
Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)
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Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Sample standard deviation (Chapter 4)
• Degrees of freedom (Chapter 4)
• Standard error (Chapter 7)
• Hypothesis testing (Chapter 8)
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Preview
Numerous accounts suggest that for many animals, 
including humans, direct stare from another animal is
aversive (e.g., Cook, 1977). Try it out for yourself. 
Make direct eye contact with a stranger in a cafeteria.
Chances are the person will display avoidance by 
averting his or her gaze or turning away from you. 
Some insects, such as moths, have even developed 
eye-spot patterns on the wings or body to ward off 
predators (mostly birds) who may have a natural fear 
of eyes (Blest, 1957). Suppose that a comparative 
psychologist is interested in determining whether the
birds that feed on these insects show an avoidance of
eye-spot patterns.

Using methods similar to those of Scaife (1976), 
the researcher performed the following experiment. A
sample of n � 16 moth-eating birds is selected. The
animals are tested in an apparatus that consists of a 
two-chambered box. The birds are free to roam from 
one side of the box to the other through a doorway in the
partition that separates the two chambers. In one cham-
ber, there are two eye-spot patterns painted on the wall.
The other side of the box has plain walls. One at a 
time, the researcher tests each bird by placing it in the
doorway between the chambers. Each subject is left in
the apparatus for 60 minutes, and the amount of time
spent in the plain chamber is recorded.

The null hypothesis for this study would state that
eye-spot patterns have no effect on the behavior of moth-
eating birds. If this is true, then birds placed in the appara-
tus should wander randomly from side to side during the
60-minute period, averaging half of the time on each side.

Therefore, for the general population of moth-eating birds,
the null hypothesis states

H0: μplain side � 30 minutes

The Problem: The researcher has most of the
information needed to conduct a hypothesis test. In
particular, the researcher has a hypothesis about the
population (μ � 30 minutes) and a sample of n � 16
scores that produces a sample mean (M). However, the
researcher does not know the population standard
deviation (�). This value is needed to compute the
standard error for the sample mean (�M) that appears in
the denominator of the z-score equation. Recall that the
standard error measures how much difference is
reasonable to expect between a sample mean (M) and
the population mean (μ). The value of the standard error
is critical to deciding whether the sample data are
consistent with the null hypothesis or refute the null
hypothesis. Without the standard error, it is impossible
to conduct a z-score hypothesis test.

The Solution: Because it is impossible to compute
the standard error, a z-score cannot be used for the
hypothesis test. However, it is possible to estimate the
standard error using the sample data. The estimated
standard error can then be used to compute a new
statistic that is similar in structure to the z-score. The
new statistic is called a t statistic and it can be used to
conduct a new kind of hypothesis test.

284

9.1 THE t STATISTIC: AN ALTERNATIVE TO z

In the previous chapter, we presented the statistical procedures that permit 
researchers to use a sample mean to test hypotheses about an unknown population
mean. These statistical procedures were based on a few basic concepts, which we
summarize as follows:

1. A sample mean (M) is expected to approximate its population mean (μ). 
This permits us to use the sample mean to test a hypothesis about the popu-
lation mean.

2. The standard error provides a measure of how well a sample mean approxi-
mates the population mean. Specifically, the standard error determines how
much difference is reasonable to expect between a sample mean (M) and the
population mean (μ).

Remember that the expected
value of the distribution of
sample means is μ, the 
population mean.
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�M � �
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n�
� or �M � ��

�

n

2

��
3. To quantify our inferences about the population, we compare the obtained 

sample mean (M) with the hypothesized population mean (μ) by computing a 
z-score test statistic.

z � �
M

�

�

M

�
� �

The goal of the hypothesis test is to determine whether the obtained difference 
between the data and the hypothesis is significantly greater than would be expected by
chance. When the z-scores form a normal distribution, we are able to use the unit 
normal table (in Appendix B) to find the critical region for the hypothesis test.

The shortcoming of using a z-score for hypothesis testing is that the z-score formula 
requires more information than is usually available. Specifically, a z-score requires that
we know the value of the population standard deviation (or variance), which is needed
to compute the standard error. In most situations, however, the standard deviation for
the population is not known. In fact, the whole reason for conducting a hypothesis test
is to gain knowledge about an unknown population. This situation appears to create a
paradox: You want to use a z-score to find out about an unknown population, but you
must know about the population before you can compute a z-score. Fortunately, there
is a relatively simple solution to this problem. When the variability for the population
is not known, we use the sample variability in its place.

In Chapter 4, the sample variance was developed specifically to provide an unbiased 
estimate of the corresponding population variance. Recall that the formulas for sample
variance and sample standard deviation are as follows:

sample variance � s2 � �
n

S
�

S
1

� � �
S
d
S
f

�

sample standard deviation � s � ��
n

S
�

S
1

�� � ��
S
d
S
f

��
Using the sample values, we can now estimate the standard error. Recall from

Chapters 7 and 8 that the value of the standard error can be computed using either stan-
dard deviation or variance:

standard error � �M � �
�

�

n�
� or �M � ��

�

n

2

��
Now we estimate the standard error by simply substituting the sample variance or

standard deviation in place of the unknown population value:

estimated standard error � sM � �
�

s

n�
� or sM � ��

s
n

2

�� (9.1)

INTRODUCING THE 
t STATISTIC

THE PROBLEM WITH 
z-SCORES

obtained difference between data and hypothesis
�����

standard distance between M and �
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The concept of degrees of 
freedom, df � n – 1, was 
introduced in Chapter 4 (p. 117)
and is discussed later in this
chapter (p. 287).
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Notice that the symbol for the estimated standard error of M is sM instead of �M,
indicating that the estimated value is computed from sample data rather than from the
actual population parameter.

The estimated standard error (sM) is used as an estimate of the real standard
error, �M, when the value of � is unknown. It is computed from the sample
variance or sample standard deviation and provides an estimate of the standard
distance between a sample mean, M, and the population mean, μ.

Finally, you should recognize that we have shown formulas for standard error 
(actual or estimated) using both the standard deviation and the variance. In the past
(Chapters 7 and 8), we concentrated on the formula using the standard deviation. At this
point, however, we shift our focus to the formula based on variance. Thus, throughout
the remainder of this chapter, and in following chapters, the estimated standard error of
M typically is presented and computed using

There are two reasons for making this shift from standard deviation to variance:

1. In Chapter 4 (p. 119) we saw that the sample variance is an unbiased statistic;
on average, the sample variance (s2) provides an accurate and unbiased estimate
of the population variance (�2). Therefore, the most accurate way to estimate
the standard error is to use the sample variance to estimate the population 
variance.

2. In future chapters we encounter other versions of the t statistic that require
variance (instead of standard deviation) in the formulas for estimated standard
error. To maximize the similarity from one version to another, we use variance
in the formula for all of the different t statistics. Thus, whenever we present a 
t statistic, the estimated standard error is computed as

estimated standard error � ��sam
sa

p
m
le�pl

v
e
a
s
ri
i
a
z�n
e
ce

��
Now we can substitute the estimated standard error in the denominator of the 

z-score formula. The result is a new test statistic called a t statistic:

(9.2)

The t statistic is used to test hypotheses about an unknown population mean, μ,
when the value of � is unknown. The formula for the t statistic has the same
structure as the z-score formula, except that the t statistic uses the estimated
standard error in the denominator.

The only difference between the t formula and the z-score formula is that the 
z-score uses the actual population variance, �2 (or the standard deviation), and the 

D E F I N I T I O N

t
M

s
M

�
�μ

s
s

nM
�

2

D E F I N I T I O N
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t formula uses the corresponding sample variance (or standard deviation) when the pop-
ulation value is not known.

In this chapter, we have introduced the t statistic as a substitute for a z-score. The basic
difference between these two is that the t statistic uses sample variance (s2) and the 
z-score uses the population variance (�2). To determine how well a t statistic approxi-
mates a z-score, we must determine how well the sample variance approximates the
population variance.

In Chapter 4, we introduced the concept of degrees of freedom (p. 117). Reviewing
briefly, you must know the sample mean before you can compute sample variance. This
places a restriction on sample variability such that only n – 1 scores in a sample are in-
dependent and free to vary. The value n – 1 is called the degrees of freedom (or df) for
the sample variance.

degrees of freedom � df � n – 1 (9.3)

Degrees of freedom describe the number of scores in a sample that are inde-
pendent and free to vary. Because the sample mean places a restriction on the
value of one score in the sample, there are n – 1 degrees of freedom for a sam-
ple with n scores (see Chapter 4).

The greater the value of df for a sample, the better the sample variance, s2, repre-
sents the population variance, �2, and the better the t statistic approximates the z-score.
This should make sense because the larger the sample (n) is, the better the sample 
represents its population. Thus, the degrees of freedom associated with s2 also describe
how well t represents z.

Every sample from a population can be used to compute a z-score or a t statistic. If you
select all of the possible samples of a particular size (n), and compute the z-score for each
sample mean, then the entire set of z-scores form a z-score distribution. In the same way,
you can compute the t statistic for every sample and the entire set of t values form a t dis-
tribution. As we saw in Chapter 7, the distribution of z-scores for sample means tends to
be a normal distribution. Specifically, if the sample size is large (around n � 30 or more)
or if the sample is selected from a normal population, then the distribution of sample
means is a nearly perfect normal distribution. In these same situations, the t distribution
approximates a normal distribution, just as a t statistic approximates a z-score. How well
a t distribution approximates a normal distributor is determined by degrees of freedom. In
general, the greater the sample size (n) is, the larger the degrees of freedom (n – 1) are,
and the better the t distribution approximates the normal distribution (Figure 9.1).

A t distribution is the complete set of t values computed for every possible
random sample for a specific sample size (n) or a specific degrees of freedom
(df). The t distribution approximates the shape of a normal distribution.

D E F I N I T I O N

THE t DISTRIBUTION

D E F I N I T I O N

DEGREES OF FREEDOM 
AND THE t STATISTIC
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The exact shape of a t distribution changes with degrees of freedom. In fact, statisti-
cians speak of a “family” of t distributions. That is, there is a different sampling distri-
bution of t (a distribution of all possible sample t values) for each possible number of
degrees of freedom. As df gets very large, the t distribution gets closer in shape to a nor-
mal z-score distribution. A quick glance at Figure 9.1 reveals that distributions of t are
bell-shaped and symmetrical and have a mean of zero. However, the t distribution has
more variability than a normal z distribution, especially when df values are small (see
Figure 9.1). The t distribution tends to be flatter and more spread out, whereas the nor-
mal z distribution has more of a central peak.

The reason that the t distribution is flatter and more variable than the normal 
z-score distribution becomes clear if you look at the structure of the formulas for z and t.
For both formulas, z and t, the top of the formula, M – μ, can take on different values
because the sample mean (M) varies from one sample to another. For z-scores, how-
ever, the bottom of the formula does not vary, provided that all of the samples are the
same size and are selected from the same population. Specifically, all of the z-scores
have the same standard error in the denominator, �M � ��2/n�, because the population
variance and the sample size are the same for every sample. For t statistics, on the other
hand, the bottom of the formula varies from one sample to another. Specifically, the
sample variance (s2) changes from one sample to the next, so the estimated standard
error also varies, sM � �s2/n�. Thus, only the numerator of the z-score formula varies,
but both the numerator and the denominator of the t statistic vary. As a result, t statis-
tics are more variable than are z-scores, and the t distribution is flatter and more spread
out. As sample size and df increase, however, the variability in the t distribution 
decreases, and it more closely resembles a normal distribution.

Just as we used the unit normal table to locate proportions associated with z-scores, we
use a t distribution table to find proportions for t statistics. The complete t distribution
table is presented in Appendix B, page 703, and a portion of this table is reproduced in

DETERMINING PROPORTIONS
AND PROBABILITIES FOR t

DISTRIBUTIONS

THE SHAPE OF THE 
t DISTRIBUTION

288 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

0

Normal distribution
t distribution, df � 20 
t distribution, df � 5  

FIGURE 9.1

Distributions of the t statistic
for different values of 
degrees of freedom are 
compared to a normal z-score
distribution. Like the normal
distribution, t distributions
are bell-shaped and symmet-
rical and have a mean of
zero. However, t distributions
have more variability, indi-
cated by the flatter and more
spread-out shape. The larger
the value of df is, the more
closely the t distribution
approximates a normal 
distribution.
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Table 9.1. The two rows at the top of the table show proportions of the t distribution
contained in either one or two tails, depending on which row is used. The first column
of the table lists degrees of freedom for the t statistic. Finally, the numbers in the body
of the table are the t values that mark the boundary between the tails and the rest of the
t distribution.

For example, with df � 3, exactly 5% of the t distribution is located in the tail 
beyond t � 2.353 (Figure 9.2). The process of finding this value is highlighted in 
Table 9.1. Begin by locating df � 3 in the first column of the table. Then locate a pro-
portion of 0.05 (5%) in the one-tail proportion row. When you line up these two values
in the table, you should find t � 2.353. Similarly, 5% of the t distribution is located in
the tail beyond t � –2.353 (see Figure 9.2). Finally, notice that a total of 10% (or 0.10)
is contained in the two tails beyond t � �2.353 (check the proportion value in the 
“two-tails combined” row at the top of the table).

A close inspection of the t distribution table in Appendix B demonstrates a point
we made earlier: As the value for df increases, the t distribution becomes more sim-
ilar to a normal distribution. For example, examine the column containing t values
for a 0.05 proportion in two tails. You will find that when df � 1, the t values that
separate the extreme 5% (0.05) from the rest of the distribution are t � �12.706. As

SECTION 9.1 / THE t STATISTIC: AN ALTERNATIVE TO z 289

TABLE 9.1

A portion of the t-distribution
table. The numbers in the table
are the values of t that separate
the tail from the main body of
the distribution. Proportions for
one or two tails are listed at the
top of the table, and df values
for t are listed in the first 
column.

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined
df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707

–2.353 0 2.3530
t

5% 5%

FIGURE 9.2

The t distribution with 
df � 3. Note that 5% of the
distribution is located in
the tail beyond t � 2.353.
Also, 5% is in the tail beyond
t � �2.353. Thus, a
total proportion of 10%
(0.10) is in the two tails
beyond t � �2.353.
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you read down the column, however, you will find that the critical t values become
smaller and smaller, ultimately reaching �1.96. You should recognize �1.96 as the
z-score values that separate the extreme 5% in a normal distribution. Thus, as df
increases, the proportions in a t distribution become more like the proportions in a
normal distribution. When the sample size (and degrees of freedom) is sufficiently
large, the difference between a t distribution and the normal distribution becomes
negligible.

Caution: The t distribution table printed in this book has been abridged and 
does not include entries for every possible df value. For example, the table lists 
t values for df � 40 and for df � 60, but does not list any entries for df values 
between 40 and 60. Occasionally, you will encounter a situation in which your 
t statistic has a df value that is not listed in the table. In these situations, you should
look up the critical t for both of the surrounding df values listed and then use 
the larger value for t. If, for example, you have df � 53 (not listed), look up the 
critical t value for both df � 40 and df � 60 and then use the larger t value. 
If your sample t statistic is greater than the larger value listed, then you can be 
certain that the data are in the critical region, and you can confidently reject the null
hypothesis.

290 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

L E A R N I N G  C H E C K 1. Under what circumstances is a t statistic used instead of a z-score for a 
hypothesis test?

2. A sample of n � 9 scores has SS � 288.

a. Compute the variance for the sample.

b. Compute the estimated standard error for the sample mean.

3. In general, a distribution of t statistics is flatter and more spread out than the stan-
dard normal distribution. (True or false?)

4. A researcher reports a t statistic with df � 20. How many individuals participated
in the study?

5. For df � 15, find the value(s) of t associated with each of the following:

a. The top 5% of the distribution.

b. The middle 95% of the distribution.

c. The middle 99% of the distribution.

1. A t statistic is used instead of a z-score when the population standard deviation and variance
are not known.

2. a. s2 � 36

b. sM � 2

3. True.

4. n � 21

5. a. t � �1.753

b. t � �2.131

c. t � �2.947

ANSWERS
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9.2 HYPOTHESIS TESTS WITH THE t STATISTIC

In the hypothesis-testing situation, we begin with a population with an unknown 
mean and an unknown variance, often a population that has received some treatment
(Figure 9.3). The goal is to use a sample from the treated population (a treated sample)
as the basis for determining whether the treatment has any effect.

As always, the null hypothesis states that the treatment has no effect; specifically,
H0 states that the population mean is unchanged. Thus, the null hypothesis provides a
specific value for the unknown population mean. The sample data provide a value for
the sample mean. Finally, the variance and estimated standard error are computed from
the sample data. When these values are used in the t formula, the result becomes

sample mean    
�

population mean
(from the data) (hypothesized from H0)

t �  
estimated standard error

(computed from the sample data)

As with the z-score formula, the t statistic forms a ratio. The numerator measures
the actual difference between the sample data (M) and the population hypothesis (μ).
The estimated standard error in the denominator measures how much difference is rea-
sonable to expect between a sample mean and the population mean. When the obtained
difference between the data and the hypothesis (numerator) is much greater than 
expected (denominator), we obtain a large value for t (either large positive or large neg-
ative). In this case, we conclude that the data are not consistent with the hypothesis, and
our decision is to “reject H0.” On the other hand, when the difference between the data
and the hypothesis is small relative to the standard error, we obtain a t statistic near
zero, and our decision is “fail to reject H0.”

The Unknown Population As mentioned earlier, the hypothesis test often concerns
a population that has received a treatment. This situation is shown in Figure 9.3. Note
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μ = 30 μ = ?

Known population
before treatment

Unknown population
after treatment

T
r
e
a
t

m
e
n
t

FIGURE 9.3

The basic experimental
situation for using the 
t statistic or the z-score is
presented. It is assumed that
the parameter � is known for
the population before treat-
ment. The purpose of the
experiment is to determine
whether the treatment has an
effect. Note that the popula-
tion after treatment has 
unknown values for the mean
and the variance. We will use
a sample to test a hypothesis
about the population mean.
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that the value of the mean is known for the population before treatment. The question
is whether the treatment influences the scores and causes the mean to change. In this
case, the unknown population is the one that exists after the treatment is administered,
and the null hypothesis simply states that the value of the mean is not changed by the
treatment.

Although the t statistic can be used in the “before and after” type of research shown
in Figure 9.3, it also permits hypothesis testing in situations for which you do not have
a known population mean to serve as a standard. Specifically, the t test does not require
any prior knowledge about the population mean or the population variance. All you
need to compute a t statistic is a null hypothesis and a sample from the unknown pop-
ulation. Thus, a t test can be used in situations for which the null hypothesis is obtained
from a theory, a logical prediction, or just wishful thinking. For example, many surveys
contain rating-scale questions to determine how people feel about controversial issues.
Participants are presented with a statement and asked to express their opinion on a scale
from 1 to 7, with 1 indicating “strongly agree” and 7 indicating “strongly disagree.” A
score of 4 indicates a neutral position, with no strong opinion one way or the other. In
this situation, the null hypothesis would state that there is no preference in the popula-
tion, H0: μ � 4. The data from a sample is then used to evaluate the hypothesis. Note
that the researcher has no prior knowledge about the population mean and states a 
hypothesis that is based on logic.

The following research situation demonstrates the procedures of hypothesis testing with
the t statistic. Note that this is another example of a null hypothesis that is founded in
logic rather than prior knowledge of a population mean.

Infants, even newborns, prefer to look at attractive faces compared to less attractive
faces (Slater, et al., 1998). In the study, infants from 1 to 6 days old were shown 
two photographs of women’s faces. Previously, a group of adults had rated one of the
faces as significantly more attractive than the other. The babies were positioned in
front of a screen on which the photographs were presented. The pair of faces
remained on the screen until the baby accumulated a total of 20 seconds of looking at
one or the other. The number of seconds looking at the attractive face was recorded
for each infant. Suppose that the study used a sample of n � 9 infants and the data
produced an average of M � 13 seconds for the attractive face with SS � 72. Note
that all of the available information comes from the sample. Specifically, we do not
know the population mean or the population standard deviation.

State the hypotheses and select an alpha level. Although we have no information
about the population of scores, it is possible to form a logical hypothesis about the
value of μ. In this case, the null hypothesis states that the infants have no preference
for either face. That is, they should average half of the 20 seconds looking at each of
the two faces. In symbols, the null hypothesis states

H0: μattractive � 10 seconds

The alternative hypothesis states that there is a preference and one of the faces is pre-
ferred over the other. A directional, one-tailed test would specify which of the two faces
is preferred, but the nondirectional alternative hypothesis is expressed as follows:

H1: μattractive � 10 seconds

We set the level of significance at 	 � .05 for two tails.

S T E P  1

E X A M P L E  9 . 1

HYPOTHESIS TESTING
EXAMPLE

292 CHAPTER 9 INTRODUCTION TO THE t STATISTIC
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Locate the critical region. The test statistic is a t statistic because the population
variance is not known. Therefore, the value for degrees of freedom must be
determined before the critical region can be located. For this sample

df � n – 1 � 9 – 1 � 8

For a two-tailed test at the .05 level of significance and with 8 degrees of
freedom, the critical region consists of t values greater than �2.306 or less than
–2.306. Figure 9.4 depicts the critical region in this t distribution.

Calculate the test statistic. The t statistic typically requires much more computation
than is necessary for a z-score. Therefore, we recommend that you divide the
calculations into a three-stage process as follows:

a. First, calculate the sample variance. Remember that the population variance is
unknown, and you must use the sample value in its place. (This is why we are
using a t statistic instead of a z-score.)

b. Next, use the sample variance (s2) and the sample size (n) to compute the
estimated standard error. This value is the denominator of the t statistic and
measures how much difference is reasonable to expect by chance between a
sample mean and the corresponding population mean.

Finally, compute the t statistic for the sample data.

Make a decision regarding H0. The obtained t statistic of 3.00 falls into the critical
region on the right-hand side of the t distribution (see Figure 9.4). Our statistical
decision is to reject H0 and conclude that babies do show a preference when given a
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Reject H0 Reject H0

df = 8

Fail to reject H0

+2.306–2.306
t

FIGURE 9.4

The critical region in the 
t distribution for 	 � .05 and
df � 8.
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choice between an attractive and an unattractive face. Specifically, the average
amount of time that the babies spent looking at the attractive face was significantly
different from the 10 seconds that would be expected if there were no preference. As
indicated by the sample mean, there is a tendency for the babies to spend more time
looking at the attractive face.

Two basic assumptions are necessary for hypothesis tests with the t statistic.

1. The values in the sample must consist of independent observations.
In everyday terms, two observations are independent if there is no consistent,

predictable relationship between the first observation and the second. More
precisely, two events (or observations) are independent if the occurrence of the
first event has no effect on the probability of the second event. We examined
specific examples of independence and non-independence in Box 8.1 (p. 254).

2. The population that is sampled must be normal.
This assumption is a necessary part of the mathematics underlying the devel-

opment of the t statistic and the t distribution table. However, violating this
assumption has little practical effect on the results obtained for a t statistic,
especially when the sample size is relatively large. With very small samples, a
normal population distribution is important. With larger samples, this assump-
tion can be violated without affecting the validity of the hypothesis test. If 
you have reason to suspect that the population distribution is not normal, use a
large sample to be safe.

As we noted in Chapter 8 (p. 252), a variety of factors can influence the outcome of
a hypothesis test. In particular, the number of scores in the sample and the magnitude
of the sample variance both have a large effect on the t statistic and thereby influence
the statistical decision. The structure of the t formula makes these factors easier to 
understand.

Because the estimated standard error, sM, appears in the denominator of the 
formula, a larger value for sM produces a smaller value (closer to zero) for t. Thus,
any factor that influences the standard error also affects the likelihood of rejecting
the null hypothesis and finding a significant treatment effect. The two factors that
determine the size of the standard error are the sample variance, s2, and the sample
size, n.

The estimated standard error is directly related to the sample variance so that the
larger the variance, the larger the error. Thus, large variance means that you are less
likely to obtain a significant treatment effect. In general, large variance is bad for 
inferential statistics. Large variance means that the scores are widely scattered, which
makes it difficult to see any consistent patterns or trends in the data. In general, high
variance reduces the likelihood of rejecting the null hypothesis.

On the other hand, the estimated standard error is inversely related to the number
of scores in the sample. The larger the sample is, the smaller the error is. If all other fac-
tors are held constant, large samples tend to produce bigger t statistics and therefore are
more likely to produce significant results. For example, a 2-point mean difference with

t
M

s
s

s

n
M

M
�

�
�

μ
where

2

THE INFLUENCE OF SAMPLE
SIZE AND SAMPLE VARIANCE

ASSUMPTIONS OF THE t TEST
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a sample of n � 4 may not be convincing evidence of a treatment effect. However, the
same 2-point difference with a sample of n � 100 is much more compelling.

9.3 MEASURING EFFECT SIZE FOR THE t STATISTIC

In Chapter 8, we noted that one criticism of a hypothesis test is that it does not really
evaluate the size of the treatment effect. Instead, a hypothesis test simply determines
whether the treatment effect is greater than chance, where “chance” is measured by 
the standard error. In particular, it is possible for a very small treatment effect to be
“statistically significant,” especially when the sample size is very large. To correct for
this problem, it is recommended that the results from a hypothesis test be accompanied
by a report of effect size, such as Cohen’s d.

When Cohen’s d was originally introduced (p. 262), the formula was presented as

Cohen’s d ��
st
m
an

e
d
a
a
n
r
d
d
i
d
ff
e
e
v
r
i
e
a
n
t
c
io
e
n

�� 

Cohen defined this measure of effect size in terms of the population mean dif-
ference and the population standard deviation. However, in most situations the pop-
ulation values are not known and you must substitute the corresponding sample
values in their place. When this is done, many researchers prefer to identify the cal-
culated value as an “estimated d” or name the value after one of the statisticians who
first substituted sample statistics into Cohen’s formula (e.g., Glass’s g or Hedges’s
g). For hypothesis tests using the t statistic, the population mean with no treatment
is the value specified by the null hypothesis. However, the population mean with
treatment and the standard deviation are both unknown. Therefore, we use the mean 
for the treated sample and the standard deviation for the sample after treatment as

�treatment � �no treatment
���

�

ESTIMATED COHEN’S d
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L E A R N I N G  C H E C K 1. A sample of n � 4 individuals is selected from a population with a mean of μ � 40.
A treatment is administered to the individuals in the sample and, after treatment,
the sample has a mean of M � 44 and a variance of s2 � 16. 

a. Is this sample sufficient to conclude that the treatment has a significant effect?
Use a two-tailed test with 	 � .05.

b. If all other factors are held constant and the sample size is increased to n � 16,
is the sample sufficient to conclude that the treatment has a significant effect?
Again, use a two-tailed test with 	 � .05.

1. a. H0: μ � 40 even after the treatment. With n � 4, the estimated standard error is 2, and
t � 4/2 � 2.00. With df � 3, the critical boundaries are set at t � �3.182. Fail to reject
H0 and conclude that the treatment does not have a significant effect.

b. With n � 16, the estimated standard error is 1 and t � 4.00.  With df � 15, the critical
boundary is �2.131. The t value is beyond the critical boundary, so we reject H0 and
conclude that the treatment does have a significant effect.

ANSWER
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estimates of the unknown parameters. With these substitutions, the formula for esti-
mating Cohen’s d becomes

estimated d � � �
M �

s
�

� (9.4)

The numerator measures that magnitude of the treatment effect by finding the dif-
ference between the mean for the treated sample and the mean for the untreated popu-
lation (μ from H0). The sample standard deviation in the denominator standardizes the
mean difference into standard deviation units. Thus, an estimated d of 1.00 indicates
that the size of the treatment effect is equivalent to one standard deviation. The fol-
lowing example demonstrates how the estimated d is used to measure effect size for a
hypothesis test using a t statistic.

For the infant face-preference study in Example 9.1, the babies averaged M � 13 out of
20 seconds looking at the attractive face. If there were no preference (as stated by the
null hypothesis), the population mean would be μ � 10 seconds. Thus, the results show
a 3-second difference between the mean with a preference (M � 13) and the mean with
no preference (μ � 10). Also, for this study the sample standard deviation is

Thus, Cohen’s d for this example is estimated to be

Cohen’s d � �
M �

s
�

� � �
13 �

3
10

� � 1.00

According to the standards suggested by Cohen (Table 8.2, p. 264), this is a large
treatment effect.

To help you visualize what is measured by Cohen’s d, we have constructed a set of
n � 9 scores with a mean of M � 13 and a standard deviation of s � 3 (the same values
as in Examples 9.1 and 9.2). The set of scores is shown in Figure 9.5. Notice that the fig-
ure also includes an arrow that locates μ � 10. Recall that μ � 10 is the value specified
by the null hypothesis and identifies what the mean ought to be if the treatment has no
effect. Clearly, our sample is not centered around μ � 10. Instead, the scores have been
shifted to the right so that the sample mean is M � 13. This shift, from 10 to 13, is the
3-point mean difference that was caused by the treatment effect. Also notice that the 3-
point mean difference is exactly equal to the standard deviation. Thus, the size of the
treatment effect is equal to 1 standard deviation. In other words, Cohen’s d � 1.00.

An alternative method for measuring effect size is to determine how much of the vari-
ability in the scores is explained by the treatment effect. The concept behind this meas-
ure is that the treatment causes the scores to increase (or decrease), which means that
the treatment is causing the scores to vary. If we can measure how much of the vari-
ability is explained by the treatment, we can obtain a measure of the size of the treat-
ment effect.

MEASURING THE
PERCENTAGE OF VARIANCE

EXPLAINED, r2

s
SS

df
� � � �

72

8
9 3

E X A M P L E  9 . 2

mean difference
���
sample standard deviation
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To demonstrate this concept we use the data from the hypothesis test in Example 9.1.
Recall that the null hypothesis stated that the treatment (the attractiveness of the faces)
has no effect on the infants’ behavior. According to the null hypothesis, the infants
should show no preference between the two photographs, and therefore should spend
an average of μ � 10 out of 20 seconds looking at the attractive face.

However, if you look at the data in Figure 9.5, the scores are not centered around
μ � 10. Instead, the scores are shifted to the right so that they are centered around the
sample mean, M � 13. This shift is the treatment effect. To measure the size of the
treatment effect, we calculate deviations from the mean and the sum of squared devia-
tions, SS, in two different ways.

Figure 9.6(a) shows the original set of scores. For each score, the deviation from 
μ � 10 is shown as a colored line. Recall that μ � 10 comes from the null hypothesis
and represents the population mean if the treatment has no effect. Note that almost all
of the scores are located on the right-hand side of μ � 10. This shift to the right is the
treatment effect. Specifically, the preference for the attractive face has caused the 
infants to spend more time looking at the attractive photograph, which means that their
scores are generally greater than 10. Thus, the treatment has pushed the scores away
from μ � 10 and has increased the size of the deviations.

Next, we see what happens if the treatment effect is removed. In this example, the
treatment has a 3-point effect (the average increases from μ � 10 to M � 13). To 
remove the treatment effect, we simply subtract 3 points from each score. The adjusted
scores are shown in Figure 9.6(b) and, once again, the deviations from μ � 10 are
shown as colored lines. First, notice that the adjusted scores are centered at μ � 10, 
indicating that there is no treatment effect. Also notice that the deviations, the colored
lines, are noticeably smaller when the treatment effect is removed.

To measure how much the variability is reduced when the treatment effect is 
removed, we compute the sum of squared deviations, SS, for each set of scores. The left-
hand columns of Table 9.2 show the calculations for the original scores [Figure 9.6(a)], and
the right-hand columns show the calculations for the adjusted scores [Figure 9.6(b)]. Note
that the total variability, including the treatment effect, is SS � 153. However, when 
the treatment effect is removed, the variability is reduced to SS � 72. The difference 
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Time spent looking at the attractive face (in seconds)
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s � 3
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(from H0)
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FIGURE 9.5

The sample distribution for
the scores that were used in
Examples 9.1 and 9.2. The
population mean, � � 10
seconds, is the value that
would be expected if 
attractiveness has no effect
on the infants’ behavior.
Note that the sample mean 
is displaced away from 
� � 10 by a distance equal
to one standard deviation.
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between these two values, 153 – 72 � 81 points, is the amount of variability that is 
accounted for by the treatment effect. This value is usually reported as a proportion or
percentage of the total variability:

� �
1
8
5
1
3
� � 0.5294 (52.94%)

variability accounted for
���

total variability
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 8 9 10 11 12 13 14 15 16   17  18

 No effect
μ � 10

 5 6 7 8 9  10  11 12 13   14  15 

No effect 
μ � 10

Original scores, including the treatment effect

Adjusted scores with the treatment effect removed

(a)

(b)

FIGURE 9.6

Deviations from � � 10 
(no treatment effect) for the
scores in Example 9.1. The
colored lines in part (a) show
the deviations for the original
scores, including the 
treatment effect. In part (b)
the colored lines show the
deviations for the adjusted
scores after the treatment
effect has been removed.

TABLE 9.2

Calculation of SS, the sum of
squared deviations, for the 
data in Figure 9.6. The first
three columns show the 
calculations for the original
scores, including the treatment
effect. The last three columns
show the calculations for the
adjusted scores after the 
treatment effect has been 
removed.

Calculation of SS
including the treatment effect

Deviation Squared
Score from � � 10 Deviation

8 �2 4
10 0 0
12 2 4
12 2 4
13 3 9
13 3 9
15 5 25
17 7 49
17 7 49

SS � 153

Calculation of SS after
the treatment effect is removed

Adjusted Deviation Squared
Score from � � 10 Deviation

8 � 3 � 5 �5 25
10 � 3 � 7 �3 9
12 � 3 � 9 �1 1
12 � 3 � 9 �1 1
13 � 3 � 10 0 0
13 � 3 � 10 0 0
15 � 3 � 12 2 4
17 � 3 � 14 4 16
17 � 3 � 14 4 16

SS � 72
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Thus, removing the treatment effect reduces the variability by 52.94%. This value is
called the percentage of variance accounted for by the treatment and is identified as r2.

Rather than computing r2 directly by comparing two different calculations for SS,
the value can be found from a single equation based on the outcome of the t test.

(9.5)

The letter r is the traditional symbol used for a correlation, and the concept of r2 is
discussed again when we consider correlations in Chapter 15. Also, in the context of t
statistics, the percentage of variance that we are calling r2 is often identified by the
Greek letter omega squared (
2).

For the hypothesis test in Example 9.1, we obtained t � 3.00 with df � 8. These
values produce

Note that this is exactly the same value we obtained with the direct calculation of
the percentage of variability accounted for by the treatment.

Interpreting r2 In addition to developing the Cohen’s d measure of effect size,
Cohen (1988) also proposed criteria for evaluating the size of a treatment effect that is
measured by r2. The criteria were actually suggested for evaluating the size of a corre-
lation, r, but are easily extended to apply to r2. Cohen’s standards for interpreting r2 are
shown in Table 9.3.

According to these standards, the data we constructed for Examples 9.1 and 9.2
show a very large effect size with r2 � .5294.

As a final note, we should remind you that, although sample size affects the hy-
pothesis test, this factor has little or no effect on measures of effect size. In particular,
estimates of Cohen’s d are not influenced at all by sample size, and measures of r2 are
only slightly affected by changes in the size of the sample. The sample variance, on the
other hand, influences hypothesis tests and measures of effect size. Specifically, high
variance reduces both the likelihood of rejecting the null hypothesis and measures of
effect size.

An alternative technique for describing the size of a treatment effect is to compute an
estimate of the population mean after treatment. For example, if the mean before treat-
ment is known to be � � 80 and the mean after treatment is estimated to be � � 86,
then we can conclude that the size of the treatment effect is around 6 points.  

Estimating an unknown population mean involves constructing a confidence inter-
val. A confidence interval is based on the observation that a sample mean tends to pro-
vide a reasonably accurate estimate of the population mean. The fact that a sample
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TABLE 9.3

Criteria for interpreting the
value of r2 as proposed by
Cohen (1988).

Percentage of Variance Explained, r2

r2 � 0.01 Small effect
r2 � 0.09 Medium effect
r2 � 0.25 Large effect

30991_ch09_ptg01_hr_281-314.qxd  9/2/11  11:31 PM  Page 299



mean tends to be near to the population mean implies that the population mean should
be near to the sample mean. For example, if we obtain a sample mean of M � 86, we
can be reasonably confident that the population mean is around 86. Thus, a confidence
interval consists of an interval of values around a sample mean, and we can be reason-
ably confident that the unknown population mean is located somewhere in the interval.

A confidence interval is an interval, or range of values, centered around a 
sample statistic. The logic behind a confidence interval is that a sample statistic,
such as a sample mean, should be relatively near to the corresponding 
population parameter. Therefore, we can confidently estimate that the value of
the parameter should be located in the interval.

The construction of a confidence interval begins with the observation that every sam-
ple mean has a corresponding t value defined by the equation

Although the values for M and sM are available from the sample data, we cannot
use the equation to calculate t because the value for � is unknown. Instead of calculat-
ing the t value, for a confidence interval we estimate the t value. For example, if the
sample has n � 9 scores, then the t statistic has df � 8, and the distribution of all pos-
sible t values can be pictured as in Figure 9.7. Notice that the t values pile up around 
t � 0, so we can estimate that the t value for our sample should have a value around 0.
Furthermore, the t distribution table lists a variety of different t values that correspond
to specific proportions of the t distribution. With df � 8, for example, 80% of the t val-
ues are located between t � �1.397 and t � –1.397. To obtain these values, simply look
up a two-tailed proportion of 0.20 (20%) for df � 8. Because 80% of all of the possi-
ble t values are located between �1.397, we can be 80% confident that our sample
mean corresponds to a t value in this interval. Similarly, we can be 95% confident that
the mean for a sample of n � 9 scores corresponds to a t value between �2.306 and
–2.306. Notice that we are able to estimate the value of t with a specific level of 

t
M

s
M

�
�μ

CONSTRUCTING A
CONFIDENCE INTERVAL

D E F I N I T I O N
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t distribution
df = 8

t = �1.397t = �1.397
t = 0

Middle 80%
of t distribution

FIGURE 9.7

The distribution of t statistics
with df � 8. The t values pile
up around t � 0 and 80% of
all of the possible values are
located between t � �1.397
and t � �1.397.
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confidence. To construct a confidence interval for �, we plug the estimated t value into
the t equation, and then we can calculate the value of �.

Before we demonstrate the process of constructing a confidence interval for an un-
known population mean, we simplify the calculations by regrouping the terms in the t
equation. Because the goal is to compute the value of �, we use simple algebra to solve
the equation for �. The result is

� � M � tsM (9.6) 

The process of using this equation to construct a confidence interval is demon-
strated in the following example.

Example 9.1 describes a study in which infants displayed a preference for the more
attractive face by looking at it, instead of the less attractive face, for the majority of a
20-second viewing period. Specifically, a sample of n � 9 infants spent an average of
M � 13 seconds out of a 20-second period looking at the more attractive face. The
data produced an estimated standard error of sM � 1. We use this sample to construct
a confidence interval to estimate the mean amount of time that the population of
infants spends looking at the more attractive face. That is, we construct an interval of
values that is likely to contain the unknown population mean.

Again, the estimation formula is

� � M � t(sM) 

In the equation, the value of M � 13 and sM � 1 are obtained from the sample
data. The next step is to select a level of confidence that determines the value of t
in the equation. The most commonly used confidence level is probably 95%, but
values of 80%, 90%, and 99% are also common. For this example, we use a
confidence level of 80%, which means that we construct the confidence interval so
that we are 80% confident that the population mean is actually contained in the
interval. Because we are using a confidence level of 80%, the resulting interval is
called the 80% confidence interval for �.

To obtain the value for t in the equation, we simply estimate that the t statistic
for our sample is located somewhere in the middle 80% of the t distribution. With 
df � n – 1 � 8, the middle 80% of the distribution is bounded by t values of �1.397
and –1.397 (see Figure 9.7). Using the sample data and the estimated range of 
t values, we obtain

� � M � t(sM) � 13 � 1.397(1.00) � 13 � 1.397

At one end of the interval, we obtain � � 13 � 1.397 � 14.397, and at the 
other end we obtain � � 13 – 1.397 � 11.603. Our conclusion is that the average
time looking at the more attractive fact for the population of infants is between 
� �11.603 seconds and � � 14.397 seconds, and we are 80% confident that the
true population mean is located within this interval. The confidence comes from the 
fact that the calculation was based on only one assumption. Specifically, we
assumed that the t statistic was located between �1.397 and –1.397, and we are
80% confident that this assumption is correct because 80% of all of the possible 
t values are located in this interval. Finally, note that the confidence interval is
constructed around the sample mean. As a result, the sample mean, M � 13, is
located exactly in the center of the interval.

E X A M P L E  9 . 3

SECTION 9.3 / MEASURING EFFECT SIZE FOR THE t STATISTIC 301

To have 80% in the middle,
there must be 20% (or .20) in
the tails. To find the t values,
look under two tails, .20 in the 
t table.
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Two characteristics of the confidence interval should be noted. First, notice what hap-
pens to the width of the interval when you change the level of confidence (the percent
confidence). To gain more confidence in your estimate, you must increase the width of
the interval. Conversely, to have a smaller, more precise interval, you must give up 
confidence. In the estimation formula, the percentage of confidence influences the
value of t. A larger level of confidence (the percentage), produces a larger t value and
a wider interval. This relationship can be seen in Figure 9.7. In the figure, we identified
the middle 80% of the t distribution to find an 80% confidence interval. It should be 
obvious that if we were to increase the confidence level to 95%, it would be necessary
to increase the range of t values, and thereby increase the width of the interval.

Second, note what happens to the width of the interval if you change the sample
size. This time the basic rule is as follows: The bigger the sample (n), the smaller the
interval. This relationship is straightforward if you consider the sample size as a mea-
sure of the amount of information. A bigger sample gives you more information about
the population and allows you to make a more precise estimate (a narrower interval).
The sample size controls the magnitude of the standard error in the estimation formula.
As the sample size increases, the standard error decreases, and the interval gets smaller.
Because confidence intervals are influenced by sample size, they do not provide an 
unqualified measure of absolute effect size and are not an adequate substitute for
Cohen’s d or r2. Nonetheless, they can be used in a research report to provide a 
description of the size of the treatment effect.

FACTORS AFFECTING THE
WIDTH OF A CONFIDENCE

INTERVAL

IN THE LITERATURE
REPORTING THE RESULTS OF A t TEST

In Chapter 8, we noted the conventional style for reporting the results of a hypothesis
test, according to APA format. First, recall that a scientific report typically uses the
term significant to indicate that the null hypothesis has been rejected and the term not
significant to indicate failure to reject H0. Additionally, there is a prescribed format for
reporting the calculated value of the test statistic, degrees of freedom, and alpha level
for a t test. This format parallels the style introduced in Chapter 8 (p. 251).

In Example 9.1 we calculated a t statistic of 3.00 with df � 8, and we decided to
reject H0 with alpha set at .05. Using the same data from Example 9.1, we obtained 
r2 � 0.5294 (52.94%) for the percentage of variance explained by the treatment effect.
In a scientific report, this information is conveyed in a concise statement, as follows:

The infants spent an average of M � 13 out of 20 seconds looking at the attractive face, with
SD � 3.00. Statistical analysis indicates that the time spent looking at the attractive face was
significantly greater than would be expected if there were no preference, t(8) � 3.00, p < .05,
r2 � 0.5294.

302 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

L E A R N I N G  C H E C K 1. If all other factors are held constant, an 80% confidence interval is wider than a
90% confidence interval. (True or false?)

2. If all other factors are held constant, a confidence interval computed from a sam-
ple of n � 25 is wider than a confidence interval computed from a sample of n �
100. (True or false?)

1. False. Greater confidence requires a wider interval.

2. True. The smaller sample produces a wider interval.

ANSWERS
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The first statement reports the descriptive statistics, the mean (M � 13) and the
standard deviation (SD � 3), as previously described (Chapter 4, p. 123). The next
statement provides the results of the inferential statistical analysis. Note that the degrees
of freedom are reported in parentheses immediately after the symbol t. The value for the
obtained t statistic follows (3.00), and next is the probability of committing a Type I
error (less than 5%). Finally, the effect size is reported, r2 � 52.94%. If the 80%
confidence interval from Example 9.3 were included in the report as a description of
effect size, it would be added after the results of the hypothesis test as follows:

t(8) � 3.00, p < .05, 80% CI [11.603, 14.397].

Often, researchers use a computer to perform a hypothesis test like the one in
Example 9.1. In addition to calculating the mean, standard deviation, and the t
statistic for the data, the computer usually calculates and reports the exact probability
(or 	 level) associated with the t value. In Example 9.1 we determined that any t value
beyond �2.306 has a probability of less than .05 (see Figure 9.4). Thus, the obtained
t value, t � 3.00, is reported as being very unlikely, p < .05. A computer printout,
however, would have included an exact probability for our specific t value.

Whenever a specific probability value is available, you are encouraged to use it
in a research report. For example, the computer analysis of these data reports an 
exact p value of p � .017, and the research report would state “t(8) � 3.00, 
p � .017” instead of using the less specific “p < .05.” As one final caution, we note 
that occasionally a t value is so extreme that the computer reports p � 0.000. The
zero value does not mean that the probability is literally zero; instead, it means that
the computer has rounded off the probability value to three decimal places and
obtained a result of 0.000. In this situation, you do not know the exact probability
value, but you can report p < .001.
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The statement p < .05 was 
explained in Chapter 8, 
page 251.

L E A R N I N G  C H E C K 1. A sample of n � 16 individuals is selected from a population with a mean of 
μ � 80. A treatment is administered to the sample and, after treatment, the sample
mean is found to be M � 86 with a standard deviation of s � 8.

a. Does the sample provide sufficient evidence to conclude that the treatment has
a significant effect? Test with 	 � .05. 

b. Compute Cohen’s d and r2 to measure the effect size.

c. Find the 95% confidence interval for the population mean after treatment.

2. How does sample size influence the outcome of a hypothesis test and measures of
effect size? How does the standard deviation influence the outcome of a hypothesis
test and measures of effect size?

1. a. The estimated standard error is 2 points and the data produce t � 6/2 � 3.00. With 
df � 15, the critical values are t � �2.131, so the decision is to reject H0 and conclude
that there is a significant treatment effect. 

b. For these data, d � 6/8 � 0.75 and r2 � 9/24 � 0.375 or 37.5%.

c. For 95% confidence and df � 15, use t � �2.131. The confidence interval is � � 86
�2.131(2) and extends from 81.738 to 90.262.

2. Increasing sample size increases the likelihood of rejecting the null hypothesis but has little
or no effect on measures of effect size. Increasing the sample variance reduces the likeli-
hood of rejecting the null hypothesis and reduces measures of effect size.

ANSWERS
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9.4 DIRECTIONAL HYPOTHESES AND ONE-TAILED TESTS

As noted in Chapter 8, the nondirectional (two-tailed) test is more commonly used than
the directional (one-tailed) alternative. On the other hand, a directional test may be used
in some research situations, such as exploratory investigations or pilot studies or when
there is a priori justification (for example, a theory or previous findings). The follow-
ing example demonstrates a directional hypothesis test with a t statistic, using the same
experimental situation presented in Example 9.1.

The research question is whether attractiveness affects the behavior of infants looking
at photographs of women’s faces. The researcher is expecting the infants to prefer the
more attractive face. Therefore, the researcher predicts that the infants will spend
more than half of the 20-second period looking at the attractive face. For this
example, we use the same sample data that were used in the original hypothesis test
in Example 9.1. Specifically, the researcher tested a sample of n � 9 infants and
obtained a mean of M � 13 seconds looking at the attractive face with SS � 72.

State the hypotheses, and select an alpha level. With most directional tests, it is
usually easier to state the hypothesis in words, including the directional prediction,
and then convert the words into symbols. For this example, the researcher is
predicting that attractiveness will cause the infants to increase the amount of time
they spend looking at the attractive face; that is, more than half of the 20 seconds
should be spent looking at the attractive face. In general, the null hypothesis states
that the predicted effect will not happen. For this study, the null hypothesis states that
the infants will not spend more than half of the 20 seconds looking at the attractive
face. In symbols,

H0: μattractive � 10 seconds (Not more than half of the 20 seconds looking
at the attractive face)

Similarly, the alternative states that the treatment will work. In this case, H1 states 
that the infants will spend more than half of the time looking at the attractive face. In
symbols,

H1: μattractive � 10 seconds (More than half of the 20 seconds looking at
the attractive face)

This time, we set the level of significance at 	 � .01.

Locate the critical region. In this example, the researcher is predicting that the sample
mean (M) will be greater than 10 seconds. Thus, if the infants average more than 
10 seconds looking at the attractive face, the data will provide support for the
researcher’s prediction and will tend to refute the null hypothesis. Also note that a
sample mean greater than 10 will produce a positive value for the t statistic. Thus, 
the critical region for the one-tailed test will consist of positive t values located in 
the right-hand tail of the distribution. To find the critical value, you must look in the 
t distribution table using the one-tail proportions. With a sample of n � 9, the 
t statistic has df � 8; using 	 � .01, you should find a critical value of t � 2.896.
Therefore, if we obtain a t statistic greater than 2.896, we will reject the null
hypothesis and conclude that the infants show a significant preference for the
attractive face. Figure 9.8 shows the one-tailed critical region for this test.

S T E P  2

S T E P  1

E X A M P L E  9 . 4
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Calculate the test statistic. The computation of the t statistic is the same for either a
one-tailed or a two-tailed test. Earlier (in Example 9.1), we found that the data for
this experiment produce a test statistic of t � 3.00.

Make a decision. The test statistic is in the critical region, so we reject H0. In terms
of the experimental variables, we have decided that the infants show a preference
and spend significantly more time looking at the attractive face than they do
looking at the unattractive face. In a research report, the results would be presented
as follows:

The time spent looking at the attractive face was significantly greater than would be expected
if there were no preference, t(8) � 3.00, p < .01, one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

In step 2 of Example 9.4, we determined that the critical region is in the right-hand
tail of the distribution. However, it is possible to divide this step into two stages that
eliminate the need to determine which tail (right or left) should contain the critical
region. The first stage in this process is simply to determine whether the sample mean
is in the direction predicted by the original research question. For this example,
the researcher predicted that the infants would prefer the attractive face and spend
more time looking at it. Specifically, the researcher expects the infants to spend
more than 10 out of 20 seconds focused on the attractive face. The obtained sample
mean, M � 13 seconds, is in the correct direction. This first stage eliminates the
need to determine whether the critical region is in the left- or right-hand tail.
Because we already have determined that the effect is in the correct direction, the
sign of the t statistic (� or –) no longer matters. The second stage of the process is
to determine whether the effect is large enough to be significant. For this example,
the requirement is that the sample produces a t statistic greater than 2.896. If the
magnitude of the t statistic, independent of its sign, is greater than 2.896, then the
result is significant and H0 is rejected.

THE CRITICAL REGION FOR 
A ONE-TAILED TEST

S T E P  4

S T E P  3
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t distribution
df = 8

t = �2.896
t = 0

Reject H0

FIGURE 9.8

The one-tailed critical region
for the hypothesis test in
Example 9.4 with df � 8 and
	 � .01.
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306 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

L E A R N I N G  C H E C K 1. A new over-the-counter cold medication includes a warning label stating that it
“may cause drowsiness.” A researcher would like to evaluate this effect. It is
known that under regular circumstances the distribution of reaction times is nor-
mal with μ � 200. A sample of n � 9 participants is obtained. Each person is
given the new cold medication, and, 1 hour later, reaction time is measured for
each individual. The average reaction time for this sample is M � 206 with 
SS � 648. The researcher would like to use a hypothesis test with 	 � .05 to 
evaluate the effect of the medication.

a. Use a two-tailed test with 	 � .05 to determine whether the medication has a
significant effect on reaction time.

b. Write a sentences that demonstrates how the outcome of the hypothesis test
would appear in a research report.

c. Use a one-tailed test with 	 � .05 to determine whether the medication 
produces a significant increase in reaction time.

d. Write a sentence that demonstrates how the outcome of the one-tailed hypothe-
sis test would appear in a research report.

1. a. For the two-tailed test, H0: μ � 200. The sample variance is 81, the estimated standard
error is 3, and t � 6/3 � 2.00. With df � 8, the critical boundaries are � 2.306. Fail to
reject the null hypothesis.

b. The result indicates that the medication does not have a significant effect on reaction
time, t(8) � 2.00, p > .05.

c. For a one-tailed test, H0: μ ≤ 200 (no increase). The data product t � 6/3 � 2.00. With 
df � 8, the critical boundary is 1.860. Reject the null hypothesis.

d. The results indicate that the medication produces a significant increase in reaction time,
t(8) � 2.00, p < .05, one tailed.

ANSWER

1. The t statistic is used instead of a z-score for hypothesis
testing when the population standard deviation (or
variance) is unknown.

2. To compute the t statistic, you must first calculate the
sample variance (or standard deviation) as a substitute
for the unknown population value.

sample variance � s2 � �
S
d
S
f
�

Next, the standard error is estimated by substituting
s2 in the formula for standard error. The estimated
standard error is calculated in the following manner:

estimated standard error � sM � ��
s
n

2

��

Finally, a t statistic is computed using the estimated
standard error. The t statistic is used as a substitute for a
z-score that cannot be computed when the population
variance or standard deviation is unknown.

t � �
M

s
�

M

�
�

The structure of the t formula is similar to that of the
z-score in that

z or t �

For a hypothesis test, you hypothesize a value for the
unknown population mean and plug the hypothesized
value into the equation along with the sample mean and

sample mean � population mean
����

(estimated) standard error

SUMMARY
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 9 on the book

companion website. The website also provides access to a workshop entitled Single-
Sample t Test, which reviews the concepts and logic of hypothesis testing with the 
t statistic.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
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the estimated standard error, which are computed from
the sample data. If the hypothesized mean produces an
extreme value for t, then you conclude that the
hypothesis was wrong.

4. The t distribution is an approximation of the normal z
distribution. To evaluate a t statistic that is obtained for
a sample mean, the critical region must be located in a t
distribution. There is a family of t distributions, with
the exact shape of a particular distribution of t values
depending on degrees of freedom (n – 1). Therefore, the
critical t values depend on the value for df associated
with the t test. As df increases, the shape of the t
distribution approaches a normal distribution.

5. When a t statistic is used for a hypothesis test, Cohen’s
d can be computed to measure effect size. In this
situation, the sample standard deviation is used in the
formula to obtain an estimated value for d:

estimated d ��
st
m
an

e
d
a
a
n
r
d
d
i
d
ff
e
e
v
r
i
e
a
n
t
c
io
e
n

�� �
M �

s
�

�

6. A second measure of effect size is r2, which measures
the percentage of the variability that is accounted for by
the treatment effect. This value is computed as follows:

7. An alternative method for describing the size of a
treatment effect is to use a confidence interval for �.
A confidence interval is a range of values that
estimates the unknown population mean. The
confidence interval uses the t equation, solved for the
unknown mean:

� � M � t(sM) 

First, select a level of confidence and then look up 
the corresponding t values to use in the equation. 
For example, for 95% confidence, use the range of
t values that determine the middle 95% of the
distribution.

r
t

t df
2

2

2
�

�

KEY TERMS

estimated standard error (286)

t statistic (286)

degrees of freedom (287)

t distribution (287)

estimated d (295)

percentage of variance accounted for
by the treatment (r2) (299)

confidence interval (300)
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Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the t Test presented in this chapter.

Data Entry

Enter all of the scores from the sample in one column of the data editor, probably
VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Sample
T Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and
click the arrow to move it into the Test Variable(s) box.

3. In the Test Value box at the bottom of the One-Sample t Test window, enter the
hypothesized value for the population mean from the null hypothesis. Note: The
value is automatically set at zero until you type in a new value.

4. In addition to performing the hypothesis test, the program computes a confidence
interval for the population mean difference. The confidence level is automatically
set at 95%, but you can select Options and change the percentage.

5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the infants-and-attractive-faces 
study in Example 9.1 and the program output is shown in Figure 9.9. The output includes
a table of sample statistics with the mean, standard deviation, and standard error for 
the sample mean. A second table shows the results of the hypothesis test, including the
values for t, df, and the level of significance (the p value for the test), as well as the
mean difference from the hypothesized value of � � 10 and a 95% confidence interval
for the mean difference. To obtain a 95% confidence interval for the mean, simply add 
� � 10 points to the values in the table. 

FOCUS ON PROBLEM SOLVING

1. The first problem we confront in analyzing data is determining the appropriate
statistical test. Remember that you can use a z-score for the test statistic only
when the value for � is known. If the value for � is not provided, then you must
use the t statistic.

308 CHAPTER 9 INTRODUCTION TO THE t STATISTIC
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2. For the t test, the sample variance is used to find the value for the estimated 
standard error. Remember to use n – 1 in the denominator when computing the
sample variance (see Chapter 4). When computing estimated standard error, use
n in the denominator.

DEMONSTRATION 9.1

A HYPOTHESIS TEST WITH THE t STATISTIC

A psychologist has prepared an “Optimism Test” that is administered yearly to graduating
college seniors. The test measures how each graduating class feels about its future—the
higher the score, the more optimistic the class. Last year’s class had a mean score of 
μ � 15. A sample of n � 9 seniors from this year’s class was selected and tested. The
scores for these seniors are 7, 12, 11, 15, 7, 8, 15, 9, and 6, which produce a sample mean
of M � 10 with SS � 94.

On the basis of this sample, can the psychologist conclude that this year’s class has a
different level of optimism than last year’s class?

Note that this hypothesis test uses a t statistic because the population variance (�2) is
not known.

State the hypotheses, and select an alpha level. The statements for the null hypothesis
and the alternative hypothesis follow the same form for the t statistic and the z-score test.

H0: μ � 15 (There is no change.)

H1: μ  15 (This year’s mean is different.)

For this demonstration, we use 	 � .05, two tails.

S T E P  1

DEMONSTRATION 9.1 309

One-Sample Statistics

VAR00001 9 13.0000

3.000 8 .017 3.00000 .6940 5.3060

1.00000

N

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence Interval of the
Difference

Mean

3.00000

Std. Deviation
Std. Error

Mean

One-Sample Test

VAR00001

Test Value = 10

FIGURE 9.9

The SPSS output for the hypothesis test presented in Example 9.1.
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Locate the critical region. With a sample of n � 9 students, the t statistic has 
df � n – 1 � 8. For a two-tailed test with 	 � .05 and df � 8, the critical t values are 
t � �2.306. These critical t values define the boundaries of the critical region. The 
obtained t value must be more extreme than either of these critical values to reject H0.

Compute the test statistic. As we have noted, it is easier to separate the calculation of
the t statistic into three stages.

Sample variance.

Estimated standard error. The estimated standard error for these data is

The t statistic. Now that we have the estimated standard error and the sample mean,
we can compute the t statistic. For this demonstration,

Make a decision about H0, and state a conclusion. The t statistic we obtained 
(t � –4.39) is in the critical region. Thus, our sample data are unusual enough to reject the
null hypothesis at the .05 level of significance. We can conclude that there is a significant
difference in level of optimism between this year’s and last year’s graduating classes,
t(8)� –4.39, p < .05, two-tailed.

DEMONSTRATION 9.2

EFFECT SIZE: ESTIMATING COHEN’S d AND COMPUTING r2

We will estimate Cohen’s d for the same data used for the hypothesis test in Demon-
stration 9.1. The mean optimism score for the sample from this year’s class was 5 points
lower than the mean from last year (M � 10 versus μ � 15). In Demonstration 9.1, we
computed a sample variance of s2 � 11.75, so the standard deviation is �11.75� � 3.43.
With these values,

To calculate the percentage of variance explained by the treatment effect, r2, we need
the value of t and the df value from the hypothesis test. In Demonstration 9.1, we obtained 
t � –4.39 with df � 8. Using these values in Equation 9.5, we obtain

r
t

t df
2

2

2

2

2

4 39

4 39 8

19 27

27 27
0�

�
�

�

� �
� �

.

.

.

.
.

( )
( )

771

estimated
mean difference

standard deviati
d �

oon
� �

5

3 43
1 46

.
.
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9
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PROBLEMS

1. Under what circumstances is a t statistic used instead
of a z-score for a hypothesis test?

2. A sample of n � 25 scores has a mean of M � 83 and
a standard deviation of s � 15. 
a. Explain what is measured by the sample standard

deviation.
b. Compute the estimated standard error for the

sample mean and explain what is measured by the
standard error.

3. Find the estimated standard error for the sample mean
for each of the following samples.
a. n � 4 with SS � 48
b. n � 6 with SS � 270
c. n � 12 with SS � 132

4. Explain why t distributions tend to be flatter and more
spread out than the normal distribution.

5. Find the t values that form the boundaries of the
critical region for a two-tailed test with 	 � .05 for
each of the following sample sizes:
a. n � 6
b. n � 12
c. n � 24

6. The following sample of n � 6 scores was obtained
from a population with unknown parameters. 

Scores: 7, 1, 6, 3, 6, 7
a. Compute the sample mean and standard deviation.

(Note that these are descriptive values that
summarize the sample data.)

b. Compute the estimated standard error for M. (Note
that this is an inferential value that describes how
accurately the sample mean represents the unknown
population mean.)

7. The following sample was obtained from a population
with unknown parameters.

Scores: 6, 12, 0, 3, 4
a. Compute the sample mean and standard deviation.

(Note that these are descriptive values that
summarize the sample data.)

b. Compute the estimated standard error for M. (Note
that this is an inferential value that describes how
accurately the sample mean represents the unknown
population mean.)

8. To evaluate the effect of a treatment, a sample is
obtained from a population with a mean of μ � 75,
and the treatment is administered to the individuals in
the sample. After treatment, the sample mean is found
to be M � 79.6 with a standard deviation of s � 12.
a. If the sample consists of n � 16 individuals, are the

data sufficient to conclude that the treatment has a

significant effect using a two-tailed test with 
	 � .05?

b. If the sample consists of n � 36 individuals, are 
the data sufficient to conclude that the treatment
has a significant effect using a two-tailed test with
	 � .05?

c. Comparing your answer for parts a and b, how does
the size of the sample influence the outcome of a
hypothesis test?

9. To evaluate the effect of a treatment, a sample of n � 9
is obtained from a population with a mean of μ � 40,
and the treatment is administered to the individuals in
the sample. After treatment, the sample mean is found
to be M � 33.
a. If the sample has a standard deviation of s � 9, are

the data sufficient to conclude that the treatment
has a significant effect using a two-tailed test with
	 � .05?

b. If the sample standard deviation is s � 15, are the
data sufficient to conclude that the treatment has 
a significant effect using a two-tailed test with 
	 � .05?

c. Comparing your answer for parts a and b, how does
the variability of the scores in the sample influence
the outcome of a hypothesis test?

10. A random sample of n � 16 individuals is selected
from a population with μ � 70, and a treatment is
administered to each individual in the sample. After
treatment, the sample mean is found to be M � 76
with SS � 960.
a. How much difference is there between the mean for

the treated sample and the mean for the original
population? (Note: In a hypothesis test, this value
forms the numerator of the t statistic.)

b. How much difference is expected just by chance
between the sample mean and its population mean?
That is, find the standard error for M. (Note: In a
hypothesis test, this value is the denominator of the
t statistic.)

c. Based on the sample data, does the treatment have 
a significant effect? Use a two-tailed test with 
	 � .05.

11. The spotlight effect refers to overestimating the extent
to which others notice your appearance or behavior,
especially when you commit a social faux pas. Effecti-
vely, you feel as if you are suddenly standing in a
spotlight with everyone looking. In one demonstration
of this phenomenon, Gilovich, Medvec, and Savitsky
(2000) asked college students to put on a Barry
Manilow T-shirt that fellow students had previously
judged to be embarrassing. The participants were 
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then led into a room in which other students were
already participating in an experiment. After a few
minutes, the participant was led back out of the room
and was allowed to remove the shirt. Later, each
participant was asked to estimate how many people in
the room had noticed the shirt. The individuals who
were in the room were also asked whether they 
noticed the shirt. In the study, the participants
significantly overestimated the actual number of
people who had noticed.
a. In a similar study using a sample of n � 9

participants, the individuals who wore the shirt
produced an average estimate of M � 6.4 with 
SS � 162. The average number who said they
noticed was 3.1. Is the estimate from the
participants significantly different from the actual
number? Test the null hypothesis that the true mean
is μ � 3.1 using a two-tailed test with 	 � .05.

b. Is the estimate from the participants significantly
higher than the actual number (μ � 3.1)? Use a 
one-tailed test with 	 � .05.

12. Many animals, including humans, tend to avoid direct
eye contact and even patterns that look like eyes. Some
insects, including moths, have evolved eye-spot
patterns on their wings to help ward off predators.
Scaife (1976) reports a study examining how eye-spot
patterns affect the behavior of birds. In the study, the
birds were tested in a box with two chambers and 
were free to move from one chamber to another. In 
one chamber, two large eye-spots were painted on one
wall. The other chamber had plain walls. The
researcher recorded the amount of time each bird spent
in the plain chamber during a 60-minute session.
Suppose the study produced a mean of M � 37
minutes in the plain chamber with SS � 288 for a
sample of n � 9 birds. (Note: If the eye-spots have 
no effect, then the birds should spend an average of 
μ � 30 minutes in each chamber.)
a. Is this sample sufficient to conclude that the eye-

spots have a significant influence on the birds’
behavior? Use a two-tailed test with 	 � .05.

b. Compute the estimated Cohen’s d to measure the
size of the treatment effect.

c. Construct the 95% confidence interval to estimate
the mean amount of time spent on the plain side for
the population of birds.

13. Standardized measures seem to indicate that the
average level of anxiety has increased gradually over
the past 50 years (Twenge, 2000). In the 1950s, the
average score on the Child Manifest Anxiety Scale
was � � 15.1. A sample of n � 16 of today’s children
produces a mean score of M � 23.3 with SS � 240.
a. Based on the sample, has there been a significant

change in the average level of anxiety since the
1950s? Use a two-tailed test with 	 � .01.

b. Make a 90% confidence interval estimate of today’s
population mean level of anxiety.

c. Write a sentence that demonstrates how the
outcome of the hypothesis test and the confidence
interval would appear in a research report.

14. The librarian at the local elementary school claims
that, on average, the books in the library are more than
20 years old. To test this claim, a student takes a
sample of n � 30 books and records the publication
date for each. The sample produces an average age of
M � 23.8 years with a variance of s2 � 67.5. Use this
sample to conduct a one-tailed test with 	 � .01 to
determine whether the average age of the library books
is significantly greater than 20 years (μ > 20).

15. For several years researchers have noticed that there
appears to be a regular, year-by-year increase in the
average IQ for the general population. This
phenomenon is called the Flynn effect after the
researcher who first reported it (Flynn, 1984, 1999),
and it means that psychologists must continuously
update IQ tests to keep the population mean at 
� � 100. To evaluate the size of the effect, a
researcher obtained a 10-year-old IQ test that was
standardized to produce a mean IQ of � � 100 for the
population 10 years ago. The test was then given to a
sample of n � 64 of today’s 20-year-old adults. The
average score for the sample was M � 107 with a
standard deviation of s � 12. 
a. Based on the sample, is the average IQ for today’s

population significantly different from the average
10 years ago, when the test would have produces 
a mean of � � 100? Use a two-tailed test with 
	 � .01. 

b. Make an 80% confidence interval estimate of
today’s population mean IQ for the 10-year-old test.

16. In a classic study of infant attachment, Harlow (1959)
placed infant monkeys in cages with two artificial
surrogate mothers. One “mother” was made from bare
wire mesh and contained a baby bottle from which the
infants could feed. The other mother was made from soft
terry cloth and did not provide any access to food.
Harlow observed the infant monkeys and recorded how
much time per day was spent with each mother. In a
typical day, the infants spent a total of 18 hours clinging
to one of the two mothers. If there were no preference
between the two, you would expect the time to be
divided evenly, with an average of μ � 9 hours for each
of the mothers. However, the typical monkey spent
around 15 hours per day with the terry-cloth mother,
indicating a strong preference for the soft, cuddly
mother. Suppose a sample of n � 9 infant monkeys
averaged M � 15.3 hours per day with SS � 216 with
the terry-cloth mother. Is this result sufficient to
conclude that the monkeys spent significantly more time
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with the softer mother than would be expected if there
were no preference? Use a two-tailed test with 	 � .05.

17. Belsky, Weinraub, Owen, and Kelly (2001) reported
on the effects of preschool childcare on the
development of young children. One result suggests
that children who spend more time away from their
mothers are more likely to show behavioral problems
in kindergarten. Using a standardized scale, the average
rating of behavioral problems for kindergarten children
is μ � 35. A sample of n � 16 kindergarten children
who had spent at least 20 hours per week in childcare
during the previous year produced a mean score of 
M � 42.7 with a standard deviation of s � 6.
a. Are the data sufficient to conclude that children

with a history of childcare show significantly more
behavioral problems than the average kindergarten
child? Use a one-tailed test with 	 � .01.

b. Compute r2, the percentage of variance accounted
for, to measure the size of the preschool effect.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.

18. Other research examining the effects of preschool
childcare has found that children who spent time in
day care, especially high-quality day care, perform
better on math and language tests than children who
stay home with their mothers (Broberg, Wessels,
Lamb, & Hwang, 1997). Typical results, for example,
show that a sample of n � 25 children who attended
day care before starting school had an average score of
M � 87 with SS � 1536 on a standardized math test
for which the population mean is μ � 81.
a. Is this sample sufficient to conclude that the

children with a history of preschool day care are
significantly different from the general population?
Use a two-tailed test with 	 � .01.

b. Compute Cohen’s d to measure the size of the
preschool effect.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.

19. A random sample of n � 25 scores is obtained from a
population with a mean of μ � 45. A treatment is
administered to the individuals in the sample and, after
treatment, the sample mean is M � 48.
a. Assuming that the sample standard deviation is 

s � 6 compute r2 and the estimated Cohen’s d to
measure the size of the treatment effect.

b. Assuming that the sample standard deviation is 
s � 15, compute r2 and the estimated Cohen’s d to
measure the size of the treatment effect.

c. Comparing your answers from parts a and b, how
does the variability of the scores in the sample
influence the measures of effect size?

20. A random sample is obtained from a population with a
mean of μ � 70. A treatment is administered to the
individuals in the sample and, after treatment, the
sample mean is M � 78 with a standard deviation of 
s � 20.
a. Assuming that the sample consists of n � 25

scores, compute r2 and the estimated Cohen’s d to
measure the size of treatment effect.

b. Assuming that the sample consists of n � 16
scores, compute r2 and the estimated Cohen’s d to
measure the size of treatment effect.

c. Comparing your answers from parts a and b, how
does the number of scores in the sample influence
the measures of effect size?

21. An example of the vertical-horizontal illusion is shown
in the figure below. Although the two lines are exactly
the same length, the vertical line appears to be much
longer. To examine the strength of this illusion, a
researcher prepared an example in which both lines
were exactly 10 inches long. The example was 
shown to individual participants who were told that 
the horizontal line was 10 inches long and then 
were asked to estimate the length of the vertical 
line. For a sample of n � 25 participants, the average
estimate was M � 12.2 inches with a standard
deviation of s � 1.00.

An example of the vertical-
horizontal illusion

a. Use a one-tailed hypothesis test with 	 � .01 to
demonstrate that the individuals in the sample
significantly overestimate the true length of the line.
(Note: Accurate estimation would produce a mean of
μ � 10 inches.)

b. Calculate the estimated d and r2, the percentage of
variance accounted for, to measure the size of this
effect.

c. Construct a 95% confidence interval for the
population mean estimated length of the vertical line.

22. In studies examining the effect of humor on
interpersonal attractions, McGee and Shevlin (2009)
found that an individual’s sense of humor had a
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significant effect on how the individual was perceived
by others. In one part of the study, female college
students were given brief descriptions of a potential
romantic partner. The fictitious male was described
positively as being single, ambitious, and having 
good job prospects. For one group of participants, 
the description also said that he had a great sense of
humor. For another group, it said that he had no sense
of humor. After reading the description, each
participant was asked to rate the attractiveness of the
man on a seven-point scale from 1 (very attractive) to
7 (very unattractive). A score of 4 indicates a neutral
rating.
a. The females who read the “great sense of humor”

description gave the potential partner an average
attractiveness score of M � 4.53 with a standard
deviation of s � 1.04. If the sample consisted of 
n � 16 participants, is the average rating significantly
higher than neutral (μ � 4)? Use a one-tailed test
with 	 � .05.

b. The females who read the description saying “no
sense of humor” gave the potential partner an

average attractiveness score of M � 3.30 with a
standard deviation of s � 1.18. If the sample
consisted of n � 16 participants, is the average
rating significantly lower than neutral (μ � 4)? Use
a one-tailed test with 	 � .05.

23. A psychologist would like to determine whether there
is a relationship between depression and aging. It is
known that the general population averages μ � 40 on a
standardized depression test. The psychologist obtains a
sample of n � 9 individuals who are all more than 
70 years old. The depression scores for this sample are
as follows: 37, 50, 43, 41, 39, 45, 49, 44, 48.
a. On the basis of this sample, is depression for

elderly people significantly different from
depression in the general population? Use a 
two-tailed test with 	 � .05.

b. Compute the estimated Cohen’s d to measure the
size of the difference.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.
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