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16.1 INTRODUCTION TO LINEAR EQUATIONS AND REGRESSION

In the previous chapter, we introduced the Pearson correlation as a technique for 
describing and measuring the linear relationship between two variables. Figure 16.1
presents hypothetical data showing the relationship between SAT scores and college
grade point average (GPA). Note that the figure shows a good, but not perfect, positive
relationship. Also note that we have drawn a line through the middle of the data points.
This line serves several purposes:

1. The line makes the relationship between SAT scores and GPA easier to see.

2. The line identifies the center, or central tendency, of the relationship, just as the
mean describes central tendency for a set of scores. Thus, the line provides a
simplified description of the relationship. For example, if the data points were
removed, the straight line would still give a general picture of the relationship
between SAT scores and GPA.

3. Finally, the line can be used for prediction. The line establishes a precise, one-to-
one relationship between each X value (SAT score) and a corresponding Y value
(GPA). For example, an SAT score of 620 corresponds to a GPA of 3.25 (see
Figure 16.1). Thus, the college admissions officers could use the straight-line

Preview
In Chapter 15, we noted that one common application of
correlations is for purposes of prediction. Whenever there
is a consistent relationship between two variables, it is
possible to use the value of one variable to predict the
value of another. Managers at the electric company, for
example, can use the weather forecast to predict power
demands for upcoming days. If exceptionally hot summer
weather is forecast, they can anticipate an exceptionally
high demand for electricity. In the field of psychology, a
known relationship between certain personality character-
istics and eating disorders can allow clinicians to predict
that individuals who show specific characteristics are
more likely to develop disorders. A common prediction
that is especially relevant for college students (and poten-
tial college students) is based on the relationship between
scores on aptitude tests (such as the SAT) and future
grade point averages in college. Each year, SAT scores
from thousands of high school students are used to help
college admissions officers decide who should be admit-
ted and who should not.

The Problem: The correlations introduced in Chapter 15
allow researchers to measure and describe relationships,
and the hypothesis tests allow researchers to evaluate
the significance of correlations. However, we now want
to go one step further and actually use a correlation to
make predictions.

The Solution: In this chapter we introduce some of
the statistical techniques that are used to make
predictions based on correlations. Whenever there is a
linear relationship (Pearson correlation) between two
variables, it is possible to compute an equation that
provides a precise, mathematical description of the
relationship. With the equation, it is possible to plug in
the known value for one variable (for example, your
SAT score), and then calculate a predicted value for the
second variable (for example, your college grade point
average). The general statistical process of finding and
using a prediction equation is known as regression.

Beyond finding a prediction equation, however, it is
reasonable to ask how good its predictions are. For example,
I can make predictions about the outcome of a coin toss by
simply guessing. However, my predictions are correct only
about 50% of the time. In statistical terms, my predictions are
not significantly better than chance. In the same way, it is
appropriate to challenge the significance of any prediction
equation. In this chapter we introduce the techniques that are
used to find prediction equations, as well as the techniques
that are used to determine whether their predictions are statis-
tically significant. Incidentally, although there is some con-
troversy about the practice of using SAT scores to predict
college performance, there is a great deal of research show-
ing that SAT scores really are valid and significant predictors
(Camera & Echternacht, 2000; Geiser & Studley, 2002).
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relationship to predict that a student entering college with an SAT score of 620
should achieve a college GPA of approximately 3.25.

Our goal in this section is to develop a procedure that identifies and defines the
straight line that provides the best fit for any specific set of data. This straight line does
not have to be drawn on a graph; it can be presented in a simple equation. Thus, our
goal is to find the equation for the line that best describes the relationship for a set of 
X and Y data.

In general, a linear relationship between two variables X and Y can be expressed by the
equation

Y � bX � a (16.1)

where a and b are fixed constants.
For example, a local video store charges a membership fee of $5 per month, which

allows you to rent videos and games for $2 each. With this information, the total cost
for 1 month can be computed using a linear equation that describes the relationship 
between the total cost (Y) and the number of videos and games rented (X).

Y � 2X � 5

In the general linear equation, the value of b is called the slope. The slope deter-
mines how much the Y variable changes when X is increased by 1 point. For the video
store example, the slope is b � 2 and indicates that your total cost increases by $2 for
each video you rent. The value of a in the general equation is called the Y-intercept
because it determines the value of Y when X � 0. (On a graph, the a value identifies the
point where the line intercepts the Y-axis.) For the video store example, a � 5; there is
a $5 membership charge even if you never rent a video.

Figure 16.2 shows the general relationship between the monthly cost and number
of videos for the video store example. Notice that the relationship results in a straight

LINEAR EQUATIONS
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FIGURE 16.1

Hypothetical data showing
the relationship between SAT
scores and GPA with a 
regression line drawn
through the data points. The
regression line defines a
precise, one-to-one 
relationship between each 
X value (SAT score) and its
corresponding Y value (GPA).

Note that a positive slope means
that Y increases when X is 
increased, and a negative slope
indicates that Y decreases when
X is increased.
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line. To obtain this graph, we picked any two values of X and then used the equation to
compute the corresponding values for Y. For example,

when X � 3: when X � 8:

Y � bX � a Y � bX � a
� $2(3) � $5 � $2(8) � $5
� $6 � $5 � $16 � $5
� $11 � $21

Next, these two points are plotted on the graph: one point at X � 3 and Y � 11, the
other point at X � 8 and Y � 21. Because two points completely determine a straight
line, we simply drew the line so that it passed through these two points.

560 CHAPTER 16 INTRODUCTION TO REGRESSION
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The relationship between
total cost and number of
videos rented each month.
The video store charges a $5
monthly membership fee and
$2 for each video or game
rented. The relationship is
described by a linear 
equation Y � 2X � 5 where
Y is the total cost and X is the
number of videos.

When drawing a graph of a
linear equation, it is wise to
compute and plot at least 
three points to be certain that
you have not made a mistake.

L E A R N I N G  C H E C K 1. A local gym charges a $25 monthly membership fee plus $2 per hour for aerobics
classes. What is the linear equation that describes the relationship between the
total monthly cost (Y) and the number of class hours each month (X)?

2. For the following linear equation, what happens to the value of Y each time X is
increased by 1 point?

Y � �3X � 7
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Because a straight line can be extremely useful for describing a relationship between
two variables, a statistical technique has been developed that provides a standardized
method for determining the best-fitting straight line for any set of data. The statistical
procedure is regression, and the resulting straight line is called the regression line.

The statistical technique for finding the best-fitting straight line for a set of data
is called regression, and the resulting straight line is called the regression line.

The goal for regression is to find the best-fitting straight line for a set of data. To
accomplish this goal, however, it is first necessary to define precisely what is meant by
“best fit.” For any particular set of data, it is possible to draw lots of different straight
lines that all appear to pass through the center of the data points. Each of these lines can
be defined by a linear equation of the form Y � bX � a where b and a are constants
that determine the slope and Y-intercept of the line, respectively. Each individual line
has its own unique values for b and a. The problem is to find the specific line that 
provides the best fit to the actual data points.

To determine how well a line fits the data points, the first step is to define mathemati-
cally the distance between the line and each data point. For every X value in the data,
the linear equation determines a Y value on the line. This value is the predicted Y and
is called Ŷ (“Y hat”). The distance between this predicted value and the actual Y value
in the data is determined by

distance � Y � Ŷ

Note that we simply are measuring the vertical distance between the actual data
point (Y) and the predicted point on the line. This distance measures the error between
the line and the actual data (Figure 16.3).

Because some of these distances are positive and some are negative, the next step
is to square each distance to obtain a uniformly positive measure of error. Finally, to

THE LEAST-SQUARES
SOLUTION

D E F I N I T I O N

REGRESSION
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3. Use the linear equation Y � 2X � 7 to determine the value of Y for each of the
following values of X: 1, 3, 5, 10.

4. If the slope constant (b) in a linear equation is positive, then a graph of the equa-
tion is a line tilted from lower left to upper right. (True or false?)

1. Y � 2X � 25

2. The slope is �3, so Y decreases by 3 points each time X increases by 1 point.

3. X Y

1 �5
3 �1
5 3

10 13

4. True. A positive slope indicates that Y increases (goes up in the graph) when X increases
(goes to the right in the graph).

ANSWERS
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determine the total error between the line and the data, we add the squared errors for all
of the data points. The result is a measure of overall squared error between the line and
the data:

total squared error � �(Y � Ŷ )2

Now we can define the best-fitting line as the one that has the smallest total squared
error. For obvious reasons, the resulting line is commonly called the least-squared-error
solution. In symbols, we are looking for a linear equation of the form

Ŷ � bX � a

For each value of X in the data, this equation determines the point on the line (Ŷ )
that gives the best prediction of Y. The problem is to find the specific values for a and
b that make this the best-fitting line.

The calculations that are needed to find this equation require calculus and some 
sophisticated algebra, so we do not present the details of the solution. The results, how-
ever, are relatively straightforward, and the solutions for b and a are as follows:

b � �
S
S
S
P

X
� (16.2)

where SP is the sum of products and SSX is the sum of squares for the X scores.
A commonly used alternative formula for the slope is based on the standard devi-

ations for X and Y. The alternative formula is

b � r �s
s
X

Y� (16.3)

where sY is the standard deviation for the Y scores, sX is the standard deviation for the
X scores, and r is the Pearson correlation for X and Y. The value of the constant a in the
equation is determined by

a � MY � bMX (16.4)

562 CHAPTER 16 INTRODUCTION TO REGRESSION
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FIGURE 16.3

The distance between the
actual data point (Y ) and the
predicted point on the line 
(Ŷ ) is defined as Y � Ŷ . The
goal of regression is to find
the equation for the line that
minimizes these distances.
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Note that these formulas determine the linear equation that provides the best 
prediction of Y values. This equation is called the regression equation for Y.

The regression equation for Y is the linear equation

Ŷ � bX � a (16.5)

where the constant b is determined by Equation 16.2, or 16.3 and the constant a
is determined by Equation 16.4. This equation results in the least squared error
between the data points and the line.

The scores in the following table are used to demonstrate the calculation and use of
the regression equation for predicting Y. 

X Y X � MX Y � MY (X � MX )2 (Y � MX )2 (X � Mx)(Y � MY)

2 3 �2 �5 4 25 10
6 11 2 3 4 9 6
0 6 �4 �2 16 4 8
4 6 0 �2 0 4 0
7 12 3 4 9 16 12
5 7 1 �1 1 1 �1
5 10 1 2 1 4 2
3 9 �1 1 1 1 �1

SSX � 36 SSY � 64 SP � 36

For these data, �X � 32, so MX � 4. Also, �Y � 64, so MY � 8. These values
have been used to compute the deviation scores for each X and Y value. The final
three columns show the squared deviations for X and for Y, and the products of the
deviation scores. 

Our goal is to find the values for b and a in the regression equation. Using
Equations 16.2 and 16.4, the solutions for b and a are

b � �
S
S
S
P

X
� � � 1.00

a � MY � bMX � 8 � 1(4) � 4.00

The resulting equation is

Ŷ � X � 4

The original data and the regression line are shown in Figure 16.4.

The regression line shown in Figure 16.4 demonstrates some simple and very pre-
dictable facts about regression. First, the calculation of the Y-intercept (Equation 16.4)
ensures that the regression line passes through the point defined by the mean for 
X and the mean for Y. That is, the point identified by the coordinates MX, MY will 
always be on the line. We have included the two means in Figure 16.4 to show that

36 
––
36

E X A M P L E  1 6 . 1

D E F I N I T I O N
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the point they define is on the regression line. Second, the sign of the correlation 
(� or �) is the same as the sign of the slope of the regression line. Specifically, if
the correlation is positive, then the slope is also positive and the regression line slopes
up to the right. On the other hand, if the correlation is negative, then the slope is neg-
ative and the line slopes down to the right. A correlation of zero means that the slope
is also zero and the regression equation produces a horizontal line that passes through
the data at a level equal to the mean for the Y values. Note that the regression line in
Figure 16.4 has a positive slope. One consequence of this fact is that all of the points
on the line that are above the mean for X are also above the mean for Y. Similarly, 
all of the points below the mean for X are also below the mean for Y. Thus, every 
individual with a positive deviation for X is predicted to have a positive deviation 
for Y, and everyone with a negative deviation for X is predicted to have a negative 
deviation for Y.

As we noted at the beginning of this section, one common use of regression equations
is for prediction. For any given value of X, we can use the equation to compute a pre-
dicted value for Y. For the equation from Example 16.1, an individual with a score of
X � 1 would be predicted to have a Y score of

Ŷ � X � 4 � 1 � 4 � 5

USING THE REGRESSION
EQUATION FOR PREDICTION

564 CHAPTER 16 INTRODUCTION TO REGRESSION
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The X and Y data points and
the regression line for the 
n � 8 pairs of scores in
Example 16.1.
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Although regression equations can be used for prediction, a few cautions should be
considered whenever you are interpreting the predicted values:

1. The predicted value is not perfect (unless r � �1.00 or �1.00). If you examine
Figure 16.4, it should be clear that the data points do not fit perfectly on the
line. In general, there is some error between the predicted Y values (on the line)
and the actual data. Although the amount of error varies from point to point, on
average the errors are directly related to the magnitude of the correlation. With
a correlation near 1.00 (or �1.00), the data points generally are clustered close
to the line and the error is small. As the correlation gets nearer to zero, the
points move away from the line and the magnitude of the error increases.

2. The regression equation should not be used to make predictions for X values
that fall outside of the range of values covered by the original data. For
Example 16.1, the X values ranged from X � 0 to X � 7, and the regression
equation was calculated as the best-fitting line within this range. Because you
have no information about the X-Y relationship outside this range, the equation
should not be used to predict Y for any X value lower than 0 or greater than 7.

So far we have presented the regression equation in terms of the original values, or raw
scores, for X and Y. Occasionally, however, researchers standardize the scores by trans-
forming the X and Y values into z-scores before finding the regression equation. The 
resulting equation is often called the standardized form of the regression equation and
is greatly simplified compared to the raw-score version. The simplification comes from
the fact that z-scores have standardized characteristics. Specifically, the mean for a set
of z-scores is always zero and the standard deviation is always 1. As a result, the stan-
dardized form of the regression equation becomes

ẑY � (beta)zX (16.6)

First notice that we are now using the z-score for each X value (zX) to predict the
z-score for the corresponding Y value (zY). Also, note that the slope constant that was
identified as b in the raw-score formula is now identified as beta. Because both sets of
z-scores have a mean of zero, the constant a disappears from the regression equation.
Finally, when one variable, X, is being used to predict a second variable, Y, the value
of beta is equal to the Pearson correlation for X and Y. Thus, the standardized form of
the regression equation can also be written as

ẑY � rzX (16.7)

Because the process of transforming all of the original scores into z-scores can be
tedious, researchers usually compute the raw-score version of the regression equation
(Equation 16.5) instead of the standardized form. However, most computer programs
report the value of beta as part of the output from linear regression, and you should 
understand what this value represents.

STANDARDIZED FORM 
OF THE REGRESSION

EQUATIONS
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L E A R N I N G  C H E C K 1. Sketch a scatter plot for the following data—that is, a graph showing the X, Y data
points:

X Y

1 4
3 9
5 8
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It is possible to determine a regression equation for any set of data by simply using the
formulas already presented. The linear equation you obtain is then used to generate pre-
dicted Y values for any known value of X. However, it should be clear that the accuracy
of this prediction depends on how well the points on the line correspond to the actual
data points—that is, the amount of error between the predicted values, Ŷ, and the actual
scores, Y values. Figure 16.5 shows two different sets of data that have exactly the same
regression equation. In one case, there is a perfect correlation (r � �1) between X and
Y, so the linear equation fits the data perfectly. For the second set of data, the predicted
Y values on the line only approximate the real data points.

A regression equation, by itself, allows you to make predictions, but it does not
provide any information about the accuracy of the predictions. To measure the preci-
sion of the regression, it is customary to compute a standard error of estimate.

THE STANDARD ERROR 
OF ESTIMATE

566 CHAPTER 16 INTRODUCTION TO REGRESSION

ANSWERS

a. Find the regression equation for predicting Y from X. Draw this line on your
graph. Does it look like the best-fitting line?

b. Use the regression equation to find the predicted Y value corresponding to each
X in the data.

1. a. SSX � 8, SP � 8, b � 1, a � 4. The equation is Ŷ � X � 4.

b. The predicted Y values are 5, 7, and 9.
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FIGURE 16.5

(a) A scatter plot showing data points that perfectly fit the regression line defined by the
equation Ŷ � X � 4. Note that the correlation is r � �1.00. (b) A scatter plot for the data
from Example 16.1. Notice that there is error between the actual data points and the predicted
Y values of the regression line.

(a) (b)
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The standard error of estimate gives a measure of the standard distance between
the predicted Y values on the regression line and the actual Y values in the data.

Conceptually, the standard error of estimate is very much like a standard deviation:
Both provide a measure of standard distance. Also, the calculation of the standard error
of estimate is very similar to the calculation of standard deviation.

To calculate the standard error of estimate, we first find the sum of squared devia-
tions (SS). Each deviation measures the distance between the actual Y value (from the
data) and the predicted Y value (from the regression line). This sum of squares is com-
monly called SSresidual because it is based on the remaining distance between the actual
Y scores and the predicted values.

SSresidual � �(Y � Ŷ )2 (16.8)

The obtained SS value is then divided by its degrees of freedom to obtain a meas-
ure of variance. This procedure should be very familiar:

Variance � �
S
d
S
f
�

The degrees of freedom for the standard error of estimate are df � n � 2. The rea-
son for having n � 2 degrees of freedom, rather than the customary n � 1, is that we
now are measuring deviations from a line rather than deviations from a mean. To find
the equation for the regression line, you must know the means for both the X and the 
Y scores. Specifying these two means places two restrictions on the variability of 
the data, with the result that the scores have only n � 2 degrees of freedom. (Note: the 
df � n � 2 for SSresidual is the same df � n � 2 that we encountered when testing the
significance of the Pearson correlation on page 529.)

The final step in the calculation of the standard error of estimate is to take the square
root of the variance to obtain a measure of standard distance. The final equation is

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � ��

�(Y
n �

�� 2
Ŷ )2

�� (16.9)

The following example demonstrates the calculation of this standard error.

The same data that were used in Example 16.1 are used here to demonstrate the
calculation of the standard error of estimate. These data have the regression equation

Ŷ � X � 4

Using this regression equation, we have computed the predicted Y value, the
residual, and the squared residual for each individual, using the data from Example 16.1.

Predicted Squared
Data Y Values Residual Residual

X Y Ŷ � X � 4 Y � Ŷ (Y � Ŷ )2

2 3 6 �3 9
6 11 10 1 1
0 6 4 2 4
4 6 8 �2 4
5 7 9 �2 4

E X A M P L E  1 6 . 2

D E F I N I T I O N
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Recall that variance measures
the average squared distance.

(continued)
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Predicted Squared
Data Y Values Residual Residual

X Y Ŷ � X � 4 Y � Ŷ (Y � Ŷ )2

7 12 11 1 1
5 10 9 1 1
3 9 7 2 4

0 SSresidual � 28

First note that the sum of the residuals is equal to zero. In other words, the sum
of the distances above the line is equal to the sum of the distances below the line.
This is true for any set of data and provides a way to check the accuracy of your
calculations. The squared residuals are listed in the final column. For these data, the
sum of the squared residuals is SSresidual � 28. With n � 8, the data have df � n � 2
� 6, so the standard error of estimate is

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � � 2.16

Remember: The standard error of estimate provides a measure of how accurately
the regression equation predicts the Y values. In this case, the standard distance
between the actual data points and the regression line is measured by standard error
of estimate � 2.16.

It should be clear from Example 16.2 that the standard error of estimate is directly 
related to the magnitude of the correlation between X and Y. If the correlation is near
1.00 (or �1.00), then the data points are clustered close to the line, and the standard
error of estimate is small. As the correlation gets nearer to zero, the data points become
more widely scattered, the line provides less accurate predictions, and the standard
error of estimate grows larger.

Earlier (p. 524), we observed that squaring the correlation provides a measure of the
accuracy of prediction. The squared correlation, r2, is called the coefficient of determi-
nation because it determines what proportion of the variability in Y is predicted by the
relationship with X. Because r2 measures the predicted portion of the variability in the 
Y scores, we can use the expression (1 � r2) to measure the unpredicted portion. Thus,

predicted variability � SSregression � r2SSY (16.10)

unpredicted variability � SSresidual � (1 � r2)SSY (16.11)

For example, if r � 0.80, then the predicted variability is r2 � 0.64 (or 64%) of
the total variability for the Y scores and the remaining 36% (1 � r2) is the unpredicted
variability. Note that when r � 1.00, the prediction is perfect and there are no residu-
als. As the correlation approaches zero, the data points move farther off the line and the
residuals grow larger. Using Equation 16.11 to compute SSresidual, the standard error of
estimate can be computed as

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � ��

(1 �

n �

r�2)
2
SSY�� (16.12)

RELATIONSHIP BETWEEN 
THE STANDARD ERROR 

AND THE CORRELATION

28��–––
6
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Because it is usually much easier to compute the Pearson correlation than to compute
the individual (Y � Ŷ)2 values, Equation 16.11 is usually the easiest way to compute
SSresidual, and Equation 16.12 is usually the easiest way to compute the standard error of
estimate for a regression equation. The following example demonstrates this new formula.

We use the same data used in Examples 16.1 and 16.2, which produced SSX � 36,
SSY � 64, and SP � 36. For these data, the Pearson correlation is

r �

With SSY � 64 and a correlation of r � 0.75, the predicted variability from the
regression equation is

SSregression � r2SSY � (0.752)(64) � 0.5625(64) � 36.00

Similarly, the unpredicted variability is

SSresidual � (1 � r2)SSY � (1 � 0.752)(64) � 0.4375(64) � 28.00

Notice that the new formula for SSresidual produces exactly the same value that we
obtained by adding the squared residuals in Example 16.2. Also note that this new
formula is generally much easier to use because it requires only the correlation value (r)
and the SS for Y. The primary point of this example, however, is that SSresidual and the
standard error of estimate are closely related to the value of the correlation. With a large
correlation (near �1.00 or �1.00), the data points are close to the regression line, and
the standard error of estimate is small. As a correlation gets smaller (near zero), the data
points move away from the regression line, and the standard error of estimate gets larger.

Because it is possible to have the same regression equation for several different
sets of data, it is also important to consider r2 and the standard error of estimate. The
regression equation simply describes the best-fitting line and is used for making pre-
dictions. However, r2 and the standard error of estimate indicate how accurate these
predictions are.

36             36
––––––– � ––– � 0.75 
�������36(64)      48
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L E A R N I N G  C H E C K 1. Describe what is measured by the standard error of estimate for a regression equation.

2. As the numerical value of a correlation increases, what happens to the standard
error of estimate?

3. A sample of n � 6 pairs of X and Y scores produces a correlation of r � 0.80 and
SSY � 100. What is the standard error of estimate for the regression equation?

1. The standard error of estimate measures the average, or standard, distance between the
predicted Y values on the regression line and the actual Y values in the data.

2. A larger correlation means that the data points are clustered closer to the line, which means
the standard error of estimate is smaller.

3. The standard error of estimate � �36/4���� � 3.

ANSWERS
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16.2 ANALYSIS OF REGRESSION: TESTING THE SIGNIFICANCE
OF THE REGRESSION EQUATION

As we noted in Chapter 15, a sample correlation is expected to be representative of its
population correlation. For example, if the population correlation is zero, then the sam-
ple correlation is expected to be near zero. Note that we do not expect the sample cor-
relation to be exactly equal to zero. This is the general concept of sampling error
that was introduced in Chapter 1 (p. 8). The principle of sampling error is that there is 
typically some discrepancy or error between the value obtained for a sample statistic
and the corresponding population parameter. Thus, when there is no relationship what-
soever in the population, a correlation of � � 0, you are still likely to obtain a nonzero
value for the sample correlation. In this situation, however, the sample correlation is
caused by chance and a hypothesis test usually demonstrates that the correlation is not
significant.

Whenever you obtain a nonzero value for a sample correlation, you also obtain
real, numerical values for the regression equation. However, if there is no real rela-
tionship in the population, both the sample correlation and the regression equation are
meaningless—they are simply the result of sampling error and should not be viewed as
an indication of any relationship between X and Y. In the same way that we tested the
significance of a Pearson correlation, we can test the significance of the regression
equation. In fact, when a single variable, X, is being used to predict a single variable,
Y, the two tests are equivalent. In each case, the purpose for the test is to determine
whether the sample correlation represents a real relationship or is simply the result of
sampling error. For both tests, the null hypothesis states that there is no relationship 
between the two variables in the population. A more specific null hypothesis for test-
ing the significance of a regression equation is that the equation does not account for a
significant proportion of the variance in the Y scores. An alternative version of H0 states
that the values of b or beta that are computed for the regression equation do not repre-
sent any real relationship between X and Y but rather are simply the result of chance or
sampling error. In other words, the true population value of b or beta is zero.

The process of testing the significance of a regression equation is called analysis
of regression and is very similar to the analysis of variance (ANOVA) presented in
Chapter 12. As with ANOVA, the regression analysis uses an F-ratio to determine
whether the variance predicted by the regression equation is significantly greater than
would be expected if there were no relationship between X and Y. The F-ratio is a ratio
of two variances, or mean square (MS) values, and each variance is obtained by divid-
ing an SS value by its corresponding degrees of freedom. The numerator of the F-ratio
is MSregression, which is the variance in the Y scores that is predicted by the regression
equation. This variance measures the systematic changes in Y that occur when the value
of X increases or decreases. The denominator is MSresidual, which is the unpredicted
variance in the Y scores. This variance measures the changes in Y that are independent
of changes in X. The two MS value are defined as

MSregression � �
S

d
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e

e
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g
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� with df � 1 and MSresidual � �
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The F-ratio is

F � �
M

M
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si

a

o

l

n
� with df � 1, n � 2 (16.13)
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The complete analysis of SS and degrees of freedom is diagrammed in Figure 16.6.
The analysis of regression procedure is demonstrated in the following example, using the
same data that we used in Examples 16.1, 16.2, and 16.3.

The data consist of n � 8 pairs of scores with a correlation of r � 0.75 and SSY � 64.
The null hypothesis either states that there is no relationship between X and Y in the
population, or that the regression equation does not account for a significant portion
of the variance for the Y scores.

The F-ratio for the analysis of regression has df � 2, n � 2. For these data, 
df � 1, 6. With � � .05, the critical value is 5.99.

As noted in the previous section, the SS for the Y scores can be separated into
two components: the predicted portion corresponding to r2 and the unpredicted, or
residual, portion corresponding to (1�r2). With r � 0.75, we obtain r2 � 0.5625 and

predicted variability � SSregression � 0.5625(64) � 36

unpredicted variability � SSresidual � (1 � 0.5625)(64) � 0.4375(64) � 28

Using these SS values and the corresponding df values, we calculate a variance,
or MS, for each component. For these data the MS values are

SSregression 36
MSregression � ––––––––– � ––– � 36 

dfresidual            1

SSresidual 28
MSresidual � –––––––– � ––– � 4.67 

dfresidual        6

Finally, the F-ratio for evaluating the significance of the regression equation is

MSregression 36.00
F � –––––––––– � ––––– � 7.71 

MSresidual           4.67

The F-ratio is in the critical region, so we reject the null hypothesis and conclude
that the regression equation does account for a significant portion of the variance for
the Y scores. The complete analysis of regression is summarized in Table 16.1, which
is a common format for computer printouts of regression analysis.

E X A M P L E  1 6 . 4
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SSregression

r2SSY

SSresidual

(1 � r2)SSY

SSY

dfregression � 1 dfresidual � n � 2

dfY � n � 1FIGURE 16.6

The partitioning of SS and df
for analysis of regression.
The variability in the original
Y scores (both SSY and dfY) 
is partitioned into two 
components: (1) the 
variability that is explained
by the regression equation,
and (2) the residual 
variability.
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As noted earlier, in situation with a single X variable and a single Y variable, testing the
significance of the regression equation is equivalent to testing the significance of the
Pearson correlation. Therefore, whenever the correlation between two variables is sig-
nificant, you can conclude that the regression equation is also significant. Similarly, if
a correlation is not significant, then the regression equation is also not significant. For
the data in Example 16.3, we concluded that the regression equation is significant. This
conclusion is perfectly consistent with the corresponding test for the significance of the
Pearson correlation. For these data, the Pearson correlation is r � 0.75 with n � 8.
Checking Table B.6 in Appendix B, you should find a critical value of 0.707. Our 
correlation exceeds this criterion, so we conclude that the correlation is also significant.
In fact, the critical values listed in Table B.6 were developed using the F-ratio
(Equation 16.13) from analysis of regression.

SIGNIFICANCE 
OF REGRESSION 

AND SIGNIFICANCE 
OF THE CORRELATION

16.3 INTRODUCTION TO MULTIPLE REGRESSION 
WITH TWO PREDICTOR VARIABLES

Thus far, we have looked at regression in situations in which one variable is being used
to predict a second variable. For example, IQ scores can be used to predict academic per-
formance for a group of college students. However, a variable such as academic per-
formance is usually related to a variety of other factors. For example, college GPA is
probably related to motivation, self-esteem, SAT score, rank in high school graduating
class, parents’ highest level of education, and many other variables. In this case, it is pos-
sible to combine several predictor variables to obtain a more accurate prediction. For 
example, IQ predicts some of academic performance, but you can probably get a better
prediction if you use IQ and SAT scores together. The process of using several predic-
tor variables to help obtain more accurate predictions is called multiple regression.

Although it is possible to combine a large number of predictor variables in a 
single multiple-regression equation, we limit our discussion to the two-predictor case.
There are two practical reasons for this limitation.

1. Multiple regression, even limited to two predictors, can be relatively complex.
Although we present equations for the two-predictor case, the calculations are

572 CHAPTER 16 INTRODUCTION TO REGRESSION

TABLE 16.1

A summary table showing the
results of the analysis of 
regression in Example 16.4. 

Source SS df MS F

Regression 36 1 36.60 7.71
Residual 28 6 4.67
Total 64 7

L E A R N I N G  C H E C K 1. A set of n � 18 pairs of scores produces a Pearson correlation of r � 0.60 with
SSY � 100. Find SSregression and SSresidual and compute the F-ratio to evaluate the
significance of the regression equation of predicting Y.

1. SSregression � 36 with df � 1. SSresidual � 64 with df � 16. F � 9.00. With df � 1, 16, the
F-ratio is significant with either � � .05 or � � .01.

ANSWER
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usually performed by a computer, so there is not much point in developing a set
of complex equations when people are going to use a computer instead.

2. Usually, different predictor variables are related to each other, which means
that they are often measuring and predicting the same thing. Because the vari-
ables may overlap with each other, adding another predictor variable to a 
regression equation does not always add to the accuracy of prediction. This
situation is shown in Figure 16.7. In the figure, IQ overlaps with academic
performance, which means that part of academic performance can be predicted
by IQ. In this example, IQ overlaps (predicts) 40% of the variance in academic
performance (combine sections a and b in the figure). The figure also shows
that SAT scores overlap with academic performance, which means that part of
academic performance can be predicted by knowing SAT scores. Specifically,
SAT scores overlap, or predict, 30% of the variance (combine sections b and c).
Thus, using both IQ and SAT scores to predict academic performance should
produce better predictions than would be obtained from IQ alone. However,
there is also a lot of overlap between SAT scores and IQ. In particular, much of
the prediction from SAT scores overlaps with the prediction from IQ (section b).
As a result, adding SAT scores as a second predictor only adds a small amount
to the variance already predicted by IQ (section c). Because variables tend to
overlap in this way, adding new variables beyond the first one or two predictors
often does not add significantly to the quality of the prediction.

We identify the two predictor variables as X1 and X2. The variable we are trying to pre-
dict is identified as Y. Using this notation, the general form of the multiple regression
equation with two predictors is

Ŷ � b1X1 � b2X2 � a (16.14)

REGRESSION EQUATIONS
WITH TWO PREDICTORS

SECTION 16.3 / INTRODUCTION TO MULTIPLE REGRESSION WITH TWO PREDICTOR VARIABLES 573

10%
c

20%
b

20%
a

IQ SAT

Academic
Performance

FIGURE 16.7

Predicting the variance in
academic performance from
IQ and SAT scores. The
overlap between IQ and
academic performance 
indicates that 40% of the
variance in academic 
performance can be predicted
from IQ scores. Similarly,
30% of the variance in aca-
demic performance can be
predicted from SAT scores.
However, IQ and SAT also
overlap, so that SAT scores
contribute an additional
predication of only 10%
beyond what is already pre-
dicted by IQ.
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If all three variables, X1, X2, and Y, have been standardized by transformation into
z-scores, then the standardized form of the multiple regression equation predicts the 
z-score for each Y value. The standardized form is

ẑY � (beta1)zX1 � (beta2)zX2 (16.15)

Researchers rarely transform raw X and Y scores into z-scores before finding a 
regression equation, however, the beta values are meaningful and are usually reported
by computer programs conducting multiple regression. We return to the discussion of
beta values later in this section.

The goal of the multiple-regression equation is to produce the most accurate 
estimated values for Y. As with the single-predictor regression, this goal is accom-
plished with a least-squared solution. First, we define “error” as the difference between
the predicted Y value from the regression equation and the actual Y value for each 
individual. Each error is then squared to produce uniformly positive values, and then
we add the squared errors. Finally, we calculate values for b1, b2, and a that produce
the smallest possible sum of squared errors. The derivation of the final values is beyond
the scope of this text, but the final equations are as follows:

b1 � (16.16)

b2 � (16.17)

a � MY � b1MX1 � b2MX2 (16.18)

In these equations, you should recognize the following SS and SP values:

SSX1 is the sum of squared deviations for X1

SSX2 is the sum of squared deviations for X2

SPX1Y is the sum of products of deviations for X1 and Y

SPX2Y is the sum of products of deviations for X2 and Y

SPX1X2 is the sum of products of deviations for X1 and X2

Note: More detailed information about the calculation of SS is presented in Chapter
4 (pp. 111–112) and information concerning SP is in Chapter 15 (pp. 515–516). The 
following example demonstrates multiple regression with two predictor variables.

We use the data in Table 16.2 to demonstrate multiple regression. Note that each
individual has a Y score and two X scores that are used as predictor variables. Also
note that we have already computed the SS values for Y and for both of the X scores,
as well as all of the SP values. These values are used to compute the coefficients, b1

and b2, and the constant, a, for the regression equation.

Ŷ � b1X1 � b2X2 � a

E X A M P L E  1 6 . 5

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2

574 CHAPTER 16 INTRODUCTION TO REGRESSION
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b1 � � � 0.672

b2 � � � 0.293

a � MY � b1MX1 � b2MX2 � 7 � 0.672(4) � 0.293(6) � 7 � 2.688 � 1.758 � 2.554

Thus, the final regression equation is,

Ŷ � 0.672X1 � 0.293X2 � 2.554

Example 16.5 also demonstrates that multiple regression can be a tedious process.
As a result, multiple regression is usually conducted on a computer. To demonstrate
this process, we used the SPSS computer program to perform a multiple regression on
the data in Table 16.2 and the output from the program is shown in Figure 16.8. At this
time, focus on the Coefficients Table at the bottom of the printout. The values in the
first column of Unstandardized Coefficients include the constant, b1 and b2 for the 
regression equation. We discuss other portions of the SPSS output later in this chapter.

(47)(62) � (42)(54)
���

(62)(64) � (42)2

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2

(54)(64) � (42)(47)
���

(62)(64) � (42)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2
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TABLE 16.2

Hypothetical data consisting of
three scores for each person.
Two of the scores, X1 and X2,
are used to predict the Y score
for each individual.

Person Y X1 X2

A 11 4 10 SPX1Y � 54
B 5 5 6 SPX2Y � 47
C 7 3 7 SPX1X2 � 42
D 3 2 4
E 4 1 3
F 12 7 5
G 10 8 8
H 4 2 4
I 8 7 10
J 6 1 3

MY � 7 MX1 � 4 MX2 � 6
SSY � 90 SSX1 � 62 SSX2 � 64

L E A R N I N G  C H E C K 1. A researcher computes a multiple-regression equation for predicting annual income
for 40-year-old men based on their level of education (X1 � number of years after
high school) and their social skills (X2 � score from a self-report questionnaire). The
regression equation is Ŷ � 8.3X1 � 2.1X2 � 3.5 and predicts income in thousands of
dollars. Two individuals are selected from the sample. One has X1 � 0 and X2 � 16;
the other has X1 � 3 and X2 � 12. Compute the predicted income for each.

1. The first man has a predicted income of Ŷ � 37.1 thousand dollars and the second has Ŷ � 53.6
thousand dollars.

ANSWER
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In the same way that we computed an r2 value to measure the percentage of variance 
accounted for with the single-predictor regression, it is possible to compute a correspon-
ding percentage for multiple regression. For a multiple-regression equation, this percent-
age is identified by the symbol R2. The value of R2 describes the proportion of the total
variability of the Y scores that is accounted for by the regression equation. In symbols,

R2 � �
SSre

S

g

S

re

Y

ssion
� or SSregression � R2SSY

For a regression with two predictor variables, R2 can be computed directly from the
regression equation as follows:

R2 � (16.19)b1SPX1Y � b2SPX2Y
���

SSY

R2 AND RESIDUAL VARIANCE
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Model Summary

ANOVAb

Coefficientsa

Model

Model

Model

1

1 Regression

(Constant)

VAR00002

VAR00003

2.552

.672

.293

1.944

.407

.401

1.313

1.652

.732

.231

.142

.488

.558

.247

Residual

Total

50.086

39.914

90.000

2

7

9

25.043 4.392 .058a

5.702

Sum of
Squares

Unstandardized Coefficients

B Std. Error Beta t Sig.

Standardized
Coefficients

df F Sig.Mean Square

a. Predictors: (Constant), VAR00003, VAR00002

a. Predictors: (Constant), VAR00003, VAR00002
b. Dependent Variable: VAR00001

a. Dependent Variable: VAR00001

1

R

.746a .557 .430 2.38788

R Square
Adjusted R

Square
Std. Error of

the Estimate

FIGURE 16.8

The SPSS output for the multiple regression in Example 16.5.
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For the data in Table 16.2, we obtain a value of

R2 � � �
50

9

.0

0

59
� � 0.5562 (or 55.62%)

Thus, 55.6% of the variance for the Y scores can be predicted by the regression
equation. For the data in Table 16.2, SSY � 90, so the predicted portion of the 
variability is

SSregression � R2SSY � 0.5562(90) � 50.06

The unpredicted, or residual, variance is determined by 1 � R2. For the data in
Table 16.2, this is

SSresidual � (1 � R2)SSY � 0.4438(90) � 39.94

The value of R2 and 1 � R2 can also be obtained by computing the residual, or differ-
ence between the predicted Y and the actual Y for each individual, then computing the
sum of the squared residuals. The resulting value is SSresidual and measures the unpre-
dicted portion of the variability of Y, which is equal to (1 � R2)SSY. For the data in
Table 16.2, we first use the multiple-regression equation to compute the predicted
value of Y for each individual. The process of finding and squaring each residual is
shown in Table 16.3.

Note that the sum of the squared residuals, the unpredicted portion of SSY, is
39.960. This value corresponds to 44.4% of the variability for the Y scores:

�
SS

S
re

S
si

Y

dual� � �
39.96

90
� � 0.444 (or 44.4%)

Because the unpredicted portion of the variability is 1 � R2 � 44.4%, we conclude
that the predicted portion is R2 � 55.6%. Note that this answer is within rounding error
of R2 � 55.62% that we obtained from equation 16.19.

COMPUTING R2 AND 1 � R2

FROM THE RESIDUALS

0.672(54) � 0.293(47)
���

90
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In the computer printout in
Figure 16.8, the value of R2 is
reported in the Model Summary
table at the top.

TABLE 16.3

The predicted Y values and 
the residuals for the data in
Table 16.2. The predicted 
Y values were obtained using 
the values of X1 and X2 in the 
multiple-regression equation 
for each individual.

Predicted Y Residual Squared Residual
Actual Y (Ŷ ) (Y � Ŷ ) (Y � Ŷ )2

11 8.17 2.83 8.010
5 7.67 �2.67 7.129
7 6.62 0.38 0.144
3 5.07 �2.07 4.285
4 4.10 �0.10 0.010

12 8.72 3.28 10.758
10 10.27 �0.27 0.073
4 5.07 �1.07 1.145
8 10.19 �2.19 4.796
6 4.10 1.90 3.610

39.960 � SSresiduals
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On page 567, we defined the standard error of estimate for a linear regression equation
as the standard distance between the regression line and the actual data points. In more
general terms, the standard error of estimate can be defined as the standard distance 
between the predicted Y values (from the regression equation) and the actual Y values
(in the data). The more general definition applies equally well to both linear and 
multiple regression.

To find the standard error of estimate for either linear regression or multiple 
regression, we begin with SSresidual. For linear regression with one predictor, 
SSresidual � (1 � r2)SSY and has df � n � 2. For multiple regression with two predic-
tors, SSresidual � (1 � R2)SSY and has df � n � 3. In each case, we can use the SS and
df values to compute a variance or MSresidual.

MSresidual � �
SSre

d
s

f
idual�

The variance, or MS value, is a measure of the average squared distance between
the actual Y values and the predicted Y values. By simply taking the square root, we 
obtain a measure of standard deviation or standard distance. This standard distance for
the residuals is the standard error of estimate. Thus, for both linear regression and mul-
tiple regression

the standard error of estimate � �M�S�re�si�du�al�

For either linear or multiple regression, you do not expect the predictions from the 
regression equation to be perfect. In general, there is some discrepancy between the predicted
values of Y and the actual values. The standard error of estimate provides a measure of how
much discrepancy, on average, there is between the Ŷ values and the actual Y values.

Just as we did with the single-predictor equation, we can evaluate the significance of a
multiple-regression equation by computing an F-ratio to determine whether the equa-
tion predicts a significant portion of the variance for the Y scores. The total variability
of the Y scores is partitioned into two components, SSregression and SSresidual. With two
predictor variables, SSregression has df � 2, and SSresidual has df � n � 3. Therefore, the
two MS values for the F-ratio are

MSregression � �
SSreg

2

ression
� (16.20)

and

MSresidual � �
S

n

Sre

�

sid

3

ual
� (16.21)

The data for the n � 10 people in Table 16.2 have produced R2 � 0.5562
(or 55.62%) and SSY � 90. Thus,

SSregression � R2SSY � 0.556(90) � 50.06

SSresidual � (1 � R2)SSY � 0.4438(90) � 39.94

Therefore, MSregession � �
50

2
.06
� � 25.03 and MSresidual � �

39
7
.94
� � 5.71

and F � �
M

M

S

S

re

r

g

es

re

id

s

u

si

a

o

l

n
� � �

25.03

5.71
� � 4.38

TESTING THE SIGNIFICANCE
OF THE MULTIPLE

REGRESSION EQUATION:
ANALYSIS OF REGRESSION

THE STANDARD ERROR 
OF ESTIMATE

In the computer printout in
Figure 16.8, the standard error
of estimate is reported in the
Model Summary table at the top.

Because of rounding error, the
value we obtain for SSresidual is
slightly different from the value
in Table 16.3.
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With df � 2, 7, this F-ratio is not significant with � � .05, so we cannot conclude
that the regression equation accounts for a significant portion of the variance for the 
Y scores.

The analysis of regression is summarized in the following table, which is a com-
mon component of the output from most computer versions of multiple regression. In
the computer printout in Figure 16.8, this summary table is reported in the ANOVA
table in the center.

16.4 EVALUATING THE CONTRIBUTION OF EACH PREDICTOR
VARIABLE

In addition to evaluating the overall significance of the multiple-regression equation,
researchers are often interested in the relative contribution of each of the two predictor
variables. Is one of the predictors responsible for more of the prediction than the other?
Unfortunately, the b values in the regression equation are influenced by a variety of
other factors and do not address this issue. If b1 is larger than b2, it does not necessar-
ily mean that X1 is a better predictor than X2. However, in the standardized form of the
regression equation, the relative size of the beta values is an indication of the relative
contribution of the two variables. For the data in Table 16.3, the standardized regres-
sion equation is

ẑY � (beta1)zX1 � (beta2)zX2

� 0.558zX1 � 0.247zX2

In this case, the larger beta value for the X1 predictor indicates that X1 predicts more
of the variance than does X2. The signs of the beta values are also meaningful. In this 
example, both betas are positive, indicating the both X1 and X2 are positively related to Y.

SECTION 16.4 / EVALUATING THE CONTRIBUTION OF EACH PREDICTOR VARIABLE 579

Source SS df MS F

Regression 50.06 2 25.03 4.38
Residual 39.94 7 5.71
Total 90.00 9

L E A R N I N G  C H E C K 1. Data from a sample of n � 15 individuals are used to compute a multiple-
regression equation with two predictor variables. The equation has R2 � 0.20
and SSY � 150.

a. Find SSresidual and compute the standard error of estimate for the regression
equation.

b. Find SSregression and compute the F-ratio to evaluate the significance of the
regression equation.

1. a. SSresidual � 120. The standard error of estimate is �10
–––

� 3.16.

b. SSregression � 30 with df � 2. SSresidual � 120 with df � 12. F � 1.50. With df � 2, 12,
the F-ratio is not significant.

ANSWER

For the SPSS printout in 
Figure 16.8, the beta values are
shown in the Coefficients table.
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Beyond judging the relative contribution for each of the predictor variables, it also
is possible to evaluate the significance of each contribution. For example, does variable
X2 make a significant contribution beyond what is already predicted by variable X1?
The null hypothesis states that the multiple-regression equation (using X2 in addition to
X1) is not any better than the simple regression equation using X1 as a single predictor
variable. An alternative view of the null hypothesis is that the b2 (or beta2) value in the
equation is not significantly different from zero. To test this hypothesis, we first deter-
mine how much more variance is predicted using X1 and X2 together than is predicted
using X1 alone.

Earlier we found that the multiple regression equation with both X1 and X2

predicted R2 � 55.62% of the variance for the Y scores. To determine how much is 
predicted by X1 alone, we begin with the correlation between X1 and Y, which is

r � �
�(S�

S

S�
P

X

X

1�
1

)(�
Y

S�S�Y)�
� � �

�(6�
5

�
4

2)(�9�0�)�
�� � �

74

5

.

4

70
� � 0.7229

Squaring the correlation produces r2 � (0.7229)2 � 0.5226 or 52.26%. This
means that the relationship with X1 predicts 52.26% of the variance for the Y scores.
Therefore, the additional contribution made by adding X2 to the regression equation
can be computed as

(% with both X1 and X2) � (% with X1 alone)

� 55.62% � 52.26%

� 3.36%

Because SSY � 90, the additional variability from adding X2 as a predictor
amounts to

SSadditional � 3.36% of 90 � 0.0336(90) � 3.024

This SS value has df � 1, and can be used to compute an F-ratio evaluating the 
significance of the contribution of X2. First,

MSadditional � �
SSadd

1
itional� � �

3.
1
024
�� � 3.024

This MS value is evaluated by computing an F-ratio with the MSresidual value from
the multiple regression as the denominator. (Note: This is the same denominator that
was used in the F-ratio to evaluate the significance of the multiple-regression equation.)
For these data, we obtain

F � �
M
M

S
S
a

r

d

e

d

s

i

i

t

d

io

u

n

a

a

l

l� � �
3
5
.
.71
024
�� � 0.5296

With df � 1, 7, this F-ratio is not significant. Therefore, we conclude that adding
X2 to the regression equation does not significantly improve the prediction compared to
using X1 as a single predictor. The computer printout shown in Figure 16.8 reports a 
t statistic instead of an F-ratio to evaluate the contribution for each predictor variable.
Each t value is simply the square root of the F-ratio and is reported in the right-hand
side of the Coefficients table. Variable X2, for example, is reported as VAR00003 in 
the table and has t � 0.732, which is within rounding error of the F-ratio we obtained;
�F� � � ������������������������������������������������������0.5296 � 0.728. 
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In Chapter 15 we introduced partial correlation as a technique for measuring the rela-
tionship between two variables while eliminating the influence of a third variable. At
that time, we noted that partial correlations serve two general purposes:

1. A partial correlation can demonstrate that an apparent relationship between two
variables is actually caused by a third variable. Thus, there is no direct relation-
ship between the original two variables.

2. Partial correlation can demonstrate that there is a relationship between two vari-
ables even after a third variable is controlled. Thus, there really is a relationship
between the original two variables that is not being caused by a third variable.

Multiple regression provides an alternative procedure for accomplishing both of
these goals. Specifically, the regression analysis evaluates the contribution of each pre-
dictor variable after the influence of the other predictor has been considered. Thus, you
can determine whether each predictor variable contributes to the relationship by itself
or simply duplicates the contribution already made by another variable.

MULTIPLE REGRESSION 
AND PARTIAL CORRELATIONS

SUMMARY 581

1. When there is a general linear relationship between
two variables, X and Y, it is possible to construct a
linear equation that allows you to predict the Y value
corresponding to any known value of X.

predicted Y value � Ŷ� bX � a

The technique for determining this equation is called
regression. By using a least-squares method to
minimize the error between the predicted Y values and
the actual Y values, the best-fitting line is achieved
when the linear equation has

b � �
S
S
S
P

X
� � r �s

s
X

Y� and a � MY � bMX

2. The linear equation generated by regression (called the
regression equation) can be used to compute a predicted
Y value for any value of X. However, the prediction is
not perfect, so for each Y value, there is a predicted
portion and an unpredicted, or residual, portion. Overall,
the predicted portion of the Y score variability is
measured by r2, and the residual portion is measured by
1 �r2.

predicted variability � SSregression � r2SSY

unpredicted variability � SSresidual � (1 �r2)SSY

3. The residual variability can be used to compute the
standard error of estimate, which provides a measure
of the standard distance (or error) between the

predicted Y values on the line and the actual data
points. The standard error of estimate is computed by

standard error of estimate � ��
S�n

S�re

��si�d

2
u�al

�� � �M�S�re�si�du�al�

4. It is also possible to compute an F-ratio to evaluate the
significance of the regression equation. The process is
called analysis of regression and determines whether the
equation predicts a significant portion of the variance for
the Y scores. First a variance, or MS, value is computed
for the predicted variability and the residual variability,

MSregression � �
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e
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where df regression � 1 and df residual � n �2. Next, an
F-ratio is computed to evaluate the significance of the
regression equation.

F � �
M

M

S

S
re

r

g

es

re

id

s

u

si

a

o

l

n
� with df � 1, n � 2

5. Multiple regression involves finding a regression
equation with more than one predictor variable. With
two predictors (X1 and X2), the equation becomes

Ŷ� b1X1 � b2X2 � a

with the values for b1, b2, and a computed using
equations 16.16, 16.17, and 16.18.

SUMMARY
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 16 on the book

companion website. The website also provides access to a workshop entitled Correlation
that includes information on regression. 

Improve your understanding of statistics with Aplia’s auto-graded problem sets and immedi-
ate, detailed explanations for every question. To learn more, visit www.aplia.com/statistics.
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6. For multiple regression, the value of R2 describes the
proportion of the total variability of the Y scores that 
is accounted for by the regression equation. With two
predictor variables,

R2 �

Predicted variability � SSregression � R2SSY.
Unpredicted variability � SSresidual � (1 �R2)SSY.

7. The residual variability for the multiple-regression
equation can be used to compute a standard error of
estimate, which provides a measure of the standard
distance (or error) between the predicted Y values from
the equation and the actual data points. For multiple
regression with two predictors, the standard error of
estimate is computed by

standard error of estimate � ��
S�n

S�re

��si�d

3
u�al

��
� �M�S�re�si�du�al�

b1SPX1Y � b2SPX2Y
���

SSY

8. Evaluating the significance of the two-predictor
multiple-regression equation involves computing an 
F-ratio that divides the MSregression (with df � 2) by
the MSresidual (with df � n �3). A significant F-ratio
indicates that the regression equation accounts for a
significant portion of the variance for the Y scores.

9. An F-ratio can also be used to determine whether a
second predictor variable (X2) significantly improves
the prediction beyond what was already predicted by
X1. The numerator of the F-ratio measures the
additional SS that is predicted by adding X2 as a
second predictor.

SSadditional � SSregression with X1 and X2

�SSregression with X1 alone

This SS value has df � 1. The denominator of the 
F-ratio is the MS residual from the two-predictor
regression equation.

KEY TERMS

linear relationship (559)

linear equation (559)

slope (559)

Y-intercept (559)

regression (561)

regression line (561)

least-squared-error solution (562)

regression equation for Y (563)

standard error of estimate (567)

predicted variability (SSregression) (568)

unpredicted variability (SSresidual) (568)

analysis of regression (570)

multiple regression (572)

partial correlation (581)
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Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Linear Regression and Multiple Regression
presented in this chapter.

Data Entry

With one predictor variable (X), you enter the X values in one column and the Y values
in a second column of the SPSS data editor. With two predictors (X1 and X2), enter the
X1 values in one column, X2 in a second column, and Y in a third column.

Data Analysis

1. Click Analyze on the tool bar, select Regression, and click on Linear.
2. In the left-hand box, highlight the column label for the Y values, then click the

arrow to move the column label into the Dependent Variable box.
3. For one predictor variable, highlight the column label for the X values and click 

the arrow to move it into the Independent Variable(s) box. For two predictor
variables, highlight the X1 and X2 column labels, one at a time, and click the arrow
to move them into the Independent Variable(s) box.

4. Click OK.

SPSS Output

We used SPSS to perform multiple regression for the data in Example 16.4 and the output
is shown in Figure 16.8 (p. 576). The Model Summary table presents the values for R,
R2, and the standard error of estimate. (Note: For a single predictor, R is simply the
Pearson correlation between X and Y.) The ANOVA table presents the analysis of 
regression evaluating the significance of the regression equation, including the F-ratio and 
the level of significance (the p value or alpha level for the test). The Coefficients table 
summarizes both the unstandardized and the standardized coefficients for the regression
equation. For one predictor, the table shows the values for the constant (a) and the coeffi-
cient (b). For two predictors, the table shows the constant (a) and the two coefficients 
(b1 and b2). The standardized coefficients are the beta values. For one predictor, beta is
simply the Pearson correlation between X and Y. Finally, the table uses a t statistic to
evaluate the significance of each predictor variable. For one predictor variable, this is
identical to the significance of the regression equation and you should find that t is 
equal to the square root of the F-ratio from the analysis of regression. For two predictor
variables, the t values measure the significance of the contribution of each variable 
beyond what is already predicted by the other variable.

FOCUS ON PROBLEM SOLVING 583
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FOCUS ON PROBLEM SOLVING

1. A basic understanding of the Pearson correlation, including the calculation of SP
and SS values, is critical for understanding and computing regression equations.

2. You can calculate SSresidual directly by finding the residual (the difference between
the actual Y and the predicted Y for each individual), squaring the residuals, and
adding the squared values. However, it usually is much easier to compute r2 (or R2)
and then find SSresidual � (1 �r2)SSY.

3. The F-ratio for analysis of regression is usually calculated using the actual SSregression

and SSresidual. However, you can simply use r2 (or R2) in place of SSregression and you
can use 1 �r2 or (1 �R2) in place of SSresidual. Note: You must still use the correct 
df value for the numerator and the denominator.

DEMONSTRATION 16.1

LINEAR REGRESSION

The following data are used to demonstrate the process of linear regression. The scores
and summary statistics are as follows:

Person X Y

A 0 4 MX � 4 with SSX � 40
B 2 1 MY � 6 with SSY � 54
C 8 10 SP � 40
D 6 9
E 4 6

These data produce a Pearson correlation of r � 0.861.

Compute the values for the regression equation. The general form of the regression
equation is

Ŷ � bX � a where b � �
S
S
S
P

X
� and a � MY � bMX

For these data, b � �
4
4
0
0
� � 1.00 and a � 6 � 1(4) � �2.00

Thus, the regression equation is  Ŷ� (1)X � 2.00 or simply,  Ŷ� X � 2.

Evaluate the significance of the regression equation. The null hypothesis states
that the regression equation does not predict a significant portion of the variance for the 
Y scores. To conduct the test, the total variability for the Y scores, SSY � 54, is partitioned
into the portion predicted by the regression equation and the residual portion.

SSregression � r2(SSY) � 0.741(54) � 40.01 with df � 1

SSresidual � (1 �r2)(SSY) � 0.259(54) � 13.99 with df � n �2 � 3

S T E P  2

S T E P  1
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The two MS values (variances) for the F-ratio are

MSregression � �
SSreg

d
r

f
ession
� � �

40

1

.01
� � 40.01

MSresidual � �
SSre

d
s

f
idual
� � �

13

3

.99
� � 4.66

And the F-ratio is

F � �
M

M

S
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re

r

g
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re

id

s
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si

a

o

l

n
� � �

4

4

0

.

.

6

0

6

1
� � 8.59

With df � 1, 3 and � � .05, the critical value for the F-ratio is 10.13. Therefore, we
fail to reject the null hypothesis and conclude that the regression equation does not predict
a significant portion of the variance for the Y scores.

DEMONSTRATION 16.2

MULTIPLE REGRESSION

The following data are used to demonstrate the process of multiple regression. Note that
there are two predictor variables, X1 and X2, that are used to compute a predicted Y score
for each individual.

Person X1 X2 Y

A 0 5 2
B 3 1 4
C 5 2 7
D 6 0 9
E 8 4 5
F 2 6 3

MX1 � 4 MX2 � 3 MY � 5
SSX1 � 42 SSX2 � 28 SSY � 34

SPX1Y � 27 SPX2Y � �24 SPX1X2 � �15

Compute the values for the multiple regression equation. The general form of the
multiple-regression equation is

Ŷ � b1X1 � b2X2 � a

The values for the multiple regression equation are

b1 � � � 0.416
(27)(28) � (�15)(�24)
���

(42)(28) � (�15)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2

S T E P  1
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b2 � � � �0.634

a � MY �b1MX1 �b2MX2 � 5 �0.416(4) � �0.634(3) � 5 �1.664 � 1.902 � 5.238

The multiple-regression equation is

Ŷ � 0.416X1 �0.634X2 � 5.238

Evaluate the significance of the regression equation. The null hypothesis states
that the regression equation does not predict a significant portion of the variance for the 
Y scores. To conduct the test, the total variability for the Y scores, SSY � 34, is partitioned
into the portion predicted by the regression equation and the residual portion. To find each
portion, we must first compute the value of R2.

R2 �

� 0.778 (or 77.8%)

Then, the two components for the F-ratio are

SSregression � R2(SSY) � 0.778(34) � 26.45 with df � 2

SSresidual � (1 �R2)(SSY) � 0.222(34) � 7.55 with df � n �3 � 3

The two MS values (variances) and the F-ratio are

MSregression � �
SSreg

d
r

f
ession
� � �

26

2

.45
� � 13.23

MSresidual � �
SSre

d
s

f
idual
� � �

7.

3

55
� � 2.52

with df � 2, 3, the F-ratio is not significant.

MSregression 13.23 
F � –––––––––– � ––––– � 5.25

MSresidual 2.52

(0.416)(27) � (�0.634)(�24)
����

34

b1SPX1Y � b2SPX2Y
���

SSY

S T E P  2

(�24)(42) � (�15)(27)
���

(42)(28) � (�15)2

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2
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PROBLEMS

1. Sketch a graph showing the line for the equation 
Y � �2X � 4. On the same graph, show the line for 
Y � X �4.

2. The regression equation is intended to be the “best
fitting” straight line for a set of data. What is the
criterion for “best fitting”?

3. A set of n � 20 pairs of scores (X and Y values) has
SSX � 16, SSY � 100, and SP � 32. If the mean for
the X values is MX � 6 and the mean for the Y values
is MY � 20.

a. Calculate the Pearson correlation for the 
scores.

b. Find the regression equation for predicting Y from
the X values.

4. A set of n � 25 pairs of scores (X and Y values)
produces a regression equation of  Ŷ� 3X � 2. Find
the predicted Y value for each of the following X
scores: 0, 1, 3, �2.

5. Briefly explain what is measured by the standard error
of estimate.
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PROBLEMS 587

6. In general, how is the magnitude of the standard
error of estimate related to the value of the
correlation?

7. For the following set of data, find the linear regression
equation for predicting Y from X:

X Y

7 6
9 6
6 3

12 5
9 6
5 4

8. For the following data:
a. Find the regression equation for predicting Y from X.
b. Calculate the Pearson correlation for these data.

Use r2 and SSY to compute SSresidual and the
standard error of estimate for the equation.

X Y

1 2
4 7
3 5
2 1
5 14
3 7

9. Does the regression equation from problem 8 account
for a significant portion of the variance in the Y scores?
Use � � .05 to evaluate the F-ratio.

10. For the following scores, 

X Y

3 6
6 1
3 4
3 3
5 1

a. Find the regression equation for predicting Y from X.
b. Calculate the predicted Y value for each X.

11. Problem 12 in Chapter 15 examined the relationship
between weight and income for a sample of n � 10
women. Weights were classified in five categories and
had a mean of M � 3 with SS � 20. Income, measured
in thousands, had a mean score of M � 66 with 
SS � 7430, and SP � �359.

a. Find the regression equation for predicting income
from weight. (Identify the income scores as 
X values and the weight scores as Y values.)

b. What percentage of the variance in the income 
is accounted for by the regression equation?
(Compute the correlation, r, then find r2.)

c. Does the regression equation account for a
significant portion of the variance in income? 
Use �� .05 to evaluate the F-ratio.

12. A professor obtains SAT scores and freshman grade
point averages (GPAs) for a group of n � 15 college
students. The SAT scores have a mean of M � 580
with SS � 22,400, and the GPAs have a mean of 
3.10 with SS � 1.26, and SP � 84.
a. Find the regression equation for predicting GPA

from SAT scores.
b. What percentage of the variance in GPAs is

accounted for by the regression equation?
(Compute the correlation, r, then find r2.)

c. Does the regression equation account for a
significant portion of the variance in GPA? Use 
�� .05 to evaluate the F-ratio.

13. Problem 14 in Chapter 15 described a study
examining the effectiveness of a 7-Minute Screen
test for Alzheimer’s disease. The study evaluated 
the relationship between scores from the 7-Minute
Screen and scores for the same patients from a 
set of cognitive exams that are typically used to 
test for Alzheimer’s disease. For a sample of 
n � 9 patients, the scores for the 7-Minute Screen 
averaged M � 7 with SS � 92. The cognitive 
test scores averaged M � 17 with SS � 236. For
these data, SP � 127.
a. Find the regression equation for predicting the

cognitive scores from the 7-Minute Screen score.
b. What percentage of variance in the cognitive scores

is accounted for by the regression equation?
c. Does the regression equation account for a

significant portion of the variance in the cognitive
scores? Use � � .05 to evaluate the F-ratio.

14. There appears to be some evidence suggesting that
earlier retirement may lead to memory decline
(Rohwedder & Willis, 2010). The researchers gave 
a memory test to men and women aged 60 to 
64 years in several countries that have different
retirement ages. For each country, the researchers
recorded the average memory score and the
percentage of individuals in the 60 to 64 age 
range who were retired. Note that a higher percentage
retired indicates a younger retirement age for 
that country. The following data are similar to the
results from the study. Use the data to find the
regression equation for predicting memory scores
from the percentage of people aged 60 to 64 who 
are retired.
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Country % Retired (X) Memory Score (Y)

Sweden 39 9.3
U.S.A. 48 10.9
England 59 10.7
Germany 70 9.1
Spain 74 6.4
Netherlands 78 9.1
Italy 81 7.2
France 87 7.9
Belgium 88 8.5
Austria 91 9.0

15. The regression equation is computed for a set of 
n � 18 pairs of X and Y values with a correlation of 
r � �80 and SSY � 100.
a. Find the standard error of estimate for the regression

equation.
b. How big would the standard error be if the sample

size were n � 38?

16. a. One set of 20 pairs of scores, X and Y values,
produces a correlation of r � 0.70. If SSY � 150, find
the standard error of estimate for the regression line.

b. A second set of 20 pairs of X and Y values produces
of correlation of r � 0.30. If SSY � 150, find the
standard error of estimate for the regression line.

17. a. A researcher computes the regression equation for a
sample of n � 25 pairs of scores, X and Y values. 
If an analysis of regression is used to test the
significance of the equation, what are the df values
for the F-ratio?

b. A researcher evaluating the significance of a
regression equation obtains an F-ratio with df � 1,
18. How many pairs of scores, X and Y values, are
in the sample?

18. For the following data:
a. Find the regression equation for predicting Y from X.
b. Use the regression equation to find a predicted 

Y for each X.
c. Find the difference between the actual Y value and

the predicted Y value for each individual, square the
differences, and add the squared values to obtain
SSresidual.

d. Calculate the Pearson correlation for these data. Use
r2 and SSY to compute SSresidual with Equation 16.11.
You should obtain the same value as in part c.

X Y

7 16
5 2
6 1
3 2
4 9

19. A multiple-regression equation with two predictor
variables produces R2 � .22.
a. If SSY � 20 for a sample of n � 18 individuals,

does the equation predict a significant portion of
the variance for the Y scores? Test with � � .05.

b. If SSY � 20 for a sample of n � 8 individuals, does
the equation predict a significant portion of the
variance for the Y scores? Test with � �.05.

20. A researcher obtained the following multiple-
regression equation using two predictor variables: 
Ŷ � 0.5X1 � 4.5X2 � 9.6. Given that SSY � 210, the
SP value for X1 and Y is 40, and the SP value for 
X2 and Y is 9, find R2, the percentage of variance
accounted for by the equation.

21. In Chapter 15 (p. 531), we presented an example
showing the general relationship among the number
of churches, the number of serious crimes, and the
population for a set of cities. At that time, we used 
a partial correlation to evaluate the relationship
between churches and crime while controlling
population. It is possible to use multiple regression
to accomplish essentially the same purpose. For the
following data,

Number of Population Number of
Churches (X1) (X2) Crimes (Y)

1 1 4
2 1 1
3 1 2
4 1 3
5 1 5
7 2 8
8 2 11
9 2 9

10 2 7
11 2 10
13 3 15
14 3 14
15 3 16
16 3 17
17 3 13

a. Find the multiple regression equation for predicting
the number of crimes using the number of churches
and population as predictor variables.

b. Find the value of R2 for the regression equation.
c. The correlation between the number of crimes and

population is r � 0.961, which means that 
r2 � .924 (92.4%) is the proportion of variance 
in the number of crimes that is predicted by
population size. Does adding the number of
churches as a second variable in the multiple
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regression equation add a significant amount to 
the prediction? Test with � � .05.

22. Problem 11 in Chapter 15 examined the TV-viewing
habits of adopted children in relation to their
biological parents and their adoptive parents. The
data are reproduced as follows. If both the biological
and adoptive parents are used to predict the viewing
habits of the children in a multiple-regression
equation, what percentage of the variance in the
children’s scores would be accounted for? That is,
compute R2.

Amount of Time Spent Watching TV

Adopted Birth Adoptive
Children Parents Parents

Y X1 X2

2 0 1
3 3 4
6 4 2
1 1 0
3 1 0
0 2 3
5 3 2
2 1 3
5 3 3

SSY � 32 SSX1 � 14 SSX2 � 16

SPX1X2 � 8
SPX1Y � 15
SPX2Y � 3

23. For the data in problem 22, the correlation between the
children’s scores and the biological parents’ scores is 
r � 0.709. Does adding the adoptive parents’ scores as
a second predictor significantly improve the ability to
predict the children’s scores? Use � �.05 to evaluate
the F-ratio.

24. For the following data, find the multiple-regression
equation for predicting Y from X1 and X2.

X1 X2 Y

1 3 1
2 4 2
3 5 6
6 9 8
4 8 3
2 7 4

M � 3 M � 6 M � 4
SSX1 � 16 SSX2 � 28 SSY � 34

SPX1X2 � 18
SPX1Y � 19
SPX2Y � 21

25. A researcher evaluates the significance of a multiple-
regression equation and obtains an F-ratio with df �
2, 36. How many participants were in the sample?
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