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Preview

Swearing is a common, almost reflexive, response to pain.
Whether you knock your shin into the edge of a coffee
table or smash your thumb with a hammer, most of us
respond with a streak of obscenities. One question, how-
ever, is whether swearing focuses attention on the pain
and, thereby, increases its intensity, or serves as a distrac-
tion that reduces pain. To address this issue, Stephens,
Atkins, and Kingston (2009) conducted an experiment
comparing swearing with other responses to pain. In the
study, participants were asked to place one hand in icy
cold water for as long as they could bear the pain. Half

of the participants were told to repeat their favorite swear
word over and over for as long as their hands were in the
water. The other half repeated a neutral word. The
researchers recorded how long each participant was able
to tolerate the ice water. After a brief rest, the two groups
switched words and repeated the ice water plunge. Thus,
all the participants experienced both conditions (swearing
and neutral) with half swearing on their first plunge and
half on their second. The results clearly showed that swear-
ing significantly increased the average amount of time that
participants could tolerate the pain.

The Problem: In the previous chapter, we introduced
a statistical procedure for evaluating the mean difference
between two sets of data (the independent-measures

t statistic). However, the independent-measures ¢ statistic

is intended for research situations involving two separate
and independent samples. You should realize that

the two sets of scores in the swearing study are not
independent samples. In fact, the same group individuals
participated in both of the treatment conditions. What

is needed is a new statistical analysis for comparing

two means that are both obtained from the same group
of participants.

The Solution: In this chapter, we introduce the repeated-
measures t statistic, which is used for hypothesis tests
evaluating the mean difference between two sets of scores
obtained from the same group of individuals. As you will
see, however, this new ¢ statistic is very similar to the
original  statistic that was introduced in Chapter 9.
Finally, we should note that researchers often
have a choice when they are planning a research study
that compares two different treatment conditions.
Specifically, a researcher may choose to use two
separate groups of participants, one for each of the
treatments, or a researcher may choose to use one
group and measure each individual in both of the
treatment conditions. Later in this chapter, we take
a closer look at the differences between these two
research designs and discuss the advantages and
disadvantages of each.

INTRODUCTION TO REPEATED-MEASURES DESIGNS

In the previous chapter, we introduced the independent-measures research design
as one strategy for comparing two treatment conditions or two populations. The
independent-measures design is characterized by the fact that two separate samples
are used to obtain the two sets of scores that are to be compared. In this chapter, we
examine an alternative strategy known as a repeated-measures design, or a within-
subjects design. With a repeated-measures design, two separate scores are obtained
for each individual in the sample. For example, a group of patients could be mea-
sured before therapy and then measured again after therapy. Or, response time could
be measured in a driving simulation task for a group of individuals who are first
tested when they are sober and then tested again after two alcoholic drinks. In each
case, the same variable is being measured twice for the same set of individuals; that
is, we are literally repeating measurements on the same sample.

DEFINITION

A repeated-measures design, or a within-subject design, is one in which the

dependent variable is measured two or more times for each individual in a single
sample. The same group of subjects is used in all of the treatment conditions.
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The main advantage of a repeated-measures study is that it uses exactly the same
individuals in all treatment conditions. Thus, there is no risk that the participants in
one treatment are substantially different from the participants in another. With an
independent-measures design, on the other hand, there is always a risk that the results
are biased because the individuals in one sample are systematically different (smarter,
faster, more extroverted, and so on) than the individuals in the other sample. At the end
of this chapter, we present a more detailed comparison of repeated-measures studies
and independent-measures studies, considering the advantages and disadvantages of
both types of research.

Occasionally, researchers try to approximate the advantages of a repeated-measures
design by using a technique known as matched subjects. A matched-subjects design
involves two separate samples, but each individual in one sample is matched one-to-one
with an individual in the other sample. Typically, the individuals are matched on one
or more variables that are considered to be especially important for the study. For
example, a researcher studying verbal learning might want to be certain that the
two samples are matched in terms of IQ and gender. In this case, a male participant with
an IQ of 120 in one sample would be matched with another male with an IQ of 120 in
the other sample. Although the participants in one sample are not identical to the
participants in the other sample, the matched-subjects design at least ensures that the
two samples are equivalent (or matched) with respect to some specific variables.

In a matched-subjects design, each individual in one sample is matched with
an individual in the other sample. The matching is done so that the two individ-
uals are equivalent (or nearly equivalent) with respect to a specific variable that
the researcher would like to control.

Of course, it is possible to match participants on more than one variable. For
example, a researcher could match pairs of subjects on age, gender, race, and 1Q. In this
case, for example, a 22-year-old white female with an IQ of 115 who was in one
sample would be matched with another 22-year-old white female with an IQ of 115 in
the second sample. The more variables that are used, however, the more difficult it
is to find matching pairs. The goal of the matching process is to simulate a repeated-
measures design as closely as possible. In a repeated-measures design, the matching is
perfect because the same individual is used in both conditions. In a matched-subjects
design, however, the best you can get is a degree of match that is limited to the
variable(s) that are used for the matching process.

In a repeated-measures design or a matched-subjects design comparing two treat-
ment conditions, the data consist of two sets of scores, which are grouped into sets of
two, corresponding to the two scores obtained for each individual or each matched pair
of subjects (Table 11.1). Because the scores in one set are directly related, one-to-one,
with the scores in the second set, the two research designs are statistically equivalent
and share the common name related-samples designs (or correlated-samples designs).
In this chapter, we focus our discussion on repeated-measures designs because they are
overwhelmingly the more common example of related-samples designs. However, you
should realize that the statistical techniques used for repeated-measures studies also can
be applied directly to data from matched-subjects studies. We should also note that a
matched-subjects study occasionally is called a matched samples design, but the
subjects in the samples must be matched one-to-one before you can use the statistical
techniques in this chapter.
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TABLE 11.1

An example of the data from
a repeated-measures or a
matched-subjects study using
n = 5 participants (or
matched pairs).

DIFFERENCE SCORES:
THE DATA FOR A
REPEATED-MEASURES
STUDY

TABLE 11.2

Reaction-time measurements
taken before and after taking
an over-the-counter cold
medication.

Note that M, is the mean for the

sample of D scores.

Participant or First Second

Matched Pair Score Score
#1 12 15 <The 2 scores for
#2 10 14 one participant or
#3 15 17 one matched pair
#4 17 17
#5 12 18

Now we examine the statistical techniques that allow a researcher to use the
sample data from a repeated-measures study to draw inferences about the general
population.

THE t STATISTIC FOR A REPEATED-MEASURES
RESEARCH DESIGN

The ¢ statistic for a repeated-measures design is structurally similar to the other 7 statistics
we have examined. As we shall see, it is essentially the same as the single-sample # statis-
tic covered in Chapter 9. The major distinction of the related-samples ¢ is that it is
based on difference scores rather than raw scores (X values). In this section, we examine
difference scores and develop the ¢ statistic for related samples.

Many over-the-counter cold medications include the warning “may cause drowsiness.”
Table 11.2 shows an example of data from a study that examines this phenomenon.
Note that there is one sample of n = 4 participants, and that each individual is mea-
sured twice. The first score for each person (X;) is a measurement of reaction time
before the medication was administered. The second score (X,) measures reaction time
1 hour after taking the medication. Because we are interested in how the medication
affects reaction time, we have computed the difference between the first score and the
second score for each individual. The difference scores, or D values, are shown in the
last column of the table. Notice that the difference scores measure the amount of change

Before After
Medication Medication Difference

Person (X7) (X3) D
A 215 210 -5
B 221 242 21
C 196 219 23
D 203 228 25
3D = 64
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in reaction time for each person. Typically, the difference scores are obtained by
subtracting the first score (before treatment) from the second score (after treatment) for
each person:

difference score = D = X, — X (11.1)

Note that the sign of each D score tells you the direction of the change. Person A, for
example, shows a decrease in reaction time after taking the medication (a negative
change), but person B shows an increase (a positive change).

The sample of difference scores (D values) serves as the sample data for the
hypothesis test and all calculations are done using the D scores. To compute the 7 statistic,
for example, we use the number of D scores (1) as well as the sample mean (Mp) and the
value of SS for the sample of D scores.

The researcher’s goal is to use the sample of difference scores to answer questions
about the general population. In particular, the researcher would like to know whether
there is any difference between the two treatment conditions for the general population.
Note that we are interested in a population of difference scores. That is, we would like
to know what would happen if every individual in the population were measured in two
treatment conditions (X; and X,) and a difference score (D) were computed for every-
one. Specifically, we are interested in the mean for the population of difference scores.
We identify this population mean difference with the symbol yp, (using the subscript
letter D to indicate that we are dealing with D values rather than X scores).

As always, the null hypothesis states that, for the general population, there is no
effect, no change, or no difference. For a repeated-measures study, the null hypothesis
states that the mean difference for the general population is zero. In symbols,

HO: Up = 0

Again, this hypothesis refers to the mean for the entire population of difference
scores. Figure 11.1(a) shows an example of a population of difference scores with a

FIGURE 11.1
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up =0 up >0

(a) A population of difference scores for which the mean is pp = 0. Note that the typical
difference score (D value) is not equal to zero. (b) A population of difference scores for which
the mean is greater than zero. Note that most of the difference scores are also greater than zero.
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mean of u, = 0. Although the population mean is zero, the individual scores in the pop-
ulation are not all equal to zero. Thus, even when the null hypothesis is true, we still
expect some individuals to have positive difference scores and some to have negative
difference scores. However, the positives and negatives are unsystematic and in the
long run balance out to pp, = 0. Also note that a sample selected from this population
probably will not have a mean exactly equal to zero. As always, there will be some error
between a sample mean and the population mean, so even if u, = 0 (H is true), we do
not expect M, to be exactly equal to zero.

The alternative hypothesis states that there is a treatment effect that causes the
scores in one treatment condition to be systematically higher (or lower) than the scores
in the other condition. In symbols,

HI:HD:,:O

According to H, the difference scores for the individuals in the population tend to
be systematically positive (or negative), indicating a consistent, predictable difference
between the two treatments.

Figure 11.1(b) shows an example of a population of difference scores with a posi-
tive mean difference, up > 0. This time, most of the individuals in the population have
difference scores that are greater than zero. A sample selected from this population will
contain primarily positive difference scores and will probably have a mean difference
that is greater than zero, Mp > 0. See Box 11.1 for further discussion of H, and H;.

Figure 11.2 shows the general situation that exists for a repeated-measures hypothesis test.
You may recognize that we are facing essentially the same situation that we encountered
in Chapter 9. In particular, we have a population for which the mean and the standard
deviation are unknown, and we have a sample that will be used to test a hypothesis about
the unknown population. In Chapter 9, we introduced the single-sample ¢ statistic, which
allowed us to use a sample mean as a basis for testing hypotheses about an unknown

ANALOGIES FOR H, AND H; IN THE REPEATED-MEASURES TEST

An Analogy for Hy: Intelligence is a fairly stable character-
istic; that is, you do not get noticeably smarter or dumber
from one day to the next. However, if we gave you an 1Q
test every day for a week, we probably would get seven
different numbers. The day-to-day changes in your IQ
score are caused by random factors such as your health,
your mood, and your luck at guessing answers you do not
know. Some days your IQ score is slightly higher, and
some days it is slightly lower. On average, the day-to-day
changes in IQ should balance out to zero. This is the situa-
tion that is predicted by the null hypothesis for a repeated-
measures test. According to H,, any changes that occur
either for an individual or for a sample are just due to
chance, and in the long run, they will average out to zero.

An Analogy for Hy: On the other hand, suppose that
we evaluate your performance on a new video game by
measuring your score every day for a week. Again, we
probably will find small differences in your scores from
one day to the next, just as we did with the IQ scores.
However, the day-to-day changes in your game score
will not be random. Instead, there should be a general
trend toward higher scores as you gain more experience
with the new game. Thus, most of the day-to-day
changes should show an increase. This is the situation
that is predicted by the alternative hypothesis for the
repeated-measures test. According to H;, the changes
that occur are systematic and predictable and will not
average out to zero.
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FIGURE 11.2

A sample of n = 4 people is
selected from the population.
Each individual is measured
twice, once in treatment I and
once in treatment I, and a
difference score, D, is
computed for each individual.
This sample of difference
scores is intended to represent
the population. Note that we
are using a sample of
difference scores to represent
a population of difference
scores. Note that the mean for
the population of difference
scores is unknown. The null
hypothesis states that for the
general population there is no
consistent or systematic
difference between the two
treatments, so the population
mean difference is wp = 0.

Population of
difference scores

up =7

Sample of
difference scores

;

Subject | D

A 10 14 4
B 15 13 |2
C 12 156 3
D 11 12 1

As noted earlier, the repeated-
measures ¢ formula is also used
for matched-subjects designs.

population mean. This #-statistic formula is used again here to develop the repeated-
measures 7 test. To refresh your memory, the single-sample ¢ statistic (Chapter 9) is defined
by the formula

M-

Su

=

In this formula, the sample mean, M, is calculated from the data, and the value for
the population mean, p, is obtained from the null hypothesis. The estimated standard
error, Sy, 18 also calculated from the data and provides a measure of how much differ-
ence it is reasonable to expect between a sample mean and the population mean.

For the repeated-measures design, the sample data are difference scores and are
identified by the letter D, rather than X. Therefore, we use Ds in the formula to
emphasize that we are dealing with difference scores instead of X values. Also, the pop-
ulation mean that is of interest to us is the population mean difference (the mean
amount of change for the entire population), and we identify this parameter with the
symbol . With these simple changes, the ¢ formula for the repeated-measures design
becomes

(11.2)

In this formula, the estimated standard error for Mp, sy, is computed in exactly
the same way as it is computed for the single-sample ¢ statistic. To calculate the esti-
mated standard error, the first step is to compute the variance (or the standard devia-
tion) for the sample of D scores.
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The estimated standard error is then computed using the sample variance (or sample
standard deviation) and the sample size, n.

s =% or s = (11.3)

M, n M, /n

Notice that all of the calculations are done using the difference scores (the D scores)
and that there is only one D score for each subject. With a sample of n subjects, there
are exactly n D scores, and the ¢ statistic has df = n — 1. Remember that n refers to the
number of D scores, not the number of X scores in the original data.

You should also note that the repeated-measures t statistic is conceptually similar
to the ¢ statistics that we have previously examined:

sample statistic — population parameter
estimated standard error

In this case, the sample data are represented by the sample mean of the difference
scores (Mp), the population parameter is the value predicted by H, (up = 0), and the
estimated standard error is computed from the sample data using Equation 11.3.

1. For a research study comparing two treatment conditions, what characteristic
differentiates a repeated-measures design from an independent-measures design?

2. Describe the data used to compute the sample mean and the sample variance for
the repeated-measures ¢ statistic.

3. In words and in symbols, what is the null hypothesis for a repeated-measures ¢ test?

1. For a repeated-measures design, the same group of individuals is tested in both of the treat-
ments. An independent-measures design uses a separate group for each treatment.

2. The two scores obtained for each individual are used to compute a difference score. The
sample of difference scores is used to compute the mean and variance.

3. The null hypothesis states that, for the general population, the average difference between
the two conditions is zero. In symbols, p, = 0.

HYPOTHESIS TESTS AND EFFECT SIZE
FOR THE REPEATED-MEASURES DESIGN

In a repeated-measures study, each individual is measured in two different treatment
conditions and we are interested in whether there is a systematic difference between
the scores in the first treatment condition and the scores in the second treatment condi-
tion. A difference score (D value) is computed for each person and the hypothesis
test uses the difference scores from the sample to evaluate the overall mean difference,
Up, for the entire population. The hypothesis test with the repeated-measures ¢ statistic
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Attractiveness ratings for a
woman shown in a photograph
presented on a red and a white
background.
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follows the same four-step process that we have used for other tests. The complete
hypothesis-testing procedure is demonstrated in Example 11.1.

Research indicates that the color red increases men’s attraction to women (Elliot

& Niesta, 2008). In the original study, men were shown women’s photographs
presented on either a white or a red background. Photographs presented on red were
rated significantly more attractive than the same photographs mounted on white. In
a similar study, a researcher prepares a set of 30 women’s photographs, with

15 mounted on a white background and 15 mounted on red. One picture is identified
as the test photograph, and appears twice in the set, once on white and once on red.
Each male participant looks through the entire set of photographs and rates the
attractiveness of each woman on a 12-point scale. Table 11.3 summarizes the ratings
of the test photograph for a sample of n = 9 men. Are the ratings for the test photograph
significantly different when it is presented on a red background compared to a white
background?

State the hypotheses, and select the alpha level.
Hy: pup = 0 (There is no difference between the two colors.)

Hi: up # 0 (There is a change.)

For this test, we use a = .01.

Locate the critical region. For this example, n = 9, so the ¢ statistichas df =n—-1 = 8.
For o = .01, the critical value listed in the ¢ distribution table is = 3.355. The critical
region is shown in Figure 11.3.

White Red
Participant Background Background D D?
A 6 9 +3 9
B 8 9 +1 1
C 7 10 +3 9
D 7 11 +4 16
E 8 11 +3 9
F 6 9 +3 9
G 5 11 +6 36
H 10 11 +1 1
I 8 11 +3 9
3D =27 3D* =99
27
Mp = Ky = 3.00
2 2
ss=3p? - D _g9 O _ g9 g =3
n
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FIGURE 11.3
The critical region for the
t distribution with df = 8
and a = .01.

Reject Reject
Hg Hg
T
-3.355 0 +3.355

STEP 3

STEP 4

MEASURING EFFECT SIZE FOR
THE REPEATED-MEASURES t

Calculate the ¢ statistic. Table 11.3 shows the sample data and the calculations of
Mp = 3.00 and SS = 18. Note that all calculations are done with the difference
scores. As we have done with the other ¢ statistics, we present the calculation of the
¢ statistic as a three-step process.

First, compute the sample variance.

, SS 18
S ===
n—-1 8

=225

Next, use the sample variance to compute the estimated standard error.

2
=050

Finally, use the sample mean (M) and the hypothesized population mean
(up) along with the estimated standard error to compute the value for the # statistic.

_M,—p, 3.00-0
s 0.50

M,

t =6.00

Make a decision. The  value we obtained falls in the critical region (see Figure 11.3).
The researcher rejects the null hypothesis and concludes that the background color has
a significant effect on the judged attractiveness of the woman in the test photograph.

As we noted with other hypothesis tests, whenever a treatment effect is found to be sta-
tistically significant, it is recommended that you also report a measure of the absolute
magnitude of the effect. The most commonly used measures of effect size are Cohen’s
d and r*, the percentage of variance accounted for. The size of the treatment effect also
can be described with a confidence interval estimating the population mean difference,
wp- Using the data from Example 11.1, we demonstrate how these values are calculated
to measure and describe effect size.



Because we are measuring the
size of the effect and not the
direction, it is customary to
ignore the minus sign and report
Cohen’s d as a positive value.
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Cohen’sd In Chapters 8 and 9, we introduced Cohen’s d as a standardized measure
of the mean difference between treatments. The standardization simply divides the pop-
ulation mean difference by the standard deviation. For a repeated-measures study,
Cohen’s d is defined as

_ population mean difference _  up

standard deviation op

Because the population mean and standard deviation are unknown, we use the sam-
ple values instead. The sample mean, Mp, is the best estimate of the actual mean
difference, and the sample standard deviation (square root of sample variance) provides
the best estimate of the actual standard deviation. Thus, we are able to estimate the
value of d as follows:

estimated 4 — _Sample mean difference _ Mp (11.4)

sample standard deviation s

For the repeated-measures study in Example 11.1, M, = 3 and the sample variance
is s> = 2.25, so the data produce

3.00
estimated d = Mp _ _ 300 _ 2.00
S A /225 15

Any value greater than 0.80 is considered to be a large effect, and these data are
clearly in that category (see Table 8.2 on p. 264).
The percentage of variance accounted for, 7* Percentage of variance is computed
using the obtained ¢ value and the df value from the hypothesis test, exactly as was done
for the single-sample ¢ (see p. 299) and for the independent-measures # (see p. 329). For
the data in Example 11.1, we obtain

2
2 6.00
2 r_ ( ) :§=0.818 or 81.8%

CPHdf (600) +5 44

For these data, 81.8% of the variance in the scores is explained by the background
color for the photograph. More specifically, the color red caused the difference scores
to be consistently positive. Thus, the deviations from zero are largely explained by the
treatment.

Confidence intervals for estimating ., As noted in the previous two chapters, it is
possible to compute a confidence interval as an alternative method for measuring and
describing the size of the treatment effect. For the repeated-measures ¢, we use a sam-
ple mean difference, M, to estimate the population mean difference, j.p. In this case,
the confidence interval literally estimates the size of the treatment effect by estimating
the population mean difference between the two treatment conditions.

As with the other 7 statistics, the first step is to solve the ¢ equation for the unknown
parameter. For the repeated-measures 7 statistic, we obtain

W, =M, xis, (11.5)
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In the equation, the values for Mp, and for s, are obtained from the sample data.
Although the value for the ¢ statistic is unknown, we can use the degrees of freedom for
the ¢ statistic and the ¢ distribution table to estimate the ¢ value. Using the estimated
t and the known values from the sample, we can then compute the value of wp. The
following example demonstrates the process of constructing a confidence interval for a
population mean difference.

In Example 11.1 we presented a research study demonstrating how men’s attractiveness
ratings for women are influenced by the color red. In the study, a sample of n = 9 men
rated a woman shown in a photograph as significantly more attractive when the photo
was presented on a red background than when it was on a white background. The mean
difference between treatments was My, = 3 points and the estimated standard error for
the mean difference was Sm, = 0.50. Now, we construct a 95% confidence interval to
estimate the size of the population mean difference.

With a sample of n = 9 participants, the repeated-measures ¢ statistic has df = 8.
To have 95% confidence, we simply estimate that the ¢ statistic for the sample
mean difference is located somewhere in the middle 95% of all the possible ¢ values.
According to the ¢ distribution table, with df = 8, 95% of the ¢ values are located
between r = +2.306 and r = —2.306. Using these values in the estimation equation,
together with the values for the sample mean and the standard error, we obtain

w,=M, itsMU

3 * 2.306(0.50)
3 *1.153

This produces an interval of values ranging from 3 — 1.153 = 1.847 to 3 + 1.153 =
4.153. Our conclusion is that for general population of men, changing the background
color from white to red increases the average attractiveness rating for the woman in the
photograph between 1.847 and 4.153 points. We are 95% confident that the true mean
difference is in this interval because the only value estimated during the calculations
was the 7 statistic, and we are 95% confident that the ¢ value is located in the middle
95% of the distribution. Finally note that the confidence interval is constructed around
the sample mean difference. As a result, the sample mean difference, Mp = 3 points, is
located exactly in the center of the interval.

As with the other confidence intervals presented in Chapters 9 and 10, the confi-
dence interval for a repeated-measures ¢ is influenced by a variety of factors other than
the actual size of the treatment effect. In particular, the width of the interval depends on
the percentage of confidence used, so that a larger percentage produces a wider inter-
val. Also, the width of the interval depends on the sample size, so that a larger sample
produces a narrower interval. Because the interval width is related to sample size, the
confidence interval is not a pure measure of effect size like Cohen’s d or r°.

Finally, we should note that the 95% confidence interval computed in Example 11.2
does not include the value wp = 0. In other words, we are 95% confident that the popu-
lation mean difference is not wp = 0. This is equivalent to concluding that a null
hypothesis specifying that wp = 0 would be rejected with a test using o = .05.
If wp = 0 were included in the 95% confidence interval, it would indicate that a
hypothesis test would fail to reject Hy with a = .05.
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IN THE LITERATURE
REPORTING THE RESULTS OF A REPEATED-MEASURES & TEST

As we have seen in Chapters 9 and 10, the APA format for reporting the results of

t tests consists of a concise statement that incorporates the ¢ value, degrees of freedom,
and alpha level. One typically includes values for means and standard deviations,
either in a statement or a table (Chapter 4). For Example 11.1, we observed a mean
difference of M, = 3.00 with s = 1.50. Also, we obtained a ¢ statistic of t = 6.00
with df = 8, and our decision was to reject the null hypothesis at the .01 level

of significance. Finally, we measured effect size by computing the percentage of
variance explained and obtained r* = 0.818. A published report of this study might
summarize the results as follows:

Changing the background color from white to red increased the attractiveness rating of
the woman in the photograph by an average of M = 3.00 points with SD = 1.50. The
treatment effect was statistically significant, #(8) = 6.00, p < .01, 7> = 0.818.

When the hypothesis test is conducted with a computer program, the printout
typically includes an exact probability for the level of significance. The p-value
from the printout is then stated as the level of significance in the research report.
However, the data from Example 11.1 produced a significance level of p = .000 in
the computer printout. In this case, the probability was so small that the computer
rounded it off to 3 decimal points and obtained a value of zero. In this situation you
do not know the exact probability value and should report p < .001.

If the confidence interval from Example 11.2 is reported as a description of effect
size together with the results from the hypothesis test, it would appear as follows:

Changing the background color from white to red significantly increased the attrac-
tiveness rating, #(8) = 6.00, p < .001, 95% CI [1.817, 4.183].

Often, a close look at the sample data from a research study makes it easier to see the
size of the treatment effect and to understand the outcome of the hypothesis test. In
Example 11.1, we obtained a sample of n = 9 men who produce a mean difference of
Mp = 3.00 with a standard deviation of s = 1.50 points. The sample mean and standard
deviation describe a set of scores centered at M, = 3.00 with most of the scores located
within 1.5 points of the mean. Figure 11.4 shows the actual set of difference scores that
were obtained in Example 11.1. In addition to showing the scores in the sample, we have
highlighted the position of pp, = 0; that is, the value specified in the null hypothesis.
Notice that the scores in the sample are displaced away from zero. Specifically, the data
are not consistent with a population mean of yp = 0, which is why we rejected the null
hypothesis. In addition, note that the sample mean is located 2 standard deviations above
zero. This distance corresponds to the effect size measured by Cohen’s d = 2.00. For
these data, the picture of the sample distribution (see Figure 11.4) should help you to
understand the measure of effect size and the outcome of the hypothesis test.

In a repeated-measures study, the variability of the difference scores becomes a rela-
tively concrete and easy-to-understand concept. In particular, the sample variability
describes the consistency of the treatment effect. For example, if a treatment consis-
tently adds a few points to each individual’s score, then the set of difference scores
are clustered together with relatively small variability. This is the situation that we
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FIGURE 11.4

The sample of difference
scores from Example 11.1.
The mean is M, = 3 and the
standard deviation is s = 1.5.
The data show a consistent
increase in scores (positive
differences) and suggest that
wp = 0 is not a reasonable
hypothesis.
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DIRECTIONAL HYPOTHESIS
AND ONE-TAILED TESTS

observed in Example 11.1 (see Figure 11.4) in which all of the participants produced
higher attractiveness ratings for the photograph on a red background. In this situation,
with small variability, it is easy to see the treatment effect and it is likely to be significant.

Now consider what happens when the variability is large. Suppose that the
red/white study in Example 11.1 produced a sample of n = 9 difference scores con-
sisting of -4, -3, -2, +1, +1, +3, +8, +11, and +12. These difference scores also
have a mean of M, = 3.00, but now the variability is substantially increased so that
SS = 288 and the standard deviation is s = 6.00. Figure 11.5 shows the new set of
difference scores. Again, we have highlighted the position of p, = 0, which is the value
specified in the null hypothesis. Notice that the high variability means that there is no
consistent treatment effect. Some participants rate the photograph as more attractive
when it is on a red background (the positive differences) and some rate it higher on a
white background (the negative differences). In the hypothesis test, the high variability
increases the size of the estimated standard error and results in a hypothesis test that
produces ¢t = 1.50, which is not in the critical region. With these data, we would fail to
reject the null hypothesis and conclude that the color has no effect on the perceived
attractiveness of the woman in the photograph.

With small variability (see Figure 11.4), the 3-point treatment effect is easy to see
and is statistically significant. With large variability (see Figure 11.5), the 3-point
effect is not easy to see and is not significant. As we have noted several times in the
past, large variability can obscure patterns in the data and reduces the likelihood of
finding a significant treatment effect.

In many repeated-measures and matched-subjects studies, the researcher has a specific
prediction concerning the direction of the treatment effect. For example, in the study
described in Example 11.1, the researcher expects the woman to be judged as more
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FIGURE 11.5

A sample of difference
scores with a mean
difference of M, = 3 and

a standard deviation of

s = 6. The data do not show
a consistent increase or
decrease in scores. Because
there is no consistent
treatment effect, ap = 0 is a
reasonable hypothesis.
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EXAMPLE 11.3

STEP 1

STEP 2

attractive when her photograph is presented on a red background. This kind of direc-
tional prediction can be incorporated into the statement of the hypotheses, resulting in
a directional, or one-tailed, hypothesis test. The following example demonstrates how
the hypotheses and critical region are determined for a directional test.

We reexamine the experiment presented in Example 11.1. The researcher is using a
repeated-measures design to investigate the effect of the color red on the perceived

attractiveness of a woman. The researcher predicts that the attractiveness ratings for
the woman in a photograph will increase when the photograph is presented on a red
background compared to a white background.

State the hypotheses and select the alpha level. For this example, the researcher
predicts that attractiveness ratings will increase when the photograph is shown on the
red background. The null hypothesis, on the other hand says that the attractiveness
ratings will not increase but rather will be unchanged or even lowered with the red
background. In symbols,

Hy: pp = 0 (There is no increase with the color red.)

The alternative hypothesis says that the treatment does work. For this example,
H, says that the color red will increase the attractiveness ratings.

H;: pp > 0 (The rating is increased.)
We use o = .01.

Locate the critical region. As we demonstrated with the independent-measures ¢ statistic
(p. 305), the critical region for a one-tailed test can be located using a two-stage process.
Rather than trying to determine which tail of the distribution contains the critical region,
you first look at the sample mean difference to verify that it is in the predicted direction.
If not, then the treatment clearly did not work as expected and you can stop the test. If
the change is in the correct direction, then the question is whether it is large enough to
be significant. For this example, change is in the predicted direction (the researcher
predicted higher ratings and the sample mean shows an increase.) With n = 9, we obtain
df = 8 and a critical value of t = 2.896 for a one-tailed test with o = .01. Thus, any

¢ statistic beyond 2.896 (positive or negative) is sufficient to reject the null hypothesis.
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STEP 3

STEP 4

Compute the ¢ statistic. We calculated the 7 statistic in Example 11.1, and obtained
t = 6.00.

Make a decision. The obtained ¢ statistic is well beyond the critical boundary.
Therefore, we reject the null hypothesis and conclude that the color red significantly
increased the attractiveness ratings for the woman in the photograph. In a research
report, the use of a one-tailed test would be clearly noted as follows:

Changing the background color from white to red significantly increased the attractiveness
rating, #(8) = 6.00, p < .01, one tailed.

LEARNING CHECK

ANSWERS

1. A researcher is investigating the effectiveness of acupuncture treatment for chronic
back pain. A sample of n = 4 participants is obtained from a pain clinic. Each
individual ranks the current level of pain and then begins a 6-week program of
acupuncture treatment. At the end of the program, the pain level is rated again and
the researcher records the amount of difference between the two ratings. For this
sample, pain level decreased by an average of M = 4.5 points with S§ = 27.

a. Are the data sufficient to conclude that acupuncture has a significant effect on
back pain? Use a two-tailed test with o = .05.

b. Can you conclude that acupuncture significantly reduces back pain? Use a
one-tailed test with o = .05.

2. Compute the effect size using both Cohen’s d and 7* acupuncture study in the
previous question.

3. A computer printout for a repeated-measures ¢ test reports a p value of p = .021.
a. Can the researcher claim a significant effect with « =.01?
b. Is the effect significant with o =.05?

1. a. For these data, the sample variance is 9, the standard error is 1.50, and r = 3.00. With
df = 3, the critical values are r = +3.182. Fail to reject the null hypothesis.

b. For a one-tailed test, the critical value is = 2.353. Reject the null hypothesis and
conclude that acupuncture treatment significantly reduces pain.
2.d=4.5/3=150and ¥ =9/12 = 0.75.
3. a. The exact p value, p = .021, is not less than o = .01. Therefore, the effect is not signifi-
cant for a = .01 (p > .01).
b. The p value is less than .05, so the effect is significant with a = .05.

REPEATED-MEASURES
VERSUS INDEPENDENT-
MEASURES DESIGNS

USES AND ASSUMPTIONS FOR REPEATED-MEASURES
t TESTS

In many research situations, it is possible to use either a repeated-measures design or
an independent-measures design to compare two treatment conditions. The independent-
measures design would use two separate samples (one in each treatment condition)
and the repeated-measures design would use only one sample with the same individu-
als participating in both treatments. The decision about which design to use is often
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Hypothetical data showing

the results from an independent-
measures study and a repeated-
measures study. The two sets of
data use exactly the same
numerical scores and they both
show the same 5-point mean
difference between treatments.
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made by considering the advantages and disadvantages of the two designs. In general,
the repeated-measures design has most of the advantages.

Number of subjects A repeated-measures design typically requires fewer subjects
than an independent-measures design. The repeated-measures design uses the subjects
more efficiently because each individual is measured in both of the treatment condi-
tions. This can be especially important when there are relatively few subjects available
(for example, when you are studying a rare species or individuals in a rare profession).

Study changes over time The repeated-measures design is especially well suited for
studying learning, development, or other changes that take place over time. Remember
that this design involves measuring individuals at one time and then returning to mea-
sure the same individuals at a later time. In this way, a researcher can observe behav-
iors that change or develop over time.

Individual differences The primary advantage of a repeated-measures design is that
it reduces or eliminates problems caused by individual differences. Individual differ-
ences are characteristics such as age, 1Q, gender, and personality that vary from one
individual to another. These individual differences can influence the scores obtained in
a research study, and they can affect the outcome of a hypothesis test. Consider the data
in Table 11.4. The first set of data represents the results from a typical independent-
measures study and the second set represents a repeated-measures study. Note that we
have identified each participant by name to help demonstrate the effects of individual
differences.

For the independent-measures data, note that every score represents a different per-
son. For the repeated-measures study, on the other hand, the same participants are
measured in both of the treatment conditions. This difference between the two designs
has some important consequences.

1. We have constructed the data so that both research studies have exactly the same
scores and they both show the same 5-point mean difference between treatments.
In each case, the researcher would like to conclude that the 5-point difference was
caused by the treatments. However, with the independent-measures design, there
is always the possibility that the participants in treatment 1 have different character-
istics than those in treatment 2. For example, the three participants in treatment 1
may be more intelligent than those in treatment 2 and their higher intelligence
caused them to have higher scores. Note that this problem disappears with the
repeated-measures design. Specifically, with repeated measures there is no possi-
bility that the participants in one treatment are different from those in another
treatment because the same participants are used in all of the treatments.

Independent-Measures Study Repeated-Measures Study
(2 Separate Samples) (Same Sample in Both Treatments)
Treatment 1 Treatment 2 Treatment 1 Treatment 2 D
(John) X = 18 (Sue) X = 15 (John) X = 18 (John) X = 15 -3
Mary) X = 27 (Tom) X = 20 Mary) X = 27 (Mary) X = 20 =7
(Bill) X = 33 (Dave) X = 28 (Bill) X = 33 (Bill) X = 28 =5
M =26 M =21 Mp = -5

SS =114 SS = 86 §§ =38
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2. Although the two sets of data contain exactly the same scores and have exactly
the same 5-point mean difference, you should realize that they are very different
in terms of the variance used to compute standard error. For the independent-
measures study, you calculate the SS or variance for the scores in each of the
two separate samples. Note that in each sample there are big differences
between participants. In treatment 1, for example, Bill has a score of 33 and
John’s score is only 18. These individual differences produce a relatively
large sample variance and a large standard error. For the independent-measures
study, the standard error is 5.77, which produces a ¢ statistic of + = 0.87. For
these data, the hypothesis test concludes that there is no significant difference
between treatments.

In the repeated-measures study, the SS and variance are computed for the
difference scores. If you examine the repeated-measures data in Table 11.4,
you will see that the big differences between John and Bill that exist in treat-
ment 1 and in treatment 2 are eliminated when you get to the difference scores.
Because the individual differences are eliminated, the variance and standard
error are dramatically reduced. For the repeated-measures study, the standard
error is 1.15 and the 7 statistic is + = —4.35. With the repeated-measures ¢, the
data show a significant difference between treatments. Thus, one big advantage
of a repeated-measures study is that it reduces variance by removing individual
differences, which increases the chances of finding a significant result.

TIME-RELATED FACTORS The primary disadvantage of a repeated-measures design is that the structure of the

AND ORDER EFFECTS design allows for factors other than the treatment effect to cause a participant’s score to

change from one treatment to the next. Specifically, in a repeated-measures design,
each individual is measured in two different treatment conditions, usually at two dif-
ferent times. In this situation, outside factors that change over time may be responsible
for changes in the participants’ scores. For example, a participant’s health or mood may
change over time and cause a difference in the participant’s scores. Outside factors such
as the weather can also change and may have an influence on participants’ scores.
Because a repeated-measures study typically takes place over time, it is possible that
time-related factors (other than the two treatments) are responsible for causing changes
in the participants’ scores.

Also, it is possible that participation in the first treatment influences the individ-
ual’s score in the second treatment. If the researcher is measuring individual perform-
ance, for example, the participants may gain experience during the first treatment
condition, and this extra practice may help their performance in the second condition.
In this situation, the researcher would find a mean difference between the two condi-
tions; however, the difference would not be caused by the treatments, instead it would
caused be by practice effects. Changes in scores that are caused by participation in an
earlier treatment are called order effects and can distort the mean differences found in
repeated-measures research studies.

Counterbalancing One way to deal with time-related factors and order effects is to
counterbalance the order of presentation of treatments. That is, the participants are ran-
domly divided into two groups, with one group receiving treatment 1 followed by treat-
ment 2, and the other group receiving treatment 2 followed by treatment 1. The goal of
counterbalancing is to distribute any outside effects evenly over the two treatments. For
example, if practice effects are a problem, then half of the participants gain experience
in treatment 1, which then helps their performance in treatment 2. However, the other
half gain experience in treatment 2, which helps their performance in treatment 1. Thus,
prior experience helps the two treatments equally.
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Finally, if there is reason to expect strong time-related effects or strong order
effects, your best strategy is not to use a repeated-measures design. Instead, use
independent-measures (or a matched-subjects design) so that each individual partici-
pates in only one treatment and is measured only one time.

The related-samples ¢ statistic requires two basic assumptions:

1. The observations within each treatment condition must be independent (see
p- 254). Notice that the assumption of independence refers to the scores within
each treatment. Inside each treatment, the scores are obtained from different
individuals and should be independent of one another.

2. The population distribution of difference scores (D values) must be normal.

As before, the normality assumption is not a cause for concern unless the
sample size is relatively small. In the case of severe departures from normality,
the validity of the ¢ test may be compromised with small samples. However,
with relatively large samples (n > 30), this assumption can be ignored.

If there is reason to suspect that one of the assumptions for the repeated-measures
t test has been violated, an alternative analysis known as the Wilcoxon test is presented
in Appendix E. The Wilcoxon test requires that the original scores be transformed into
ranks before evaluating the difference between the two treatment conditions.

1. What assumptions must be satisfied for repeated-measures ¢ tests to be valid?
2. Describe some situations for which a repeated-measures design is well suited.

3. How is a matched-subjects design similar to a repeated-measures design? How
do they differ?

4. The data from a research study consist of 10 scores in each of two different treatment
conditions. How many individual subjects would be needed to produce these data

a. For an independent-measures design?
b. For a repeated-measures design?
c. For a matched-subjects design?

1. The observations within a treatment are independent. The population distribution of D scores
is assumed to be normal.

2. The repeated-measures design is suited to situations in which a particular type of subject is
not readily available for study. This design is helpful because it uses fewer subjects (only
one sample is needed). Certain questions are addressed more adequately by a repeated-
measures design—for example, any time one would like to study changes across time in the
same individuals. Also, when individual differences are large, a repeated-measures design is
helpful because it reduces the amount of this type of error in the statistical analysis.

3. They are similar in that the role of individual differences in the experiment is reduced. They
differ in that there are two samples in a matched-subjects design and only one in a repeated-
measures study.

4. a. The independent-measures design would require 20 subjects (two separate samples with
n = 10 in each).
b. The repeated-measures design would require 10 subjects (the same 10 individuals are
measured in both treatments).
c. The matched-subjects design would require 20 subjects (10 matched pairs).
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1. In a related-samples research study, the individuals in
one treatment condition are directly related, one-to-one,
with the individuals in the other treatment condition(s).
The most common related-samples study is a repeated-
measures design, in which the same sample of individuals
is tested in all of the treatment conditions. This design
literally repeats measurements on the same subjects. An
alternative is a matched-subjects design, in which the
individuals in one sample are matched one-to-one with
individuals in another sample. The matching is based
on a variable relevant to the study.

2. The repeated-measures ¢ test begins by computing a
difference between the first and second measurements
for each subject (or the difference for each matched
pair). The difference scores, or D scores, are obtained by

D=X2—X1

The sample mean, M, and sample variance, s2, are
used to summarize and describe the set of difference
scores.

3. The formula for the repeated-measures ¢ statistic is
_Mymhy

M,

t

In the formula, the null hypothesis specifies pp, = 0,
and the estimated standard error is computed by

4. A repeated-measures design may be preferred to an
independent-measures study when one wants to observe
changes in behavior in the same subjects, as in learning
or developmental studies. An important advantage of

KEY TERMS

repeated-measures design (352)  difference scores (354)
within-subjects design (352)
matched-subjects design (353)

related-samples design (353)

estimated standard error for My, (357)
repeated-measures ¢ statistic (358)
individual differences (367)

the repeated-measures design is that it removes or
reduces individual differences, which, in turn lowers
sample variability and tends to increase the chances for
obtaining a significant result.

For a repeated-measures design, effect size can be
measured using either  (the percentage of variance
accounted for) or Cohen’s d (the standardized mean
difference). The value of * is computed the same way
for both independent- and repeated-measures designs.
a1

=t
£ +df

Cohen’s d is defined as the sample mean difference
divided by standard deviation for both repeated- and
independent-measures designs. For repeated-measures
studies, Cohen’s d is estimated as

. M,
estimated d = —=
s

An alternative method for describing the size of the
treatment effect is to construct a confidence interval for
the population mean difference, p.p. The confidence
interval uses the repeated-measures ¢ equation, solved
for the unknown mean difference:

W,=M,*ts ,
First, select a level of confidence and then look up the
corresponding ¢ values. For example, for 95%
confidence, use the range of ¢ values that determine the
middle 95% of the distribution. The ¢ values are then
used in the equation along with the values for the
sample mean difference and the standard error, which
are computed from the sample data.

order effects (368)
Wilcoxon test (369)
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Book Companion Website: www.cengage.com/psychology/gravetter

You can find a tutorial quiz and other learning exercises for Chapter 11 on the book
companion website. The website also provides access to a workshop entitled
Independent vs. Repeated t-tests that compares the ¢ test presented in this chapter with
the independent-measures test that was presented in Chapter 10.

aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEDbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Repeated-Measures ¢ Test presented in this
chapter.

Data Entry

Enter the data into two columns (VAR00OO1 and VAR0002) in the data editor with the
first score for each participant in the first column and the second score in the second
column. The two scores for each participant must be in the same row.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Paired-
Samples T Test.

2. One at a time, highlight the column labels for the two data columns and click the
arrow to move them into the Paired Variables box.



www.cengage.com/psychology/gravetter
www.aplia.com/statistics
www.cengagebrain.com
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3. In addition to performing the hypothesis test, the program computes a confidence
interval for the population mean difference. The confidence level is automatically
set at 95%, but you can select Options and change the percentage.

4. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the red/white photograph experi-
ment in Example 11.1 and the program output is shown in Figure 11.6. The output
includes a table of sample statistics with the mean and standard deviation for each
treatment. A second table shows the correlation between the two sets of scores (corre-
lations are presented in Chapter 15). The final table, which is split into two sections in
Figure 11.6, shows the results of the hypothesis test, including the mean and standard
deviation for the difference scores, the standard error for the mean, a 95% confidence
interval for the mean difference, and the values for ¢, df, and the level of significance
(the p value for the test).

Paired Samples Statistics
Std. Error
Mean N Std. Deviation Mean
Pair 1 VAR00001 7.2222 9 1.48137 49379
VAR00002 10.2222 9 .97183 .32394
Paired Samples Correlations

N Correlation Sig.

Pair 1 VAR00001 & VAR00002 9 .309 419
Paired Samples Test
Paired Differences
Std. Error
Mean Std. Deviation Mean

Pair 1 VAR00001 - VAR00002 —3.00000 1.50000 .50000

Paired Samples Test

Paired Differences

95% Confidence Interval

of the Difference

Lower Upper t df Sig. (2-tailed)
Pair 1 VAR00001 - VAR00002 —4.15300 —1.84700 —6.000 8 .000

FIGURE 11.6
The SPSS output for the repeated-measures hypothesis test in Example 11.1.
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FOCUS ON PROBLEM SOLVING

DEMONSTRATION 11.1

1. Once data have been collected, we must then select the appropriate statistical
analysis. How can you tell whether the data call for a repeated-measures ¢ test?
Look at the experiment carefully. Is there only one sample of subjects? Are the
same subjects tested a second time? If your answers are yes to both of these
questions, then a repeated-measures ¢ test should be done. There is only one
situation in which the repeated-measures ¢ can be used for data from two samples,
and that is for matched-subjects studies (p. 353).

2. The repeated-measures ¢ test is based on difference scores. In finding difference
scores, be sure that you are consistent with your method. That is, you may use
either X, — X; or X; — X; to find D scores, but you must use the same method for all
subjects.

STEP 1

STEP 2

A REPEATED-MEASURES t TEST

A major oil company would like to improve its tarnished image following a large oil spill.
Its marketing department develops a short television commercial and tests it on a sample
of n = 7 participants. People’s attitudes about the company are measured with a short
questionnaire, both before and after viewing the commercial. The data are as follows:

Person X, (Before) X5 (After) D (Difference)

A 15 15 0

B 1 13 +2 SD =21

C 10 18 +8

D 11 12 +1 My =3 =3.00
E 14 16 +2

F 10 10 0 SS =174

G 11 19 +8

Was there a significant change? Note that participants are being tested twice—once before
and once after viewing the commercial. Therefore, we have a repeated-measures design.

State the hypotheses, and select an alpha level. The null hypothesis states that the
commercial has no effect on people’s attitude, or, in symbols,

Hy: up = 0 (The mean difference is zero.)

The alternative hypothesis states that the commercial does alter attitudes about the
company, or

H,: up # 0 (There is a mean change in attitudes.)

For this demonstration, we use an alpha level of .05 for a two-tailed test.

Locate the critical region. Degrees of freedom for the repeated-measures ¢ test are
obtained by the formula

df =n-1
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For these data, degrees of freedom equal
df=7-1=6

The ¢ distribution table is consulted for a two-tailed test with a = .05 for df = 6. The
critical ¢ values for the critical region are t = +2.447.

STEP 3 Compute the test statistic. Once again, we suggest that the calculation of the 7 statis-
tic be divided into a three-part process.
Variance for the D scores: The variance for the sample of D scores is

Estimated standard error for Mp: The estimated standard error for the sample mean
difference is computed as follows:

2
5, === 123 =176 =133
n

D

The repeated-measures t statistic: Now we have the information required to calculate
the 7 statistic.
M,-p, 3-0

=2 =226
s 133

STEP 4 Make a decision about H, and state the conclusion. The obtained ¢ value is not
extreme enough to fall in the critical region. Therefore, we fail to reject the null
hypothesis. We conclude that there is not enough evidence to conclude that the commer-
cial changes people’s attitudes, #(6) = 2.26, p > .05, two-tailed. (Note that we state that
p is greater than .05 because we failed to reject Hy.)

DEMONSTRATION 11.2

EFFECT SIZE FOR THE REPEATED-MEASURES t

We estimate Cohen’s d and calculate 7 for the data in Demonstration 11.1. The data
produced a sample mean difference of M, = 3.00 with a sample variance of s* = 12.33.
Based on these values, Cohen’s d is

estimated 4 = _mean difference _ Mp _ 300 _ 3.00 _ 036

standard deviation s V1233 351
The hypothesis test produced t = 2.26 with df = 6. Based on these values,
2
, (2.26) 5.11
> +df (2.26)2 +6 1111

=046 (or46%)
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1. For the following studies, indicate whether a repeated-

measures ¢ test is the appropriate analysis. Explain

your answers.

a. A researcher is comparing the amount of time spent
playing video games each week for college males
versus college females.

b. A researcher is comparing two new designs for cell
phones by having a group of high school students
send a scripted text message on each model and
measuring the difference in speed for each student.

c. A researcher is evaluating the effects of fatigue by
testing people in the morning when they are well
rested and testing again at midnight when they have
been awake for at least 14 hours.

. Participants enter a research study with unique
characteristics that produce different scores from one
person to another. For an independent-measures

study, these individual differences can cause problems.
Briefly explain how these problems are eliminated or
reduced with a repeated-measures study.

. Explain the difference between a matched-subjects
design and a repeated-measures design.

. A researcher conducts an experiment comparing

two treatment conditions and obtains data with

10 scores for each treatment condition.

a. If the researcher used an independent-measures
design, how many subjects participated in the
experiment?

b. If the researcher used a repeated-measures design,
how many subjects participated in the experiment?

c¢. If the researcher used a matched-subjects design,
how many subjects participated in the experiment?

. A sample of n = 9 individuals participates in a repeated-
measures study that produces a sample mean difference
of Mp = 6.5 with SS = 200 for the difference scores.

a. Calculate the standard deviation for the sample of
difference scores. Briefly explain what is measured
by the standard deviation.

b. Calculate the estimated standard error for the
sample mean difference. Briefly explain what is
measured by the estimated standard error.

. a. A repeated-measures study with a sample of n = 25
participants produces a mean difference of M, = 3
with a standard deviation of s = 4. Based on the
mean and standard deviation, you should be able to
visualize (or sketch) the sample distribution. Use a
two-tailed hypothesis test with a = .05 to
determine whether it is likely that this sample came
from a population with pup = 0.

b. Now assume that the sample standard deviation is
s = 12, and once again visualize the sample
distribution. Use a two-tailed hypothesis test with
a = .05 to determine whether it is likely that this
sample came from a population with u, = 0.

Explain how the size of the sample standard
deviation influences the likelihood of finding a
significant mean difference.

. a. A repeated-measures study with a sample of n = 9

participants produces a mean difference of Mp = 3
with a standard deviation of s = 6. Based on the
mean and standard deviation, you should be able

to visualize (or sketch) the sample distribution.

Use a two-tailed hypothesis test with a = .05 to
determine whether it is likely that this sample came
from a population with p, = 0.

b. Now assume that the sample mean difference is
Mp = 12, and once again visualize the sample
distribution. Use a two-tailed hypothesis test with
o = .05 to determine whether it is likely that this
sample came from a population with pp = 0.

c. Explain how the size of the sample mean difference
influences the likelihood of finding a significant
mean difference.

. A sample of difference scores from a repeated-measures

experiment has a mean of Mp = 4 with a standard

deviation of s = 6.

a. If n = 4, is this sample sufficient to reject the null
hypothesis using a two-tailed test with o = .05?

b. Would you reject Hy if n = 16? Again, assume a
two-tailed test with o« = .05.

c. Explain how the size of the sample influences the
likelihood of finding a significant mean difference.

. As mentioned in Chapters 2 and 3 (pp. 38 and 81),

Steven Schmidt (1994) reported a series of studies
examining the effect of humor on memory. In one
part of the study, participants were presented with a
list containing a mix of humorous and nonhumorous
sentences, and were then asked to recall as many
sentences as possible. Schmidt recorded the number of
humorous and the number of nonhumorous sentences
recalled by each individual. Notice that the data
consist of two memory scores for each participant.
Suppose that a difference score is computed for each
individual in a sample of n = 16 and the resulting
data show that participants recalled an average of

Mp = 3.25 more humorous sentences than
nonhumorous, with S§ = 135. Are these results
sufficient to conclude that humor has a significant
effect on memory? Use a two-tailed test with o = .05.




376

CHAPTER 11 THE ¢ TEST FOR TWO RELATED SAMPLES

10. Research has shown that losing even one night’s

11

12

sleep can have a significant effect on performance of
complex tasks such as problem solving (Linde &
Bergstroem, 1992). To demonstrate this phenomenon,
a sample of n = 25 college students was given a
problem-solving task at noon on one day and again at
noon on the following day. The students were not
permitted any sleep between the two tests. For each
student, the difference between the first and second
score was recorded. For this sample, the students
averaged Mp = 4.7 points better on the first test with a
variance of s> = 64 for the difference scores.
a. Do the data indicate a significant change in problem-
solving ability? Use a two-tailed test with @ = .05.
b. Compute an estimated Cohen’s d to measure the
size of the effect.

Strack, Martin, and Stepper (1988) reported that
people rate cartoons as funnier when holding a pen
in their teeth (which forced them to smile) than when
holding a pen in their lips (which forced them to
frown). A researcher attempted to replicate this result
using a sample of n = 25 adults between the ages of
40 and 45. For each person, the researcher recorded
the difference between the rating obtained while
smiling and the rating obtained while frowning. On
average the cartoons were rated as funnier when the
participants were smiling, with an average difference
of M = 1.6 with SS = 150.

a. Do the data indicate that the cartoons are rated
significantly funnier when the participants are
smiling? Use a one-tailed test with o = .01.

b. Compute r* to measure the size of the treatment
effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

How would you react to doing much worse on an
exam than you expected? There is some evidence to
suggest that most individuals believe that they can
cope with this kind of problem better than their fellow
students (Igou, 2008). In the study, participants read
a scenario of a negative event and were asked to use
a 10-point scale to rate how it would affect their
immediate well-being (—5 strongly worsen to +5
strongly improve). Then they were asked to imagine
the event from the perspective of an ordinary fellow
student and rate how it would affect that person. The
difference between the two ratings was recorded.
Suppose that a sample of n = 25 participants produced
a mean difference of My = 1.28 points (self rated
higher) with a standard deviation of s = 1.50 for the
difference scores.
a. Is this result sufficient to conclude that there is a
significant difference in the ratings for self versus
others? Use a two-tailed test with o« = .05.

13.

14

15

b. Compute > and estimate Cohen’s d to measure the
size of the treatment effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

Research results indicate that physically attractive
people are also perceived as being more intelligent
(Eagly, Ashmore, Makhijani, & Longo, 1991). As

a demonstration of this phenomenon, a researcher
obtained a set of 10 photographs, 5 showing men who
were judged to be attractive and 5 showing men who
were judged to be unattractive. The photographs were
shown to a sample of n = 25 college students and the
students were asked to rate the intelligence of the
person in the photo on a scale from 1 to 10. For each
student, the researcher determined the average rating
for the 5 attractive photos and the average for the

5 unattractive photos, and then computed the difference
between the two scores. For the entire sample, the
average difference was M, = 2.7 (attractive photos
rated higher) with s = 2.00. Are the data sufficient to
conclude that there was a significant difference in
perceived intelligence for the two sets of photos? Use a
two-tailed test at the .05 level of significance.

Researchers have noted a decline in cognitive
functioning as people age (Bartus, 1990). However,
the results from other research suggest that the
antioxidants in foods such as blueberries may reduce
and even reverse these age-related declines (Joseph

et al., 1999). To examine this phenomenon, suppose

that a researcher obtains a sample of n = 16 adults

who are between the ages of 65 and 75. The researcher
uses a standardized test to measure cognitive per-
formance for each individual. The participants then
begin a 2-month program in which they receive daily
doses of a blueberry supplement. At the end of the
2-month period, the researcher again measures cognitive
performance for each participant. The results show

an average increase in performance of Mp = 7.4 with

SS = 1215.

a. Does this result support the conclusion that the
antioxidant supplement has a significant effect on
cognitive performance? Use a two-tailed test with
o = .05.

b. Construct a 95% confidence interval to estimate the
average cognitive performance improvement for the
population of older adults.

The following data are from a repeated-measures study

examining the effect of a treatment by measuring a

group of n = 4 participants before and after they

receive the treatment.

a. Calculate the difference scores and M,.

b. Compute SS, sample variance, and estimated
standard error.



c. Is there a significant treatment effect? Use o = .05,
two tails.

Before After
Participant Treatment Treatment
A 7 10
B 6 13
C 9 12
D 5 8

16. A researcher for a cereal company wanted to demon-

strate the health benefits of eating oatmeal. A sample

of 9 volunteers was obtained and each participant ate a

fixed diet without any oatmeal for 30 days. At the end

of the 30-day period, cholesterol was measured for
each individual. Then the participants began a second
30-day period in which they repeated exactly the same
diet except that they added 2 cups of oatmeal each
day. After the second 30-day period, cholesterol levels
were measured again and the researcher recorded the
difference between the two scores for each participant.

For this sample, cholesterol scores averaged Mp = 16

points lower with the oatmeal diet with S§ = 538 for

the difference scores.

a. Are the data sufficient to indicate a significant
change in cholesterol level? Use a two-tailed test
with a = .01.

b. Compute 1%, the percentage of variance accounted
for by the treatment, to measure the size of the
treatment effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

17. A variety of research results suggest that visual images

interfere with visual perception. In one study, Segal
and Fusella (1970) had participants watch a screen,
looking for brief presentations of a small blue arrow.
On some trials, the participants were also asked to
form a mental image (for example, imagine a
volcano). The results for a sample of n = 6, show that
participants made an average of Mp = 4.3 more errors
while forming images than while not forming images.
The difference scores had SS = 63. Do the data
indicate a significant difference between the two
conditions? Use a two-tailed test with a = .05.

18. One of the primary advantages of a repeated-measures

design, compared to independent-measures, is that it
reduces the overall variability by removing variance
caused by individual differences. The following data
are from a research study comparing two treatment
conditions.
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a. Assume that the data are from an independent-
measures study using two separate samples, each
with n = 6 participants. Compute the pooled
variance and the estimated standard error for the
mean difference.

b. Now assume that the data are from a repeated-
measures study using the same sample of n = 6
participants in both treatment conditions. Compute
the variance for the sample of difference scores
and the estimated standard error for the mean
difference. (You should find that the repeated-
measures design substantially reduces the variance
and the standard error.)

Treatment 1 Treatment 2 Difference
10 13 3
12 12 0
8 10 2
6 10 4
5 6 1
7 9 2
M = M =10 Mp =
SS =34 SS =30 SS =10

19. The previous problem demonstrates that removing

individual differences can substantially reduce

variance and lower the standard error. However,

this benefit only occurs if the individual differences
are consistent across treatment conditions. In
problem 18, for example, the first two participants

(top two rows) consistently had the highest scores

in both treatment conditions. Similarly, the last

two participants consistently had the lowest scores

in both treatments. To construct the following

data, we started with the scores in problem 18

and scrambled the scores in treatment 1 to

eliminate the consistency of the individual

differences.

a. Assume that the data are from an independent-
measures study using two separate samples, each
with n = 6 participants. Compute the pooled
variance and the estimated standard error for the
mean difference.

b. Now assume that the data are from a repeated-
measures study using the same sample of n = 6
participants in both treatment conditions. Compute
the variance for the sample of difference scores and
the estimated standard error for the mean
difference. (This time you should find that
removing the individual differences does not reduce
the variance or the standard error.)
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20.

21.
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Treatment 1 Treatment 2 Difference
6 13 7
7 12 5
8 10 2
10 10 0
5 6 0
12 9 -3
M =28 M =10 Mp =2
SS =34 SS =30 SS = 64

A researcher uses a matched-subjects design to in-
vestigate whether single people who own pets are
generally happier than singles without pets. A mood
inventory questionnaire is administered to a group of

20- to 29-year-old non—pet owners and a similar age
group of pet owners. The pet owners are matched one to
one with the non—pet owners for income, number of close
friendships, and general health. The data are as follows:

Matched Non-Pet Pet
Pair Owner Owner
A 12 14
B 8 7
C 10 13
D 9 9
E 7 13
F 10 12

a. Is there a significant difference in the mood scores
for non—pet owners versus pet owners? Test with
o = .05 for two tails.

b. Construct the 95% confidence interval to estimate

the size of the mean difference in mood between
the population of pet owners and the population of
non—pet owners. (You should find that a mean
difference of wp = 0 is an acceptable value, which
is consistent with the conclusion from the
hypothesis test.)

There is some evidence suggesting that you are likely
to improve your test score if you rethink and change
answers on a multiple-choice exam (Johnston, 1975).
To examine this phenomenon, a teacher gave the same
final exam to two sections of a psychology course.
The students in one section were told to turn in their
exams immediately after finishing, without changing
any of their answers. In the other section, students
were encouraged to reconsider each question and to
change answers whenever they felt it was appropriate.
Before the final exam, the teacher had matched 9
students in the first section with 9 students in the

second section based on their midterm grades. For

example, a student in the no-change section with an

89 on the midterm exam was matched with student

in the change section who also had an 89 on the

midterm. The final exam grades for the 9 matched

pairs of students are presented in the following table.

a. Do the data indicate a significant difference
between the two conditions? Use a two-tailed test
with a = .05.

b. Construct a 95% confidence interval to estimate the
size of the population mean difference.

c. Write a sentence demonstrating how the results of
the hypothesis test and the confidence interval
would appear in a research report.

Matched No-Change Change
Pair Section Section
#1 71 86
#2 68 80
#3 91 88
#4 65 74
#5 73 82
#6 81 89
#7 85 85
#8 86 88
#9 65 76

22. The teacher from the previous problem also tried

a different approach to answering the question of
whether changing answers helps or hurts exam grades.
In a separate class, students were encouraged to
review their final exams and change any answers they
wanted to before turning in their papers. However, the
students had to indicate both the original answer

and the changed answer for each question. The teacher
then graded each exam twice, one using the set of
original answers and once with the changes. In the
class of n = 22 students, the average exam score
improved by an average of M, = 2.5 points with the
changed answers. The standard deviation for the
difference scores was s = 3.1. Are the data sufficient
to conclude that rethinking and changing answers can
significantly improve exam scores? Use a one-tailed
test at the .01 level of significance.

. At the Olympic level of competition, even the smallest

factors can make the difference between winning and
losing. For example, Pelton (1983) has shown that
Olympic marksmen shoot much better if they fire
between heartbeats, rather than squeezing the trigger
during a heartbeat. The small vibration caused by a
heartbeat seems to be sufficient to affect the
marksman’s aim. The following hypothetical data



24.

demonstrate this phenomenon. A sample of n = 8
Olympic marksmen fires a series of rounds while a
researcher records heartbeats. For each marksman, a
score is recorded for shots fired during heartbeats and
for shots fired between heartbeats. Do these data
indicate a significant difference? Test with o = .05.

During Between
Participant Heartbeats Heartbeats
A 93 98
B 90 94
C 95 96
D 92 91
E 95 97
F 91 97
G 92 95
H 93 97

The Preview section of this chapter presented a
repeated-measures research study demonstrating

that swearing can help reduce pain (Stephens, Atkins,
& Kingston, 2009). In the study, each participant was
asked to plunge a hand into icy water and keep it there
as long as the pain would allow. In one condition, the
participants repeated their favorite curse words while
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their hands were in the water. In the other condition,

the participants repeated a neutral word. Data similar

to the results obtained in the study are shown in the
following table.

a. Do these data indicate a significant difference in
pain tolerance between the two conditions? Use a
two-tailed test with o« = .05.

b. Compute 72, the percentage of variance accounted
for, to measure the size of the treatment effect.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

Amount of Time (in Seconds)

Participant Swear Words  Neutral Words

1 94 59
2 70 61
3 52 47
4 83 60
5 46 35
6 117 92
7 69 53
8 39 30
9 51 56
10 73 61
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