
Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)
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Preview
In a classic study in the area of problem solving, Katona
(1940) compared the effectiveness of two methods of
instruction. One group of participants was shown the
exact, step-by-step procedure for solving a problem, and
then these participants were required to memorize the
solution. This method was called learning by memoriza-
tion (later called the expository method). Participants in a
second group were encouraged to study the problem and
find the solution on their own. Although these participants
were given helpful hints and clues, the exact solution was
never explained. This method was called learning by
understanding (later called the discovery method).

Katona’s experiment included the problem shown in
Figure 10.1. This figure shows a pattern of five squares
made of matchsticks. The problem is to change the pattern
into exactly four squares by moving only three matches. (All
matches must be used, none can be removed, and all the
squares must be the same size.) Two groups of participants
learned the solution to this problem. One group learned by
understanding, and the other group learned by memoriza-
tion. After 3 weeks, both groups returned to be tested again.
The two groups did equally well on the matchstick problem
they had learned earlier. But when they were given two 
new problems (similar to the matchstick problem), the 
understanding group performed much better than the 
memorization group.

The Problem: Although the data a show a mean
difference between the two groups in Katona’s study, you
cannot automatically conclude that the difference was
caused by the method they used to solve the first problem.
Specifically, the two groups consist of different people
with different backgrounds, different skills, different IQs,
and so on. Because the two different groups consist of
different individuals, you should expect them to have
different scores and different means. This issue was first
presented in Chapter 1 when we introduced the concept of
sampling error (see Figure 1.2 on p. 9). Thus, there are
two possible explanations for the difference between the
two groups.

1. It is possible that there really is a difference between
the two treatment conditions so that the method of
understanding produces better learning than the
method of memorization.

2. It is possible that there is no difference between the
two treatment conditions and the mean difference
obtained in the experiment is simply the result of
sampling error.

A hypothesis test is necessary to determine which 
of the two explanations is most plausible. However, the
hypothesis tests we have examined thus far are intended to
evaluate the data from only one sample. In this study there
are two separate samples.

The Solution: In this chapter we introduce the
independent-measures t test, which is a hypothesis test
that uses two separate samples to evaluate the mean
difference between two treatment conditions or between
two different populations. Like the t test introduced in
Chapter 9, the independent-measures t test uses the
sample variance to compute an estimated standard error.
This test, however, combines the variance from the 
two separate samples to evaluate the difference between
two separate sample means.

Incidentally, if you still have not discovered the solu-
tion to the matchstick problem, keep trying. According to
Katona’s results, it would be a very poor teaching strategy
for us to give you the answer to the matchstick problem. If
you still have not discovered the solution, however, check
Appendix C at the beginning of the Chapter 10 problem
solutions; there we show you how it is done.

316

FIGURE 10.1

A pattern of five squares made of matchsticks. 
The problem is to change the pattern into exactly 
four squares by moving only three matchsticks.

30991_ch10_ptg01_hr_315-350.qxd  9/3/11  3:46 AM  Page 316



10.1 INTRODUCTION TO THE INDEPENDENT-MEASURES DESIGN

Until this point, all the inferential statistics we have considered involve using one sam-
ple as the basis for drawing conclusions about one population. Although these single-
sample techniques are used occasionally in real research, most research studies require
the comparison of two (or more) sets of data. For example, a social psychologist may
want to compare men and women in terms of their political attitudes, an educational
psychologist may want to compare two methods for teaching mathematics, or a clinical
psychologist may want to evaluate a therapy technique by comparing depression scores
for patients before therapy with their scores after therapy. In each case, the research
question concerns a mean difference between two sets of data.

There are two general research designs that can be used to obtain the two sets of
data to be compared:

1. The two sets of data could come from two completely separate groups of partic-
ipants. For example, the study could involve a sample of men compared with a
sample of women. Or the study could compare grades for one group of fresh-
men who are given laptop computers with grades for a second group who are
not given computers.

2. The two sets of data could come from the same group of participants. For 
example, the researcher could obtain one set of scores by measuring depression
for a sample of patients before they begin therapy and then obtain a second set
of data by measuring the same individuals after 6 weeks of therapy.

The first research strategy, using completely separate groups, is called an independent-
measures research design or a between-subjects design. These terms emphasize the fact
that the design involves separate and independent samples and makes a comparison
between two groups of individuals. The structure of an independent-measures research
design is shown in Figure 10.2. Notice that the research study uses two separate 
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Unknown
μ  =  ? 

Sample A

Unknown
μ  =  ? 

Sample B

Population A
Taught by method A

Population B
Taught by method B

FIGURE 10.2

Do the achievement scores
for children taught by
method A differ from the
scores for children taught by
method B? In statistical
terms, are the two population
means the same or different?
Because neither of the two
population means is known,
it will be necessary to take
two samples, one from each
population. The first sample
provides information about
the mean for the first popula-
tion, and the second sample
provides information about
the second population.
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samples to represent the two different populations (or two different treatments) being
compared.

A research design that uses a separate group of participants for each treatment
condition (or for each population) is called an independent-measures research
design or a between-subjects research design.

In this chapter, we examine the statistical techniques used to evaluate the data from
an independent-measures design. More precisely, we introduce the hypothesis test that
allows researchers to use the data from two separate samples to evaluate the mean dif-
ference between two populations or between two treatment conditions.

The second research strategy, in which the two sets of data are obtained from
the same group of participants, is called a repeated-measures research design or a
within-subjects design. The statistics for evaluating the results from a repeated-
measures design are introduced in Chapter 11. Also, at the end of Chapter 11, we
discuss some of the advantages and disadvantages of independent-measures and 
repeated-measures designs.

10.2 THE t STATISTIC FOR AN INDEPENDENT-MEASURES
RESEARCH DESIGN

Because an independent-measures study involves two separate samples, we need some
special notation to help specify which data go with which sample. This notation in-
volves the use of subscripts, which are small numbers written beside a sample statistic.
For example, the number of scores in the first sample would be identified by n1; for the
second sample, the number of scores is n2. The sample means would be identified by
M1 and M2. The sums of squares would be SS1 and SS2.

The goal of an independent-measures research study is to evaluate the mean differ-
ence between two populations (or between two treatment conditions). Using 
subscripts to differentiate the two populations, the mean for the first population 
is �1, and the second population mean is �2. The difference between means is 
simply �1 � �2. As always, the null hypothesis states that there is no change, no 
effect, or, in this case, no difference. Thus, in symbols, the null hypothesis for the
independent-measures test is

H0: �1 � �2 � 0 (No difference between the population means)

You should notice that the null hypothesis could also be stated as �1 � �2.
However, the first version of H0 produces a specific numerical value (zero) that is used
in the calculation of the t statistic. Therefore, we prefer to phrase the null hypothesis in
terms of the difference between the two population means.

The alternative hypothesis states that there is a mean difference between the two
populations,

H1: �1 � �2 � 0 (There is a mean difference.)

Equivalently, the alternative hypothesis can simply state that the two population
means are not equal: �1 � �2.

THE HYPOTHESIS 
FOR AN INDEPENDENT-

MEASURES TEST

D E F I N I T I O N
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The independent-measures hypothesis test uses another version of the t statistic. The
formula for this new t statistic has the same general structure as the t statistic formula
that was introduced in Chapter 9. To help distinguish between the two t formulas, we
refer to the original formula (Chapter 9) as the single-sample t statistic and we refer to
the new formula as the independent-measures t statistic. Because the new independent-
measures t includes data from two separate samples and hypotheses about two popula-
tions, the formulas may appear to be a bit overpowering. However, the new formulas
are easier to understand if you view them in relation to the single-sample t formulas
from Chapter 9. In particular, there are two points to remember:

1. The basic structure of the t statistic is the same for both the independent-measures
and the single-sample hypothesis tests. In both cases,

t �

2. The independent-measures t is basically a two-sample t that doubles all the
elements of the single-sample t formulas.

To demonstrate the second point, we examine the two t formulas piece by piece.

The overall t formula The single-sample t uses one sample mean to test a hypothe-
sis about one population mean. The sample mean and the population mean appear in
the numerator of the t formula, which measures how much difference there is between
the sample data and the population hypothesis.

The independent-measures t uses the difference between two sample means to
evaluate a hypothesis about the difference between two population means. Thus, the 
independent-measures t formula is

In this formula, the value of M1 � M2 is obtained from the sample data and the
value for �1 � �2 comes from the null hypothesis. 

The estimated standard error In each of the t-score formulas, the standard error in
the denominator measures how accurately the sample statistic represents the population
parameter. In the single-sample t formula, the standard error measures the amount 
of error expected for a sample mean and is represented by the symbol sM. For the 
independent-measures t formula, the standard error measures the amount of error that
is expected when you use a sample mean difference (M1 � M2) to represent a popula-
tion mean difference (�1 � �2). The standard error for the sample mean difference is 
represented by the symbol .

Caution: Do not let the notation for standard error confuse you. In general, stan-
dard error measures how accurately a statistic represents a parameter. The symbol for
standard error takes the form sstatistic. When the statistic is a sample mean, M, the sym-
bol for standard error is sM. For the independent-measures test, the statistic is a sample

s
M M1 2�( )

sample statistic � hypothesized population parameter
������

estimated standard error

THE FORMULAS FOR AN
INDEPENDENT-MEASURES

HYPOTHESIS TEST

�
� � � ��

�

M M

s
M M

1 2 1 2

1 2

( ) ( )
( )
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sample mean � population mean
t � � �

M
s
�

M

�
�

estimated standard error

sample mean difference � population mean difference
t �

estimated standard error
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mean difference (M1 � M2), and the symbol for standard error is . In each case,
the standard error tells how much discrepancy is reasonable to expect between the sam-
ple statistic and the corresponding population parameter.

Interpreting the estimated standard error The estimated standard error of 
M1 � M2 that appears in the bottom of the independent-measures t statistic can be 
interpreted in two ways. First, the standard error is defined as a measure of the standard,
or average, distance between a sample statistic (M1 � M2) and the corresponding pop-
ulation parameter (�1 � �2). As always, samples are not expected to be perfectly 
accurate and the standard error measures how much difference is reasonable to expect
between a sample statistic and the population parameter.

Sample mean Population mean
difference estimated standard error difference
�M1 � M2�

�average distance�
��1 � �2�

When the null hypothesis is true, however, the population mean difference is zero.

Sample mean
difference estimated standard error

�M1 � M2�
�average distance�

The standard error is measuring how close the sample mean difference is to
zero, which is equivalent to measuring how much difference there is between the
two sample means.

M1  
estimated standard error

�average distance�
M2

This produces a second interpretation for the estimated standard error. Specifically,
the standard error can be viewed as a measure of how much difference is reasonable to
expect between two sample means if the null hypothesis is true.

The second interpretation of the estimated standard error produces a simplified 
version of the independent-measures t statistic.

t �

�

In this version, the numerator of the t statistic measures how much difference 
actually exists between the two sample means, including any difference that is caused by
the different treatments. The denominator measures how much difference should exist
between the two sample means if there is no treatment effect that causes them to be dif-
ferent. A large value for the t statistic is evidence for the existence of a treatment effect.

To develop the formula for , we consider the following three points:

1. Each of the two sample means represents it own population mean, but in each
case there is some error.

M1 approximates �1 with some error.

M2 approximates �2 with some error.

s
M M1 2�( )CALCULATING 

THE ESTIMATED 
STANDARD ERROR

actual difference between M1 and M2������
standard difference (If H0 is true) between M1 and M2

sample mean difference
���
estimated standard error

s
M M1 2�( )
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← →⎯⎯⎯⎯⎯⎯

← →⎯⎯⎯⎯⎯⎯ 0
0

If is trueH( )

← →⎯⎯⎯⎯⎯⎯
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Thus, there are two sources of error.

2. The amount of error associated with each sample mean is measured by the
estimated standard error of M. Using Equation 9.1 (p. 285), the estimated 
standard error for each sample mean is computed as follows:

3. For the independent-measures t statistic, we want to know the total amount of
error involved in using two sample means to approximate two population
means. To do this, we find the error from each sample separately and then add
the two errors together. The resulting formula for standard error is

(10.1)

Because the independent-measures t statistic uses two sample means, the formula
for the estimated standard error simply combines the error for the first sample mean and
the error for the second sample mean (Box 10.1).

B O X  1 0 . 1

Although Equation 10.1 accurately presents the concept of standard error for the 
independent-measures t statistic, this formula is limited to situations in which the 

POOLED VARIANCE

s
s

n

s

nM M1 2

1
2

1

2
2

2
�

� �( )

For ForM s
s

n
M s

s

nM M1
1
2

1
2

2
2

� �
22
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B O X
10.1 THE VARIABILITY OF DIFFERENCE SCORES

possible difference and the smallest possible differ-
ence. Look at Figure 10.3; the biggest difference 
occurs when X1 � 70 and X2 � 20. This is a 
difference of X1 � X2 � 50 points. The smallest 
difference occurs when X1 � 50 and X2 � 30. This 
is a difference of X1 � X2 � 20 points. Notice that
the differences go from a high of 50 to a low of 20. 
This is a range of 30 points:

range for population I (X1 scores) � 20 points
range for population II (X2 scores) � 10 points
range for the differences (X1 � X2) � 30 points

The variability for the difference scores is found 
by adding together the variability for each of the 
two populations.

In the independent-measures t statistics, we com-
pute the variability (standard error) for a sample mean 
difference. To compute this value, we add together the
variability for each of the two sample means.

It may seem odd that the independent-measures t statis-
tic adds together the two sample errors when it subtracts
to find the difference between the two sample means.
The logic behind this apparently unusual procedure is
demonstrated here.

We begin with two populations, I and II 
(Figure 10.3). The scores in population I range 
from a high of 70 to a low of 50. The scores in 
population II range from 30 to 20. We use the range
as a measure of how spread out (variable) each 
population is:

For population I, the scores cover a range of 20 points.
For population II, the scores cover a range of 10 points.

If we randomly select one score from population I
and one score from population II and compute the
difference between these two scores (X1 � X2), what
range of values is possible for these differences? 
To answer this question, we need to find the biggest
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two samples are exactly the same size (that is, n1 � n2). For situations in which 
the two sample sizes are different, the formula is biased and, therefore, inappropriate.
The bias comes from the fact that Equation 10.1 treats the two sample variances equally.
However, when the sample sizes are different, the two sample variances are not equally
good and should not be treated equally. In Chapter 7, we introduced the law of large
numbers, which states that statistics obtained from large samples tend to be better (more
accurate) estimates of population parameters than statistics obtained from small samples.
This same fact holds for sample variances: The variance obtained from a large sample is
a more accurate estimate of �2 than the variance obtained from a small sample.

One method for correcting the bias in the standard error is to combine the two sam-
ple variances into a single value called the pooled variance. The pooled variance is 
obtained by averaging or “pooling” the two sample variances using a procedure that 
allows the bigger sample to carry more weight in determining the final value.

You should recall that when there is only one sample, the sample variance is
computed as

For the independent-measures t statistic, there are two SS values and two df values
(one from each sample). The values from the two samples are combined to compute
what is called the pooled variance. The pooled variance is identified by the symbol 
and is computed as

pooled variance (10.2)

With one sample, the variance is computed as SS divided by df. With two samples,
the pooled variance is computed by combining the two SS values and then dividing by
the combination of the two df values.

As we mentioned earlier, the pooled variance is actually an average of the two sam-
ple variances, but the average is computed so that the larger sample carries more weight
in determining the final value. The following examples demonstrate this point.

� �
�

�
s

SS SS

df dfp
2 1 2

1 2

s
p
2

s
SS

df
2 �
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20

Population II Population I

10 30 40 50 60 70 80

Smallest difference
20 points

Biggest difference
50 points

FIGURE 10.3

Two population distributions.
The scores in population I
vary from 50 to 70 (a 20-point
spread), and the scores in
population II range from 20 to
30 (a 10-point spread). If you
select one score from each of
these two populations, the
closest two values are 
X1 � 50 and X2 � 30. The
two values that are farthest
apart are X1 � 70 and 
X2 � 20.

An alternative to computing
pooled variance is presented in
Box 10.2, p. 339.
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Equal samples sizes We begin with two samples that are exactly the same size. The
first sample has n � 6 scores with SS � 50, and the second sample has n � 6 scores
with SS � 30. Individually, the two sample variances are

Variance for sample

Variance for sample

The pooled variance for these two samples is

Note that the pooled variance is exactly halfway between the two sample vari-
ances. Because the two samples are exactly the same size, the pooled variance is sim-
ply the average of the two sample variances.

Unequal samples sizes Now consider what happens when the samples are not the
same size. This time the first sample has n � 3 scores with SS � 20, and the second 
sample has n � 9 scores with SS � 48. Individually, the two sample variances are

Variance for sample 

Variance for sample

The pooled variance for these two samples is

This time the pooled variance is not located halfway between the two sample vari-
ances. Instead, the pooled value is closer to the variance for the larger sample (n � 9
and s2 � 6) than to the variance for the smaller sample (n � 3 and s2 � 10). The larger
sample carries more weight when the pooled variance is computed.

When computing the pooled variance, the weight for each of the individual sample
variances is determined by its degrees of freedom. Because the larger sample has a
larger df value, it carries more weight when averaging the two variances. This produces
an alternative formula for computing pooled variance.

pooled variance (10.3)

For example, if the first sample has df1 � 3 and the second sample has df2 � 7,
then the formula instructs you to take 3 of the first sample variance and 7 of the second 
sample variance for a total of 10 variances. You then divide by 10 to obtain the aver-
age. The alternative formula is especially useful if the sample data are summarized as
means and variances. Finally, you should note that because the pooled variance is an
average of the two sample variances, the value obtained for the pooled variance is 
always located between the two sample variances.

� �
�

�
s

df s df s

df dfp
2 1 1

2
2 2

2

1 2

s
SS SS
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2 1 2

1 2
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324 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

Using the pooled variance in place of the individual sample variances, we can now 
obtain an unbiased measure of the standard error for a sample mean difference. The 
resulting formula for the independent-measures estimated standard error is

estimated standard error of M1 � M2 � s(M1�M2) � ��
n

s2
p

1
� � �

n

s�
2
p

2
�� (10.4)

Conceptually, this standard error measures how accurately the difference 
between two sample means represents the difference between the two population
means.  In a hypothesis test, H0 specifies that �1 � �2 � 0, and the standard error
also measures how much difference is expected, on average, between the two sam-
ple means. In either case, the formula combines the error for the first sample mean
with the error for the second sample mean. Also note that the pooled variance 
from the two samples is used to compute the standard error for the sample mean 
difference.

The complete formula for the independent-measures t statistic is as follows:

� (10.5)

In the formula, the estimated standard error in the denominator is calculated using
Equation 10.4, and requires calculation of the pooled variance using either Equation 10.2
or 10.3.

The degrees of freedom for the independent-measures t statistic are determined by
the df values for the two separate samples:

df for the t statistic � df for the first sample + df for the second sample
� df1 + df2
� (n1 � 1) + (n2 � 1) (10.6)

Equivalently, the df value for the independent-measures t statistic can be expressed as

df � n1 + n2 � 2 (10.7)

Note that the df formula subtracts 2 points from the total number of scores; 1 point
for the first sample and 1 for the second.

The independent-measures t statistic is used for hypothesis testing. Specifically,
we use the difference between two sample means (M1 � M2) as the basis for testing 
hypotheses about the difference between two population means (�1 � �2). In this 
context, the overall structure of the t statistic can be reduced to the following:

t ��
data �

e
h
rr
y
o
p
r
othesis
�

This same structure is used for both the single-sample t from Chapter 9 and the new
independent-measures t that was introduced in the preceding pages. Table 10.1 identi-
fies each component of these two t statistics and should help reinforce the point that we
made earlier in the chapter; that is, the independent-measures t statistic simply doubles
each aspect of the single-sample t statistic.

sample mean difference � population mean difference
������

estimated standard error

t
M M

s
M M

�
� � � ��

�

1 2 1 2

1 2

( ) ( )
( )

THE FINAL FORMULA 
AND DEGREES OF FREEDOM

ESTIMATED STANDARD
ERROR
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1. What is the defining characteristic of an independent-measures research study?

2. Explain what is measured by the estimated standard error in the denominator of
the independent-measures t statistic.

3. One sample from an independent-measures study has n � 4 with SS � 100. The
other sample has n � 8 and SS � 140. 

a. Compute the pooled variance. (Note: Equation 10.2 works well with these data.)

b. Compute the estimated standard error for the mean difference.

4. One sample from an independent-measures study has n � 9 with a variance of 
s2 � 35. The other sample has n � 3 and s2 � 40.

a. Compute the pooled variance. (Note: Equation 10.3 works well with these data.)

b. Compute the estimated standard error for the mean difference.

5. An independent-measures t statistic is used to evaluate the mean difference 
between two treatments with n � 8 in one treatment and n � 12 in the other. 
What is the df value for the t statistic?

1. An independent-measures study uses a separate group of participants to represent each of
the populations or treatment conditions being compared.

2. The estimated standard error measures how much difference is expected, on average, 
between a sample mean difference and the population mean difference. In a hypothesis 
test, �1 � �2 is set to zero and the standard error measures how much difference is 
expected between the two sample means.

3. a. The pooled variance is 240/10 � 24.

b. The estimated standard error is 3.

4. a. The pooled variance is 36.

b. The estimated standard error is 4.

5. df � df1 + df2 � 7 + 11 � 18.

SECTION 10.3 / HYPOTHESIS TESTS AND EFFECT SIZE WITH THE INDEPENDENT-MEASURES t STATISTIC 325

TABLE 10.1

The basic elements of a t statistic
for the single-sample t and the
independent-measures t.

Hypothesized Estimated
Sample Population Standard Sample

Data Parameter Error Variance

Single-sample M � ��
s
n

2

�� s2 � �
S
d
S
f
�

t statistic

Independent-
measures (M1 � M2) (�1 � �2) ��

n

s2
p

1
� � �

n

s�
2
p

2
�� s2

p � �
S
d
S
f
1

1

�

�

S
d
S
f2

2�

t statistic

ANSWERS

L E A R N I N G  C H E C K

10.3 HYPOTHESIS TESTS AND EFFECT SIZE 
WITH THE INDEPENDENT-MEASURES t STATISTIC

The independent-measures t statistic uses the data from two separate samples to help
decide whether there is a significant mean difference between two populations or 
between two treatment conditions. A complete example of a hypothesis test with two
independent samples follows.
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Research results suggest a relationship between the TV viewing habits of 5-year-old
children and their future performance in high school. For example, Anderson, Huston,
Wright, and Collins (1998) report that high school students who had regularly
watched Sesame Street as children had better grades in high school than their peers
who had not watched Sesame Street. Suppose that a researcher intends to examine
this phenomenon using a sample of 20 high school students.

The researcher first surveys the students’ parents to obtain information on the
family’s TV-viewing habits during the time that the students were 5 years old. Based
on the survey results, the researcher selects a sample of n � 10 students with a history
of watching Sesame Street and a sample of n � 10 students who did not watch the
program. The average high school grade is recorded for each student and the data 
are as follows:

E X A M P L E  1 0 . 1
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Average High School Grade

Watched Did Not Watch
Sesame Street Sesame Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n � 10 n � 10
M � 93 M � 85
SS � 200 SS � 160

Note that this is an independent-measures study using two separate samples
representing two distinct populations of high school students. The researcher would
like to know whether there is a significant difference between the two types of high
school student.

State the hypotheses and select the alpha level.

H0: �1 � �2 � 0 (No difference.)

H1: �1 � �2 � 0 (There is a difference.)

We set � � .01.
Directional hypotheses could be used and would specify whether the students

who watched Sesame Street should have higher or lower grades.

This is an independent-measures design. The t statistic for these data has degrees of
freedom determined by

df � df1 � df2

� (n1 � 1) � (n2 � 1)

� 9 � 9

� 18
The t distribution for df � 18 is presented in Figure 10.4. For � � .01, the critical

region consists of the extreme 1% of the distribution and has boundaries of t � +2.878
and t � �2.878.

S T E P  2

S T E P  1
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Obtain the data and compute the test statistic. The data are given, so all that remains
is to compute the t statistic. As with the single-sample t test in Chapter 9, we
recommend that the calculations be divided into three parts.

First, find the pooled variance for the two samples:

� 20

Second, use the pooled variance to compute the estimated standard error:

� 2

Third, compute the t statistic:

� 4
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t = �2.878 t = 0 t = �2.878

Reject H0 Reject H0

t distribution
df = 18

FIGURE 10.4

The critical region for the
independent-measures hypoth-
esis test in Example 10.1 with
df � 18 and � � .01.

Caution: The pooled variance
combines the two samples to
obtain a single estimate of 
variance. In the formula, the 
two samples are combined in 
a single fraction.

Caution: The standard error adds
the errors from two separate
samples. In the formula, these
two errors are added as two
separate fractions. In this case,
the two errors are equal because
the sample sizes are the same.
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Make a decision. The obtained value (t � 4.00) is in the critical region. In this
example, the obtained sample mean difference is four times greater than would be
expected if there were no difference between the two populations. In other words, this
result is very unlikely if H0 is true. Therefore, we reject H0 and conclude that there is
a significant difference between the high school grades for students who watched
Sesame Street and those who did not. Specifically, the students who watched Sesame
Street had significantly higher grades than those who did not watch the program.

Note that the Sesame Street study in Example 10.1 is an example of nonexperi-
mental research (see Chapter 1, p. 17). Specifically, the researcher did not manipulate
the TV programs watched by the children and did not control a variety of variables that
could influence high school grades. As a result, we cannot conclude that watching
Sesame Street causes higher high school grades. In particular, many other, uncontrolled
factors, such as the parents’ level of education or family economic status, might explain
the difference between the two groups. Thus, we do not know exactly why there is a 
relationship between watching Sesame Street and high school grades, but we do know
that a relationship exists.

As noted in Chapters 8 and 9, a hypothesis test is usually accompanied by a report of
effect size to provide an indication of the absolute magnitude of the treatment effect.
One technique for measuring effect size is Cohen’s d, which produces a standardized
measure of mean difference. In its general form, Cohen’s d is defined as
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In the context of an independent-measures research study, the difference between
the two sample means (M1 � M2) is used as the best estimate of the mean difference
between the two populations, and the pooled standard deviation (the square root of the
pooled variance) is used to estimate the population standard deviation. Thus, the for-
mula for estimating Cohen’s d becomes

estimated d �
estimated mean difference   

� �
M1

�
�

s2
p	
M2

�
estimated standard deviation

(10.8)

For the data from Example 10.1, the two sample means are 93 and 85, and the
pooled variance is 20. The estimated d for these data is

Using the criteria established to evaluate Cohen’s d (see Table 8.2 on p. 264), this
value indicates a very large treatment effect.

The independent-measures t test also allows for measuring effect size by comput-
ing the percentage of variance accounted for, r2. As we saw in Chapter 9, r2 measures
how much of the variability in the scores can be explained by the treatment effects. For
example, some of the variability in the high school grades from the Sesame Street study
can be explained by knowing whether a particular student watched the program; 
students who watched Sesame Street tend to have higher grades and students who did
not watch the show tend to have lower grades. By measuring exactly how much of the
variability can be explained, we can obtain a measure of how big the treatment effect
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MEASURING EFFECT SIZE FOR
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actually is. The calculation of r2 for the independent-measures t test is exactly the same
as it was for the single-sample t test in Chapter 9.

(10.9)

For the data in Example 10.1, we obtained t � 4.00 with df � 18. These values 
produce an r2 of

According to the standards used to evaluate r2 (see Table 9.3 on p. 299), this value
also indicates a very large treatment effect.

Although the value of r2 is usually obtained by using Equation 10.9, it is possible
to determine the percentage of variability directly by computing SS values for the set of
scores. The following example demonstrates this process using the data from the
Sesame Street study in Example 10.1.

The Sesame Street study described in Example 10.1 compared high school grades for
two groups of students; one group who had watched Sesame Street when they were
children and one group who had not watched the program. If we assume that the null
hypothesis is true and that there is no difference between the two populations of students,
then there should be no systematic difference between the two samples. In this case, the
two samples can be combined to form a single set of n � 20 scores with an overall mean
of M � 89. The two samples are shown as a single distribution in Figure 10.5(a).

For this example, however, the conclusion from the hypothesis test is that there is
a real difference between the two groups. The students who watched Sesame Street
have a mean score of M � 93, which is 4 points above the overall average. Similarly,
the students who did not watch the program had a mean score of M � 85, 4 points
below the overall average. Thus, the Sesame Street effect causes one group of scores
to move toward the right of the distribution, away from the middle, and causes the
other group to move toward the left, away from the middle. The result is that the
Sesame Street effect causes the scores to spread out and increases the variability.

To determine how much the treatment effect has increased the variability, we
remove the treatment effect and examine the resulting scores. To remove the effect,
we add 4 points to the score for each student who did not watch Sesame Street and
we subtract 4 points from the score for each student who did watch. This adjustment
causes both groups to have a mean of M � 89, so there is no longer any mean
difference between the two groups. The adjusted scores are shown in Figure 10.5(b).

It should be clear that the adjusted scores in Figure 10.5(b) are less variable (more
closely clustered) than the original scores in Figure 10.5(a). That is, removing the
treatment effect has reduced the variability. To determine exactly how much the
treatment influences variability, we have computed SS, the sum of squared deviations,
for each set of scores. For the scores in Figure 10.5(a), including the treatment effect, we
obtain SS � 680. When the treatment effect is removed, in Figure 10.5(b), the variability
is reduced to SS � 360. The difference between these two values is 320 points. Thus, the
treatment effect accounts for 320 points of the total variability in the original scores.
When expressed as a proportion of the total variability, we obtain
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You should recognize that this is exactly the same value we obtained for r2 using
Equation 10.9.

As noted in Chapter 9, it is possible to compute a confidence interval as an alternative
method for measuring and describing the size of the treatment effect. For the single-
sample t, we used a single sample mean, M, to estimate a single population mean. For
the independent-measures t, we use a sample mean difference, M1 � M2, to estimate
the population mean difference, �1 � �2. In this case, the confidence interval literally
estimates the size of the population mean difference between the two populations or
treatment conditions.  

As with the single-sample t, the first step is to solve the t equation for the unknown
parameter. For the independent-measures t statistic, we obtain

(10.10)

In the equation, the values for M1 � M2 and for are obtained from the sam-
ple data. Although the value for the t statistic is unknown, we can use the degrees of
freedom for the t statistic and the t distribution table to estimate the t value. Using the

s
M M1 2�( )

� �� � � 	
�1 2 1 2

1 2
M M ts

M M( )

CONFIDENCE INTERVALS FOR
ESTIMATING ��1 � ��2
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79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade

Sesame Street

No Sesame Street

Original scores including the treatment effect

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade 

Adjusted scores after the treatment effect is removed

(a)

(b)

FIGURE 10.5

The two groups of scores from Example 10.1 combined into a single distribution. The original scores, including the 
treatment effect, are shown in part (a). Part (b) shows the adjusted scores, after the treatment effect has been removed.
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estimated t and the known values from the sample, we can then compute the value of
�1 � �2. The following example demonstrates the process of constructing a confidence
interval for a population mean difference.

Earlier we presented a research study comparing high school grades for students who
had watched Sesame Street as children with the grades for students who had not
watched the program (p. 326). The results of the hypothesis test indicated a
significant mean difference between the two populations of students. Now, we
construct a 95% confidence interval to estimate the size of the population mean
difference.  

The data from the study produced a mean grade of M � 93 for the Sesame Street
group and a mean of M � 85 for the no-Sesame Street group, and the estimated
standard error for the mean difference was . With n � 10 scores in each

sample, the independent-measures t statistic has df � 18. To have 95% confidence,
we simply estimate that the t statistic for the sample mean difference is located
somewhere in the middle 95% of all the possible t values. According to the 
t distribution table, with df � 18, 95% of the t values are located between t � +2.101
and t � �2.101. Using these values in the estimation equation, we obtain

This produces an interval of values ranging from 8 � 4.202 � 3.798 to 8 + 4.202
� 12.202. Thus, our conclusion is that students who watched Sesame Street have
higher grades that those who did not, and the mean difference between the two
populations is somewhere between 3.798 points and 12.202 points. Furthermore, we
are 95% confident that the true mean difference is in this interval because the only
value estimated during the calculations was the t statistic, and we are 95% confident
that the t value is located in the middle 95% of the distribution. Finally note that the
confidence interval is constructed around the sample mean difference. As a result, the
sample mean difference, M1 � M2 � 93 � 83 � 8 points, is located exactly in the
center of the interval.

As with the confidence interval for the single-sample t (p. 302), the confidence 
interval for an independent-measures t is influenced by a variety of factors other than
the actual size of the treatment effect. In particular, the width of the interval depends on
the percentage of confidence used so that a larger percentage produces a wider interval.
Also, the width of the interval depends on the sample size, so that a larger sample 
produces a narrower interval. Because the interval width is related to sample size, the
confidence interval is not a pure measure of effect size like Cohen’s d or r2. 

In addition to describing the size of a treatment effect, estimation can be used to get 
an indication of the significance of the effect. Example 10.3 presented an independent-
measures research study examining the effect on high school grades of having watched
Sesame Street as a child. Based on the results of the study, the 95% confidence interval 
estimated that the population mean difference for the two groups of students was between
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3.798 and 12.202 points. The confidence interval estimate is shown in Figure 10.6. In addi-
tion to the confidence interval for �1 � �2, we have marked the spot where the mean 
difference is equal to zero. You should recognize that a mean difference of zero is exactly
what would be predicted by the null hypothesis if we were doing a hypothesis test. You also
should realize that a zero difference (�1 � �2 � 0) is outside of the 95% confidence inter-
val. In other words, �1 � �2 � 0 is not an acceptable value if we want 95% confidence in
our estimate. To conclude that a value of zero is not acceptable with 95% confidence is
equivalent to concluding that a value of zero is rejected with 95% confidence. This conclu-
sion is equivalent to rejecting H0 with � � .05. On the other hand, if a mean difference of
zero were included within the 95% confidence interval, then we would have to conclude that
�1 � �2 � 0 is an acceptable value, which is the same as failing to reject H0.

IN THE LITERATURE

REPORTING THE RESULTS OF AN INDEPENDENT-MEASURES t TEST

A research report typically presents the descriptive statistics followed by the results 
of the hypothesis test and measures of effect size (inferential statistics). In Chapter 4
(p. 123), we demonstrated how the mean and the standard deviation are reported in
APA format. In Chapter 9 (p. 302), we illustrated the APA style for reporting the
results of a t test. Now we use the APA format to report the results of Example 10.1,
an independent-measures t test. A concise statement might read as follows:

The students who watched Sesame Street as children had higher high school grades (M � 93,
SD � 4.71) than the students who did not watch the program (M � 85, SD � 4.22). The mean
difference was significant, t (18) � 4.00, p < .01, d � 1.79.

You should note that standard deviation is not a step in the computations for the
independent-measures t test, yet it is useful when providing descriptive statistics for
each treatment group. It is easily computed when doing the t test because you need 
SS and df for both groups to determine the pooled variance. Note that the format for
reporting t is exactly the same as that described in Chapter 9 (p. 302) and that the
measure of effect size is reported immediately after the results of the hypothesis test.

332 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

The hypothesis test for these
data was conducted in Example
10.1 (p. 326) and the decision
was to reject H0.

3.798 12.202

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

95% confidence interval
estimate for �1 � �2

�1 � �2

according to H0

(                                                                )

FIGURE 10.6

The 95% confidence interval for the population mean difference (�1 � �2) from Example 10.3. Note that �1 � �2 � 0 is 
excluded from the confidence interval, indicating that a zero difference is not an acceptable value (H0 would be rejected in a
hypothesis test with � � .05).
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Also, as we noted in Chapter 9, if an exact probability is available from a
computer analysis, it should be reported. For the data in Example 10.1, the computer
analysis reports a probability value of p � .001 for t � 4.00 with df � 18. In the
research report, this value would be included as follows:

The difference was significant, t(18) � 4.00, p � .001, d � 1.79.

Finally, if a confidence interval is reported to describe effect size, it appears
immediately after the results from the hypothesis test. For the Sesame Street
examples (Example 10.1 and Example 10.3), the report would be as follows:

The difference was significant, t(18) � 4.00, p � .001, 95% CI [3.798, 12.202].

SECTION 10.3 / HYPOTHESIS TESTS AND EFFECT SIZE WITH THE INDEPENDENT-MEASURES t STATISTIC 333

1. An educational psychologist would like to determine whether access to computers
has an effect on grades for high school students. One group of n � 16 students has
home room each day in a computer classroom in which each student has a com-
puter. A comparison group of n � 16 students has home room in a traditional
classroom. At the end of the school year, the average grade is recorded for each
student. The data are as follows:

Computer Traditional

M � 86 M � 82.5
SS � 1005 SS � 1155

a. Is there a significant difference between the two groups? Use a two-tailed test
with � � .05.

b. Compute Cohen’s d to measure the size of the difference.

c. Write a sentence that demonstrates how the outcome of the hypothesis test and
the measure of effect size would appear in a research report.

d. Compute the 90% confidence interval for the population mean difference 
between a computer classroom and a regular classroom.

2. A researcher report states that there is a significant difference between treatments
for an independent-measures design with t(28) � 2.27.

a. How many individuals participated in the research study? (Hint: Start with the
df value.)

b. Should the report state that p 
 .05 or p � .05?

1. a. The pooled variance is 72, the standard error is 3, and t � 1.17. With a critical value
of t � 2.042, fail to reject the null hypothesis.

b. Cohen’s d � 3.5/√72 � 0.412

c. The results show no significant difference in grades for students with computers com-
pared to students without computers, t(30) � 1.17, p 
 .05, d � 0.412.

d. With df � 30 and 90% confidence, the t values for the confidence interval are 	1.697.
The interval is �1 � �2 � 3.5 	 1.697(3). Thus, the population mean difference is
estimated to be between �1.591 and 8.591. The fact that zero is an acceptable value
(inside the interval) is consistent with the decision that there is no significant difference
between the two population means.

2. a. The df � 28, so the total number of participants is 30.

b. A significant result is indicated by p � .05.

L E A R N I N G  C H E C K

ANSWERS
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When planning an independent-measures study, a researcher usually has some 
expectation or specific prediction for the outcome. For the Sesame Street study in
Example 10.1, the researcher clearly expects the students who watched Sesame Street
to have higher grades than the students who did not watch. This kind of directional
prediction can be incorporated into the statement of the hypotheses, resulting in a 
directional, or one-tailed, test. Recall from Chapter 8 that one-tailed tests can lead to
rejecting H0 when the mean difference is relatively small compared to the magnitude
required by a two-tailed test. As a result, one-tailed tests should be used when clearly
justified by theory or previous findings. The following example demonstrates the
procedure for stating hypotheses and locating the critical region for a one-tailed test
using the independent-measures t statistic.

We use the same research situation that was described in Example 10.1. The
researcher is using an independent-measures design to examine the relationship
between watching educational TV as a child and academic performance as a high
school student. The prediction is that high school students who watched Sesame
Street regularly as 5-year-old children have higher grades.

State the hypotheses and select the alpha level. As always, the null hypothesis says
that there is no effect, and the alternative hypothesis says that there is an effect. For
this example, the predicted effect is that the students who watched Sesame Street
have higher grades. Thus, the two hypotheses are as follows.

H0: �Sesame Street � �No Sesame Street (Grades are not higher with Sesame Street)

H1: �Sesame Street 
 �No Sesame Street (Grades are higher with Sesame Street)

Note that it is usually easier to state the hypotheses in words before you try to
write them in symbols. Also, it usually is easier to begin with the alternative
hypothesis (H1), which states that the treatment works as predicted. Also note that the
equal sign goes in the null hypothesis, indicating no difference between the two
treatment conditions. The idea of zero difference is the essence of the null hypothesis,
and the numerical value of zero is used for (�1 � �2) during the calculation of the 
t statistic.  For this test we use � � .01.

Locate the critical region. For a directional test, the critical region is located entirely
in one tail of the distribution. Rather than trying to determine which tail, positive or
negative, is the correct location, we suggest that you identify the criteria for the
critical region in a two-step process as follows. First, look at the data and determine
whether the sample mean difference is in the direction that was predicted. If the
answer is no, then the data obviously do not support the predicted treatment effect,
and you can stop the analysis. On the other hand, if the difference is in the predicted
direction, then the second step is to determine whether the difference is large enough
to be significant. To test for significance, simply find the one-tailed critical value in
the t distribution table. If the calculated t statistic is more extreme (either positive or
negative) than the critical value, then the difference is significant.

For this example, the students who watched Sesame Street had higher grades, as
predicted. With df � 18, the one-tailed critical value for � � .01 is t � 2.552.

Collect the data and calculate the test statistic. The details of the calculations were
shown in Example 10.1. The data produce a t statistic of t � 4.00.

S T E P  3

S T E P  2

S T E P  1

E X A M P L E  1 0 . 4

DIRECTIONAL HYPOTHESES
AND ONE-TAILED TESTS
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Make a decision. The t statistic of t � 4.00 is well beyond the critical boundary of 
t � 2.552. Therefore, we reject the null hypothesis and conclude that grades for
students who watched Sesame Street are significantly higher than grades for students
who did not watch the program. In a research report, the one-tailed test would be
clearly noted:

Grades were significantly higher for students who watched Sesame Street, t(18) � 4.00, 
p � .01, one tailed.

In Chapter 9 (p. 294), we identified several factors that can influence the outcome of a
hypothesis test. Two factors that play important roles are the variability of the scores
and the size of the samples. Both factors influence the magnitude of the estimated stan-
dard error in the denominator of the t statistic. However, the standard error is directly
related to sample variance (larger variance leads to larger error) but it is inversely 
related to sample size (larger size leads to smaller error). As a result, larger variance
produces a smaller value for the t statistic (closer to zero) and reduces the likelihood of
finding a significant result. By contrast, a larger sample produces a larger value for the
t statistic (farther from zero) and increases the likelihood of rejecting H0.

Although variance and sample size both influence the hypothesis test, only vari-
ance has a large influence on measures of effect size such as Cohen’s d and r2; larger
variance produces smaller measures of effect size. Sample size, on the other hand, has
no effect on the value of Cohen’s d and only a small influence on r2. 

The following example provides a visual demonstration of how large sample vari-
ance can obscure a mean difference between samples and lower the likelihood of 
rejecting H0 for an independent-measures study.

We use the data in Figure 10.7 to demonstrate the influence of sample variance. The
figure shows the results from a research study comparing two treatments. Notice that the
study uses two separate samples, each with n � 9, and there is a 5-point mean difference

E X A M P L E  1 0 . 5

THE ROLE OF SAMPLE
VARIANCE AND SAMPLE SIZE

IN THE INDEPENDENT-
MEASURES t TEST

S T E P  4
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 1.22

Treatment 2

n  � 9
M  � 13
s  � 1.22

FIGURE 10.7

Two sample distributions representing two different treatments. These data show a significant difference between treatments,
t(16) � 8.62, p � .01, and both measures of effect size indicate a very large treatment effect, d � 4.10 and r2 � 0.82.
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between the two samples: M � 8 for treatment 1 and M � 13 for treatment 2. Also
notice that there is a clear difference between the two distributions; the scores for
treatment 2 are clearly higher than the scores for treatment 1.

For the hypothesis test, the data produce a pooled variance of 1.50 and an
estimated standard error of 0.58. The t statistic is

t � � �
0.

5
58
� � 8.62

With df � 16, this value is far into the critical region (for � � .05 or � � .01),
so we reject the null hypothesis and conclude that there is a significant difference
between the two treatments.

Now consider the effect of increasing sample variance. Figure 10.8 shows the results
from a second research study comparing two treatments. Notice that there are still n � 9
scores in each sample, and the two sample means are still M � 8 and M � 13. However,
the sample variances have been greatly increased: Each sample now has s2 � 44.25 as
compared with s2 � 1.5 for the data in Figure 10.7. Notice that the increased variance
means that the scores are now spread out over a wider range, with the result that the 
two samples are mixed together without any clear distinction between them.

The absence of a clear difference between the two samples is supported by the
hypothesis test. The pooled variance is 44.25, the estimated standard error is 3.14,
and the independent-measures t statistic is

t � � �
3.

5
14
� � 1.59

With df � 16 and � � .05, this value is not in the critical region. Therefore, we
fail to reject the null hypothesis and conclude that there is no significant difference
between the two treatments. Although there is still a 5-point difference between
sample means (as in Figure 10.7), the 5-point difference is not significant with the
increased variance. In general, large sample variance can obscure any mean
difference that exists in the data and reduces the likelihood of obtaining a significant
difference in a hypothesis test.

mean difference
���
estimated standard error

mean difference
���
estimated standard error
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 6.65

Treatment 2

n  � 9
M  � 13
s  � 6.65

FIGURE 10.8

Two sample distributions representing two different treatments. These data show exactly the same mean difference as the
scores in Figure 10.7; however, the variance has been greatly increased. With the increased variance, there is no longer a
significant difference between treatments, t(16) � 1.59, p 
 .05, and both measures of effect size are substantially reduced, 
d � 0.75 and r2 � 0.14.
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Finally, we should note that the problems associated with high variance often 
can be minimized by transforming the original scores to ranks and then conducting an
alternative statistical analysis known as the Mann-Whitney test, which is designed
specifically for ordinal data. The Mann-Whitney test is presented in Appendix E, 
which also discusses the general purpose and process of converting numerical scores 
into ranks. The Mann-Whitney test also can be used if the data violate one of the 
assumptions for the independent-measures t test outlined in the next section.

10.4 ASSUMPTIONS UNDERLYING THE 
INDEPENDENT-MEASURES t FORMULA

There are three assumptions that should be satisfied before you use the independent-
measures t formula for hypothesis testing:

1. The observations within each sample must be independent (see p. 254).

2. The two populations from which the samples are selected must be normal.

3. The two populations from which the samples are selected must have equal
variances.

The first two assumptions should be familiar from the single-sample t hypothesis
test presented in Chapter 9. As before, the normality assumption is the less important
of the two, especially with large samples. When there is reason to suspect that the 
populations are far from normal, you should compensate by ensuring that the samples
are relatively large.

The third assumption is referred to as homogeneity of variance and states that the
two populations being compared must have the same variance. You may recall a simi-
lar assumption for the z-score hypothesis test in Chapter 8. For that test, we assumed
that the effect of the treatment was to add a constant amount to (or subtract a constant
amount from) each individual score. As a result, the population standard deviation after
treatment was the same as it had been before treatment. We now are making essentially
the same assumption, but phrasing it in terms of variances.

Recall that the pooled variance in the t-statistic formula is obtained by averaging
together the two sample variances. It makes sense to average these two values only if
they both are estimating the same population variance—that is, if the homogeneity of
variance assumption is satisfied. If the two sample variances are estimating different
population variances, then the average is meaningless. (Note: If two people are asked
to estimate the same thing—for example, what your IQ is—it is reasonable to average
the two estimates. However, it is not meaningful to average estimates of two different
things. If one person estimates your IQ and another estimates the number of grapes in
a pound, it is meaningless to average the two numbers.)

Homogeneity of variance is most important when there is a large discrepancy 
between the sample sizes. With equal (or nearly equal) sample sizes, this assumption is
less critical, but still important. Violating the homogeneity of variance assumption can
negate any meaningful interpretation of the data from an independent-measures exper-
iment. Specifically, when you compute the t statistic in a hypothesis test, all of the 
numbers in the formula come from the data except for the population mean difference,
which you get from H0. Thus, you are sure of all of the numbers in the formula except
one. If you obtain an extreme result for the t statistic (a value in the critical region), then
you conclude that the hypothesized value was wrong. But consider what happens when
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Remember: Adding a constant to
(or subtracting a constant from)
each score does not change the
standard deviation.
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you violate the homogeneity of variance assumption. In this case, you have two ques-
tionable values in the formula (the hypothesized population value and the meaningless
average of the two variances). Now if you obtain an extreme t statistic, you do not know
which of these two values is responsible. Specifically, you cannot reject the hypothesis
because it may have been the pooled variance that produced the extreme t statistic.
Without satisfying the homogeneity of variance requirement, you cannot accurately 
interpret a t statistic, and the hypothesis test becomes meaningless.

How do you know whether the homogeneity of variance assumption is satisfied? One
simple test involves just looking at the two sample variances. Logically, if the two pop-
ulation variances are equal, then the two sample variances should be very similar.
When the two sample variances are reasonably close, you can be reasonably confident
that the homogeneity assumption has been satisfied and proceed with the test. However,
if one sample variance is more than three or four times larger than the other, then there
is reason for concern. A more objective procedure involves a statistical test to evaluate
the homogeneity assumption. Although there are many different statistical methods for
determining whether the homogeneity of variance assumption has been satisfied,
Hartley’s F-max test is one of the simplest to compute and to understand. An additional
advantage is that this test can also be used to check homogeneity of variance with more
than two independent samples. Later, in Chapter 12, we examine statistical methods for
comparing several different samples, and Hartley’s test is useful again. The following
example demonstrates the F-max test for two independent samples.

The F-max test is based on the principle that a sample variance provides an unbiased
estimate of the population variance. The null hypothesis for this test states that the
population variances are equal, therefore, the sample variances should be very
similar. The procedure for using the F-max test is as follows:

1. Compute the sample variance, , for each of the separate samples.

2. Select the largest and the smallest of these sample variances and compute

F-max � �
s
s
2

2

(
(
s
l
m
ar

a
g
l
e
le
s
s
t)
t)

�

A relatively large value for F-max indicates a large difference between the
sample variances. In this case, the data suggest that the population variances are
different and that the homogeneity assumption has been violated. On the other
hand, a small value of F-max (near 1.00) indicates that the sample variances are
similar and that the homogeneity assumption is reasonable.

3. The F-max value computed for the sample data is compared with the critical
value found in Table B.3 (Appendix B). If the sample value is larger than the
table value, then you conclude that the variances are different and that the 
homogeneity assumption is not valid.

To locate the critical value in the table, you need to know:

a. k � number of separate samples. (For the independent-measures t test, k � 2.)

b. df � n � 1 for each sample variance. The Hartley test assumes that all 
samples are the same size.

c. The alpha level. The table provides critical values for � � .05 and � � .01.
Generally a test for homogeneity would use the larger alpha level.

s
SS

df
2 �

E X A M P L E  1 0 . 6

HARTLEY’S F-MAX TEST
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Suppose, for example, that two independent samples each have n � 10 with
sample variances of 12.34 and 9.15. For these data,

With � � .05, k � 2, and df � n � 1 � 9, the critical value from the table is
4.03. Because the obtained F-max is smaller than this critical value, you conclude
that the data do not provide evidence that the homogeneity of variance assumption
has been violated.

The goal for most hypothesis tests is to reject the null hypothesis to demonstrate
a significant difference or a significant treatment effect. However, when testing for
homogeneity of variance, the preferred outcome is to fail to reject H0. Failing to 
reject H0 with the F-max test means that there is no significant difference between
the two population variances and the homogeneity assumption is satisfied. In this
case, you may proceed with the independent-measures t test using pooled variance.

If the F-max test rejects the hypothesis of equal variances, or if you simply sus-
pect that the homogeneity of variance assumption is not justified, you should not
compute an independent-measures t statistic using pooled variance. However, there
is an alternative formula for the t statistic that does not pool the two sample variances
and does not require the homogeneity assumption. The alternative formula is 
presented in Box 10.2.

F
s

s
-max

largest

smallest
� � �

2

2

12 34

9 15
1 3

( )
( )

.

.
. 55
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B O X
10.2 AN ALTERNATIVE TO POOLED VARIANCE

Decimal values for df should be rounded down to
the next lower integer.

The adjustment to degrees of freedom lowers the
value of df, which pushes the boundaries for the critical 
region farther out. Thus, the adjustment makes the test
more demanding and therefore corrects for the same
bias problem that the pooled variance attempts to avoid.

Note: Many computer programs that perform
statistical analysis (such as SPSS) report two versions
of the independent-measures t statistic; one using
pooled variance (with equal variances assumed) and
one using the adjustment shown here (with equal 
variances not assumed).

Computing the independent-measures t statistic using
pooled variance requires that the data satisfy the homo-
geneity of variance assumption. Specifically, the two
distributions from which the samples are obtained must
have equal variances. To avoid this assumption, many
statisticians recommend an alternative formula for com-
puting the independent-measures t statistic that does not
require pooled variance or the homogeneity assumption.
The alternative procedure consists of two steps:

1. The standard error is computed using the two separate
sample variances as in Equation 10.1.

2. The value of degrees of freedom for the t statistic
is adjusted using the following equation:

df
V V

V

n

V

n

V
s

n
�

�

�
�

�

�1 2

2

1
2

1

2
2

2

1
1
2

1

1 1

( )
where annd V

s

n2
2
2

2

�
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1. The independent-measures t statistic uses the data from
two separate samples to draw inferences about the mean
difference between two populations or between two
different treatment conditions.

2. The formula for the independent-measures t statistic has
the same structure as the original z-score or the single-
sample t:

t �

For the independent-measures t, the sample statistic is
the sample mean difference (M1 � M2). The population

sample statistic � population parameter
�����

estimated standard error
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1. A researcher is using an independent-measures design to evaluate the difference
between two treatment conditions with n � 8 in each treatment. The first treat-
ment produces M � 63 with a variance of s2 � 18, and the second treatment has
M � 58 with s2 � 14.

a. Use a one-tailed test with � � .05 to determine whether the scores in the first
treatment are significantly greater than the scores in the second. (Note: Because
the two samples are the same size, the pooled variance is simply the average of
the two sample variances.)

b. Predict how the value for the t statistic would be affected if the two sample
variances were increased to s2 � 68 and s2 � 60. Compute the new t to con-
firm your answer.

c. Predict how the value for the t statistic for the original samples would be 
affected if each sample had n � 32 scores (instead of n � 8). Compute the 
new t to confirm your answer.

2. The homogeneity of variance assumption requires that the two sample variances
be equal. (True or false?)

3. When you are using an F-max test to evaluate the homogeneity of variance 
assumption, you usually do not want to find a significant difference between the
variances. (True or false?)

1. a. The pooled variance is 16, the estimated standard error is 2, and t(14) � 2.50. With a
one-tailed critical value of 1.761, reject the null hypothesis. Scores in the first treatment are
significantly higher than scores in the second.

b. Increasing the variance should lower the value of t. The new pooled variance is 64, the
estimated standard error is 4, and t(14) � 1.25.

c. Increasing the sample sizes should increase the value of t. The pooled variance is still 16,
but the new standard error is 1, and t(62) � 5.00.

2. False. The assumption is that the two population variances are equal.

3. True. If there is a significant difference between the two variances, you cannot do the t test
with pooled variance.

L E A R N I N G  C H E C K

ANSWERS

SUMMARY

parameter is the population mean difference, (�1 � �2).
The estimated standard error for the sample mean
difference is computed by combining the errors for the
two sample means. The resulting formula is

where the estimated standard error is

s
s

n

s

nM M

p p

1 2

2

1

2

2
�
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t
M M

s
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�
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30991_ch10_ptg01_hr_315-350.qxd  9/3/11  3:46 AM  Page 340



The pooled variance in the formula, , is the weighted
mean of the two sample variances:

This t statistic has degrees of freedom determined by
the sum of the df values for the two samples:

df � df1 + df2

� (n1 � 1) + (n2 � 1)

3. For hypothesis testing, the null hypothesis states that
there is no difference between the two population
means:

H0: �1 � �2 or �1 � �2 � 0

4. When a hypothesis test with an independent-measures
t statistic indicates a significant difference, you should
also compute a measure of the effect size. One
measure of effect size is Cohen’s d, which is a
standardized measure of the mean difference. For the
independent-measures t statistic, Cohen’s d is
estimated as follows:

estimated d � �
M1

�
�

s2
p	
M2�

A second common measure of effect size is the
percentage of variance accounted for by the treatment

s
SS SS

df dfp
2 1 2

1 2

�
�

�

s
p
2
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effect. This measure is identified by r2 and is
computed as

5. An alternative method for describing the size of the
treatment effect is to construct a confidence interval for
the population mean difference, �1 � �2. The
confidence interval uses the independent-measures 
t equation, solved for the unknown mean difference:

First, select a level of confidence and then look up the
corresponding t values. For example, for 95%
confidence, use the range of t values that determine the
middle 95% of the distribution. The t values are then
used in the equation along with the values for the
sample mean difference and the standard error, which
are computed from the sample data.

6. Appropriate use and interpretation of the t statistic using
pooled variance require that the data satisfy the
homogeneity of variance assumption. This assumption
stipulates that the two populations have equal variances.
An informal test of the assumption can be made by
verifying that the two sample variances are approximately
equal. Hartley’s F-max test provides a statistical
technique for determining whether the data satisfy the
homogeneity assumption. An alternative technique that
avoids pooling variances and eliminates the need for the
homogeneity assumption is presented in Box 10.2.

� �� � � 	
�1 2 1 2

1 2
M M ts

M M( )

r
t

t df
2

2

2
�

�

KEY TERMS

independent-measures research design
(318)

between-subjects research design (318)

repeated-measures research design (318)

within-subjects research design (318)

independent-measures t statistic (319)

estimated standard error of M1 � M2 (320)

pooled variance (322)

Mann-Whitney test (337)

homogeneity of variance (337)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 10 on the 

book companion website. The website also provides access to a workshop entitled
Independent vs. Repeated t-tests, which compares the t test presented in this chapter 
with the repeated-measures test presented in Chapter 11.
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Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Independent-Measures t Test presented in
this chapter.

Data Entry

1. The scores are entered in what is called stacked format, which means that all of the
scores from both samples are entered in one column of the data editor (probably
VAR00001). Enter the scores for sample #2 directly beneath the scores from 
sample #1 with no gaps or extra spaces.

2. Values are then entered into a second column (VAR00002) to identify the sample
or treatment condition corresponding to each of the scores. For example, enter a 1
beside each score from sample #1 and enter a 2 beside each score from sample #2.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Independent-
Samples t Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Test Variable(s) box.

3. Highlight the label from the column containing the sample numbers (VAR0002) in
the left box and click the arrow to move it into the Group Variable box.

4. Click on Define Groups.
5. Assuming that you used the numbers 1 and 2 to identify the two sets of scores,

enter the values 1 and 2 into the appropriate group boxes.
6. Click Continue.
7. In addition to performing the hypothesis test, the program computes a confidence

interval for the population mean difference. The confidence level is automatically
set at 95% but you can select Options and change the percentage.

8. Click OK.
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Group Statistics

Independent Samples Test

Independent Samples Test

VAR00001

VAR00001

VAR00002

1.00

2.00

Equal variances assumed

Equal variances not
assumed

VAR00001 Equal variances assumed

Equal variances not
assumed

.001

.001

8.00000

8.00000

2.00000

2.00000

3.79816

3.79443

12.20184

12.20557

4.000

4.000

18

17.780

.543.384

Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

10

10

93.0000

85.0000

4.71405

4.21637

1.49071

1.33333

Sig.F

Levene’s Test for Equality of
Variances t-test for Equality of Means

t-test for Equality of Means

t df

Lower Upper

95%
Confidence

Interval of the
Difference

MeanN Std. Deviation
Std. Error

Mean

SPSS Output

We used the SPSS program to analyze the data from the Sesame Street study in
Example 10.1 and the program output is shown in Figure 10.9. The output includes 
a table of sample statistics with the mean, standard deviation, and standard error 
of the mean for each group. A second table, which is split into two sections in 
Figure 10.9, begins with the results of Levene’s test for homogeneity of variance.
This test should not be significant (you do not want the two variances to be 
different), so you want the reported Sig. value to be greater than .05. Next, the results
of the independent-measures t test are presented using two different assumptions. 
The top row shows the outcome assuming equal variances, using the pooled variance
to compute t. The second row does not assume equal variances and computes the 
t statistic using the alternative method presented in Box 10.2. Each row reports the
calculated t value, the degrees of freedom, the level of significance (the p value 
for the test), the size of the mean difference and the standard error for the mean 
difference (the denominator of the t statistic). Finally, the output includes a 95%
confidence interval for the mean difference.
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FIGURE 10.9

The SPSS output for the independent-measures hypothesis test in Example 10.1.
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FOCUS ON PROBLEM SOLVING

1. As you learn more about different statistical methods, one basic problem is 
deciding which method is appropriate for a particular set of data. Fortunately, it
is easy to identify situations in which the independent-measures t statistic is used.
First, the data always consist of two separate samples (two ns, two Ms, two SSs,
and so on). Second, this t statistic is always used to answer questions about a
mean difference: On the average, is one group different (better, faster, smarter)
than the other group? If you examine the data and identify the type of question
that a researcher is asking, you should be able to decide whether an independent-
measures t is appropriate.

2. When computing an independent-measures t statistic from sample data, we sug-
gest that you routinely divide the formula into separate stages rather than trying
to do all of the calculations at once. First, find the pooled variance. Second, com-
pute the standard error. Third, compute the t statistic.

3. One of the most common errors for students involves confusing the formulas
for pooled variance and standard error. When computing pooled variance, you
are “pooling” the two samples together into a single variance. This variance is
computed as a single fraction, with two SS values in the numerator and two df
values in the denominator. When computing the standard error, you are adding
the error from the first sample and the error from the second sample. These
two separate errors are added as two separate fractions under the square root
symbol.

DEMONSTRATION 10.1

THE INDEPENDENT-MEASURES t TEST

In a study of jury behavior, two samples of participants were provided details about a trial
in which the defendant was obviously guilty. Although group 2 received the same details
as group 1, the second group was also told that some evidence had been withheld from the
jury by the judge. Later the participants were asked to recommend a jail sentence. The
length of term suggested by each participant is presented here. Is there a significant differ-
ence between the two groups in their responses?
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Group 1 Group 2

4 3
4 7
3 8
2 5
5 4
1 7
1 6
4 8

for Group 1: M � 3 and SS � 16

for Group 2: M � 6 and SS � 24
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There are two separate samples in this study. Therefore, the analysis uses the independent-
measures t test.

State the hypothesis, and select an alpha level.

H0: �1 � �2 � 0 (For the population, knowing that evidence has been 
withheld has no effect on the suggested sentence.)

H1: �1 � �2 ≠ 0 (For the population, knowing that evidence has been withheld
has an effect on the jury’s response.)

We set the level of significance to � � .05, two tails.

Identify the critical region. For the independent-measures t statistic, degrees of free-
dom are determined by

df � n1 + n2 � 2

� 8 + 8 � 2

� 14

The t distribution table is consulted, for a two-tailed test with � � .05 and df � 14.
The critical t values are �2.145 and �2.145.

Compute the test statistic. As usual, we recommend that the calculation of the t statis-
tic be separated into three stages.

Pooled variance: For these data, the pooled variance equals

Estimated standard error: Now we can calculate the estimated standard error for mean
differences.

The t statistic: Finally, the t statistic can be computed.

Make a decision about H0, and state a conclusion. The obtained t value of �3.53 falls
in the critical region of the left tail (critical t � ±2.145). Therefore, the null hypothesis is
rejected. The participants who were informed about the withheld evidence gave signifi-
cantly longer sentences, t(14)� �3.53, p � .05, two tails.
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DEMONSTRATION 10.2

EFFECT SIZE FOR THE INDEPENDENT-MEASURES t

We estimate Cohen’s d and compute r2 for the jury decision data in Demonstration 10.1.
For these data, the two sample means are M1 � 3 and M2 � 6, and the pooled variance is
2.86. Therefore, our estimate of Cohen’s d is 

estimated d � �
M1

�
�

s2
p	
M2� � �

�

3 �

2.8

6

6	
� � �

1.
3
69
� � 1.78

With a t value of t � 3.53 and df � 14, the percentage of variance accounted for is

r
t

t df
2

2

2

2

2

3 53

3 53 14

12 46

26 46
0 4�
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�
� �

.
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1. Describe the basic characteristics of an independent-
measures, or a between-subjects, research study.

2. Describe what is measured by the estimated standard
error in the bottom of the independent-measures 
t statistic.

3. If other factors are held constant, explain how 
each of the following influences the value of the
independent-measures t statistic and the likelihood
of rejecting the null hypothesis:
a. Increasing the number of scores in each sample.
b. Increasing the variance for each sample.

4. Describe the homogeneity of variance assumption 
and explain why it is important for the independent-
measures t test.

5. One sample has SS � 48 and a second sample has 
SS � 32.
a. If n � 5 for both samples, find each of the sample

variances and compute the pooled variance.
Because the samples are the same size, you should
find that the pooled variance is exactly halfway
between the two sample variances.

b. Now assume that n � 5 for the first sample and 
n � 9 for the second. Again, calculate the two sample
variances and the pooled variance. You should find
that the pooled variance is closer to the variance for
the larger sample.

6. One sample has SS � 70 and a second sample has 
SS � 42.
a. If n � 8 for both samples, find each of the sample

variances, and calculate the pooled variance.
Because the samples are the same size, you should

find that the pooled variance is exactly halfway
between the two sample variances.

b. Now assume that n � 8 for the first sample and n � 4
for the second. Again, calculate the two sample
variances and the pooled variance. You should find
that the pooled variance is closer to the variance for
the larger sample.

7. As noted on page 320, when the two population means
are equal, the estimated standard error for the
independent-measures t test provides a measure of
how much difference to expect between two sample
means. For each of the following situations, assume
that �1 � �2 and calculate how much difference
should be expected between the two sample means.
a. One sample has n � 8 scores with SS � 45 and the

second sample has n � 4 scores with SS � 15.
b. One sample has n � 8 scores with SS � 150 and

the second sample has n � 4 scores with SS � 90.
c. In part b, the samples have larger variability (bigger

SS values) than in part a, but the sample sizes are
unchanged. How does larger variability affect the size
of the standard error for the sample mean difference?

8. Two separate samples, each with n � 12 individuals,
receive two different treatments. After treatment, the first
sample has SS � 1740 and the second has SS � 1560.
a. Find the pooled variance for the two samples.
b. Compute the estimated standard error for the

sample mean difference.
c. If the sample mean difference is 8 points, is this

enough to reject the null hypothesis and conclude
that there is a significant difference for a two-tailed
test at the .05 level?

PROBLEMS
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d. If the sample mean difference is 12 points, is this
enough to indicate a significant difference for a
two-tailed test at the .05 level?

e. Calculate the percentage of variance accounted for
(r2) to measure the effect size for an 8-point mean
difference and for a 12-point mean difference.

9. Two separate samples receive two different treatments.
The first sample has n � 9 with SS � 710, and the
second has n � 6 with SS � 460.
a. Compute the pooled variance for the two samples.
b. Calculate the estimated standard error for the

sample mean difference.
c. If the sample mean difference is 10 points, is this

enough to reject the null hypothesis using a two-
tailed test with � � .05?

d. If the sample mean difference is 13 points, is this
enough to reject the null hypothesis using a two
tailed test with � � .05?

10. For each of the following, assume that the two
samples are selected from populations with equal
means and calculate how much difference should be
expected, on average, between the two sample means.
a. Each sample has n � 5 scores with s2 � 38 for the

first sample and s2 � 42 for the second. (Note:
Because the two samples are the same size, the
pooled variance is equal to the average of the 
two sample variances.)

b. Each sample has n � 20 scores with s2 � 38 for the
first sample and s2 � 42 for the second.

c. In part b, the two samples are bigger than in part a,
but the variances are unchanged. How does sample
size affect the size of the standard error for the
sample mean difference?

11. For each of the following, calculate the pooled
variance and the estimated standard error for the
sample mean difference
a. The first sample has n � 4 scores and a variance of

s2 � 55, and the second sample has n � 6 scores
and a variance of s2 � 63.

b. Now the sample variances are increased so that 
the first sample has n � 4 scores and a variance of
s2 � 220, and the second sample has n � 6 scores
and a variance of s2 � 252.

c. Comparing your answers for parts a and b, how
does increased variance influence the size of the
estimated standard error?

12. A researcher conducts an independent-measures study
comparing two treatments and reports the t statistic as
t(30) � 2.085.
a. How many individuals participated in the entire study?
b. Using a two-tailed test with � � .05, is there a

significant difference between the two treatments? 
c. Compute r2 to measure the percentage of variance

accounted for by the treatment effect.

13. Hallam, Price, and Katsarou (2002) investigated the
influence of background noise on classroom
performance for children aged 10 to 12. In one part of
the study, calming music led to better performance on
an arithmetic task compared to a no-music condition.
Suppose that a researcher selects one class of n � 18
students who listen to calming music each day while
working on arithmetic problems. A second class 
of n � 18 serves as a control group with no music.
Accuracy scores are measured for each child and 
the average for students in the music condition is 
M � 86.4 with SS � 1550 compared to an average of
M � 78.8 with SS � 1204 for students in the no-
music condition.
a. Is there a significant difference between the two

music conditions? Use a two-tailed test with � � .05. 
b. Compute the 90% confidence interval for the

population mean difference.
c. Write a sentence demonstrating how the results

from the hypothesis test and the confidence interval
would appear in a research report.

14. Do you view a chocolate bar as delicious or as
fattening? Your attitude may depend on your gender.
In a study of American college students, Rozin, Bauer,
and Catanese (2003) examined the importance of food
as a source of pleasure versus concerns about food
associated with weight gain and health. The following
results are similar to those obtained in the study. The
scores are a measure of concern about the negative
aspects of eating.

Males Females

n � 9 n � 15
M � 33 M � 42
SS � 740 SS � 1240

a. Based on these results, is there a significant
difference between the attitudes for males and for
females? Use a two-tailed test with � � .05.

b. Compute r2, the percentage of variance accounted
for by the gender difference, to measure effect size
for this study.

c. Write a sentence demonstrating how the result of
the hypothesis test and the measure of effect size
would appear in a research report.

15. In a study examining overweight and obese college
football players, Mathews and Wagner (2008) found
that on average both offensive and defensive linemen
exceeded the at-risk criterion for body mass index
(BMI). BMI is a ratio of body weight to height
squared and is commonly used to classify people as
overweight or obese. Any value greater than 30 kg/m2

is considered to be at risk. In the study, a sample of 
n � 17 offensive linemen averaged M � 34.4 with a
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standard deviation of s � 4.0. A sample of n � 19
defensive linemen averaged M � 31.9 with s � 3.5.
a. Use a single-sample t test to determine whether 

the offensive linemen are significantly above the
at-risk criterion for BMI. Use a one-tailed test 
with � � .01.

b. Use a single-sample t test to determine whether the
defensive linemen are significantly above the at-risk
criterion for BMI. Use a one-tailed test with � � .01.

c. Use an independent-measures t test to determine
whether there is a significant difference between
the offensive linemen and the defensive linemen.
Use a two-tailed test with � � .01.

16. Functional foods are those containing nutritional
supplements in addition to natural nutrients. Examples
include orange juice with calcium and eggs with
omega-3. Kolodinsky, et al. (2008) examined attitudes
toward functional foods for college students. For
American students, the results indicated that females
had a more positive attitude toward functional foods
and were more likely to purchase them compared to
males. In a similar study, a researcher asked students
to rate their general attitude toward functional foods
on a 7-point scale (higher score is more positive). The
results are as follows:

Females Male

n � 8                 n � 12
M � 4.69 M � 4.43
SS � 1.60 SS � 2.72

a. Do the data indicate a significant difference in
attitude for males and females? Use a two-tailed
test with � � .05. 

b. Compute r2, the amount of variance accounted for
by the gender difference, to measure effect size.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

17. In 1974, Loftus and Palmer conducted a classic study
demonstrating how the language used to ask a question
can influence eyewitness memory. In the study,
college students watched a film of an automobile
accident and then were asked questions about what
they saw. One group was asked, “About how fast were
the cars going when they smashed into each other?”
Another group was asked the same question except the
verb was changed to “hit” instead of “smashed into.”
The “smashed into” group reported significantly
higher estimates of speed than the “hit” group.
Suppose a researcher repeats this study with a sample
of today’s college students and obtains the following
results.

Estimated Speed

Smashed into Hit

n � 15 n � 15
M � 40.8 M � 34.0

SS � 510 SS � 414

a. Do the results indicate a significantly higher
estimated speed for the “smashed into” group? Use
a one-tailed test with � � .01.

b. Compute the estimated value for Cohen’s d to
measure the size of the effect.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

18. Numerous studies have found that males report higher
self-esteem than females, especially for adolescents
(Kling, Hyde, Showers, & Buswell, 1999). Typical
results show a mean self-esteem score of M � 39.0 with
SS � 60.2 for a sample of n � 10 male adolescents and
a mean of M � 35.4 with SS � 69.4 for a sample of 
n � 10 female adolescents.
a. Do the results indicate that self-esteem is

significantly higher for males? Use a one-tailed 
test with � � .01.  

b. Use the data to make a 95% confidence interval
estimate of the mean difference in self-esteem
between male and female adolescents.

c. Write a sentence demonstrating how the results
from the hypothesis test and the confidence interval
would appear in a research report. 

19. A researcher is comparing the effectiveness of two sets
of instructions for assembling a child’s bike. A sample
of eight fathers is obtained. Half of the fathers are
given one set of instructions and the other half
receives the second set. The researcher measures how
much time is needed for each father to assemble the
bike. The scores are the number of minutes needed by
each participant.

Instruction Set I Instruction Set II

8 14
4 10
8 6
4 10

a. Is there a significant difference in time for the 
two sets of instructions? Use a two-tailed test 
at the .05 level of significance.

b. Calculate the estimated Cohen’s d and r2 to
measure effect size for this study.
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20. When people learn a new task, their performance
usually improves when they are tested the next day,
but only if they get at least 6 hours of sleep (Stickgold,
Whidbee, Schirmer, Patel, & Hobson, 2000). The
following data demonstrate this phenomenon. The
participants learned a visual discrimination task on one
day, and then were tested on the task the following
day. Half of the participants were allowed to have at
least 6 hours of sleep and the other half were kept
awake all night. Is there a significant difference
between the two conditions? Use a two-tailed test 
with � � .05.

Performance Scores

6 Hours of Sleep No Sleep

n � 14 n � 14
M � 72 M � 65
SS � 932 SS � 706

21. Steven Schmidt (1994) conducted a series of
experiments examining the effects of humor on
memory. In one study, participants were given a mix
of humorous and nonhumorous sentences and
significantly more humorous sentences were recalled.
However, Schmidt argued that the humorous sentences
were not necessarily easier to remember, they were
simply preferred when participants had a choice
between the two types of sentence. To test this
argument, he switched to an independent-measures
design in which one group got a set of exclusively
humorous sentences and another group got a set of
exclusively nonhumorous sentences. The following
data are similar to the results from the independent-
measures study.

Humorous Nonhumorous
Sentences Sentences

4 5 2 4 6 3 5 3
6 7 6 6 3 4 2 6
2 5 4 3 4 3 4 4
3 3 5 3 5 2 6 4

Do the results indicate a significant difference in the
recall of humorous versus nonhumorous sentences?
Use a two-tailed test with � � .05.

22. Downs and Abwender (2002) evaluated soccer players
and swimmers to determine whether the routine blows
to the head experienced by soccer players produced
long-term neurological deficits. In the study,
neurological tests were administered to mature soccer
players and swimmers and the results indicated

significant differences. In a similar study, a researcher
obtained the following data.

Swimmers Soccer players

10 7
8 4
7 9
9 3

13 7
7
6

12

a. Are the neurological test scores significantly lower
for the soccer players than for the swimmers in the
control group? Use a one-tailed test with � � .05.

b. Compute the value of r2 (percentage of variance
accounted for) for these data.

23. Research has shown that people are more likely 
to show dishonest and self-interested behaviors 
in darkness than in a well-lit environment 
(Zhong, Bohns, & Gino, 2010). In one experiment,
participants were given a set of 20 puzzles and 
were paid $0.50 for each one solved in a 5-minute
period. However, the participants reported their 
own performance and there was no obvious method
for checking their honesty. Thus, the task provided 
a clear opportunity to cheat and receive undeserved
money. One group of participants was tested in 
a room with dimmed lighting and a second group 
was tested in a well-lit room. The reported number 
of solved puzzles was recorded for each individual.
The following data represent results similar to 
those obtained in the study.

Well-Lit Room Dimly Lit Room

7 9
8 11

10 13
6 10
8 11
5 9
7 15

12 14
5 10

a. Is there a significant difference in reported
performance between the two conditions? Use a 
two-tailed test with � � .01.

b. Compute Cohen’s d to estimate the size of the
treatment effect.
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