, 644–646
defined, 646
dynamical systems, 647–648
nonperiodic points, 645–646
periodic points, 640–642
period vs. pixel width, 642–643
repeated mappings, 639–640
tiled planes, 643–644

Characteristic equation, 292, 306
Characteristic polynomial, 293, 306
Chemical equations, balancing with linear

systems, 88–91
Chemical formulas, 88
Chessboard moves, 561
China, early applications in, 533–534
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Chiu Chang Suan Shu, 533–534
Ciphers, 650–652. See also Cryptography
Ciphertext, 650
Ciphertext vector, 651
Circle, through three points, 527
Clamped splines, 548
Cliques, directed graphs, 562–564
Clockwise closed-loop convention, 86
Closed economies, 96
Closed Leontief model, 577–581
Closed sets, 622–623
Closure under addition, 184
Closure under scalar, 184
Coefficients:

of linear combination of matrices, 32
of linear combination of vectors, 139,

195
literal, 45

Coefficient matrices, 34, 306, 491
Cofactor, 106–107
Cofactor expansion:

of 2 × 2 matrices, 107–108
determinants by, 105–110
elementary row operations and,

116–117
Collinear vectors, 133–134
Columns, cofactor expansion and choice

of, 109
Column matrices, 26–27
Column-matrix form of vectors, 237
Column space, 237, 238, 240, 241,

251–252
basis for, 241, 243
equal dimensions of row and column

space, 248–249
orthogonal project on a, 383–384

Column vectors, 26, 27, 40
Column-vector form of vectors, 140
Column-wheel, 568
Combustion, linear systems to analyze

combustion equation for methane,
88–90

Comma-delimited form of vectors, 139,
217, 237

Common initial point, 134
Commutative law for addition, 39
Commutative law for multiplication, 41,

47
Complete reaction (chemical), 89
Complex conjugates:

of complex numbers, 313, A6
of vectors, 315

Complex dot product, 316
Complex eigenvalues, 317–318, 320–322
Complex eigenvectors, 317–318

Complex Euclidean inner product,
316–317

Complex exponential functions, A10–A11
Complex inner products, 354
Complex inner product space, 354
Complex matrices, 315
Complex n-space, 314
Complex n-tuples, 314
Complex numbers, 313–314, A5–A11

division of, A8, A9–A11
multiplication of, A6, A9–A11
polar form of, 314, A9–A11

Complex number system, A5
Complex plane, A6
Complex vector spaces, 184, 313–324
Component form, 156
Components (of a vector):

algebraic operations using, 138–139
calculating dot products using, 147–148
complex n-tuples, 314
finding, 135–136
in R2 and R3, 134–135
vector components of u along a,

159–160
Composition:

with identity operator, 461
of linear transformations, 460–461,

463–464
matrices of, 477–478
of matrix transformations, 270–273
non-commutative nature of, 271
of one-to-one linear transformations,

463–464
of reflections, 272, 283–284
of rotations, 271–272, 283
of three transformations, 272–273

Compression operator, 265, 283
Computed tomography, 611–620

Algebraic Reconstruction Techniques,
615–620

derivation of equations, 613–615
scanning modes, 612

Computers, LINPACK, 492
Computer graphics, 593–598

morphs, 695, 699–702
rotation, 596–598
scaling, 595
translation, 596
visualization of three-dimensional

object, 593–595
warps, 695–699

Computer programs, LU -decomposition
and, 492

Conclusion, A1
Condensation, 108
Congruent set, 622

Conic sections (conics), 420–424
classifying, with eigenvalues, 425–426
quadratic forms of, 420–422
through five points, 528–529

Conjugate transpose, 437–438
Consistency, determining by elimination,

65–66
Consistent linear system, 3–4, 238–239
Constrained extremum, 429–432
Constrained extremum theorem, 430
Constraint, 430
Consumption matrix, 97, 582
Consumption vectors, 97, 98
Continuous derivatives, functions with,

194
Contracting affine transformation,

633–634
Contraction, 264, 449
Contraction operators:

and fractals, 622, 623, 626–627
for general linear transformations, 449

Contrapositive, A2
Convergence:

of power sequences, 501
rate of, 507

Converse, A2
Convex combination, 696
Coordinates, 217

of generalized point, 136
in R3, 218–219
relative to standard basis for Rn, 218

Coordinate map, 229–230
Coordinate systems, 212–214

“basis vectors” for, 214
units of measurement, 213

Coordinate vectors:
computing, 232–233
matrix form of, 217
relative to orthonormal basis, 367
relative to standard bases, 218

Cormack, A. M., 612
Corresponding linear systems, 169
Cramer, Gabriel, 125
Cramer’s rule, 125
Critical points, 432
Cross product, 172–179

calculating, 173–174
determinant form of, 175–176
geometric interpretation of, 176–177
notation, 173
properties of, 174–175
of standard unit vectors, 175–176

Cross product terms, 418, 423–424
Cryptography, 650–659

breaking Hill ciphers, 657–659
ciphers, 650–652
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deciphering, 654–656
Hill ciphers, 651–652, 656–659
modular arithmetic, 652–654

CT, See Computed tomography
Cubic runout spline, 544–547
Cubic spline, 541–544
Cubic spline interpolation, 538–547

cubic runout spline, 544–547
curve fitting, 538–539
derivation of formula of cubic spline,

541–544
natural spline, 544–545
parabolic runout spline, 544–547
statement of problem, 539–540

Current (electrical), 86
Curve fitting, cubic spline interpolation,

538–539

D
Damping factor, 708
Dangling pages, 704
Data compression, singular value

decomposition, 521–524
Deciphering matrix, 657
Decomposition:

eigenvalue decomposition, 514
Hessenberg decomposition, 514
LDU -decomposition, 498–499
LU -decomposition, 491–498, 513
PLU -decomposition, 499
Schur decomposition, 514
self-similar sets, 623
singular value decomposition, 516–519,

521–524
of square matrices, 514–515

Degenerate conic, 420
Degrees of freedom, 222
Demand vector, 581
DeMoivre’s formula, A10
Dense sets, in chaos theory, 645–646
Dependency equations, 245–246
Determinants, 45, 105–127

by cofactor expansion, 105–110
defined, 105
of elementary matrices, 114–115
equivalence theorem, 126–127
evaluating by row reduction, 113–117
general determinant, 108
geometric interpretation of, 178–179
of linear operator, 485
of lower triangular matrix, 109–110
of matrix product, 120–121
properties of, 116–124
sums of, 120
of 3 × 3 matrices, 110
of 2 × 2 matrices, 110

Devaney, Robert L., 646
Deviation, 395
Diagonal coefficient matrices, 328
Diagonal entries, 516
Diagonalizability:

defined, 303
nondiagonalizability of n × n matrix,

414–415
orthogonal diagonalizability, 441
recognizing, 307
of triangular matrices, 307

Diagonalization:
matrices, 302–311
orthogonal diagonalization, 409–416
solution of linear system by, 328–330

Diagonal matrices, 67–69, 286
Dickson, Leonard Eugene, 123
Difference:

matrices, 28
vectors, 133, 138

Differential equations, 326–330, 454
Differentiation, by matrix multiplication,

468–469
Differentiation transformation, 453
Digital communications, matrix form

and, 254
Dilation, 264, 449
Dilation operators, 449, 622
Dimensions:

of spans, 222
of vector spaces, 222

Dimension theorem, for linear
transformations, 454–455

Dirac matrices, 325
Directed edges, 559
Directed graphs, 559–564

cliques, 562–564
dominance-directed, 564–566

Direct product, 146
Direct sum, 290
Discrete mean-value property, 603
Discrete random walk, 608
Discrete-time chaotic dynamical systems,

647
Discrete-time dynamical systems, 647
Discriminant, 319
Disjoint sets, A4
Displacement, 163
Distance, 346

general inner product spaces, 357
orthogonal projections for, 160–162
between parallel planes, 162
between a point and a plane, 161–162
real inner product spaces, 346
in Rn, 144–145
triangle inequality for, 149–150

Distinct eigenvalues, 501
Distributive property:

of complex Euclidean inner product,
316

of dot product, 147–148
Dodgson, Charles Lutwidge, 108
Dominance-directed graphs, 564–566
Dominant eigenvalue, 501–503
Dominant eigenvalue, of Leslie matrix,

675
Dominant genes, 661
Dot product, 145–148

algebraic properties of, 147–148
antisymmetry property of, 316
application of, 153
calculating with, 148
complex dot product, 316
cross product and, 173–174
dot product form of linear systems,

168–169
as matrix multiplication, 150–152
relationships involving, 173–174
symmetry property of, 147–148, 316
of vectors, 150–152

Drafting spline, 539
Dynamical system, 332–334, 647–648

E
Ear:

anatomy of, 689–690
least squares hearing model, 689–694

Echelon forms, 11–12, 21–22
Economics, n-tuples and, 136
Economic modeling, Leontief economic

analysis with, 96–100, 577–584
Economic sectors, 96
Egypt, early applications in, 532
Eigenspaces, 295–296, 306, 317

bases for, 295–298
of real symmetric matrix, 439–440

Eigenvalues, 291–298, 306, 317–318
complex eigenvalues, 317–318
conic sections classified by using,

425–426
dominant eigenvalues, 501–503
of general linear transformations, 299
of Hermitian, 439–440
of Hermitian matrices, 442
invertibility and, 298
of Leslie matrix, 675–679
of linear operators, 485
of square matrix, 307
of symmetric matrices, 411
of 3 × 3 matrix, 293–294
of triangular matrices, 294–295
of 2 × 2 matrix, 319–320
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Eigenvalue decomposition (EVD), 514
Eigenvectors, 291–298

bases for eigenspaces and, 295–298
complex eigenvectors, 317–318
left/right eigenvectors, 301
of real symmetric matrix, 439–440
of square matrix, 307
of symmetric matrices, 411
of 2 × 2 vector, 292

Einstein, Albert, 135, 136
Eisenstein, Gotthold, 30
Electrical circuits:

network analysis with linear systems,
86–88

n-tuples and, 136
Electrical current, 86
Electrical potential, 86
Electrical resistance, 86
Elements (of a set), A3
Elementary matrices, 52

determinants, 114–115
and homogeneous linear systems, 58
invertibility, 54
matrix operators corresponding to, 284

Elementary row operations, 7–8, 53–54,
240
cofactor expansion and, 116–117
determinants and, 113–117
and inverse operations, 54–57
and inverse row operations, 54–57
for inverting matrices, 56–57
matrix multiplication, 53–54
row reduction and determinants,

113–117
Elimination methods, 14–16, 65–66
Ellipse, principal axes of, 423
Elliptic paraboloid, 437
Empty set, A4
Enciphering, 650
End-triangle, warps, 696
Entries, 26, 27
Equality, of complex numbers, A5
Equal matrices, 27–28, 40
Equal sets, A4
Equal vectors, 132, 137–138
Equilibrium temperature distribution,

601–609
boundary data, 601–602
discrete formulation of problem,

603–607
mean-value property, 602–603
Monte Carlo technique for, 608–609
numerical technique for, 607–608

Equivalence theorem, 384
determinants, 126–127

invertibility, 54–56, 298–299
n × n matrix, 253–254, 277

Equivalent statements, A2
Equivalent vectors, 132, 137–138
Errors:

approximation problems, 395
least squares error, 379
mean square error, 395
measurements of, 395
percentage error, 507
relative error, 507
roundoff errors, 22

Error vector, 381
Estimated percentage error, 507
Estimated relative error, 507–508
Euclidean inner product, 346–348

complex Euclidean inner product,
316–317

of vectors in R2 or R3, 145
Euclidean norm, 316
Euclidean n-space, 346
Euclidean scaling, power method with,

503–504
Euler phi functions, 661
Euler’s formula, A10
Evaluation inner product, 350–351
Evaluation transformation, 450
EVD (eigenvalue decomposition), 514
Exchange matrix, 579
Expansion operator, 265, 283–284
Expected payoff, matrix games, 570
Exponents, matrix laws, 47
Exponential models, 393

F
Factorization, 491, 494
Family influence, 560
Fan-beam mode scanning, computed

tomography, 612
Fertile age class, 672
Fibonacci, Leonardo, 52
Fibonacci sequence, 52
Fibonacci shift-register random-number

generator, 648
Fingerprint storage, 523
Finite basis, 214
Finite-dimensional inner product space,

360, 373
Finite-dimensional vector space, 214,

224–225, 229–230
First-order linear system, 326–328
Fixed points, 642
Floating-point numbers, 509
Floating-point operation, 509
Flops, 509–512
Flow conservation, in networks, 84

Forest management, 586–592
Forward phase, 15
Forward substitution, 493
4 × 6 matrix, rank and nullity of, 249–250
Fourier, Jean Baptiste, 398
Fourier coefficients, 397
Fourier series, 396–398
Fractals, 622–635

algorithms for generating, 629–632
defined, 626
in Euclidean plane, 622
Hausdorff dimension of self-similar

sets, 625–626
Monte Carlo approach for, 632–633
self-similar sets, 622–624
similitudes, 626–629
topological dimension of sets, 624–625

Free variables, 13, 250
Free variable theorem for homogeneous

systems, 18–19
Full column rank, 375
Functions:

with continuous derivatives, 194
linear dependence of, 207–209

Function spaces, 194–195
Fundamental spaces, 251–253
Fundamental Theorem of Two-Person

Zero-Sum Games, 571–572

G
Games of strategy:

game theory, 568–569
2 × 2 matrix games, 573–576
two-person zero-sum games, 569–573

Game theory, 568–569
Gauss, Carl Friedrich, 15, 29, 106, 533
Gaussian elimination, 11–16, 512, 513

defined, 16
roundoff errors, 22

Gauss-Jordan elimination:
of augmented matrix, 318, 513
described, 15
for homogeneous system, 18
polynomial interpolation by, 92–93
roundoff errors, 22
using, 45, 512–513

General determinant, 108
General Electric CT system, 612
Generalized Theorem of Pythagoras,

358–359
General solution, 13, 239, 326
Genes, dominant and recessive, 661
Genetics, 661–670

autosomal inheritance, 662–665
autosomal recessive diseases, 665–666
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inheritance traits, 661–662
X-linked inheritance, 666–670

Genetic diseases, 665–666
Genotypes, 342, 661–662

defined, 661
distribution in population, 662–665

Geometric multiplicity, 309–310
Geometric vectors, 131
Geometry:

of linear systems, 164–170
quadratic forms in, 420–422
in Rn, 149–150

Gibbs, Josiah Willard, 146, 173
Golub, Gene H., 518
Gram, Jorgen Pederson, 371
Gram-Schmidt process, 370–373, 375, 397
Graphic images:

images of lines under matrix operators,
280–281

n-tuples and, 136
RGB color model, 140

Graph theory, 559–566
cliques, 562–564
directed graphs, 559–564
dominance-directed graphs, 564–566
relations among members of sets, 559

Grassmann, H.G., 184
Greece, early applications in, 534–536
Growth matrix, forest management

model, 588

H
Hadamard’s inequality, 129
Harvesting:

animal populations, 681–687
forests, 586–592

Harvesting matrix (animals), 682–684
Harvest vector (forests), 588
Hausdorff, Felix, 625
Hausdorff dimension, 625–626
Hearing, least squares model for, 689–694
Hermite, Charles, 438
Hermite polynomials, 220
Hermitian matrices, 437–440
Hesse, Ludwig Otto, 433
Hessenberg decomposition, 514
Hessenberg’s theorem, 415
Hessian matrices, 433–434
Hilbert, David, 371
Hilbert space, 371
Hill, George William, 196
Hill, Lester S., 651
Hill 2-cipher, 652, 656
Hill 3-cipher, 652
Hill ciphers, 651–652, 656–659
Hill n-cipher, 652

Homogeneity property:
of complex Euclidean inner product,

316
of dot product, 147–148
of linear transformation, 448

Homogeneous equations, 157–158, 168
Homogeneous linear equations, 2
Homogeneous linear systems, 17–19, 239

constant coefficient first-order, 327
dimensions of solution space, 223–224
and elementary matrices, 58
free variable theorem for, 18–19
solutions of, 198–199

Homogeneous systems, solutions spaces
of, 199

Hooke’s law, 390
Houndsfield, G. N., 612
Householder matrix, 409
Householder reflection, 409
Hue, graphical images, 136
Human hearing, least squares model for,

689–694
Hyperplane, 618
Hypothesis, A1

I
Idempotency, 51
Identity matrices, 42–43
Identity operators:

about, 448
composition with, 461
kernel and range of, 452
matrices of, 476–477

Images:
of basis vectors, 450–451
of lines under matrix operators, 280–281
n-tuples and, 136
RGB color model, 140

Image processing, data compression and,
523–524

Imaginary axis, A6
Imaginary numbers, See Complex

numbers
Imaginary part:

of complex numbers, 313, A5
of vectors and matrices, 314–315

Inconsistent linear system, 3
Indefinite quadratic forms, 424
India, early applications in, 536
Infinite-dimensional vector space, 214,

216
Inheritance, 661–665

autosomal, 661–665
X-linked, 661–662, 666–670

Initial age distribution vector, 672
Initial condition, 326

Initial point, 131
Initial-value problem, 326
Inner product:

algebraic properties of, 352
calculating, 352
complex inner products, 354
Euclidean inner product, 145, 316–317,

346–348
evaluation inner product, 350–351
examples of, 346–351
linear transformation using, 449
matrix inner products, 348
on Mnn, 349–350
on real vector space, 345
on Rn, 346–348
standard inner products, 346, 349–350

Inner product space, 449
complex inner product space, 354
isomorphisms in, 469–470
unit circle, 348
unit sphere, 348

Inputs, in economics, 96
Input-output analysis, 96
Input-output matrix, 579
Instability, 22
Integer coefficients, 294
Integral transformation, 452
Integration, approximate, 93–94
Interior mesh points, 603
Intermediate demand vector, 98
Internet search engines, 704–710
Interpolating curves, 539
Interpolating polynomial, 91
Interpolation, 539
Intersection, A4
Invariant under similarity, 303, 484–485
Inverse:

of 2 × 2 matrices, 45–46
of diagonal matrices, 68
of matrix using its adjoint, 124
of a product, 46–47

Inverse linear transformations, 462–463
Inverse matrices, 43–46
Inverse operations, 54–57
Inverse row operations, 54–57
Inverse transformations, 477–478
Inversion, solving linear systems by,

45–46, 61–62
Inversion algorithm, 55
Invertibility:

determinant test for, 121–122
eigenvalues and, 298
of elementary matrices, 54
equivalence theorem, 54–56
matrix transformation and, 273–274
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test for determinant, 121–122

of transition matrices, 232–233

of triangular matrices, 69

Invertible matrices:

algebraic properties of, 43–46

defined, 43

and linear systems, 61–66

modulo m, 654–656

ISBN (books), 153

Isomorphism, 466–470

Isotherms, 602

Iterates (Jacobi iteration), 607–608

Iterations:

of Arnold’s cat map, 639

Jacobi, 607–608

J
Jacobi iteration, 607–608

Jordan, Camille, 515, 518

Jordan, Wilhelm, 15

Jordan canonical form, 515

Junctions (network), 84, 86

K
Kaczmarz, S., 615

Kalman, Dan, 413

Kernel, 200, 452–454, 458

Kirchhoff, Gustav, 88

Kirchhoff’s current law, 87

Kirchhoff’s voltage law, 87

kth principal submatrix, 426

L
Lagrange, Joseph Louis, 174

Laguerre polynomials, 220

LDU -decomposition, 498–499

LDU -factorization, 499

Leading 1!, 11

Leading variables, 13, 250

Least squares:

curve fitting, 387–388

mathematical modeling using, 387–392

Least squares approximation, 395–398

defined, 396

in human hearing model, 689–694

Least squares error, 379

Least squares error vector, 379

Least squares fit:

of polynomial, 390–391

of quadratic curve to data, 391–392
straight line fit, 388–390

Least squares polynomial fit, 390–391
Least squares solutions, 389–390

infinitely many, 392
of linear systems, 378–379, 385
QR-decomposition and, 385
straight line fit, 388–390
unique, 391

Least squares straight line fit, 388–389
Left distributive law, 39
Left eigenvectors, 301
Legendre polynomials, 372–373
Length, 142, 346, 357
Leontief, Wassily, 96, 577
Leontief economic models, 577–584

closed model, 577–581
economic systems, 577
input-output models, 96–100
open model, 96–100, 581–584

Leontief equation, 98
Leontief matrices, 98
Leslie matrix age-specific population

growth, 673, 675–679
animal population harvesting, 682–684
eigenvalues, 675–679

Leslie model, of population growth,
671–679

Level curves, 432
Limit cycle, 616
Lines:

image of, 281
line segment from one point to another

in R2, 168
orthogonal projection on, 159
orthogonal projection on lines through

the origin, 266–267
point-normal equations, 156–157
through origin as subspaces, 192–193
through two points, 526–527
through two points in R2, 167–168
vector and parametric equations in R2

and R3, 164–166
vector and parametric equations of in

R4, 166–167
vector form of, 158, 165
vectors orthogonal to, 157–158

Linear algebra, 1. See also Linear
equations; Linear systems
coordinate systems, 212–214
earliest applications of, 531–536

Linear beam theory, 539–540
Linear combinations:

basis and, 245
history of term, 196

of matrices, 32–33
of vectors, 140, 144–145, 195, 197–198

Linear dependence, 196
Linear equations, 2–3, 168. See also

Linear systems
Linear form, 417–418
Linear independence, 196, 202–210,

226–227
of polynomials, 206
of sets, 202–206
of standard unit vectors in R3, 204
of standard unit vectors in R4, 205
of standard unit vectors in Rn, 203–204
of two functions, 206–207
using the Wronskian, 209–210

Linearly dependent set, 203
Linearly independent set, 203, 205
Linear operators:

determinants of, 485
matrices of, 476, 481–482
orthogonal matrices as, 403–404
on P2, 476–477

Linear systems, 2–3. See also
Homogeneous linear systems
applications, 84–94
augmented matrices, 6–7, 11, 12, 18, 25,

34
for balancing chemical equations, 88–91
coefficient matrix, 34
with a common coefficient matrix,

62–63
comparison of procedures for solving,

509–513
computer solution, 1
corresponding linear systems, 169
cost estimate for solving, 509–512
dot product form of, 168–169
first-order linear system, 326–328
general solution, 13
geometry of, 164–170
with infinitely many solutions, 5–7
least squares solutions of, 378–379, 385
network analysis with, 84–88
nonhomogeneous, 19
with no solutions, 5
number of solutions, 61
overdetermined/underdetermined,

255–256
polynomial interpolation, 91–94
solution methods, 3, 4–7
solutions, 3, 11
solving by elimination row operations,

7–8
solving by Gaussian elimination, 11–16,

21, 22, 512, 513
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solving by matrix inversion, 45–46,
61–62

solving with Cramer’s rule, 126
in three unknowns, 12–13

Linear transformations:
composition of, 460–461, 463–464
defined, 447
dimension theorem for, 454–455
eigenvalues of, 299
examples of, 449, 451
inverse linear transformations, 462–463
matrices of, 472–475
one-to-one, 458–460
onto, 458–460
from Pn to Pn+1, 449
rank and nullity in, 454–455
using inner product, 449

Line segment, from one point to another
in R2, 168

Links, 704
LINPACK, 492
Literal coefficients, 45
Liu Hui, 533
Logarithmic models, 393
Lower triangular matrices, 69, 295
LU -decompositions, 491–498, 513

constructing, 497
examples of, 494–497
finding, 494
method, 492

LU -factorization, 491, 494

M
Mnn, See n × n matrices
Magnitude (norm), 142
Main diagonal, 27, 516
Mandelbrot, Benoit B., 622, 626
Mantissa, 509
Markov, Andrei Andreyevich, 336
Markov chain, 334–340, 549–557

limiting behavior of state vectors,
553–557

steady-state vector of, 339
transition matrix for, 339–340, 550–553

Markov matrix, 550
Mathematical models, 387–388
MATLAB, 492
Matrices. See also matrices of specific size,

e.g.: 2 × 2 matrices
adjoint of, 122–124
algebraic properties of, 39–49
arithmetic operations with, 27–35
coefficient matrices, 34, 306, 491
column matrices, 26–27
complex matrices, 315
compositions of, 477–478

defined, 1, 6, 26
determinants, 105–127
diagonal coefficient matrices, 328
diagonalization, 302–311
diagonal matrices, 67–69, 286
dimension theorem for matrices, 250
elementary matrices, 52, 54, 58,

114–115, 284–285
entries, 26, 27
equality of, 27–28, 40

examples of, 26–27
fundamental spaces, 251–253
Hermitian matrices, 437–440, 442
Hessian matrices, 433–434
identity matrices, 42–43
of identity operators, 476–477
inner products generated by, 348–349
inverse matrices, 43–46
of inverse transformations, 477–478
invertibility, 54–56, 69, 121–122,

232–233
invertible matrices, 43–46, 61–66
inverting, 56–57
Leontief economic analysis with,

96–100
linear combination, 32–33
of linear operators, 476, 481–482
of linear transformations, 472–475
lower triangular matrices, 109–110
normal matrices, 442
notation and terminology, 25–27, 34
orthogonally diagonalizable matrices,

410
orthogonal matrices, 401–407
partitioned, 30–32
permutation matrices, 499
positive definite matrices, 426
powers of, 46–47, 308–309
with proportional rows or columns, 115
rank of, 250
real and imaginary parts of, 314–315
real matrices, 315, 320–321
redundancy in, 254
reflection matrices, 402
rotation matrices, 262, 402
row equivalents, 52
row matrices, 26
scalar multiples, 28–29
similar matrices, 303
singular/nonsingular matrices, 43, 44
size of, 26, 27, 40
skew-Hermitian matrices, 442
skew-symmetric matrices, 442
square matrices, 27, 35, 43, 67, 69,

113–117, 307, 401, 514–515

standard matrices, 276, 286–287,
383–384

stochastic matrices, 338–339
submatrices, 31, 427
symmetric matrices, 70–71, 320, 411,

433
trace, 36
transition matrices, 231–234, 482
transpose, 34–35
triangular matrices, 69–70, 294–295, 307
unitary matrices, 437–438, 440–442
upper triangular matrices, 69, 294
zero matrices, 41

Matrix factorization, 321–322
Matrix form of coordinate vector, 217
Matrix games:

defined, 569
two-person zero-sum, 569–573

Matrix inner products, 348
Matrix multiplication, See Multiplication

(matrices)
Matrix notation, 25–27, 34, 418
Matrix operators:

effect of, on unit square, 266
geometry of invertible, 283–285
graphics images of lines under matrix

operators, 280–281
on R2, 280–287

Matrix polynomials, 48
Matrix spaces, transformations on, 449
Matrix transformations, 75–81, 448

composition of, 270–273
defined, 447
kernel and range of, 452–453
in R2 and R3, 259–267
zero transformations, 448, 452

Maximization problems, for two-person
zero-sum games, 573

Maximum entry scaling, power method
with, 504–507

Mean square error, 395
Mean-value property, 602–603
Mechanical systems, n-tuples and, 137
Menger sponge, 636
Mesh points, 603–607
Methane, linear systems to analyze

combustion equation, 88–90
Minor, 106–107
Mixed strategies, of players in matrix

games, 572
m × n matrices (Mmn):

real vector spaces, 186–187
standard basis for, 215–216

Modular arithmetic, 638, 652–654
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Modulus:
of complex numbers, 313, A7
defined, 653

Monte Carlo technique:
fractal generation, 632–633
temperature distribution determination,

608–609
Morphs, 695, 699–702
Multiplication (matrices), 29–30. See also

Product (of matrices)
associative law for, 39, 40–41
column-row expansion, 33–34
by columns and by rows, 31–32
differentiation by, 468–469
dot products as, 150–152
elementary row operations, 53–54
by invertible matrix, 285
order and, 41

Multiplication (vectors). See also Cross
product; Euclidean inner product; Inner
product; Product (of vectors)
in R2 and R3, 133
by scalars, 184

Multiplicative inverse:
of complex number, A7
of modulo m, 654

N
Natural isomorphism, 468
Natural spline, 544–545
n-cycle, 642
n-dimensional vector space, 224
Negative, of vector, 133
Negative definite quadratic forms, 424
Negative pole, 86
Negative semidefinite quadratic forms,

424
Net reproduction rate, 679
Networks, defined, 84
Network analysis, with linear systems,

84–88
n × n matrices (Mnn):

equivalent statements, 254, 277
Hessenberg’s theorem, 415
nondiagonalizability of, 414–415
standard inner products on, 349–350
subspaces of, 193

Nodes (network), 84, 86
Nonharvest vector (forests), 587
Nonhomogeneous linear systems, 19
Nonoverlapping sets, 622, 623
Nonperiodic pixel points, 645–646
Nonsingular matrices, 43
Nontrivial solution, 17
Nonzero vectors, 200

Norm (length), 142, 160, 346
calculating, 143
complex Euclidean inner product and,

316–317
Euclidean norm, 316
real inner product spaces, 346
of vector in C[a, b], 351–352

Normal, 156
Normal equations, 380
Normalization, 144
Normal matrices, 442
Normal system, 380
n-space, 135, 136. See also Rn

Nullity, 454–455
of 4 × 6 matrix, 249–250
sum of, 251

Null space, 237, 240
Numerical analysis, 11
Numerical coefficients, 45

O
Ohms (unit), 86
Ohm’s law, 86
1-Step connection, directed graphs, 561,

564–565
One-to-one linear transformations,

458–460, 463–464
Onto linear transformations, 458–460
Open economies, Leontief analysis of,

96–100
Open Leontief model, 581–584
Open sectors, 96
Operators, 449, 460. See also Linear

operators
Optimal strategies:

2 × 2 matrix games, 575–576
two-person zero-sum games, 571–573

Optimal sustainable harvesting policy, 687
Optimal sustainable yield:

animal harvesting, 687
forest harvesting, 586, 589–592

Optimization, using quadratic forms,
429–435

Orbits, 528–529
Order:

of differential equation, 326
matrix multiplication and, 41
of trigonometric polynomial, 396

Ordered basis, 217
Ordered n-tuple, 3, 136
Ordered pair, 3
Ordered sets, A4
Ordered triple, 3
Order n, 396
Orthogonal basis, 365, 367–368, 373
Orthogonal change of variable, 420

Orthogonal complement, 252–253,
359–360

Orthogonal diagonalization, 409–416, 441
Orthogonality:

defined, 364
inner product and, 358
of row vectors and solution vectors, 169

Orthogonally diagonalizable matrices, 410
Orthogonal matrices, 401–407
Orthogonal operators, 404
Orthogonal projections, 158–160, 368–370

with Algebraic Reconstruction
Technique, 615–618

on a column space, 383–384
geometric interpretation of, 369–370
kernel and range of, 452–453
on lines through the origin, 266–267
on a subspace, 381–382

Orthogonal projection operators, 260
Orthogonal sets, 155, 364
Orthogonal vectors, 155–158, 316

in M22, 358
in P2, 358

Orthonormal basis, 365–367, 370,
396–397
change of, 404
coordinate vectors relative to, 367
from orthogonal basis, 367–368
orthonormal sets extended to, 373

Orthonormality, 364
Orthonormal sets, 365

constructing, 364–365
extended to orthonormal bases, 373

Outputs, in economics, 96
Outside demand vector, 97, 98
Overdetermined linear system, 255–256
Overlapping sets, 622, 623

P
Pn, See Polynomials
P2:

linear operators on, 476–477
orthogonal vectors in, 358
Theorem of Pythagoras in, 359

Page ranks, 705
Parabolic runout spline, 544–547
Parallel mode scanning, computed

tomography, 612
Parallelogram, area of, 176
Parallelogram equation for vectors, 150
Parallelogram rule for vector addition,

132
Parallel planes, distance between, 162
Parallel vectors, 133–134
Parameters, 5, 13, 164



Index I9

Parametric equations, 6
of lines and planes in R4, 166–167
of lines in R2 and R3, 164–166
of planes in R3, 164–166

Particular solution, 239
Partitioned matrices, 30–32
Pauli spin matrices, 325
Payoff, matrix games, 569
Payoff matrix, 569, 572
Percentage error, 507
Period, of a pixel map, 642
Periodic splines, 548
Permutation matrices, 499
Perpendicular vectors, 155
Photographs, data compression and

image processing, 523–524
Piazzi, Giuseppe, 15
Picture, 640
Picture-density, of begin-triangle, 696
Pine forest growth, 591–592
Pitch (aircraft), 263
Pivot column, 21–22
Pivot position, 21–22
Pixels:

data compression and image processing,
523

defined, 640
Pixel maps, 640–643
Pixel points:

defined, 641
nonperiodic, 645–646

Plaintext, 650
Plaintext vector, 651
Planes:

distance between a point and a plane,
161–162

distance between parallel planes, 162
point-normal equations, 156–157
through origin as subspaces, 193
through three points, 529
tiled, 643–644
vector and parametric equations in R3,

164–166
vector and parametric equations of in

R4, 166–167
vector form of, 158, 165
vectors orthogonal to, 157–158

PLU -decomposition, 499
PLU -factorization, 499
Plus-minus theorem, 223–224
Points:

constructing curves and surfaces
through, 526–530

distance between a point and a plane,
161–162

Point-normal equations, 156–157

Polar form, of complex numbers, 314,
A8–A9

Poles (battery), 86
Polygraphic system, 651
Polynomials (Pn), 48

characteristic polynomial, 293, 306
cubic, 539–547
least squares fit of, 390–391
Legendre polynomials, 372–373
linear independence of, 206
linearly independent set in, 205
linear transformation, 449
spanning set for, 197
standard basis for, 214
standard inner product on, 350–351
subspaces of, 194
trigonometric polynomial, 396–397

Polynomial interpolation, 91–94
Population growth, age-specific, 671–679
Population waves, 676
Positive definite matrices, 426
Positive definite quadratic forms, 424–425
Positive pole, 86
Positive semidefinite quadratic forms, 424
Positivity property:

of complex Euclidean inner product,
317

of dot product, 147–148
Power, of vertex of dominance-directed

graph, 566
Power function models, 393
Power method, 501–508

with Euclidean scaling, 503–504
with maximum entry scaling, 504–507
stopping procedures, 508

Powers of a matrix, 46–47, 68, 308–309
Power sequence generated by A, 501
Price vector, 579
Principal argument, A8
Principal axes, 423
Principal axes theorem, 420, 423
Principal submatrices, 427
Probability, 334
Probability (Markov) matrix, 550
Probability transition matrix, 706
Probability vector, 334, 551
Product (of matrices), 28–30

determinants of, 120–121
inverse of, 46–47
as linear combination, 32–33
of lower triangular matrices, 69
of symmetric matrices, 71
transpose of, 49

Product (of vectors):
cross product, 172–179
scalar multiple in R2 and R3, 133

Products (in chemical equation), 89
Production vector, 97, 98, 581
Productive consumption matrix, 583–584
Productive open economies, 98–100
Profitable industries, in Leontief model,

584
Profitable sectors, 99–100
Projection operators, 260–261, 275–276
Projection theorem, 158–159, 368
Proofs, A1–A4
Pure imaginary complex numbers, A5
Pure strategies, of players in matrix

games, 572

Q
QR-decomposition, 374, 385
Quadratic curve, of least squares fit,

391–392
Quadratic forms, 417–422

applications of, 419–420
change of variable, 419
conic sections, 420–422
expressing in matrix notation, 418
indefinite quadratic forms, 424
negative definite quadratic forms, 424
negative semidefinite quadratic forms,

424
optimization using, 429–435
positive definite quadratic forms,

424–425
positive semidefinite quadratic forms,

424
principal axes theorem, 420

Quadratic form associated with A, 418
Quotient, A7

R
Rn:

coordinates relative to standard basis
for, 218

distance in, 144–145
Euclidean inner product, 346–348
geometry in, 149–150
linear independence of standard unit

vectors in, 203–204
norm of a vector, 142–143
span in standard unit vector, 196
spanning in, 196
standard basis for, 214
standard unit vectors in, 144
Theorem of Pythagoras in, 160
transition matrices for, 233–234
two-point vector equations in, 167–168
vector forms of lines and planes in, 166
vectors in, 135–139
as vector space, 185
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R2:
Anosov automorphism, 648–649
dot product of vectors in, 145
line segment from one point to another

in, 168
lines through origin are subspaces of,

192–193
lines through two points in, 167–168
matrix operators on, 280–287
matrix transformations in, 259–262,

264–267
norm of a vector, 142–143
parametric equations, of lines in,

164–166
self-similar sets in, 622–623
shears in, 265–266
spanning in, 196–197
unit circles in, 348
vector addition in, 132, 134
vectors in, 131–140

R3:
coordinates in, 218–219
dot product of vectors in, 145
linear independence of standard unit

vectors in, 204
lines through origin are subspaces of,

192–193
matrix transformations in, 259–265
norm of a vector, 142–143
orthogonal set in, 364
rotations in, 262–263
spanning in, 196–197
standard basis for, 215
vector addition in, 132, 134
vector and parametric equations of lines

in, 164–166
vector and parametric equations of

planes in, 164–166
vectors in, 131–140

R4:
cosine of angle between two vectors in,

357
linear independence of standard unit

vectors in, 205
Theorem of Pythagoras in, 160
vector and parametric equations of lines

and planes in, 166–167
Random iteration algorithm, 632
Range, 452–454
Rank, 454–455

of 4 × 6 matrix, 249–250
of an approximation, 523
dimension theorem for matrices, 250
maximum value for, 250
redundancy in a matrix and, 254
sum of, 251

Rate of convergence, 507
Rayleigh, John William Strutt, 506
Rayleigh quotient, 505
Reactants (in chemical equation), 89
Real axis, A6
Real inner product space, 345, 355–356
Real line, 135
Real matrices, 315, 320–321
Real part:

of complex numbers, 313, A5
of vectors and matrices, 314–315

Real-valued functions, vector space of,
187

Real vector space, 183, 184, 345
Recessive genes, 661
Reciprocals:

of complex number, A7
of modulo m, 654

Rectangular coordinate systems, 212–213
Reduced row echelon forms, 11–12, 21,

318
Reduced singular value decomposition,

521
Reduced singular value expansion, 522
Redundancy, in matrices, 254
Reflections, composition of, 272, 284–285
Reflection matrices, 402
Reflection operators, 259–260, 267
Regression line, 389
Regular Markov chain, 338, 554
Regular stochastic matrices, 338–339
Regular transition matrix, 554
Relative error, 507
Relative maximum, 433, 434
Relative minimum, 432, 434
Repeated mappings, of Arnold’s cat map,

639–640
Replacement matrix, forest management

model, 588
Residuals, 389
Residue, of a modulo m, 653–654
Resistance (electrical), 86
Resistor, 86
Resultant, 154
Revection transformation, computer

graphics, 599
RGB color cube, 140
RGB color model, 140
RGB space, 140
Rhind Papyrus, 532
Right circular cylinder, 437
Right distributive law, 39
Right eigenvectors, 301
Right-hand rule, 176, 262
Roll (aircraft), 263

Rotations:
composition of, 271–272, 283
kernel and range of, 453
in R3, 262–263

Rotation equations, 262, 405
Rotation matrices, 262, 402
Rotation of axes:

in 2-space, 404–406
in 3-space, 406–407

Rotation operator, 261–263
properties of, 275
on R3, 262–263

Rotation transformation:
computer graphics, 596–598
self-similar sets, 626

Roundoff errors, 22
Rows, cofactor expansion and choice of

row, 109
Row-column method, 31–32
Row echelon form, 11–12, 14–15, 21–22,

241
Row equivalents, 52
Row matrices, 26
Row-matrix form of vectors, 237
Row operations, See Elementary row

operations
Row reduction:

basis by, 242–244
evaluating determinants by, 113–117

Row space, 237, 240, 241, 251–252
basis by row reduction, 242–243
basis for, 241, 244–245
equal dimensions of row and column

space, 248–249
Row vectors, 26, 27, 40, 168–169, 237
Row-vector form of vectors, 139
Row-wheel, 568
Runout splines, 544–547

S
Saddle points, 433, 434, 572
Sample points, 350
Saturation, graphical images, 136
Scalars, 26, 131, 133

from vector multiples, 172
vector space scalars, 184

Scalar moment, 180
Scalar multiples, 28–29, 184
Scalar multiplication, 133, 184
Scalar triple product, 177
Scaling:

Euclidean scaling, 503–504
maximum entry scaling, 504–507

Scaling transformation:
computer graphics, 595
self-similar sets, 622, 626–627
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Schmidt, Erhardt, 371, 518
Schur, Issai, 414, 415
Schur decomposition, 415, 514
Schur’s theorem, 415
Schwarz, Hermann Amandus, 149
Search engines, Internet, 704–710
Second derivative test, 433, 434
Sectors (economic), 96
Self-similar sets, 622–626
Sensitivity to initial conditions, dynamical

systems, 647
Sets, A3–A4

linear independence of, 202–206
relations among members of, 559
self-similar sets, 622–626

Set-builder notation, A3–A4
Shear operators, 265–266, 284–285
Shear transformation, computer graphics,

599
Sheep harvesting, 684–685
Shifting operators, 460
Sierpinski, Waclaw, 624
Sierpinski carpet, 624, 626, 628–631, 633,

636
Sierpinski triangle, 624, 626, 628–629,

631–632
Similarity invariants, 303, 484–485
Similarity transformations, 302
Similar matrices, 303
Similitudes, 626–629
Singular matrices, 43, 44
Singular values, 515–516
Singular value decomposition (SVD),

516–519, 521–524
Skew-Hermitian matrices, 442
Skew product, 173
Skew-symmetric matrices, 442
Solutions:

best approximations, 379–380
comparison of procedures for solving

linear systems, 509–513
cost of, 509–512
factoring, 491
flops and, 509–512
Gaussian elimination, 11–16, 22, 512,

513
Gauss-Jordan elimination, 15, 18, 21,

22, 45–46, 92–93, 318, 512–513
general solution, 13, 239, 326
of homogeneous linear systems,

198–199
least squares solutions, 378–379, 385
of linear systems, 3, 11
of linear systems by diagonalization,

328–330
of linear systems by factoring, 491

of linear systems with initial conditions,
327–328

particular solution, 239
power method, 501–508
trivial/nontrivial solutions, 17, 327

Solutions spaces, of homogeneous
systems, 199

Solution vectors, 168–169
Sound waves, in human ear, 689–694
Spacecraft, yaw, pitch, and roll, 263
Spanning:

in R2 and R3, 196–197
in Rn, 196
testing for, 198

Spanning sets, 197, 200, 216
Spans, 196, 222
Spectral decomposition of A, 413–414
Sphere, through four points, 529–530
Spline interpolation, cubic, 538–547
Spring constant, 390
Square matrices, 43, 67, 69, 401

decompositions of, 514–515
determinants of, 113–117
eigenvalues of, 307
of order n, 27
trace, 36
transpose, 35

Standard basis:
coordinates relative to standard basis

for Rn, 218
coordinate vectors relative to, 218
for Mmn, 215–216
for polynomials, 214
for R3, 215
for Rn, 214

Standard inner product:
defined, 346
on polynomials, 350
on vector space, 349–350

Standard matrices:
for matrix transformation, 286–287
for T −1, 276

Standard unit vectors, 144, 175–176
linear independence in R3, 204
linear independence in R4, 205
linear independence in Rn, 203–204
in span Rn, 196

State of a particle system, 137
State of the variable, 332
State vector, 334

of Markov chains, 551, 553–557
webgraph, 706

Static equilibrium, 155
Steady-state vector, of Markov chain, 339,

555–556
Stochastic matrices, 338–339, 550

Stochastic processes, 334
Stopping procedures, 508
Strategies, of players in matrix games,

570–573
Strictly determined games, 572
String theory, 135, 136
Subdiagonal, 415
Submatrices, 31, 427
Subsets, A4
Subspaces, 191–200, 453

creating, 195–198
defined, 191
examples of, 192–200
of Mnn, 193
orthogonal projections on, 381–382
of polynomials, 194
of polynomials (Pn), 194
of R2 and R3, 192–193
zero subspace, 192

Substitution ciphers, 650
Subtraction:

of vectors in R2 and R3, 133
of vectors in Rn, 138

Sum:
direct, 290
matrices, 28, 47
of rank and nullity, 251
of vectors in R2 and R3, 132, 134
of vectors in Rn, 138

SVD (singular value decomposition),
516–519, 521–524

Sylvester, James, 35, 107, 518
Sylvester’s inequality, 259
Symmetric matrices, 70–71, 320

eigenvalues of, 411
Hessian matrices, 433–434

Symmetry property, of dot product,
147–148, 316

T
T −1, standard matrix for, 276
Taussky-Todd, Olga, 319
Technology Matrix, 97
Television, market share as dynamical

system, 332–334
Temperature distribution, at equilibrium,
See Equilibrium temperature

Terminal point, 131
Theorem of Pythagoras:

generalized Theorem of Pythagoras,
358–359

in R4, 160
in Rn, 160

3 × 3 matrices:
adjoint, 123
determinants, 110
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eigenvalues, 293–294
orthogonal matrix, 401–402
QR-decomposition of, 375

Three-dimensional object visualization,
593–595

3-space, 131
cross product, 172–179
scalar triple product, 177

3-Step connection, directed graphs, 561
Three-Step Procedure, 474–475
3-tuples, 135
Tien-Yien Li, 637
Tiled planes, 643–644
Time, as fourth dimension, 135
Time-varying morphs, 699–702
Time-varying warps, 698–699
Topological dimensions, 624–625
Topology, 624–625
Torque, 180
Tournaments, 564
Trace, square matrices, 36
Traffic flow, network analysis with linear

systems, 85–86
Transformations. See also Linear

transformations; Matrix
transformations
differentiation transformation, 453
evaluation transformation, 450
integral transformation, 452
inverse transformations, 477–478
on matrix spaces, 449
one-to-one linear transformation, 459

Transition matrices, 231–234, 482
invertibility of, 232–233
Markov chains, 550–553
for Rn, 233–234

Transition probability, Markov chains,
549

Translation, 132, 450
Translation transformation, computer

graphics, 596
Transpose, 34–35

determinant of, 113
invertibility, 49
of lower triangular matrix, 69
properties, 48–49
vector spaces, 251–252

Triangle:
area of, 176–177
Sierpinski, 624, 626, 628–629, 631–632

Triangle inequalities:
for distances, 149–150, 357
for vectors, 149–150, 357

Triangle rule for vector addition, 132
Triangular matrices, 69–70

diagonalizability of, 307
eigenvalues of, 294–295

Triangulation, 697–698
Trigonometric polynomial, 396
Trivial solution, 17, 327
Turing, Alan Mathison, 493
2 × 2 matrices:

cofactor expansions of, 107–108
determinants, 110
eigenvalues of, 319–321
games, 573–576
inverse of, 45–46
vector space, 186

2 × 2 vector, eigenvectors, 292
Two-person zero-sum games, 569–573
Two-point vector equations, in Rn,

167–168
2-Step connection, directed graphs, 561,

564–565
2-space, 131
2-tuples, 135

U
Underdetermined linear system, 255
Unified field theory, 136
Union, A4
Unitary diagonalization, of Hermitian

matrices, 441–442
Unitary matrices, 437–438, 440–442
Unit circle, 348
Units of measurement, 213
Unit sphere, 348
Unit vectors, 143–145, 316, 346
Unknowns, 2
Unstable algorithms, 22
Upper Hessenberg decomposition, 415
Upper Hessenberg form, 415
Upper triangular matrices, 69, 110, 294

V
Vaccine distribution, 575–576
Vectors, 131

angle between, 146–149, 356–357
arithmetic operations, 132–134, 137–138
“basis vectors,” 214
collinear vectors, 133–134
column-matrix form of, 237
column-vector form of, 140
comma-delimited form of, 139, 217, 237
components of, 134–135

in coordinate systems, 134–135
coordinate vectors, 218–219
dot product, 145–148, 150–152
equality of, 132, 137–138
equivalence of, 132, 137–138
geometric vectors, 131
linear combinations of, 140, 144–145,

195, 197–198
linear independence of, 196, 202–210
nonzero vectors, 200
normalizing, 144
norm of, 160
notation for, 131, 139–140
orthogonal vectors, 155–158, 316
parallelogram equation for, 150
parallel vectors, 133–134
perpendicular vectors, 155
probability vector, 334
in R2 and R3, 131–140
real and imaginary parts of, 314–315
in Rn, 135–139
row-matrix form of, 237
row vectors, 26, 27, 40, 168–169, 237
row-vector form of, 139
solution vectors, 168–169
standard unit vectors, 144, 175–176,

196, 203–204
state vector, 334
triangle inequality for, 149–150
unit vectors, 143–145, 316, 346
zero vector, 132, 137

Vector addition:
matrix games, 572
parallelogram rule for, 132
in R2 and R3, 132, 134
triangle rule for, 132

Vector equations:
of lines and planes in R4, 166–167
of lines in R2 and R3, 164–166
of planes in R3, 164–166
two-point vector equations in Rn,

167–168
Vector forms, 165
Vector space, 183

axioms, 183–184
complex vector spaces, 184, 313–324
dimensions of, 222
examples of, 185–189, 216
finite-dimensional vector spaces, 214,

216–217, 224–225
infinite-dimensional vector spaces, 214,

216
of infinite real number sequences, 185
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isomorphic, 466
of m × n matrices, 186–187
n-dimensional, 224
of real-valued functions, 187
real vector space, 183, 184
subspaces, 191–200, 453
for transposes of matrices, 251–252
of 2 × 2 matrices, 186
zero vector space, 185, 222

Vector space scalars, 184
Vector subtraction, in R2 and R3, 133
Venn Diagrams, A4
Vertex matrix, 559–561
Vertex points, 697–698
Vertices, graphs, 559–560
Viewing audience maximization, 573
Visualization, of three-dimensional

objects, 593–595

Volts (units), 86

Voltage rises/drops, 86, 87

von Neumann, John, 642

W
Warps, 695–699

affine transformations with, 696

defined, 696

time-varying, 698–699

Webgraph, 704

Weight, 346

Weighted Euclidean inner products,
346–349

Weyl, Herman Klaus, 518

Wildlife migration, as Markov chain,
336–337

Wilson, Edwin, 173

Work, 163

Wroński, Józef Hoëné de, 208
Wronskian, 209–210

X
X-linked inheritance, 661–662, 666–670
X-ray computed tomography, 611–620

Y
Yaw, 263
Yorke, James, 637

Z
Zero matrices, 41
Zero population growth, 679
Zero subspace, 192
Zero-sum matrix games, two-person,

569–573
Zero transformations, 448, 452
Zero vectors, 132, 137
Zero vector space, 185, 222



 



A P P L I C A T I O N S A N D H I S T O R I C A L T O P I C S

Aeronautical Engineering

Lifting force 95

Solar powered aircraft 395

Supersonic aircraft flutter 321

Yaw, pitch, and roll 264

Astrophysics

Kepler’s laws 10.1*

Measurement of temperature onVenus 394

Biology and Ecology

Air quality prediction 343

Forest management 10.8*

Genetics 344, 10.15*

Harvesting of animal populations 10.17*

Population dynamics 343, 10.16*

Wildlife migration 338–339

Business and Economics

Game theory 10.6*

Leontief input-output models 96–100, 10.7*

Market share 334–336, 343

Sales and cost analysis 38, 39

Sales projections using least squares 395

Calculus

Approximate integration 93–94

Derivatives of matrices 102

Integral inner products 353

Partial fractions 25

Chemistry

Balancing chemical equations 88–91

Civil Engineering

Equilibrium of rigid bodies Module 5**

Traffic flow 85–86

Computer Science

Color models for digital displays 67, 136, 140

Computer graphics 10.9*

Facial recognition 297

Fractals 10.12*

Google site ranking 10.20*

Warps and morphs 10.19*

Cryptography

Hill ciphers 10.14*

Differential Equations

First-order linear systems 328–332

Electrical Engineering

Circuit analysis 84-85, 86–88

Digitizing signals 185

LRC circuits 333

Geometry in Euclidean Space

Angle between a diagonal of a cube and an edge 147

Direction angles and cosines 154

Parallelogram law 150

Generalized theorem of Pythagoras 160, 360

Reflection about a line 268

Rotation about a line 411

Rotation of coordinate axes 406–409

Vector methods in plane geometry Module 4**

Library Science

ISBN numbers 153
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