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Preview
Suppose that you were offered a choice between receiving
$1000 in 5 years or a smaller amount today. How much
would you be willing to take today to avoid waiting 
5 years to get the full $1000 payment?

The general result for this kind of decision is that 
the longer the $1000 payment is delayed, the smaller the
amount that people will accept today. For example, you
may be willing to take $300 today rather than waiting 
5 years for the $1000. However, you might be willing to
settle for $100 today if you have to wait 10 years for 
the $1000. This phenomenon is known as delayed 
discounting because people discount the value of a future
reward depending on how long it is delayed (Green, 

Fry, & Myerson, 1994). In a typical study examining 
delayed discounting, people are asked to place a value on a
future reward for several different delay periods. For 
example, how much would you accept today instead of
waiting for a future reward of $1000 if you had to wait 
1 month before receiving the payment? How about waiting
6 months? 12 months? 24 months? 60 months?

Typical results for a sample of college students are
shown in Figure 13.1. Note that the average value declines
regularly as the delay period increases. The statistical
question is whether the mean differences from one delay
period to another are significant.

The Problem: You should recognize that evaluating
mean differences for more than two sample means is a
job for analysis of variance (ANOVA). However, the
discounting study is a repeated-measures design with
five scores for each individual, and the ANOVA
introduced in Chapter 12 is intended for independent-
measures studies. Once again, a new hypothesis test is
needed.

The Solution: In this chapter we introduce the
repeated-measures ANOVA. As the name implies, this
new procedure is used to evaluate the differences
between two or more sample means obtained from a
repeated-measures research study. As you will see,
many of the notational symbols and computations are
the same as those used for the independent-measures
ANOVA. In fact, your best preparation for this chapter
is a good understanding of the basic ANOVA procedure
presented in Chapter 12.
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Mean amount of immediate
payment selected as 
equivalent to receiving a
$1000 payment at each delay.
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13.1 OVERVIEW OF REPEATED-MEASURES DESIGNS

In the preceding chapter, we introduced ANOVA as a hypothesis-testing procedure for
evaluating differences among two or more sample means. The specific advantage of
ANOVA, especially in contrast to t tests, is that ANOVA can be used to evaluate the sig-
nificance of mean differences in situations in which there are more than two sample
means being compared. However, the presentation of ANOVA in Chapter 12 was lim-
ited to single-factor, independent-measures research designs. Recall that single factor
indicates that the research study involves only one independent variable (or only one
quasi-independent variable), and the term independent-measures indicates that the study
uses a separate sample for each of the different treatment conditions being compared. 

In this chapter, we extend the ANOVA procedure to single-factor, repeated-
measures designs. The defining characteristic of a repeated-measures design is that 
one group of individuals participates in all of the different treatment conditions. The 
repeated-measures ANOVA is used to evaluate mean differences in two general 
research situations:

1. An experimental study in which the researcher manipulates an independent
variable to create two or more treatment conditions, with the same group of
individuals tested in all of the conditions. 

2. A nonexperimental study in which the same group of individuals is simply
observed at two or more different times. 

Examples of these two research situations are presented in Table 13.1. Table 13.1(a)
shows data from a study in which the researcher changes the type of distraction to 

TABLE 13.1

Two sets of data representing
typical examples of single-
factor, repeated-measures 
research designs.

Visual Detection Scores

No Visual Auditory
Participant Distraction Distraction Distraction

A 47 22 41
B 57 31 52
C 38 18 40
D 45 32 43

Depression Scores

Before After 6-Month
Participant Therapy Therapy Follow-Up

A 71 53 55
B 62 45 44
C 82 56 61
D 77 50 46
E 81 54 55

(a) Data from an experimental study evaluating the effects of different
types of distraction on the performance of a visual detection task.

(b) Data from a nonexperimental design evaluating the 
effectiveness of a clinical therapy for treating depression.
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create three treatment conditions. One group of participants is then tested in all three
conditions. In this study, the factor being examined is the type of distraction.

Table 13.1(b) shows a study in which a researcher observes depression scores for
the same group of individuals at three different times. In this study, the time of mea-
surement is the factor being examined. Another common example of this type of design
is found in developmental psychology when the participants’ age is the factor being
studied. For example, a researcher could study the development of vocabulary skill by
measuring vocabulary for a sample of 3-year-old children, then measuring the same
children again at ages 4 and 5.

13.2 THE REPEATED-MEASURES ANOVA

The hypotheses for the repeated-measures ANOVA are exactly the same as those for
the independent-measures ANOVA presented in Chapter 12. Specifically, the null 
hypothesis states that, for the general population, there are no mean differences among
the treatment conditions being compared. In symbols,

H0: �1 � �2 � �3 � ...

The null hypothesis states that, on average, all of the treatments have exactly the
same effect. According to the null hypothesis, any differences that may exist among the
sample means are not caused by systematic treatment effects but rather are the result of
random and unsystematic factors. 

The alternative hypothesis states that there are mean differences among the treat-
ment conditions. Rather than specifying exactly which treatments are different, we use
a generic version of H1, which simply states that differences exist:

H1: At least one treatment mean (�) is different from another.

Notice that the alternative says that, on average, the treatments do have different
effects. Thus, the treatment conditions may be responsible for causing mean differences
among the samples. As always, the goal of the ANOVA is to use the sample data to 
determine which of the two hypotheses is more likely to be correct.

The F-ratio for the repeated-measures ANOVA has the same structure that was used 
for the independent-measures ANOVA in Chapter 12. In each case, the F-ratio com-
pares the actual mean differences between treatments with the amount of difference that
would be expected if there were no treatment effect. The numerator of the F-ratio mea-
sures the actual mean differences between treatments. The denominator measures how
big the differences should be if there is no treatment effect. As always, the F-ratio uses
variance to measure the size of the differences. Thus, the F-ratio for both ANOVAs has
the general structure

variance (differences) between treatments
F� ––––––––––––––––––––––––––––––––––––––––––––––––– 

variance (differences) expected if there is no treatment effect

A large value for the F-ratio indicates that the differences between treatments are
greater than would be expected without any treatment effect. If the F-ratio is larger than

THE F-RATIO FOR 
REPEATED-MEASURES 

ANOVA 

HYPOTHESES FOR 
THE REPEATED-MEASURES

ANOVA
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the critical value in the F distribution table, then we can conclude that the differences
between treatments are significantly larger than would be caused by chance.

Individual Differences in the F-ratio Although the structure of the F-ratio is the same
for independent-measures and repeated-measures designs, there is a fundamental differ-
ence between the two designs that produces a corresponding difference in the two F-ratios.
Specifically, individual differences are a part of one ratio but are eliminated from the other.

You should recall that the term individual differences refers to participant charac-
teristics such as age, personality, and gender that vary from one person to another and
may influence the measurements that you obtain for each person. Suppose, for exam-
ple, that you are measuring reaction time. The first participant in your study is a 
19-year-old female with an IQ of 136 who is on the college varsity volleyball team. The
next participant is a 42-year-old male with an IQ of 111 who returned to college after
losing his job and comes to the research study with a head cold. Would you expect to
obtain the same reaction time score for these two individuals?

Individual differences are a part of the variance in the numerator and in the 
denominator of the F-ratio for the independent-measures ANOVA. However, individ-
ual difference are eliminated or removed from the variances in the F-ratio for the 
repeated measures ANOVA. The idea of removing individual differences was first pre-
sented in Chapter 11 when we introduced the repeated-measures design (p. 367), but
we review it briefly now.

In a repeated-measures study, exactly the same individuals participate in all of the
treatment conditions. Therefore, if there are any mean differences between treatments,
they cannot be explained by individual differences. Thus, individual differences are 
automatically eliminated from the numerator of the repeated-measures F-ratio. 

A repeated-measures design also allows you to remove individual differences from
the variance in the denominator of the F-ratio. Because the same individuals are meas-
ured in every treatment condition, it is possible to measure the size of the individual dif-
ferences. In Table 13.1(a), for example, participant A has scores that are consistently
10 points lower than the scores for participant B. Because the individual differences 
are systematic and predictable, they can be measured and separated from the random,
unsystematic differences in the denominator of the F-ratio.

Thus, individual differences are automatically eliminated from the numerator of
the repeated-measures F-ratio. In addition, they can be measured and removed from the
denominator. As a result, the structure of the final F-ratio is as follows:

variance/differences between treatments
(without individual differences)       

F � �������������������������
variance/differences with no treatment effect

(with individual differences removed)

The process of removing individual differences is an important part of the proce-
dure for a repeated-measures ANOVA.

The general purpose of the repeated-measures ANOVA is to determine whether the dif-
ferences that are found between treatment conditions are significantly greater than
would be expected if there is no treatment effect. In the numerator of the F-ratio, the
between-treatments variance measures the actual mean differences between the treat-
ment conditions. The variance in the denominator is intended to measure how much 

THE LOGIC OF THE 
REPEATED-MEASURES 

ANOVA
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difference is reasonable to expect if there are no systematic treatment effects and no
systematic individual differences. In other words, the denominator measures variability
caused entirely by random and unsystematic factors. For this reason, the variance in the
denominator is called the error variance. In this section we examine the elements that
make up the two variances in the repeated-measures F-ratio.

The numerator of the F-ratio: between-treatments variance Logically, any dif-
ferences that are found between treatments can be explained by only two factors:

1. Systematic Differences Caused by the Treatments. It is possible that the
different treatment conditions really do have different effects and, therefore,
cause the individuals’ scores in one condition to be higher (or lower) than in
another. Remember that the purpose for the research study is to determine
whether a treatment effect exists.

2. Random, Unsystematic Differences. Even if there is no treatment effect, it is
possible for the scores in one treatment condition to be different from the scores
in another. For example, suppose that I measure your IQ score on a Monday
morning. A week later I come back and measure your IQ again under exactly
the same conditions. Will you get exactly the same IQ score both times? In fact,
minor differences between the two measurement situations would probably
cause you to end up with two different scores. For example, for one of the IQ
tests you might be more tired, or hungry, or worried, or distracted than you
were on the other test. These differences can cause your scores to vary. The
same thing can happen in a repeated-measures research study. The same indi-
viduals are measured at two or more different times and, even though there 
may be no difference between the two treatment conditions, you can still end
up with different scores. However, these differences are random and unsystem-
atic and are classified as error variance.

Thus, it is possible that any differences (or variance) found between treatments
could be caused by treatment effects, and it is possible that the differences could sim-
ply be the result of chance. On the other hand, it is impossible that the differences 
between treatments are caused by individual differences. Because the repeated-
measures design uses exactly the same individuals in every treatment condition, indi-
vidual differences are automatically eliminated from the variance between treatments
in the numerator of the F-ratio.

The denominator of the F-ratio: error variance The goal of the ANOVA is to 
determine whether the differences that are observed in the data are greater than would
be expected without any systematic treatment effects. To accomplish this goal, the 
denominator of the F-ratio is intended to measure how much difference (or variance) is
reasonable to expect from random and unsystematic factors. This means that we must
measure the variance that exists when there are no treatment effects or any other sys-
tematic differences.

We begin exactly as we did with the independent-measures F-ratio; specifically,
we calculate the variance that exists within treatments. Recall from Chapter 12 that
within each treatment all of the individuals are treated in exactly the same way.
Therefore, any differences that exist within treatments cannot be caused by treatment
effects.

In a repeated-measures design, however, it is also possible that individual differ-
ences can cause systematic differences between the scores within treatments. For 
example, one individual may score consistently higher than another. To eliminate the
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individual differences from the denominator of the F-ratio, we measure the individual
differences and then subtract them from the rest of the variability. The variance that 
remains is a measure of pure error without any systematic differences that can be 
explained by treatment effects or by individual differences.

In summary, the F-ratio for a repeated-measures ANOVA has the same basic struc-
ture as the F-ratio for independent measures (Chapter 12) except that it includes no
variability caused by individual differences. The individual differences are automati-
cally eliminated from the variance between treatments (numerator) because the 
repeated-measures design uses the same individuals in all treatments. In the denomina-
tor, the individual differences are subtracted during the analysis. As a result, the 
repeated-measures F-ratio has the following structure:

F �

� (13.1)

Note that this F-ratio is structured so that there are no individual differences con-
tributing to either the numerator or the denominator. When there is no treatment effect,
the F-ratio is balanced because the numerator and denominator are both measuring 
exactly the same variance. In this case, the F-ratio should have a value near 1.00. When
research results produce an F-ratio near 1.00, we conclude that there is no evidence of
a treatment effect and we fail to reject the null hypothesis. On the other hand, when a
treatment effect does exist, it contributes only to the numerator and should produce a
large value for the F-ratio. Thus, a large value for F indicates that there is a real treat-
ment effect and, therefore, we should reject the null hypothesis.

treatment effects � random, unsystematic differences
–––––––––––––––––––––––––––––––––––––––––––

random, unsystematic differences

between-treatments variance 
���

error variance 
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L E A R N I N G  C H E C K 1. Explain why individual differences do not contribute to the between-treatments
variability in a repeated-measures study.

2. What sources of variability contribute to the within-treatment variability for a
repeated-measures study?

3. Describe the structure of the F-ratio for the repeated-measures ANOVA.

1. Because the individuals in one treatment are exactly the same as the individuals in every
other treatment, there are no individual differences from one treatment to another.

2. Variability (differences) within treatments is caused by individual differences and random,
unsystematic differences.

3. The numerator of the F-ratio measures between-treatments variability, which consists of
treatment effects and random, unsystematic differences. The denominator measures variabil-
ity that is exclusively caused by random, unsystematic differences.

ANSWERS

13.3 HYPOTHESIS TESTING AND EFFECT SIZE 
WITH THE REPEATED-MEASURES ANOVA

The overall structure of the repeated-measures ANOVA is shown in Figure 13.2. Note that
the ANOVA can be viewed as a two-stage process. In the first stage, the total variance 
is partitioned into two components: between-treatments variance and within-treatments
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variance. This stage is identical to the analysis that we conducted for an independent-
measures design in Chapter 12.

The second stage of the analysis is intended to remove the individual differences
from the denominator of the F-ratio. In the second stage, we begin with the variance
within treatments and then measure and subtract out the between-subject variance,
which measures the size of the individual differences. The remaining variance, often
called the residual variance, or error variance, provides a measure of how much vari-
ance is reasonable to expect after the treatment effects and individual differences have
been removed. The second stage of the analysis is what differentiates the repeated-
measures ANOVA from the independent-measures ANOVA. Specifically, the repeated-
measures design requires that the individual differences be removed.

In a repeated-measures ANOVA, the denominator of the F-ratio is called the
residual variance, or the error variance, and measures how much variance is
expected if there are no systematic treatment effects and no individual differ-
ences contributing to the variability of the scores.

We use the data in Table 13.2 to introduce the notation for the repeated-measures
ANOVA. The data represent the results of a study comparing different viewing dis-
tances for a 42-inch high-definition television. Four viewing distances were evaluated,

NOTATION FOR 
THE REPEATED-MEASURES

ANOVA

D E F I N I T I O N

440 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

Stage 2

Stage 1

Between-treatments
variance

Numerator of
F -ratio

Denominator of
F -ratio

1. Treatment effect
2. Error or chance
    (excluding individual
    differences)

Between-subjects
variance

1. Individual 
    differences

Error
variance

1. Error (excluding
    individual
    differences)

Total
variance

Within-treatments
variance

1. Individual 
    differences
2. Other error

FIGURE 13.2

The partitioning of variance
for a repeated-measures
experiment.
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9 feet, 12 feet, 15 feet, and 18 feet. Each participant was free to move back and forth
among the four distances while watching a 30-minute video on the television. The only
restriction was that each person had to spend at least 2 minutes watching from each of
the four distances. At the end of the video, each participant rated the all of the viewing
distances on a scale from 1 (Very Bad, definitely need to move closer or farther away)
to 7 (excellent, perfect viewing distance). You may notice that this research study and
the numerical values in the table are identical to those used to demonstrate the 
independent-measures ANOVA in the previous chapter (Example 12.1, page 405). In
this case, however, the data represent a repeated-measures study in which the same
group of n � 5 individuals is tested in all four treatment conditions.

You should recognize that most of the notation in Table 13.2 is identical to the 
notation used in an independent-measures analysis (Chapter 12). For example, there are
n � 5 participants who are tested in k � 4 treatment conditions, producing a total of 
N � 20 scores that add up to a grand total of G � 60. Note, however, that N � 20 now
refers to the total number of scores in the study, not the number of participants.

The repeated-measures ANOVA introduces only one new notational symbol. The
letter P is used to represent the total of all of the scores for each individual in the study.
You can think of the P values as “Person totals” or “Participant totals.” In Table 13.2,
for example, participant A had scores of 3, 4, 6, and 7 for a total of P � 20. The P val-
ues are used to define and measure the magnitude of the individual differences in the
second stage of the analysis.

We use the data in Table 13.2 to demonstrate the repeated-measures ANOVA. Again,
the goal of the test is to determine whether there are any significant differences among
the four distances being compared. Specifically, are any of the mean differences in the
data greater than would be expected if there are no systematic differences among the
four viewing distances?

The first stage of the repeated-measures analysis is identical to the independent-
measures ANOVA that was presented in Chapter 12. Specially, the SS and df for 
the total set of scores are analyzed into within-treatments and between-treatments
components.

Because the numerical values in Table 13.2 are the same as the values used in
Example 12.1 (p. 405), the computations for the first stage of the repeated-measures
analysis are identical to those in Example 12.1. Rather than repeating the same

STAGE 1 OF THE 
REPEATED-MEASURES 

ANOVA

E X A M P L E  1 3 . 1
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TABLE 13.2

Satisfaction with different view-
ing distances of a 42-inch, high-
definition television.
Note: For comparison, the
scores are identical to the values
in Example 12.1 on page 405.

Viewing Distance

Person 9 Feet 12 Feet 15 Feet 18 Feet Person Totals

A 3 4 7 6 P � 20 n � 5
B 0 3 6 3 P � 12 k � 4
C 2 1 5 4 P � 12 N � 20
D 0 1 4 3 P � 8 G � 60
E 0 1 3 4 P � 8 �X2 � 262

T � 5 T � 10 T � 25 T � 20
SS � 8 SS � 8 SS � 10 SS � 6
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arithmetic, the results of the first stage of the repeated-measures analysis can be
summarized as follows:

Total:

SStotal � �X2 � �
G
N

2

� � 262 � �
(6

2
0
0
)2

� � 262 � 180 � 82

dftotal � N � 1 � 19

Within treatments:

SSwithin treatments � �SSinside each treatment � 8 � 8 � 10 � 6 � 32

dfwithin treatments � �dfinside each treatment � 4 � 4 � 4 � 4 = 16

Between treatments: For this example we use the computational formula for
SSbetween treatments.

SSbetween treatments � � �
T
n

2

� � �
G
N

2

� � �
5
5

2

� � �
1
5
02

� � �
2
5
52

� � �
2
5
02

� � �
6
2
0
0

2

� � 50

dfbetween treatments � k � 1 � 3

For more details on the formulas and calculations, see Example 12.1, 
pages 405–407.

This completes the first stage of the repeated-measures ANOVA. Note that the
two components, between and within, add up to the total for the SS values and for the
df values. Also note that the between-treatments SS and df values provide a measure
of the mean differences between treatments and are used to compute the variance in
the numerator of the final F-ratio. 

The second stage of the analysis involves removing the individual differences from the
denominator of the F-ratio. Because the same individuals are used in every treatment,
it is possible to measure the size of the individual differences. For the data in Table 13.2,
for example, participant A tends to have the highest scores and participants D and E
tend to have the lowest scores. These individual differences are reflected in the P values,
or person totals, in the right-hand column. We use these P values to create a com-
putational formula for SSbetween subjects in much the same way that we used the
treatment totals, the T values, in the computational formula for SSbetween treatments.
Specifically, the formula for the between-subjects SS is

SSbetween subjects � ��
P
k

2

� � �
G
N

2

� (13.2)

Notice that the formula for the between-subjects SS has exactly the same
structure as the computational formula for the between-treatments SS (see the
calculation above). In this case we use the person totals (P values) instead of the
treatment totals (T values). Each P value is squared and divided by the number of
scores that were added to obtain the total. In this case, each person has k scores, 
one for each treatment. Box 13.1 presents another demonstration of the similarity 

STAGE 2 OF THE 
REPEATED-MEASURES 

ANOVA
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of the formulas for SS between subjects and SS between treatments. For the data in
Table 13.2,

SSbetween subjects � �
2
4
02

� � �
1
4
22

� � �
1
4
22

� � �
8
4

2

� � �
8
4

2

� � �
6
2
0
0

2

�

� 100 � 36 � 36 � 16 � 16 – 180

� 24

The value of SSbetween subjects provides a measure of the size of the individual
differences—that is, the differences between subjects. In the second stage of the
analysis, we simply subtract the individual differences to obtain the measure of error
that forms the denominator of the F-ratio. Thus, the final step in the analysis of SS is

SSerror � SSwithin treatments � SSbetween subjects (13.3)

We have already computed SSwithin treatments � 32 and SSbetween subjects � 24, therefore

SSerror � 32 � 24 � 8

The analysis of degrees of freedom follows exactly the same pattern that was used
to analyze SS. Remember that we are using the P values to measure the magnitude of
the individual differences. The number of P values corresponds to the number of
subjects, n, so the corresponding df is

dfbetween subjects � n � 1 (13.4)

For the data in Table 13.2, there are n � 5 subjects and

dfbetween subjects � 5 � 1 � 4
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B O X
1 3 . 1 SSbetween subjects AND SSbetween treatments

column totals are now P values (instead of T values)
and the number of scores in each column is now identi-
fied by k (instead of n). With these changes in notation,
the formula for SSbetween subjects has exactly the same
structure as the formula for SSbetween treatments. If you
examine the two equations, the similarity should be
clear.

Participant
A B C D E

9 feet 3 0 2 0 0 T � 5
12 feet 4 3 1 1 1 T � 10
15 feet 7 6 5 4 3 T � 25
18 feet 6 3 4 3 4 T � 20

P � 20 P � 12 P � 12 P � 8 P � 8

The data for a repeated-measures study are normally
presented in a matrix, with the treatment conditions
determining the columns and the participants defining
the rows. The data in Table 13.2 demonstrate this nor-
mal presentation. The calculation of SSbetween treatments

provides a measure of the differences between treatment
conditions—that is, a measure of the mean differences
between the columns in the data matrix. For the data in
Table 13.2, the column totals are 5, 10, 20, and 25.
These values are variable, and SSbetween treatments mea-
sures the amount of variability.

The following table reproduces the data from 
Table 13.2, but now we have turned the data matrix on
its side so that the participants define the columns and
the treatment conditions define the rows.

In this new format, the differences between the
columns represent the between-subjects variability. The
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Next, we subtract the individual differences from the within-subjects component
to obtain a measure of error. In terms of degrees of freedom,

dferror � dfwithin treatments � dfbetween subjects (13.5)

For the data in Table 13.2,

dferror � 16 � 4 � 12

An algebraically equivalent formula for dferror uses only the number of treatment
conditions (k) and the number of participants (n): 

dferror � (k � 1)(n � 1) (13.6)

The usefulness of equation 13.6 is discussed in Box 13.2.
Remember: The purpose for the second stage of the analysis is to measure the

individual differences and then remove the individual differences from the denominator of
the F-ratio. This goal is accomplished by computing SS and df between subjects (the
individual differences) and then subtracting these values from the within-treatments values.
The result is a measure of variability resulting from error with the individual differences
removed. This error variance (SS and df) is used in the denominator of the F-ratio.

The final calculation in the analysis is the F-ratio, which is a ratio of two variances.
Each variance is called a mean square, or MS, and is obtained by dividing the
appropriate SS by its corresponding df value. The MS in the numerator of the F-ratio
measures the size of the differences between treatments and is calculated as

MSbetween treatments ��
S

d

S

fb

b

e

e

t

t

w

w

e
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For the data in Table 13.2,

MS
between treatments

� �
50

3
16 67.

CALCULATION OF THE
VARIANCES (MS VALUES)

AND THE F-RATIO
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B O X
1 3 . 2 USING THE ALTERNATIVE FORMULA FOR dferror

second df value, which is dferror � 10. Using this value
and the fact that k � 1 � 2, use equation 13.6 to find
the number of participants. 

dferror � 10 � (k � 1)(n � 1) � 2(n � 1)

If 2(n � 1) � 10, then n � 1 must equal 5.
Therefore, n � 6. 

Therefore, we conclude that a repeated-measures
study producing an F-ratio with df � 2, 10 must have
compared 3 treatment conditions using a sample of 
6 participants.

The statistics presented in a research report not only
describe the significance of the results but typically
provide enough information to reconstruct the research
design. The alternative formula for dferror is particularly
useful for this purpose. Suppose, for example, that a
research report for a repeated-measures study includes
an F-ratio with df � 2, 10. How many treatment condi-
tions were compared in the study, and how many indi-
viduals participated?

To answer these questions, begin with the first df
value, which is dfbetween treatments � 2 � k � 1. From
this value, it is clear that k � 3 treatments. Next, use the

30991_ch13_ptg01_hr_433-464.qxd  9/3/11  2:30 AM  Page 444



The denominator of the F-ratio measures how much difference is reasonable to 
expect if there are no systematic treatment effects and the individual differences have
been removed. This is the error variance, or the residual variance, obtained in stage 2
of the analysis.

MSerror � �
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� (13.8)

For the data in Table 13.2,

Finally, the F-ratio is computed as

F ��
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For the data in Table 13.2,

Once again, notice that the repeated-measures ANOVA uses MSerror in the
denominator of the F-ratio. This MS value is obtained in the second stage of the
analysis, after the individual differences have been removed. As a result, individual
differences are completely eliminated from the repeated-measures F-ratio, so that the
general structure is

For the data we have been examining, the F-ratio is F � 24.88, indicating that
the differences between treatments (numerator) are almost 25 times bigger than you
would expect without any treatment effects (denominator). A ratio this large provides
clear evidence that there is a real treatment effect. To verify this conclusion you must
consult the F distribution table to determine the appropriate critical value for the test.
The degrees of freedom for the F-ratio are determined by the two variances that form
the numerator and the denominator. For a repeated-measures ANOVA, the df values
for the F-ratio are reported as

df � dfbetween treatments, dferror

For the example we are considering, the F-ratio has df � 2, 12 (“degrees of 
freedom equal two and twelve”). Using the F distribution table (p. 705) with 	 � .05,
the critical value is F � 3.88, and with 	 � .01 the critical value is F � 6.93. Our
obtained F-ratio, F � 24.88, is well beyond either of the critical values, so we can
conclude that the differences between treatments are significantly greater than
expected by chance using either 	 � .05 or 	 � .01.

F � �
16 67

0 67
24 88

.

.
.

� �
8

12
0 67.
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MSerror

treatment effects � unsystematic differences (without individual diffs)
unsystematic differences (without individual diffs)

F �
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The summary table for the repeated-measures ANOVA from Example 13.1 is
presented in Table 13.3. Although these tables are no longer commonly used in
research reports, they provide a concise format for displaying all of the elements of
the analysis.

The most common method for measuring effect size with ANOVA is to compute the
percentage of variance that is explained by the treatment differences. In the context of
ANOVA, the percentage of variance is commonly identified as 
2 (eta squared). In
Chapter 12, for the independent-measures analysis, we computed 
2 as


2 � ��
SSbetw

S
e
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t

t

r
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e
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atments
�

The intent is to measure how much of the total variability is explained by the dif-
ferences between treatments. With a repeated-measures design, however, there is 
another component that can explain some of the variability in the data. Specifically,
part of the variability is caused by differences between individuals. In Table 13.2, for
example, person A consistently scored higher than person B. This consistent difference
explains some of the variability in the data. When computing the size of the treatment
effect, it is customary to remove any variability that can be explained by other factors,
and then compute the percentage of the remaining variability that can be explained by
the treatment effects. Thus, for a repeated-measures ANOVA, the variability from the
individual differences is removed before computing 
2. As a result, 
2 is computed as


2 � (13.10)

Because Equation 13.10 computes a percentage that is not based on the total vari-
ability of the scores (one part, SSbetween subjects, is removed), the result is often called a
partial eta squared.

The general goal of Equation 13.10 is to calculate a percentage of the variability
that has not already been explained by other factors. Thus, the denominator of 
Equation 13.10 is limited to variability from the treatment differences and variability
that is exclusively from random, unsystematic factors. With this in mind, an equivalent 
version of the 
2 formula is


2 � (13.11)
SSbetween treatments

���
SSbetween treatments � SSerror

SSbetween treatments
���
SStotal � SSbetween subjects

SSbetween treatments
����
SSbetween treatments � SSwithin treatments

MEASURING EFFECT SIZE 
FOR THE REPEATED-
MEASURES ANOVA

446 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

TABLE 13.3

A summary table for the 
repeated-measures ANOVA for
the data from Example 13.1.

Source SS df MS F

Between treatments 50 3 16.67 F(3,12) � 24.88
Within treatments 32 16

Between subjects 24 4
Error 8 12 0.67

Total 82 19
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In this new version of the eta-squared formula, the denominator consists of the
variability that is explained by the treatment differences plus the other unexplained
variability. Using either formula, the data from Example 13.1 produce

This result means that 86.2% of the variability in the data (except for the individ-
ual differences) is accounted for by the differences between treatments.

IN THE LITERATURE
REPORTING THE RESULTS OF A REPEATED-MEASURES ANOVA

As described in Chapter 12 (p. 409), the format for reporting ANOVA results in
journal articles consists of

1. A summary of descriptive statistics (at least treatment means and standard 
deviations, and tables or graphs as needed)

2. A concise statement of the outcome of the ANOVA

For the study in Example 13.1, the report could state:

The means and variances for the four television viewing distances are shown in
Table 1. A repeated-measures analysis of variance indicated significant mean 
differences in the participants’ ratings of the four distances, F(3, 12) � 24.88, 
p � .01, 
2 � 0.862.

TABLE 1

Ratings of satisfaction with different television-viewing distances

9 Feet 12 Feet 15 Feet 18 Feet

M 1.00 2.00 5.00 4.00
SD 1.41 1.41 1.58 1.22

Recall that ANOVA provides an overall test of significance for the mean differences
between treatments. When the null hypothesis is rejected, it indicates only that there is
a difference between at least two of the treatment means. If k � 2, it is obvious which
two treatments are different. However, when k is greater than 2, the situation becomes
more complex. To determine exactly where significant differences exist, the researcher
must follow the ANOVA with post hoc tests. In Chapter 12, we used Tukey’s HSD and
the Scheffé test to make these multiple comparisons among treatment means. These two
procedures attempt to control the overall alpha level by making adjustments for the
number of potential comparisons.

For a repeated-measures ANOVA, Tukey’s HSD and the Scheffé test can be used in
the exact same manner as was done for the independent-measures ANOVA, provided that
you substitute MSerror in place of MSwithin treatments in the formulas and use dferror in place of
dfwithin treatments when locating the critical value in a statistical table. Note that statisticians
are not in complete agreement about the appropriate error term in post hoc tests for repeated-
measures designs (for a discussion, see Keppel, 1973, or Keppel & Zedeck, 1989).

POST HOC TESTS 
WITH REPEATED-MEASURES

ANOVA

η2 50

58
0 862 86 2� � . . %or( )
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The basic assumptions for the repeated-measures ANOVA are identical to those 
required for the independent-measures ANOVA.

1. The observations within each treatment condition must be independent (see p. 254).

2. The population distribution within each treatment must be normal. (As before,
the assumption of normality is important only with small samples.)

3. The variances of the population distributions for each treatment should be
equivalent.

For the repeated-measures ANOVA, there is an additional assumption, called 
homogeneity of covariance. Basically, it refers to the requirement that the relative
standing of each subject be maintained in each treatment condition. This assumption is
violated if the effect of the treatment is not consistent for all of the subjects or if order
effects exist for some, but not other, subjects. This issue is very complex and is beyond
the scope of this book. However, methods do exist for dealing with violations of this
assumption (for a discussion, see Keppel, 1973).

If there is reason to suspect that one of the assumptions for the repeated-measures
ANOVA has been violated, an alternative analysis known as the Friedman test can be
used. The Friedman test is presented in Appendix E. It requires that the original scores be
transformed into ranks before evaluating the differences between treatment conditions.

ASSUMPTIONS OF 
THE REPEATED-MEASURES

ANOVA

448 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

L E A R N I N G  C H E C K 1. Explain how SSerror is computed in the repeated-measures ANOVA.

2. A repeated-measures study is used to evaluate the mean differences among 
three treatment conditions using a sample of n � 8 participants. What are the df
values for the F-ratio?

3. For the following data, compute SSbetween treatments and SSbetween subjects.

Treatment

Subject 1 2 3 4

A 2 2 2 2 G � 32
B 4 0 0 4 �X2 � 96
C 2 0 2 0
D 4 2 2 4

T � 12 T � 4 T � 6 T � 10
SS � 4 SS � 4 SS � 3 SS � 11

4. A research report includes a repeated-measures F-ratio with df � 3, 24. How
many treatment conditions were compared, and how many individuals participated
in the study? (See Box 13.2.)

1. SSerror � SSwithin � SSbetween subjects Variability from individual differences is subtracted
from the within-treatments variability.

2. df � 2, 14

3. SSbetween treatments � 10, SSbetween subjects � 8

4. There were 4 treatment conditions (k � 1 � 3) and 9 participants (n � 1 � 8).

ANSWERS
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13.4 ADVANTAGES AND DISADVANTAGES 
OF THE REPEATED-MEASURES DESIGN

When we first encountered the repeated-measure design (Chapter 11), we noted that this
type of research study has certain advantages and disadvantages (pp. 366�369). On the
bright side, a repeated-measures study may be desirable if the supply of participants is
limited. A repeated-measures study is economical in that the research requires relatively
few participants. Also, a repeated-measures design eliminates or minimizes most of the
problems associated with individual differences. However, disadvantages also exist.
These take the form of order effects, such as fatigue, that can make the 
interpretation of the data difficult.

Now that we have introduced the repeated-measures ANOVA, we can examine one
of the primary advantages of this design—namely, the elimination of variability caused
by individual differences. Consider the structure of the F-ratio for both the 
independent-and the repeated-measures designs.

F �

In each case, the goal of the analysis is to determine whether the data provide evi-
dence for a treatment effect. If there is no treatment effect, then the numerator and 
denominator are both measuring the same random, unsystematic variance and the 
F-ratio should produce a value near 1.00. On the other hand, the existence of a treatment
effect should make the numerator substantially larger than the denominator and result in
a large value for the F-ratio.

For the independent-measures design, the unsystematic differences include individ-
ual differences as well as other random sources of error. Thus, for the independent-meas-
ures ANOVA, the F-ratio has the following structure:

For the repeated-measures design, the individual differences are eliminated or sub-
tracted out, and the resulting F-ratio is structured as follows:

The removal of individual differences from the analysis becomes an advantage in
situations in which very large individual differences exist among the participants being
studied.

When individual differences are large, the presence of a treatment effect may be
masked if an independent-measures study is performed. In this case, a repeated-measures
design would be more sensitive in detecting a treatment effect because individual differ-
ences do not influence the value of the F-ratio.

This point will become evident in the following example. Suppose that we know how
much variability is accounted for by the different sources of variance. For example,

treatment effect � 10 units of variance

individual differences � 10 units of variance

other error � 1 unit of variance

F �
treatment effect � error (excluding individual differences)

error (excluding individual differences)

F �
treatment effect � individual differences and other error

individual differences and other error

treatment effects � random, unsystematic differences
–––––––––––––––––––––––––––––––––––––––––––

random, unsystematic differences
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Notice that a large amount of the variability in the experiment is caused by indi-
vidual differences. By comparing the F-ratios for an independent- and a repeated-
measures analysis, we are able to see a fundamental difference between the two types
of experimental designs. For an independent-measures experiment, we obtain

Thus, the independent-measures ANOVA produces an F-ratio of F � 1.91. Recall
that the F-ratio is structured to produce F � 1.00 if there is no treatment effect what-
soever. In this case, the F-ratio is near to 1.00 and strongly suggests that there is little
or no treatment effect. If you check the F-distribution table in Appendix B, you will
find that it is almost impossible for an F-ratio as small as 1.91 to be significant. For 
the independent-measures ANOVA, the 10-point treatment effect is overwhelmed by
all of the other variance.

Now consider what happens with a repeated-measures ANOVA. With the individ-
ual differences removed, the F-ratio becomes:

� �
10

1
� 1
� � �

1
1
1
�  � 11

For the repeated-measures ANOVA, the numerator of the F-ratio (which includes
the treatment effect) is 11 times larger than the denominator (which has no treatment
effect). This result strongly indicates that there is a substantial treatment effect. In this
example, the F-ratio is much larger for the repeated-measures study because the indi-
vidual differences, which are extremely large, have been removed. In the independent-
measures ANOVA, the presence of a treatment effect is obscured by the influence of
individual differences. This problem is eliminated by the repeated-measures design, in
which variability caused by individual differences is partitioned out of the analysis.
When the individual differences are large, a repeated-measures experiment may pro-
vide a more sensitive test for a treatment effect. In statistical terms, a repeated-
measures test has more power than an independent-measures test; that is, it is more
likely to detect a real treatment effect.

As we have demonstrated, one major advantage of a repeated-measures design is that it
removes individual differences from the denominator of the F-ratio, which usually 
increases the likelihood of obtaining a significant result. However, removing individual
differences is an advantage only when the treatment effects are reasonably consistent for
all of the participants. If the treatment effects are not consistent across participants, the 
individual differences tend to disappear and value in the denominator is not noticeably 
reduced by removing them. This phenomenon is demonstrated in the following example.

Table 13.4 presents hypothetical data from a repeated-measures research study. We
constructed the data specifically to demonstrate the relationship between consistent
treatment effects and large individual differences.

E X A M P L E  1 3 . 2

INDIVIDUAL DIFFERENCES
AND THE CONSISTENCY 

OF THE TREATMENT EFFECTS

F �
treatment effect � error

error

�
� �10 10 1

10��
� �

1

21

11
1 91.
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F �
treatment effect � individual differences � error

individual differences � error
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First, notice the consistency of the treatment effects. Treatment II has the same 
effect on every participant, increasing everyone’s score by 1 or 2 points compared to
treatment I. Also, treatment III produces a consistent increase of 1 or 2 points compared
to treatment II. One consequence of the consistent treatment effects is that the individual
differences are maintained in all of the treatment conditions. For example, participant 
A has the lowest score in all three treatments, and participant D always has the highest
score. The participant totals (P values) reflect the consistent differences. For example,
participant D has the largest score in every treatment and, therefore, has the largest 
P value. Also notice that there are big differences between the P totals from one
individual to the next. For these data, SSbetween subjects � 30 points.

Now consider the data in Table 13.5. To construct these data we started with 
the same numbers within each treatment that were used in Table 13.4. However, we
scrambled the numbers within each column to eliminate the consistency of the
treatment effects. In Table 13.5, for example, two participants show an increase in
scores as they go from treatment I to treatment II, and two show a decrease. The data
also show an inconsistent treatment effect as the participants go from treatment II to
treatment III. One consequence of the inconsistent treatment effects is that there are no
consistent individual differences between participants. Participant C, for example, has
the lowest score in treatment II and the highest score in treatment III. As a result, there
are no longer consistent differences between the individual participants. All of the P
totals are about the same. For these data, SSbetween subjects � 3.33 points. Because the
two sets of data (Tables 13.4 and 13.5) have the same treatment totals (T values) and 
SS values, they have the same SSbetween treatments and SSwithin treatments. For both sets of data,

SSbetween treatments � 18 and SSwithin treatments � 32

However, there is a huge difference between the two sets of data when you
compute SSerror for the denominator of the F-ratio. For the data in Table 13.4, with
consistent treatment effects and large individual differences,

SSerror � SSwithin treatments � SSbetween subjects

� 32 � 30

� 2

For the data in Table 13.5, with no consistent treatment effects and relatively
small differences between the individual P totals,

SSerror � SSwithin treatments � SSbetween subjects

� 32 � 3.33

� 28.67
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TABLE 13.4

Data from a repeated-measures
study comparing three treatments.
The data show consistent 
treatment effects from one 
participant to another, which
produce consistent and relatively
large differences in the 
individual P totals.

Treatment

Person I II III

A 0 1 2 P � 3
B 1 2 3 P � 6
C 2 4 6 P � 12
D 3 5 7 P � 15

T � 6 T � 12 T � 18
SS � 5 SS � 10 SS � 17
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Thus, consistent treatment effects tend to produce a relatively small error term
for the F-ratio. As a result, consistent treatment effects are more likely to be
statistically significant (reject the null hypothesis). For the examples we have been
considering, the data in Table 13.4 produce an F-ratio of F � 27.0. With df � 2, 6,
this F-ratio is well into the critical region for 	 � .05 or .01 and we conclude that
there are significant differences among the three treatments. On the other hand, the
same mean differences in Table 13.5 produce F � 1.88. With df � 2, 6, this value 
is not in the critical region for 	 � .05 or .01, and we conclude that there are no
significant differences.

In summary, when treatment effects are consistent from one individual to another,
the individual differences also tend to be consistent and relatively large. The large
individual differences get subtracted from the denominator of the F-ratio producing a
larger value for F and increasing the likelihood that the F-ratio will be in the critical
region.

13.5 REPEATED-MEASURES ANOVA 
AND REPEATED-MEASURES t TEST

As we noted in Chapter 12 (pp. 420–421), whenever you are evaluating the difference
between two sample means, you can use either a t test or ANOVA. In Chapter 12, we
demonstrated that the two tests are related in many respects, including:

1. The two tests always reach the same conclusion about the null hypothesis.

2. The basic relationship between the two test statistics is F � t2.

3. The df value for the t statistic is identical to the df value for the denominator of
the F-ratio.

4. If you square the critical value for the two-tailed t test, you obtain the critical
value for the F-ratio. Again, the basic relationship is F � t2.

In Chapter 12, these relationships were demonstrated for the independent-measures
tests, but they are also true for repeated-measures designs comparing two treatment
conditions. The following example demonstrates the relationships.
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TABLE 13.5

Data from a repeated-measures
study comparing three treatments.
The data show treatment effects
that are inconsistent from one
participant to another and, as a
result, produce relatively small
differences in the individual 
P totals. Note that the data have
exactly the same scores within
each treatment as the data in
Table 13.5, however, the scores
have been scrambled to eliminate
the consistency of the treatment
effects.

Treatment

Person I II III

A 0 4 3 P � 7
B 1 5 2 P � 8
C 2 1 7 P � 10
D 3 2 6 P � 11

T � 6 T � 12 T � 18
SS � 5 SS � 10 SS � 17
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The following table shows the data from a repeated-measures study comparing 
two treatment conditions. We have structured the data in a format that is compatible
with the repeated-measures t test. Note that the calculations for the t test are based on
the difference scores (D values) in the final column.

E X A M P L E  1 3 . 3

The repeated-measures t test The null hypothesis for the t test states that, for the
general population, there is no mean difference between the two treatment conditions.

H0: �D � 0

With n � 4 participants, the test has df � 3 and the critical boundaries for a 
two-tailed test with 	 � .05 are t � �3.182. 

For these data, the sample mean difference is MD � 4, the variance for the
difference scores is s2 � 16, and the standard error is SM

D
� 2 points. These values

produce a t statistic of

The t value is not in the critical region so we fail to reject H0 and conclude that
there is no significant difference between the two treatments.

The repeated-measures ANOVA Now we reorganize the data into a format that is
compatible with a repeated-measures ANOVA. Notice that the ANOVA uses the orig-
inal scores (not the difference scores) and requires the P totals for each participant. 

�
�

�
4 0

2
2 00.t

M

s
D D

MD

�
�μ

Again, the null hypothesis states that, for the general population, there is no mean
difference between the two treatment conditions.

H0: �1 � �2
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Treatment

Participant I II D

A 3 5 2
B 4 14 10
C 5 7 2
D 4 6 2

MD � 4
SSD � 48

Treatment

Participant I II P

A 3 5 8 G � 48
B 4 14 18 �X2 � 372
C 5 7 12 N � 8
D 4 6 10
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For this study, dfbetween treatments � 1, dfwithin treatments � 6, dfbetween subjects � 3,
which produce dferror � (6 � 3) � 3. Thus, the F-ratio has df � 1, 3 and the critical
value for 	 � .05 is F � 10.13. Note that the denominator of the F-ratio has the same
df value as the t statistic (df � 3) and that the critical value for F is equal to the
squared critical value for t (10.13 � 3.1822).

For these data, SStotal � 84,

SSwithin � 52

SSbetween treatments � (84 � 52) � 32

SSbetween subjects � 28

SSerror � (52 � 28) � 24

The two variances in the F-ratio are
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Notice that the F-ratio and the t statistic are related by the equation F � t2

(4 � 22). The F-ratio (like the t statistic) is not in the critical region so, once again,
we fail to reject H0 and conclude that there is no significant difference between the
two treatments.

� �
32

8
4 00.

� �
24

3
8

� �
32

1
32
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1. The repeated-measures ANOVA is used to evaluate the
mean differences obtained in a research study
comparing two or more treatment conditions using the
same sample of individuals in each condition. The test
statistic is an F-ratio, in which the numerator measures
the variance (differences) between treatments and the
denominator measures the variance (differences) that is
expected without any treatment effects or individual
differences.
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2. The first stage of the repeated-measures ANOVA is
identical to the independent-measures ANOVA and
separates the total variability into two components:
between-treatments and within-treatments. Because a

SUMMARY

repeated-measures design uses the same subjects in
every treatment condition, the differences between
treatments cannot be caused by individual differences.
Thus, individual differences are automatically
eliminated from the between-treatments variance in the
numerator of the F-ratio.

3. In the second stage of the repeated-measures analysis,
individual differences are computed and removed from
the denominator of the F-ratio. To remove the
individual differences, you first compute the variability
between subjects (SS and df) and then subtract these
values from the corresponding within-treatments values.
The residual provides a measure of error excluding
individual differences, which is the appropriate
denominator for the repeated-measures F-ratio. The
equations for analyzing SS and df for the repeated-
measures ANVOA are presented in Figure 13.3. 
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4. Effect size for the repeated-measures ANOVA is
measured by computing eta squared, the percentage of
variance accounted for by the treatment effect. For the
repeated-measures ANOVA


2 �

�

Because part of the variability (the SS caused by
individual differences) is removed before computing 

2, this measure of effect size is often called a partial
eta squared.

SSbetween treatments
���
SSbetween treatments � SSerror

SSbetween treatments
���
SStotal � SSbetween subjects

5. When the obtained F-ratio is significant (that is, H0 is
rejected), it indicates that a significant difference lies
between at least two of the treatment conditions. To
determine exactly where the difference lies, post hoc
comparisons may be made. Post hoc tests, such as
Tukey’s HSD, use MSerror rather than MSwithin treatments

and dferror instead of dfwithin treatments.

6. A repeated-measures ANOVA eliminates the influence
of individual differences from the analysis. If individual
differences are extremely large, then a treatment effect
might be masked in an independent-measures
experiment. In this case, a repeated-measures design
might be a more sensitive test for a treatment effect.

SStotal = ∑X
2 – —

SSbetween treatments = SStotal � SSwithin treatments

= ∑ T 2
  G 2

— � —
n

G 2

N
dftotal = N � 1  

or, SSbetween treatments 

dfbetween treatments = k�1

SSbetween subjects =

dfwithin treatments = Σ(n �1)

dfbetween subjects  = n �1

N

Numerator of F-ratio

Denominator of F-ratio

SSwithin treatments = ΣSSinside each treatment

 Σ 
G2

N

P 2

k
�

SSerror = SSwithin treatments � SSbetween subjects

dferror = dfwithin treatments � dfbetween subjects

FIGURE 13.3

Formulas for the repeated-measures ANOVA.

KEY TERMS

individual differences (437)

between-treatments variance(437)

error variance (438)

between-subjects variance (440)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 13 on the book

companion website. 

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Single-Factor, Repeated-Measures Analysis
of Variance (ANOVA) presented in this chapter.

Data Entry

Enter the scores for each treatment condition in a separate column, with the scores for each
individual in the same row. All of the scores for the first treatment go in the VAR00001
column, the second treatment scores go in the VAR00002 column, and so on.

Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on
Repeated-Measures.

2. SPSS presents a box entitled Repeated-Measures Define Factors. Within the box,
the Within-Subjects Factor Name should already contain Factor 1. If not, type in
Factor 1.

3. Enter the Number of levels (number of different treatment conditions) in the
next box.

4. Click Add.
5. Click Define.
6. One by one, move the column labels for your treatment conditions into the Within

Subjects Variables box. (Highlight the column label on the left and click the arrow
to move it into the box.)

7. If you want descriptive statistics for each treatment, click on the Options box,
select Descriptives, and click Continue.

8. Click OK.
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SPSS Output

We used the SPSS program to analyze the data from the television viewing study in
Example 13.1 and portions of the program output are shown in Figure 13.4. Note that 
large portions of the SPSS output are not relevant for our purposes and are not included in
Figure 13.1. The first item of interest is the table of Descriptive Statistics, which presents
the mean, standard deviation, and number of scores for each treatment. Next, we skip 
to the table showing Tests of Within-Subjects Effects. The top line of the factor 1 box
(Sphericity Assumed) shows the between-treatments sum of squares, degrees of freedom,
and mean square that form the numerator of the F-ratio. The same line reports the value of
the F-ratio and the level of significance (the p value or alpha level). Similarly, the top line
of the Error (factor 1) box shows the sum of squares, the degrees of freedom, and the 
mean square for the error term (the denominator of the F-ratio). The final box in the output 
(not shown in Figure 13.4) is labeled Tests of Between-Subjects Effects and the bottom
line (Error) reports the between-subjects sum of squares and degrees of freedom (ignore
the mean square and F-ratio, which are not part of the repeated-measures ANOVA). 

RESOURCES 457

Descriptive Statistics

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source

factor 1

Type III Sum
of Squares df Mean

Square F Sig.

Mean

VAR00001

VAR00002

VAR00003

VAR00004

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

50.000

50.000

50.000

50.000

3

1.600

2.500

1.000

16.667

31.250

20.000

50.000

8.000

8.000

8.000

8.000

12

6.400

10.000

4.000

.667

1.250

.800

2.000

25.000

25.000

25.000

25.000

.000

.001

.000

.007

Error (factor 1) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

1.0000

2.0000

5.0000

4.0000

1.41421

1.41421

1.58114

1.22474

5

5

5

5

Std. Deviation N

FIGURE 13.4

Portions of the SPSS output for the repeated-measures ANOVA for the television viewing study in Example 13.1.
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FOCUS ON PROBLEM SOLVING

1. Before you begin a repeated-measures ANOVA, complete all of the preliminary
calculations needed for the ANOVA formulas. This requires that you find the total
for each treatment (Ts), the total for each person (Ps), the grand total (G), the SS for
each treatment condition, and �X2 for the entire set of N scores. As a partial check
on these calculations, be sure that the T values add up to G and that the P values
have a sum of G.

2. To help remember the structure of repeated-measures ANOVA, keep in mind that a
repeated-measures experiment eliminates the contribution of individual differences.
There are no individual differences contributing to the numerator of the F-ratio
(MSbetween treatments) because the same individuals are used for all treatments.
Therefore, you must also eliminate individual differences in the denominator. This
is accomplished by partitioning within-treatments variability into two components:
between-subjects variability and error variability. It is the MS value for error
variability that is used in the denominator of the F-ratio.

DEMONSTRATION 13.1

REPEATED-MEASURES ANOVA

The following data were obtained from a research study examining the effect of sleep
deprivation on motor-skills performance. A sample of five participants was tested on a
motor-skills task after 24 hours of sleep deprivation, tested again after 36 hours, and tested
once more after 48 hours. The dependent variable is the number of errors made on the
motor-skills task. Do these data indicate that the number of hours of sleep deprivation has
a significant effect on motor skills performance?

Participant 24 Hours 36 Hours 48 Hours P totals

A 0 0 6 6 N � 15
B 1 3 5 9 G � 45
C 0 1 5 6 �X2 � 245
D 4 5 9 18
E 0 1 5 6

T � 5 T � 10 T � 30
SS � 12 SS � 16 SS � 12

State the hypotheses, and specify alpha. The null hypothesis states that, for the general
population, there are no differences among the three deprivation conditions. Any differences
that exist among the samples are simply the result of chance or error. In symbols,

H0: �1 � �2 � �3

The alternative hypothesis states that there are differences among the conditions.

H1: At least one of the treatment means is different.

S T E P  1
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We use 	 � .05.

The repeated-measures analysis. Rather than compute the df values and look for a
critical value for F at this time, we proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented
in Chapter 12.

SSwithin � � SSinside each treatment � 12 � 16 � 12 � 40

SSbetween� �70

and the corresponding degrees of freedom are

dftotal � N � �1 � 14

dfwithin � � df � 4 � 4 � 4 � 12

dfbetween � k � 1 � 2

The second stage of the repeated-measures analysis measures and removes the individual
differences from the denominator of the F-ratio.

SSbetween subjects � � �
P
k

2

� � �
G
N

2

�

� �
6
3

2

� � �
9
3

2

� � �
6
3

2

� � �
1
3
82

� � �
6
3

2

� � �
4
1
5
5

2

�

� 36

SSerror � SSwithin � SSbetween subjects

� 40 � 36

� 4

and the corresponding df values are

dfbetween subjects � n � 1 � 4

dferror � dfwithin � dfbetween subjects

� 12 � 4

� 8

The mean square values that form the F-ratio are as follows:

MSbetween � �
S

d

S

fb

b

e

e

t

t

w

w

e

e

e

e

n

n
� � �

7
2
0
� � 35

MSerror � �
S

d

S

fe

e

r

r

r

r

o

o

r

r
� � �

4
8

� � 0.50

S T A G E  2

� � � �
5

5

10

5

30

5

45

15

2 2 2 2

� �
T
n

2

� � �
G
N

2

�

SStotal � � X2 � �
G
N

2

� � 245 � �
4
1
5
5

2

� � 110

S T A G E  1

S T E P  2
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Finally, the F-ratio is

F � �
M

M

Sb

S
e

e

t

r

w

ro

e

r

en
� � �

0
3
.5
5
0

� � 70.00

Make a decision and state a conclusion. With df � 2, 8 and 	 � .05, the critical
value is F � 4.46. Our obtained F-ratio (F � 70.00) is well into the critical region, so our
decision is to reject the null hypothesis and conclude that there are significant differences
among the three levels of sleep deprivation.

DEMONSTRATION 13.2

EFFECT SIZE FOR THE REPEATED-MEASURES ANOVA

We compute 
2, the percentage of variance explained by the treatment differences, for the
data in Demonstration 13.1. Using Equation 13.11 we obtain


2 � � �
70

7
�

0
4

� � �
7
7
0
4
� � 0.95 (or 95%)

SSbetween treatments
���
SSbetween treatments � SSerror

S T E P  3
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1. How does the denominator of the F-ratio (the error
term) differ for a repeated-measures ANOVA
compared to an independent-measures ANOVA?

2. The repeated-measures ANOVA can be viewed as a
two-stage process. What is the purpose of the second
stage?

3. A researcher conducts an experiment comparing 
three treatment conditions with n � 10 scores in each
condition.
a. If the researcher uses an independent-measures

design, how many individuals are needed for the
study and what are the df values for the F-ratio?

b. If the researcher uses a repeated-measures design,
how many individuals are needed for the study and
what are the df values for the F-ratio?

4. A researcher conducts a repeated-measures experiment
using a sample of n � 8 subjects to evaluate the dif-
ferences among four treatment conditions. If the
results are examined with an ANOVA, what are 
the df values for the F-ratio?

5. A researcher uses a repeated-measures ANOVA to
evaluate the results from a research study and reports
an F-ratio with df � 2, 30.
a. How many treatment conditions were compared in

the study?
b. How many individuals participated in the study?

6. A published report of a repeated-measures research study
includes the following description of the statistical
analysis. “The results show significant differences among
the treatment conditions, F(2, 20) � 6.10, p �.01.”
a. How many treatment conditions were compared in

the study?
b. How many individuals participated in the study?

7. The following data were obtained from a repeated-
measures study comparing three treatment conditions.
Use a repeated-measures ANOVA with 	 �.05 to
determine whether there are significant mean
differences among the three treatments.

Treatments

Person
Person I II III Totals

A 0 4 2 P � 6
B 1 5 6 P � 12 N � 18
C 3 3 3 P � 9 G � 48
D 0 1 5 P � 6 �X2 � 184
E 0 2 4 P � 6
F 2 3 4 P � 9

M � 1 M � 3 M � 4
T � 6 T � 18 T � 24

SS � 8 SS � 10 SS � 10

PROBLEMS
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PROBLEMS 461

8. The following data were obtained from a repeated-
measures study comparing two treatment conditions.
Use a repeated-measures ANOVA with 	 � .05 to
determine whether there are significant mean
differences between the two treatments.

Treatments

Person
Person I II Totals

A 3 5 P � 8
B 5 9 P � 14 N � 16
C 1 5 P � 6 G � 80
D 1 7 P � 8 �X2 � 500
E 5 9 P � 14
F 3 7 P � 10
G 2 6 P � 8
H 4 8 P � 12

M � 3 M � 7
T � 24 T � 56

SS � 18 SS � 18

9. The following data were obtained from a repeated-
measures study comparing three treatment conditions. 
a. Use a repeated-measures ANOVA with 	 � .05 to

determine whether there are significant mean
differences among the three treatments.

b. Compute 
2, the percentage of variance accounted
for by the mean differences, to measure the size of
the treatment effects.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

Treatments

Person
Person I II III Totals

A 1 1 4 P � 6
B 3 4 8 P � 15 N � 15
C 0 2 7 P � 9 G � 45
D 0 0 6 P � 6 �X2 � 231
E 1 3 5 P � 9

M � 1 M � 2 M � 6
T � 5 T � 10 T � 30

SS � 6 SS � 10 SS � 10

10. For the data in problem 9,
a. Compute SStotal and SSbetween treatments.

b. Eliminate the mean differences between treatments
by adding 2 points to each score in treatment I,
adding 1 point to each score in treatment II, and

subtracting 3 points from each score in treatment
III. (All three treatments should end up with M � 3
and T � 15.)

c. Calculate SStotal for the modified scores. (Caution:
You first must find the new value for �X2.)

d. Because the treatment effects were eliminated in
part b, you should find that SStotal for the modified
scores is smaller than SStotal for the original scores.
The difference between the two SS values should be
exactly equal to the value of SSbetween treatments for
the original scores.

11. The following data were obtained from a repeated-
measures study comparing three treatment conditions.

Treatment

Subject I II III P

A 6 8 10 24 G � 48
B 5 5 5 15 �X2 � 294
C 1 2 3 6
D 0 1 2 3

T � 12 T � 16 T � 20
SS � 26 SS � 30 SS � 38

Use a repeated-measures ANOVA with 	 � .05 to
determine whether these data are sufficient to
demonstrate significant differences between the
treatments.

12. In Problem 11 the data show large and consistent
differences between subjects. For example, subject A
has the largest score in every treatment and subject D
always has the smallest score. In the second stage of
the ANOVA, the large individual differences are
subtracted out of the denominator of the F-ratio, which
results in a larger value for F.

The following data were created by using the same
numbers that appeared in Problem 11. However, we
eliminated the consistent individual differences by
scrambling the scores within each treatment. 

Treatment

Subject I II III P

A 6 2 3 11 G � 48
B 5 1 5 11 �X2 � 294
C 0 5 10 15
D 1 8 2 11

T � 12 T � 16 T � 20
SS � 26 SS � 30 SS � 38

a. Use a repeated-measures ANOVA with 	 � .05 to
determine whether these data are sufficient to
demonstrate significant differences between the
treatments.
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462 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

b. Explain how the results of this analysis compare
with the results from Problem 11.

13. One of the primary advantages of a repeated-measures
design, compared to an independent-measures design,
is that it reduces the overall variability by removing
variance caused by individual differences. The
following data are from a research study comparing
three treatment conditions.
a. Assume that the data are from an independent-

measures study using three separate samples, each
with n � 6 participants. Ignore the column of 
P totals and use an independent-measures ANOVA
with 	 � .05 to test the significance of the mean
differences. 

b. Now assume that the data are from a repeated-
measures study using the same sample of n � 6
participants in all three treatment conditions. Use a
repeated-measures ANOVA with 	 � .05 to test
the significance of the mean differences.

c. Explain why the two analyses lead to different
conclusions.

Treatment Treatment Treatment 
1 2 3 P

6 9 12 27
8 8 8 24 N � 18
5 7 9 21 G � 108
0 4 8 12 �X2 � 800
2 3 4 9
3 5 7 15

M � 4 M � 6 M � 8
T � 24 T � 36 T � 48

SS � 42 SS � 28 SS � 34

14. The following data are from an experiment comparing
three different treatment conditions:

A B C

0 1 2 N � 15
2 5 5 �X 2 � 354
1 2 6
5 4 9
2 8 8

T � 10 T � 20 T � 30
SS � 14 SS � 30 SS � 30

a. If the experiment uses an independent-measures
design, can the researcher conclude that the
treatments are significantly different? Test at the
.05 level of significance.

b. If the experiment is done with a repeated-measures
design, should the researcher conclude that the
treatments are significantly different? Set alpha at
.05 again.

c. Explain why the analyses in parts a and b lead to
different conclusions.

15. A researcher is evaluating customer satisfaction with
the service and coverage of two phone carriers. Each
individual in a sample of n � 25 uses one carrier for
two weeks and then switches to the other. Each
participant then rates the two carriers. The following
table presents the results from the repeated-measures
ANOVA comparing the average ratings. Fill in the
missing values in the table. (Hint: Start with the 
df values.)

Source SS df MS

Between treatments 2 F �

Within treatments
Between subjects
Error 12

Total 23

16. The following summary table presents the results from a
repeated-measures ANOVA comparing three treatment
conditions with a sample of n � 11 subjects. Fill in 
the missing values in the table. (Hint: Start with the 
df values.)

Source SS df MS

Between treatments F � 5.00
Within treatments 80

Between subjects
Error 60

Total

17. The following summary table presents the results 
from a repeated-measures ANOVA comparing four
treatment conditions, each with a sample of n � 12
participants. Fill in the missing values in the table.
(Hint: Start with the df values.) 

Source SS df MS

Between treatments 54 20 F �

Within treatments
Between subjects
Error 3

Total 194
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18. A recent study indicates that simply giving college
students a pedometer can result in increased walking
(Jackson & Howton, 2008). Students were given
pedometers for a 12-week period, and asked to record
the average number of steps per day during weeks 1,
6, and 12. The following data are similar to the results
obtained in the study.

Number of steps (x1000)

Week

Participant 1 6 12 P

A 6 8 10 24
B 4 5 6 15
C 5 5 5 15 G � 72
D 1 2 3 6 �X2 � 400
E 0 1 2 3
F 2 3 4 9

T � 18 T � 24 T � 30
SS � 28 SS � 32 SS � 40

a. Use a repeated-measures ANOVA with 	 � .05 to
determine whether the mean number of steps
changes significantly from one week to another.

b. Compute 
2 to measure the size of the treatment
effect.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

19. A repeated-measures experiment comparing only 
two treatments can be evaluated with either a t statistic
or an ANOVA. As we found with the independent-
measures design, the t test and the ANOVA produce
equivalent conclusions, and the two test statistics are
related by the equation F � t2. The following data are
from a repeated-measures study:

Subject Treatment 1 Treatment 2 Difference

1 2 4 �2
2 1 3 �2
3 0 10 �10
4 1 3 �2

a. Use a repeated-measures t statistic with 	 � .05 to
determine whether the data provide evidence of a
significant difference between the two treatments.
(Caution: ANOVA calculations are done with the 
X values, but for t you use the difference scores.)

b. Use a repeated-measures ANOVA with 	 � .05 to
evaluate the data. (You should find F � t2.) 

20. For either independent-measures or repeated-measures
designs comparing two treatments, the mean difference
can be evaluated with either a t test or an ANOVA.
The two tests are related by the equation F � t2. For
the following data,
a. Use a repeated-measures t test with 	 � .05 to

determine whether the mean difference between
treatments is statistically significant.

b. Use a repeated-measures ANOVA with 	 � .05 to
determine whether the mean difference between
treatments is statistically significant. (You should
find that F � t2.) 

Person Treatment 1 Treatment 2 Difference

A 4 7 3
B 2 11 9
C 3 6 3
D 7 10 3

M � 4 M � 8.5 MD � 4.5
T � 16 T � 34

SS � 14 SS � 17 SS � 27

21. In the Preview section for this chapter, we presented
an example of a delayed discounting study in which
people are willing to settle for a smaller reward today
in exchange for a larger reward in the future. The
following data represent the typical results from one of
these studies. The participants are asked how much
they would take today instead of waiting for a specific
delay period to receive $1000. Each participant
responds to all 5 of the delay periods. Use a repeated-
measures ANOVA with 	 � .01 to determine whether
there are significant differences among the 5 delay
periods for the following data:

Participant 1 6 1 2 5
month months year years years

A 950 850 800 700 550
B 800 800 750 700 600
C 850 750 650 600 500
D 750 700 700 650 550
E 950 900 850 800 650
F 900 900 850 750 650

22. The endorphins released by the brain act as natural
painkillers. For example, Gintzler (1970) monitored
endorphin activity and pain thresholds in pregnant 
rats during the days before they gave birth. The data
showed an increase in pain threshold as the pregnancy
progressed. The change was gradual until 1 or 2 days
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464 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

before birth, at which point there was an abrupt
increase in pain threshold. Apparently a natural
painkilling mechanism was preparing the animals for
the stress of giving birth. The following data represent
pain-threshold scores similar to the results obtained by
Gintzler. Do these data indicate a significant change in
pain threshold? Use a repeated-measures ANOVA
with 	 �.01.

Days Before Giving Birth

Subject 7 5 3 1

A 39 40 49 52
B 38 39 44 55
C 44 46 50 60
D 40 42 46 56
E 34 33 41 52
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