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2. Show that

1

1/z
= z (z �= 0).

3. Use the associative and commutative laws for multiplication to show that

(z1z2)(z3z4) = (z1z3)(z2z4).

4. Prove that if z1z2z3 = 0, then at least one of the three factors is zero.
Suggestion: Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two

factors.

5. Derive expression (6), Sec. 3, for the quotient z1/z2 by the method described just after it.

6. With the aid of relations (10) and (11) in Sec. 3, derive the identity(
z1

z3

) (
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).

7. Use the identity obtained in Exercise 6 to derive the cancellation law

z1z

z2z
= z1

z2
(z2 �= 0, z �= 0).

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true when n = 1. Then, assuming that it is valid when
n = m where m denotes any positive integer, show that it must hold when n = m + 1.

Suggestion: When n = m + 1, write

(z1 + z2)
m+1 = (z1 + z2)(z1 + z2)

m = (z2 + z1)

m∑
k=0

(
m
k

)
zk

1zm−k
2

=
m∑

k=0

(
m
k

)
zk

1zm+1−k
2 +

m∑
k=0

(
m
k

)
zk+1

1 zm−k
2

and replace k by k − 1 in the last sum here to obtain

(z1 + z2)
m+1 = zm+1

2 +
m∑

k=1

[(
m
k

)
+

(
m

k − 1

)]
zk

1zm+1−k
2 + zm+1

1 .

Finally, show how the right-hand side here becomes

zm+1
2 +

m∑
k=1

(
m + 1

k

)
zk

1zm+1−k
2 + zm+1

1 =
m+1∑
k=0

(
m + 1

k

)
zk

1zm+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents z in the complex
plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers
z = x + iy and −2 + i are displayed graphically as both points and radius vectors.
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z = (x, y)

z = x + iy
–2 + i

xO–2

(–2, 1)
1

y

FIGURE 2

When z1 = x1 + iy1 and z2 = x2 + iy2, the sum

z1 + z2 = (x1 + x2) + i(y1 + y2)

corresponds to the point (x1 + x2, y1 + y2). It also corresponds to a vector with those
coordinates as its components. Hence z1 + z2 may be obtained vectorially as shown
in Fig. 3.

xO

y

z1

z 1 +
 z 2

z2

z2

FIGURE 3

Although the product of two complex numbers z1 and z2 is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for z1

and z2. Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector analysis.

The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus,
or absolute value, of a complex number z = x + iy is defined as the nonnegative real
number

√
x2 + y2 and is denoted by |z|; that is,

|z| =
√

x2 + y2.(1)

It follows immediately from definition (1) that the real numbers |z|, x = Re z,
and y = Im z are related by the equation

|z|2 = (Re z)2 + (Im z)2.(2)

Thus

Re z ≤ |Re z| ≤ |z| and Im z ≤ |Im z| ≤ |z|.(3)

Geometrically, the number |z| is the distance between the point (x, y) and the
origin, or the length of the radius vector representing z. It reduces to the usual absolute
value in the real number system when y = 0. Note that while the inequality z1 < z2

is meaningless unless both z1 and z2 are real, the statement |z1| < |z2| means that the
point z1 is closer to the origin than the point z2 is.
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EXAMPLE 1. Since |−3 + 2i | = √
13 and |1 + 4i | = √

17, we know that the
point −3 + 2i is closer to the origin than 1 + 4i is.

The distance between two points (x1, y1) and (x2, y2) is |z1 − z2|. This is clear
from Fig. 4, since |z1 − z2| is the length of the vector representing the number

z1 − z2 = z1 + (−z2);
and, by translating the radius vector z1 − z2, one can interpret z1 − z2 as the directed
line segment from the point (x2, y2) to the point (x1, y1). Alternatively, it follows from
the expression

z1 − z2 = (x1 − x2) + i(y1 − y2)

and definition (1) that

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2.

xO

y

z1

|z1 – z2|

z1 – z2

z2

–z2

(x2, y2)

(x1, y1)

FIGURE 4

The complex numbers z corresponding to the points lying on the circle with center
z0 and radius R thus satisfy the equation |z − z0| = R, and conversely. We refer to
this set of points simply as the circle |z − z0| = R.

EXAMPLE 2. The equation |z − 1 + 3i | = 2 represents the circle whose center
is z0 = (1, −3) and whose radius is R = 2.

Our final example here illustrates the power of geometric reasoning in complex
analysis when straightforward computation can be somewhat tedious.

EXAMPLE 3. Consider the set of all points z = (x, y) satisfying the equation

|z − 4i | + |z + 4i | = 10.

Upon writing this as

|z − 4i | + |z − (− 4i)| = 10,

one can see that it represents the set of all points P(x, y) in the z = (x, y) plane the sum
of whose distances from two fixed points F(0, 4) and F ′(0, − 4) is the constant 10.
This is, of course, an ellipse with foci F(0, 4) and F ′(0, − 4).
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5. TRIANGLE INEQUALITY

We turn now to the triangle inequality, which provides an upper bound for the modulus
of the sum of two complex numbers z1 and z2:

|z1 + z2| ≤ |z1| + |z2|.(1)

This important inequality is geometrically evident in Fig. 3 of Sec. 4 since it is merely
a statement that the length of one side of a triangle is less than or equal to the sum
of the lengths of the other two sides. We can also see from Fig. 3 that inequality (1)
is actually an equality when 0, z1, and z2 are collinear. Another, strictly algebraic,
derivation is given in Exercise 15, Sec. 6.

An immediate consequence of the triangle inequality is the fact that

|z1 + z2| ≥ ||z1| − |z2||.(2)

To derive inequality (2), we write

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + |− z2|,
which means that

|z1 + z2| ≥ |z1| − |z2|.(3)

This is inequality (2) when |z1| ≥ |z2|. If |z1| < |z2|, we need only interchange z1

and z2 in inequality (3) to arrive at

|z1 + z2| ≥ −(|z1| − |z2|),
which is the desired result. Inequality (2) tells us, of course, that the length of one side
of a triangle is greater than or equal to the difference of the lengths of the other two
sides.

Because |− z2| = |z2|, one can replace z2 by −z2 in inequalities (1) and (2) to
write

|z1 − z2| ≤ |z1| + |z2| and |z1 − z2| ≥ ||z1| − |z2||.
In actual practice, however, one need use only inequalities (1) and (2). This is illustrated
in the following example.

EXAMPLE 1. If a point z lies on the unit circle |z| = 1, inequalities (1) and
(2) tell us that

|z − 2| = |z + (−2)| ≤ |z| + |−2| = 1 + 2 = 3

and

|z − 2| = |z + (−2)| ≥ ||z| − |−2|| = |1 − 2| = 1.
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The triangle inequality (1) can be generalized by means of mathematical induction
to sums involving any finite number of terms:

|z1 + z2 + · · · + zn| ≤ |z1| + |z2| + · · · + |zn| (n = 2, 3, . . .).(4)

To give details of the induction proof here, we note that when n = 2, inequality (4)
is just inequality (1). Furthermore, if inequality (4) is valid when n = m, it must also
hold when n = m + 1 since by inequality (1),

|(z1 + z2 + · · · + zm) + zm+1| ≤ |z1 + z2 + · · · + zm | + |zm+1|
≤ (|z1| + |z2| + · · · + |zm |) + |zm+1|.

EXAMPLE 2. Let z denote any complex number lying on the circle |z| = 2.

Inequality (4) tells us that ∣∣3 + z + z2
∣∣ ≤ 3 + |z| + ∣∣z2

∣∣.
Since |z2| = |z|2, according to Exercise (8),

|3 + z + z2| ≤ 9.

EXAMPLE 3. If n is a positive integer and if a0, a1, a2, . . . , an are complex
constants, where an �= 0, the quantity

P(z) = a0 + a1z + a2z2 + · · · + anzn(5)

is a polynomial of degree n. We shall show here that for some positive number R, the
reciprocal 1/P(z) satisfies the inequality∣∣∣∣ 1

P(z)

∣∣∣∣ <
2

|an|Rn
whenever |z| > R.(6)

Geometrically, this tells us that the modulus of the reciprocal 1/P(z) is bounded from
above when z is exterior to the circle |z| = R. This important property of polynomials
will be used later on in Sec. 58 of Chap. 4, and we verify it here since it illustrates the
use of inequalities presented in this section, as well as the identities

|z1z2| = |z1||z2| and |zn| = |z|n (n = 1, 2, . . .)

to be obtained in Exercises 8 and 9.
We first write

w = a0

zn
+ a1

zn−1
+ a2

zn−2
+ · · · + an−1

z
(z �= 0),(7)

so that

P(z) = (an + w)zn(8)
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when z �= 0. Next, we multiply through equation (7) by zn:

w zn = a0 + a1z + a2z2 + · · · + an−1zn−1.

This tells us that

|w||z|n ≤ |a0| + |a1||z| + |a2||z|2 + · · · + |an−1||z|n−1,

or

|w| ≤ |a0|
|z|n + |a1|

|z|n−1
+ |a2|

|z|n−2
+ · · · + |an−1|

|z| .(9)

Now that a sufficiently large positive number R can be found such that each of the
quotients on the right in inequality (9) is less than the number |an|/(2n) when |z| > R,

and so

|w| < n
|an|
2n

= |an|
2

whenever |z|>R.

Consequently,

|an + w| ≥ ||an| − |w|| >
|an|

2
whenever |z| > R;

and, in view of equation (8),

|Pn(z)| = |an + w‖z|n >
|an|

2
|z|n >

|an|
2

Rn whenever |z| > R.(10)

Statement (6) follows immediately from this.

EXERCISES
1. Locate the numbers z1 + z2 and z1 − z2 vectorially when

(a) z1 = 2i, z2 = 2

3
− i ;

(b) z1 = (−√
3, 1), z2 = (

√
3, 0);

(c) z1 = (−3, 1), z2 = (1, 4);
(d) z1 = x1 + iy1, z2 = x1 − iy1.

2. Verify inequalities (3), Sec. 4, involving Re z, Im z, and |z|.
3. Use established properties of moduli to show that when |z3| �= |z4|,

Re(z1 + z2)

|z3 + z4| ≤ |z1| + |z2|
||z3| − |z4|| .

4. Verify that
√

2 |z| ≥ |Re z| + |Im z|.
Suggestion: Reduce this inequality to (|x | − |y|)2 ≥ 0.

5. In each case, sketch the set of points determined by the given condition:

(a) |z − 1 + i | = 1; (b) |z + i | ≤ 3; (c) |z − 4i | ≥ 4.
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6. Using the fact that |z1 − z2| is the distance between two points z1 and z2, give a geometric
argument that |z − 1| = |z + i | represents the line through the origin whose slope is −1.

7. Show that for R sufficiently large, the polynomial P(z) in Example 3, Sec. 5, satisfies
the inequality

|P(z)| < 2|an||z|n whenever |z| > R.

Suggestion: Observe that there is a positive number R such that the modulus of
each quotient in inequality (9), Sec. 5, is less than |an|/n when |z| > R.

8. Let z1 and z2 denote any complex numbers

z1 = x1 + iy1 and z2 = x2 + iy2.

Use simple algebra to show that

|(x1 + iy1)(x2 + iy2)| and
√(

x2
1 + y2

1

)(
x2

2 + y2
2

)
are the same and then point out how the identity

|z1z2| = |z1||z2|
follows.

9. Use the final result in Exercise 8 and mathematical induction to show that

|zn| = |z|n (n = 1, 2, . . .),

where z is any complex number. That is, after noting that this identity is obviously true
when n = 1, assume that it is true when n = m where m is any positive integer and then
show that it must be true when n = m + 1.

6. COMPLEX CONJUGATES

The complex conjugate, or simply the conjugate, of a complex number z = x + iy is
defined as the complex number x − iy and is denoted by z̄; that is,

z = x − iy.(1)

The number z is represented by the point (x, −y), which is the reflection in the real
axis of the point (x, y) representing z (Fig. 5). Note that

z = z and |z| = |z|
for all z.

xO

y

z

–z

(x, y)

(x, –y) FIGURE 5
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If z1 = x1 + iy1 and z2 = x2 + iy2, then

z1 + z2 = (x1 + x2) − i(y1 + y2) = (x1 − iy1) + (x2 − iy2).

So the conjugate of the sum is the sum of the conjugates:

z1 + z2 = z1 + z2.(2)

In like manner, it is easy to show that

z1 − z2 = z1 − z2,(3)

z1z2 = z1 z2,(4)

and (
z1

z2

)
= z1

z2
(z2 �= 0).(5)

The sum z + z of a complex number z = x + iy and its conjugate z = x − iy is
the real number 2x , and the difference z − z is 2iy. Hence

Re z = z + z

2
and Im z = z − z

2i
.(6)

An important identity relating the conjugate of a complex number z = x + iy to
its modulus is

z z = |z|2,(7)

where each side is equal to x2 + y2. It suggests the method for determining a quo-
tient z1/z2 that begins with expression (7), Sec. 3. That method is, of course, based
on multiplying both the numerator and the denominator of z1/z2 by z2, so that the
denominator becomes the real number |z2|2.

EXAMPLE 1. As an illustration,

−1 + 3i

2 − i
= (−1 + 3i)(2 + i)

(2 − i)(2 + i)
= −5 + 5i

|2 − i |2 = −5 + 5i

5
= −1 + i.

See also the example in Sec. 3.

Identity (7) is especially useful in obtaining properties of moduli from properties
of conjugates noted above. We mention that (compare with Exercise 8, Sec. 5)

|z1z2| = |z1||z2|.(8)

Also, ∣∣∣∣ z1

z2

∣∣∣∣ = |z1|
|z2| (z2 �= 0).(9)

Property (8) can be established by writing

|z1z2|2 = (z1z2)(z1z2) = (z1z2)(z1 z2) = (z1z1)(z2z2) = |z1|2|z2|2 = (|z1||z2|)2
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and recalling that a modulus is never negative. Property (9) can be verified in a similar
way.

EXAMPLE 2. Property (8) tells us that |z2| = |z|2 and |z3| = |z|3. Hence if z is
a point inside the circle centered at the origin with radius 2, so that |z| < 2, it follows
from the generalized triangle inequality (4) in Sec. 5 that

|z3 + 3z2 − 2z + 1| ≤ |z|3 + 3|z|2 + 2|z| + 1 < 25.

EXERCISES
1. Use properties of conjugates and moduli established in Sec. 6 to show that

(a) z + 3i = z − 3i ; (b) i z = −i z;

(c) (2 + i)2 = 3 − 4i ; (d) |(2z + 5)(
√

2 − i)| =√
3 |2z + 5|.

2. Sketch the set of points determined by the condition

(a) Re(z − i) = 2; (b) |2z + i | = 4.

3. Verify properties (3) and (4) of conjugates in Sec. 6.

4. Use property (4) of conjugates in Sec. 6 to show that

(a) z1z2z3 = z1 z2 z3 ; (b) z4 = z 4.

5. Verify property (9) of moduli in Sec. 6.

6. Use results in Sec. 6 to show that when z2 and z3 are nonzero,

(a)
(

z1

z2z3

)
= z1

z2 z3
; (b)

∣∣∣∣ z1

z2z3

∣∣∣∣ = |z1|
|z2||z3| .

7. Show that

|Re(2 + z + z3)| ≤ 4 when |z| ≤ 1.

8. It is shown in Sec. 3 that if z1z2 = 0, then at least one of the numbers z1 and z2 must be
zero. Give an alternative proof based on the corresponding result for real numbers and
using identity (8), Sec. 6.

9. By factoring z4 − 4z2 + 3 into two quadratic factors and using inequality (2), Sec. 5,
show that if z lies on the circle |z| = 2, then∣∣∣∣ 1

z4 − 4z2 + 3

∣∣∣∣ ≤ 1

3
.

10. Prove that

(a) z is real if and only if z = z;
(b) z is either real or pure imaginary if and only if z 2 = z2.

11. Use mathematical induction to show that when n = 2, 3, . . . ,

(a) z1 + z2 + · · · + zn = z1 + z2 + · · · + zn ;
(b) z1z2 · · · zn = z1 z2 · · · zn .
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12. Let a0, a1, a2, . . . , an (n ≥ 1) denote real numbers, and let z be any complex number.
With the aid of the results in Exercise 11, show that

a0 + a1z + a2z2 + · · · + anzn = a0 + a1z + a2z2 + · · · + anz n .

13. Show that the equation |z − z0| = R of a circle, centered at z0 with radius R, can be
written

|z|2 − 2 Re(zz0) + |z0|2 = R2.

14. Using expressions (6), Sec. 6, for Re z and Im z, show that the hyperbola x2 − y2 = 1
can be written

z2 + z2 = 2.

15. Follow the steps below to give an algebraic derivation of the triangle inequality (Sec. 5)

|z1 + z2| ≤ |z1| + |z2|.
(a) Show that

|z1 + z2|2 = (z1 + z2)(z1 + z2) = z1z1 + (z1z2 + z1z2) + z2z2.

(b) Point out why

z1z2 + z1z2 = 2 Re(z1z2) ≤ 2|z1||z2|.
(c) Use the results in parts (a) and (b) to obtain the inequality

|z1 + z2|2 ≤ (|z1| + |z2|)2,

and note how the triangle inequality follows.

7. EXPONENTIAL FORM

Let r and θ be polar coordinates of the point (x, y) that corresponds to a nonzero
complex number z = x + iy. Since x = r cos θ and y = r sin θ , the number z can be
written in polar form as

z = r(cos θ + i sin θ).(1)

If z = 0, the coordinate θ is undefined; and so it is understood that z �= 0 whenever
polar coordinates are used.

In complex analysis, the real number r is not allowed to be negative and is the
length of the radius vector for z ; that is, r = |z|. The real number θ represents the an-
gle, measured in radians, that z makes with the positive real axis when z is interpreted
as a radius vector (Fig. 6). As in calculus, θ has an infinite number of possible values,
including negative ones, that differ by integral multiples of 2π . Those values can be
determined from the equation tan θ = y/x , where the quadrant containing the point
corresponding to z must be specified. Each value of θ is called an argument of z, and
the set of all such values is denoted by arg z. The principal value of arg z, denoted by
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x

y

z = x + iy

r

FIGURE 6

Arg z, is the unique value � such that −π < � ≤ π. Evidently, then,

arg z = Arg z + 2nπ (n = 0, ±1, ±2, . . .).(2)

Also, when z is a negative real number, Arg z has the value π , not −π .

EXAMPLE 1. The complex number −1 − i , which lies in the third quadrant,
has principal argument −3π/4. That is,

Arg(−1 − i) = −3π

4
.

It must be emphasized that because of the restriction −π < � ≤ π of the principal
argument �, it is not true that Arg(−1 − i) = 5π/4.

According to equation (2),

arg (−1 − i) = −3π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

Note that the term Arg z on the right-hand side of equation (2) can be replaced by any
particular value of arg z and that one can write, for instance,

arg (−1 − i) = 5π

4
+ 2nπ (n = 0, ±1, ±2, . . .).

The symbol eiθ , or exp(iθ), is defined by means of Euler’s formula as

eiθ = cos θ + i sin θ,(3)

where θ is to be measured in radians. It enables us to write the polar form (1) more
compactly in exponential form as

z = reiθ .(4)

The choice of the symbol eiθ will be fully motivated later on in Sec. 30. Its use in
Sec. 8 will, however, suggest that it is a natural choice.

EXAMPLE 2. The number −1 − i in Example 1 has exponential form

−1 − i =
√

2 exp
[

i

(
−3π

4

)]
.(5)



Brown/Churchill-3930327 book July 18, 2013 9:58

SEC. 7 EXPONENTIAL FORM 19

With the agreement that e−iθ = ei(−θ), this can also be written −1 − i = √
2 e−i3π/4.

Expression (5) is, of course, only one of an infinite number of possibilities for the
exponential form of −1 − i :

−1 − i =
√

2 exp
[

i

(
−3π

4
+ 2nπ

)]
(n = 0, ±1, ±2, . . .).(6)

Note how expression (4) with r = 1 tells us that the numbers eiθ lie on the circle
centered at the origin with radius unity, as shown in Fig. 7. Values of eiθ are, then,
immediate from that figure, without reference to Euler’s formula. It is, for instance,
geometrically obvious that

eiπ = −1, e−iπ/2 = −i, and e−i4π = 1.

xO

1

y

FIGURE 7

Note, too, that the equation

z = Reiθ (0 ≤ θ ≤ 2π)(7)

is a parametric representation of the circle |z| = R, centered at the origin with radius
R. As the parameter θ increases from θ = 0 to θ = 2π , the point z starts from the
positive real axis and traverses the circle once in the counterclockwise direction. More
generally, the circle |z − z0| = R, whose center is z0 and whose radius is R, has the
parametric representation

z = z0 + Reiθ (0 ≤ θ ≤ 2π).(8)

This can be seen vectorially (Fig. 8) by noting that a point z traversing the circle
|z − z0| = R once in the counterclockwise direction corresponds to the sum of the
fixed vector z0 and a vector of length R whose angle of inclination θ varies from θ = 0
to θ = 2π .

xO

y

z

z0

FIGURE 8
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8. PRODUCTS AND POWERS IN EXPONENTIAL FORM

Simple trigonometry tells us that eiθ has the familiar additive property of the expo-
nential function in calculus:

eiθ1 eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2) = ei(θ1+θ2).

Thus, if z1 = r1eiθ1 and z2 = r2eiθ2 , the product z1z2 has the exponential form

z1z2 = r1eiθ1r2eiθ2 = r1r2eiθ1 eiθ2 = (r1r2)e
i(θ1+θ2).(1)

Furthermore,

z1

z2
= r1eiθ1

r2eiθ2
= r1

r2
· eiθ1 e−iθ2

eiθ2 e−iθ2
= r1

r2
· ei(θ1−θ2)

ei0
= r1

r2
ei(θ1−θ2).(2)

Note how it follows from expression (2) that the inverse of any nonzero complex
number z = reiθ is

z−1 = 1

z
= 1ei0

reiθ
= 1

r
ei(0−θ) = 1

r
e−iθ .(3)

Expressions (1), (2), and (3) are, of course, easily remembered by applying the usual
algebraic rules for real numbers and ex .

Another important result that can be obtained formally by applying rules for real
numbers to z = reiθ is

zn = rneinθ (n = 0, ±1, ±2, . . .).(4)

It is easily verified for positive values of n by mathematical induction. To be specific,
we first note that it becomes z = reiθ when n = 1. Next, we assume that it is valid
when n = m, where m is any positive integer. In view of expression (1) for the product
of two nonzero complex numbers in exponential form, it is then valid for n = m + 1:

zm+1 = zm z = rmeimθreiθ = (rmr)ei(mθ+θ) = rm+1ei(m+1)θ .

Expression (4) is thus verified when n is a positive integer. It also holds when n = 0,

with the convention that z0 = 1. If n = −1, −2, . . . , on the other hand, we define zn

in terms of the multiplicative inverse of z by writing

zn = (z−1)m where m = −n = 1, 2, . . . .

Then, since equation (4) is valid for positive integers, it follows from the exponential
form (3) of z−1 that

zn =
[

1

r
ei(−θ)

]m

=
(

1

r

)m

eim(−θ) =
(

1

r

)−n

ei(−n)(−θ) = rneinθ

(n = −1, −2, . . .).

Expression (4) is now established for all integral powers.
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Expression (4) can be useful in finding powers of complex numbers even when
they are given in rectangular form and the result is desired in that form.

EXAMPLE 1. In order to put (−1 + i)7 in rectangular form, write

(−1 + i)7 = (
√

2 ei3π/4)7 = 27/2ei 21π/4 = (23ei5π)(21/2ei π/4).

Because

23ei5π = (8)(−1) = − 8

and

21/2ei π/4 =
√

2
(

cos
π

4
+ i sin

π

4

)
=

√
2

(
1√
2

+ i√
2

)
= 1 + i,

we arrive at the desired result: (−1 + i)7 = − 8 (1 + i).

Finally, we observe that if r = 1, equation (4) becomes

(eiθ )n = einθ (n = 0, ±1, ±2, . . .).(5)

When written in the form

(cos θ + i sin θ)n = cos nθ + i sin nθ (n = 0, ±1, ±2, . . .),(6)

this is known as de Moivre’s formula. The following example uses a special case of it.

EXAMPLE 2. Formula (6) with n = 2 tells us that

(cos θ + i sin θ)2 = cos 2θ + i sin 2θ,

or

cos2 θ − sin2 θ + i2 sin θ cos θ = cos 2θ + i sin 2θ.

By equating real parts and then imaginary parts here, we have the familiar trigonometric
identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

(See also Exercises 10 and 11, Sec. 9.)

9. ARGUMENTS OF PRODUCTS AND QUOTIENTS

If z1 = r1eiθ1 and z2 = r2eiθ2 , the expression

z1z2 = (r1r2)e
i(θ1+θ2)(1)

in Sec. 8 can be used to obtain an important identity involving arguments:

arg(z1z2) = arg z1 + arg z2.(2)


