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C H A P T E R

1
COMPLEX NUMBERS

In this chapter, we survey the algebraic and geometric structure of the complex number
system. We assume various corresponding properties of real numbers to be known.

1. SUMS AND PRODUCTS

Complex numbers can be defined as ordered pairs (x, y) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x, 0) on the real axis, we write x = (x, 0); and it is clear that
the set of complex numbers includes the real numbers as a subset. Complex numbers
of the form (0, y) correspond to points on the y axis and are called pure imaginary
numbers when y �= 0. The y axis is then referred to as the imaginary axis.

It is customary to denote a complex number (x, y) by z, so that (see Fig. 1)

z = (x, y).(1)

z = (x, y)

i = (0, 1)

x = (x, 0) xO

y

FIGURE 1

1
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The real numbers x and y are, moreover, known as the real and imaginary parts of z,
respectively, and we write

x = Re z, y = Im z.(2)

Two complex numbers z1 and z2 are equal whenever they have the same real parts and
the same imaginary parts. Thus the statement z1 = z2 means that z1 and z2 correspond
to the same point in the complex, or z, plane.

The sum z1 + z2 and product z1z2 of two complex numbers

z1 = (x1, y1) and z2 = (x1, y1)

are defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),(3)

(x1, y1)(x2, y2) = (x1x2 − y1 y2, y1x2 + x1 y2).(4)

Note that the operations defined by means of equations (3) and (4) become the usual
operations of addition and multiplication when restricted to the real numbers:

(x1, 0) + (x2, 0) = (x1 + x2, 0),

(x1, 0)(x2, 0) = (x1x2, 0).

The complex number system is, therefore, a natural extension of the real number
system.

Any complex number z = (x, y) can be written z = (x, 0)+ (0, y), and it is easy
to see that (0, 1)(y, 0) = (0, y). Hence

z = (x, 0) + (0, 1)(y, 0);
and if we think of a real number as either x or (x, 0) and let i denote the pure imaginary
number (0,1), as shown in Fig. 1, it is clear that∗

z = x + iy.(5)

Also, with the convention that z2 = zz, z3 = z2z, etc., we have

i2 = (0, 1)(0, 1) = (−1, 0),

or

i2 = −1.(6)

Because (x, y) = x + iy, definitions (3) and (4) become

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),(7)

(x1 + iy1)(x2 + iy2) = (x1x2 − y1 y2) + i(y1x2 + x1 y2).(8)

∗In electrical engineering, the letter j is used instead of i .
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Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left as if they involved only real numbers and by replacing
i2 by −1 when it occurs. Also, observe how equation (8) tells us that any complex
number times zero is zero. More precisely,

z · 0 = (x + iy)(0 + i0) = 0 + i0 = 0

for any z = x + iy.

2. BASIC ALGEBRAIC PROPERTIES

Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
some of them. Most of the others are verified in the exercises.

The commutative laws

z1 + z2 = z2 + z1, z1z2 = z2z1(1)

and the associative laws

(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 = z1(z2z3)(2)

follow easily from the definitions in Sec. 1 of addition and multiplication of complex
numbers and the fact that real numbers have corresponding properties. The same is
true of the distributive law

z(z1 + z2) = zz1 + zz2.(3)

EXAMPLE. If

z1 = (x1, y1) and z2 = (x2, y2),

then

z1 + z2 = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = z2 + z1.

According to the commutative law for multiplication, iy = yi . Hence one can
write z = x + yi instead of z = x + iy. Also, because of the associative laws, a sum
z1 + z2 + z3 or a product z1z2z3 is well defined without parentheses, as is the case with
real numbers.

The additive identity 0 = (0, 0) and the multiplicative identity 1 = (1, 0) for real
numbers carry over to the entire complex number system. That is,

z + 0 = z and z · 1 = z(4)
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for every complex number z. Furthermore, 0 and 1 are the only complex numbers with
such properties (see Exercise 8).

There is associated with each complex number z = (x, y) an additive inverse

−z = (−x, −y),(5)

satisfying the equation z + (−z) = 0. Moreover, there is only one additive inverse for
any given z, since the equation

(x, y) + (u, v) = (0, 0)

implies that

u = −x and v = −y.

For any nonzero complex number z = (x, y), there is a number z−1 such that
zz−1 = 1. This multiplicative inverse is less obvious than the additive one. To find it,
we seek real numbers u and v, expressed in terms of x and y, such that

(x, y)(u, v) = (1, 0).

According to equation (4), Sec. 1, which defines the product of two complex numbers,
u and v must satisfy the pair

xu − yv = 1, yu + xv = 0

of linear simultaneous equations; and simple computation yields the unique solution

u = x

x2 + y2
, v = −y

x2 + y2
.

So the multiplicative inverse of z = (x, y) is

z−1 =
(

x

x2 + y2
,

−y

x2 + y2

)
(z �= 0).(6)

The inverse z−1 is not defined when z = 0. In fact, z = 0 means that x2 + y2 = 0; and
this is not permitted in expression (6).

EXERCISES
1. Verify that

(a) (
√

2 − i) − i(1 − √
2i) = −2i ;

(b) (2, −3)(−2, 1) = (−1, 8);

(c) (3, 1)(3, −1)

(
1

5
,

1

10

)
= (2, 1).
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2. Show that

(a) Re(i z) = − Im z;
(b) Im(i z) = Re z.

3. Show that (1 + z)2 = 1 + 2z + z2.

4. Verify that each of the two numbers z = 1 ± i satisfies the equation z2 − 2z + 2 = 0.

5. Prove that multiplication of complex numbers is commutative, as stated at the beginning
of Sec. 2.

6. Verify

(a) the associative law for addition of complex numbers, stated at the beginning of
Sec. 2;

(b) the distributive law (3), Sec. 2.

7. Use the associative law for addition and the distributive law to show that

z(z1 + z2 + z3) = zz1 + zz2 + zz3.

8. (a) Write (x, y)+ (u, v) = (x, y) and point out how it follows that the complex number
0 = (0, 0) is unique as an additive identity.

(b) Likewise, write (x, y)(u, v) = (x, y) and show that the number 1 = (1, 0) is a
unique multiplicative identity.

9. Use −1 = (−1, 0) and z = (x, y) to show that (−1)z = −z.

10. Use i = (0, 1) and y = (y, 0) to verify that −(iy) = (−i)y. Thus show that the additive
inverse of a complex number z = x +iy can be written −z = −x −iy without ambiguity.

11. Solve the equation z2 + z + 1 = 0 for z = (x, y) by writing

(x, y)(x, y) + (x, y) + (1, 0) = (0, 0)

and then solving a pair of simultaneous equations in x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to show

that y �= 0.

Ans. z =
(

−1

2
, ±

√
3

2

)
.

3. FURTHER ALGEBRAIC PROPERTIES

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec. 2. Inasmuch as such properties continue to be anticipated because they also apply
to real numbers, the reader can easily pass to Sec. 4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses enables
us to show that if a product z1z2 is zero, then so is at least one of the factors z1 and
z2. For suppose that z1z2 = 0 and z1 �= 0. The inverse z−1

1 exists; and any complex
number times zero is zero (Sec. 1). Hence

z2 = z2 · 1 = z2
(
z1z−1

1

) = (
z−1

1 z1
)
z2 = z−1

1 (z1z2) = z−1
1 · 0 = 0.



Brown/Churchill-3930327 book July 18, 2013 9:58

6 COMPLEX NUMBERS CHAP. 1

That is, if z1z2 = 0, either z1 = 0 or z2 = 0; or possibly both of the numbers z1 and
z2 are zero. Another way to state this result is that if two complex numbers z1 and z2

are nonzero, then so is their product z1z2.
Subtraction and division are defined in terms of additive and multiplicative

inverses:

z1 − z2 = z1 + (−z2),(1)

z1

z2
= z1z−1

2 (z2 �= 0).(2)

Thus, in view of expressions (5) and (6) in Sec. 2,

z1 − z2 = (x1, y1) + (−x2, −y2) = (x1 − x2, y1 − y2)(3)

and

z1

z2
= (x1, y1)

(
x2

x2
2 + y2

2

,
−y2

x2
2 + y2

2

)
=

(
x1x2 + y1 y2

x2
2 + y2

2

,
y1x2 − x1 y2

x2
2 + y2

2

)
(4)

(z2 �= 0)

when z1 = (x1, y1) and z2 = (x2, y2).
Using z1 = x1 + iy1 and z2 = x2 + iy2, one can write expressions (3) and (4)

here as

z1 − z2 = (x1 − x2) + i(y1 − y2)(5)

and

z1

z2
= x1x2 + y1 y2

x2
2 + y2

2

+ i
y1x2 − x1 y2

x2
2 + y2

2

(z2 �= 0).(6)

Although expression (6) is not easy to remember, it can be obtained by writing (see
Exercise 7)

z1

z2
= (x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
,(7)

multiplying out the products in the numerator and denominator on the right, and then
using the property

z1 + z2

z3
= (z1 + z2)z

−1
3 = z1z−1

3 + z2z−1
3 = z1

z3
+ z2

z3
(z3 �= 0).(8)

The motivation for starting with equation (7) appears in Sec. 5.

EXAMPLE. The method is illustrated below:

4 + i

2 − 3i
= (4 + i)(2 + 3i)

(2 − 3i)(2 + 3i)
= 5 + 14i

13
= 5

13
+ 14

13
i.
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There are some expected properties involving quotients that follow from the
relation

1

z2
= z−1

2 (z2 �= 0),(9)

which is equation (2) when z1 = 1. Relation (9) enables us, for instance, to write
equation (2) in the form

z1

z2
= z1

(
1

z2

)
(z2 �= 0).(10)

Also, by observing that (see Exercise 3)

(z1z2)(z
−1
1 z−1

2 ) = (z1z−1
1 )(z2z−1

2 ) = 1 (z1 �= 0, z2 �= 0),

and hence that z−1
1 z−1

2 = (z1z2)
−1, one can use relation (9) to show that(

1

z1

) (
1

z2

)
= z−1

1 z−1
2 = (z1z2)

−1 = 1

z1z2
(z1 �= 0, z2 �= 0).(11)

Another useful property, to be derived in the exercises, is(
z1

z3

) (
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).(12)

Finally, we note that the binomial formula involving real numbers remains valid
with complex numbers. That is, if z1 and z2 are any two nonzero complex numbers,
then

(z1 + z2)
n =

n∑
k=0

(n

k

)
zk

1zn−k
2 (n = 1, 2, . . .)(13)

where (n

k

)
= n!

k!(n − k)!
(k = 0, 1, 2, . . . , n)

and where it is agreed that 0! = 1. The proof is left as an exercise. Because addition
of complex numbers is commutative, the binomial formula can, of course, be written

(z1 + z2)
n =

n∑
k=0

(
n
k

)
zn−k

1 zk
2 (n = 1, 2, . . .).(14)

EXERCISES
1. Reduce each of these quantities to a real number:

(a)
1 + 2i

3 − 4i
+ 2 − i

5i
; (b)

5i

(1 − i)(2 − i)(3 − i)
; (c) (1 − i)4.

Ans. (a) − 2

5
; (b) − 1

2
; (c) − 4.
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2. Show that

1

1/z
= z (z �= 0).

3. Use the associative and commutative laws for multiplication to show that

(z1z2)(z3z4) = (z1z3)(z2z4).

4. Prove that if z1z2z3 = 0, then at least one of the three factors is zero.
Suggestion: Write (z1z2)z3 = 0 and use a similar result (Sec. 3) involving two

factors.

5. Derive expression (6), Sec. 3, for the quotient z1/z2 by the method described just after it.

6. With the aid of relations (10) and (11) in Sec. 3, derive the identity(
z1

z3

) (
z2

z4

)
= z1z2

z3z4
(z3 �= 0, z4 �= 0).

7. Use the identity obtained in Exercise 6 to derive the cancellation law

z1z

z2z
= z1

z2
(z2 �= 0, z �= 0).

8. Use mathematical induction to verify the binomial formula (13) in Sec. 3. More pre-
cisely, note that the formula is true when n = 1. Then, assuming that it is valid when
n = m where m denotes any positive integer, show that it must hold when n = m + 1.

Suggestion: When n = m + 1, write

(z1 + z2)
m+1 = (z1 + z2)(z1 + z2)

m = (z2 + z1)

m∑
k=0

(
m
k

)
zk

1zm−k
2

=
m∑

k=0

(
m
k

)
zk

1zm+1−k
2 +

m∑
k=0

(
m
k

)
zk+1

1 zm−k
2

and replace k by k − 1 in the last sum here to obtain

(z1 + z2)
m+1 = zm+1

2 +
m∑

k=1

[(
m
k

)
+

(
m

k − 1

)]
zk

1zm+1−k
2 + zm+1

1 .

Finally, show how the right-hand side here becomes

zm+1
2 +

m∑
k=1

(
m + 1

k

)
zk

1zm+1−k
2 + zm+1

1 =
m+1∑
k=0

(
m + 1

k

)
zk

1zm+1−k
2 .

4. VECTORS AND MODULI

It is natural to associate any nonzero complex number z = x + iy with the directed line
segment, or vector, from the origin to the point (x, y) that represents z in the complex
plane. In fact, we often refer to z as the point z or the vector z. In Fig. 2 the numbers
z = x + iy and −2 + i are displayed graphically as both points and radius vectors.


