
CHAPTER 1 

Data: Types and Presentation 

1.1 TYPES OF BIOLOGICAL DATA 
1.2 ACCURACY AND SIGNIFICANT FIGURES 
1.3 FREQUENCY DISTRIBUTIONS 
1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

Scientific study involves the systematic collection, organization. analysis. and presen­
tation of knowledge. Many investigations in the hiological sciences are quantitative. 
where knowledge is in the form of numerical ohservations called data. (One numerical 
observation is a dawl11.*) In order for the presentation and analysis of data to be 
valid and useful, we must use methods appropriate to the type of data obtained. to 
the design of the data collection. and to the questions asked of the data: and the 
limitations of the data. of the data collection. and of the data analysis should be 
appreciated when formulating conclusions. This chapter. and those that follow. will 
introduce many concepts relevant to this goal. 

The word statistics is derived from the Latin for "state." indicating the historical 
importance of governmental data gathering, which related principally to demographic 
information (including census data and "vital statistics") and often to their use in 
military recruitment and tax collecting. t 

The term statistics is often encountered as a synonym for data: One hears of college 
enrollment statistics (such as the numbers of newly admitted students. numbers of 
senior students, numbers of students from various geographic locations). statistics of 
a basketball game (such as how many points were scored by each player. how many 
fouls were committed). lahor statistics (such as numbers of workers unemployed. 
numbers employed in various occupations). and so on. Hereafter. this usc of the word 
statistics will not appear in this hook. Instead, it will be used in its other common 
manner: to refer to the orderly collection, analysis. and interpretatiol1 (~f data with 
a view to objective evaluatioll of conclusions based Oil the data. (Section 2.4 will 
introduce another fundamentally important use of the term statistic.) 

Statistics applied to biological problems is simply called biostatistics or, sometimes. 
biometry* (the latter term literally meaning "biological measurement"). Although 

*The IeI'm dllfll is sometimes seen as a singular noun meaning "numcrical information." This 
hook rdrains from that usc. 

t Peters (llJ~7: 79) and Walker (llJ29: 32) attrihute the first use of the term Sflllistin to a German 
professor. Gottfried Achenwall (1719-1772). who uscd the German word Swti.wik in I 74lJ. and the 
lirst puhlished use of the English word to John Sinclair (1754-1~35) in 1791. 

*The word biollletry. which literally means "biological measurement." had. since the nineteenth 
century. hcen found in sl.!veral contexts (such as demographics and. later. yuantitative genetics: 
Armitage. 1 9~S: Stigler. 2(K)O). but using it to mean the application of statistical methods to niological 
information apparently was conceived hetween IX92 and 1901 by Karl Pearson. along with the name 
Biollletrika for the still·important English journal he helped found: and it was first publi~hed in the 
inaugural is!\uc of this journ,,1 in IlJO} (Sncdccor. 1954). The Biometrics Section of the Amcric,m 

1 
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their magnitudes relative to each other: or success in learning to run a maze may be 
recorded as A. B. or C. 

It is often true that biological data expressed on the ordinal scale could have been 
expressed on the interval or ratio scale had exact measurements been obtained (or 
obtainable). Sometimes data that were originally on interval or ratio scales will be 
changed to ranks: for example, examination grades of99. 85. 73. and 66% (ratio scale) 
might be recorded as A, B. C, and D (ordinal scale), respectively. 

Ordinal-scale data contain and convey less information than ratio or interval data, 
for only relative magnitudes are known. Consequently. quantitative comparisons are 
impossible (e.g., we cannot speak of a grade of C being half as good as a grade of 
A, or of the difference between cell sizes I and 2 being the same as the difference 
between sizes 3 and 4). However. we will see that many useful statistical procedures 
are, in fact. applicable to ordinal data. 

(d) Data in Nominal Categories. Sometimes the variable being studied is classified 
by some qualitative measure it possesses rather than by a numerical measurement. 
In such cases the variable may be called an attribute, and we are said to be dealing 
with nominal, or categorical. data. Genetic phenotypes are commonly encountered 
biological attributes: The possible manifestations of an animal's eye color might be 
brown or blue: and if human hair color were the attribute of interest, we might 
record black. brown. blond, or red. As other examples of nominal data (nominal 
is from the Latin word for "name"), people might be classified as male or female, 
or right-handed or left-handed. Or, plants might be classified as dead or alive, or 
as with or without fertilizer application. Taxonomic categories also form a nominal 
classification scheme (for example, plants in a study might be classified as pine, spruce. 
or fir). 

Sometimes. data that might have been expressed on an ordinal. interval, or ratio 
scale of measurement may be recorded in nominal categories. For example. heights 
might be recorded as tall or short. or performance on an examination as pass or fail. 
where there is an arbitrary cut-off point on the measurement scale to separate tall 
from short and pass from fail. 

As will be seen. statistical methods useful with ratio. interval. or ordinal data 
generally are not applicable to nominal data. and we must. therefore. be able to 
identify such situations when they occur. 

(e) Continuous and Discrete Data. When we spoke previously of plant heights. we 
were dealing with a variable that could be any conceivable value within any observed 
range; this is referred to as a continuous variable. That is. if we measure a height of 
35 cm and a height of 36 cm, an infinite number of heights is possible in the range 
from 35 to 36 cm: a plant might be 35.07 cm tall or 35.988 cm tall, or 35.3263 cm tall, 
and so on. although, of course, we do not have devices sensitive enough to detect this 
infinity of heights. A continuous variable is one for which there is a possible value 
between any other two values. 

However, when speaking of the number of leaves on a plant, we are dealing 
with a variable that can take on only certain values. It might be possible to observe 
27 leaves. or 28 leaves, but 27.43 leaves and 27.9 leaves are values of the variable 
that are impossible to obtain. Such a variable is termed a discrete or discontinuous 
variable (also known as a meristic variable). The number of white blood cells in 1 mm3 

of blood. the number of giraffes visiting a water hole. and the number of eggs laid 
by a grasshopper are all discrete variables. The possible values of a discrete variable 
generally are consecutive integers. but this is not necessarily so. If the leaves on our 



plants are always formed in pairs, then only even integers are possible values of the 
variable. And the ratio of number of wings to number of legs of insects is a discrete 
variable that may only have the value of 0,0.3333 ...• or 0.6666 ... (i.e., ~, ~, or ~, 
respectively). * 

Ratio-, interval-, and ordinal-scale data may be either continuous or discrete. 
Nominal-scale data by their nature are discrete. 

1.2 ACCURACY AND SIGNIFICANT FIGURES 

Accuracy is the nearness of a measurement to the true value of the variable being 
measured. Precision is not a synonymous term but refers to the closeness to each other 
of repeated measurements of the same quantity. Figure 1.1 illustrates the difference 
between accuracy and precision of measurements . 
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FIGURE 1.1: Accuracy and precision of measurements. A 3-kilogram animal is weighed 10 times. The 10 
measurements shown in sample (a) are relatively accurate and precise; those in sample (b) are relatively 
accurate but not precise; those of sample (c) are relatively precise but not accurate; and those of sample 
Cd) are relatively inaccurate and imprecise. 

Human error may exist in the recording of data. For example. a person may 
miscount the number of birds in a tract of land or misread the numbers on a heart­
rate monitor. Or, a person might obtain correct data but record them in such a way 
(perhaps with poor handwriting) that a subsequent data analyst makes an error in 
reading them. We shall assume that such errors have not occurred, but there are other 
aspects of accuracy that should he considered. 

Accuracy of measurement can be expressed in numerical reporting. If we report 
that the hind leg of a frog is 8 cm long, we are stating the number 8 (a value of a 
continuous variable) as an estimate of the frog's true leg length. This estimate was 
made using some sort of a measuring device. Had the device been capable of more 
accuracy, we might have declared that the leg was 8.3 em long, or perhaps 8.32 em 
long. When recording values of continuous variables. it is important to designate the 
accuracy with which the measurements have been made. By convention, the value 
8 denotes a measurement in the range of 7.50000 ... to 8.49999 ... , the value 8.3 
designates a range of 8.25000 ... to 8.34999 ...• and the value 8.32 implies that the 
true value lies within the range of 8.31500 ... to 8.32499 .... That is, the reported 
value is the midpoint of the implied range. and the size of this range is designated 
by the last decimal place in the measurement. The value of 8 cm implies an ability to 

*The ellipsis marks ( ... ) may be read as "and so on." Here. they indicate that ~ and ~ are 
repeating decimal fractions. which could just as well have been written as 0.3333333333333 ... and 
0.6666666666666 .... respectively. 
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determine length within a range of 1 cm. 8.3 cm implies a range of 0.1 cm. and 8.32 cm 
implies a range of 0.01 cm. Thus. to record a value of 8.0 implies greater accuracy 
of measurement than does the recording of a value of 8, for in the first instance the 
true value is said to lie between 7.95000 ... and 8.049999 ... (i.e., within a range of 
0.1 cm). whereas 8 implies a value between 7.50000 ... and 8.49999 ... (i.e .• within a 
range of I cm). To state 8.00 cm implies a measurement that ascertains the frog's limb 
length to be between 7.99500 ... and 8.00499 ... cm (i.e .. within a range of 0.01 cm). 
Those digits in a number that denote the accuracy of the measurement are referred 
to as significant figures. Thus. 8 has one significant figure, 8.0 and 8.3 each have two 
significant figures, and 8.00 and 8.32 each have three. 

In working with exact values of discrete variables. the preceding considerations 
do not apply. That is. it is sufficient to state that our frog has four limbs or that its 
left lung contains thirteen flukes. The use of 4.0 or 13.00 would be inappropriate. for 
as the numbers involved are exactly 4 and 13. there is no question of accuracy or 
significant figures. 

But there are instances where significant figures and implied accuracy come into 
play with discrete data. An entomologist may report that there are 72,000 moths in 
a particular forest area. In doing so. it is probably not being claimed that this is the 
exact number but an estimate of the exact number. perhaps accurate to two significant 
figures. In such a case. 72,000 would imply a range of accuracy of 1000. so that the true 
value might lie anywhere from 71,500 to 72,500. If the entomologist wished to convey 
the fact that this estimate is believed to be accurate to the nearest 100 (i.e .. to three 
significant figures), rather than to the nearest 1000, it would be better to present the 
data in the form of scientific l1otation,* as follows: If the number 7.2 x 104 ( = 72.000) 
is written, a range of accuracy of 0.1 x 104 (= 1000) is implied. and the true value 
is assumed to lie between 71,500 and 72,500. But if 7.20 x 1(}4 were written. a range 
of accuracy of 0.01 x 104 ( = 100) would be implied, and the true value would be 
assumed to be in the range of 71,950 to 72,050. Thus. the accuracy of large values (and 
this applies to continuous as well as discrete variables) can be expressed succinctly 
using scientific notation. 

Calculators and computers typically yield results with more significant figures than 
are justified by the data. However. it is good practice-to avoid rounding error-to 
retain many significant figures until the last step in a sequence of calculations. and on 
attaining the result of the final step to round off to the appropriate number of figures. 
A suggestion for the number of figures to report is given at the end of Section 6.2. 

1.3 FREQUENCY DISTRIBUTIONS 

When collecting and summarizing large amounts of data, it is often helpful to record 
the data in the form of a frequency table. Such a table simply involves a listing of all 
the observed values of the variable being studied and how many times each value is 
observed. Consider the tabulation of the frequency of occurrence of sparrow nests 
in each of several different locations. This is illustrated in Example l.l, where the 
observed kinds of nest sites are listed, and for each kind the number of nests observed 
is recorded. The distribution of the total number of observations among the various 
categories is termed a frequency distribution. Example 1.1 is a frequency table for 
nominal data. and these data may also be presented graphically by means of a bar 
graph (Figure 1.2). where the height of each bar is proportional to the frequency 
in the class represented. The widths of all bars in a bar graph should be equal so 

*The use of scientific notation-by physicists-can be traced back to at least the 18605 (Miller. 
2004b). 



EXAMPLE 1.1 
Nominal Data 
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The Location of Sparrow Nests: A Frequency Table of 

The variable is nest site. and there are four recorded categories of this variable. 
The numbers recorded in these categories constitute the frequency distribution. 

Nest Site Number of Nests Observed 

A. Vines 56 
B. Building eaves 60 
C. Low tree branches 46 
D. Tree and building cavities 49 
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FIGURE 1.2: A bar graph of the sparrow nest data of Example 1.1. An example of a bar graph for 
nominal data. 

that the eye of the reader is not distracted from the differences in bar heights; this 
also makes the area of each bar proportional to the frequency it represents. Also. 
the frequency scale on the vertical axis should begin at zero to avoid the apparent 
differences among bars. If. for example. a bar graph of the data of Example 1.1 were 
constructed with the vertical axis representing frequencies of 45 to 60 rather than 0 to 
60. the results would appear as in Figure 1.3. Huff (1954) illustrates other techniques 
that can mislead the readers of graphs. It is good practice to leave space between 
the bars of a bar graph of nominal data. to emphasize the distinctness among the 
categories represented. 

A frequency tabulation of ordinal data might appear as in Example 1.2. which 
presents the observed numbers of sunfish collected in each of five categories. each 
category being a degree of skin pigmentation. A bar graph (Figure 1.4) can be 
prepared for this frequency distribution just as for nominal data. 
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60 r-

FIGURE 1.3: A bar graph of the sparrow nest data of Example 1.1, drawn with the vertical axis starting 
at 45. Compare this with Figure 1.1, where the axis starts at O. 

EXAMPLE 1.2 Numbers of Sunfish, Tabulated According to Amount of 
Black Pigmentation: A Frequency Table of Ordinal Data 

The variable is amount of pigmentation, which is expressed by numerically 
ordered classes. The numbers recorded for the five pigmentation classes compose 
the frequency distribution. • 

Pigmentation Class Amount of Pigmentation Number of Fish 

o No black pigmentation 13 
1 Faintly speckled 68 
2 Moderately speckled 44 
3 Heavily speckled 21 
4 Solid black pigmentation 8 
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FIGURE 1.4: A bar graph of the sunfish pigmentation data of Example 1.2. An example of a bar graph 
for ordinal data. 
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In preparing frequency tables of interval- and ratio-scale data, we can make a 
procedural distinction between discrete and continuous data. Example 1.3 shows 
discrete data that are frequencies of litter sizes in foxes, and Figure 1.5 presents this 
frequency distribution graphically. 

EXAMPLE 1.3 Frequency of Occurrence of Various Litter Sizes in Foxes: 
A Frequency Table of Discrete, Ratio-Scale Data 

The variable is litter size, and the numbers recorded for the five litter sizes make 
up frequency distribution. 

Utter Size Frequency 

3 10 
4 27 
5 22 
6 4 
7 1 
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FIGURE 1.5: A bar graph of the fox litter data of Example 1.3. An example of a bar graph for discrete, 
ratio-scale data. 

Example 1.4a shows discrete data that are the numbers of aphids found per clover 
plant. These data create quite a lengthy frequency table, and it is not difficult 
to imagine sets of data whose tabulation would result in an even longer list of 
frequencies. Thus, for purposes of preparing bar graphs, we often cast data into a 
frequency table by grouping them. 

Example l.4b is a table of the data from Example 1.4a arranged by grouping the 
data into size classes. The bar graph for this distribution appears as Figure 1.6. Such 
grouping results in the loss of some information and is generally utilized only to make 
frequency tables and bar graphs easier to read, and not for calculations performed on 
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the data. There have been several "rules of thumb" proposed to aid in deciding into 
how many classes data might reasonably be grouped, for the use of too few groups will 
obscure the general shape of the distribution. But such "rules" or recommendations 
are only rough guides, and the choice is generally left to good judgment, bearing in 
mind that from 10 to 20 groups are useful for most biological work. (See also Doane, 
1976.) In general, groups should be established that are equal in the size interval of 
the variable being measured. (For example, the group size interval in Example].4b 
is four aphids per plant.) 

EXAMPLE 1.4a Number of Aphids Observed per Clover Plant: A Fre-
quency Table of Discrete, Ratio-Scale Data 

Number of Aphids Number of Number of Aphids Number of 
011 a Plant Plants Observed on a Plant Plallts Observed 

0 3 20 17 
1 1 21 18 
2 I 22 23 
3 1 23 17 
4 2 24 19 
5 3 25 18 
6 5 26 19 
7 7 27 21 
8 8 28 18 
9 II 29 13 

IO 10 30 10 
11 11 31 14 
12 13 32 9 
13 12 33 10 
14 16 34 8 
15 13 35 5 
16 14 36 4 
17 ]6 37 1 
18 ]5 38 2 
19 14 39 1 

40 0 
41 I 

Total number of observations = 424 

Because continuous data, contrary to discrete data. can take on an infinity of 
values, one is essentially always dealing with a frequency distribution tabulated by 
groups. If the variable of interest were a weight, measured to the nearest 0.1 mg, 
a frequency table entry of the number of weights measured to be 48.6 mg would 
be interpreted to mean the number of weights grouped between 48.5500 ... and 
48.6499 ... mg (although in a frequency table this class interval is usually written as 
48.55-48.65). Example 1.5 presents a tabulation of 130 determinations of the amount 
of phosphorus, in milligrams per gram, in dried leaves. (Ignore the last two columns 
of this table until Section 1.4.) 
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EXAMPLE 1.4b Number of Aphids Observed per Clover Plant: A Fre-
quency Table Grouping the Discrete, Ratio-Scale Data of Example 1.4a 
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FIGURE 1.6: A bar graph of the aphid data of Example 1.4b. An example of a bar graph for grouped 
discrete, ratio-scale data. 



12 Chapter 1 Data: Types and Presentation 

EXAMPLE 1.5 Determinations of the Amount of Phosphorus in Leaves: A 
Frequency Table of Continuous Data 

Frequency 
Cumulative frequency 

Phosphorus (i.e .• number of Starting with Startillg with 
(mglg of leaf) determinations) Low Values High Vailies 

8.15-8.25 2 2 130 
8.25-8.35 6 8 128 
8.35-8.45 8 16 122 
8.45-8.55 11 27 114 
8.55-8.65 17 44 103 
8.65-8.75 17 61 86 
8.75-8.85 24 85 69 
8.85-8.95 18 103 45 
8.95-9.05 13 116 27 
9.05-9.15 10 126 14 
9.15-9.25 4 130 4 

Total frequency = 130 = n 

In presenting this frequency distribution graphically, one can prepare a histogram: 
which is the name given to a bar graph based on continuous data. This is done in 
Figure 1.7: note that rather than indicating the range on the horizontal axis. we 
indicate only the midpoint of the range, a procedure that results in less crowded 
printing on the graph. Note also that adjacent bars in a histogram are often drawn 
touching each other, to emphasize the continuity of the scale of measurement, whereas 
in the other bar graphs discussed they generally are not. 
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FIGURE 1.7: A histogram of the leaf phosphorus data of Example 1.5. An example of a histogram for 
continuous data. 

*The term histogram is from Greek roots (referring to a pole-shaped drawing) and was first 
published by Karl Pearson in 1895 (David \995). 
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FIGURE 1.8: A frequency polygon for the leaf phosphorus data of Example 1.5. 

Often a frequency polygon is drawn instead of a histogram. This is done by plotting 
the frequency of each class as a dot (or other symbol) at the class midpoint and 
then connecting each adjacent pair of dots by a straight line (Figure 1.8). It is. of 
course. the same as if the midpoints of the tops of the histogram bars were connected 
by straight lines. Instead of plotting frequencies on the vertical axis, one can plot 
relative frequencies, or proportions of the total frequency. This enables different 
distributions to be readily compared and even plotted on the same axes. Sometimes, 
as in Figure 1.8, frequency is indicated on one vertical axis and the corresponding 
relative frequency on the other. (Using the data of Example 1.5, the relative frequency 
for 8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 6/130 = 0.046, that for 9.2 mglg is 
4/130 = 0.030, and so on. The total of all the frequencies is n, and the total of all the 
relative frequencies is 1.) 

Frequency polygons are also commonly used for discrete distributions, but one can 
argue against their use when dealing with ordinal data, as the polygon implies to the 
reader a constant size interval horizontally between points on the polygon. Frequency 
polygons should not be employed for nominal-scale data. 

If we have a frequency distribution of values of a continuous variable that falls 
into a large number of class intervals, the data may be grouped as was demonstrated 
with discrete variables. This results in fewer intervals, but each interval is, of course, 
larger. The midpoints of these intervals may then be used in the preparation of a 
histogram or frequency polygon. The user of frequency polygons is cautioned that 
such a graph is simply an aid to the eye in following trends in frequency distributions, 
and one should not attempt to read frequencies between points on the polygon. Also 
note that the method presented for the construction of histograms and frequency 
polygons requires that the class intervals be equal. Lastly, the vertical axis (e.g., the 
frequency scale) on frequency polygons and bar graphs generally should begin with 
zero, especially if graphs are to be compared with one another. If this is not done, the 
eye may be misled by the appearance of the graph (as shown for nominal-scale data 
in Figures 1.2 and 1.3). 
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1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

A frequency distribution informs us how many observations occurred for each value 
(or group of values) of a variable. That is. examination of. the frequency table of 
Example 1.3 (or its corresponding bar graph or frequency polygon) would yield 
information such as. "How many fox litters of four were observed?". the answer 
being 27. But if it is desired to ask questions such as, "How many litters of four or 
more were observed?", or "How many fox litters of five or fewer were observed?", 
we are speaking of cumulative frequencies. To answer the first question, we sum 
all frequencies for litter sizes four and up, and for the second question, we sum all 
frequencies from the smallest litter size up through a size of five. We arrive at answers 
of 54 and 59, respectively. 

In Example 1.5, the phosphorus concentration data are cast into two cumulative 
frequency distributions, one with cumulation commencing at the low end of the 
measurement scale and one with cumulation being performed from the high values 
toward the low values. The choice of the direction of cumulation is immaterial. 
as can be demonstrated. If one desired to calculate the number of phosphorus 
determinations less than 8.55 mg/g, namely 27, a cumulation starting at the low end 
might be used, whereas the kn'owledge of the frequency of determinations greater 
than 8.55 mg/g, namely 103, can be readily obtained from the cumulation commencing 
from the high end of the scale. But one can easily calculate any frequency from a low­
to-high cumulation (e.g .. 27) from its complementary frequency from a high-lo-Iow 
cumulation (e.g., 103), simply by knowing that the sum of these two frequencies is the 
total frequency (i.e., n = 130): therefore, in practice it is not necessary to calculate 
both sets of cumulations. 

Cumulative frequency distributions are useful in determining medians, percentiles. 
and other quantiles, as discussed in Sections 3.2 and 4.2. They are not often presented 
in bar graphs, but cllmulative frequency polygons (sometimes called ogives) are not 
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FIGURE 1.9: Cumulative frequency polygon ofthe leaf phosphorus data of Example 1.5, with cumulation 
commencing from the lowest to the highest values of the variable. 
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FIGURE 1.10: Cumulative frequency polygon of the leaf phosphorus data of Example 1.5, with cumulation 
commencing from the highest to the lowest values of the variable. 

uncommon. (See Figures 1.9 and 1.10.) Relative frequencies (proportions ofthe total 
frequency) can be plotted instead of (or, as in Figures 1.9 and 1.10, in addition to) 
frequencies on the vertical axis of a cumulative frequency polygon. This enables 
different distributions to be readily compared and even plotted on the same axes. 
(Using the data of Example 1.5 for Figure 1.9, the relative cumulative frequency for 
8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 8/130 = 0.062, and so on. For Figure 
1.10, the relative cumulative frequency for 8.2 mg/g is 130/130 = 1.000, that for 8.3 
mglg is 128/130 = 0.985, and so on.) 



CHAPTER 2 

Populations and Samples 

2.1 POPULAnONS 
2.2 SAMPLES FROM POPULATIONS 
2.3 RANDOM SAMPLING 
2.4 PARAMETERS AND STATISTICS 
2.5 OUTLIERS 

2.1 POPULATIONS 

The primary objective of a statistical analysis is to infer characteristics of a group 
of data by analyzing the characteristics of a small sampling of the group. This 
generalization from the part to the whole requires the consideration of such important 
concepts as population. sample. parameter. statistic. and random sampling. These 
topics are discussed in this chapter. 

Basic to statistical analysis is the desire to draw conclusions about a group of 
measurements of a variable being studied. Biologists often speak of a "population" 
as a defined group of humans or of another species of organisms. Statisticians 
speak of a population (also called a universe) as a group of measurements (not 
organisms) about which one wishes to draw conclusions. It is the latter definition. 
the statistical definition of population. that will be used throughout this book. For 
example. an investigator may desire to draw conclusions about the tail lengths of 
bobcats in Montana. All Montana bobcat tail lengths are. therefore. the population 
under consideration. If a study is concerned with the blood-glucose concentration in 
three-year-old children, then the blood-glucose levels in all children of that age are 
the population of interest. 

Populations are often very large. such as the body weights of all grasshoppers in 
Kansas or the eye colors of all female New Zealanders. but occasionally populations 
of interest may be relatively small. such as the ages of men who have traveled to the 
moon or the heights of women who have swum the English Channel. 

2.2 SAMPLES FROM POPULATIONS 

16 

If the population under study is very small. it might be practical to obtain all 
the measurements in the population. If one wishes to draw conclusions about the 
ages of all men who have traveled to the moon. it would not be unreasonable to 
attempt to collect all the ages of the small number of individuals under consider­
ation. Generally. however. populations of interest are so large that obtaining all 
the measurements is unfeasible. For example. we could not reasonably expect to 
determine the body weight of every grasshopper in Kansas. What can be done in such 
cases is to obtain a subset of all the measurements in the population. This subset of 
measurements constitutes a slImple. and from the characteristics of samples we can 
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draw conclusions about the characteristics of the populations from which the samples 
came.* 

Biologists may sample a population that does not physically exist. Suppose an 
experiment is performed in which a food supplement is administered to 40 guinea 
pigs. and the sample data consist of the growth rates of these 40 animals. Then 
the population about which conclusions might be drawn is the growth rates of 
all the guinea pigs that conceivably might have been administered the same food 
supplement under identical conditions. Such a population is said to be "imaginary" 
and is also referred to as "hypothetical" or "potential." 

2.3 RANDOM SAMPLING 

Samples from populations can be obtained in a number of ways; however, for a sample 
to be representative of the population from which it came, and to reach valid con­
clusions about populations by induction from samples, statistical procedures typically 
assume that the samples are obtained in a random fashion. To sample a population 
randomly requires that each member of the population has an equal and independent 
chance of being selected. That is, not only must each measurement in the population 
have an equal chance of being chosen as a member of the sample, but the selection 
of any member of the population must in no way influence the selection of any other 
member. Throughout this book, "sample" will always imply "random sample . .,t 

It is sometimes possible to assign each member of a population a unique number 
and to draw a sample by choosing a set of such numbers at random. This is equivalent 
to having all members of a population in a hat and drawing a sample from them while 
blindfolded. Appendix Table B.41 provides 10,000 random digits for this purpose. In 
this table, each digit from 0 to 9 has an equal and independent chance of appearing 
anywhere in the table. Similarly, each combination of two digits, from 00 to 99, is 
found at random in the table, as is each three-digit combination, from 000 to 999, and 
soon. 

Assume that a random sample of 200 names is desired from a telephone directory 
having 274 pages, three columns of names per page, and 98 names per column. 
Entering Table B.41 at random (i.e., do not always enter the table at the same place), 
one might decide first to arrive at a random combination of three digits. If this 
three-digit number is 001 to 274, it can be taken as a randomly chosen page number (if 
it is 000 or larger than 274, simply skip it and choose another three-digit number, e.g., 
the next one on the table). Then one might examine the next digit in the table: if it is 
a 1,2, or 3, let it denote a page column (if a digit other than 1,2, or 3 is encountered, it 
is ignored, passing to the next digit that is 1,2, or 3). Then one could look at the next 
two-digit number in the table: if it is from 01 to 98, let it represent a randomly selected 
name within that column. This three-step procedure would be performed a total of 
200 times to obtain the desired random sample. One can proceed in any direction in 
the random number table: left to right, right to left, upward, downward, or diagonally; 
but the direction should be decided on before looking at the table. Computers are 
capable of quickly generating random numbers (sometimes called "pseudorandom" 
numbers because the number generation is not perfectly random), and this is how 
Table B.41 was derived. 

*This use of the terms pOPlllatioll and .mmple was established by Karl Pearson (1903). 
tThis concept of random sampling was established by Karl Pearson between 1897 and 1903 

(Miller.2004a). 
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Very often it is not possible to assign a number to each member of a population. 
and random sampling then involves biological. rather than simply mathematical. 
considerations. That is. the techniques for sampling Montana hobcats or Kansas 
grasshoppers require knowledge about the particular organism to ensure that the 
sampling is random. Researchers consult relevant books, periodical articles. or 
reports that address the specific kind of biological measurement to he obtained. 

2.4 PARAMETERS AND STATISTICS 

Several measures help to describe or characterize a population. For example. generally 
a preponderance of measurements occurs somewhere around the middle of the range 
of a population of measurements. Thus. some indication of a popUlation "average" 
would express a u!;eful bit of descriptive information. Such information is called a 
measure of central tendency (also called a measure of location), and several such 
measures (e.g .• the mean and the median) will be discussed in Chapter 3. 

It is also important to describe how dispersed the measurements are around the 
"average." That is. we can ask whether there is a wide spread of values in 
the population or whether the values are rather concentrated around the middle. 
Such a descriptive property is called a measure of variability (or a measure of disper­
sian), and several such measures (e.g., the range and the standard deviation) will be 
discussed in Chapter 4. 

A quantity such as a measure of central tendency or a measure of dispersion 
is called a parameter when it describes or characterizes a popUlation, and we shall 
be very interested in discussing parameters and drawing conclusions about them. 
Section 2.2 pointed out. however. that one seldom has data for entire populations. 
but nearly always has to rely on samples to arrive at conclusions about populations. 
Thus. one rarely is able to calculate parameters. However. by random sampling of 
populations. parameters can be estimated well. as we shall see throughout this book. 
An estimate of a population parameter is called a statistic.* It is statistical convention 
to represent population parameters by Greek letters and sample statistics by Latin 
letters; the following chapters will demonstrate this custom for specific examples. 

The statistics one calculates will vary from sample to sample for samples taken from 
the same population. Because one uses sample statistics as estimates of population 
parameters, it behooves the researcher to arrive at the "best" estimates possible. As 
for what properties to desire in a "good" estimate, consider the following. 

First, it is desirable that if we take an indefinitely large number of samples from a 
population. the long-run average of the statistics obtained will equal the parameter 
being estimated. That is. for some samples a statistic may underestimate the parameter 
of interest. and for others it may overestimate that parameter; but in the long run the 
estimates that are too low and those that are too high will "average out." If such a 
property is exhibited hy a statistic. we say that we have an unbiased statistic or an 
unbiased estimator. 

Second, it is desirable that a statistic obtained from any single sample from a 
population be very close to the value of the parameter being estimated. This property 
of a statistic is referred to as precision.t efficiency, or reliability. As we commonly 
secure only one sample from a population, it is important to arrive at a close estimate 
of a parameter from a single sample. 

*This use of the terms parameter and statistic was defined by R. A. Fisher as early as 1922 
(Miller. 2004a: Savage. 1976). 

tThe precision of a sample statistic. as defined here. should not be confused with the precision 
of a measurement. defined in Section 1.2. 
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Third, consider that one can take larger and larger samples from a population (the 
largest sample being the entire population). As the sample size increases, a consistent 
statistic will become a better estimate of the parameter it is estimating. Indeed, if the 
sample were the size of the population, then the best estimate would be obtained: the 
parameter itself. 

In the chapters that follow, the statistics recommended as estimates of parameters 
are "good" estimates in the sense that they possess a desirable combination of 
unbiasedness, efficiency, and consistency. 

Occasionally, a set of data will have one or more observations that are so different, 
relative to the other data in the sample, that we doubt they should be part of the 
sample. For example. suppose a researcher collected a sample consisting of the body 
weights of nineteen 20-week-old mallard ducks raised in individual laboratory cages. 
for which the following 19 data were recorded: 

1.87,3.75,3.79,3.82,3.85,3.87.3.90.3.94,3.96,3.99, 

3.99,4.00,4.03,4.04,4.05,4.06,4.09,8.97, and 39.8 kilograms. 

Visual inspection of these 19 recorded data casts doubt upon the smallest datum 
(1.87 kg) and the two largest data (8.97 kg and 39.8 kg) because they differ so greatly 
from the rest of the weights in the sample. Data in striking disagreement with nearly 
all the other data in a sample are often called outliers or discordant data, and the 
occurrence of such observations generally calls for closer examination. 

Sometimes it is clear that an outlier is the result of incorrect recording of data. In 
the preceding example, a mallard duck weight of 39.8 kg is highly unlikely (to say the 
least!), for that is about the weight of a 12-year-old boy or girl (and such a duck would 
probably not fit in one of the laboratory cages). In this case, inspection of the data 
records might lead us to conclude that this body weight was recorded with a careless 
placement of the decimal point and should have been 3.98 kg instead of 39.8 kg. And, 
upon interrogation. the research assistant may admit to weighing the eighteenth duck 
with the scale set to pounds instead of kilograms, so the metric weight of that animal 
should have been recorded as 4.07 (not 8.97) kg. 

Also, upon further examination of the data-collection process, we may find that 
the 1.87-kg duck was taken from a wrong cage and was, in fact, only 4 weeks old. 
not 20 weeks old, and therefore did not belong in this sample. Or. perhaps we find 
that it was not a mallard duck, but some other bird species (and, therefore. did not 
belong in this sample). Statisticians say a sample is contaminated if it contains a datum 
that does not conform to the characteristics of the population being sampled. So the 
weight of a 4-week-old duck. or of a bird of a different species, would be a statistical 
contaminant and should be deleted from this sample. 

There are also instances where it is known that a measurement was faulty-for 
example. when a laboratory technician spills coffee onto an electronic measuring 
device or into a blood sample to be analyzed. In such a case, the measurements 
known to be erroneous should be eliminated from the sample. 

However. outlying data can also be correct observations taken from an intended 
population, collected purely by chance. As we shall see in Section 6.1, when drawing 
a random sample from a population, it is relatively likely that a datum in the 
sample will be around the average of the population and very unlikely that a sample 
datum will be dramatically far from the average. But sample data very far from the 
average still may be possible. 
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It should also be noted that in some situations the examination of an outlier may 
reveal the effect of a previously unsuspected factor. For example. the 1.87-kg duck 
might, indeed. have been a 20-week-old mallard but suffering from a genetic muta­
tion or a growth-impeding disease deserving of further consideration in additional 
research. 

In summary, it is not appropriate to discard data simply because they appear (to 
someone) to be unreasonably extreme. However, if there is a very obvious reason 
for correcting or eliminating a datum, such as the situations described previously. the 
incorrect data should be corrected or eliminated. In some other cases questionable 
data can be accommodated in statistical analysis, perhaps by employing statistical 
procedures that give them less weight or analytical techniques that are robust in that 
they are resistant to effects of discrepant data. And in situations when this cannot 
be done, dubious data will have to remain in the sample (perhaps encouraging the 
researcher to repeat the experiment with a new set of data). 

The idea of rejecting erroneous data dates back over 200 years; and recommen­
dations for formal, objective methods for such rejection began to appear about 150 
years ago. Major discussions of outliers, their origin, and treatment (rejection or 
accommodation) are those of Barnett and Lewis (1994), Beckman and Cook (1983), 
and Thode (2002: 123-142). 



CHAPTER 3 

Measures of Central Tendency 

3.1 THE ARITHMETIC MEAN 
3.2 THE MEDIAN 
3.3 THE MODE 
3.4 OTHER MEASURES OF CENTRAL TENDENCY 
3.5 CODING DATA 

In samples. as well as in populations. one generally finds a preponderance of values 
somewhere around the middle of the range of observed values. The description of 
this concentration near the middle is an average. or a measure of central tendency to 
the statistician. It is also termed a meaSllre of location, for it indicates where. along 
the measurement scale. the sample or population is located. Various measures of 
central tendency are useful population parameters. in that they describe an important 
property of populations. This chapter discusses the characteristics of these parameters 
and the sample statistics that are good estimates of them. 

3.1 THE ARITHMETIC MEAN 

The most widely used measure of central tendency is the arithmetic mean.* usually 
referred to simply as the mean.t which is the measure most commonly called an 
"average." 

Each measurement in a popUlation may be referred to as an Xi (read "X sub i") 
value. Thus. one measurement might be denoted as XI, another as X2, another as X.,. 
and so on. The subscript i might be any integer value up through N. the total number 
of X values in the population.* The mean of the popUlation is denoted by the Greek 
letter J.L (lowercase mu) and is calculated as the sum of all the X; values divided by 
the size of the population. 

The calculation of the population mean can be abbreviated concisely by the formula 

J.L= 
;= I 

N 
(3.1 ) 

* As an adjective. arithmetic is pronounced with the accent on the third syllable. In early 
literature on the subject. the adjective arithmetical was employed. 

7The term meall (as applied to the arithmetic mean. as well as to the geometric and harmonic 
means of Section 3.4) dates from ancient Greece (Walker. 1929: IH3). with its current statistical 
meaning in use hy 1755 (Miller. 2004a; Walker, 1929: 170); central tellliellcy appeared by the laIC 
1920s (Miller, 2(Xl4a). 

* Charles Babbagc (1791-1871) (O'Connor and Robertson. 1998) wasem English mathematician 
and inventor who conceived principles used by modern computers-well hefore the advent of 
electronics-and who, in IR32, proposed the modern convention of italicizing Latin (also calleu 
Roman) Icttcrs to denotc quantitics: non italicized letters had already been cmployed for this 
purpose for more than six centuries (Miller. 2(01). 

21 
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The Greek letter ~ (capital sigma) means "summation"* and ~f= I X means "sum­
mation of all Xi values from XI through XN." Thus. for example. ~i= I Xi = 

XI + X2 + X3 + X4 and L~=3 Xi = X3 + X4 + X5. Since, in statistical com­
putations. summations are nearly always performed over the entire set of Xi values, 
this book will assume L Xi to mean "sum Xi'S over all values of i." simply as a 
matter of printing convenience, and p. = L Xii N would therefore designate the same 
calculation as would p. = ~~ I Xii N. 

The most efficient, unbiased, and consistent estimate of the population mean, p.. is 
the sample mean, denoted as X (read as "X bar"). Whereas the size of the population 
(which we generally do not know) is denoted as N, the size of a sample is indicated 
by n, and X is calculated as 

1/ 

~Xi 
X = i=1 

n 
or 

- ~Xi 
X= --, (3.2) 

n 

which is read "the sample mean equals the sum of all measurements in the sample 
divided by the number of measurements in the sample. tot Example 3.1 demonstrates 
the calculation of the sample mean. Note that the mean has the same units of 
measurement as do the individual observations. The question of how many decimal 
places should be reported for the mean will be answered at the end of Section 6.2; 
until then we shall simply record the mean with one more decimal place than the data. 

EXAMPLE 3.1 
Lengths 

A Sample of 24 from a Population of Butterfly Wing 

Xi (in centimeters): 3.3,3.5,3.6,3.6,3.7.3.8,3.8,3.8,3.9,3.9.3.9,4.0, 4.0. 4.0. 4.0. 
4.1,4.1. 4.1, 4.2, 4.2. 4.3, 4.3, 4.4, 4.5. 

~Xi = 95.0cm 
n = 24 

X - ~Xi - 95.0cm - 3% - -- - - . cm 
n 24 

·Mathematician Leonhard Euler (1707-1783; born in Switzerland. worked mostly in Russia). 
in 1755. was the first to use ~ to denote summation (Cajori. 1928/9. Vol. II: (1). 

tThc modern symbols for plus and minus ( .. +" and .. - ") appear to have first appeared 
in a 1456 unpublished manuscript by German mathematician and astronomer Regiomontanus 
(Johannes Muller. 1436-1476). with Bohemia-born Johann (Johannes) Widman (1562-1498) the 
first. in 1489. to use them in print (Cajori. 1928/9. Vol. I: 128.231-232). The modern equal sign 
("=") was invented by Welsh physician and mathematician Robert Recorde (15\0-1558). who 
published it in 1557 (though its use then disappeared in print until 1618). and it was wcll recognized 
starting in 1631 (Cajori. ibid.: 298; Gullberg. 1997: 107). Recorde also was the first to use the plus 
and minus symbols in an English work (Miller, 2004b). Using a horizontal line to express division 
derives from its use. in denoting fractions. by Arabic author AI-f:lalj~ar in the twelfth century. 
though it was not consistently cmployed for several more centuries (Cajori. ibid. I: 269.3(0). The 
slash mark (u/"; also known as a solidus. virgule. or diagonal) was recommended to denote division 
by the English logician and mathematician Augustus De Morgan (1806-1871) in 1845 (ibid. I: 
312-313). and the India-born Swiss author Johann Heinhirch Rahn (1622-1676) proposed. in 1659. 
denoting division by the symbol" +". which previously was often used by authors as a minus sign 
(ibid.: 211.270: Gullberg. 1997: 105). Many other symbols were used for mathematical operations. 
before and after these introductions (e.g .. Cajori. ibid.: 229-245). 
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If, as in Example 3.1, a sample contains multiple identical data for several values 
of the variable, then it may be convenient to record the data in the form of a 
frequency table, as in Example 3.2. Then Xi can be said to denote each of k different 
measurements and f; can denote the frequency with which that Xi occurs in the 
sample. The sample mean may then be calculated, using the sums of the products of 
f; and Xi, as* 

k 

~f;X; 
X = _;=_1 __ (3.3) 

n 

Example 3.2 demonstrates this calculation for the same data as in Example 3.1. 

EXAMPLE 3.2 The Data from Example 3.1 Recorded as a Frequency Table 

Xi (cm) f; f;Xj (cm) 

3.3 1 3.3 k = 13 
3.4 0 0 k 

3.5 1 3.5 ~f; = n = 24 
3.6 2 7.2 ;= 1 

3.7 1 3.7 k 

3.8 3 11.4 ~f;Xi 
95.0cm 

3.9 3 11.7 X = ;=1 = = 3.96 cm 
4.0 4 16.0 n 24 

4.1 3 12.3 median = 3.95 em + (1) (0.1 em) 
4.2 2 8.4 
4.3 2 8.6 :::; 3.95 em + 0.025 em 

4.4 ] 4.4 = 3.975 cm 
4.5 ] 4.5 

'Lf; = 24 'Lf;Xj = 95.0 cm 

A similar procedure is computing what is called a weighted mean, an expression 
of the average of several means. For example, we may wish to combine the mean of 
3.96 em from the sample of 24 measurements in Example 3.1 with a mean of 3.78 em 
from a sample of 30 measurements and a mean of 4.02 em from a sample of 15. These 
three means would be from a total of 24 + 30 + 15 = 69 data; and if we had all 
69 of the data we could sum them and divide the sum by 69 to obtain the overall 
mean length. However, that overall mean can be obtained without knowing the 69 

*Denoting the multiplication of two quantities (e.g., a and b) by their adjacent placement (Le., 
ab) derives from practices in Hindu manuscripts of the seventh century (Cajori, 1928/9. Vol. I: 77, 
250). Modern multiplication symbols include a raised dot (as in a • b), which was suggested in a 
1631 posthumous publication of Thomas Harriot (1560? -1621) and prominently adopted in 1698 by 
the outstanding mathematician Gottfried Wilhelm Lcibniz (1646-1716. in what is now Germany); 
the St. Andrew's cross (as in a X b). which was used in 1631 by English mathematician William 
Oughtrcd (1574-1660) though it was not in general use until more than 200 years later; and the 
letter X, which was used, perhaps by Oughtred. as early as 1618 (Cajori. ibid.: 251; Gullberg, 1997: 
104; Miller 2004b). Johann Rahn's 1659 usc of an asterisk-like symbol (as in (/ * b) (Cajori. ibid: 
212-213) did not persist but resurfaced in electronic computer languages of the latter half of the 
twentieth century. 
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3.2 THE MEDIAN 

individual measurements, by employing Equation 3.3 with f1 = 24, XI = 3.96 em. 
h = 30. X2 = 3.78 em. h = 15, X3 = 4.02 em, and n = 69. This would yield a 
weighted mean of X = [(24)(3.96cm) + (30)(3.78em) + (15)(4.02em)]/69 = 
(268.74 em)/69 = 3.89 em. 
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FIGURE 3.1: A histogram of the data in Example 3.2. The mean (3.96 em) is the center of gravity of the 
histogram. and the median (3.975 em) divides the histogram into two equal areas. 

If data are plotted as a histogram (Figure 3.1). the mean is the center of gravity 
of the histogram. * That is, if the histogram were made of a solid material, it would 
balance horizontally with the fulcrum at X. The mean is applicable to both ratio­
and interval-scale data; it should not be used for ordinal data and cannot be used for 
nominal data. 

The median is typically defined as the middle measurement in an ordered set of 
data. t That is, there are just as many observations larger than the median as there 
are smaller. The sample median is the best estimate of the population median. In a 
symmetrical distribution (such as Figures 3.2a and 3.2b) the sample median is also an 
unbiased and consistent estimate of p.. but it is not as efficient a statistic as X and 
should not be used as a substitute for X. If the frequency distribution is asymmetrical, 
the median is a poor estimate of the mean. 

The median of a sample of data may be found by first arranging the measurements in 
order of magnitude. The order may be either ascending or descending, but ascending 
order is most commonly used as is done with the samples in Examples 3.1. 3.2. and 
3.3. Then, we define the sample median as 

sample median = X(tl+ I )/2' (3.4) 

*Thc concept of the mean as the center of gravity was used by L. A. J. Quetelet in 1846 (Walker. 
1929: 73). 

tThe concept of the median was conceived as early as 1816, by K. F. Gauss; enunciated and 
reinforced by olhers, including F. Galton in 1869 and 1874; and independently discovered and 
promoled by G. T. Fechner beginning in 1874 (Walker. 1929: 83-88,184). It received its name. in 
English. from F. Galton in 1882 (David. 1995) and. in French. from A. A. Cournot in 1843 (David. 
1998a). 
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FIGURE 3.2: Frequency distributions showing measures of central tendency. Values of the variable 
are along the abscissa (horizontal axis), and the frequencies are along the ordinate (vertical axis). 
Distributions (a) and (b) are symmetrical, (c) is asymmetrical and said to be positively skewed, and 
(d) is asymmetrical and said to be negatively skewed. Distributions (a), (c), and (d) are unimodal, and 
distribution b is bimodal. In a unimodal asymmetric distribution, the median lies about one-third the 
distance between the mean and the mode.· 

EXAMPLE 3.3 Ufe Span for Two Species of Birds in Captivity 

The data for each species are arranged in order of magnitude 

Species A 
Xi (mo) 

16 
32 
37 
39 
40 
41 
42 
50 
82 

n=9 
median = X(n+ 1 )/2 = X(9+ 1 )/2 

= Xs = 40mo 
X = 42.11 mo 

Species B 
Xi (mo) 

34 
36 
38 
45 
50 
54 
56 
59 
69 
91 

n = 10 
median = X(n+ I )/2 = X(lO+ 1 )/2 

= XS.5 = 52mo 
X = 53.20mo 

• An interesting relationship among the mean, median, and standard deviation is shown in 
Equation 4.21. 
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If the sample size (n) is odd, then the subscript in Equation 3.4 will be an integer 
and will indicate which datum is the middle measurement in the ordered sample. For 
the data of species A in Example 3.3. n = 9 and the sample median is X(II+ 1)/2 = 
X(9+ I )/2 = Xs = 40 mo. If n is even. then the subscript in Equation 3.4 will be a 
number midway between two integers. This indicates that there is not a middle value 
in the ordered list of data: instead. there are two middle values. and the median is 
defined as the midpoint between them. For the species B data in Example 3.3, n = 10 
and X( Il + 1 )/2 = X(1o+ I )/2 = Xs.s, which signifies that the median is midway 
between Xs and X6. namely a median of (50 mo + 54 mo )/2 = 52 mo. 

Note that the median has the same units as each individual measurement. If data are 
plotted as a frequency histogram (e.g .. Figure 3.1), the median is the value of X that 
divides the area of the histogram into two equal parts. In general, the sample median 
is a more efficient estimate of the population median when the sample size is large. 

If we find the middle value(s) in an ordered set of data to be among identical 
observations (referred to as tied values), as in Example 3.1 or 3.2, a difficulty arises. 
If we apply Equation 3.4 to these 24 data. then we conclude the median to be 
X12.5 = 4.0 cm. But four data are tied at 4.0 cm, and eleven measurements are less 
than 4.0 cm and nine are greater. Thus, 4.0 cm does not fit the definition above or the 
median as that value for which there is the same number of data larger and smaller. 
Therefore, a better definition of the median of a set of data is that value for which no 
more than half the data are smaller and no more than half are larger. 

When the sample median falls among tied observations. we may interpolate to 
better estimate the population median. Using the data of Example 3.2, we desire to 
estimate a value below which 50% of the observations in the population lie. Fifty 
percent of the observations in the sample would be 12 observations. As the first 
7 classes in the frequency table include 11 observations and 4 observations are in class 
4.0 cm, we know that lhedesiredsample median lies within the rangeor3.95 to 4.05 cm. 
Assuming that the four observations in class 4.0 cm are distributed evenly within the 
O.l-cm range of 3.95 to 4.05 cm. then the median will be G) (0.1 cm) = 0.025 cm into 
this class. Thus, the median = 3.95 cm + 0.025 cm = 3.975 cm. In general, for the 
sample median within a class interval containing tied observations. 

d· ( lower limit) ( 0.5n - cum. freq. ) ( interval) (3 5) me Ian = f . I + . ,. 
o mterva no. of observations in interval sIze 

where "cum. freq." refers to the cumulative frequency of the previous classes! By 
using this procedure, the calculated median will be the value of X that divides the 
area of the histogram of the sample into two equal parts. As another example, refer 
back to Example 1.5. where, by Equation 3.5, median = 8.75 mg/g + ([ (0.5)( 130) -
61]/24}{0.1O mg/g} = 8.75 mg/g + 0.02 mg/g = 8.77 mg/g. 

The median expresses less information than does the mean. for it does not take 
into account the actual value of each measurement, but only considers the rank 
of each measurement. Still, it offers advantages in some situations. For example. 
extremely high or extremely low measurements ("outliers"; Section 2.5) do not affect 
the median as much as they affect the mean (causing the sample median to be called 
a "resistant" statistic). Distributions that are not symmetrical around the mean (such 
as in Figures 3.2c and 3.2d) are said to be skewed.t When we deal with skewed 

*This procedure was enunciated in 1878 by the German psychologist Gustav Theodor Fechner 
(Uml-1887) (Walker. 1929: 86). 

tThis term. applied to a distribution and to a curve, was used as early as 1895 by Karl Pearson 
(Miller.2004a). 
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populations and do not want the strong influence of outliers, we may prefer the 
median to the mean to express central tendency. 

Note that in Example 3.3 the researcher would have to wait 82 months to compute 
a mean life expectancy for species A and 91 months for species B, whereas the 
median for species A could be dctcrmined in only 40 months and in only 52 months 
for species B. Also, to calculate a median one does not need to have accurate 
data for all members of the sample. If, for example, we did not have the first 
three data for species A accurately recorded, but could state them as "less than 
39 months," then the median could have been determined just as readily as if we 
had all 9 data fully recorded. while calculation of the mean would not have been 
possible. 

The expression "LD fifty" (LD50), used in some areas of biological research, is 
simply the median lethal dose (and is so named because the median is the 50th 
percentile. as we shall see in Section 4.2). 

The median can be determined not only for interval-scale and ratio-scale data, but 
also for data on an ordinal scale, data for which the use of the mean usually would 
not be considered appropriate. But neither the median nor the mean is applicable to 
nominal data. 

The mode is commonly defined as the most frequently occurring measurement in a 
set of data.* In Example 3.2, the mode is 4.0 cm. But it is perhaps better to define 
a mode as a measurement of relatively great concentration. for some frequency 
distributions may have more than one such point of concentration. even though these 
concentrations might not contain precisely the same frequencies. Thus. a sample 
consisting of the data 6. 7. 7, 8, 8, 8. 8. R. 8. 9, 9, 10, 11, 12. 12. 12. 12. 12. 13, 13, and 
14 mm would be said to have two modes: at 8 mm and 12 mm. (Some authors would 
refer to 8 mm as the "major mode" and cal112 mm the "minor mode. ") A distribution 
in which each different measurement occurs with equal frequency is said to have no 
mode. If two consecutive values of X have frequencies great enough to declare the X 
values modes. the mode of the distribution may be said to be the midpoint of these 
two X's: for example. the mode of 3.5, 7, 7. 7. 8,8, 8. and 10 liters is 7.5 liters. A 
distribution with two modes is said to be bimodal (e.g., Figure 3.2b) and may indicate 
a combination of two distributions with different modes (e.g., heights of men and 
women). Modes are often discerned from histograms or frequency polygons; but we 
should be aware that the shape of such graphs (such as Figures 1.6. 1.7. and 1.8), and 
therefore the appearance of modes. may be influenced by the measurement intervals 
on the horizontal axis. 

The sample mode is the best estimate of the population mode. When we sample a 
symmetrical unimodal popUlation, the mode is an unbiased and consistent estimate 
of the mean and median (Figure 3.2a), but it is relatively inefficient and should not 
be so used. As a measure of central tendency, the mode is affected by skewness less 
than is the mean or the median. but it is more affected by sampling and grouping 
than these other two measures. The mode, but neither the median nor the mean, 
may be used for data on the nominal, as well as the ordinal. interval, and ratio scales 
of measurement. In a unimodal asymmetric distribution (Figures 3.2c and 3.2d). the 
median lies about one-third the distance between the mean and the mode. 

The mode is not often used in biological research, although it is often interesting 
to report the number of modes detected in a population, if there are more than one. 

*Thc term mode was introduced by Karl Pearson in IH95 (David. 1995). 
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3.4 OTHER MEASURES OF CENTRAL TENDENCY 

(a) The Geometric Mean. The geometric mean is the nth root* of the product of the 
n data: 

- 1!G' XG = ~X1X2X3 ",XII = n TI Xi. 
i= 1 

(3.6) 

Capital Greek pi, n. means "take the product"t in an analogous fashion as L indicates 
"take the sum." The geometric mean may also be calculated as the antilogarithm of 
the arithmetic mean of the logarithms of the data (where the logarithms may be in 
any base); this is often more feasible computationally: 

n 
~ logX; 

X '1 (IOg X l + 10gX, + ... + 10gXn ) '1 i=1 
G = antI og - = antI og :.......:---

n n 
(3.7) 

The geometric mean is appropriate to use only for ratio-scale data and only when 
al1 of the data are positive (that is, greater than zero). If the data are all equal, 
then the geometric mean, X G, is equal to the arithmetic mean, X (and also 
equal to the harmonic mean described below); if the data are not an equal. thent 
XG < X. 

X G is sometimes used as a measure of location when the data are highly skewed to 
the right (i.e., when there are many more data larger than the arithmetic mean than 
there are data smaller than the arithmetic mean). 

X G is also useful when dealing with data that represent ratios of change. As 
an illustration of this. Example 3.4 considers changes in the size of a popu­
lation of organisms over four decades. Each of the original data (population 
size at the end of a decade) is expressed as a ratio, Xi, of the population size 
to the popUlation size of the previous decade. The geometric mean of those 
ratios is computed and may be thought of as representing the average rate of 
growth per decade (which is the same as a constant rate of compound inter­
est), This example demonstrates that the arithmetic mean of those ratios is X = 
1.1650 (i.e., 16.50% growth) per decade. But over the four decades of pop­
ulation change, this mean would have us calculate a final population size of 
(10,000)(1.1650)(1.1650)(1.1650)(1.1650) = 18,421, which is 1101 the population size 
recorded at the end of the fourth decade. However, using the geometric mean. X G. to 
indicate the average rate of growth, the final population size would be computed to be 
(10,000)(1.608)(1.608)(1.608)(1.608) = 18,156, which is the fourth-decade population 
size that was observed. 

*The second footnote in Section 4.5 outlines the origin of the square-root symbol. J; indicating 
the cube root as ~ was suggcsted by Albert Girard (1595-1632. French-born but studied and 
worked in the Netherlands) as early as 1629, but this symbol was not generaly used until well 
into the eighteenth century (Cajori. 1928/9. Vol. J: 371-372). The cube-root symbol eventually was 
expanded to 'V to denote the nth root. 

t Use of this symbol to indicate taking the product was introduced by Rene Descartes (Gull berg. 
1997: 105). 

*The symbols "<" and "Y' (meaning "less than" and "greater than") were inserted by 
someone else into a 1631 posthumous publication by the English mathematician and astronomer 
Thomas Harriot (1560?-1621). (Cajori. 1928/9. Vol. I: 199; Gullberg. 1997: 109: Miller. 2004b). The 
symbols for "less than or equal to" (:::) and "greater than or equal to" (2:) were written as ii and?; 
when introduced by the French scientist Pierre Bouguere (1698-) 758) in 1734. (Gullberg. 1997: 109). 
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EXAMPLE 3.4 The Geometric Mean of Ratios of Change 

Population Ratio of Change 
Decade Size Xi 

0 10,000 

1 10,500 10,500 = 1.05 
10,000 

2 11,550 11,550 = 1.10 
10,500 

3 13,860 13,860 = 1.20 
11,550 

4 18,156 18,156 = 1.31 
13,860 

X = 1.05 + 1.10 + 1.20 + 1.31 = 4.66 = 1.1650 
4 4 

and (l0,(00)(0.1650)(1.650)(1.650)(1.650) = 18,421 

But, 
XG = ~(1.05)(1.1O)(1.20)(1.31) = ~11.8157 = 1.1608 

or 

X '1 [IOg( 1.05) + log( 1.10) + log( 1.20) + log( 1.31 )] 
G = antI og --=-'------'--~----'------4-=-'---=-----=--'----'-

= antilog(0.0212 + 0.0414 + 0.0792 + 0.1173) = antilog(0.2591) 
4 4 

= antilog 0.0648 = 1.1608 

and (10,000)( 1.1608) ( 1.1608)( 1.1608)( 1.1608) = 18,156 

(b) The Harmonic Mean. The harmonic mean is the reciprocal of the arithmetic 
mean of the reciprocals of the data: 

- 1 _ n 
XII = ! L.l - ~ 1 . 

n Xi Xi 

(3.8) 

It may be used for ratio-scale data when no datum is zero. If all of the data are 
identical, then the harmonic mean, Xu, is equal to the arithmetic mean, X (and 
equal to the geometric mean, X G)' If the data are all positive and not identical, then 
Xu < XG < X . 

. Xu finds use when desiring an average of rates, as described by Croxton, Cowden, 
and Klein (1967: 182-188). For example, consider that a flock of birds flies from a 
roosting area to a feeding area 20 km away, flying at a speed of 40 kmlhr (which 
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takes 0.5 hr). The Hock returns to the roosting area along the same route (20 km). 
Hying at 20 kmlhr (requiring 1 hr of Hying time). To ask what the average flying 
speed was. we might employ Equation 3.2 and calculate the arithmetic mean as 
X = (40 kmlhr + 20 km/hr )/2 = 30 km/hr. However, this answer may not be 
satisfying, because a total of 40 km was traveled in 1.5 hr, indicating a speed of 
(40 km )/( 1.5 hr) = 26.7 kmlhr. Example 3.5 shows that the harmonic mean (X (I) is 
26.7 km/hr. 

EXAMPLE 3.5 The Harmonic Mean of Rates 

XI = 40 kmlhr. X2 = 20 kmlhr 

X = 40 kmlhr + 20 kmlhr = 60 km/hr = 30 kmlhr 
2 2 

But 

XH = 
2 2 

= 

+ 0.0250 hr/km + 0.0500 hr/km 
40kmlhr 20 km/hr 

2 
= 26.67 km/hr = 

0.075 hr/km 

(c) The Range Midpoint. The range midpoint. or midrange. is a measure of location 
defined as the point halfway between the minimum and the maximum values in the 
set of data. It may be used with data measured on the ratio, interval. or ordinal 
scale: but it is not generally a good estimate of location. for it utilizes relatively 
little information from the data. (However. the so-called mean daily temperature is 
often reported as the mean of the minimum and maximum and is. therefore. a range 
midpoint.) 

The midpoint of any two symmetrically located percentiles (see Section 4.2). such 
as the point midway between the first and third quartiles (i.e., the 25th and 75th 
percentiles). may be used as a location measure in the same fashion as the range 
midpoint is used (see Dixon and Massey. 1969: 133-134). Such measures are not as 
adversely affected by aberrantly extreme values as is the range midpoint. and they 
may be applied to ratio or interval data. If used with ordinal data, they (and the range 
midpoint) would be the same as the median. 

3.5 CODING DATA 

Often in the manipulation of data, considerable time and effort can be saved 
if coding is employed. Coding is the conversion of the original measurements 
into easier-to-work-with values by simple arithmetic operations. Generally coding 
employs a linear transformation of the data. such as multiplying (or dividing) or 
adding (or subtracting) a constant. The addition or subtraction of a constant is 
sometimes termed a translation of the data (i.e .. changing the origin). whereas the 
multiplication or division by a constant causes an expansion or contraction of the 
scale of measurement. 
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EXAMPLE 3.6 Coding Data to Facilitate Calculations 

Sample 1 (Coding by Subtraction: 
A = -840 g) 

Xi (g) coded Xi = Xi - 840 g 

842 
844 
846 
846 
847 
848 
849 

2 
4 
6 
6 
7 
8 
9 

~Xi = 5922g 

X = 5922g 
7 

coded ~ Xi = 42 g 

- 42g 
coded X =-

= 846g 

X = coded X - A 

= 6 g - (-840 g) 

= 846g 

7 
= 6g 

Sample 2 (Coding by Division: 
M = O.OOlliterslml) 

X;{ml) coded Xi = (Xi )(0.001 Iiters/ml) 
= Xi liters 

8,000 
9,000 
9,500 

11,000 
12,500 
13,000 

~ Xi = 63,000 ml 

X = 10,500 ml 

- x X = coded-
M 

8.000 
9.000 
9.500 

11.000 
12.500 
13.000 

coded ~Xi 

= 63.000 liters 

coded X 
= 10.500 liters 

10.500 liters 
= 

0.001 liters/ml 
= 10,500 ml 

The first set of data in Example 3.6 are coded by subtracting a constant value of 
840 g. Not only is each coded value equal to Xi - 840 g, but the mean of the coded 
values is equal to X - 840 g. Thus, the easier-to-work-with coded values may be 
used to calculate a mean that then is readily converted to the mean of the original 
data, simply by adding back the coding constant. 

In Sample 2 of Example 3.6, the observed data are coded by dividing each 
observation by 1000 (i.e., by multiplying by 0.001).* The resultant mean only needs 
to be multiplied by the coding factor of 1000 (Le., divided by 0.001) to arrive at the 
mean of the original data. As the other measures of central tendency have the same 
units as the mean, they are affected by coding in exactly the same fashion. 

Coding affects the median and mode in the same way as the mean is affected. 
The widespread use of computers has greatly diminished the need for researchers to 

*In 1593, mathematician Christopher Clavi us (1538-1612. born in what is now Germany but 
spent most of his life in what is now Italy; also credited with proposing the currently used Gregorian 
calendar rules regarding leap years: O'Connor and Robertson. 1996) became the first to use a 
decimal point to separate units from tenths; in 1617, the Scottish mathematician John Napier 
(1550-1617) used both points and commas for this purpose (Cajori. 1928/9. Vol. 1: 322-323), and 
the comma is still so used in some parts of the world. In some countries a raised dot has been 
used-a symbol Americans sometimes employ to denote multiplication. 
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utilize coding (although computer software may use it). Appendix C presents coding 
for a variety of statistics. 

EXERCISES 

3.1. If XI = 3.1 kg. X2 = 3.4 kg. X3 = 3.6 kg. 
X4 = 3.7 kg. and Xs = 4.0 kg, calculate the 
value of 

4 

(a) ~ X;. 
;-1 

4 

(b) ~ X;. 
;-2 

5 
(c) ~ X;. 

;-1 

(d) ~X;. 

3.2. (a) Calculate the mean of the five weights in Exer­
cise 3.1. 

(b) Calculate the median of those weights. 

3.3. The ages. in years. of the faculty members of a 
university biology department are 32.2, 37.5, 41.7. 
53.8. 50.2. 48.2. 46.3. 65.0. and 44.8. 
(a) Calculate the mean age of these nine faculty 

members. 

(b) Calculate the median of the ages. 

(c) If the person 65.0 years of age retires and 
is replaced on the faculty with a person 46.5 
years old. what is the new mean age? 

(d) What is the new median age? 

3.4. Consider the following frequency tabulation of leaf 
weights (in grams): 

Xi f; 

1.85-1.95 2 
1.95-2.05 1 
2.05-2.15 2 
2.15-2.25 3 
2.25-2.35 5 
2.35-2.45 6 
2.45-2.55 4 
2.55-2.65 3 
2.65-2.75 I 

Using the midpoints of the indicated ranges of Xi. 
(a) Calculate the mean leaf weight using Equation 

3.2. and 
(b) Calculate the mean leaf weight using Equation 

3.3. 
(c) Calculate the median leaf weight using Equa­

tion 3.4. and 
(d) Calculate the median using Equation 3.5. 
(e) Determine the mode of the frequency distri­

bution. 
3.5. A fruit was collected from each of eight lemon 

trees. with the intent of measuring the calcium 
concentration in the rind (grams of calcium per 
100 grams of dry rind). The analytical method used 
could only detect a concentration of at least 0.80 
gllOO g of dry weight. Six of the eight concentra­
tions were measured to be 1.02. 0.98. 0.91. 0.84. 
0.87. 1.04 gllOO g of dry weight. and two of the 
concentrations were known to be less than 0.80 
gll00 g of dry weight. What is the median of this 
sample of eight data? 



CHAPTER 4 

Measures of Variability and Dispersion 

4.1 THE RANGE 
4.2 DISPERSION MEASURED WITH QUANTILES 
4.3 THE MEAN DEVIATION 
4.4 THE VARIANCE 
4.5 THE STANDARD DEVIATION 
4.6 THE COEFFICIENT OF VARIATION 
4.7 INDICES OF DIVERSITY 
4.8 CODING DATA 

4.1 THE RANGE 

In addition to a description of the central tendency of a set of data. it is generally 
desirahle to have a description of the variability, or of the dispersion.* of the data. A 
measure of variability (or measure of dispersion. as it is often called) is an indication 
of the spread of measurements around the center of the distribution. Measurements 
that are concentrated around the center of a distribution of data have low variability 
(low dispersion). whereas data that are very spread out along the measurement scale 
have high variability (high dispersion). Measures of variability of a population are 
population parameters. and sample measures of variabili ty are statistics that estimate 
those parameters. 

The difference hetween the highest and lowest measurements in a group of data 
is termed the range. t If sample measurements are arranged in increasing order of 
magnitude. as if the median were about to be determined. then 

sample range = X" - XI. (4.1 ) 

which is 
sample range = largest X - smallest X. 

Sample I in Example 4.1 is a hypothetical set of ordered data in which XI = 1.2 g and 
X" = 2.4 g. Thus. the range may be expressed as 1.2 to 2.4 g. or as 2.4 g - 1.2 g = 1.2 g. 
Note that the range has the same units as the individual measurements. Sample 2 in 
Example 4.1 has the same range as Sample I. 

~'The statistical use of this term tirst ,Ippeared in an Unfl publication by Francis Galton (David. 
IYl)Xa ). 

';'This statistical term d<ltes from ,10 IX4X paper by H. Lloyd (David. 1995). It was already used 
by the Greek <Istronomer Hipparchus <IS a me,lsure of dispersion in the secoml century R.CE. (Davit!' 
IYYXb ). 

33 
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EXAMPLE 4.1 Calculation of Measures of Dispersion for Two Hypotheti-
cal Samples of 7 Insect Body Weights 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

LXi 
= 12.6 g 

Sample 1 

Xi - X (g) IXi - XI (g) 

-0.6 0.6 
-0.4 0.4 
-0.2 0.2 

0.0 0.0 
0.2 0.2 
0.4 0.4 
0.6 0.6 

L(Xi - X) LIXi - XI 
= O.Og = 2.4 g 

(Xi - X)2 (g2) 

0.36 
0.16 
0.04 
0.00 
0.04 
0.16 
0.36 

L(Xi - X)2 
= 1.12 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

LXi = 12.6g = 1.8g 
n 7 

n = 7: X 

range 

interquartile range 

X7 - XI = 2.4 g - 1.2 g = 1.2 g 

= Q3 - QI = 2.2g - l.4g = 0.8g 

= L IXi - XI = 2.4 g = 0.34 g 
n 7 

mean deviation 

variance = s2 
~(K - X)2 112 2 
£.J I = . g = 0.1867 g2 

n - 1 6 

standard deviation = s == ~0.1867 g2 = 0.43 g 

Sample 2 

Xi (g) Xi - X (g) IXi - XI (g) 

1.2 -0.6 0.6 
1.6 -0.2 0.2 
1.7 -0.1 0.1 
1.8 0.0 0.0 
1.9 0.1 0.1 
2.0 0.2 0.2 
2.4 0.6 0.6 

LX; L(Xi - X) LIXi - XI 
= 12.6 g = 0.0 g = 1.8 g 

n = 7; X = ~ = 12.6 g = 1.8 g 
1/ 7 

(Xi - X)2 (g2) 

0.36 
0.04 
0.01 
0.00 
0.01 
0.04 
0.36 

~ -2 £.J(Xi - X) 
= 0.82 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

range = X7 - XI = 2.4g - 1.2g = 1.2g 
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interquartile range 

mean deviation 

variance = ... 2 

standard deviation = s 

Q3 - QI = 2.0 g - 1.6 g = 0.4 g 

= ~ IX; - XI = 1.8 g = 0.26 g 
n 7 

~ - 2 2 
= ~(Xi - X) = 0.82 g = 0.1367 g2 

n - 1 6 

= ~0.1367 g2 = 0.37 g 

The range is a relatively crude measure of dispersion, inasmuch as it does not 
take into account any measurements except the highest and the lowest. Furthermore, 
it is unlikely that a sample will contain both the highest and lowest values in 
the population, so the sample range usually underestimates the population range; 
therefore, it is a biased and inefficient estimator. Nonetheless, it is considered useful 
by some to present the samplc range as an estimate (although a poor onc) of the 
population range. For example, taxonomists are often concerned with having an 
estimate of what the highest and lowest values in a population are expected to be. 
Whenever the range is specified in reporting data, however, it is usually a good 
practice to report another measure of dispersion as well. The range is applicable to 
ordinal-, interval-. and ratio-scale data. 

4.2 DISPERSION MEASURED WITH QUANTILES 

Because the sample range is a biased and inefficient estimate of the population range, 
being sensitive to extremely large and small measurements, alternative measures of 
dispersion may be desired. Just as the median (Section 3.2) is the value above and 
below which lies half the set of data, one can define measures. called quantiles, above 
or below which lie other fractional portions of the data. 

For example. if the data are divided into four equal parts, we speak of quartiles. 
One-fourth of all the ranked observations are smaller than the first quartile. one­
fourth lie between the first and second quartiles. one-fourth lie between the second 
and third quartiles, and one-fourth are larger than the third quartile. The second 
quartile is identical to the median. As with the median, the first and third quartiles 
might be one of the data or the midpoint between two of the data. The first quartile, 
QJ, is 

( 4.2) 

if the subscript, (n + 1)/4, is not an integer or half-integer, then it is rounded up 
to the nearest integer or half-integer. The second quartile is the median. and the 
subscript on X for the third quartile, Q3, is 

n + 1 - (subscript on X for Q\, after any rounding). (4.3) 

Examining the data in Example 3.3: For species A, n = 9, (n + ] )/4 = 2.5, 
and QJ = X2.5 = 34.5 mo; and Q3 = XIO-2.5 = X7.5 = 46 mo. For species 
B, n = to, (n + ] )/4 = 2.75 (which we round up to 3), and QI = X3 = 38 mo, and 
Q3 = X.I-3 = Xl! = 59 mo. 

The distance between QJ and Q3, the first and third quartiles (i.e., the 25th and 
75th percentiles), is known as the interquartile range (or semiquartile range): 

interquartile range = Q3 - Q •. (4.4 ) 
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One may also encounter the semi-imerquartile rallge: 

semi-interquartile range = Q3 QI 
2 

(4.5 ) 

also known as the quartile deviation. * 
If the distribution of data is symmetrical, then 50% of the measurements lie within 

one quartile deviation above and below the median. For Sample 1 in Example 4.1. 
QI = 1.4 g, Q3 = 2.2 g, and the interquartile range is 2.2 g - 1.4 g = 0.8 g. And for 
Sample 2. QI = 1.6 g, Q3 = 2.0 g. and the interquartile range is 2.0 g - 1.6 g = 0.4 g. 

Similarly. values that partition the ordered data set into eight equal parts (or as 
equal as n will allow) are called octiles. The first octile. 0 1• is 

(4.6 ) 

and if the subscript, (n + 1 )/8, is not an integer or half-integer, then it is rounded 
up to the nearest integer or half-integer. The second. fourth. and sixth octiles are the 
same as quartiles; that is. (h = QI' 04 = Q2 = median and 06 = Q3. The subscript 
on X for the third octile. 03, is 

2(subscript on X for QI) - subscript on X for 0 1: 

the subscript on X for the fifth octile, (;,. is 

II + 1 - subscript on X for 03: 

and the subscript on X for the seventh octile. (h. is 

( 4.7) 

( 4.8) 

n + 1 - subscript on X for 01. (4.9) 

Thus. for the data of Example 3.3: For species A. n = 9. (11 + 1 )/8 1.5 and 
C1 = X\.5 = 35mo:2(2.5) -1.5=3.5.s003=X3.5=38mo:n + 1 - 3.5=6.5. 
so 05 = X6.5 = 41.5 mo; and n + 1 - 1.5 = 8.5, so (17 = 61. For spccies 
B. n = 10, (11 + 1 )/8 = 1.25 (which we round up to 1.5) and 01 = X\., = 35 mo; 
2(3) - 1.5 = 4.5, so (i3 = X 4.5 = 39.5 mo: n + 1 - 4.5 = 6.5. so (5, = X6.5 = 
41.5 mo; and n + 1 - 1.5 = 9.5, so (h = 44.5 mo. 

Besides the median, quartiles, and octiles, ordered data may be divided into fifths, 
tenths. or hundredths by quantities that are respectively called quill tiles. deciles, and 
centiles (the latter also called percentiles). Measures that divide a group of ordered 
data into equal parts are collectively termed quantiles.t The expression "LD50." used 
in some areas of biological research, is simply the 50th percentile of the lethal doses, 
or the median lethal dose. That is, 50% of the experimental subjects survived this 
dose, whereas 50% did not. Likewise, "LC,o" is the median lethal concentration, or 
the 50th percentile of the lethal concentrations. 

Instead of distance between the 25th and 75th percentiles. distances between other 
quantiles (e.g .. 10th and 90th percentiles) may be used as a dispersion measure. 
Quantile-based measures of dispersion are valid for ordinal-. interval-. or ratio-scale 
data, and they do not exhibit the bias and inefficiency of the range. 

*This measure was proposed in IH46 hy L. A.J. Quetelet (1796-IH74); Sir Francis Galton 
(1822-1911) later called it the "quartile deviation ,. (Walker. 1929: 84) and, in 1882. used the terms 
"quartile" and "interquartile range" (David. 1(95). 

tSir Francis Galton developed the concept of percentiles. quartiles, deciles. and other quantiles 
in writings from 1869 to 1885 (Walker. 1929: 86-87. 177. 179). The term qllamile was introduced in 
1940 hy M. G. Kendall (David. 19(5). 
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4.3 THE MEAN DEVIATION 

As is evident from the two samples in Example 4.1. the range conveys no information 
about how clustered about the middle of the distribution the measurements are. As 
the mean is so useful a measure of central tendency, one might express dispersion in 
terms of deviations from the mean. The sum of all deviations from the mean, that is. 
2(Xj - X). will always equal zero. however. so such a summation would be useless 
as a measure of dispersion (as seen in Example 4.1). 

Using the absolute values of the deviations from the mean eliminates the negative 
signs of the deviations. and summing those absolute values results in a quantity that 
is an expression of dispersion about the mean. Dividing this quantity by n yields a 
measure known as the mean deviation. or mean absolute deviation" of the sample; 
this measure has the same units as do the data. In Example 4.1. Sample 1 is more 
variable (or more dispersed, or less concentrated) than Sample 2. Although the two 
samples have the same range. the mean deviations. calculated as 

.. ~IXj - XI 
sample mean devIatIon = , ( 4.10) 

n 

express the differences in dispersion. t A different kind of mean deviation can 
be defined by using the sum of the absolute deviations from the median instead of 
from the mean. 

Mean deviations are seldom encountered. because their utility is far less than that 
of the statistics in Sections 4.4 and 4.5. 

4.4 THE VARIANCE 

Another method of eliminating the negative signs of deviations from the mean 
is to square the deviations. The sum of the squares of the deviations from the 
mean is often simply called the slim of squares, abbreviated SS, and is defined as 
follows:~ 

population SS = ~ (Xi 

sample SS = ~ (Xi 

(4.11) 

(4.12) 

It can be seen from the above two equations that as a measure of variability. or 
dispersion. the sum of squares considers how far the Xj's deviate from the mean. In 

·The Icrm mean deviatiol1 is apparently due to Karl Pearson (1857-1936) (Walker. 1929: 55) 
and mean absolllle deviation. in 1972. to D. F. Andrews. P. J. Bickel. F. R. Hampel. P. J. Huber. 
W. H. Rogers. and J. W. Tukey (David. 1995). 

t Karl Weierstrass. in 1841. was the first to denote the absolute value of a quantity by enclosing 
it within two vertical lines (Cajori. 1928/9. Vol. II: p. 123): that is.lal = a and I-al = a. 

*The modern notation using raised numerals as exponents was introduced by Rene Descartes in 
1637. and many other kinds of notation for exponents were employed before and after that (Cajori. 
1928/9. Vol. I: 358: Gullberg. 1997: 134). An 1R45 notation of Augustus De Morgan. a 1\ b to indicate 
0" (Cajori. ibid.: 358). has reemerged in modern computer use. Nicolas Chuquet (1445-1488) was 
the first to use negative exponents. and Nicole (also known as Nicolaus) Oresme (1323-1382) was 
the first to use fractional exponents. though neither of these French mathematicians employed the 
modern notation of Isaac Newton (1642-1727). the colossal English mathematician. physicist. and 
astronomer (Cajori. ibid.: 91. 102.354-355): 

X-II = _1_: X;, = Vi. 
Xu 

Using parentheses or brackets to group quantities dates from the mid-sixteenth century. though it 
was not common mathematical notation until more than two centuries later (ibid.: 392). 
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Sample 1 of Example 4.1, the sample mean is 1.8 g and it is seen (in the last column) 
that 

Sample SS = (1.2 - 1.8)2 + (1.4 - 1.8)2 + (1.6 - 1.8)2 + (1.8 - 1.8)2 

+ (2.0 - 1.8f + (2.2 - 1.8)2 + (2.4 - 1.8)2 

= 0.36 + 0.16 + 0.04 + 0.00 + 0.04 + 0.16 + 0.36 
= 1.12 

(where the units are grams2).* The sum of squares may also be visualized as a measure 
of the average extent to which the data deviate from each other, for (using the same 
seven data from Sample 1 in Example 4.1): 

SS = [( 1.2 - 1.4 f + (1.2 - 1.6)2 + (1.2 - 1.8)2 + (1.2 - 2.0)2 

+ (1.2 - 2.2)2 + (1.2 - 2.4)2 + (1.4 - 1.6)2 + (1.4 - 1.8)2 

+ (1.4 - 2.0)2 + (1.4 - 2.2)2 + (1.4 - 2.4)2 + (1.6 - 1.8)2 

+ (1.6 - 2.0)2 + (1.6 - 2.2)2 + (1.6 - 2.4)2 + (1.8 - 2.0)2 

+ (1.8 - 2.2)2 + (1.8 - 2.4)2 + (2.0 - 2.2)2 + (2.0 - 2.4)2 

+ (2.2 - 2.4)2]/7 
= [0.04 + 0.16 + 0.36 + 0.64 + 1.00 + 1.44 + 0.04 + ... + 0.04 + 0.16 

+ 0.04]/7 
= 7.84/7 = 1.12 

(again in grams2). 
The mean sum of squares is called the variance (or mean square,t the latter being 

short for mean squared deviation). and for a population is denoted by (T2 ("sigma 
squared." using the lowercase Greek letter): 

(T2 = ~(Xi - p.)2 (4.14) 
N 

The best estimate of the population variance, (T2, is the sample variance, s2: 

~ -2 i = ~(Xi - X) (4.15) 
n - 1 

If, in Equation 4.14. we replace p. by X and N by n. the result is a quantity that is a 
biased estimate of (T2 in that it underestimates (T2. Dividing the sample sum of squares 

·Owing to an important concept in statistics. known as least sqllares. the sum of squared 
deviations from the mean is smaller than the sum of squared deviations from any other quantity 
(e.g .. the median). Indeed. if Equation 4.12 is applied using some quantity in place of the mean. the 
resultant "sum of squares" would be 

( 4.13) 

where d is the difference between the mean and the quantity used. For the population sum of 
squares (defined in Equation 4.11). 'the relationship would be SS + Nd2• 

tThe term mean sqlltlre dates back at least to an 1875 publication of Sir George Biddel Airy 
(1801-1892). Astronomer Royal of England (Walker. 1929: 54). The term variance was introduced 
in 1918 by English statistician Sir Ronald Aylmer Fisher (l890-1962) (ibid.: 189: David. 1995). 
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by n - 1 (called the degrees of freedom,· often abbreviated OF), rather than by n, 
yields an unbiased estimate, and it is Equation 4.15 that should be used to calculate 
the sample variance. 

If all observations in a sample are equal, then there is no variability (that is, 
no dispersion) and ,<;2 = O. And s2 becomes increasingly large as the amount of 
variability, or dispersion, increases. Because s2 is a mean sum of squares, it can never 
be a negative quantity. 

The variance expresses the same type of information as does the mean deviation, 
but it has certain very important mathematical properties relative to probability and 
hypothesis testing that make it superior. Thus, the mean deviation is very seldom 
encountered in biostatistical analysis. 

The calculation of s2 can be tedious for large samples, but it can be facilitated by 
the use of the equality 

sample SS = ~ xl _ (~Xi)2 
n 

(4.16) 

This formula is equivalent to Equation 4.12 but is much simpler to work with. 
Example 4.2 demonstrates its use to obtain a sample sum of squares. 

Because the sample variance equals the sample SS divided by DF, 

(4.17) 

This last formula is often referred to as a "working formula:' or "machine formula," 
because of its computational advantages. There are, in fact, two major advantages in 
calculating SS by Equation 4.16 rather than by Equation 4.12. First, fewer computa­
tional steps are involved, a fact that decreases chance of error. On many calculators 
the summed quantities, ~ Xi and ~ xl, can both be obtained with only one pass 
through the data, whereas Equation 4.12 requires one pass through the data to calcu­
late X and at least one more pass to calculate and sum the squares of the deviations, 
Xi - X. Second, there may be a good deal of rounding error in calculating each 
Xi - X. a situation that leads to decreased accuracy in computation, but that is 
avoided by the use of Equation 4.16. t 

For data recorded in frequency tables. 

sample SS = ~ f;xl ( 4.18) 
n 

*Given the sample mean (X) and sample size (n) in Example 4.1. degrees of freedom means that 
the data could have been weights different from those shown. but when any six (i.e .. n - I) of the 
seven weights are specified. then the seventh weight is also known. The term was first used. though 
in a different context. by Ronald Aylmer Fisher in 1922 (David. 1955). 

t Computational formulas advantageous on calculators may not prove accurate on computers 
(Wilkinson and Dallal. \977).largcly because computers may use fewer significant figures. (Also see 
Ling. 1974.) Good computer programs use calculation techniques designed to help avoid rounding 
errors. 
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where f; is the frequency of observations with magnitude Xi. But with a calculator 
or computer it is often faster to use Equation 4.18 for the individual observations. 
disregarding the class groupings. 

The variance has square units. If measurements are in grams, their variance will be 
in grams squared, or if the measurements are in cubic centimeters, their variance will 
be in terms of cubic centimeters squared, even though such squared units have no 
physical interpretation. The question of how many decimal places to report for the 
variance will be considered at the end of Section 6.2. 

EXAMPLE 4.2 "Machine Formula" Calculation of Variance. Standard 
Deviation. and Coefficient of Variation (These are the data of 
Example 4.1) 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

Sample 1 

1.44 
1.96 
2.56 
3.24 
4.00 
4.84 
5.76 

LXi = 12.6 g Lxl = 23.80 g2 

n=7 

X - 12.6g - 18 ----.g 
7 

SS = Lxl _ (LXi 
n 

= 23.80 g2 _ (12.6 g)2 
7 

= 23.80 g2 _ 22.68 g2 

= 1.12 g2 

;=~ 
n - 1 

1.12 g2 = 0.1867 g2 
6 

s = J0.1867 g2 = 0.43 g 

V = s = 0.43 g = 0.24 = 24% 
X 1.8g 

Xi (g) 

1.2 
1.6 
1.7 
1.8 
1.9 
2.0 
2.4 

Sample 2 

1.44 
2.56 
2.89 
3.24 
3.61 
4.00 
5.76 

LXi = 12.6g Lxl = 23.50g2 

n=7 

X - 12.6g - 18 ----.g 
7 

( 12.6 g)2 
SS = 23.50 g2 -

7 
= 0.82g2 

s2 = 0.82 g2 = 0.1367 g2 
6 

s = JO.l367 g2 = 0.37 g 

V = 0.37g = 0.21 = 21% 
1.8 g 
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4.S THE STANDARD DEVIATION 

The standard deviation* is the positive square roott of the variance; therefore, it has 
the same units as the original measurements. Thus, for a population. 

N 
(4.19) u= 

And for a sample,* 

n-1 
( 4.20) s= 

Examples 4.1 and 4.2 demonstrate the calculation of s. This quantity frequently is 
abbreviated SD. and on rare occasions is called the root mean square deviation or 
root mean square. Remember that the standard deviation is, by definition, always 
a nonnegative quantity.§ The end of Section 6.2 will explain how to determine 

*It was the great English statistician Karl Pearson (1857 -1936) who coined the term stuntiorti 
deviation and its symbol, u, in 1893, prior to which this quantity was called the mean error (Eells, 1926; 
Walker. 1929: 54-55.183.188). In early literature (e.g .• by G. U. Yule in 1919). it was termed root 
mean sql/are deviation and acquired the symbol .~. and (particularly in the fields of education and 
psychology) it was occasionally computed using deviations from the median (or even the mode) 
instead of from the mean (Eells. 1926). 

tThe square root sign ( J ) was introduced by Silesian-born Austrian mathematician Christoff 
Rudolff (1499-1545) in 1525; by 1637 Rene Descartes (1596-1650) combined this with a vinculum 
(a horizontal bar placed above quantities to group them as is done with parentheses or brackets) 
to obtain the symbol r. but Gottfried Wilhelm Leibniz (1646-1716) preferred J( ), which is 
still occasionally seen (Cajori. 1928/9. Vol. I: 135.208.368.372.375). The first footnote in Section 
3.4 speaks to the origin of the cube root symbol ( V). 

:J:The sample s is actually a slightly biased estimate of the population u. in that on the average it 
is a slightly low estimate. especially in small samples. But this fact is generally considered to be offset 
by the statistic's usefulness. Correction for this bias is sometimes possible (e.g .. Bliss. 1967: 131; 
Dixon and Massey. 1969: 136; Gurland and Tripathi. 1971; Tolman. 1971). but it is rarely employed. 

§It can be shown that the median of a distribution is never more than one standard deviation 
away from the mean (IL): that is. 

I median - IL I S u ( 4.21 ) 

(Hotelling and Solomon. 1932; O·Cinneide. 1990; Page and Murty, 1982; Watson. 1994). This is a 
special case. where p = 50. of the relationship 

p/l00 
1 - p/lOO' 

( 4.22) IL - CT 
1 - p/100 < X < + u 

p/lOO - p - IL 

where Xp is the pth percentile of the distribution (Dharmadhikari, 1991). Also. Page and Murty 
(1982) have shown these population-parameter relationships between the standard deviation and 
the range and between the standard deviation and the mean. median. and mode: 

range/.fbi SeTS range/2; 

I mode - IL I S cT~n/ m and I mode - median I S eT( n/ m) • 

where m is the number of data at the modal value. 

( 4.22a) 

(4.22b) 
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the number of decimal places that may appropriately he recorded for the standard 
deviation. 

4.6 THE COEFFICIENT OF VARIATION 

The coefficient o/variation* or coefficiel1t o/variability, is defined as 

s s 
V = = or V = = . 100%. 

X X 
(4.23 ) 

As s/ X is generally a small quantity, it is frequently multiplied by 100% in order to 
express Vas a percentage. (The coefficient of variation is often abbreviated as CV.) 

As a measure of variability, the variance and standard deviation have magnitudes 
that are dependent on the magnitUde of the data. Elephants have ears that are perhaps 
100 times larger than those of mice. If elephant ears were no more variable. relative 
to their size, than mouse ears, relative to their size, the standard deviation of elephant 
ear lengths would be 100 times as great as the standard deviation of mouse ear lengths 
(and the variance of the former would be 1002 = 10.000 times the variance of the 
latter). The sample coefficient of variation expresses sample variability relative to 
the mean of the sample (and is on rare occasion referred to as the "relative standard 
deviation"). It is called a measure of relative variability or relative dispersion. 

Because sand X have identical units, V has no units at all, a fact emphasizing that it 
is a relative measure, divorced from the actual magnitude or units of measurement of 
the data. Thus, had the data in Example 4.2 been measured in pounds, kilograms. or 
tons, instead of grams, the calculated V would have been the same. The coefficient of 
variation of a sample, namely V, is an estimate of the coefficient of variation of the 
population from which the sample came (i.e .. an estimate of uj JL). The coefficient 
of variation may be calculated only for ratio scale data: it is, for example, not valid 
to calculate coefficients of variation of temperature data measured on the Celsius or 
Fahrenheit temperature scales. Simpson, Roe. and Lewontin (1960: 89-95) present 
a good discussion of V and its biological application. especially with regard to 
zoomorphological measurements. 

4.7 INDICES OF DIVERSITY 

For nominal-scale data there is no mean or median or ordered measurements to serve 
as a reference for discussion of dispersion. Instead, we can invoke the concept of 
diversity, the distribution of observations among categories. Consider that sparrows 
are found to nest in four different types of location (vines, caves, branches. and cavi­
ties). If, out of twenty nests observed, five are found at each of the four locations. then 
we would say that there was great diversity in nesting sites. If, however. seventeen 
nests were found in cavities and only one in each of the other three locations, then we 
would consider the situation to be one of very low nest-site diversity. In other words. 
observations distributed evenly among categories display high diversity. whereas a 
set of observations where most of the data occur in very few of the categories is one 
exhibiting low diversity. 

A large number of diversity measures have been introduced, especially for ecolog­
ical data (e.g .. Brower. Zar. and von Ende, 1998: 177-184; Magurran. 2004). a few of 
which are presented here. 

*Thc term ('oeJjicielll of variation was introduced hy the statistical giant Karl Pearson 
(1857-1936) in IH96 (David. 1995). In early literature the term was variously applied to the 
ratios of different measures of dispersion and different measures of central tendency (Eells. 1926). 
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Among the quantitative descriptions of diversity available are those based on a 
field known as information theory.* The underlying considerations of these measures 
can be visualized by considering uncertainty to be synonymous with diversity. If 
seventeen out of twenty nest sites were to be found in cavities. then one would be 
relatively certain of being able to predict the location of a randomly encountered 
nest site. However. if nests were found to be distributed evenly among the various 
locations (a situation of high nest-site diversity). then there would be a good deal 
of uncertainty involved in predicting the location of a nest site selected at random. 
If a set of nominal scale data may be considered to be a random sample. then a 
quantitative expression appropriate as a measure of diversity is that of Shannon 
(1948): 

k 

H' = - ~ Pi log Pi (4.24 ) 
i= 1 

(often referred to as the Shannon-Wiener diversity index or the Shannon-Weaver 
index). Here. k is the number of categories and Pi is the proportion of the observa­
tions found in category i. Denoting 11 to be sample size and /; to be the number 
of observations in category i. then Pi /;/ n; and an equivalent equation for 
H' is 

k 

nlog n ~/; log /; 
H' = ____ :...i=....:I __ _ (4.25 ) 

11 

a formula that is casier to use than Equation 4.24 because it eliminates the neces­
sity of calculating the proportions (Pi). Published tables of n logn and /; log/; are 
available (e.g .• Brower, Zar, and von Ende, 1998: 181; Lloyd, Zar, and Karr, 1968). 
Any logarithmic base may be used to compute H'; bases 10. e. and 2 (in that 
order of commonness) are the most frequently encountered. A value of H' (or 
of any other measure of this section except evenness measures) calculated using 
one logarithmic base may be converted to that of another base; Table 4.1 gives 
factors for doing this for bases 10, e. and 2. Unfortunately. H' is known to be an 
underestimate of the diversity in the sampled population (Bowman et aI., 1971). 
However, this bias decreases with increasing sample size. Ghent (1991) demonstrated 
a relationship between H' and testing hypotheses for equal abundance among the k 
categories. 

The magnitude of H' is affected not only by the distribution of the data but also by 
the number of categories. for, theoretically. the maximum possible diversity for a set 
of data consisting of k categories is 

H:nax = logk. ( 4.26) 

Therefore. some users of Shannon's index prefer to calculate 

J'=~ 
H:nax 

( 4.27) 

instead of (or in addition to) H', thus expressing the observed diversity as a proportion 
of the maximum possible diversity. The quantity J' has been termed evenness (Pielou, 
1966) and may also be referred to as homogeneity or relative diversity. The measure 

·CJaude Elwood Shannon (1916-2()OI) founded what he first called"a mathematical theory of 
communication" and has hecome known as "information theory:' 
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TABLE 4.1: Multiplication Factors for Converting among 
Diversity Measures (H, H', Hmax, or H~ax) Calculated 
Using Different Logarithmic Bases* 

To convert to: To convert from: 

Base 2 Basee Base 10 

Base 2 1.0000 1.4427 3.3219 
Base e 0.6931 1.0000 2.3026 
Base 10 0.3010 0.4343 1.0000 

For example. if H' = 0.255 using base 10: H' would be 
(0.255)(3.3219) = 0.847 using base 2. 

*Tbc measures} and}' are unaffected by change in logarithmic 
base. 

1 - i' may then be viewed as a measure of heterogeneity; it may also be considered a 
measure of dominance, for it reflects the extent to which frequencies are concentrated 
in a small number of categories. The number of categories in a sample (k) is typically 
an underestimate of the number of categories in the population from which the 
sample came, because some categories (especially the rarer ones) are likely to be 
missed in collecting the sample. Therefore, the sample evenness. J'. is typically an 
overestimate of the population evenness. (That is, i' is a biased statistic.) Example 4.3 
demonstrates the calculation of H' and 1'. 

If a set of data may not be considered a random sample. then Equation 4.24 
(or 4.25) is not an appropriate diversity measure (Pielou. 1966). Examples of such 

EXAMPLE 4.3 Indices of Diversity for Nominal Scale Data: The Nesting 
Sites of Sparrows 

Category (i) Observed Frequencies if;) 

Sample J 

Vines S 
Eaves 5 
Branches 5 
Cavities S 

, n logn - ~/; log/; 
H = = [20 log 20 - (510g S + Slog S + Slog S 

n + SlogS)1/20 

= [26.0206 - (3.4949 + 3.4949 + 3.4949 

+ 3.4949) 1/20 

= 12.0410/20 = 0.602 

H:nax = log 4 = 0.602 

i' = 0.602 = 1.00 
0.602 



Vines 
Eaves 
Branches 
Cavities 
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Sample 2 

1 
1 
1 

17 
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H' = nlogn - ~f;logf; = [201og20 - (1logl + llogl + Ilog1 

Vines 
Eaves 
Branches 
Cavities 

I n logn 
H = 

n 
+ 17 log 17)]/20 

= [26.0206 - (0 + 0 + 0 + 20.9176)]/20 
= 5.1030/20 = 0.255 

H:nax = log 4 = 0.602 

l' = 0.255 = 0.42 
0.602 

Sample 3 

2 
2 
2 

34 

- ~f;logf; = [401og40 - (21og2 + 2log2 + 21og2 
n 

+ 34 log 34 )1/40 
= [64.0824 - (0.6021 + 0.6021 + 0.6021 

+ 52.0703)1/40 
= 10.2058/40 = 0.255 

H:nax = log 4 = 0.602 

J' = 0.255 = 0.42 
0.602 

situations may be when we have, in fact, data composing an entire population, or data 
that are a sample obtained nonrandomly from a population. In such a case, one may 
use the information-theoretic diversity measure of Brillouin (1962: 7 -8):* 

log (TIt 1"., ) l=iJ" 
H = ------'------'- ( 4.28) 

n 

*The notation n! is read as "II factorial" and signifies the product (n )( II - 1)( If - 2) ... (2) ( 1 ). 
It was proposed by French physician and mathematician Christian Kramp (1760-1826) around 
1798; he originally called this function faculty ("facuhes" in French) but in 1808 accepted the 
term faclOrial ("factorielle" in French) used by Alsatian mathematician Louis Franl;ois Antoine 
Arbogast(1759-1803)(Cajori, 1928/9. Vol. II: 72; Gull berg. 1997: 106; Miller. 2004a; O'Connor and 
Robertson, 1997). English mathematician Augustus De Morgan (1806-1871) decried the adoption 
of this symbol as a "barbarism" because it introduced into mathematics a symbol that already had 
an established meaning in written language. thus giving "the appearance of expressing surprise or 
admiration" in a mathematical result (Cajori. ibid.: 328). 
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where n (capital Greek pi) means to take the product. just as ~ means to take the 
sum. Equation 4.28 may be written. equivalently. as 

I n! 
ogf: 'I: ' ~ , H = (·2 .... 'k· ( 4.29) 

n 

or as 
H = (Iogn! - ~ log!;!). 

( 4.30) 
n 

Table B.4O gives logarithms of factorials to ease this calculation. Other such tables are 
available. as well (e.g .• Brower. Zar. and von Ende 1998: 183: Lloyd. Zar. and Karr. 
1968: Pearson and Hartly. 1966: Table 51).* Ghent (1991) discussed the relationship 
between H and the test of hypotheses about equal abundance among k categories. 

The maximum possible Brillouin diversity for a set of n observations distributed 
among k categories is 

_ logn! - (k - d) loge! - dlog(c + I)! 
Hmax - • ( 4.35) 

n 

where c is the integer portion of n/ k. and cI is the remainder. (For example. if Il = 17 
and k = 4. then n/ k = 17/4 = 4.25 and c = 4 and d = 0.25.) The Brillouin-based 
evenness measure is. therefore. 

J=~. 
Hmax 

(4.36 ) 

with 1 - J being a dominance measure. When we consider that we have data from 
an entire population. k is a population measurement. rather than an estimate of one. 
and J is not a biased estimate as is J'. 

For further considerations of these and other diversity measures. see Brower. Zar. 
and von Ende (1998: Chapter 58) and Magguran (2004: 100-121). 

4.8 CODING DATA 

Section 3.5 showed how coding data may facilitate statistical computations of measures 
of central tendency. Such benefits are even more apparent when calculating SS. S2. 

*For moderate to large II (or !;). "Stirling's approximation" is excellent (see note after Table 
B.40): 

n! = J21Tn(n/e)n = .[i;.jiie-"n". 

of which this is an easily usable derivation: 

logn! = (n + 0.5) log 11 - 0.434294n + 0.399090. 

An approximation with only half the error of the above is 

( + 0 'i)f1+05 
n! =.[i; II .. 

(' 

and 

(4.31 ) 

( 4.32) 

(4.33 ) 

log II! = (n + 0.5) log( n + 0.5) - 0.434294 ( II + 0.5) + 0.399090. ( 4.34 ) 

This is named for James Stirling. who published something similar to the latter approximation 
formula in 1730. making an arithmetic improvement in the approximation earlier known by 
Abraham de Moivre (Kemp. 19N9: Pearson. 1924: Walker. 1929: 16). 
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and s, because of the labor, and concomitant chances of error. involved in the unwieldy 
squaring of large or small numbers. 

When data are coded by adding or subtracting a constant (call it A), the measures 
of dispersion of Sections 4.1 through 4.5 are not changed from what they were for the 
data before coding. This is because these measures are based upon deviations, and 
deviations are not changed by moving the data along the measurement scale (e.g .. the 
deviation between 1 and 10 is the same as the deviation between 11 and 20). Sample 
1 in Example 4.4 demonstrates this. 

However, when coding by multiplying by a constant (call it M), the measures of 
dispersion are affected, for the magnitudes of the deviations will be changed. With 
such coding, the range. mean deviation. and standard deviation are changed by a 
factor of M, in the same manner as the arithmetic mean and the median are, whereas 
the sum of squares and variance are changed in accordance with the square of the 
coding constant (i.e .• M2), and the coefficient of variance is not affected. This is 
demonstrated in Sample 2 of Example 4.4. 

Appendix C presents the results of coding these and many other statistics, where a 
coded datum is described as 

[Xi] = MXi + A. ( 4.37) 

EXAMPLE 4.4 Coding Data to Facilitate the Calculation of Measures of 
Dispersion 

Sample 1 (Coding by Subtraction: A = -840 g) 

Without Coding Xi Using Coding [Xi] 
Xi (g) Xl (g2) [X;] (g) [Xi]2 (g2) 

842 708.964 2 4 
843 710,649 3 9 
844 712,336 4 16 
846 715,716 6 36 
846 715,716 6 36 
847 717,409 7 49 
848 719,104 8 64 
849 720,801 9 81 

:LXi = 6765 g :L xl = 5,720,695 g2 :L[X;] = 45 g :L[X;f = 295 g2 

5720695 g2 -
(6765 g)2 295 g2 _ (45 g)2 

8 [s2] = 8 
s2 = 

7 7 

= 5.98 g2 = 5.98 g2 

s = 2.45 g [s] = 2.44 g 

X = 845.6g [X] = 5.6 g 

V = s = 2.45 g 
X 845.6 g 

= 0.0029 = 0.29% 


