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Preview
Imagine that you are seated at your desk, ready to take the
final exam in statistics. Just before the exams are handed
out, a television crew appears and sets up a camera and
lights aimed directly at you. They explain that they are
filming students during exams for a television special.
You are told to ignore the camera and go ahead with 
your exam.

Would the presence of a TV camera affect your per-
formance on an exam? For some of you, the answer to this
question is “definitely yes” and for others, “probably not.”
In fact, both answers are right; whether the TV camera
affects performance depends on your personality. Some of
you would become terribly distressed and self-conscious,
while others really could ignore the camera and go on as if
everything were normal.

In an experiment that duplicates the situation we
have described, Shrauger (1972) tested participants on a
concept-formation task. Half of the participants worked
alone (no audience), and half worked with an audience of
people who claimed to be interested in observing the
experiment. Shrauger also divided the participants into
two groups on the basis of personality: those high in 
self-esteem and those low in self-esteem. The dependent
variable for this experiment was the number of errors on
the concept formation task. Data similar to those obtained
by Shrauger are shown in Figure 14.1. Notice that 
the audience had no effect on the high-self-esteem 
participants. However, the low-self-esteem participants
made nearly twice as many errors with an audience 
as when working alone.

The Problem: Shrauger’s study is an example of 
research that involves two independent variables in
the same study. The independent variables are:

1. Audience (present or absent)
2. Self-esteem (high or low)

The results of the study indicate that the effect of one
variable (audience) depends on another variable (self-esteem).

You should realize that it is quite common to have
two variables that interact in this way. For example, a
drug may have a profound effect on some patients and
have no effect whatsoever on others. Some children sur-
vive abusive environments and live normal, productive
lives, while others show serious difficulties. To observe

how one variable interacts with another, it is necessary to
study both variables simultaneously in one study.
However, the analysis of variance (ANOVA) procedures
introduced in Chapters 12 and 13 are limited to evaluat-
ing mean differences produced by one independent 
variable and are not appropriate for mean differences
involving two (or more) independent variables.

The Solution: ANOVA is a very flexible hypothesis
testing procedure and can be modified again to evaluate
the mean differences produced in a research study with
two (or more) independent variables. In this chapter we
introduce the two-factor ANOVA, which tests the
significance of each independent variable acting alone
as well as the interaction between variables.
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FIGURE 14.1

Results of an experiment examining the effect of an
audience on the number of errors made on a concept
formation task for participants who are rated either high
or low in self-esteem. Notice that the effect of the
audience depends on the self-esteem of the participants.

Shrauger, J. S. (1972). Self-esteem and reactions to being
observed by others. Journal of Personality and Social
Psychology, 23, 192�200. Copyright 1972 by the American
Psychological Association. Adapted by permission of the author.
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Factor B: Audience Condition

No Audience Audience

Scores for a group Scores for a group
of participants who of participants who
are classified as low are classified as low
self-esteem and are self-esteem and are
tested with no audience. tested with an audience.

Scores for a group Scores for a group
of participants who of participants who
are classified as high are classified as high
self-esteem and are self-esteem and are
tested with no audience. tested with an audience.

14.1 AN OVERVIEW OF THE TWO-FACTOR, 
INDEPENDENT-MEASURES ANOVA 

In most research situations, the goal is to examine the relationship between two vari-
ables. Typically, the research study attempts to isolate the two variables to eliminate or
reduce the influence of any outside variables that may distort the relationship being
studied. A typical experiment, for example, focuses on one independent variable (which
is expected to influence behavior) and one dependent variable (which is a measure of
the behavior). In real life, however, variables rarely exist in isolation. That is, behavior
usually is influenced by a variety of different variables acting and interacting simulta-
neously. To examine these more complex, real-life situations, researchers often design
research studies that include more than one independent variable. Thus, researchers
systematically change two (or more) variables and then observe how the changes 
influence another (dependent) variable.

In Chapters 12 and 13, we examined ANOVA for single-factor research designs—that
is, designs that included only one independent variable or only one quasi-independent 
variable. When a research study involves more than one factor, it is called a factorial 
design. In this chapter, we consider the simplest version of a factorial design. Specifically,
we examine ANOVA as it applies to research studies with exactly two factors. In addition,
we limit our discussion to studies that use a separate sample for each treatment condition—
that is, independent-measures designs. Finally, we consider only research designs for
which the sample size (n) is the same for all treatment conditions. In the terminology of
ANOVA, this chapter examines two-factor, independent-measures, equal n designs.

We use Shrauger’s audience and self-esteem study described in the Chapter
Preview to introduce the two-factor research design. Table 14.1 shows the structure of
Shrauger’s study. Note that the study involves two separate factors: One factor is 
manipulated by the researcher, changing from no-audience to audience, and the second
factor is self-esteem, which varies from high to low. The two factors are used to create
a matrix with the different levels of self-esteem defining the rows and the different 
audience conditions defining the columns. The resulting two-by-two matrix shows four
different combinations of the variables, producing four different conditions. Thus, 
the research study would require four separate samples, one for each cell, or box, in the
matrix. The dependent variable for the study is the number of errors on the concept-
formation task for people observed in each of the four conditions. 
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An independent variable is a
manipulated variable in an 
experiment. A quasi-independent
variable is not manipulated 
but defines the groups of scores
in a nonexperimental study.

TABLE 14.1

The structure of a two-factor
experiment presented as a 
matrix. The two factors are self-
esteem and presence/absence of
an audience, with two levels for
each factor.

Low

High

Factor A:

Self-Esteem
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The two-factor ANOVA tests for mean differences in research studies that are
structured like the audience-and-self-esteem example in Table 14.1. For this example,
the two-factor ANOVA evaluates three separate sets of mean differences:

1. What happens to the mean number of errors when the audience is added or
taken away?

2. Is there a difference in the mean number of errors for participants with high
self-esteem compared to those with low self-esteem?

3. Is the mean number of errors affected by specific combinations of self-esteem
and audience? (For example, an audience may have a large effect on participants
with low self-esteem but only a small effect for those with high self-esteem.)

Thus, the two-factor ANOVA allows us to examine three types of mean differ-
ences within one analysis. In particular, we conduct three separate hypotheses tests for
the same data, with a separate F-ratio for each test. The three F-ratios have the same
basic structure:

F �

In each case, the numerator of the F-ratio measures the actual mean differences
in the data, and the denominator measures the differences that would be expected if
there is no treatment effect. As always, a large value for the F-ratio indicates that the
sample mean differences are greater than would be expected by chance alone, and,
therefore, provides evidence of a treatment effect. To determine whether the obtained
F-ratios are significant, we need to compare each F-ratio with the critical values
found in the F-distribution table in Appendix B.

14.2 MAIN EFFECTS AND INTERACTIONS

As noted in the previous section, a two-factor ANOVA actually involves three distinct
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are
identified as factor A and factor B. For the study presented in Table 14.1, self-esteem
is factor A, and the presence or absence of an audience is factor B. The goal of the
study is to evaluate the mean differences that may be produced by either of these
factors acting independently or by the two factors acting together.

One purpose of the study is to determine whether differences in self-esteem (factor A)
result in differences in performance. To answer this question, we compare the mean
score for all of the participants with low self-esteem with the mean for those with high
self-esteem. Note that this process evaluates the mean difference between the top row
and the bottom row in Table 14.1.

To make this process more concrete, we present a set of hypothetical data in
Table 14.2. The table shows the mean score for each of the treatment conditions
(cells) as well as the overall mean for each column (each audience condition) and the
overall mean for each row (each self-esteem group). These data indicate that the low
self-esteem participants (the top row) had an overall mean of M � 8 errors. This over-
all mean was obtained by computing the average of the two means in the top row. In

MAIN EFFECTS

variance (differences) between treatments
�������
variance (differences) expected if there is no treatment effect
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contrast, the high self-esteem participants had an overall mean of M � 4 errors (the
mean for the bottom row). The difference between these means constitutes what is
called the main effect for self-esteem, or the main effect for factor A.

Similarly, the main effect for factor B (audience condition) is defined by the mean
difference between the columns of the matrix. For the data in Table 14.2, the two groups
of participants tested with no audience had an overall mean score of M � 5 errors.
Participants tested with an audience committed an overall average of M � 7 errors. The
difference between these means constitutes the main effect for the audience conditions,
or the main effect for factor B.

The mean differences among the levels of one factor are referred to as the main
effect of that factor. When the design of the research study is represented as a
matrix with one factor determining the rows and the second factor determining
the columns, then the mean differences among the rows describe the main 
effect of one factor, and the mean differences among the columns describe the
main effect for the second factor.

The mean differences between columns or rows simply describe the main effects
for a two-factor study. As we have observed in earlier chapters, the existence of sam-
ple mean differences does not necessarily imply that the differences are statistically
significant. In general, two samples are not expected to have exactly the same means.
There are always small differences from one sample to another, and you should not
automatically assume that these differences are an indication of a systematic treatment
effect. In the case of a two-factor study, any main effects that are observed in the data
must be evaluated with a hypothesis test to determine whether they are statistically
significant effects. Unless the hypothesis test demonstrates that the main effects are
significant, you must conclude that the observed mean differences are simply the 
result of sampling error.

The evaluation of main effects accounts for two of the three hypothesis tests in a
two-factor ANOVA. We state hypotheses concerning the main effect of factor A and
the main effect of factor B and then calculate two separate F-ratios to evaluate the 
hypotheses.

For the example we are considering, factor A involves the comparison of two dif-
ferent levels of self-esteem. The null hypothesis would state that there is no difference
between the two levels; that is, self-esteem has no effect on performance. In symbols,

H0: �A1
� �A2

The alternative hypothesis is that the two different levels of self-esteem do produce
different scores:

H1: �A1
� �A2

D E F I N I T I O N
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TABLE 14.2

Hypothetical data for an experi-
ment examining the effect of an
audience on participants with
different levels of self-esteem.

No 
Audience Audience

Low M � 8

High M � 4

M � 5 M � 7

M � 7 M � 9

M � 3 M � 5
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To evaluate these hypotheses, we compute an F-ratio that compares the actual
mean differences between the two self-esteem levels versus the amount of difference
that would be expected without any systematic treatment effects.

F �

F �

Similarly, factor B involves the comparison of the two different audience condi-
tions. The null hypothesis states that there is no difference in the mean number of 
errors between the two conditions. In symbols,

H0: �B1
� �B2

As always, the alternative hypothesis states that the means are different:

H1: �B1
� �B2

Again, the F-ratio compares the obtained mean difference between the two audi-
ence conditions versus the amount of difference that would be expected if there is no
systematic treatment effect.

F �

F �

In addition to evaluating the main effect of each factor individually, the two-factor
ANOVA allows you to evaluate other mean differences that may result from unique
combinations of the two factors. For example, specific combinations of self-esteem and
an audience acting together may have effects that are different from the effects of self-
esteem or an audience acting alone. Any “extra” mean differences that are not explained
by the main effects are called an interaction, or an interaction between factors. The real
advantage of combining two factors within the same study is the ability to examine the
unique effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences
between individual treatment conditions, or cells, are different from what would
be predicted from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown
in Table 14.2. For these data, there is no interaction; that is, there are no extra mean dif-
ferences that are not explained by the main effects. For example, within each audience
condition (each column of the matrix) the average number of errors for the low self-
esteem participants is 4 points higher than the average for the high self-esteem partici-
pants. This 4-point mean difference is exactly what is predicted by the overall main 
effect for self-esteem. 

Now consider a different set of data shown in Table 14.3. These new data show 
exactly the same main effects that existed in Table 14.2 (the column means and the row

D E F I N I T I O N

INTERACTIONS

variance (differences) between the column means
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the means for factor B
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the row means
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the means for factor A
�������
variance (differences) expected if there is no treatment effect
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means have not been changed). But now there is an interaction between the two factors.
For example, for the low self-esteem participants (top row), there is a 4-point difference
in the number of errors committed with an audience and without an audience. This 4-point
difference cannot be explained by the 2-point main effect for the audience factor. Also,
for the high self-esteem participants (bottom row), the data show no difference between
the two audience conditions. Again, the zero difference is not what would be expected
based on the 2-point main effect for the audience factor. Mean differences that are not 
explained by the main effects are an indication of an interaction between the two factors.

To evaluate the interaction, the two-factor ANOVA first identifies mean differ-
ences that are not explained by the main effects. The extra mean differences are then
evaluated by an F-ratio with the following structure:

F �

The null hypothesis for this F-ratio simply states that there is no interaction:

H0: There is no interaction between factors A and B. All of the mean 
differences between treatment conditions are explained by the main effects
of the two factors.

The alternative hypothesis is that there is an interaction between the two factors:

H1: There is an interaction between factors. The mean differences between
treatment conditions are not what would be predicted from the overall main
effects of the two factors.

In the previous section, we introduced the concept of an interaction as the unique effect
produced by two factors working together. This section presents two alternative defini-
tions of an interaction. These alternatives are intended to help you understand the con-
cept of an interaction and to help you identify an interaction when you encounter one in
a set of data. You should realize that the new definitions are equivalent to the original
and simply present slightly different perspectives on the same concept.

The first new perspective on the concept of an interaction focuses on the notion
of independence for the two factors. More specifically, if the two factors are inde-
pendent, so that one factor does not influence the effect of the other, then there is no
interaction. On the other hand, when the two factors are not independent, so that the
effect of one factor depends on the other, then there is an interaction. The notion of
dependence between factors is consistent with our earlier discussion of interactions.
If one factor influences the effect of the other, then unique combinations of the 
factors produce unique effects.

MORE ABOUT INTERACTIONS

variance (mean differences) not explained by main effects
�������
variance (differences) expected if there is no treatment effects
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The data in Table 14.3 show
the same pattern of results 
that was obtained in Shrauger’s
research study.

TABLE 14.3

Hypothetical data for an experi-
ment examining the effect of an
audience on participants with
different levels of self-esteem.
The data show the same main
effects as the values in Table 14.5
but the individual treatment
means have been modified to
create an interaction.

No 
Audience Audience

Low M � 8

High M � 4

M � 5 M � 7

M � 6 M � 10

M � 4 M � 4
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When the effect of one factor depends on the different levels of a second factor,
then there is an interaction between the factors.

This definition of an interaction should be familiar in the context of a “drug interac-
tion.” Your doctor and pharmacist are always concerned that the effect of one medication
may be altered or distorted by a second medication that is being taken at the same time.
Thus, the effect of one drug (factor A) depends on a second drug (factor B), and you have
an interaction between the two drugs.

Returning to Table 14.2, notice that the size of the audience effect (first column
versus second column) does not depend on the self-esteem of the participants. For these
data, adding an audience produces the same 2-point increase in errors for both groups
of participants. Thus, the audience effect does not depend on self-esteem, and there is
no interaction. Now consider the data in Table 14.3. This time, the effect of adding an
audience depends on the self-esteem of the participants. For example, there is a 4-point
increase in errors for the low-self-esteem participants but adding an audience has no 
effect on the errors for the high-self-esteem participants. Thus, the audience effect 
depends on the level of self-esteem, which means that there is an interaction between
the two factors.

The second alternative definition of an interaction is obtained when the results of a
two-factor study are presented in a line graph. In this case, the concept of an interaction
can be defined in terms of the pattern displayed in the graph. Figure 14.2 shows the two
sets of data we have been considering. The original data from Table 14.2, where there is
no interaction, are presented in Figure 14.2(a). To construct this figure, we selected one
of the factors to be displayed on the horizontal axis; in this case, the different levels of
the audience factor. The dependent variable, the number of errors, is shown on the 
vertical axis. Note that the figure actually contains two separate graphs: The top line
shows the relationship between the audience factor and errors for the low-self-esteem

D E F I N I T I O N
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FIGURE 14.2

(a) Graph showing the treatment means from Table 14.2, for which there is no reaction. (b) Graph for Table 14.3, for which
there is an interaction.
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participants, and the bottom line shows the relationship for the high-self-esteem partici-
pants. In general, the picture in the graph matches the structure of the data matrix; 
the columns of the matrix appear as values along the X-axis, and the rows of the matrix
appear as separate lines in the graph (Box 14.1).

For the original set of data, Figure 14.2(a), note that the two lines are parallel; that
is, the distance between lines is constant. In this case, the distance between lines reflects
the 2-point difference in mean errors between low- and high-self-esteem participants,
and this 2-point difference is the same for both audience conditions.

Now look at a graph that is obtained when there is an interaction in the data.
Figure 14.2(b) shows the data from Table 14.3. This time, note that the lines in the
graph are not parallel. The distance between the lines changes as you scan from left
to right. For these data, the distance between the lines corresponds to the self-esteem
effect—that is, the mean difference in errors for low- versus high-self-esteem partic-
ipants. The fact that this difference depends on the audience condition is an indica-
tion of an interaction between the two factors. 

When the results of a two-factor study are presented in a graph, the existence of
nonparallel lines (lines that cross or converge) indicates an interaction between
the two factors.

For many students, the concept of an interaction is easiest to understand using the
perspective of interdependency; that is, an interaction exists when the effects of one
variable depend on another factor. However, the easiest way to identify an interaction
within a set of data is to draw a graph showing the treatment means. The presence of
nonparallel lines is an easy way to spot an interaction.

D E F I N I T I O N
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The A � B interaction typically
is called the “A by B” interaction.
If there is an interaction between
an audience and self-esteem, it
may be called the “audience by
self-esteem” interaction.

B O X
14.1 GRAPHING RESULTS FROM A TWO-FACTOR DESIGN

two dots corresponding to the two means in the B1 column
of the data matrix. Similarly, we have placed two dots
above B2 and another two dots above B3. Finally, we have
drawn a line connecting the three dots corresponding to
level 1 of factor A (the three means in the top row of the
data matrix). We have also drawn a second line that 
connects the three dots corresponding to level 2 of 
factor A. These lines are labeled A1 and A2 in the figure.

One of the best ways to get a quick overview of the
results from a two-factor study is to present the data in a
line graph. Because the graph must display the means
obtained for two independent variables (two factors),
constructing the graph can be a bit more complicated
than constructing the single-factor graphs we presented
in Chapter 3 (pp. 93–95).

Figure 14.3 shows a line graph presenting the 
results from a two-factor study with 2 levels of factor A
and 3 levels of factor B. With a 2 � 3 design, there are 
a total of 6 different treatment means, which are shown 
in the following matrix.

In the graph, note that values for the dependent vari-
able (the treatment means) are shown on the vertical axis.
Also note that the levels for one factor (we selected 
factor B) are displayed on the horizontal axis. Directly
above the B1 value on the horizontal axis, we have placed

Factor B

B1 B2 B3

10 40 20

30 50 30
Factor A

A1

A2
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The two-factor ANOVA consists of three hypothesis tests, each evaluating specific
mean differences: the A effect, the B effect, and the A � B interaction. As we have
noted, these are three separate tests, but you should also realize that the three tests
are independent. That is, the outcome for any one of the three tests is totally 
unrelated to the outcome for either of the other two. Thus, it is possible for data 
from a two-factor study to display any possible combination of significant and/or 
nonsignificant main effects and interactions. The data sets in Table 14.4 show 
several possibilities.

Table 14.4(a) shows data with mean differences between levels of factor A (an 
A effect) but no mean differences for factor B and no interaction. To identify the 
A effect, notice that the overall mean for A1 (the top row) is 10 points higher than
the overall mean for A2 (the bottom row). This 10-point difference is the main 
effect for factor A. To evaluate the B effect, notice that both columns have exactly
the same overall mean, indicating no difference between levels of factor B; hence,
there is no B effect. Finally, the absence of an interaction is indicated by the fact
that the overall A effect (the 10-point difference) is constant within each column;
that is, the A effect does not depend on the levels of factor B. (Another indication
is that the data indicate that the overall B effect is constant within each row.)

Table 14.4(b) shows data with an A effect and a B effect but no interaction. 
For these data, the A effect is indicated by the 10-point mean difference between rows,
and the B effect is indicated by the 20-point mean difference between columns. The fact
that the 10-point A effect is constant within each column indicates no interaction.

Finally, Table 14.4(c) shows data that display an interaction but no main effect
for factor A or for factor B. For these data, there is no mean difference between rows
(no A effect) and no mean difference between columns (no B effect). However,
within each row (or within each column), there are mean differences. The “extra”
mean differences within the rows and columns cannot be explained by the overall
main effects and, therefore, indicate an interaction.

INDEPENDENCE OF MAIN
EFFECTS AND INTERACTIONS
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FIGURE 14.3

A line graph showing the
results from a two-factor
experiment.

TABLE 14.4

Three sets of data showing
different combinations of main
effects and interaction for a 
two-factor study. (The numerical
value in each cell of the matrices
represents the mean value 
obtained for the sample in that
treatment condition.)

(a) Data showing a main effect for factor A but no B effect and no interaction

B1 B2

A1 20 20 A1 mean � 20
10-point difference

A2 10 10 A2 mean � 10

B1 mean B2 mean
� 15 � 15

No difference
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(b) Data showing main effects for both factor A and factor B but no interaction

B1 B2

A1 10 30 A1 mean � 20
10-point difference

A2 20 40 A2 mean � 30

B1 mean B2 mean
� 15 � 35

20-point difference

(c) Data showing no main effect for either factor but an interaction

B1 B2

A1 10 20 A1 mean � 15
No difference

A2 20 10 A2 mean � 15

B1 mean B2 mean
� 15 � 15

No difference

1. Each of the following matrices represents a possible outcome of a two-factor 
experiment. For each experiment:

a. Describe the main effect for factor A.

b. Describe the main effect for factor B.

c. Does there appear to be an interaction between the two factors?

2. In a graph showing the means from a two-factor experiment, parallel lines indicate
that there is no interaction. (True or false?)

3. A two-factor ANOVA consists of three hypothesis tests. What are they?

4. It is impossible to have an interaction unless you also have main effects for at least
one of the two factors. (True or false?)

1. For Experiment I:

a. There is a main effect for factor A; the scores in A2 average 20 points higher than in A1.

b. There is a main effect for factor B; the scores in B2 average 10 points higher than in B1.

c. There is no interaction; there is a constant 20-point difference between A1 and A2 that
does not depend on the levels of factor B.

L E A R N I N G  C H E C K

Experiment I

B1 B2

A1 M � 10 M � 20

A2 M � 30 M � 40

Experiment II

B1 B2

A1 M � 10 M � 30

A2 M � 20 M � 20

ANSWERS
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14.3 NOTATION AND FORMULAS FOR THE TWO-FACTOR
ANOVA

The two-factor ANOVA is composed of three distinct hypothesis tests:

1. The main effect for factor A (often called the A-effect). Assuming that factor A
is used to define the rows of the matrix, the main effect for factor A evaluates
the mean differences between rows.

2. The main effect for factor B (called the B-effect). Assuming that factor B is
used to define the columns of the matrix, the main effect for factor B evaluates
the mean differences between columns.

3. The interaction (called the A � B interaction). The interaction evaluates mean
differences between treatment conditions that are not predicted from the overall
main effects from factor A and factor B.

For each of these three tests, we are looking for mean differences between treat-
ments that are larger than would be expected if there are no treatment effects. In 
each case, the significance of the treatment effect is evaluated by an F-ratio. All three 
F-ratios have the same basic structure:

F � (14.1)

The general structure of the two-factor ANOVA is shown in Figure 14.4. Note that
the overall analysis is divided into two stages. In the first stage, the total variability is
separated into two components: between-treatments variability and within-treatments
variability. This first stage is identical to the single-factor ANOVA introduced 
in Chapter 12, with each cell in the two-factor matrix viewed as a separate treatment
condition. The within-treatments variability that is obtained in stage 1 of the analysis is
used to compute the denominator for the F-ratios. As we noted in Chapter 12, within
each treatment, all of the participants are treated exactly the same. Thus, any differ-
ences that exist within the treatments cannot be caused by treatment effects. As a result,

variance (mean differences) between treatments
��������
variance (mean differences) expected if there are no treatment effects

476 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

For Experiment II:

a. There is no main effect for factor A; the scores in A1 and in A2 both average 20.

b. There is a main effect for factor B; on average, the scores in B2 are 10 points higher than
in B1.

c. There is an interaction. The difference between A1 and A2 depends on the level of factor
B. (There is a �10 difference in B1 and a �10 difference in B2.)

2. True.

3. The two-factor ANOVA evaluates the main effect for factor A, the main effect for factor B,
and the interaction between the two factors.

4. False. Main effects and interactions are completely independent.
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the within-treatments variability provides a measure of the differences that exist when
there are no systematic treatment effects influencing the scores (see Equation 14.1).

The between-treatments variability obtained in stage 1 of the analysis combines all
of the mean differences produced by factor A, factor B, and the interaction. The purpose
of the second stage is to partition the differences into three separate components: dif-
ferences attributed to factor A, differences attributed to factor B, and any remaining
mean differences that define the interaction. These three components form the numer-
ators for the three F-ratios in the analysis.

The goal of this analysis is to compute the variance values needed for the three
F-ratios. We need three between-treatments variances (one for factor A, one for 
factor B, and one for the interaction), and we need a within-treatments variance.
Each of these variances (or mean squares) is determined by a sum of squares value
(SS) and a degrees of freedom value (df):

We use the data shown in Table 14.5 to demonstrate the two-factor ANOVA. The
data are representative of many studies examining the relationship between arousal
and performance. The general result of these studies is that increasing the level of
arousal (or motivation) tends to improve the level of performance. (You probably
have tried to “psych yourself up” to do well on a task.) For very difficult tasks,
however, increasing arousal beyond a certain point tends to lower the level of
performance. (Your friends have probably advised you to “calm down and stay
focused” when you get overanxious about doing well.) This relationship between
arousal and performance is known as the Yerkes-Dodson law.

The data are displayed in a matrix with the two levels of task difficulty 
(factor A) making up the rows and the three levels of arousal (factor B) making up

E X A M P L E  1 4 . 1

mean square� �MS
SS

df
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Stage 2

Stage 1

Total
variance

Between-treatments
variance

Within-treatments
variance

Factor A
variance

Factor B
variance

Interaction
variance

FIGURE 14.4

Structure of the analysis for 
a two-factor ANOVA.

Remember that in ANOVA a
variance is called a mean square,
or MS.
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the columns. For the easy task, note that performance scores increase consistently
as arousal increases. For the difficult task, on the other hand, performance peaks 
at a medium level of arousal and drops when arousal is increased to a high level.
Note that the data matrix has a total of six cells, or treatment conditions, with a
separate sample of n � 5 subjects in each condition. Most of the notation should
be familiar from the single-factor ANOVA presented in Chapter 12. Specifically,
the treatment totals are identified by T values, the total number of scores in the
entire study is N � 30, and the grand total (sum) of all 30 scores is G � 120. In
addition to these familiar values, we have included the totals for each row and 
for each column in the matrix. The goal of the ANOVA is to determine whether
the mean differences observed in the data are significantly greater than would be
expected if there are no treatment effects.

The first stage of the two-factor ANOVA separates the total variability into two
components: between-treatments and within-treatments. The formulas for this stage are
identical to the formulas used in the single-factor ANOVA in Chapter 12 with the
provision that each cell in the two-factor matrix is treated as a separate treatment
condition. The formulas and the calculations for the data in Table 14.5 are as follows:

Total variability

(14.2)SS X
G

Ntotal � �Σ 2
2

STAGE 1 OF THE TWO-FACTOR
ANOVA
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Factor B
Arousal Level

Low Medium High

3 1 10
1 4 10
1 8 14
6 6 7
4 6 9

M � 3 M � 5 M � 10
T � 15 T � 25 T � 50

SS � 18 SS � 28 SS � 26

0 2 1
2 7q
0 2 1
0 2 6
3 2 1

M � 1 M � 3 M � 2
T � 5 T � 15 T � 10

SS � 8 SS � 20 SS � 20

TCOL1 � 20 TCOL2 � 40 TCOL3 � 60

TROW1 � 90

TROW2 � 30

N � 30
G � 120

	X2 � 860

TABLE 14.5

Data for a two-factor research
study comparing two levels of
task difficulty (easy and hard)
and three levels of arousal (low,
medium, and high). The study
involves a total of six different
treatment conditions with n � 5
participants in each condition.

Factor A

Task Difficulty

Easy

Difficult
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For these data,

� 860 � 480

� 380

This SS value measures the variability for all N � 30 scores and has degrees of
freedom given by

dftotal � N � 1 (14.3)

For the data in Table 14.5, dftotal � 29.

Within-treatments variability To compute the variance within treatments, we first
compute SS and df � n � 1 for each of the individual treatment conditions. Then the
within-treatments SS is defined as

SSwithin treatments � 	SSeach treatment (14.4)

And the within-treatments df is defined as

dfwithin treatments � 	dfeach treatment (14.5)

For the six treatment conditions in Table 14.4,

SSwithin treatments � 18 � 28 � 26 � 8 � 20 � 20

� 120

dfwithin treatments � 4 � 4 � 4 � 4 � 4 � 4 

� 24

Between-treatments variability Because the two components in stage 1 must add up
to the total, the easiest way to find SSbetween treatments is by subtraction.

SSbetween treatments � SStotal � SSwithin (14.6)

For the data in Table 14.4, we obtain

SSbetween treatments � 380 � 120 � 260

However, you can also use the computational formula to calculate 
SSbetween treatments directly.

SSbetween treatments (14.7)

For the data in Table 14.4, there are six treatments (six T values), each with 
n � 5 scores, and the between-treatments SS is

SSbetween treatments

� 45�125�500�5�45�20�480

� 260

�  � � � � � �
15

5

25

5

50

5

5

5

15

5

10

5

120

30

2 2 2 2 2 2 2

� �Σ T

n

G

N

2 2

SStotal � �860
120

30

2
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The between-treatments df value is determined by the number of treatments (or
the number of T values) minus one. For a two-factor study, the number of treatments
is equal to the number of cells in the matrix. Thus,

dfbetween treatments � number of cells � 1 (14.8)

For these data, dfbetween treatments � 5.

This completes the first stage of the analysis. Note that the two components,
when added, equal the total for both SS values and df values.

SSbetween treatments � SSwithin treatments � SStotal

240 � 120 � 360

dfbetween treatments � dfwithin treatments � dftotal

5 � 24 � 29

The second stage of the analysis determines the numerators for the three F-ratios.
Specifically, this stage determines the between-treatments variance for factor A, factor
B, and the interaction.

1. Factor A. The main effect for factor A evaluates the mean differences between
the levels of factor A. For this example, factor A defines the rows of the matrix,
so we are evaluating the mean differences between rows. To compute the SS
for factor A, we calculate a between-treatment SS using the row totals in exactly
the same way that we computed SSbetween treatments using the treatment totals 
(T values) earlier. For factor A, the row totals are 90 and 30, and each total 
was obtained by adding 15 scores.

Therefore,

(14.9)

For our data,

�540 � 60 � 480

�120

Factor A involves two treatments (or two rows), easy and difficult, so the 
df value is

dfA � number of rows � 1 (14.10)

� 2 � 1

� 1

2. Factor B. The calculations for factor B follow exactly the same pattern that was
used for factor A, except for substituting columns in place of rows. The main

SS
A

� � �
90

15

30

15

120

30

2 2 2

SS
T

n

G

NA
ROW

ROW

� �Σ
2 2

STAGE 2 OF THE TWO-FACTOR
ANOVA
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effect for factor B evaluates the mean differences between the levels of factor B,
which define the columns of the matrix.

(14.11)

For our data, the column totals are 20, 40, and 60, and each total was 
obtained by adding 10 scores. Thus,

� 40�160�360�480

� 80

dfB � number of columns � 1 (14.12)

� 3 � 1

� 2

3. The A � B Interaction. The A � B interaction is defined as the “extra” mean
differences not accounted for by the main effects of the two factors. We use this
definition to find the SS and df values for the interaction by simple subtraction.
Specifically, the between-treatments variability is partitioned into three parts: the
A effect, the B effect, and the interaction (see Figure 14.4). We have already
computed the SS and df values for A and B, so we can find the interaction values
by subtracting to find out how much is left. Thus,

SSA�B � SSbetween treatments � SSA � SSB (14.13)

For our data,

SSA�B � 260 � 120 � 80

� 60

Similarly,

dfA�B � dfbetween treatments � dfA � dfB (14.14)

� 5 � 1 � 2

� 2

The two-factor ANOVA consists of three separate hypothesis tests with three
separate F-ratios. The denominator for each F-ratio is intended to measure the variance
(differences) that would be expected if there are no treatment effects. As we saw in
Chapter 12, the within-treatments variance is the appropriate denominator for an
independent-measures design. Remember that inside each treatment all of the
individuals are treated exactly the same, which means that the differences that exist
were not caused by any systematic treatment effects (see Chapter 12, p. 393). The
within-treatments variance is called a mean square, or MS, and is computed as follows:

MSwithin treatments � �
S

d

S

fw

w

i

i

t

t

h

h

i

i

n

n

t

t

r

r

e

e

a

a

t

t

m

m

e

e

n

n

t

t

s

s
�

SS
B

�  � � �
20

10

40

10

60

10

120

30

2 2 2 2

SS
T

n

G

NB
COL

COL

� �Σ
2 2
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For the data in Table 14.4,

MSwithin treatments � �
1
2
2
4
0

� � 5.00

This value forms the denominator for all three F-ratios.
The numerators of the three F-ratios all measured variance or differences between

treatments: differences between levels of factor A, differences between levels of factor B,
and extra differences that are attributed to the A � B interaction. These three variances
are computed as follows:

For the data in Table 14.5, the three MS values are

Finally, the three F-ratios are

FA � �
MSwith

M

in

S

tr

A

eatments
� � �

12
5
0

� � 24.00

FB � �
MSwith

M

in

S

tr

B

eatments
� � �

4
5
0
� � 8.00

FA�B � �
MSw

M

ithi

S

n

A

t

�

rea

B

tments
� � �

3
5
0
� � 6.00

To determine the significance of each F-ratio, we must consult the F distribution
table using the df values for each of the individual F-ratios. For this example, the F-ratio
for factor A has df � 1 for the numerator and df � 24 for the denominator. Checking the
table with df � 1, 24, we find a critical value of 4.26 for 
 � .05 and a critical value of
7.82 for 
 � .01. Our obtained F-ratio, F � 24.00 exceeds both of these values, so we
conclude that there is a significant difference between the levels of factor A. That is, 
performance on the easy task (top row) is significantly different from performance on
the difficult task (bottom row).

The F-ratio for factor B has df � 2, 24. The critical values obtained from the table
are 3.40 for 
 � .05 and 5.61 for 
 � .01. Again, our obtained F-ratio, F � 8.00, 
exceeds both values, so we can conclude that there are significant differences among
the levels of factor B. For this study, the three levels of arousal result in significantly
different levels of performance.

Finally, the F-ratio for the A � B interaction has df � 2, 24 (the same as factor B).
With critical values of 3.40 for 
 � .05 and 5.61 for 
 � .01, our obtained F-ratio of
F � 6.00 is sufficient to conclude that there is a significant interaction between task
difficulty and level of arousal.

MS
SS

df
MS

SS

df

M

A
A

A
B

B

B

� � � � � �
120

1
120

80

2
40

SS
SS

dfA B
A B

A B
�

�

�

� � �
60

2
30

MS
SS

df
MS

SS

df
MS

SS

dfA
A

A
B

B

B
A B

A B� � �
�

�

AA B�
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Table 14.6 is a summary table for the complete two-factor ANOVA from 
Example 14.1. Although these tables are no longer commonly used in research reports,
they provide a concise format for displaying all of the elements of the analysis.
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TABLE 14.6

A summary table for the 
two-factor ANOVA for the 
data from Example 14.1.

Source SS df MS F

Between treatments 260 5
Factor A (difficulty) 120 1 120 F(1, 24) � 24.00
Factor B (arousal) 80 2 40 F(2, 24) � 8.00
A � B 60 2 30 F(2, 24) � 6.00

Within treatments 120 24 5
Total 380 29

a. Calculate the totals for each level of factor A, and compute SS for factor A.
b. Calculate the totals for factor B, and compute SS for this factor. (Note: You should

find that the totals for B are all the same, so there is no variability for this factor.)
c. Given that the between-treatments (or between-cells) SS is equal to 100, what is

the SS for the interaction?

1. Within each treatment condition, all individuals are treated exactly the same. Therefore, the
within-treatment variability measures the differences that exist between one score and another
when there is no treatment effect causing the scores to be different. This is exactly the 
variance that is needed for the denominator of the F-ratios.

2. a. The totals for factor A are 30 and 90, and each total is obtained by adding 30 scores. 
SSA � 60.

b. All three totals for factor B are equal to 40. Because they are all the same, there is no
variability, and SSB � 0.

c. The interaction is determined by differences that remain after the main effects have been
accounted for. For these data,

SSA�B � SSbetween treatments � SSA � SSB

� 100 � 60 � 0

� 40

ANSWERS

L E A R N I N G  C H E C K 1. Explain why the within-treatment variability is the appropriate denominator for the 
two-factor independent-measures F-ratios.

2. The following data summarize the results from a two-factor independent-
measures experiment:

Factor B

B1 B2 B3

n � 10 n � 10 n � 10
A1 T � 0 T � 10 T � 20

SS � 30 SS � 40 SS � 50

n � 10 n � 10 n � 10
A2 T � 40 T � 30 T � 20

SS � 60 SS � 50 SS � 40

Factor A
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The general technique for measuring effect size with an ANOVA is to compute a
value for �2, the percentage of variance that is explained by the treatment effects. For
a two-factor ANOVA, we compute three separate values for eta squared: one mea-
suring how much of the variance is explained by the main effect for factor A, one for
factor B, and a third for the interaction. As we did with the repeated-measures
ANOVA (p. 446), we remove any variability that can be explained by other sources
before we calculate the percentage for each of the three specific effects. Thus, for 
example, before we compute the �2 for factor A, we remove the variability that is 
explained by factor B and the variability explained by the interaction. The resulting
equation is,

(14.15)

Note that the denominator of Equation 14.15 consists of the variability that is 
explained by factor A and the other unexplained variability. Thus, an equivalent version
of the equation is,

(14.16)

Similarly, the �2 formulas for factor B and for the interaction are as follows:

for factor B, �2 � � (14.17)

for A � B, �2 � � (14.18)

Because each of the �2 equations computes a percentage that is not based on the
total variability of the scores, the results are often called partial eta squares. For the data
in Example 14.1, the equations produce the following values:

IN THE LITERATURE
REPORTING THE RESULTS OF A TWO-FACTOR ANOVA

The APA format for reporting the results of a two-factor ANOVA follows the same
basic guidelines as the single-factor report. First, the means and standard deviations
are reported. Because a two-factor design typically involves several treatment
conditions, these descriptive statistics usually are presented in a table or a graph.

� �
� �

�2 80

380 120 60

80

20
for factor (arousal)B

00
0 40 40� . %( )

� �
� �

�2 120

380 80 60

1
for factor (difficulty)A

220

240
0 50 50� . %( )

� �
� �

� �2 60

380 120 80

60

180
0for the interaction .. %33 33( )

SSA�B
���
SSA�B � SSwithin treatments

SSA�B
���
SStotal � SSA � SSB

SSB
���
SSB � SSwithin treatments

SSB
���
SStotal � SSA � SSA�B

for factor
within treatments

A
SS

SS SS
A

A

, � �
�

2

for factor
total

A
SS

SS SS SS
A

B A B

, � �
� �

�

2

MEASURING EFFECT SIZE 
FOR THE TWO-FACTOR

ANOVA
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Next, the results of all three hypothesis tests (F-ratios) are reported. The results for
the study in Example 14.1 could be reported as follows:

SECTION 14.3 / NOTATION AND FORMULAS FOR THE TWO-FACTOR ANOVA 485

TABLE 1
Mean performance score for each treatment condition.

Level of Arousal

Low Medium High

Easy M � 3 M � 5 M � 10
Difficulty SD � 2.12 SD � 2.65 SD � 2.55

Hard M � 1 M � 3 M � 2
SD � 1.41 SD � 2.24 SD � 2.24

The means and standard deviations for all treatment conditions are shown in
Table 1. The two-factor analysis of variance showed a significant main effect for
task difficulty, F(1, 24) � 24.00, p � .01, �2 � 0.50; a significant main effect
for arousal, F(2, 24) � 8.00, p � .01, �2 � 0.40; and a significant interaction
between difficulty and arousal, F(2, 24) � 6.00, p � .01, �2 � 0.33.

Because the two-factor ANOVA involves three separate tests, you must consider the
overall pattern of results rather than focusing on the individual main effects or the
interaction. In particular, whenever there is a significant interaction, you should be
cautious about accepting the main effects at face value (whether they are significant
or not). Remember, an interaction means that the effect of one factor depends on the
level of the second factor. Because the effect changes from one level to the next,
there is no consistent “main effect.”

Figure 14.5 shows the sample means obtained from the task difficulty and arousal
study. Recall that the analysis showed that both main effects and the interaction were

INTERPRETING THE RESULT
FROM A TWO-FACTOR ANOVA

10

9

8

7

6

5

4

3

2

1

 Low Medium High

Easy task

Difficult task

Mean
level of

performance

Level of Arousal

FIGURE 14.5

Sample means for the data 
in Example 14.1. The data
are hypothetical results for a
two-factor study examining
how performance is related
to task difficulty and level 
of arousal.
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significant. The main effect for factor A (task difficulty) can be seen by the fact that the
scores on the easy task are generally higher than scores on the difficult task. 

The main effect for factor B (arousal) is based on the general tendency for the
scores to increase as the level of arousal increases. However, this is not a completely
consistent trend. In fact, the scores on the difficult task show a sharp decrease when
arousal is increased from moderate to high. This is an example of the complications that
can occur when you have a significant interaction. Remember that an interaction means
that a factor does not have a consistent effect. Instead, the effect of one factor depends
on the other factor. For the data in Figure 14.5, the effect of increasing arousal depends
on the task difficulty. For the easy task, increasing arousal produces increased per-
formance. For the difficult task, however, increasing arousal beyond a moderate level
produces decreased performance. Thus, the consequences of increasing arousal depend
on the difficulty of the task. This interdependence between factors is the source of the
significant interaction.

The existence of a significant interaction indicates that the effect (mean differences) for
one factor depends on the levels of the second factor. When the data are presented in a
matrix showing treatment means, a significant interaction indicates that the mean differ-
ences within one column (or row) show a different pattern than the mean differences
within another column (or row). In this case, a researcher may want to perform a sepa-
rate analysis for each of the individual columns (or rows). In effect, the researcher is sep-
arating the two-factor experiment into a series of separate single-factor experiments. The
process of testing the significance of mean differences within one column (or one row)
of a two-factor design is called testing simple main effects. To demonstrate this process,
we once again use the data from the task-difficulty and arousal study (Example 14.1),
which are summarized in Figure 14.5.

For this demonstration, we test for significant mean differences within each column
of the two-factor data matrix. That is, we test for significant mean differences
between the two levels of task difficulty for the low level of arousal, then repeat the
test for the medium level of arousal, and once more for the high level. In terms of the
two-factor notation system, we test the simple main effect of factor A for each level
of factor B.

For the low level of arousal We begin by considering only the low level of arousal.
Because we are restricting the data to the first column of the data matrix, the data 
effectively have been reduced to a single-factor study comparing only two treatment
conditions. Therefore, the analysis is essentially a single-factor ANOVA duplicating
the procedure presented in Chapter 12. To facilitate the change from a two-factor to a

E X A M P L E  1 4 . 2

TESTING SIMPLE MAIN
EFFECTS
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Low Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 3 M � 1 G � 20
T � 15 T � 5
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single-factor ANOVA, the data for the low level of arousal (first column of the matrix)
are reproduced using the notation for a single-factor study.

State the hypothesis. For this restricted set of the data, the null hypothesis would state
that there is no difference between the mean for the easy task condition and the mean
for the difficult task condition. In symbols,

H0: �easy � �difficult for the low level of arousal

To evaluate this hypothesis, we use an F-ratio for which the numerator, 
MSbetween treatments, is determined by the mean differences between these two groups
and the denominator consists of MSwithin treatments from the original ANOVA. Thus,
the F-ratio has the structure

F �

�

To compute the MSbetween treatments, we begin with the two treatment totals T � 15
and T � 5. Each of these totals is based on n � 5 scores, and the two totals add up to
a grand total of G � 20. The SSbetween treatments for the two treatments is

SSbetween treatments � 	�
T
n

2

� � �
G
N

2

�

� �
1
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5
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S
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1
1
0
� � 10

Using MSwithin treatments � 5 from the original two-factor analysis, the final F-ratio is
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� � 2.00

Note that this F-ratio has the same df values (1, 24) as the test for factor A main
effects (easy versus difficult) in the original ANOVA. Therefore, the critical value
for the F-ratio is the same as that in the original ANOVA. With df � 1, 24 the
critical value is 4.26. In this case, our F-ratio fails to reach the critical value, so we
conclude that there is no significant difference between the two tasks, easy and
difficult, at a low level of arousal. 

MSbetween treatments for the two treatments in column 1
������

MSwithin treatments from the original ANOVA

variance (differences) for the means in column 1
��������
variance (differences) expected if there are no treatment effects

S T E P  2

S T E P  1
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Remember that the F-ratio uses
MSwithin treatments from the origi-
nal ANOVA. This MS � 5 with
df � 24. Because this SS value
is based on only two treatments,
it has df � 1. Therefore,
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For the medium level of arousal The test for the medium level of arousal follows
the same process. The data for the medium level are as follows:
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Medium Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 5 M � 3 G � 40
T � 25 T � 15

Note that these data show a 2-point mean difference between the two conditions 
(M � 5 and M � 3), which is exactly the same as the 2-point difference that we
evaluated for the low level of arousal (M � 3 and M � 1). Because the mean difference
is the same for these two levels of arousal, the F-ratios are also identical. For the low
level of arousal, we obtained F(1, 24) � 2.00, which was not significant. This test also
produces F(1, 24) � 2.00 and again we conclude that there is no significant difference.
(Note: You should be able to complete the test to verify this decision.)

For the high level of arousal The data for the high level are as follows:

High Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 10 M � 2 G � 60
T � 50 Y � 10

For these data, 

SSbetween treatments � 	�
T
n

2

� � �
G
N

2

�

� �
5
502

� � �
102

5
�� � �

602

10
�

� 500 � 20 � 360

� 160

Again, we are comparing only two treatment conditions, so df � 1 and

MSbetween treatments � �
S
d
S
f
� � �

16
1
0

� � 160

Thus, for the high level of arousal, the final F-ratio is
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� � 32.00

As before, this F-ratio has df � 1, 24 and is compared with the critical value 
F � 4.26. This time the F-ratio is far into the critical region and we conclude that
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there is a significant difference between the easy task and the difficult task for the
high level of arousal.

As a final note, we should point out that the evaluation of simple main effects accounts
for the interaction as well as the overall main effect for one factor. In Example 14.1, the
significant interaction indicates that the effect of task difficulty (factor A) depends on the
level of arousal (factor B). The evaluation of the simple main effects demonstrates this 
dependency. Specifically, task difficulty has no significant effect on performance when
arousal level is low or medium, but does have a significant effect when arousal level is
high. Thus, the analysis of simple main effects provides a detailed evaluation of the effects
of one factor including its interaction with a second factor.

The fact that the simple main effects for one factor encompass both the interaction
and the overall main effect of the factor can be seen if you consider the SS values. For
this demonstration,
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Simple Main Effects for Arousal Interaction and Main Effect for Arousal

SSlow arousal � 10 SSA�B � 60
SSmedium arousal � 10 SSA � 120
SShigh arousal � 160

Total SS � 180 Total SS � 180

Notice that the total variability from the simple main effects of difficulty (factor A)
completely accounts for the total variability of factor A and the A � B interaction.

14.4 USING A SECOND FACTOR TO REDUCE VARIANCE
CAUSED BY INDIVIDUAL DIFFERENCES

As we noted in Chapters 10 and 12, a concern for independent-measures designs is the
variance that exists within each treatment condition. Specifically, large variance tends
to reduce the size of the t statistic or F-ratio and, therefore, reduces the likelihood of
finding significant mean differences. Much of the variance in an independent-measures
study comes from individual differences. Recall that individual differences are the char-
acteristics, such as age or gender, that differ from one participant to the next and can
influence the scores obtained in the study.

Occasionally, there are consistent individual differences for one specific partici-
pant characteristic. For example, the males in a study may consistently have lower
scores than the females. Or, the older participants may have consistently higher
scores than the younger participants. For example, suppose that a researcher com-
pares two treatment conditions using a separate group of children for each condition.
Each group of participants contains a mix of boys and girls. Hypothetical data for this
study are shown in Table 14.7(a), with each child’s gender noted with an M or an F.
While examining the results, the researcher notices that the girls tend to have higher
scores than the boys, which produces big individual differences and high variance
within each group. Fortunately, there is a relatively simple solution to the problem of
high variance. The solution involves using the specific variable, in this case gender,
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as a second factor. Instead of one group in each treatment, the researcher divides the
participants into two separate groups within each treatment: a group of boys and a
group of girls. This process creates the two-factor study shown in Table 14.7(b), with
one factor consisting of the two treatments (I and II) and the second factor consisting
of the gender (male and female). 

By adding a second factor and creating four groups of participants instead of only
two, the researcher has greatly reduced the individual differences (gender differences)
within each group. This should produce a smaller variance within each group and,
therefore, increase the likelihood of obtaining a significant mean difference. This
process is demonstrated in the following example.

We use the data in Table 14.7 to demonstrate how the variance caused by individual
differences can be reduced by adding a participant characteristic, such as age or gender,
as a second factor. For the single-factor study in Table 14.7(a), the two treatments
produce SSwithin treatments � 50 � 68 � 118. With n � 8 in each treatment, we obtain
dfwithin treatments � 7 � 7 � 14. These values produce MSwithin treatments � � 8.43,
which is the denominator of the F-ratio evaluating the mean difference between
treatments. For the two-factor study in Table 14.7(b), the four treatments produce
SSwithin treatments � 10 � 12 � 8 � 24 � 54. With n � 4 in each treatment, we obtain
dfwithin treatments � 3 � 3 � 3 � 3 � 12. These value produce MSwithin treatments �

� 4.50, which is the denominator of the F-ratio evaluating the main effect for the
treatments. Notice that the error term for the single-factor F is nearly twice as big as 
the error term for the two-factor F. Reducing the individual differences within each
group has greatly reduced the within-treatment variance that forms the denominator 
of the F-ratio. 

Both designs, single-factor and two-factor, evaluate the difference between the
two treatment means, M � 3 and M � 6, with n � 8 in each treatment. These values
produce SSbetween treatments � 36 and, with k � 2 treatments, we obtain dfbetween

treatments � 1. Thus, MSbetween treatments � � 36. (For the two-factor design, this 
is the MS for the main effect of the treatment factor.) With different denominators,
however, the two designs produce very different F-ratios. For the single-factor
design, we obtain

36

1

54
12

118

14

E X A M P L E  1 4 . 3
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TABLE 14.7

A single-factor study comparing
two treatments (a) can be 
transformed into a two-factor
study (b) by using a participant
characteristic (gender) as 
a second factor. This process
creates smaller, more 
homogeneous groups, which
reduces the variance within
groups.

(a)

Treatment I Treatment II

3 (M) 8 (F)
4 (F) 4 (F)
4 (F) 1 (M)
0 (M) 10 (F)
6 (F) 5 (M)
1 (M) 5 (M)
2 (F) 10 (F)
4 (M) 5 (M)
M � 3 M � 6
SS � 50 SS � 68

(b)

Treatment I Treatment II

Males 3 1
0 5
1 5
4 5

M � 2 M � 4
SS � 10 SS � 12

Females 4 8
4 4
6 10
2 10

M � 4 M � 8
SS � 8 SS � 24
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With df � 1, 14, the critical value for 
 � .05 is F � 4.60. Our F-ratio is not 
in the critical region, so we fail to reject the null hypothesis and must conclude that
there is no significant difference between the two treatments.

For the two-factor design, however, we obtain 
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�� � 8.88

With df � 1, 14, the critical value for 
 � .05 is F � 4.75. Our F-ratio is 
well beyond this value, so we reject the null hypothesis and conclude that there is 
a significant difference between the two treatments.

For the single-factor study in Example 14.3, the individual differences caused by
gender are part of the variance within each treatment condition. This increased variance
reduces the F-ratio and results in a conclusion of no significant difference 
between treatments. In the two-factor analysis, the individual differences caused by
gender are measured by the main effect for gender, which is a between-groups factor.
Because the gender differences are now between-groups rather than within-groups,
they no longer contribute to the variance.  

The two-factor ANOVA has other advantages beyond reducing the variance.
Specifically, it allows you to evaluate mean differences between genders as well as
differences between treatments, and it reveals any interaction between treatment
and gender. 

14.5 ASSUMPTIONS FOR THE TWO-FACTOR ANOVA

The validity of the ANOVA presented in this chapter depends on the same three 
assumptions we have encountered with other hypothesis tests for independent-measures
designs (the t test in Chapter 10 and the single-factor ANOVA in Chapter 12):

1. The observations within each sample must be independent (see p. 254).

2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances
(homogeneity of variance).

As before, the assumption of normality generally is not a cause for concern, 
especially when the sample size is relatively large. The homogeneity of variance 
assumption is more important, and if it appears that your data fail to satisfy this 
requirement, you should conduct a test for homogeneity before you attempt the
ANOVA. Hartley’s F-max test (see p. 338) allows you to use the sample variances from
your data to determine whether there is evidence for any differences among the popu-
lation variances. Remember, for the two-factor ANOVA, there is a separate sample for
each cell in the data matrix. The test for homogeneity applies to all of these samples
and the populations that they represent.
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1. A research study with two independent variables is
called a two-factor design. Such a design can be
diagramed as a matrix with the levels of one factor
defining the rows and the levels of the other factor
defining the columns. Each cell in the matrix
corresponds to a specific combination of the two factors.

2. Traditionally, the two factors are identified as factor A
and factor B. The purpose of the ANOVA is to
determine whether there are any significant mean
differences among the treatment conditions or cells in
the experimental matrix. These treatment effects are
classified as follows:
a. The A-effect: Overall mean differences among the

levels of factor A.
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SUMMARY

b. The B-effect: Overall mean differences among the
levels of factor B.

c. The A � B interaction: Extra mean differences that
are not accounted for by the main effects.

3. The two-factor ANOVA produces three F-ratios: one
for factor A, one for factor B, and one for the A � B
interaction. Each F-ratio has the same basic structure:

F �

The formulas for the SS, df, and MS values for the 
two-factor ANOVA are presented in Figure 14.6.

MStreatment effect(either A or B or A � B)
����

MSwithin treatments

SS

SS SS

df (number of cells) 1

Between treatments

T 2

n
G 2

N

df ( levels of B ) 1

Factor B (columns)

T 2
COL

n
G 2

N

SS is found by
subtraction

df is found by
subtraction

Interaction

df ( levels of A) 1

Factor A (rows)

T 2
ROW

n
G 2

N

SS SS each cell

df df each cell

Within treatments

SS X 2

df N 1

Total
G2

N

SS for the factor
df for the factor

MS factor
SS within treatments

df within treatments
MS within

� 	

� 	

� 	

� 	

� 	

�

� � 	 �

��

�

� �

� � �

� �

�

ROW COL

FIGURE 14.6

The ANOVA for an independent-measures two-factor design.

two-factor design (467)

matrix (467)

cells (467)

main effect (469)

interaction (470)

KEY TERMS
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 14 on the book

companion website. The website also provides access to two workshops entitled Two Way
ANOVA and Factorial ANOVA that both review the two-factor analysis presented in this
chapter.

Improve your understanding of statistics with Aplia’s auto-graded problem 
sets and immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Two-Factor, Independent-Measures
Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered into the SPSS data editor in a stacked format, which means
that all of the scores from all of the different treatment conditions are entered in a
single column (VAR00001).

2. In a second column (VAR00002), enter a code number to identify the level of factor
A for each score. If factor A defines the rows of the data matrix, enter a 1 beside each
score from the first row, enter a 2 beside each score from the second row, and so on.

3. In a third column (VAR00003), enter a code number to identify the level of factor B
for each score. If factor B defines the columns of the data matrix, enter a 1 beside
each score from the first column, enter a 2 beside each score from the second 
column, and so on.
Thus, each row of the SPSS data editor has one score and two code numbers, with
the score in the first column, the code for factor A in the second column, and the
code for factor B in the third column.
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Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on Univariant.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click

the arrow to move it into the Dependent Variable box.
3. One by one, highlight the column labels for the two factor codes and click the

arrow to move them into the Fixed Factors box.
4. If you want descriptive statistics for each treatment, click on the Options box,

select Descriptives, and click Continue.
5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the arousal-and-task-difficulty
study in Example 14.1 and part of the program output is shown in Figure 14.7. The
output begins with a table listing the factors (not shown in Figure 14.7), followed by a
table showing descriptive statistics, including the mean and standard deviation for each
cell, or treatment condition. The results of the ANOVA are shown in the table labeled
Tests of Between-Subjects Effects. The top row (Corrected Model) presents the 
between-treatments SS and df values. The second row (Intercept) is not relevant for 
our purposes. The next three rows present the two main effects and the interaction (the
SS, df, and MS values, as well as the F-ratio and the level of significance), with each
factor identified by its column number from the SPSS data editor. The next row (Error)
describes the error term (denominator of the F-ratio), and the final row (Corrected Total)
describes the total variability for the entire set of scores. (Ignore the row labeled Total.)

FOCUS ON PROBLEM SOLVING

1. Before you begin a two-factor ANOVA, take time to organize and summarize the
data. It is best if you summarize the data in a matrix with rows corresponding to the
levels of one factor and columns corresponding to the levels of the other factor. In
each cell of the matrix, show the number of scores (n), the total and mean for the
cell, and the SS within the cell. Also compute the row totals and column totals that
are needed to calculate main effects.

2. For a two-factor ANOVA, there are three separate F-ratios. These three F-ratios use the
same error term in the denominator (MSwithin). On the other hand, these F-ratios have
different numerators and may have different df values associated with each of these
numerators. Therefore, you must be careful when you look up the critical F values in
the table. The two factors and the interaction may have different critical F values.

DEMONSTRATION 14.1

TWO-FACTOR ANOVA

The following data are representative of the results obtained in a research study examining
the relationship between eating behavior and body weight (Schachter, 1968). The two factors
in this study were:

1. The participant’s weight (normal or obese)

2. The participant’s state of hunger (full stomach or empty stomach)
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Descriptive Statistics

Dependent Variable: VAR00001

VAR00002

1.00

VAR00003

Tests of Between-Subjects Effects

Source Type III Sum
of Squares df Mean

Square F Sig.

Mean

1.00

2.00

3.00

Total

Corrected Model

Intercept

VAR00002

VAR00003

VAR00002 * VAR00003

Error

Total

Corrected Total        

260.000

480.000

120.000

80.000

60.000

120.000

860.000

380.000

5

1

1

2

2

24

30

29

52.000

480.000

120.000

40.000

30.000

5.000

10.400

96.000

24.000

8.000

6.000

.000

.000

.000

.002

.008

3.0000

5.0000

10.0000

6.0000

2.12132

2.64575

2.54951

3.79850

5

5

5

15

Std. Deviation N

2.00 1.00

2.00

3.00

Total

1.0000

3.0000

2.0000

2.0000

1.41421

2.23607

2.23607

2.03540

5

5

5

15

1.00 1.00

2.00

3.00

Total

2.0000

4.0000

6.0000

4.0000

2.00000

2.53859

4.78423

3.61987

10

10

10

30

Dependent Variable: VAR00001

FIGURE 14.7

Portions of the SPSS output for the two-factor ANOVA for the arousal-and-task-difficulty study in Example 14.1.

All participants were led to believe that they were taking part in a taste test for several
types of crackers, and they were allowed to eat as many crackers as they wanted. The
dependent variable was the number of crackers eaten by each participant. There were 
two specific predictions for this study. First, it was predicted that normal participants’
eating behavior would be determined by their state of hunger. That is, people with empty
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stomachs would eat more and people with full stomachs would eat less. Second, it was
predicted that eating behavior for obese participants would not be related to their state of
hunger. Specifically, it was predicted that obese participants would eat the same amount
whether their stomachs were full or empty. Note that the researchers are predicting an
interaction: The effect of hunger will be different for the normal participants and the obese
participants. The data are as follows:
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Factor B: Hunger

Empty stomach Full stomach

n � 20 n � 20

M � 22 M � 15

T � 440 T � 300

SS � 1540 SS � 1270

n � 20 n � 20

M � 17 M � 18

T � 340 T � 360

SS � 1320 SS � 1266

Tempty � 780 Tfull � 660

Normal

Factor A:

Weight

Obese

Tnormal � 740

Tnormal � 700

G � 1440
N � 80

	X2 � 31,836

State the hypotheses, and select alpha. For a two-factor study, there are three separate
hypotheses, the two main effects and the interaction.

For factor A, the null hypothesis states that there is no difference in the amount eaten
for normal participants versus obese participants. In symbols,

H0: �normal � �obese

For factor B, the null hypothesis states that there is no difference in the amount eaten for
full-stomach versus empty-stomach conditions. In symbols,

H0: �full � �empty

For the A � B interaction, the null hypothesis can be stated two different ways. First, 
the difference in eating between the full-stomach and empty-stomach conditions will be
the same for normal and obese participants. Second, the difference in eating between the
normal and obese participants will be the same for the full-stomach and empty-stomach
conditions. In more general terms,

H0: The effect of factor A does not depend on the levels of factor B (and B does
not depend on A).

We use 
 � .05 for all tests.

The two-factor analysis. Rather than compute the df values and look up critical values
for F at this time, we proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented in
Chapter 12, where each cell in the data matrix is considered a separate treatment condition.

S T A G E  1

S T E P  2

S T E P  1
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SSwithin treatments � 	SSinside each treatment � 1540 � 1270 � 1320 � 1266 � 5396

SSbetween treatments

4402          3002          3402         3602         14402

� ––––– � ––––– � ––––– � ––––– � ––––– 
20          20           20           20           80

� 520

The corresponding degrees of freedom are

dftotal � N � 1 � 79

dfwithin treatments � 	df � 19 � 19 � 19 � 19 � 76

dfbetween treatments � number of treatments � 1 � 3

The second stage of the analysis partitions the between-treatments variability into three
components: the main effect for factor A, the main effect for factor B, and the A � B
interaction.

For factor A (normal/obese),

For factor B (full/empty),

For the A � B interaction,

SSA�B � SSbetween treatments � SSA � SSB

� 520 � 20 � 180

� 320

SS
T

n

G

NB
COLS

COLS

� 	 �

� � �

2 2

2 2780

40

660

40

1440

80
180

2

�

SS
T

n

G

NA
ROWS

ROWS

� 	 �

� � �

2 2

2 2740

40

700

40

1440

80
20

2

�

S T A G E  2

� 	 �
T

n

G

N

2 2

SS X
G

Ntotal � 	 �

� � �

2
2

2

31 836
1440

80
5916,
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The corresponding degrees of freedom are

dfA � number of rows � 1 � 1

dfB � number of columns � 1 � 1

dfA � B � dfbetween treatments � dfA � dfB

� 3 � 1 � 1

� 1

The MS values needed for the F-ratios are

SSA 20
MSA � ––– � ––– � 20

dfA 1

SSB 180
MSB � ––– � –––– � 180 

dfB 1

SSA � B 320
MSA � B � –––––– � –––– � 320 

dfA � B 1

SSwithin treatments 5396 
MSwithin treatments � ––––––––––––– � ––––– � 71

dfwithin treatments 76

Finally, the F-ratios are

MSA 20
FA � –––––––––––––– � ––– � 0.28 

MSwithin treatments        71

MSB 180
FB � –––––––––––––– � –––– � 2.54 

MSwithin treatments           71

MSA � B 320
FA � B � –––––––––––––– � –––– � 4.51 

MSwithin treatments          71

Make a decision and state a conclusion. All three F-ratios have df � 1, 76. 
With 
 � .05, the critical F value is 3.98 for all three tests.

For these data, factor A (weight) has no significant effect; F(1, 76) � 0.28.
Statistically, there is no difference in the number of crackers eaten by normal versus
obese participants.

Similarly, factor B (fullness) has no significant effect; F(1, 76) � 2.54.
Statistically, the number of crackers eaten by full participants is no different from the
number eaten by hungry participants. (Note: This conclusion concerns the combined
group of normal and obese participants. The interaction concerns these two groups
separately.)

These data produce a significant interaction; F(1, 76) � 4.51, p � .05. This means
that the effect of fullness does depend on weight. A closer look at the original data shows
that the degree of fullness did affect the normal participants, but it had no effect on the
obese participants.

S T E P  3
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DEMONSTRATION 14.2

MEASURING EFFECT SIZE FOR THE TWO-FACTOR ANOVA

Effect size for each main effect and for the interaction is measured by eta squared (�2),
the percentage of variance explained by the specific main effect or interaction. In each
case, the variability that is explained by other sources is removed before the percentage is
computed. For the two-factor ANOVA in Demonstration 14.1,
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1. Define each of the following terms:
a. Factor
b. Level
c. Two-factor study

2. The structure of a two-factor study can be presented as a
matrix with the levels of one factor determining the 
rows and the levels of the second factor determining 
the columns. With this structure in mind, describe the
mean differences that are evaluated by each of the 
three hypothesis tests that make up a two-factor ANOVA.

3. Briefly explain what happens during the second stage of
the two-factor ANOVA.

4. For the data in the following matrix:

5. The following matrix presents the results from an
independent-measures, two-factor study with a sample
of n = 10 participants in each treatment condition. Note
that one treatment mean is missing.

No Treatment Treatment

Male M � 5 M � 3 Overall M � 4

Female M � 9 M � 13 Overall M � 11

overall M � 7 overall M � 8

a. Which two means are compared to describe the
treatment main effect?

b. Which two means are compared to describe the
gender main effect?

c. Is there an interaction between gender and treatment?
Explain your answer.

Factor B

B1 B2

A1 M � 20 M � 30
Factor A

A2 M � 40

a. What value for the missing mean would result in no
main effect for factor A?

b. What value for the missing mean would result in no
main effect for factor B?

c. What value for the missing mean would result in no
interaction? 

6. The following matrix presents the results of a two-
factor study with n = 10 scores in each of the six
treatment conditions. Note that one of the treatment
means is missing.

Factor B

B1 B2 B3

A1 M � 10 M � 20 M � 40
Factor A

A2 M � 20 M � 30
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a. What value for the missing mean would result in no
main effect for factor A?

b. What value for the missing mean would result in no
interaction?

7. For the data in the following graph:
a. Is there a main effect for the treatment factor?
b. Is there a main effect for the age factor?
c. Is there an interaction between age and treatment?

8. A researcher conducts an independent-measures, 
two-factor study using a separate sample of n = 15
participants in each treatment condition. The results are
evaluated using an ANOVA and the researcher reports
an F-ratio with df = 1, 84 for factor A, and an F-ratio
with df = 2, 84 for factor B.
a. How many levels of factor A were used in the study?
b. How many levels of factor B were used in the study?
c. What are the df values for the F-ratio evaluating the

interaction?

9. The following results are from an independent-
measures, two-factor study with n = 10 participants in
each treatment condition.

25 

20 

15 

10 

5 

8 Years 9 Years 10 Years 

Mean 
score 

Treatment 1 

Treatment 2 

Age

a. Use a two-factor ANOVA with 
 = .05 to evaluate
the main effects and the interaction.

b. Compute �2 to measure the effect size for each of
the main effects and the interaction.

10. The following results are from an independent-measures,
two-factor study with n = 5 participants in each
treatment condition.

Factor B

B1 B2

T � 40 T � 10
M � 4 M � 1
SS � 50 SS � 30

T � 50 T � 20
M � 5 M � 2
SS � 60 SS � 40

N � 40 
G �120 

	X2 � 640

Factor A

A1

A2

a. Use a two-factor ANOVA with 
 � .05 to evaluate
the main effects and the interaction.

b. Test the simple main effects using 
 � .05 to
evaluate the mean difference between treatment 
A1 and A2 for each level of factor B.

11. A researcher conducts an independent-measures,
two-factor study with two levels of factor A
and three levels of factor B, using a sample 
of n � 12 participants in each treatment 
condition.
a. What are the df values for the F-ratio evaluating 

the main effect of factor A?
b. What are the df values for the F-ratio evaluating 

the main effect of factor B?
c. What are the df values for the F-ratio evaluating 

the interaction?

12. Most sports injuries are immediate and obvious, like a
broken leg. However, some can be more subtle, like
the neurological damage that may occur when soccer
players repeatedly head a soccer ball. To examine
long-term effects of repeated heading, Downs and
Abwender (2002) examined two different age groups
of soccer players and swimmers. The dependent
variable was performance on a conceptual thinking
task. Following are hypothetical data, similar to the
research results.
a. Use a two-factor ANOVA with 
 � .05 to evaluate

the main effects and interaction.
b. Calculate the effects size (�2) for the main effects

and the interaction.
c. Briefly describe the outcome of the study.

Factor B

B1 B2 B3

T � 25 T � 40 T � 70
M � 5 M � 8 M � 14
SS � 30 SS � 38 SS � 46

T � 15 T � 20 T � 40
M � 3 M � 4 M � 8
SS � 22 SS � 26 SS � 30

N � 40 
G �120 

	X2 � 640

Factor A

A1

A2
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13. Some people like to pour beer gently down the side of
the glass to preserve bubbles. Others splash it down
the center to release the bubbles into a foamy head and
free the aromas. Champagne, however is best when the
bubbles remain concentrated in the wine. A group of
French scientists recently verified the difference
between the two pouring methods by measuring the
amount of bubbles in each glass of champagne poured
two different ways and at three different temperatures
(Liger-Belair, 2010). The following data present the
pattern of results obtained in the study.

PROBLEMS 501

Source SS df MS

Between treatments 60
Factor A 5 F �

Factor B F �

A � B Interaction 25 F �

Within treatments 2.5
Total

a. Use a two-factor ANOVA with 
 = .05 to evaluate
the mean differences.

b. Briefly explain how temperature and pouring
influence the bubbles in champagne according to
this pattern of results.

14. The following table summarizes the results from a
two-factor study with 2 levels of factor A and 3 levels
of factor B using a separate sample of n = 8
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)

Factor B: Age

College Older

n � 20 n � 20
M � 9 M � 4
T � 180 T � 80

SS � 380 SS � 390

n � 20 n � 20
M � 9 M � 8
T � 180 T � 160

SS � 350 SS � 400

	X2 � 6360

Factor A:
Sport

Soccer

Swimming

Champagne Temperature (ºF)

40º 46º 52º

n = 10 n = 10 n = 10
M = 7 M = 3 M = 2
SS = 64 SS = 57 SS = 47

n = 10 n = 10 n = 10
M = 5 M = 1 M = 0
SS = 56 SS = 54 SS = 46

Gentle Pour

Splashing Pour

15. The following table summarizes the results from a
two-factor study with 3 levels of factor A and 3 levels
of factor B using a separate sample of n = 9
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)

Source SS df MS

Between treatments 144

Factor A 18 F �

Factor B F �

A � B Interaction F � 7.0
Within treatments
Total 360

16. The Preview section for this chapter described a two-
factor study examining performance under two audience
conditions (factor B) for high and low self-esteem
participants (factor A). The following summary table
presents possible results from the analysis of that study.
Assuming that the study used a separate sample of 
n = 15 participants in each treatment condition 
(each cell), fill in the missing values in the table. 
(Hint: Start with the df values.) 

Source SS df MS

Between treatments 67
Audience F � 

Self-esteem 29 F � 

Interaction F � 5.50
Within treatments 4
Total

17. The following table summarizes the results from a
two-factor study with 2 levels of factor A and 3 levels
of factor B using a separate sample of n = 11
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)
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Source SS df MS

Between treatments
Factor A F � 7

Factor B F � 8
A � B Interaction F � 3

Within treatments 240

Total

18. The following data are from a two-factor study
examining the effects of two treatment conditions on
males and females. 
a. Use an ANOVA with 
 = .05 for all tests to

evaluate the significance of the main effects 
and the interaction.

b. Compute �2 to measure the size of the effect for
each main effect and the interaction.

Treatments

I II

3 2
8 8
9 7

Tmale � 48
4 7

M � 6 M � 6
T � 24 T � 24 N � 16

SS � 26 SS � 22 G � 96

0 12
	X2 � 806

0 6
2 9
6 13

Tfemale � 48M � 2 M � 10
T � 8 T � 40

SS � 24 SS � 30

TI = 32      TII � 64

19. The following data are from a two-factor study
examining the effects of three treatment conditions on
males and females. 
a. Use an ANOVA with 
 = .05 for all tests to

evaluate the significance of the main effects 
and the interaction.

b. Test the simple main effects using 
 = .05 
to evaluate the mean difference between 
males and females for each of the three
treatments.  

Factor B Treatments

I II III

20. Mathematics word problems can be particularly
difficult, especially for primary-grade children. A
recent study investigated a combination of techniques
for teaching students to master these problems (Fuchs,
Fuchs, Craddock, Hollenbeck, Hamlett, &
Schatschneider, 2008). The study investigated the
effectiveness of small-group tutoring and the
effectiveness of a classroom instruction technique
known as “hot math.” The hot-math program teaches
students to recognize types or categories of problems
so that they can generalize skills from one problem to
another. The following data are similar to the results
obtained in the study. The dependent variable is a math
test score for each student after 16 weeks in the study.

1
2
6

M � 3
T � 9

SS � 14

7
2
9

M � 6
T � 18

SS � 26

9
11
7

M � 9
T � 27

SS � 8

3
1
5

M � 3
T � 9

SS � 8

10
11
15

M � 12
T � 36

SS � 14

16
18
11

M � 15
T � 45

SS � 26

Male

Female

Factor A:

Gender

Male

Female

Factor A:

Gender
N � 18
G � 144

	X2 � 1608

Tmale � 54

Tfemale � 90

No Tutoring With Tutoring

3 9
6 4
2 5
2 8
4 4
7 6

7 8
7 12
2 9
6 13
8 9
6 9

Traditional Instruction

Hot-Math Instruction
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a. Use a two-factor ANOVA with 
 = .05 to evaluate
the significance of the main effects and the
interaction.

b. Calculate the �2 values to measure the effect size
for the two main effects.

c. Describe the pattern of results. (Is tutoring
significantly better than no tutoring? Is traditional
classroom instruction significantly different from
hot math? Does the effect of tutoring depend on the
type of classroom instruction?)

21. In Chapter 12 (p. 432), we described a study reporting
that college students who are on Facebook (or have it
running in the background) while studying had lower
grades than students who did not use the social
network (Kirschner & Karpinski, 2010). A researcher
would like to know if the same result extends to
students in lower grade levels. The researcher planned
a two-factor study comparing Facebook users with
non-users for middle school students, high school
students, and college students. For consistency across
groups, grades were converted into six categories,
numbered 0 to 5 from low to high. The results are
presented in the following matrix.
a. Use a two-factor ANOVA with 
 = .05 to evaluate

the mean differences.
b. Describe the pattern of results.

person shown in the photograph. The study uses a
separate group of participants for each condition. The
following table presents data similar to the results
from previous research.
a. Use a two-factor ANOVA with 
 = .05 to evaluate

the main effects and the interaction.

Middle School High School College

3 5 5
5 5 4
5 2 2
3 4 5

5 1 1
3 2 0
2 3 0
2 2 3

User

Non-user

b. Describe the effect of background color on
judgments of males and females.

23. In the Preview section of this chapter, we presented an
experiment that examined the effect of an audience on
the performance of two different personality types.
Data from this experiment are as follows. The
dependent variable is the number of errors made by
each participant.

22. In Chapter 11, we described a research study in which
the color red appeared to increase men’s attraction to
women (Elliot & Niesta, 2008). The same researchers
have published other results showing that red also
increases women’s attraction to men but does not
appear to affect judgments of same sex individuals
(Elliot, et al., 2010). Combining these results into one
study produces a two-factor design in which men
judge photographs of both women and men, which are
shown on both red and white backgrounds. The
dependent variable is a rating of attractiveness for the

Person Shown in Photograph

Female Male

n � 10 n � 10
M � 4.5 M � 4.4
SS � 6 SS � 7

n � 10 n � 10
M � 7.5 M � 4.6
SS � 9 SS � 8

Background Color
for Photograph

White

Red

No Audience Audience

3 9
6 4
2 5
2 8
4 4
7 6

7 10
7 14
2 11
6 15
8 11
6 11

Self-Esteem

High

Low

a. Use an ANOVA with 
 = .05 to evaluate the data.
Describe the effect of the audience and the effect of
self-esteem on performance.

b. Calculate the effect size (�2) for each main effect
and for the interaction.
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