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Preview
In this chapter we extend the topic of probability to cover
larger samples; specifically, samples that have more than
one score. Fortunately, you already know the one basic
fact governing probability for samples:

Samples tend to be similar to the populations from
which they are taken.

For example, if you take a sample from a population
that consists of 75% females and only 25% males, you
probably will get a sample that has more females than
males. Or, if you select a sample from a population for
which the average age is µ � 21 years, you probably will
get a sample with an average age around 21 years. We are
confident that you already know this basic fact because
research indicates that even 8-month-old infants under-
stand this basic law of sampling.

Xu and Garcia (2008) began one experiment by 
showing 8-month-old infants a large box filled with ping-
pong balls. The box was brought onto a puppet stage and
the front panel was opened to reveal the balls inside. The
box contained either mostly red with a few white balls 
or mostly white with a few red balls. The experimenter
alternated between the two boxes until the infants had seen
both displays several times. After the infants were familiar
with the boxes, the researchers began a series of test trials.
On each trial, the box was brought on stage with the front
panel closed. The researcher reached in the box and, one 
at a time, drew out a sample of five balls. The balls were
placed in a transparent container next to the box. On half of
the trials, the sample was rigged to have 1 red ball and 
4 white balls. For the other half, the sample had 1 white ball
and 4 red balls. The researchers then removed the front
panel to reveal the contents of the box and recorded how
long the infants continued to look at the box. The contents
of the box were either consistent with the sample, and,
therefore, expected, or inconsistent with the sample, 
and, therefore, unexpected. An expected outcome, for 
example, means that a sample with 4 red balls and 1 white

ball should come from a box with mostly red balls. This
same sample is unexpected from a box with mostly white
balls. The results showed that the infants consistently looked
longer at the unexpected outcome (M � 9.9 seconds) than at
the expected outcome (M � 7.5 seconds), indicating that the
infants considered the unexpected outcome surprising and
more interesting than the expected outcome.

The Problem: Xu and Garcia’s results strongly 
suggest that even 8-month-old infants understand the
basic principles that determine which samples have 
high probability and which have low probability.
Nevertheless, whenever you are picking ping pong 
balls from a box or recruiting people to participate in a
research study, it usually is possible to obtain thousands
or even millions of different samples from the same
population. Under these circumstances, how can we
determine the probability for obtaining any specific
sample?

The Solution: In this chapter we introduce the
distribution of sample means, which allows us to find
the exact probability of obtaining a specific sample 
mean from a specific population. This distribution
describes the entire set of all the possible sample means
for any sized sample. Because we can describe the entire
set, we can find probabilities associated with specific
sample means. (Recall from Chapter 6 that probabilities
are equivalent to proportions of the entire distribution.)
Also, because the distribution of sample means tends 
to be normal, it is possible to find probabilities using 
z-scores and the unit normal table. Although it is
impossible to predict exactly which sample will be
obtained, the probabilities allow researchers to 
determine which samples are likely (and which are 
very unlikely).

7.1 SAMPLES AND POPULATIONS

The preceding two chapters presented the topics of z-scores and probability. Whenever
a score is selected from a population, you should be able to compute a z-score that de-
scribes exactly where the score is located in the distribution. If the population is nor-
mal, you also should be able to determine the probability value for obtaining any
individual score. In a normal distribution, for example, any score located in the tail of
the distribution beyond z � �2.00 is an extreme value, and a score this large has a prob-
ability of only p � 0.0228.200
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However, the z-scores and probabilities that we have considered so far are limited
to situations in which the sample consists of a single score. Most research studies in-
volve much larger samples, such as n � 25 preschool children or n � 100 American
Idol contestants. In these situations, the sample mean, rather than a single score, is used
to answer questions about the population. In this chapter we extend the concepts of 
z-scores and probability to cover situations with larger samples. In particular, we intro-
duce a procedure for transforming a sample mean into a z-score. Thus, a researcher is
able to compute a z-score that describes an entire sample. As always, a z-score near zero
indicates a central, representative sample; a z-score beyond �2.00 or –2.00 indicates an
extreme sample. Thus, it is possible to describe how any specific sample is related to
all the other possible samples. In addition, we can use the z-scores to look up probabil-
ities for obtaining certain samples, no matter how many scores the sample contains.

In general, the difficulty of working with samples is that a sample provides an in-
complete picture of the population. Suppose, for example, a researcher randomly se-
lects a sample of n � 25 students from the state college. Although the sample should
be representative of the entire student population, there are almost certainly some seg-
ments of the population that are not included in the sample. In addition, any statistics
that are computed for the sample are not identical to the corresponding parameters for
the entire population. For example, the average IQ for the sample of 25 students is not
the same as the overall mean IQ for the entire population. This difference, or error, be-
tween sample statistics and the corresponding population parameters is called sampling
error and was illustrated in Figure 1.2 (p. 201).

Sampling error is the natural discrepancy, or amount of error, between a sam-
ple statistic and its corresponding population parameter.

Furthermore, samples are variable; they are not all the same. If you take two sep-
arate samples from the same population, the samples are different. They contain differ-
ent individuals, they have different scores, and they have different sample means. How
can you tell which sample gives the best description of the population? Can you even
predict how well a sample describes its population? What is the probability of select-
ing a sample with specific characteristics? These questions can be answered once we
establish the rules that relate samples and populations.

7.2 THE DISTRIBUTION OF SAMPLE MEANS

As noted, two separate samples probably are different even though they are taken from
the same population. The samples have different individuals, different scores, different
means, and so on. In most cases, it is possible to obtain thousands of different samples
from one population. With all these different samples coming from the same popula-
tion, it may seem hopeless to try to establish some simple rules for the relationships be-
tween samples and populations. Fortunately, however, the huge set of possible samples
forms a relatively simple and orderly pattern that makes it possible to predict the char-
acteristics of a sample with some accuracy. The ability to predict sample characteristics
is based on the distribution of sample means.

The distribution of sample means is the collection of sample means for all of
the possible random samples of a particular size (n) that can be obtained from a
population.

D E F I N I T I O N

D E F I N I T I O N
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Notice that the distribution of sample means contains all of the possible samples.
It is necessary to have all of the possible values to compute probabilities. For example,
if the entire set contains exactly 100 samples, then the probability of obtaining any spe-
cific sample is 1 out of 100: p � �1

1
00� (Box 7.1). 

Also, you should notice that the distribution of sample means is different from the
distributions that we have considered before. Until now we always have discussed 
distributions of scores; now the values in the distribution are not scores, but statistics
(sample means). Because statistics are obtained from samples, a distribution of statis-
tics is referred to as a sampling distribution.

A sampling distribution is a distribution of statistics obtained by selecting all
of the possible samples of a specific size from a population.

Thus, the distribution of sample means is an example of a sampling distribution. In
fact, it often is called the sampling distribution of M.

If you actually wanted to construct the distribution of sample means, you would
first select a random sample of a specific size (n) from a population, calculate the sam-
ple mean, and place the sample mean in a frequency distribution. Then you would 
select another random sample with the same number of scores. Again, you would cal-
culate the sample mean and add it to your distribution. You would continue selecting
samples and calculating means, over and over, until you had the complete set of all the
possible random samples. At this point, your frequency distribution would show the
distribution of sample means.

We demonstrate the process of constructing a distribution of sample means in
Example 7.1, but first we use common sense and a little logic to predict the general
characteristics of the distribution.

1. The sample means should pile up around the population mean. Samples are not
expected to be perfect but they are representative of the population. As a result,
most of the sample means should be relatively close to the population mean.

D E F I N I T I O N
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B O X
7.1 PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

question requires that you have complete information
about the population from which the sample is being
selected. In this case, you must know all of the possible
cards in the deck before you can find the probability for
selecting any specific card.

In this chapter, we are examining probability and
sample means. To find the probability for any specific
sample mean, you first must know all of the possible sam-
ple means. Therefore, we begin by defining and describing
the set of all possible sample means that can be obtained
from a particular population. Once we have specified the
complete set of all possible sample means (i.e., the distri-
bution of sample means), we can find the probability of
selecting any specific sample means.

I have a bad habit of losing playing cards. This habit is
compounded by the fact that I always save the old deck
in the hope that someday I will find the missing cards.
As a result, I have a drawer filled with partial decks of
playing cards. Suppose that I take one of these almost-
complete decks, shuffle the cards carefully, and then
randomly select one card. What is the probability that 
I will draw a king?

You should realize that it is impossible to answer
this probability question. To find the probability of
selecting a king, you must know how many cards are 
in the deck and exactly which cards are missing. (It is
crucial that you know whether any kings are missing.)
The point of this simple example is that any probability
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2. The pile of sample means should tend to form a normal-shaped distribution.
Logically, most of the samples should have means close to µ, and it should be
relatively rare to find sample means that are substantially different from µ. As a
result, the sample means should pile up in the center of the distribution (around µ)
and the frequencies should taper off as the distance between M and µ increases.
This describes a normal-shaped distribution.

3. In general, the larger the sample size, the closer the sample means should be to
the population mean, µ. Logically, a large sample should be a better representa-
tive than a small sample. Thus, the sample means obtained with a large sample
size should cluster relatively close to the population mean; the means obtained
from small samples should be more widely scattered.

As you will see, each of these three commonsense characteristics is an accurate 
description of the distribution of sample means. The following example demonstrates
the process of constructing the distribution of sample means by repeatedly selecting
samples from a population.

Consider a population that consists of only 4 scores: 2, 4, 6, 8. This population is
pictured in the frequency distribution histogram in Figure 7.1.

We are going to use this population as the basis for constructing the distribution of
sample means for n � 2. Remember: This distribution is the collection of sample means
from all of the possible random samples of n � 2 from this population. We begin by
looking at all of the possible samples. For this example, there are 16 different samples,
and they are all listed in Table 7.1. Notice that the samples are listed systematically.
First, we list all of the possible samples with X � 2 as the first score, then all of the 
possible samples with X � 4 as the first score, and so on. In this way, we can be sure
that we have all of the possible random samples.

Next, we compute the mean, M, for each of the 16 samples (see the last column
of Table 7.1). The 16 means are then placed in a frequency distribution histogram in
Figure 7.2. This is the distribution of sample means. Note that the distribution in
Figure 7.2 demonstrates two of the characteristics that we predicted for the distribu-
tion of sample means.

1. The sample means pile up around the population mean. For this example, the
population mean is µ � 5, and the sample means are clustered around a value 
of 5. It should not surprise you that the sample means tend to approximate the

E X A M P L E  7 . 1
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FIGURE 7.1

Frequency distribution 
histogram for a population 
of 4 scores: 2, 4, 6, 8.

Remember that random 
sampling requires sampling 
with replacement.
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population mean. After all, samples are supposed to be representative of the
population.

2. The distribution of sample means is approximately normal in shape. This is a
characteristic that is discussed in detail later and is extremely useful because we
already know a great deal about probabilities and the normal distribution
(Chapter 6).

Finally, you should notice that we can use the distribution of sample means to 
answer probability questions about sample means. For example, if you take a sample of
n � 2 scores from the original population, what is the probability of obtaining a sam-
ple mean greater than 7? In symbols,

p(M > 7) � ?

204 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

Scores Sample Mean

Sample First Second (M)

1 2 2 2
2 2 4 3
3 2 6 4
4 2 8 5
5 4 2 3
6 4 4 4
7 4 6 5
8 4 8 6
9 6 2 4

10 6 4 5
11 6 6 6
12 6 8 7
13 8 2 5
14 8 4 6
15 8 6 7
16 8 8 8

TABLE 7.1

All the possible samples 
of n � 2 scores that can be 
obtained from the population
presented in Figure 7.1. 
Notice that the table lists 
random samples. This requires
sampling with replacement, 
so it is possible to select the 
same score twice.

FIGURE 7.2

The distribution of 
sample means for n � 2. 
The distribution shows 
the 16 sample means 
from Table 7.1.
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Remember that our goal in 
this chapter is to answer 
probability questions about
samples with n > 1.
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Because probability is equivalent to proportion, the probability question can be re-
stated as follows: Of all of the possible sample means, what proportion have values
greater than 7? In this form, the question is easily answered by looking at the distribu-
tion of sample means. All of the possible sample means are pictured (see Figure 7.2),
and only 1 out of the 16 means has a value greater than 7. The answer, therefore, is 1
out of 16, or p � �1

1
6�.

Example 7.1 demonstrated the construction of the distribution of sample means for an
overly simplified situation with a very small population and samples that each contain
only n � 2 scores. In more realistic circumstances, with larger populations and larger
samples, the number of possible samples increases dramatically and it is virtually im-
possible to actually obtain every possible random sample. Fortunately, it is possible 
to determine exactly what the distribution of sample means looks like without taking
hundreds or thousands of samples. Specifically, a mathematical proposition known as
the central limit theorem provides a precise description of the distribution that would
be obtained if you selected every possible sample, calculated every sample mean, and
constructed the distribution of the sample mean. This important and useful theorem
serves as a cornerstone for much of inferential statistics. Following is the essence of the
theorem.

Central limit theorem: For any population with mean µ and standard deviation �, the distri-
bution of sample means for sample size n will have a mean of µ and a standard deviation of
�/�n� and will approach a normal distribution as n approaches infinity.

The value of this theorem comes from two simple facts. First, it describes the dis-
tribution of sample means for any population, no matter what shape, mean, or standard
deviation. Second, the distribution of sample means “approaches” a normal distribution
very rapidly. By the time the sample size reaches n � 30, the distribution is almost per-
fectly normal.

Note that the central limit theorem describes the distribution of sample means by
identifying the three basic characteristics that describe any distribution: shape, central
tendency, and variability. We examine each of these.

It has been observed that the distribution of sample means tends to be a normal distri-
bution. In fact, this distribution is almost perfectly normal if either of the following
two conditions is satisfied:

1. The population from which the samples are selected is a normal distribution.

2. The number of scores (n) in each sample is relatively large, around 30 or more.

(As n gets larger, the distribution of sample means more closely approximates a
normal distribution. When n > 30, the distribution is almost normal, regardless of the
shape of the original population.)

As we noted earlier, the fact that the distribution of sample means tends to be nor-
mal is not surprising. Whenever you take a sample from a population, you expect the
sample mean to be near to the population mean. When you take lots of different sam-
ples, you expect the sample means to “pile up” around µ, resulting in a normal-shaped
distribution. You can see this tendency emerging (although it is not yet normal) in
Figure 7.2.

THE SHAPE OF THE
DISTRIBUTION OF SAMPLE

MEANS

THE CENTRAL LIMIT THEOREM
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In Example 7.1, the distribution of sample means is centered around the mean of the
population from which the samples were obtained. In fact, the average value of all the
sample means is exactly equal to the value of the population mean. This fact should be
intuitively reasonable; the sample means are expected to be close to the population
mean, and they do tend to pile up around µ. The formal statement of this phenomenon
is that the mean of the distribution of sample means always is identical to the popula-
tion mean. This mean value is called the expected value of M.

In commonsense terms, a sample mean is “expected” to be near its population
mean. When all of the possible sample means are obtained, the average value is identi-
cal to µ.

The fact that the average value of M is equal to µ was first introduced in Chapter 4
(p. 121) in the context of biased versus unbiased statistics. The sample mean is an 
example of an unbiased statistic, which means that, on average, the sample statistic 
produces a value that is exactly equal to the corresponding population parameter. In this
case, the average value of all of the sample means is exactly equal to µ.

The mean of the distribution of sample means is equal to the mean of the popu-
lation of scores, µ, and is called the expected value of M.

So far, we have considered the shape and the central tendency of the distribution of sam-
ple means. To completely describe this distribution, we need one more characteristic,
variability. The value we will be working with is the standard deviation for the distribu-
tion of sample means. This standard deviation is identified by the symbol �M and is
called the standard error of M.

When the standard deviation was first introduced in Chapter 4, we noted that
this measure of variability serves two general purposes. First, the standard deviation
describes the distribution by telling whether the individual scores are clustered close
together or scattered over a wide range. Second, the standard deviation measures
how well any individual score represents the population by providing a measure of
how much distance is reasonable to expect between a score and the population mean.
The standard error serves the same two purposes for the distribution of sample
means.

1. The standard error describes the distribution of sample means. It provides a
measure of how much difference is expected from one sample to another. When
the standard error is small, then all of the sample means are close together and
have similar values. If the standard error is large, then the sample means are
scattered over a wide range and there are big differences from one sample to
another.

2. Standard error measures how well an individual sample mean represents the
entire distribution. Specifically, it provides a measure of how much distance is
reasonable to expect between a sample mean and the overall mean for the dis-
tribution of sample means. However, because the overall mean is equal to µ, the
standard error also provides a measure of how much distance to expect between
a sample mean (M) and the population mean (µ).

Remember that a sample is not expected to provide a perfectly accurate reflection
of its population. Although a sample mean should be representative of the population
mean, there typically is some error between the sample and the population. The standard

THE STANDARD ERROR OF M

D E F I N I T I O N

THE MEAN OF THE
DISTRIBUTION OF SAMPLE

MEANS: THE EXPECTED
VALUE OF M
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error measures exactly how much difference is expected on average between a sample
mean, M, and the population mean, µ.

The standard deviation of the distribution of sample means, �M, is called the stan-
dard error of M. The standard error provides a measure of how much distance is
expected on average between a sample mean (M) and the population mean (µ).

Once again, the symbol for the standard error is �M. The � indicates that this value
is a standard deviation, and the subscript M indicates that it is the standard deviation for
the distribution of sample means. Similarly, it is common to use the symbol �M to rep-
resent the mean of the distribution of sample means. However, µM is always equal to µ
and our primary interest in inferential statistics is to compare sample means (M) with
their population means (µ). Therefore, we simply use the symbol µ to refer to the mean
of the distribution of sample means.

The standard error is an extremely valuable measure because it specifies precisely
how well a sample mean estimates its population mean—that is, how much error you
should expect, on the average, between M and µ. Remember that one basic reason for
taking samples is to use the sample data to answer questions about the population.
However, you do not expect a sample to provide a perfectly accurate picture of the pop-
ulation. There always is some discrepancy, or error, between a sample statistic and the
corresponding population parameter. Now we are able to calculate exactly how much
error to expect. For any sample size (n), we can compute the standard error, which
measures the average distance between a sample mean and the population mean.

The magnitude of the standard error is determined by two factors: (1) the size of
the sample and (2) the standard deviation of the population from which the sample is
selected. We examine each of these factors.

The sample size Earlier we predicted, based on common sense, that the size of a sam-
ple should influence how accurately the sample represents its population. Specifically,
a large sample should be more accurate than a small sample. In general, as the sample
size increases, the error between the sample mean and the population mean should de-
crease. This rule is also known as the law of large numbers.

The law of large numbers states that the larger the sample size (n), the more
probable it is that the sample mean is close to the population mean.

The population standard deviation As we noted earlier, there is an inverse rela-
tionship between the sample size and the standard error: bigger samples have smaller
error, and smaller samples have bigger error. At the extreme, the smallest possible sam-
ple (and the largest standard error) occurs when the sample consists of n � 1 score. At
this extreme, each sample is a single score and the distribution of sample means is iden-
tical to the original distribution of scores. In this case, the standard deviation for the dis-
tribution of sample means, which is the standard error, is identical to the standard
deviation for the distribution of scores. In other words, when n � 1, the standard error
� �M is identical to the standard deviation � �.

When n � 1, �M � � (standard error � standard deviation).

You can think of the standard deviation as the “starting point” for standard error.
When n � 1, the standard error and the standard deviation are the same: �M � �. 

D E F I N I T I O N

D E F I N I T I O N

SECTION 7.2 / THE DISTRIBUTION OF SAMPLE MEANS 207

30991_ch07_ptg01_hr_199-230.qxd  9/2/11  11:30 PM  Page 207



As sample size increases beyond n � 1, the sample becomes a more accurate represen-
tative of the population, and the standard error decreases. The formula for standard
error expresses this relationship between standard deviation and sample size (n).

standard error � �M � �
�

�

n�
� (7.1)

Note that the formula satisfies all of the requirements for the standard error.
Specifically,

a. As sample size (n) increases, the size of the standard error decreases. (Larger
samples are more accurate.)

b. When the sample consists of a single score (n � 1), the standard error is the
same as the standard deviation (�M � �).

In Equation 7.1 and in most of the preceding discussion, we defined standard error
in terms of the population standard deviation. However, the population standard devia-
tion (�) and the population variance (�2) are directly related, and it is easy to substitute
variance into the equation for standard error. Using the simple equality � � ��2�, the
equation for standard error can be rewritten as follows:

standard error � �M � �
�

�

n�
� � �

�
�

�

n�

2�
� � ��

�

n

2

�� (7.2)

Throughout the rest of this chapter (and in Chapter 8), we continue to define stan-
dard error in terms of the standard deviation (Equation 7.1). However, in later chapters
(starting in Chapter 9) the formula based on variance (Equation 7.2) will become more
useful.

Figure 7.3 illustrates the general relationship between standard error and sample
size. (The calculations for the data points in Figure 7.3 are presented in Table 7.2.)
Again, the basic concept is that the larger a sample is, the more accurately it represents
its population. Also note that the standard error decreases in relation to the square root
of the sample size. As a result, researchers can substantially reduce error by increasing

208 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

This formula is contained in 
the central limit theorem.

1

Standard distance
between a sample

mean and
the population

mean

Standard Error
(based on � � 10)

4 9 16 25 36 49 64 100

Number of scores in the sample (n)

9
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7
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4
3
2
1

10

0

FIGURE 7.3

The relationship between standard error and sample size. As the sample size is increased, there
is less error between the sample mean and the population mean.
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sample size up to around n � 30. However, increasing sample size beyond n � 30 does
not produce much additional improvement in how well the sample represents the 
population.

Before we move forward with our discussion of the distribution of sample means, we
pause for a moment to emphasize the idea that we are now dealing with three different
but interrelated distributions.

1. First, we have the original population of scores. This population contains the
scores for thousands or millions of individual people, and it has its own shape,
mean, and standard deviation. For example, the population of IQ scores consists
of millions of individual IQ scores that form a normal distribution with a mean
of µ � 100 and a standard deviation of � � 15. An example of a population is
shown in Figure 7.4(a).

2. Next, we have a sample that is selected from the population. The sample consists
of a small set of scores for a few people who have been selected to represent the
entire population. For example, we could select a sample of n � 25 people and
measure each individual’s IQ score. The 25 scores could be organized in a fre-
quency distribution and we could calculate the sample mean and the sample
standard deviation. Note that the sample also has its own shape, mean, and 
standard deviation. An example of a sample is shown in Figure 7.4(b).

3. The third distribution is the distribution of sample means. This is a theoretical
distribution consisting of the sample means obtained from all of the possible
random samples of a specific size. For example, the distribution of sample means
for samples of n � 25 IQ scores would be normal with a mean (expected value) 
of µ � 100 and a standard deviation (standard error) of �M � � 3. This15

25

THREE DIFFERENT
DISTRIBUTIONS
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Sample Size (n) Standard Error

1 �M � �
�

10

1�
� � 10.00

4 �M � �
�

10

4�
� � 5.00

9 �M � �
�

10

9�
� � 3.33

16 �M � 10——
�16�

� 2.50

25 �M � 10——
�25�

� 2.00

49 �M � 10——
�49�

� 1.43

64 �M � 10——
�64�

� 1.25

10———100 �M �
�100�

� 1.00

TABLE 7.2

Calculations for the points
shown in Figure 7.3. Again,
notice that the size of the 
standard error decreases as 
the size of the sample 
increases.
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distribution, shown in Figure 7.4(c), also has its own shape, mean, and standard
deviation.

Note that the scores for the sample [Figure 7.4(b)] were taken from the origi-
nal population [Figure 7.4(a)] and that the mean for the sample is one of the
values contained in the distribution of sample means [Figure 7.4(c)]. Thus, the
three distributions are all connected, but they are all distinct.
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μ � 100

� � 15

(a) Original population of IQ scores.

80 90 100 110 120 130

s � 11.5

M � 101.2

(b) A sample of n � 25 IQ scores.

μ � 100

�M � 3

(c) The distribution of sample means. Sample means for
 all the possible random samples of n � 25 IQ scores.

FIGURE 7.4

The distribution. Part (a)
shows the population of 
IQ scores. Part (b) shows a
sample of n � 25 IQ scores.
Part (c) shows the distribu-
tion of sample means for
samples of n � 25 scores.
Note that the sample mean
from part (b) is one of the
thousands of sample means
in the part (c) distribution.
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7.3 PROBABILITY AND THE DISTRIBUTION OF SAMPLE
MEANS

The primary use of the distribution of sample means is to find the probability associ-
ated with any specific sample. Recall that probability is equivalent to proportion.
Because the distribution of sample means presents the entire set of all possible sample
means, we can use proportions of this distribution to determine probabilities. The fol-
lowing example demonstrates this process.

The population of scores on the SAT forms a normal distribution with µ � 500 and 
� � 100. If you take a random sample of n � 25 students, what is the probability that
the sample mean will be greater than M � 540?

First, you can restate this probability question as a proportion question: Out of
all of the possible sample means, what proportion have values greater than 540? 
You know about “all of the possible sample means”; this is the distribution of
sample means. The problem is to find a specific portion of this distribution.

Although we cannot construct the distribution of sample means by repeatedly
taking samples and calculating means (as in Example 7.1), we know exactly what the
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L E A R N I N G  C H E C K 1. A population has a mean of µ � 50 and a standard deviation of � � 12.

a. For samples of size n � 4, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

b. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n � 4.

c. For samples of size n � 36, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

d. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n � 36.

2. As sample size increases, the value of expected value also increases. (True or
false?)

3. As sample size increases, the value of the standard error also increases. (True or
false?)

1. a. The distribution of sample means would have a mean of µ � 50 and a standard error of
�M � 12/�4

—
� 6.

b. The distribution of sample means does not satisfy either criterion to be normal. It would
not be a normal distribution.

c. The distribution of sample means is normal and would have a mean of µ � 50 and a
standard error of �M � 12/�36

—
� 2.

d. Because the sample size is greater than 30, the distribution of sample means is a normal
distribution.

2. False. The expected value does not depend on sample size.

3. False. The standard error decreases as sample size increases.

ANSWERS

Caution: Whenever you have 
a probability question about a
sample mean, you must use the
distribution of sample means.
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distribution looks like based on the information from the central limit theorem.
Specifically, the distribution of sample means has the following characteristics:

a. The distribution is normal because the population of SAT scores is normal.

b. The distribution has a mean of 500 because the population mean is µ � 500.

c. For n � 25, the distribution has a standard error of �M � 20:

�M � �
�

�

n�
� � �

�

10

2

0

5�
� � �

10
5
0

� � 20

This distribution of sample means is shown in Figure 7.5.
We are interested in sample means greater than 540 (the shaded area in Figure 7.5),

so the next step is to use a z-score to locate the exact position of M � 540 in the dis-
tribution. The value 540 is located above the mean by 40 points, which is exactly 
2 standard deviations (in this case, exactly 2 standard errors). Thus, the z-score for 
M � 540 is z � �2.00.

Because this distribution of sample means is normal, you can use the unit normal
table to find the probability associated with z � �2.00. The table indicates that
0.0228 of the distribution is located in the tail of the distribution beyond z � �2.00.
Our conclusion is that it is very unlikely, p � 0.0228 (2.28%), to obtain a random
sample of n � 25 students with an average SAT score greater than 540.

As demonstrated in Example 7.2, it is possible to use a z-score to describe the exact
location of any specific sample mean within the distribution of sample means. The
z-score tells exactly where the sample mean is located in relation to all of the other
possible sample means that could have been obtained. As defined in Chapter 5, a 
z-score identifies the location with a signed number so that

1. The sign tells whether the location is above (�) or below (�) the mean.

2. The number tells the distance between the location and the mean in terms of the
number of standard deviations.

A z-SCORE FOR SAMPLE
MEANS
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M

z

500

0 21

540
μ

σM = 20

FIGURE 7.5

The distribution of sample
means for n � 25. Samples
were selected from a normal
population with µ� 500 and
�� 100.

30991_ch07_ptg01_hr_199-230.qxd  9/2/11  11:30 PM  Page 212



However, we are now finding a location within the distribution of sample means.
Therefore, we must use the notation and terminology appropriate for this distribution.
First, we are finding the location for a sample mean (M) rather than a score (X). Second,
the standard deviation for the distribution of sample means is the standard error, �M.
With these changes, the z-score formula for locating a sample mean is

z � �
M

�

�

M

�
� (7.3)

Just as every score (X) has a z-score that describes its position in the distribution of
scores, every sample mean (M) has a z-score that describes its position in the distribu-
tion of sample means. When the distribution of sample means is normal, it is possible
to use z-scores and the unit normal table to find the probability associated with any spe-
cific sample mean (as in Example 7.2). The following example demonstrates that it also
is possible to make quantitative predictions about the kinds of samples that should be
obtained from any population.

Once again, the distribution of SAT scores forms a normal distribution with a mean
of µ � 500 and a standard deviation of � � 100. For this example, we are going to
determine what kind of sample mean is likely to be obtained as the average SAT
score for a random sample of n � 25 students. Specifically, we determine the exact
range of values that is expected for the sample mean 80% of the time.

We begin with the distribution of sample means for n � 25. As demonstrated 
in Example 7.2, this distribution is normal with an expected value of µ � 500 and a
standard error of �M � 20 (Figure 7.6). Our goal is to find the range of values that
make up the middle 80% of the distribution. Because the distribution is normal, we
can use the unit normal table. First, the 80% in the middle is split in half, with 40%
(0.4000) on each side of the mean. Looking up 0.4000 in column D (the proportion
between the mean and z), we find a corresponding z-score of z � 1.28. Thus, the 
z-score boundaries for the middle 80% are z � �1.28 and z � �1.28. By definition, 
a z-score of 1.28 represents a location that is 1.28 standard deviations (or standard

E X A M P L E  7 . 3

SECTION 7.3 / PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS 213

Caution: When computing z for
a single score, use the standard
deviation, �. When computing 
z for a sample mean, you must
use the standard error, �M

(see Box 7.2).

M

z

500

40% 40% 10%10%

0 +1.28−1.28

525.6474.4
μ

20

FIGURE 7.6

The middle 80% of the
distribution of sample 
means for n � 25. Sample
were selected from a 
normal population with 
µ� 500 and �� 100.
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errors) from the mean. With a standard error of 20 points, the distance from the mean
is 1.28(20) � 25.6 points. The mean is µ � 500, so a distance of 25.6 in both
directions produces a range of values from 474.4 to 525.6.

Thus, 80% of all the possible sample means are contained in a range between
474.4 and 525.6. If we select a sample of n � 25 students, we can be 80% confident
that the mean SAT score for the sample will be in this range.

The point of Example 7.3 is that the distribution of sample means makes it possi-
ble to predict the value that ought to be obtained for a sample mean. We know, for 
example, that a sample of n � 25 students ought to have a mean SAT score around 500.
More specifically, we are 80% confident that the value of the sample mean will be be-
tween 474.4 and 525.6. The ability to predict sample means in this way is a valuable
tool for the inferential statistics that follow.
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B O X
7.2 THE DIFFERENCE BETWEEN STANDARD DEVIATION AND STANDARD ERROR

standard error � �M � �
�

�

n�
�

If you are working with a single score, then n � 1, and
the standard error becomes

standard error � �M � �
�

�

n�
� � �

�

�

1�
�

� �� standard deviation

Thus, standard error always measures the standard 
distance from the population mean for any sample size,
including n � 1.

A constant source of confusion for many students is the
difference between standard deviation and standard
error. Remember that standard deviation measures the
standard distance between a score and the population
mean, X – µ. If you are working with a distribution of
scores, the standard deviation is the appropriate measure
of variability. Standard error, on the other hand, meas-
ures the standard distance between a sample mean and
the population mean, M – µ. Whenever you have a
question concerning a sample, the standard error is the
appropriate measure of variability.

If you still find the distinction confusing, there is a
simple solution. Namely, if you always use standard
error, you always will be right. Consider the formula for
standard error:

L E A R N I N G  C H E C K 1. For a population with a mean of µ � 40 and a standard deviation of � � 8, find
the z-score corresponding to a sample mean of M � 44 for each of the following
sample sizes.

a. n � 4

b. n � 16

2. What is the probability of obtaining a sample mean greater than M � 60 for a
random sample of n � 16 scores selected from a normal population with a mean
of µ � 65 and a standard deviation of � � 20?

3. A positively skewed distribution has µ � 60 and � � 8.

a. What is the probability of obtaining a sample mean greater than M � 62 for a
sample of n � 4 scores? (Be careful. This is a trick question.)
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7.4 MORE ABOUT STANDARD ERROR

At the beginning of this chapter, we introduced the idea that it is possible to obtain
thousands of different samples from a single population. Each sample has its own indi-
viduals, its own scores, and its own sample mean. The distribution of sample means
provides a method for organizing all of the different sample means into a single picture.
Figure 7.7 shows a prototypical distribution of sample means. To emphasize the fact
that the distribution contains many different samples, we have constructed this figure
so that the distribution is made up of hundreds of small boxes, each box representing a
single sample mean. Also notice that the sample means tend to pile up around the pop-
ulation mean (µ), forming a normal-shaped distribution as predicted by the central limit
theorem.
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b. What is the probability of obtaining a sample mean greater than M � 62 for a
sample of n � 64 scores?

1. a. The standard error is �M � 4, and z �1.00.

b. The standard error is �M � 2, and z � 2.00.

2. The standard error is �M � 5, and M � 60 corresponds to z � �1.00, p(M > 60) �
p(z > –1.00) � 0.8413 (or 84.13%).

3. a. The distribution of sample means does not satisfy either of the criteria for being normal.
Therefore, you cannot use the unit normal table, and it is impossible to find the probability.

b. With n � 64, the distribution of sample means is nearly normal. The standard error is 
8/�64� � 1, the z-score is �2.00, and the probability is 0.0228.

ANSWERS

M
μ

FIGURE 7.7

An example of a typical
distribution of sample
means. Each of the small
boxes represents the mean
obtained for one sample.
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The distribution shown in Figure 7.7 provides a concrete example for reviewing
the general concepts of sampling error and standard error. Although the following
points may seem obvious, they are intended to provide you with a better understanding
of these two statistical concepts.

1. Sampling Error. The general concept of sampling error is that a sample typi-
cally does not provide a perfectly accurate representation of its population.
More specifically, there typically is some discrepancy (or error) between a
statistic computed for a sample and the corresponding parameter for the popula-
tion. As you look at Figure 7.7, notice that the individual sample means are not
exactly equal to the population mean. In fact, 50% of the samples have means
that are smaller than µ (the entire left-hand side of the distribution). Similarly,
50% of the samples produce means that overestimate the true population mean.
In general, there is some discrepancy, or sampling error, between the mean for
a sample and the mean for the population from which the sample was obtained.

2. Standard Error. Again looking at Figure 7.7, notice that most of the sample
means are relatively close to the population mean (those in the center of the
distribution). These samples provide a fairly accurate representation of the
population. On the other hand, some samples produce means that are out in the
tails of the distribution, relatively far from the population mean. These extreme
sample means do not accurately represent the population. For each individual
sample, you can measure the error (or distance) between the sample mean and
the population mean. For some samples, the error is relatively small, but for
other samples, the error is relatively large. The standard error provides a way
to measure the “average,” or standard, distance between a sample mean and the
population mean.

Thus, the standard error provides a method for defining and measuring sampling
error. Knowing the standard error gives researchers a good indication of how accurately
their sample data represent the populations that they are studying. In most research sit-
uations, for example, the population mean is unknown, and the researcher selects a
sample to help obtain information about the unknown population. Specifically, the sam-
ple mean provides information about the value of the unknown population mean. The
sample mean is not expected to give a perfectly accurate representation of the popula-
tion mean; there will be some error, and the standard error tells exactly how much error,
on average, should exist between the sample mean and the unknown population mean.
The following example demonstrates the use of standard error and provides additional
information about the relationship between standard error and standard deviation.

A recent survey of students at a local college included the following question: How
many minutes do you spend each day watching electronic video (e.g., online, TV, cell
phone, iPod, etc.). The average response was µ � 80 minutes, and the distribution of
viewing times was approximately normal with a standard deviation of � � 20 minutes.
Next, we take a sample from this population and examine how accurately the sample
mean represents the population mean. More specifically, we will examine how sample
size affects accuracy by considering three different samples: one with n � 1 student,
one with n � 4 students, and one with n � 100 students.

Figure 7.8 shows the distributions of sample means based on samples of n � 1, 
n � 4, and n � 100. Each distribution shows the collection of all possible sample
means that could be obtained for that particular sample size. Notice that all three
sampling distributions are normal (because the original population is normal), and 
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all three have the same mean, µ � 80, which is the expected value of M. However,
the three distributions differ greatly with respect to variability. We will consider each
one separately.

The smallest sample size is n � 1. When a sample consists of a single student, the
mean for the sample equals the score for the student, M � X. Thus, when n � 1, the
distribution of sample means is identical to the original population of scores. In this
case, the standard error for the distribution of sample means is equal to the standard
deviation for the original population. Equation 7.1 confirms this observation.

�M � �
�

�

n�
� � �

�

20

1�
� � 20

When the sample consists of a single student, you expect, on average, a 20-point
difference between the sample mean and the mean for the population. As we noted
earlier, the population standard deviation is the “starting point” for the standard error.
With the smallest possible sample, n � 1, the standard error is equal to the standard
deviation [see Figure 7.8(a)].

As the sample size increases, however, the standard error gets smaller. For a sample
of n � 4 students, the standard error is

�M � �
�

�

n�
� � �

�

20

4�
� � �

2
2
0
� � 10

That is, the typical (or standard) distance between M and µ is 10 points. Figure 7.8(b)
illustrates this distribution. Notice that the sample means in this distribution approximate
the population mean more closely than in the previous distribution where n � 1.

With a sample of n � 100, the standard error is still smaller.

�M � �
�

�

n�
� � �

�

2

1

0

00�
� � �

2
1
0
0
� � 2
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2

Distribution of M 
for n � 100

σM � 2

Distribution of M 
for n � 4
σM � 10

Distribution of M 
for n � 1

σM � σ � 20

FIGURE 7.8

The distribution of sample means for random samples of size (a) n � 1, (b) n � 4, and (c) 
n � 100 obtained from a normal population with (µ � 80) and (� � 20). Notice that the size 
of the standard error decreases as the sample size increases.

(a) (b) (c)
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A sample of n � 100 students should produce a sample mean that represents 
the population much more accurately than a sample of n � 4 or n � 1. As shown in
Figure 7.8(c), there is very little error between M and µ when n � 100. Specifically,
you would expect, on average, only a 2-point difference between the population mean
and the sample mean.

In summary, this example illustrates that with the smallest possible sample (n � 1),
the standard error and the population standard deviation are the same. When sample size
is increased, the standard error gets smaller, and the sample means tend to approximate
µ more closely. Thus, standard error defines the relationship between sample size and the
accuracy with which M represents µ.

IN THE LITERATURE
REPORTING STANDARD ERROR

As we will see later, standard error plays a very important role in inferential statistics.
Because of its crucial role, the standard error for a sample mean, rather than the
sample standard deviation, is often reported in scientific papers. Scientific journals
vary in how they refer to the standard error, but frequently the symbols SE and SEM
(for standard error of the mean) are used. The standard error is reported in two ways.
Much like the standard deviation, it may be reported in a table along with the sample
means (Table 7.3). Alternatively, the standard error may be reported in graphs.

Figure 7.9 illustrates the use of a bar graph to display information about the
sample mean and the standard error. In this experiment, two samples (groups A 

218 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

TABLE 7.3

The mean self-consciousness
scores for participants who were
working in front of a video
camera and those who were not
(controls).

n Mean SE

Control 17 32.23 2.31
Camera 15 45.17 2.78

Group
A
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B
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FIGURE 7.9

The mean (�SE) score for
treatment groups A and B.
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and B) are given different treatments, and then the subjects’ scores on a dependent
variable are recorded. The mean for group A is M � 15, and for group B, it is M
� 30. For both samples, the standard error of M is �M � 4. Note that the mean is
represented by the height of the bar, and the standard error is depicted by brackets at
the top of each bar. Each bracket extends 1 standard error above and 1 standard error
below the sample mean. Thus, the graph illustrates the mean for each group plus or
minus 1 standard error (M � SE). When you glance at Figure 7.9, not only do you 
get a “picture” of the sample means, but also you get an idea of how much error you
should expect for those means.

Figure 7.10 shows how sample means and standard error are displayed in a line
graph. In this study, two samples representing different age groups are tested on a 
task for four trials. The number of errors committed on each trial is recorded for all
participants. The graph shows the mean (M) number of errors committed for each group
on each trial. The brackets show the size of the standard error for each sample mean.
Again, the brackets extend 1 standard error above and below the value of the mean.
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FIGURE 7.10

The mean (�SE) number 
of mistakes made for groups
A and B on each trial.

L E A R N I N G  C H E C K 1. A population has a standard deviation of � � 10.

a. On average, how much difference should there be between the population mean
and a single score selected from this population?

b. On average, how much difference should there be between the population mean
and the sample mean for n � 4 scores selected from this population?

c. On average, how much difference should there be between the population mean
and the sample mean for n � 25 scores selected from this population?

2. Can the value of the standard error ever be larger than the value of the population
standard deviation? Explain your answer.

3. A researcher plans to select a random sample from a population with a standard
deviation of � � 12.

a. How large a sample is needed to have a standard error of 6 points or less?

b. How large a sample is needed to have a standard error of 4 points or less?
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7.5 LOOKING AHEAD TO INFERENTIAL STATISTICS

Inferential statistics are methods that use sample data as the basis for drawing general
conclusions about populations. However, we have noted that a sample is not expected to
give a perfectly accurate reflection of its population. In particular, there will be some error
or discrepancy between a sample statistic and the corresponding population parameter. In
this chapter, we have observed that a sample mean is not exactly equal to the population
mean. The standard error of M specifies how much difference is expected on average be-
tween the mean for a sample and the mean for the population.

The natural differences that exist between samples and populations introduce a 
degree of uncertainty and error into all inferential processes. Specifically, there is always
a margin of error that must be considered whenever a researcher uses a sample mean as
the basis for drawing a conclusion about a population mean. Remember that the sample
mean is not perfect. In the next seven chapters we introduce a variety of statistical meth-
ods that all use sample means to draw inferences about population means.

In each case, the distribution of sample means and the standard error are critical
elements in the inferential process. Before we begin this series of chapters, we pause
briefly to demonstrate how the distribution of sample means, along with z-scores and
probability, can help us use sample means to draw inferences about population means.

Suppose that a psychologist is planning a research study to evaluate the effect of a new
growth hormone. It is known that regular adult rats (with no hormone) weigh an average
of µ � 400 grams. Of course, not all rats are the same size, and the distribution of their
weights is normal with � � 20. The psychologist plans to select a sample of n � 25
newborn rats, inject them with the hormone, and then measure their weights when they
become adults. The structure of this research study is shown in Figure 7.11.

The psychologist makes a decision about the effect of the hormone by comparing
the sample of treated rats with the regular untreated rats in the original population. If
the treated rats in the sample are noticeably different from untreated rats, then the
researcher has evidence that the hormone has an effect. The problem is to determine
exactly how much difference is necessary before we can say that the sample is
noticeably different.

The distribution of sample means and the standard error can help researchers
make this decision. In particular, the distribution of sample means can be used to
show exactly what would be expected for a sample of rats who do not receive any
hormone injections. This allows researchers to make a simple comparison between

a. The sample of treated rats (from the research study)

b. Samples of untreated rats (from the distribution of sample means)
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1. a. � � 10 points

b. �M � 5 points

c. �M � 2 points

2. No. The standard error is computed by dividing the standard deviation by the square root of
n. The standard error is always less than or equal to the standard deviation.

3. a. A sample of n � 4 or larger.

b. A sample of n � 9 or larger.

ANSWERS
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If our treated sample is noticeably different from the untreated samples, then we
have evidence that the treatment has an effect. On the other hand, if our treated sample
still looks like one of the untreated samples, then we must conclude that the treatment
does not appear to have any effect.

We begin with the original population of untreated rats and consider the distribution
of sample means for all of the possible samples of n � 25 rats. The distribution of
sample means has the following characteristics:

1. It is a normal distribution, because the population of rat weights is normal.

2. It has an expected value of 400, because the population mean for untreated rats
is µ � 400.

3. It has a standard error of �M �
20——

�2�5
� �

20
�
5

� 4, because the population standard
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Sample of 
n = 25 rats

μ = 400
σ = 20

FIGURE 7.11

The structure of the 
research study described in
Example 7.5. The purpose 
of the study is to determine
whether the treatment (a
growth hormone) has an
effect on weight for rats.

deviation is � � 20 and the sample size is n � 25.

The distribution of sample means is shown in Figure 7.12. Notice that a sample
of n � 25 untreated rats (without the hormone) should have a mean weight around
400 grams. To be more precise, we can use z-scores to determine the middle 95% 
of all the possible sample means. As demonstrated in Chapter 6 (p. 190), the middle
95% of a normal distribution is located between z-score boundaries of z � �1.96 
and z � �1.96 (check the unit normal table). These z-score boundaries are shown in
Figure 7.12. With a standard error of �M � 4 points, a z-score of z � 1.96 corresponds
to a distance of 1.96(4) � 7.84 points from the mean. Thus, the z-score boundaries of
�1.96 correspond to sample means of 392.16 and 407.84.

We have demonstrated that a sample of untreated rats is almost guaranteed (95%
probability) to have a sample mean between 392.16 and 407.84. If our sample has a
mean within this range, then we must conclude that our sample of treated rats is not
noticeably different from samples of untreated rats. In this case, we conclude that the
treatment does not appear to have any effect.

On the other hand, if the mean for the treated sample is outside the 95% range,
then we can conclude that our sample of treated rats is noticeably different from the
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samples that would be obtained without any treatment. In this case, the research
results provide evidence that the treatment has an effect.

In Example 7.5 we used the distribution of sample means, together with z-scores
and probability, to provide a description of what is reasonable to expect for an untreated
sample. Then, we evaluated the effect of a treatment by determining whether the treated
sample was noticeably different from an untreated sample. This procedure forms the
foundation for the inferential technique known as hypothesis testing, which is intro-
duced in Chapter 8 and repeated throughout the remainder of this book.

The research situation shown in Figure 7.11 introduces one final issue concerning sam-
ple means and standard error. In Figure 7.11, as in most research studies, the researcher
must rely on a single sample to provide an accurate representation of the population
being investigated. As we have noted, however, if you take two different samples from
the same population, the samples will have different individuals with different scores
and different sample means. Thus, every researcher must face the nagging question, “If
I had taken a different sample, would I have obtained different results?”

The importance of this question is directly related to the degree of similarity among
all the different samples. For example, if there is a high level of consistency from one
sample to another, then a researcher can be reasonably confident that the specific sam-
ple being studied provides a good measurement of the population. That is, when all of
the samples are similar, then it does not matter which one you have selected. On the
other hand, if there are big differences from one sample to another, then the researcher
is left with some doubts about the accuracy of his or her specific sample. In this case,
a different sample could have produced vastly different results.

In this context, the standard error can be viewed as a measure of the reliability of
a sample mean. The term reliability refers to the consistency of different measurements
of the same thing. More specifically, a measurement procedure is said to be reliable if
you make two different measurements of the same thing and obtain identical (or nearly
identical) values. If you view a sample as a “measurement” of a population, then a sam-
ple mean is a “measurement” of the population mean.

STANDARD ERROR AS A
MEASURE OF RELIABILITY

222 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

z

μ = 400392.16

−1.96 +1.96

407.84

σM = 4

FIGURE 7.12

The distribution of sample
means for samples of 
n � 25 untreated rats 
(from Example 7.5).

The relationship between the
number of scores in the sample
and the size of the standard 
error is shown in Figure 7.3 on
page 208.
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If the standard error is small, then all of the possible sample means are clustered
close together and a researcher can be confident that any individual sample mean pro-
vides a reliable measure of the population. On the other hand, a large standard error in-
dicates that there are relatively large differences from one sample mean to another, and
a researcher must be concerned that a different sample could produce a different con-
clusion. Fortunately, the size of the standard error can be controlled. In particular, if a
researcher is concerned about a large standard error and the potential for big differences
from one sample to another, then the researcher has the option of reducing the standard
error by selecting a larger sample. Thus, the ability to compute the value of the standard
error provides researchers with the ability to control the reliability of their samples.

The reliability of a sample mean is directly related to the degree of confidence that
a specific sample mean is a stable and accurate representative of the population. If a re-
searcher suspects that adding one or two new scores to a sample might produce a sub-
stantial change in the sample mean, then the sample is not reliable and the researcher
has no confidence that it is stable and accurate. There are two factors that influence
whether a few new scores might substantially change a sample mean.

1. The number of scores in the sample. If there are only 2 or 3 scores in a sample,
then a few new scores can have a huge influence on the sample mean. On the
other hand, if a sample already has 100 scores, then one or two new ones can-
not have much effect.

2. The size of the population standard deviation. When the standard deviation is
large, it means that the scores are spread over a wide range of values. In this
situation it is possible to select one or two extreme scores that are very different
from the others. As we noted in Chapter 3 (p. 90), adding one or two extreme
scores to a sample can have a large influence on the sample mean. With a small
standard deviation, however, all of the scores are close together and a few new
scores should be similar to the ones already in the sample.

Notice that these two factors are the same values that are used to calculate the stan-
dard error. A large sample means that the standard error is small and the sample mean
is reliable. Also, a small population standard deviation means that the standard error is
small and the sample mean is reliable. In either case, a researcher can be confident that
adding a few new scores to an existing sample will not have a significant influence on
the sample mean.

SECTION 7.5 / LOOKING AHEAD TO INFERENTIAL STATISTICS 223

L E A R N I N G  C H E C K 1. A population forms a normal distribution with a mean of µ � 80 and a standard
deviation of � � 20.

a. If single score is selected from this population, how much distance would you
expect, on average, between the score and the population mean?

b. If a sample of n � 100 scores is selected from this population, how much dis-
tance would you expect, on average, between the sample mean and the popula-
tion mean?

2. A population forms a normal shaped distribution with µ � 40 and � � 8.

a. A sample of n � 16 scores from this population has a mean of M � 36. 
Would you describe this as a relatively typical sample, or is the sample mean
an extreme value? Explain your answer.

b. If the sample from part a had n � 4 scores, would it be considered typical or
extreme?
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3. The SAT scores for the entering freshman class at a local college form a normal
distribution with a mean of µ � 530 and a standard deviation of � � 80.

a. For a random sample of n � 16 students, what range of values for the sample
mean would be expected 95% of the time?

b. What range of values would be expected 95% of the time if the sample size
were n � 100?

4. An automobile manufacturer claims that a new model will average µ � 45 
miles per gallon with � � 4. A sample of n � 16 cars is tested and averages 
only M � 43 miles per gallon. Is this sample mean likely to occur if the manufac-
turer’s claim is true? Specifically, is the sample mean within the range of values
that would be expected 95% of the time? (Assume that the distribution of mileage
scores is normal.)

1. a. For a single score, the standard distance from the mean is the standard deviation, � � 20.

b. For a sample of n � 100 scores, the average distance between the sample mean and the
population mean is the standard error, �M � 20/�100� � 2.

2. a. With n � 16 the standard error is 2, and the sample mean corresponds to z � �2.00.
This is an extreme value.

b. With n � 4 the standard error is 4, and the sample mean corresponds to z � �1.00. This
is a relatively typical value.

3. a. With n � 16 the standard error is �M � 20 points. Using z � �1.96, the 95% range
extends from 490.8 to 569.2.

b. With n � 100 the standard error is only 8 points and the range extends from 514.32 to
545.68.

4. With n � 16, the standard error is �M � 1. If the real mean is µ � 45, then 95% of all
sample means should be within 1.96(1) � 1.96 points of µ � 45. This is a range of values
from 43.04 to 46.96. Our sample mean is outside this range, so it is not the kind of sample
that ought to be obtained if the manufacturer’s claim is true.

ANSWERS

1. The distribution of sample means is defined as the set
of Ms for all the possible random samples for a specific
sample size (n) that can be obtained from a given
population. According to the central limit theorem, the
parameters of the distribution of sample means are as
follows:
a. Shape. The distribution of sample means is normal if

either one of the following two conditions is satisfied:
(1) The population from which the samples are

selected is normal.
(2) The size of the samples is relatively large (n � 30

or more).
b. Central Tendency. The mean of the distribution 

of sample means is identical to the mean of the

population from which the samples are selected. The
mean of the distribution of sample means is called
the expected value of M.

c. Variability. The standard deviation of the
distribution of sample means is called the standard
error of M and is defined by the formula

�M � �
�

�

n�
� or �M � ��

�

n

2

��
Standard error measures the standard distance

between a sample mean (M) and the population mean (µ).

2. One of the most important concepts in this chapter is
standard error. The standard error is the standard

SUMMARY
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deviation of the distribution of sample means. It measures
the standard distance between a sample mean (M) and 
the population mean (µ). The standard error tells how
much error to expect if you are using a sample mean to
represent a population mean.

3. The location of each M in the distribution of sample
means can be specified by a z-score:

z � �
M

�

�

M

�
�

Because the distribution of sample means tends to be
normal, we can use these z-scores and the unit normal

table to find probabilities for specific sample means. 
In particular, we can identify which sample means are
likely and which are very unlikely to be obtained from
any given population. This ability to find probabilities
for samples is the basis for the inferential statistics in
the chapters ahead.

4. In general terms, the standard error measures how much
discrepancy you should expect between a sample statistic
and a population parameter. Statistical inference involves
using sample statistics to make a general conclusion
about a population parameter. Thus, standard error plays
a crucial role in inferential statistics.

KEY TERMS

sampling error (201)

distribution of sample means (201)

sampling distribution (202)

central limit theorem (205)

expected value of M (206)

standard error of M (207)

law of large numbers (207)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 7 on the book

companion website. The website also provides access to two workshops entitled Standard
Error and Central Limit Theorem that review the material covered in Chapter 7.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.
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The statistical computer package SPSS is not structured to compute the standard error or
a z-score for a sample mean. In later chapters, however, we introduce new inferential
statistics that are included in SPSS. When these new statistics are computed, SPSS typi-
cally includes a report of standard error that describes how accurately, on average, the
sample represents its population.

FOCUS ON PROBLEM SOLVING

1. Whenever you are working probability questions about sample means, you must use
the distribution of sample means. Remember that every probability question can be
restated as a proportion question. Probabilities for sample means are equivalent to
proportions of the distribution of sample means.

2. When computing probabilities for sample means, the most common error is to use
standard deviation (�) instead of standard error (�M) in the z-score formula. Standard
deviation measures the typical deviation (or error) for a single score. Standard error
measures the typical deviation (or error) for a sample. Remember: The larger the
sample is, the more accurately the sample represents the population. Thus, sample
size (n) is a critical part of the standard error.

Standard error � �M � �
�

�

n�
�

Although the distribution of sample means is often normal, it is not always a normal dis-
tribution. Check the criteria to be certain that the distribution is normal before you use
the unit normal table to find probabilities (see item 1a of the Summary). Remember that
all probability problems with a normal distribution are easier to solve if you sketch the
distribution and shade in the area of interest.

DEMONSTRATION 7.1

PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

A population forms a normal distribution with a mean of µ � 60 and a standard deviation
of � � 12. For a sample of n � 36 scores from this population, what is the probability of
obtaining a sample mean greater than 64?

p(M > 64) � ?

Rephrase the probability question as a proportion question. Out of all of the
possible sample means for n � 36, what proportion has values greater than 64? All of the
possible sample means is simply the distribution of sample means, which is normal, with a
mean of µ � 60 and a standard error of

�M � �
�

�

n
��� � �

�

12

36
�� � �

1
6
2
� � 2

The distribution is shown in Figure 7.13(a).  Because the problem is asking for the propor-
tion greater than M � 64, this portion of the distribution is shaded in Figure 7.13(b).
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S T E P  1
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Compute the z-score for the sample mean. A sample mean of M � 64 corresponds
to a z-score of

z � �
M

�

�

M

�
� � �

64 �

2
60

� �
4–
2

� 2.00

Therefore, p(M > 64) � p(z > 2.00)

Look up the proportion in the unit normal table. Find z � 2.00 in column A and
read across the row to find p � 0.0228 in column C. This is the answer as shown in
Figure 7.13(c).

p(M > 64) � p(z > 2.00) � 0.0228 (or 2.28%)

PROBLEMS 227

S T E P  2

S T E P  3

60

64

60

64 64

Column C 
p = 0.0228

Column B 
p = 0.9772

μ
60
μμ

σM = 2 σM = 2

M M M

FIGURE 7.13

Sketches of the distributions for Demonstration 7.1.

PROBLEMS

1. Briefly define each of the following:
a. Distribution of sample means
b. Expected value of M
c. Standard error of M

2. Describe the distribution of sample means (shape,
expected value, and standard error) for samples of 
n � 36 selected from a population with a mean of 
µ � 100 and a standard deviation of � � 12.

3. A sample is selected from a population with a mean of
µ � 40 and a standard deviation of � � 8.
a. If the sample has n � 4 scores, what is the expected

value of M and the standard error of M?
b. If the sample has n � 16 scores, what is the expected

value of M and the standard error of M?

4. The distribution of sample means is not always a
normal distribution. Under what circumstances is the
distribution of sample means not normal?

5. A population has a standard deviation of � � 30.
a. On average, how much difference should exist

between the population mean and the sample mean
for n � 4 scores randomly selected from the
population?

b. On average, how much difference should exist for a
sample of n � 25 scores?

c. On average, how much difference should exist for a
sample of n � 100 scores?

6. For a population with a mean of µ � 70 and a standard
deviation of � � 20, how much error, on average,
would you expect between the sample mean (M) and
the population mean for each of the following sample
sizes?
a. n � 4 scores
b. n � 16 scores
c. n � 25 scores

(a) (b) (c)
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7. For a population with a standard deviation of � � 20,
how large a sample is necessary to have a standard
error that is:
a. less than or equal to 5 points?
b. less than or equal to 2 points?
c. less than or equal to 1 point?

8. If the population standard deviation is � � 8, how
large a sample is necessary to have a standard error
that is:
a. less than 4 points?
b. less than 2 points?
c. less than 1 point?

9. For a sample of n � 25 scores, what is the value of the
population standard deviation (�) necessary to produce
each of the following a standard error values?
a. �M � 10 points?
b. �M � 5 points?
c. �M � 2 points?

10. For a population with a mean of µ � 80 and a standard
deviation of � � 12, find the z-score corresponding to
each of the following samples.
a. M � 83 for a sample of n � 4 scores
b. M � 83 for a sample of n � 16 scores
c. M � 83 for a sample of n � 36 scores

11. A sample of n � 4 scores has a mean of M � 75. Find
the z-score for this sample:
a. If it was obtained from a population with µ � 80

and � � 10.
b. If it was obtained from a population with µ � 80

and � � 20.
c. If it was obtained from a population with µ � 80

and � � 40.

12. A population forms a normal distribution with a mean
of µ � 80 and a standard deviation of � � 15. For
each of the following samples, compute the z-score for
the sample mean and determine whether the sample
mean is a typical, representative value or an extreme
value for a sample of this size.
a. M � 84 for n � 9 scores
b. M � 84 for n � 100 scores

13. A random sample is obtained from a normal
population with a mean of µ � 30 and a standard
deviation of � � 8. The sample mean is M � 33.
a. Is this a fairly typical sample mean or an extreme

value for a sample of n � 4 scores?
b. Is this a fairly typical sample mean or an extreme

value for a sample of n � 64 scores?

14. The population of IQ scores forms a normal distribution
with a mean of µ � 100 and a standard deviation of 

� � 15. What is the probability of obtaining a sample
mean greater than M � 97,
a. for a random sample of n � 9 people?
b. for a random sample of n � 25 people?

15. The scores on a standardized mathematics test for 
8th-grade children in New York State form a normal
distribution with a mean of µ � 70 and a standard
deviation of � � 10.
a. What proportion of the students in the state have

scores less than X � 75?
b. If samples of n � 4 are selected from the

population, what proportion of the samples will
have means less than M � 75?

c. If samples of n � 25 are selected from the
population, what proportion of the samples will
have means less than M � 75?

16. A population of scores forms a normal distribution
with a mean of µ � 40 and a standard deviation of 
� � 12.
a. What is the probability of randomly selecting a

score less than X � 34?
b. What is the probability of selecting a sample of 

n � 9 scores with a mean less than M � 34?
c. What is the probability of selecting a sample of 

n � 36 scores with a mean less than M � 34?

17. A population of scores forms a normal distribution
with a mean of µ � 80 and a standard deviation of 
� � 10.
a. What proportion of the scores have values between

75 and 85?
b. For samples of n � 4, what proportion of the

samples will have means between 75 and 85?
c. For samples of n � 16, what proportion of the

samples will have means between 75 and 85?

18. At the end of the spring semester, the Dean of Students
sent a survey to the entire freshman class. One question
asked the students how much weight they had gained or
lost since the beginning of the school year. The average
was a gain of µ � 9 pounds with a standard deviation of
� � 6. The distribution of scores was approximately
normal. A sample of n � 4 students is selected and the
average weight change is computed for the sample.
a. What is the probability that the sample mean will

be greater than M � 10 pounds? In symbols, what
is p(M 	 10)?

b. Of all of the possible samples, what proportion will
show an average weight loss? In symbols, what is
p(M 
 0)?

c. What is the probability that the sample mean will
be a gain of between M � 9 and M � 12 pounds?
In symbols, what is p(9 
 M 
 12)?
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19. The machinery at a food-packing plant is able to put
exactly 12 ounces of juice in every bottle. However,
some items such as apples come in variable sizes so it
is almost impossible to get exactly 3 pounds of apples
in a bag labeled “3 lbs.” Therefore, the machinery is
set to put an average of µ � 50 ounces (3 pounds and
2 ounces) in each bag. The distribution of bag weights
is approximately normal with a standard deviation of 
� � 4 ounces.
a. What is the probability of randomly picking a 

bag of apples that weighs less than 48 ounces 
(3 pounds)?

b. What is the probability of randomly picking n � 4
bags of apples that have an average weight less
than M � 48 ounces?

20. The average age for licensed drivers in the county 
is µ � 40.3 years with a standard deviation of � �
13.2 years.
a. A researcher obtained a random sample of n � 16

parking tickets and computed an average age of 
M � 38.9 years for the drivers. Compute the z-score
for the sample mean and find the probability of
obtaining an average age this young or younger
for a random sample of licensed drivers. Is it
reasonable to conclude that this set of n � 16
people is a representative sample of licensed
drivers?

b. The same researcher obtained a random sample of 
n � 36 speeding tickets and computed an average
age of M � 36.2 years for the drivers. Compute the
z-score for the sample mean and find the prob-
ability of obtaining an average age this young or
younger for a random sample of licensed drivers. 
Is it reasonable to conclude that this set of n � 36
people is a representative sample of licensed
drivers?

21. People are selected to serve on juries by randomly
picking names from the list of registered voters. 
The average age for registered voters in the county is 
µ � 44.3 years with a standard deviation of � � 12.4.
A statistician computes the average age for a group of
n � 12 people currently serving on a jury and obtains
a mean of M � 48.9 years.
a. How likely is it to obtain a random sample of 

n � 12 jurors with an average age equal to or
greater than 48.9?

b. Is it reasonable to conclude that this set of n � 12
people is not a representative random sample of
registered voters?

22. Welsh, Davis, Burke, and Williams (2002) con-
ducted a study to evaluate the effectiveness of a
carbohydrate-electrolyte drink on sports performance
and endurance. Experienced athletes were given
either a carbohydrate-electrolyte drink or a placebo
while they were tested on a series of high-intensity
exercises. One measure was how much time it took
for the athletes to run to fatigue. Data similar to the
results obtained in the study are shown in the
following table.

Time to Run to Fatigue (in minutes)

Mean SE

Placebo 21.7 2.2
Carbohydrate-electrolyte 28.6 2.7

a. Construct a bar graph that incorporates all of the
information in the table.

b. Looking at your graph, do you think that the
carbohydrate-electrolyte drink helps performance?

23. In the Preview section for this chapter, we discussed a
research study demonstrating that 8-month-old infants
appear to recognize which samples are likely to be
obtained from a population and which are not. In 
the study, the infants watched as a sample of n � 5
ping pong balls was selected from a large box. In 
one condition, the sample consisted of 1 red ball and 
4 white balls. After the sample was selected, the front
panel of the box was removed to reveal the contents.
In the expected condition, the box contained primarily
white balls like the sample and the infants looked at it
for an average of M � 7.5 seconds. In the unexpected
condition, the box had primarily red balls, unlike the
sample, and the infants looked at it for M � 9.9 seconds.
Assuming that the standard error for both means is
(�M � 1 second, draw a bar graph showing the two
sample means using brackets to show the size of the
standard error for each mean.
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

8
Introduction 
to Hypothesis
Testing

Preview

8.1 The Logic of Hypothesis Testing

8.2 Uncertainty and Errors in
Hypothesis Testing

8.3 An Example of a Hypothesis Test

8.4 Directional (One-Tailed)
Hypothesis Tests

8.5 Concerns About Hypothesis
Testing: Measuring Effect Size

8.6 Statistical Power

Summary

Focus on Problem Solving

Demonstrations 8.1 and 8.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• z-Scores (Chapter 5)
• Distribution of sample means (Chapter 7)

• Expected value
• Standard error
• Probability and sample means
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8.1 THE LOGIC OF HYPOTHESIS TESTING

It usually is impossible or impractical for a researcher to observe every individual in 
a population. Therefore, researchers usually collect data from a sample and then use 
the sample data to help answer questions about the population. Hypothesis testing is a 
statistical procedure that allows researchers to use sample data to draw inferences about
the population of interest.

Hypothesis testing is one of the most commonly used inferential procedures. In fact,
most of the remainder of this book examines hypothesis testing in a variety of different
situations and applications. Although the details of a hypothesis test change from one 
situation to another, the general process remains constant. In this chapter, we introduce
the general procedure for a hypothesis test. You should notice that we use the statistical
techniques that have been developed in the preceding three chapters—that is, we com-
bine the concepts of z-scores, probability, and the distribution of sample means to create
a new statistical procedure known as a hypothesis test.

A hypothesis test is a statistical method that uses sample data to evaluate a
hypothesis about a population.

In very simple terms, the logic underlying the hypothesis-testing procedure is as
follows:

1. First, we state a hypothesis about a population. Usually the hypothesis concerns
the value of a population parameter. For example, we might hypothesize that
American adults gain an average of � � 7 pounds between Thanksgiving and
New Year’s Day each year.

2. Before we select a sample, we use the hypothesis to predict the characteristics
that the sample should have. For example, if we predict that the average weight
gain for the population is � � 7 pounds, then we would predict that our sample
should have a mean around 7 pounds. Remember: The sample should be similar
to the population, but you always expect a certain amount of error.

3. Next, we obtain a random sample from the population. For example, we might
select a sample of n � 200 American adults and measure the average weight
change for the sample between Thanksgiving and New Year’s Day.

4. Finally, we compare the obtained sample data with the prediction that was made
from the hypothesis. If the sample mean is consistent with the prediction, then
we conclude that the hypothesis is reasonable. But if there is a big discrepancy
between the data and the prediction, then we decide that the hypothesis is wrong.

A hypothesis test is typically used in the context of a research study. That is, a researcher
completes a research study and then uses a hypothesis test to evaluate the results. Depending
on the type of research and the type of data, the details of the hypothesis test change from one
research situation to another. In later chapters, we examine different versions of hypothesis
testing that are used for different kinds of research. For now, however, we focus on the basic
elements that are common to all hypothesis tests. To accomplish this general goal, we 
examine a hypothesis test as it applies to the simplest possible situation—using a sample
mean to test a hypothesis about a population mean.

In the six chapters that follow, we consider hypothesis testing in more complex 
research situations involving sample means and mean differences. In Chapters 15 and 16,
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we look at correlational research and examine how the relationships obtained for sample
data are used to evaluate hypotheses about relationships in the population. In Chapters 17
and 18, we examine how the proportions that exist in a sample are used to test hypothe-
ses about the corresponding proportions in the population. Chapter 19 reviews the com-
plete set of hypothesis tests and presents a guide to help you find the appropriate test for
a specific set of data.

Once again, we introduce hypothesis testing with a situation in which a researcher
is using one sample mean to evaluate a hypothesis about one unknown population mean.

The unknown population Figure 8.2 shows the general research situation that we
use to introduce the process of hypothesis testing. Notice that the researcher begins with
a known population. This is the set of individuals as they exist before treatment. For
this example, we are assuming that the original set of scores forms a normal distribu-
tion with � � 80 and � � 20. The purpose of the research is to determine the effect of
a treatment on the individuals in the population. That is, the goal is to determine what
happens to the population after the treatment is administered.

To simplify the hypothesis-testing situation, one basic assumption is made about
the effect of the treatment: If the treatment has any effect, it is simply to add a constant
amount to (or subtract a constant amount from) each individual’s score. You should 
recall from Chapters 3 and 4 that adding (or subtracting) a constant changes the mean
but does not change the shape of the population, nor does it change the standard devi-
ation. Thus, we assume that the population after treatment has the same shape as the
original population and the same standard deviation as the original population. This 
assumption is incorporated into the situation shown in Figure 8.2.

Note that the unknown population, after treatment, is the focus of the research
question. Specifically, the purpose of the research is to determine what would happen
if the treatment were administered to every individual in the population.

The sample in the research study The goal of the hypothesis test is to determine
whether the treatment has any effect on the individuals in the population (see Figure 8.2).
Usually, however, we cannot administer the treatment to the entire population, so the 
actual research study is conducted using a sample. Figure 8.3 shows the structure of the 
research study from the point of view of the hypothesis test. The original population, 
before treatment, is shown on the left-hand side. The unknown population, after treatment,
is shown on the right-hand side. Note that the unknown population is actually hypothetical
(the treatment is never administered to the entire population). Instead, we are asking what
would happen if the treatment were administered to the entire population. The research
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FIGURE 8.2

The basic experimental
situation for hypothesis
testing. It is assumed that 
the parameter � is known 
for the population before
treatment. The purpose 
of the experiment is to 
determine whether the 
treatment has an effect on 
the population mean.
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study involves selecting a sample from the original population, administering the treatment
to the sample, and then recording scores for the individuals in the treated sample. Notice
that the research study produces a treated sample. Although this sample was obtained 
indirectly, it is equivalent to a sample that is obtained directly from the unknown treated
population. The hypothesis test uses the treated sample on the right-hand side of Figure 8.3
to evaluate a hypothesis about the unknown treated population on the right side of the 
figure.

A hypothesis test is a formalized procedure that follows a standard series of oper-
ations. In this way, researchers have a standardized method for evaluating the results of
their research studies. Other researchers recognize and understand exactly how the data
were evaluated and how conclusions were reached. To emphasize the formal structure
of a hypothesis test, we present hypothesis testing as a four-step process that is used
throughout the rest of the book. The following example provides a concrete foundation
for introducing the hypothesis-testing procedure.

Researchers have noted a decline in cognitive functioning as people age (Bartus,
1990). However, the results from other research suggest that the antioxidants in foods
such as blueberries can reduce and even reverse these age-related declines, at least in
laboratory rats (Joseph et al., 1999). Based on these results, one might theorize that
the same antioxidants might also benefit elderly humans. Suppose a researcher is
interested in testing this theory.

Standardized neuropsychological tests such as the Wisconsin Card Sorting Test
can be used to measure conceptual thinking ability and mental flexibility (Heaton,
Chelune, Talley, Kay, & Curtiss, 1993). Performance on this type of test declines
gradually with age. Suppose that our researcher selects a test for which adults older
than 65 have an average score of � � 80 with a standard deviation of � � 20. The
distribution of test scores is approximately normal. The researcher’s plan is to obtain
a sample of n � 25 adults who are older than 65, and give each participant a daily
dose of a blueberry supplement that is very high in antioxidants. After taking the
supplement for 6 months, the participants are given the neuropsychological test to
measure their level of cognitive function. If the mean score for the sample is

E X A M P L E  8 . 1
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From the point of view of 
the hypothesis test, the entire
population receives the 
treatment and then a sample
is selected from the treated
population. In the actual
research study, a sample is
selected from the original
population and the treatment
is administered to the sample.
From either perspective, the
result is a treated sample 
that represents the treated
population.
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noticeably different from the mean for the general population of elderly adults, then
the researcher can conclude that the supplement does appear to have an effect on
cognitive function. On the other hand, if the sample mean is around 80 (the same as
the general population mean), the researcher must conclude that the supplement does
not appear to have any effect.

Figure 8.3 depicts the research situation that was described in the preceding example.
Notice that the population after treatment is unknown. Specifically, we do not know
what will happen to the mean score if the entire population of elderly adults is given the
blueberry supplement. However, we do have a sample of n � 25 participants who have
received the supplement and we can use this sample to help draw inferences about the
unknown population. The following four steps outline the hypothesis-testing procedure
that allows us to use sample data to answer questions about an unknown population.

As the name implies, the process of hypothesis testing begins by stating a hypothesis
about the unknown population. Actually, we state two opposing hypotheses. Notice that
both hypotheses are stated in terms of population parameters.

The first, and most important, of the two hypotheses is called the null hypothesis.
The null hypothesis states that the treatment has no effect. In general, the null hypoth-
esis states that there is no change, no effect, no difference—nothing happened, hence
the name null. The null hypothesis is identified by the symbol H0. (The H stands for 
hypothesis, and the zero subscript indicates that this is the zero-effect hypothesis.) 
For the study in Example 8.1, the null hypothesis states that the blueberry supplement
has no effect on cognitive functioning for the population of adults who are more than
65 years old. In symbols, this hypothesis is

H0: �with supplement � 80 (Even with the supplement, 
the mean test score is still 80.)

The null hypothesis (H0) states that in the general population there is no
change, no difference, or no relationship. In the context of an experiment, H0

predicts that the independent variable (treatment) has no effect on the dependent
variable (scores) for the population.

The second hypothesis is simply the opposite of the null hypothesis, and it is called
the scientific, or alternative, hypothesis (H1). This hypothesis states that the treatment
has an effect on the dependent variable.

The alternative hypothesis (H1) states that there is a change, a difference, 
or a relationship for the general population. In the context of an experiment, H1

predicts that the independent variable (treatment) does have an effect on the
dependent variable.

For this example, the alternative hypothesis states that the supplement does have
an effect on cognitive functioning for the population and will cause a change in the
mean score. In symbols, the alternative hypothesis is represented as

H1: �with supplement � 80 (With the supplement, the mean 
test score is different from 80.)

D E F I N I T I O N

D E F I N I T I O N

STEP 1: STATE THE
HYPOTHESIS

THE FOUR STEPS OF A
HYPOTHESIS TEST
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The goal of inferential statistics
is to make general statements
about the population by using
sample data. Therefore, when
testing hypotheses, we make our
predictions about the population
parameters.

The null hypothesis and the
alternative hypothesis are 
mutually exclusive and 
exhaustive. They cannot both 
be true, and one of them must
be true. The data determine
which one should be rejected.
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Notice that the alternative hypothesis simply states that there will be some type of
change. It does not specify whether the effect will be increased or decreased test scores.
In some circumstances, it is appropriate for the alternative hypothesis to specify the 
direction of the effect. For example, the researcher might hypothesize that the supple-
ment will increase neuropsychological test scores (� � 80). This type of hypothesis 
results in a directional hypothesis test, which is examined in detail later in this chapter.
For now we concentrate on nondirectional tests, for which the hypotheses simply state
that the treatment has no effect (H0) or has some effect (H1).

Eventually the researcher uses the data from the sample to evaluate the credibility of
the null hypothesis. The data either provide support for the null hypothesis or tend to
refute the null hypothesis. In particular, if there is a big discrepancy between the data
and the null hypothesis, then we conclude that the null hypothesis is wrong.

To formalize the decision process, we use the null hypothesis to predict the kind of
sample mean that ought to be obtained. Specifically, we determine exactly which sample
means are consistent with the null hypothesis and which sample means are at odds with
the null hypothesis.

For our example, the null hypothesis states that the supplement has no effect and
the population mean is still � � 80. If this is true, then the sample mean should have a
value around 80. Therefore, a sample mean near 80 is consistent with the null hypoth-
esis. On the other hand, a sample mean that is very different from 80 is not consistent
with the null hypothesis. To determine exactly which values are “near” 80 and which
values are “very different from” 80, we examine all of the possible sample means that
could be obtained if the null hypothesis is true. For our example, this is the distribution
of sample means for n � 25. According to the null hypothesis, this distribution is cen-
tered at � � 80. The distribution of sample means is then divided into two sections:

1. Sample means that are likely to be obtained if H0 is true; that is, sample means
that are close to the null hypothesis

2. Sample means that are very unlikely to be obtained if H0 is true; that is, sample
means that are very different from the null hypothesis

Figure 8.4 shows the distribution of sample means divided into these two sections.
Notice that the high-probability samples are located in the center of the distribution and
have sample means close to the value specified in the null hypothesis. On the other
hand, the low-probability samples are located in the extreme tails of the distribution.
After the distribution has been divided in this way, we can compare our sample data
with the values in the distribution. Specifically, we can determine whether our sample
mean is consistent with the null hypothesis (like the values in the center of the distri-
bution) or whether our sample mean is very different from the null hypothesis (like the
values in the extreme tails).

The alpha level To find the boundaries that separate the high-probability samples
from the low-probability samples, we must define exactly what is meant by “low” prob-
ability and “high” probability. This is accomplished by selecting a specific probability
value, which is known as the level of significance, or the alpha level, for the hypothe-
sis test. The alpha (�) value is a small probability that is used to identify the low-
probability samples. By convention, commonly used alpha levels are � � .05 (5%), 
� �.01 (1%), and � � .001 (0.1%). For example, with � � .05, we separate the most 
unlikely 5% of the sample means (the extreme values) from the most likely 95% of the
sample means (the central values).

STEP 2: SET THE CRITERIA 
FOR A DECISION
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With rare exceptions, an alpha
level is never larger than .05.

30991_ch08_ptg01_hr_231-280.qxd  9/2/11  11:30 PM  Page 237



The extremely unlikely values, as defined by the alpha level, make up what is
called the critical region. These extreme values in the tails of the distribution define
outcomes that are not consistent with the null hypothesis; that is, they are very unlikely
to occur if the null hypothesis is true. Whenever the data from a research study produce
a sample mean that is located in the critical region, we conclude that the data are not
consistent with the null hypothesis, and we reject the null hypothesis.

The alpha level, or the level of significance, is a probability value that is used
to define the concept of “very unlikely” in a hypothesis test.

The critical region is composed of the extreme sample values that are very
unlikely (as defined by the alpha level) to be obtained if the null hypothesis is
true. The boundaries for the critical region are determined by the alpha level. If
sample data fall in the critical region, the null hypothesis is rejected.

Technically, the critical region is defined by sample outcomes that are very 
unlikely to occur if the treatment has no effect (that is, if the null hypothesis is true).
Reversing the point of view, we can also define the critical region as sample values
that provide convincing evidence that the treatment really does have an effect. For our
example, the regular population of elderly adults has a mean test score of � �80. We
selected a sample from this population and administered a treatment (the blueberry
supplement) to the individuals in the sample. What kind of sample mean would 
convince you that the treatment has an effect? It should be obvious that the most 
convincing evidence would be a sample mean that is really different from � � 80. In
a hypothesis test, the critical region is determined by sample values that are “really
different” from the original population.

D E F I N I T I O N S
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The distribution of sample means
if the null hypothesis is true
(all the possible outcomes)

Sample means
close to H0:

 high-probability values
if H0 is true
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FIGURE 8.4

The set of potential samples
is divided into those that are
likely to be obtained and
those that are very unlikely
to be obtained if the null
hypothesis is true.
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The boundaries for the critical region To determine the exact location for the
boundaries that define the critical region, we use the alpha-level probability and the unit
normal table. In most cases, the distribution of sample means is normal, and the unit
normal table provides the precise z-score location for the critical region boundaries.
With � �.05, for example, the boundaries separate the extreme 5% from the middle
95%. Because the extreme 5% is split between two tails of the distribution, there is 
exactly 2.5% (or 0.0250) in each tail. In the unit normal table, you can look up a pro-
portion of 0.0250 in column C (the tail) and find that the z-score boundary is z � 1.96.
Thus, for any normal distribution, the extreme 5% is in the tails of the distribution 
beyond z � �1.96 and z � 	1.96. These values define the boundaries of the critical 
region for a hypothesis test using � �.05 (Figure 8.5).

Similarly, an alpha level of � �.01 means that 1%, or .0100, is split between the
two tails. In this case, the proportion in each tail is .0050, and the corresponding z-score
boundaries are z � 
2.58 (
2.57 is equally good). For � �.001, the boundaries are 
located at z � 
3.30. You should verify these values in the unit normal table and be
sure that you understand exactly how they are obtained.
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FIGURE 8.5

The critical region (very
unlikely outcomes) for 
� � .05.

L E A R N I N G  C H E C K 1. The city school district is considering increasing class size in the elementary
schools. However, some members of the school board are concerned that larger
classes may have a negative effect on student learning. In words, what would the
null hypothesis say about the effect of class size on student learning?

2. If the alpha level is increased from � � .01 to � � .05, then the boundaries for the
critical region move farther away from the center of the distribution. (True or false?)

3. If a researcher conducted a hypothesis test with an alpha level of � � .02, what 
z-score values would form the boundaries for the critical region?
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At this time, we select a sample of adults who are more than 65 years old and give each
one a daily dose of the blueberry supplement. After 6 months, the neuropsychological
test is used to measure cognitive function for the sample of participants. Notice that the
data are collected after the researcher has stated the hypotheses and established the cri-
teria for a decision. This sequence of events helps to ensure that a researcher makes an
honest, objective evaluation of the data and does not tamper with the decision criteria
after the experimental outcome is known.

Next, the raw data from the sample are summarized with the appropriate statistics:
For this example, the researcher would compute the sample mean. Now it is possible
for the researcher to compare the sample mean (the data) with the null hypothesis. This
is the heart of the hypothesis test: comparing the data with the hypothesis.

The comparison is accomplished by computing a z-score that describes exactly
where the sample mean is located relative to the hypothesized population mean from
H0. In step 2, we constructed the distribution of sample means that would be expected
if the null hypothesis were true—that is, the entire set of sample means that could be
obtained if the treatment has no effect (see Figure 8.5). Now we calculate a z-score that
identifies where our sample mean is located in this hypothesized distribution. The 
z-score formula for a sample mean is

In the formula, the value of the sample mean (M) is obtained from the sample data,
and the value of � is obtained from the null hypothesis. Thus, the z-score formula can
be expressed in words as follows:

z �

Notice that the top of the z-score formula measures how much difference there is
between the data and the hypothesis. The bottom of the formula measures the standard
distance that ought to exist between a sample mean and the population mean.

In the final step, the researcher uses the z-score value obtained in step 3 to make a deci-
sion about the null hypothesis according to the criteria established in step 2. There are two
possible outcomes:

1. The sample data are located in the critical region. By definition, a sample value
in the critical region is very unlikely to occur if the null hypothesis is true.
Therefore, we conclude that the sample is not consistent with H0 and our deci-
sion is to reject the null hypothesis. Remember, the null hypothesis states that
there is no treatment effect, so rejecting H0 means that we are concluding that
the treatment did have an effect.

STEP 4: MAKE A DECISION

sample mean 	 hypothesized population mean
�����

standard error between M and �

z
M

M

�
	

�

μ

STEP 3: COLLECT DATA 
AND COMPUTE SAMPLE

STATISTICS
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ANSWERS 1. The null hypothesis would say that class size has no effect on student learning.

2. False. A larger alpha means that the boundaries for the critical region move closer to the
center of the distribution.

3. The .02 would be split between the two tails, with .01 in each tail. The z-score boundaries
would be z � �2.33 and z � 	2.33.
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For the example we have been considering, suppose that the sample pro-
duced a mean of M � 92 after taking the supplement for 6 months. The null
hypothesis states that the population mean is � � 80 and, with n � 25 and 
� � 20, the standard error for the sample mean is

Thus, a sample mean of M � 92 produces a z-score of

With an alpha level of � � .05, this z-score is far beyond the boundary of 
1.96. Because the sample z-score is in the critical region, we reject the null
hypothesis and conclude that the blueberry supplement did have an effect on
cognitive functioning.

2. The second possibility is that the sample data are not in the critical region. In
this case, the sample mean is reasonably close to the population mean specified
in the null hypothesis (in the center of the distribution). Because the data do not
provide strong evidence that the null hypothesis is wrong, our conclusion is to
fail to reject the null hypothesis. This conclusion means that the treatment does
not appear to have an effect.

For the research study examining the blueberry supplement, suppose our
sample produced a mean test score of M � 84. As before, the standard error for
a sample of n � 25 is �M � 4, and the null hypothesis states that � � 80.
These values produce a z-score of

The z-score of 1.00 is not in the critical region. Therefore, we would fail to
reject the null hypothesis and conclude that the blueberry supplement does not
appear to have an effect on cognitive functioning.

In general, the final decision is made by comparing our treated sample with the dis-
tribution of sample means that would be obtained for untreated samples. If our treated
sample looks much the same as samples that do not receive the blueberry treatment, we
conclude that the treatment does not appear to have any effect. On the other hand, if the
treated sample is noticeably different from the majority of untreated samples, we con-
clude that the treatment does have an effect.

An Analogy for Hypothesis Testing It may seem awkward to phrase both of the two
possible decisions in terms of rejecting the null hypothesis; either we reject H0 or we
fail to reject H0. These two decisions may be easier to understand if you think of a 
research study as an attempt to gather evidence to prove that a treatment works. From
this perspective, the process of conducting a hypothesis test is similar to the process that
takes place during a jury trial. For example,

1. The test begins with a null hypothesis stating that there is no treatment effect.
The trial begins with a null hypothesis that the defendant did not commit a
crime (innocent until proven guilty).
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2. The research study gathers evidence to show that the treatment actually does
have an effect, and the police gather evidence to show that the defendant really
did commit a crime. Note that both are trying to refute the null hypothesis.

3. If there is enough evidence, the researcher rejects the null hypothesis and con-
cludes that there really is a treatment effect. If there is enough evidence, the
jury rejects the hypothesis and concludes that the defendant is guilty of a crime.

4. If there is not enough evidence, the researcher fails to reject the null hypothesis.
Note that the researcher does not conclude that there is no treatment effect,
simply that there is not enough evidence to conclude that there is an effect.
Similarly, if there is not enough evidence, the jury fails to find the defendant
guilty. Note that the jury does not conclude that the defendant is innocent, sim-
ply that there is not enough evidence for a guilty verdict.

The z-score statistic that is used in the hypothesis test is the first specific example of
what is called a test statistic. The term test statistic simply indicates that the sample data
are converted into a single, specific statistic that is used to test the hypotheses. In the
chapters that follow, we introduce several other test statistics that are used in a variety
of different research situations. However, most of the new test statistics have the same
basic structure and serve the same purpose as the z-score. We have already described
the z-score equation as a formal method for comparing the sample data and the popu-
lation hypothesis. In this section, we discuss the z-score from two other perspectives
that may give you a better understanding of hypothesis testing and the role that z-scores
play in this inferential technique. In each case, keep in mind that the z-score serves as
a general model for other test statistics that come in future chapters.

The z-score formula as a recipe The z-score formula, like any formula, can be
viewed as a recipe. If you follow instructions and use all of the right ingredients, the
formula produces a z-score. In the hypothesis-testing situation, however, you do not
have all of the necessary ingredients. Specifically, you do not know the value for the
population mean (�), which is one component, or ingredient, in the formula.

This situation is similar to trying to follow a cake recipe in which one of the in-
gredients is not clearly listed. For example, the recipe may call for flour but there is a
grease stain that makes it impossible to read how much flour. Faced with this situation,
you might try the following steps:

1. Make a hypothesis about the amount of flour. For example, hypothesize that the
correct amount is 2 cups.

2. To test your hypothesis, add the rest of the ingredients along with the hypothe-
sized amount of flour and bake the cake.

3. If the cake turns out to be good, you can reasonably conclude that your hypoth-
esis was correct. But if the cake is terrible, you conclude that your hypothesis
was wrong.

In a hypothesis test with z-scores, we do essentially the same thing. We have a for-
mula (recipe) for z-scores but one ingredient is missing. Specifically, we do not know
the value for the population mean, �. Therefore, we try the following steps:

1. Make a hypothesis about the value of �. This is the null hypothesis.

2. Plug the hypothesized value in the formula along with the other values 
(ingredients).

A CLOSER LOOK AT THE 
z-SCORE STATISTIC
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3. If the formula produces a z-score near zero (which is where z-scores are sup-
posed to be), we conclude that the hypothesis was correct. On the other hand, if
the formula produces an extreme value (a very unlikely result), we conclude
that the hypothesis was wrong.

The z-score formula as a ratio In the context of a hypothesis test, the z-score for-
mula has the following structure: 

z � �
M

�

	

M

�
� �

Notice that the numerator of the formula involves a direct comparison between the
sample data and the null hypothesis. In particular, the numerator measures the obtained
difference between the sample mean and the hypothesized population mean. The stan-
dard error in the denominator of the formula measures the standard amount of distance
that exists naturally between a sample mean and the population mean without any treat-
ment effect causing the sample to be different. Thus, the z-score formula (and most
other test statistics) forms a ratio

z �

Thus, for example, a z-score of z � 3.00 means that the obtained difference 
between the sample and the hypothesis is 3 times bigger than would be expected if the
treatment had no effect.

In general, a large value for a test statistic like the z-score indicates a large dis-
crepancy between the sample data and the null hypothesis. Specifically, a large value
indicates that the sample data are very unlikely to have occurred by chance alone.
Therefore, when we obtain a large value (in the critical region), we conclude that it
must have been caused by a treatment effect.

L E A R N I N G  C H E C K

actual difference between the sample (M) and the hypothesis (�)
�������

standard difference between M and � with no treatment effect

sample mean 	 hypothesized population mean
�����

standard error between M and �
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L E A R N I N G  C H E C K 1. A researcher selects a sample of n � 16 individuals from a normal population with
a mean of � � 40 and � � 8. A treatment is administered to the sample and, after
treatment, the sample mean is M � 43. If the researcher uses a hypothesis test to
evaluate the treatment effect, what z-score would be obtained for this sample?

2. A small value (near zero) for the z-score statistic is evidence that the sample data
are consistent with the null hypothesis. (True or false?)

3. A z-score value in the critical region means that you should reject the null hypoth-
esis. (True or false?)

1. The standard error is 2 points and z � 3/2 � 1.50.

2. True. A z-score near zero indicates that the data support the null hypothesis.

3. True. A z-score value in the critical region means that the sample is not consistent with the
null hypothesis.

ANSWERS
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8.2 UNCERTAINTY AND ERRORS IN HYPOTHESIS TESTING

Hypothesis testing is an inferential process, which means that it uses limited informa-
tion as the basis for reaching a general conclusion. Specifically, a sample provides only
limited or incomplete information about the whole population, and yet a hypothesis test
uses a sample to draw a conclusion about the population. In this situation, there is 
always the possibility that an incorrect conclusion will be made. Although sample data
are usually representative of the population, there is always a chance that the sample is
misleading and will cause a researcher to make the wrong decision about the research
results. In a hypothesis test, there are two different kinds of errors that can be made.

It is possible that the data will lead you to reject the null hypothesis when in fact the
treatment has no effect. Remember: Samples are not expected to be identical to their
populations, and some extreme samples can be very different from the populations that
they are supposed to represent. If a researcher selects one of these extreme samples by
chance, then the data from the sample may give the appearance of a strong treatment
effect, even though there is no real effect. In the previous section, for example, we dis-
cussed a research study examining how a food supplement that is high in antioxidants
affects the cognitive functioning of elderly adults. Suppose that the researcher selects a
sample of n � 25 people who already have cognitive functioning that is well above 
average. Even if the blueberry supplement (the treatment) has no effect at all, these peo-
ple will still score higher than average on the neuropsychological test when they are
tested after 6 months of taking the supplement. In this case, the researcher is likely to
conclude that the treatment does have an effect, when in fact it really does not. This is
an example of what is called a Type I error.

A Type I error occurs when a researcher rejects a null hypothesis that is actu-
ally true. In a typical research situation, a Type I error means that the researcher
concludes that a treatment does have an effect when, in fact, it has no effect.

You should realize that a Type I error is not a stupid mistake in the sense that a 
researcher is overlooking something that should be perfectly obvious. On the contrary,
the researcher is looking at sample data that appear to show a clear treatment effect. The
researcher then makes a careful decision based on the available information. The prob-
lem is that the information from the sample is misleading.

In most research situations, the consequences of a Type I error can be very serious.
Because the researcher has rejected the null hypothesis and believes that the treatment
has a real effect, it is likely that the researcher will report or even publish the research
results. A Type I error, however, means that this is a false report. Thus, Type I errors
lead to false reports in the scientific literature. Other researchers may try to build theo-
ries or develop other experiments based on the false results. A lot of precious time and
resources may be wasted.

The Probability of a Type I Error A Type I error occurs when a researcher un-
knowingly obtains an extreme, nonrepresentative sample. Fortunately, the hypothesis
test is structured to minimize the risk that this will occur. Figure 8.5 shows the distri-
bution of sample means and the critical region for the research study we have been dis-
cussing. This distribution contains all of the possible sample means for samples of 
n � 25 if the null hypothesis is true. Notice that most of the sample means are near the
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hypothesized population mean, � �80, and that means in the critical region are very
unlikely to occur.

With an alpha level of � � .05, only 5% of the samples have means in the critical
region. Therefore, there is only a 5% probability (p � .05) that one of these samples
will be obtained. Thus, the alpha level determines the probability of obtaining a sample
mean in the critical region when the null hypothesis is true. In other words, the alpha
level determines the probability of a Type I error.

The alpha level for a hypothesis test is the probability that the test will lead to a
Type I error. That is, the alpha level determines the probability of obtaining
sample data in the critical region even though the null hypothesis is true.

In summary, whenever the sample data are in the critical region, the appropriate 
decision for a hypothesis test is to reject the null hypothesis. Normally this is the correct
decision because the treatment has caused the sample to be different from the original
population; that is, the treatment effect has pushed the sample mean into the critical 
region. In this case, the hypothesis test has correctly identified a real treatment effect.
Occasionally, however, sample data are in the critical region just by chance, without any
treatment effect. When this occurs, the researcher makes a Type I error; that is, the 
researcher concludes that a treatment effect exists when in fact it does not. Fortunately,
the risk of a Type I error is small and is under the control of the researcher. Specifically,
the probability of a Type I error is equal to the alpha level.

Whenever a researcher rejects the null hypothesis, there is a risk of a Type I error.
Similarly, whenever a researcher fails to reject the null hypothesis, there is a risk of a
Type II error. By definition, a Type II error is the failure to reject a false null hypothe-
sis. In more straightforward English, a Type II error means that a treatment effect 
really exists, but the hypothesis test fails to detect it.

A Type II error occurs when a researcher fails to reject a null hypothesis that
is really false. In a typical research situation, a Type II error means that the
hypothesis test has failed to detect a real treatment effect.

A Type II error occurs when the sample mean is not in the critical region even
though the treatment has had an effect on the sample. Often this happens when the 
effect of the treatment is relatively small. In this case, the treatment does influence the
sample, but the magnitude of the effect is not big enough to move the sample mean
into the critical region. Because the sample is not substantially different from the orig-
inal population (it is not in the critical region), the statistical decision is to fail to 
reject the null hypothesis and to conclude that there is not enough evidence to say that
there is a treatment effect.

The consequences of a Type II error are usually not as serious as those of a Type I
error. In general terms, a Type II error means that the research data do not show the
results that the researcher had hoped to obtain. The researcher can accept this out-
come and conclude that the treatment either has no effect or has only a small effect
that is not worth pursuing, or the researcher can repeat the experiment (usually with
some improvement, such as a larger sample) and try to demonstrate that the treatment
really does work.

D E F I N I T I O N
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Unlike a Type I error, it is impossible to determine a single, exact probability for
a Type II error. Instead, the probability of a Type II error depends on a variety of fac-
tors and therefore is a function, rather than a specific number. Nonetheless, the proba-
bility of a Type II error is represented by the symbol �, the Greek letter beta.

In summary, a hypothesis test always leads to one of two decisions:

1. The sample data provide sufficient evidence to reject the null hypothesis and
conclude that the treatment has an effect.

2. The sample data do not provide enough evidence to reject the null hypothesis.
In this case, you fail to reject H0 and conclude that the treatment does not 
appear to have an effect.

In either case, there is a chance that the data are misleading and the decision is
wrong. The complete set of decisions and outcomes is shown in Table 8.1. The risk of
an error is especially important in the case of a Type I error, which can lead to a false
report. Fortunately, the probability of a Type I error is determined by the alpha level,
which is completely under the control of the researcher. At the beginning of a hypoth-
esis test, the researcher states the hypotheses and selects the alpha level, which imme-
diately determines the risk that a Type I error will be made.

As you have seen, the alpha level for a hypothesis test serves two very important
functions. First, the alpha level helps to determine the boundaries for the critical 
region by defining the concept of “very unlikely” outcomes. At the same time, the
alpha level determines the probability of a Type I error. When you select a value for
alpha at the beginning of a hypothesis test, your decision influences both of these
functions.

The primary concern when selecting an alpha level is to minimize the risk of a
Type I error. Thus, alpha levels tend to be very small probability values. By conven-
tion, the largest permissible value is � �.05. When there is no treatment effect, an alpha
level of .05 means that there is still a 5% risk, or a 1-in-20 probability, of rejecting the
null hypothesis and committing a Type I error. Because the consequences of a Type I
error can be relatively serious, many individual researchers and many scientific publi-
cations prefer to use a more conservative alpha level such as .01 or .001 to reduce the
risk that a false report is published and becomes part of the scientific literature. (For
more information on the origins of the .05 level of significance, see the excellent short
article by Cowles and Davis, 1982.)

SELECTING AN ALPHA LEVEL
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TABLE 8.1

Possible outcomes of a 
statistical decision

Actual Situation

No Effect, Effect Exists,
H0 True H0 False

Reject H0 Type I error Decision correct

Retain H0 Decision correct Type II error

Experimenter’s
Decision
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At this point, it may appear that the best strategy for selecting an alpha level is to
choose the smallest possible value to minimize the risk of a Type I error. However,
there is a different kind of risk that develops as the alpha level is lowered. Specifically,
a lower alpha level means less risk of a Type I error, but it also means that the hypoth-
esis test demands more evidence from the research results.

The trade-off between the risk of a Type I error and the demands of the test is
controlled by the boundaries of the critical region. For the hypothesis test to 
conclude that the treatment does have an effect, the sample data must be in the 
critical region. If the treatment really has an effect, it should cause the sample to be
different from the original population; essentially, the treatment should push the
sample into the critical region. However, as the alpha level is lowered, the bound-
aries for the critical region move farther out and become more difficult to reach.
Figure 8.6 shows how the boundaries for the critical region move farther into the
tails as the alpha level decreases. Notice that z � 0, in the center of the distribution,
corresponds to the value of � specified in the null hypothesis. The boundaries for
the critical region determine how much distance between the sample mean and � is
needed to reject the null hypothesis. As the alpha level gets smaller, this distance
gets larger.

Thus, an extremely small alpha level, such as .000001 (one in a million), would
mean almost no risk of a Type I error but would push the critical region so far out that
it would become essentially impossible to ever reject the null hypothesis; that is, it
would require an enormous treatment effect before the sample data would reach the
critical boundaries.

In general, researchers try to maintain a balance between the risk of a Type I error
and the demands of the hypothesis test. Alpha levels of .05, .01, and .001 are consid-
ered reasonably good values because they provide a low risk of error without placing
excessive demands on the research results.
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The locations of the critical
region boundaries for 
three different levels of
significance: � � .05, 
� � .01, and � � .001.
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8.3 AN EXAMPLE OF A HYPOTHESIS TEST

At this time, we have introduced all the elements of a hypothesis test. In this section,
we present a complete example of the hypothesis-testing process and discuss how the
results from a hypothesis test are presented in a research report. For purposes of demon-
stration, the following scenario is used to provide a concrete background for the 
hypothesis-testing process.

Alcohol appears to be involved in a variety of birth defects, including low birth
weight and retarded growth. A researcher would like to investigate the effect of
prenatal alcohol exposure on birth weight. A random sample of n � 16 pregnant rats
is obtained. The mother rats are given daily doses of alcohol. At birth, one pup is
selected from each litter to produce a sample of n � 16 newborn rats. The average
weight for the sample is M � 15 grams. The researcher would like to compare the
sample with the general population of rats. It is known that regular newborn rats (not
exposed to alcohol) have an average weight of � � 18 grams. The distribution of
weights is normal with � � 4. Figure 8.7 shows the overall research situation. Notice
that the researcher’s question concerns the unknown population that is exposed to
alcohol. Also notice that we have a sample representing the unknown population, and
we have a hypothesis about the unknown population mean. Specifically, the null
hypothesis says that the alcohol has no effect and the unknown mean is still � � 18.
The goal of the hypothesis test is to determine whether the sample data are
compatible with the hypothesis.

E X A M P L E  8 . 2
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L E A R N I N G  C H E C K 1. Define a Type I error.

2. Define a Type II error.

3. Under what circumstances is a Type II error likely to occur?

4. If a sample mean is in the critical region with � � .05, it would still (always) be in
the critical region if alpha were changed to � � .01. (True or false?)

5. If a sample mean is in the critical region with � � .01, it would still (always) be in
the critical region if alpha were changed to � � .05. (True or false?)

1. A Type I error is rejecting a true null hypothesis—that is, saying that the treatment has an
effect when, in fact, it does not.

2. A Type II error is the failure to reject a false null hypothesis. In terms of a research study, a
Type II error occurs when a study fails to detect a treatment effect that really exists.

3. A Type II error is likely to occur when the treatment effect is very small. In this case, a
research study is more likely to fail to detect the effect.

4. False. With � � .01, the boundaries for the critical region move farther out into the tails of
the distribution. It is possible that a sample mean could be beyond the .05 boundary but not
beyond the .01 boundary.

5. True. With � � .01, the boundaries for the critical region are farther out into the tails of the
distribution than for � � .05. If a sample mean is beyond the .01 boundary it is definitely
beyond the .05 boundary.

ANSWERS
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The following steps outline the hypothesis test that evaluates the effect of alcohol
exposure on birth weight.

State the hypotheses, and select the alpha level. Both hypotheses concern the
unknown population that is exposed to alcohol (the population on the right-hand side
of Figure 8.7). The null hypothesis states that exposure to alcohol has no effect on
birth weight. Thus, the population of rats with alcohol exposure should have the same
mean birth weight as the regular, unexposed rats. In symbols,

H0: �alcohol exposure � 18 (Even with alcohol exposure, 
the rats still average 18 grams at birth.)

The alternative hypothesis states that alcohol exposure does affect birth weight,
so the exposed population should be different from the regular rats. In symbols,

H1: �alcohol exposure 
 18 (Alcohol exposure will change birth weight.)

Notice that both hypotheses concern the unknown population. For this test, we
will use an alpha level of � �.05. That is, we are taking a 5% risk of committing a 
Type I error.

Set the decision criteria by locating the critical region. By definition, the critical region
consists of outcomes that are very unlikely if the null hypothesis is true. To locate the
critical region we go through a three-stage process that is portrayed in Figure 8.8. We
begin with the null hypothesis, which states that the alcohol has no effect on newborn
rats. If H0 is true, the population treated with alcohol is the same as the original
population: that is, a normal distribution with � �18 and � � 4. Next, we consider all

S T E P  2

S T E P  1
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FIGURE 8.7

The structure of a research study to determine whether prenatal alcohol affects birth weight. A
sample is selected from the original population and is exposed to alcohol. The question is what
would happen if the entire population were exposed to alcohol. The treated sample provides
information about the unknown treated population.
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the possible outcomes for a sample of n � 16 newborn rats. This is the distribution of
sample means for n � 16. For this example, the distribution of sample means is normal,

is centered at � �18 (according to H0), and has a standard error of .

Finally, we use the distribution of sample means to identify the critical region,
which consists of those outcomes that are very unlikely if the null hypothesis is
true. With � �.05, the critical region consists of the extreme 5% of the distribution.
As we saw earlier, for any normal distribution, z-scores of z � 
1.96 separate the
middle 95% from the extreme 5% (a proportion of 0.0250 in each tail). Thus, we
have identified the sample means that, according to the null hypothesis, are very
unlikely to occur. It is the unlikely sample means, those with z-score values beyond

1.96, that form the critical region for the test. If we obtain a sample mean that is
in the critical region, we conclude that the sample is not compatible with the null
hypothesis and we reject H0.

Collect the data, and compute the test statistic. At this point, we would select 
one newborn pup from each of the n � 16 mothers that received alcohol during
pregnancy. The birth weight is recorded for each pup and the sample mean is
computed. For this example, we obtained a sample mean of M � 15 grams. 
The sample mean is then converted to a z-score, which is our test statistic. 
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FIGURE 8.8

Locating the critical region
as a three-step process. You
begin with the population 
of scores that is predicted by
the null hypothesis. Then,
you construct the distribution
of sample means for the
sample size that is being
used. The distribution of
sample means corresponds 
to all the possible outcomes
that could be obtained if 
H0 is true. Finally, you use 
z-scores to separate the 
extreme outcomes (as 
defined by the alpha level)
from the high-probability
outcomes. The extreme
values determine the 
critical region.
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Make a decision. The z-score computed in step 3 has a value of 	3.00, which is
beyond the boundary of 	1.96. Therefore, the sample mean is located in the critical
region. This is a very unlikely outcome if the null hypothesis is true, so our decision
is to reject the null hypothesis. In addition to this statistical decision concerning the
null hypothesis, it is customary to state a conclusion about the results of the research
study. For this example, we conclude that prenatal exposure to alcohol does have a
significant effect on birth weight.

IN THE LITERATURE
REPORTING THE RESULTS OF THE STATISTICAL TEST

A special jargon and notational system are used in published reports of hypothesis
tests. When you are reading a scientific journal, for example, you typically are not
told explicitly that the researcher evaluated the data using a z-score as a test statistic
with an alpha level of .05. Nor are you told that “the null hypothesis is rejected.”
Instead, you see a statement such as:

The treatment with alcohol had a significant effect on the birth weight of newborn
rats, z � 3.00, p � .05.

Let us examine this statement, piece by piece. First, what is meant by the word
significant? In statistical tests, a significant result means that the null hypothesis has been
rejected, which means that the result is very unlikely to have occurred merely by chance.
For this example, the null hypothesis stated that the alcohol has no effect, however the
data clearly indicate that the alcohol did have an effect. Specifically, it is very unlikely
that the data would have been obtained if the alcohol did not have an effect.

A result is said to be significant, or statistically significant, if it is very 
unlikely to occur when the null hypothesis is true. That is, the result is 
sufficient to reject the null hypothesis. Thus, a treatment has a significant effect
if the decision from the hypothesis test is to reject H0.

Next, what is the meaning of z � 3.00? The z indicates that a z-score was used as
the test statistic to evaluate the sample data and that its value is 3.00. Finally, what is
meant by p � .05? This part of the statement is a conventional way of specifying the
alpha level that was used for the hypothesis test. It also acknowledges the possibility
(and the probability) of a Type I error. Specifically, the researcher is reporting that
the treatment had an effect but admits that this could be a false report. That is, it is
possible that the sample mean was in the critical region even though the alcohol had
no effect. However, the probability (p) of obtaining a sample mean in the critical
region is extremely small (less than .05) if there is no treatment effect.

In circumstances in which the statistical decision is to fail to reject H0, the report
might state that.

There was no evidence that the alcohol had an effect on birth weight, z � 1.30, p � .05.

In that case, we would be saying that the obtained result, z � 1.30, is not unusual
(not in the critical region) and that it has a relatively high probability of occurring
(greater than .05) even if the null hypothesis is true and there is no treatment effect.

D E F I N I T I O N
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The APA style does not use a
leading zero in a probability
value that refers to a level of
significance.
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Sometimes students become confused trying to differentiate between p � .05 and
p � .05. Remember that you reject the null hypothesis with extreme, low-probability
values, located in the critical region in the tails of the distribution. Thus, a significant
result that rejects the null hypothesis corresponds to p � .05 (Figure 8.9).

When a hypothesis test is conducted using a computer program, the printout
often includes not only a z-score value but also an exact value for p, the probability
that the result occurred without any treatment effect. In this case, researchers are
encouraged to report the exact p value instead of using the less-than or greater-than
notation. For example, a research report might state that the treatment effect was
significant, with z � 2.45, p � .0142. When using exact values for p, however, you
must still satisfy the traditional criterion for significance; specifically, the p value
must be smaller than .05 to be considered statistically significant. Remember: The 
p value is the probability that the result would occur if H0 were true (without any
treatment effect), which is also the probability of a Type I error. It is essential that
this probability be very small.

The final decision in a hypothesis test is determined by the value obtained for the 
z-score statistic. If the z-score is large enough to be in the critical region, then we reject
the null hypothesis and conclude that there is a significant treatment effect. Otherwise,
we fail to reject H0 and conclude that the treatment does not have a significant effect.
The most obvious factor influencing the size of the z-score is the difference between the
sample mean and the hypothesized population mean from H0. A big mean difference
indicates that the treated sample is noticeably different from the untreated population
and usually supports a conclusion that the treatment effect is significant. In addition to
the mean difference, however, there are other factors that help determine whether the
z-score is large enough to reject H0. In this section we examine two factors that can 
influence the outcome of a hypothesis test.

1. The variability of the scores, which is measured by either the standard deviation
or the variance. The variability influences the size of the standard error in the
denominator of the z-score.

2. The number of scores in the sample. This value also influences the size of the
standard error in the denominator.

We use the research study from Example 8.2, shown in Figure 8.7, to examine each
of these factors. The study used a sample of n � 16 newborn rats and concluded that
alcohol has a significant effect on birth weight, z � 	3.00, p � .05.

FACTORS THAT INFLUENCE 
A HYPOTHESIS TEST
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p > α

p < αp < α Fail to reject H0

Reject H0 Reject H0

FIGURE 8.9

Sample means that fall in 
the critical region (shaded
areas) have a probability less
than alpha ( p � �). In this
case, H0 should be rejected.
Sample means that do not
fall in the critical region have
a probability greater than
alpha ( p � �).
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The variability of the scores In Chapter 4 (p. 124) we noted that high variability can
make it very difficult to see any clear patterns in the results from a research study. In a
hypothesis test, higher variability can reduce the chances of finding a significant treat-
ment effect. For the study in Figure 8.7, the standard deviation is � � 4. With a sample
of n � 16, this produced a standard error of �M � 1 point and a significant z-score of 
z � 	300. Now consider what happens if the standard deviation is increased to � � 12.
With the increased variability, the standard error becomes �M � 12/�1�6� � 3 points.
Using the same 3-points mean difference from the original example the new z-score 
becomes

The z-score is no longer beyond the critical boundary of 1.96, so the statistical deci-
sion is to fail to reject the null hypothesis. The increased variability means that the sample
data are no longer sufficient to conclude that the treatment has a significant effect. In gen-
eral, increasing the variability of the scores produces a larger standard error and a smaller
value (closer to zero) for the z-score. If other factors are held constant, then the larger the
variability, the lower the likelihood of finding a significant treatment effect.

The number of scores in the sample The second factor that influences the outcome
of a hypothesis test is the number of scores in the sample. The study in Figure 8.7 used
a sample of n � 16 rats obtained a standard error of �M � 4/�1�6� � 1 point and a sig-
nificant z-score of z � 	3.00. Now consider what happens if we increase the sample
size to n � 64 rats. With n � 64, the standard error becomes �M � 4/��64� � 0.5 points,
and the z-score becomes

Increasing the sample size from n � 16 to n � 64 has doubled the size of the 
z-score. In general, increasing the number of scores in the sample produces a smaller
standard error and a larger value for the z-score. If all other factors are held constant,
the larger the sample size, the greater the likelihood of finding a significant treatment
effect. In simple terms, finding a 3-point treatment effect with large sample is more
convincing than finding a 3-point effect with a small sample.

The mathematics used for a hypothesis test are based on a set of assumptions. When these
assumptions are satisfied, you can be confident that the test produces a justified conclu-
sion. However, if the assumptions are not satisfied, then the hypothesis test may be com-
promised. In practice, researchers are not overly concerned with the assumptions
underlying a hypothesis test because the tests usually work well even when the assump-
tions are violated. However, you should be aware of the fundamental conditions that are
associated with each type of statistical test to ensure that the test is being used appropri-
ately. The assumptions for hypothesis tests with z-scores are summarized as follows.

Random sampling It is assumed that the participants used in the study were selected
randomly. Remember, we wish to generalize our findings from the sample to the pop-
ulation. Therefore, the sample must be representative of the population from which it
has been drawn. Random sampling helps to ensure that it is representative.
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Independent observations The values in the sample must consist of independent
observations. In everyday terms, two observations are independent if there is no con-
sistent, predictable relationship between the first observation and the second. More pre-
cisely, two events (or observations) are independent if the occurrence of the first event
has no effect on the probability of the second event. Specific examples of independence
and non-independence are examined in Box 8.1. Usually, this assumption is satisfied
by using a random sample, which also helps to ensure that the sample is representative
of the population and that the results can be generalized to the population.

The value of � is unchanged by the treatment A critical part of the z-score formula
in a hypothesis test is the standard error, �M. To compute the value for the standard
error, we must know the sample size (n) and the population standard deviation (�). In
a hypothesis test, however, the sample comes from an unknown population (see Figures
8.3 and 8.7). If the population is really unknown, it would suggest that we do not know
the standard deviation and, therefore, we cannot calculate the standard error. To solve
this dilemma, we have made an assumption. Specifically, we assume that the standard
deviation for the unknown population (after treatment) is the same as it was for the pop-
ulation before treatment.
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B O X
8.1 INDEPENDENT OBSERVATIONS

influenced by other participants in the study. The fol-
lowing two situations demonstrate circumstances in
which the observations are not independent.
1. A researcher is interested in examining television

preferences for children. To obtain a sample of n � 20
children, the researcher selects 4 children from family
A, 3 children from family B, 5 children from family
C, 2 children from family D, and 6 children from
family E.

It should be obvious that the researcher does
not have 20 independent observations. Within each
family, the children probably share television 
preference (at least, they watch the same shows).
Thus, the response, for each child is likely to be
related to the responses of his or her siblings.

2. The principle of independent observations is vio-
lated if the sample is obtained using sampling with-
out replacement. For example, if you are selecting
from a group of 20 potential participants, each
individual has a 1 in 20 chance of being selected
first. After the first person is selected, however,
there are only 19 people remaining and the proba-
bility of being selected changes to 1 in 19. Because
the probability of the second selection depends on
the first, the two selections are not independent.

Independent observations are a basic requirement for
nearly all hypothesis tests. The critical concern is that
each observation or measurement is not influenced by
any other observation or measurement. An example 
of independent observations is the set of outcomes
obtained in a series of coin tosses. Assuming that the
coin is balanced, each toss has a 50–50 chance of
coming up either heads or tails. More important, each
toss is independent of the tosses that came before. 
On the fifth toss, for example, there is a 50% chance
of heads no matter what happened on the previous 
four tosses; the coin does not remember what hap-
pened earlier and is not influenced by the past. (Note:
Many people fail to believe in the independence of
events. For example, after a series of four tails in a
row, it is tempting to think that the probability of
heads must increase because the coin is overdue to
come up heads. This is a mistake, called the “gam-
bler’s fallacy.” Remember that the coin does not know
what happened on the preceding tosses and cannot be
influenced by previous outcomes.)

In most research situations, the requirement for
independent observations is satisfied by using a ran-
dom sample of separate, unrelated individuals. Thus,
the measurement obtained for each individual is not
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Actually, this assumption is the consequence of a more general assumption that is
part of many statistical procedures. This general assumption states that the effect of the
treatment is to add a constant amount to (or subtract a constant amount from) every
score in the population. You should recall that adding (or subtracting) a constant
changes the mean but has no effect on the standard deviation. You also should note that
this assumption is a theoretical ideal. In actual experiments, a treatment generally does
not show a perfect and consistent additive effect.

Normal sampling distribution To evaluate hypotheses with z-scores, we have used
the unit normal table to identify the critical region. This table can be used only if the
distribution of sample means is normal.

SECTION 8.3 / AN EXAMPLE OF A HYPOTHESIS TEST 255

L E A R N I N G  C H E C K 1. After years of teaching driver’s education, an instructor knows that students hit an
average of � � 10.5 orange cones while driving the obstacle course in their final
exam. The distribution of run-over cones is approximately normal with a standard
deviation of � � 4.8. To test a theory about text messaging and driving, the 
instructor recruits a sample of n � 16 student drivers to attempt the obstacle
course while sending a text message. The individuals in this sample hit an average
of M � 15.9 cones.

a. Do the data indicate that texting has a significant effect on driving? Test with 
� � .01.

b. Write a sentence describing the outcome of the hypothesis test as it would 
appear in a research report.

2. In a research report, the term significant is used when the null hypothesis is 
rejected. (True or false?)

3. In a research report, the results of a hypothesis test include the phrase “z � 3.15, 
p � .01.” This means that the test failed to reject the null hypothesis. (True or false?)

4. If other factors are held constant, increasing the size of the sample increases the
likelihood of rejecting the null hypothesis. (True or false?)

5. If other factors are held constant, are you more likely to reject the null hypothesis
with a standard deviation of � � 2 or with � � 10?

1. a. With � � .01, the critical region consists of z-scores in the tails beyond z � 
 2.58. 
For these data, the standard error is 1.2 and z � 4.50. Reject the null hypothesis and
conclude that texting has a significant effect on driving.

b. Texting while driving had a significant effect on the number of cones hit by the partici-
pants, z � 4.50, p � .01.

2. True.

3. False. The probability is less than .01, which means it is very unlikely that the result
occurred without any treatment effect. In this case, the data are in the critical region, and
H0 is rejected.

4. True. A larger sample produces a smaller standard error, which leads to a larger z-score.

5. � � 2. A smaller standard deviation produces a smaller standard error, which leads to larger
z-score.

ANSWERS
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8.4 DIRECTIONAL (ONE-TAILED) HYPOTHESIS TESTS

The hypothesis-testing procedure presented in Section 8.3 is the standard, or two-tailed,
test format. The term two-tailed comes from the fact that the critical region is divided
between the two tails of the distribution. This format is by far the most widely accepted
procedure for hypothesis testing. Nonetheless, there is an alternative that is discussed
in this section.

Usually a researcher begins an experiment with a specific prediction about the direc-
tion of the treatment effect. For example, a special training program is expected to increase
student performance, or alcohol consumption is expected to slow reaction times. In these
situations, it is possible to state the statistical hypotheses in a manner that incorporates the
directional prediction into the statement of H0 and H1. The result is a directional test, or
what commonly is called a one-tailed test.

In a directional hypothesis test, or a one-tailed test, the statistical hypotheses
(H0 and H1) specify either an increase or a decrease in the population mean.
That is, they make a statement about the direction of the effect.

The following example demonstrates the elements of a one-tailed hypothesis test.

Earlier, in Example 8.1, we discussed a research study that examined the effect of
antioxidants (such as those found in blueberries) on the cognitive skills of elderly
adults. In the study, each participant in a sample of n � 25 received a blueberry
supplement every day for 6 months and then was given a standardized test to measure
cognitive skill. For the general population of elderly adults (without any supplement),
the test scores form a normal distribution with a mean of � � 80 and a standard
deviation of � � 20. For this example, the expected effect is that the blueberry
supplement will improve cognitive performance. If the researcher obtains a sample
mean of M � 87 for the n � 25 participants, is the result sufficient to conclude that
the supplement really works?

Because a specific direction is expected for the treatment effect, it is possible for the 
researcher to perform a directional test. The first step (and the most critical step) is to
state the statistical hypotheses. Remember that the null hypothesis states that there is no
treatment effect and the alternative hypothesis says that there is an effect. For this 
example, the predicted effect is that the blueberry supplement will increase test scores.
Thus, the two hypotheses would state:

H0: Test scores are not increased. (The treatment does not work.)

H1: Test scores are increased. (The treatment works as predicted.)

To express directional hypotheses in symbols, it usually is easier to begin with the 
alternative hypothesis (H1). Again, we know that the general population has an average
test score of � � 80, and H1 states that test scores will be increased by the blueberry
supplement. Therefore, expressed in symbols, H1 states,

H1: � � 80 (With the supplement, the average score is greater than 80.)

THE HYPOTHESIS FOR A
DIRECTIONAL TEST

E X A M P L E  8 . 3
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The null hypothesis states that the supplement does not increase scores. In symbols,

H0: � � 80 (With the supplement, the average score is not greater than 80.)

Note again that the two hypotheses are mutually exclusive and cover all of the 
possibilities.

The critical region is defined by sample outcomes that are very unlikely to occur if the
null hypothesis is true (that is, if the treatment has no effect). Earlier (p. 238), we noted
that the critical region can also be defined in terms of sample values that provide con-
vincing evidence that the treatment really does have an effect. For a directional test, the
concept of “convincing evidence” is the simplest way to determine the location of the
critical region. We begin with all of the possible sample means that could be obtained
if the null hypothesis is true. This is the distribution of sample means and it is normal
(because the population of test scores is normal), has an expected value of � � 80
(from H0), and, for a sample of n � 25, has a standard error of �M � 20/�25�� � 4. The
distribution is shown in Figure 8.10.

For this example, the treatment is expected to increase test scores. If untreated adults
average � � 80 on the test, then a sample mean that is substantially more than 80 would
provide convincing evidence that the treatment worked. Thus, the critical 
region is located entirely in the right-hand tail of the distribution corresponding to sam-
ple means much greater than � � 80 (see Figure 8.10). Because the critical region is
contained in one tail of the distribution, a directional test is commonly called a one-tailed
test. Also note that the proportion specified by the alpha level is not divided 
between two tails, but rather is contained entirely in one tail. Using � � .05 for exam-
ple, the whole 5% is located in one tail. In this case, the z-score boundary for the criti-
cal region is z � 1.65, which is obtained by looking up a proportion of .05 in column C
(the tail) of the unit normal table.

Notice that a directional (one-tailed) test requires two changes in the step-by-step
hypothesis-testing procedure.

1. In the first step of the hypothesis test, the directional prediction is incorporated
into the statement of the hypotheses.

2. In the second step of the process, the critical region is located entirely in one
tail of the distribution.

THE CRITICAL REGION FOR
DIRECTIONAL TESTS
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z

80
M

0 1.65

μ

σM � 4
Reject H0
Data indicate
that H0 is wrong

FIGURE 8.10

Critical region for 
Example 8.3.

If the prediction is that the 
treatment will produce a 
decrease in scores, then the
critical region is located entirely
in the left-hand tail of the 
distribution.
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After these two changes, the remainder of a one-tailed test proceeds exactly the
same as a regular two-tailed test. Specifically, you calculate the z-score statistic and then
make a decision about H0 depending on whether the z-score is in the critical region.

For this example, the researcher obtained a mean of M � 87 for the 25 participants
who received the blueberry supplement. This sample mean corresponds to a z-score of

A z-score of z � 1.75 is in the critical region for a one-tailed test (see Figure 8.10).
This is a very unlikely outcome if H0 is true. Therefore, we reject the null hypothesis
and conclude that the blueberry supplement produces a significant increase in cognitive
performance scores. In the literature, this result would be reported as follows:

The supplement produced a significant increase in scores, z � 1.75, p � .05, 
one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

The general goal of hypothesis testing is to determine whether a particular treatment
has any effect on a population. The test is performed by selecting a sample, adminis-
tering the treatment to the sample, and then comparing the result with the original pop-
ulation. If the treated sample is noticeably different from the original population, then
we conclude that the treatment has an effect, and we reject H0. On the other hand, if the
treated sample is still similar to the original population, then we conclude that there is
no convincing evidence for a treatment effect, and we fail to reject H0. The critical fac-
tor in this decision is the size of the difference between the treated sample and the orig-
inal population. A large difference is evidence that the treatment worked; a small
difference is not sufficient to say that the treatment had any effect.

The major distinction between one-tailed and two-tailed tests is the criteria 
that they use for rejecting H0. A one-tailed test allows you to reject the null hypothesis
when the difference between the sample and the population is relatively small, provided
that the difference is in the specified direction. A two-tailed test, on the other hand, 
requires a relatively large difference independent of direction. This point is illustrated
in the following example.

Consider again the one-tailed test evaluating the effect of an antioxidant supplement.
If we had used a standard two-tailed test, the hypotheses would be

H0: � � 80 (The supplement has no effect on test scores.)

H1: � 
 80 (The supplement does have an effect on test scores.)

For a two-tailed test with � � .05, the critical region consists of z-scores beyond

1.96. The data from Example 8.3 produced a sample mean of M � 87 and z � 1.75.
For the two-tailed test, this z-score is not in the critical region, and we conclude that
the supplement does not have a significant effect.

With the two-tailed test in Example 8.4, the 7-point difference between the sam-
ple mean and the hypothesized population mean (M � 87 and � � 80) is not big
enough to reject the null hypothesis. However, with the one-tailed test introduced in

E X A M P L E  8 . 4
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Example 8.3, the same 7-point difference is large enough to reject H0 and conclude
that the treatment had a significant effect.

All researchers agree that one-tailed tests are different from two-tailed tests.
However, there are several ways to interpret the difference. One group of researchers
contends that a two-tailed test is more rigorous and, therefore, more convincing than a
one-tailed test. Remember that the two-tailed test demands more evidence to reject 
H0 and thus provides a stronger demonstration that a treatment effect has occurred.

Other researchers feel that one-tailed tests are preferable because they are more
sensitive. That is, a relatively small treatment effect may be significant with a one-
tailed test but fail to reach significance with a two-tailed test. Also, there is the argu-
ment that one-tailed tests are more precise because they test hypotheses about a specific
directional effect instead of an indefinite hypothesis about a general effect.

In general, two-tailed tests should be used in research situations when there is no
strong directional expectation or when there are two competing predictions. For exam-
ple, a two-tailed test would be appropriate for a study in which one theory predicts an
increase in scores but another theory predicts a decrease. One-tailed tests should be used
only in situations in which the directional prediction is made before the research is con-
ducted and there is a strong justification for making the directional prediction. In partic-
ular, if a two-tailed test fails to reach significance, you should never follow up with a
one-tailed test as a second attempt to salvage a significant result for the same data.

L E A R N I N G  C H E C K

8.5 CONCERNS ABOUT HYPOTHESIS TESTING: MEASURING
EFFECT SIZE

Although hypothesis testing is the most commonly used technique for evaluating and
interpreting research data, a number of scientists have expressed a variety of concerns
about the hypothesis testing procedure (for example, see Loftus, 1996; Hunter, 1997;
and Killeen, 2005).

There are two serious limitations with using a hypothesis test to establish the sig-
nificance of a treatment effect. The first concern is that the focus of a hypothesis test is
on the data rather than the hypothesis. Specifically, when the null hypothesis is rejected,
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L E A R N I N G  C H E C K 1. If a researcher predicts that a treatment will increase scores, then the critical region
for a one-tailed test would be located in the right-hand tail of the distribution.
(True or false?)

2. If the sample data are sufficient to reject the null hypothesis for a one-tailed test,
then the same data would also reject H0 for a two-tailed test. (True or false?)

3. A researcher obtains z � 2.43 for a hypothesis test. Using � � .01, the researcher
should reject the null hypothesis for a one-tailed test but fail to reject for a two-
tailed test. (True or false?)

1. True. A large sample mean, in the right-hand tail, would indicate that the treatment worked
as predicted.

2. False. Because a two-tailed test requires a larger mean difference, it is possible for a sample
to be significant for a one-tailed test but not for a two-tailed test.

3. True. The one-tailed critical value is z � 2.33 and the two-tailed value is z � 2.58.

ANSWERS
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we are actually making a strong probability statement about the sample data, not about
the null hypothesis. A significant result permits the following conclusion: “This spe-
cific sample mean is very unlikely (p � .05) if the null hypothesis is true.” Note that
the conclusion does not make any definite statement about the probability of the null 
hypothesis being true or false. The fact that the data are very unlikely suggests that the
null hypothesis is also very unlikely, but we do not have any solid grounds for making
a probability statement about the null hypothesis. Specifically, you cannot conclude
that the probability of the null hypothesis being true is less than 5% simply because you
rejected the null hypothesis with � � .05 (see Box 8.2).

A second concern is that demonstrating a significant treatment effect does not
necessarily indicate a substantial treatment effect. In particular, statistical significance

260 CHAPTER 8 INTRODUCTION TO HYPOTHESIS TESTING

B O X
8.2 A FLAW IN THE LOGIC OF HYPOTHESIS TESTING

In this situation, suppose that 125 researchers 
are all doing hypothesis tests with � � .05. Of these
researchers, 80% (n � 100) are testing a true H0. For
these researchers, the probability of rejecting the null
hypothesis (and making a Type I error) is � � .05.
Therefore, the 100 hypothesis tests for this group should
produce, at most, 5 tests that reject H0. 

Meanwhile, the other 20% of the researchers 
(n � 25) are testing a false null hypothesis. For this
group, the probability of rejecting the null hypothesis 
is unknown. For the sake of argument, however, let’s
assume that the probability of detecting the treatment
effect and correctly rejecting H0 is 60%. This means
that the 25 hypothesis tests should result in 15 tests
(60%) that reject H0 and 10 that fail to reject H0.

Notice that there could be as many as 20 hypothesis
tests that reject the null hypothesis (5 from the first
group and 15 from the second group). Thus, a total of 
20 researchers will find a statistically significant effect.
Of these 20 “significant” results, however, the 5 from
the first group are making a Type I error. In this case,
the probability of a Type I error is 5 out of 20, or 
p � 5/20 � .25, which is five times greater than the
alpha level of .05.  

Based on this kind of argument, many scientists
suspect that a large number of the results and conclu-
sions published in research journals are simply wrong.
Specifically, the Type I error rate in published 
research is almost certainly higher than the alpha
levels used in the hypothesis tests that support the
results (Siegfried, 2010). 

Suppose that you do a hypothesis test and reject the null
hypothesis with � � .05. Can you conclude that there is
a 5% probability that you are making a Type I error?
Can you also conclude that there is a 95% probability
that your decision is correct and the treatment does have
an effect? For both questions, the answer is no.  

The problem is that the probabilities for a hypothesis
test are well defined only when the null hypothesis is true.
Specifically, a hypothesis test using � � .05 is stru-
ctured so that the error rate is p � .05 and the accuracy
rate is p � .95 if the null hypothesis is true. If H0 is false,
however, these probabilities start to fall apart. When
there is a treatment effect (H0 is false), the probability
that a hypothesis test will detect it and reject H0 depends
on a variety of factors. For example, if the treatment
effect is very small, then a hypothesis test is unlikely to
detect it. With a large treatment effect, the hypothesis test
is more likely to detect it and the probability of rejecting
H0 increases. Thus, whenever there is a treatment effect
(H0 is false), it becomes impossible to define precisely
the probability of rejecting the null hypothesis.

Most researchers begin research studies believing
that there is a good likelihood that the null hypothesis
is false and there really is a treatment effect. They are
hoping that the study will provide evidence of the 
effect so they can convince their colleagues. Thus,
most research begins with some probability that the
null hypothesis is false. For the sake of argument, 
let’s assume that there is an 80% probability that the
null hypothesis is true. 

p(there is no treatment effect—H0 is true) � 0.80 and
p(there is a treatment effect—H0 is false)  � 0.20
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does not provide any real information about the absolute size of a treatment effect.
Instead, the hypothesis test has simply established that the results obtained in the 
research study are very unlikely to have occurred if there is no treatment effect. The
hypothesis test reaches this conclusion by (1) calculating the standard error, which
measures how much difference is reasonable to expect between M and �, and 
(2) demonstrating that the obtained mean difference is substantially bigger than the
standard error.

Notice that the test is making a relative comparison: the size of the treatment 
effect is being evaluated relative to the standard error. If the standard error is very
small, then the treatment effect can also be very small and still be large enough to be
significant. Thus, a significant effect does not necessarily mean a big effect.

The idea that a hypothesis test evaluates the relative size of a treatment effect,
rather than the absolute size, is illustrated in the following example.

We begin with a population of scores that forms a normal distribution with � � 50 and
� � 10. A sample is selected from the population and a treatment is administered to the
sample. After treatment, the sample mean is found to be M � 51. Does this sample
provide evidence of a statistically significant treatment effect? 

Although there is only a 1-point difference between the sample mean and the orig-
inal population mean, the difference may be enough to be significant. In particular, the
outcome of the hypothesis test depends on the sample size.

For example, with a sample of n � 25 the standard error is

and the z-score for M � 51 is

This z-score fails to reach the critical boundary of z � 1.96, so we fail to reject the
null hypothesis. In this case, the 1-point difference between M and � is not significant 
because it is being evaluated relative to a standard error of 2 points. 

Now consider the outcome with a sample of n �400. With a larger sample, the
standard error is

and the z-score for M � 51 is

Now the z-score is beyond the 1.96 boundary, so we reject the null hypothesis
and conclude that there is a significant effect. In this case, the 1-point difference
between M and � is considered statistically significant because it is being evaluated
relative to a standard error of only 0.5 points.
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The point of Example 8.5 is that a small treatment effect can still be statistically sig-
nificant. If the sample size is large enough, any treatment effect, no matter how small,
can be enough for us to reject the null hypothesis.

As noted in the previous section, one concern with hypothesis testing is that a hypoth-
esis test does not really evaluate the absolute size of a treatment effect. To correct this
problem, it is recommended that whenever researchers report a statistically significant
effect, they also provide a report of the effect size (see the guidelines presented by 
L. Wilkinson and the APA Task Force on Statistical Inference, 1999). Therefore, as we
present different hypothesis tests we also present different options for measuring and
reporting effect size.

A measure of effect size is intended to provide a measurement of the ab-
solute magnitude of a treatment effect, independent of the size of the sam-
ple(s) being used.

One of the simplest and most direct methods for measuring effect size is Cohen’s d.
Cohen (1988) recommended that effect size can be standardized by measuring the mean
difference in terms of the standard deviation. The resulting measure of effect size is
computed as
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For the z-score hypothesis test, the mean difference is determined by the difference
between the population mean before treatment and the population mean after treatment.
However, the population mean after treatment is unknown. Therefore, we must use the
mean for the treated sample in its place. Remember, the sample mean is expected to be
representative of the population mean and provides the best measure of the treatment
effect. Thus, the actual calculations are really estimating the value of Cohen’s d as 
follows:
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The standard deviation is included in the calculation to standardize the size of the
mean difference in much the same way that z-scores standardize locations in a distribu-
tion. For example, a 15-point mean difference can be a relatively large treatment effect
or a relatively small effect depending on the size of the standard deviation. This phe-
nomenon is demonstrated in Figure 8.11. The top portion of the figure (part a) shows the
results of a treatment that produces a 15-point mean difference in SAT scores; before
treatment, the average SAT score is � � 500, and after treatment the average is 515.
Notice that the standard deviation for SAT scores is � � 100, so the 15-point difference
appears to be small. For this example, Cohen’s d is
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Mtreatment 	 µno treatment–––––––––––––––––––
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�treatment 	 �no treatment–––––––––––––––––––
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Cohen’s d measures the distance
between two means and is 
typically reported as a positive
number even when the formula
produces a negative value.
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Now consider the treatment effect shown in Figure 8.11(b). This time, the treat-
ment produces a 15-point mean difference in IQ scores; before treatment the average
IQ is 100, and after treatment the average is 115. Because IQ scores have a standard
deviation of � � 15, the 15-point mean difference now appears to be large. For this
example, Cohen’s d is
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Notice that Cohen’s d measures the size of the treatment effect in terms of the stan-
dard deviation. For example, a value of d � 0.50 indicates that the treatment changed
the mean by half of a standard deviation; similarly, a value of d � 1.00 indicates that
the size of the treatment effect is equal to one whole standard deviation. (See Box 8.3.)

Cohen (1988) also suggested criteria for evaluating the size of a treatment effect as
shown in Table 8.2.
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� � 500

� � 100

Distribution of SAT
scores before treatment
� � 500 and � � 100

 
d � 0.15

� � 100

� � 15

Distribution of IQ
scores before treatment
� � 100 and � � 15

Distribution of SAT
scores after treatment
� � 515 and � � 100

Distribution of IQ
scores after treatment
� � 115 and � � 15

 
d � 1.00

FIGURE 8.11

The appearance of a 15-point treatment effect in two different situations. In part (a), the standard
deviation is � � 100 and the 15-point effect is relatively small. In part (b), the standard deviation
is � � 15 and the 15-point effect is relatively large. Cohen’s d uses the standard deviation to help
measure effect size.

(a)

(b)
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As one final demonstration of Cohen’s d, consider the two hypothesis tests in
Example 8.5. For each test, the original population had a mean of � � 50 with a stan-
dard deviation of � � 10. For each test, the mean for the treated sample was M � 51.
Although one test used a sample of n � 25 and the other test used a sample of n � 400,
the sample size is not considered when computing Cohen’s d. Therefore, both of the 
hypothesis tests would produce the same value:
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Notice that Cohen’s d simply describes the size of the treatment effect and is not
influenced by the number of scores in the sample. For both hypothesis tests, the origi-
nal population mean was � � 50 and, after treatment, the sample mean was M � 51.
Thus, treatment appears to have increased the scores by 1 point, which is equal to one-
tenth of a standard deviation (Cohen’s d � 0.1).
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B O X
8.3 OVERLAPPING DISTRIBUTIONS

knows that 8-year-old children are taller than 6-year-old
children; on average, the difference is 3 or 4 inches.
However, this does not mean that all 8-year-old 
children are taller than all 6-year-old children. In 
fact, there is considerable overlap between the two
distributions, so that the tallest among the 6-year-old
children are actually taller than most 8-year-old chil-
dren. In fact, the height distributions for the two age
groups would look a lot like the two distributions in
Figure 8.10(b). Although there is a clear mean differ-
ence between the two distributions, there still can be
substantial overlap.

Cohen’s d measures the degree of separation
between two distributions, and a separation of one
standard deviation (d � 1.00) represents a large dif-
ference. Eight-year-old children really are bigger than 
6-year-old children.

Figure 8.11(b) shows the results of a treatment with a
Cohen’s d of 1.00; that is, the effect of the treatment 
is to increase the mean by one full standard deviation.
According to the guidelines in Table 8.2, a value of 
d � 1.00 is considered a large treatment effect. However,
looking at the figure, you may get the impression that
there really isn’t that much difference between the distri-
bution before treatment and the distribution after treat-
ment. In particular, there is substantial overlap between
the two distributions, so that many of the individuals who
receive the treatment are not any different from the indi-
viduals who do not receive the treatment.

The overlap between distributions is a basic fact of
life in most research situations; it is extremely rare for
the scores after treatment to be completely different (no
overlap) from the scores before treatment. Consider, for
example, children’s heights at different ages. Everyone

TABLE 8.2

Evaluating effect size with
Cohen’s d.

Magnitude of d Evaluation of Effect Size

d � 0.2 Small effect (mean difference around 0.2 standard deviation)
d � 0.5 Medium effect (mean difference around 0.5 standard deviation)
d � 0.8 Large effect (mean difference around 0.8 standard deviation)
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8.6 STATISTICAL POWER

Instead of measuring effect size directly, an alternative approach to determining the size
or strength of a treatment effect is to measure the power of the statistical test. The
power of a test is defined as the probability that the test will reject the null hypothesis
if the treatment really has an effect.

The power of a statistical test is the probability that the test will correctly reject
a false null hypothesis. That is, power is the probability that the test will identify
a treatment effect if one really exists.

Whenever a treatment has an effect, there are only two possible outcomes for a
hypothesis test: either fail to reject H0 or reject H0. Because there are only two possi-
ble outcomes, the probability for the first and the probability for the second must add
up to 1.00. The first outcome, failing to reject H0 when there is a real effect, was 
defined earlier (p. 245) as a Type II error with a probability identified as 
p � �. Therefore, the second outcome must have a probability of 1 – �. However, the
second outcome, rejecting H0 when there is a real effect, is the power of the test. Thus,
the power of a hypothesis test is equal to 1 – �. In the examples that follow, we demon-
strate the calculation of power for a hypothesis test; that is, the probability that the test
will correctly reject the null hypothesis. At the same time, however, we are computing
the probability that the test will result in a Type II error. For example, if the power of
the test is 70% (1 – �) then the probability of a Type II error must be 30% (�).

Researchers typically calculate power as a means of determining whether a 
research study is likely to be successful. Thus, researchers usually calculate the power
of a hypothesis test before they actually conduct the research study. In this way, they
can determine the probability that the results will be significant (reject H0) before 
investing time and effort in the actual research. To calculate power, however, it is first
necessary to make assumptions about a variety of factors that influence the outcome of
a hypothesis test. Factors such as the sample size, the size of the treatment effect, and
the value chosen for the alpha level can all influence a hypothesis test. The following
example demonstrates the calculation of power for a specific research situation.

We start with a normal-shaped population with a mean of � � 80 and a standard
deviation of � � 10. A researcher plans to select a sample of n � 25 individuals from

E X A M P L E  8 . 6  

D E F I N I T I O N
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L E A R N I N G  C H E C K 1. a. How does increasing sample size influence the outcome of a hypothesis test?

b. How does increasing sample size influence the value of Cohen’s d?

2. A researcher selects a sample from a population with � � 45 and � � 8. A treat-
ment is administered to the sample and, after treatment, the sample mean is found
to be M � 47. Compute Cohen’s d to measure the size of the treatment effect.

1. a. Increasing sample size increases the likelihood of rejecting the null hypothesis.

b. Cohen’s d is not influenced at all by the sample size.

2. d � 2/8 � 0.25

ANSWERS
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this population and administer a treatment to each individual. It is expected that the
treatment will have an 8-point effect; that is, the treatment will add 8 points to each
individual’s score.

Figure 8.12 shows the original population distribution and two possible outcomes:

1. If the null hypothesis is true and there is no treatment effect.

2. If the researcher’s expectation is correct and there is an 8-point effect.

The left-hand side of the figure shows what should happen according to the null
hypothesis. In this case, the treatment has no effect and the population mean is still 
� � 80. On the right-hand side of the figure we show what would happen if the treat-
ment has an 8-point effect. If the treatment adds 8 points to each person’s score, then
the population mean after treatment increases to � � 88.

Beneath each of the two populations, Figure 8.12 shows the distribution of sample
means for n � 25. According to the null hypothesis, the sample means are centered
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With an 8-point
treatment effect

� � 88 and 
� � 10

�M � 2

If H0 is true (no
treatment effect)

� � 80 and 
� � 10

Reject
H0 

	1.96 0

80

�1.96
z

Reject
H0 

Distribution of sample means
for n � 25 if H0 is true

Distribution of sample means
for n � 25 with 8-point effect

Original
Population

Normal with
� � 80 and

� � 10

7876 868482 929088

�M � 2

FIGURE 8.12

A demonstration of measuring
power for a hypothesis test.
The left-hand side shows the
distribution of sample means
that would occur if the null
hypothesis is true. The critical
region is defined for this
distribution. The right-hand
side shows the distribution 
of sample means that would
be obtained if there were an
8-point treatment effect.
Notice that if there is an 
8-point effect, essentially all
of the sample means would 
be in the critical region. Thus,
the probability of rejecting 
H0 (the power of the test)
would be nearly 100% for an
8-point treatment effect.
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around � � 80. With an 8-point treatment effect, the sample means are centered around
� � 88. Both distributions have a standard error of

Notice that the distribution on the left shows all of the possible sample means if
the null hypothesis is true. This is the distribution we use to locate the critical region
for the hypothesis test. Using � � .05, the critical region consists of extreme values in
this distribution, specifically sample means beyond z � 1.96 or z � 	1.96. These val-
ues are shown in Figure 8.12, and we have shaded all of the sample means located in
the critical region.

Now turn your attention to the distribution on the right, which shows all of the pos-
sible sample means if there is an 8-point treatment effect. Notice that most of these
sample means are located beyond the z � 1.96 boundary. This means that, if there is an
8-point treatment effect, you are almost guaranteed to obtain a sample mean in the crit-
ical region and reject the null hypothesis. Thus, the power of the test (the probability of
rejecting H0) is close to 100% if there is an 8-point treatment effect.

To calculate the exact value for the power of the test we must determine what por-
tion of the distribution on the right-hand side is shaded. Thus, we must locate the exact
boundary for the critical region, then find the probability value in the unit normal table.
For the distribution on the left-hand side, the critical boundary of z � �1.96 corre-
sponds to a location that is above � � 80 by a distance equal to

1.96�M � 1.96(2) � 3.92 points

Thus, the critical boundary of z � �1.96 corresponds to a sample mean of M � 80
� 3.92 � 83.92. Any sample mean greater than M � 83.92 is in the critical region and
would lead to rejecting the null hypothesis. Next, we determine what proportion of the
treated samples are greater than M � 83.92. For the treated distribution (right-hand
side), the population mean is � � 88 and a sample mean of M � 83.92 corresponds to
a z-score of

Finally, look up z � 	2.04 in the unit normal table and determine that the
shaded area (z � 	2.04) corresponds to p � 0.9793 (or 97.93%). Thus, if the
treatment has an 8-point effect, 97.93% of all the possible sample means will be in
the critical region and we will reject the null hypothesis. In other words, the power of
the test is 97.93%. In practical terms, this means that the research study is almost
guaranteed to be successful. If the researcher selects a sample of n � 25 individuals,
and if the treatment really does have an 8-point effect, then 97.93% of the time the
hypothesis test will conclude that there is a significant effect.

Logically, it should be clear that power and effect size are related. Figure 8.12 shows
the calculation of power for an 8-point treatment effect. Now consider what would hap-
pen if the treatment effect were only 4 points. With a 4-point treatment effect, the dis-
tribution on the right-hand side would shift to the left so that it is centered at � � 84.

POWER AND EFFECT SIZE
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In this new position, only about 50% of the treated sample means would be beyond the
z � 1.96 boundary. Thus, with a 4-point treatment effect, there is only a 50% proba-
bility of selecting a sample that leads to rejecting the null hypothesis. In other words,
the power of the test is only about 50% for a 4-point effect compared to nearly 98%
with an 8-point effect (Example 8.6). Again, it is possible to find the z-score corre-
sponding to the exact location of the critical boundary and to look up the probability
value for power in the unit normal table. In this case, you should obtain z � 	0.04 and
the exact power of the test is p � 0.5160, or 51.60%.

In general, as the effect size increases, the distribution of sample means on the
right-hand side moves even farther to the right so that more and more of the samples
are beyond the z � 1.96 boundary. Thus, as the effect size increases, the probability of
rejecting H0 also increases, which means that the power of the test increases. Thus,
measures of effect size such as Cohen’s d and measures of power both provide an in-
dication of the strength or magnitude of a treatment effect.

Although the power of a hypothesis test is directly influenced by the size of the treat-
ment effect, power is not meant to be a pure measure of effect size. Instead, power is
influenced by several factors, other than effect size, that are related to the hypothesis
test. Some of these factors are considered in the following section.

Sample size One factor that has a huge influence on power is the size of the sample.
In Example 8.6 we demonstrated power for an 8-point treatment effect using a sample
of n � 25. If the researcher decided to conduct the study using a sample of n � 4, then
the power would be dramatically different. With n � 4, the standard error for the sam-
ple means would be

Figure 8.13 shows the two distributions of sample means with n � 4 and a stan-
dard error of �M � 5 points. Again, the distribution on the left is centered at � � 80
and shows all of the possible sample means if H0 is true. As always, this distribution is
used to locate the critical boundaries for the hypothesis test, z � 	1.96 and z � �1.96.
The distribution on the right is centered at � � 88 and shows all of the possible sam-
ple means if there is an 8-point treatment effect. Note that less than half of the treated
sample means in the right-hand distribution are now located beyond the 1.96 boundary.
Thus, with a sample of n � 4, there is less than a 50% probability that the hypothesis
test would reject H0, even though the treatment has an 8-point effect. Earlier, in
Example 8.6, we found power equal to 97.93% for a sample of n � 25. However, when
the sample size is reduced to n � 4, power decreases to less than 50%. In general, a
larger sample produces greater power for a hypothesis test.

Because power is directly related to sample size, one of the primary reasons for
computing power is to determine what sample size is necessary to achieve a reasonable
probability for a successful research study. Before a study is conducted, researchers can
compute power to determine the probability that their research will successfully reject
the null hypothesis. If the probability (power) is too small, they always have the option
of increasing sample size to increase power.

Alpha level Reducing the alpha level for a hypothesis test also reduces the power of
the test. For example, lowering � from .05 to .01 lowers the power of the hypothesis
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THAT AFFECT POWER
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test. The effect of reducing the alpha level can be seen by referring again to Figure 8.13.
In this figure, the boundaries for the critical region are drawn using � � .05.
Specifically, the critical region on the right-hand side begins at z � 1.96. If � were
changed to .01, the boundary would be moved farther to the right, out to z � 2.58. It
should be clear that moving the critical boundary to the right means that a smaller por-
tion of the treatment distribution (the distribution on the right-hand side) will be in the
critical region. Thus, there would be a lower probability of rejecting the null hypothe-
sis and a lower value for the power of the test.

One-tailed versus two-tailed tests Changing from a regular two-tailed test to a one-
tailed test increases the power of the hypothesis test. Again, this effect can be seen by
referring to Figure 8.13. The figure shows the boundaries for the critical region using a
two-tailed test with � � .05 so that the critical region on the right-hand side begins at 
z � 1.96. Changing to a one-tailed test would move the critical boundary to the left to
a value of z � 1.65. Moving the boundary to the left would cause a larger proportion
of the treatment distribution to be in the critical region and, therefore, would increase
the power of the test.

SECTION 8.6 / STATISTICAL POWER 269

With an 8-point
treatment effect

� � 88 and 
� � 10

If H0 is true (no
treatment effect)

� � 80 and 
� � 10
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Distribution of sample means
for n � 4 if H0 is true
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for n � 4 with 8-point effect
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FIGURE 8.13

A demonstration of how
sample size affects the power
of a hypothesis test. As in
Figure 8.12, the left-hand 
side shows the distribution 
of sample means if the null
hypothesis were true. The
critical region is defined 
for this distribution. The 
right-hand side shows the
distribution of sample means
that would be obtained if 
there were an 8-point 
treatment effect. Notice that
reducing the sample size to 
n � 4 has reduced the power
of the test to less than 50%
compared to a power of 
nearly 100% with a sample 
of n � 25 in Figure 8.12.
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L E A R N I N G  C H E C K 1. For a particular hypothesis test, the power is .50 (50%) for a 5-point treatment
effect. Will the power be greater or less than .50 for a 10-point treatment effect?

2. As the power of a test increases, what happens to the probability of a Type II error?

3. How does increasing sample size influence the power of a hypothesis test?

4. Find the exact value of the power for the hypothesis test shown in Figure 8.13.

1. The hypothesis test is more likely to detect a 10-point effect, so power will be greater.

2. As power increases, the probability of a Type II error decreases.

3. Increasing sample size increases the power of a test.

4. With n � 4, the critical boundary of z � 1.96 corresponds to a sample mean of M � 89.8,
and the exact value for power is p � 0.3594 or 35.945%.

ANSWERS

1. Hypothesis testing is an inferential procedure that uses
the data from a sample to draw a general conclusion
about a population. The procedure begins with a
hypothesis about an unknown population. Then a
sample is selected, and the sample data provide
evidence that either supports or refutes the hypothesis.

2. In this chapter, we introduced hypothesis testing using
the simple situation in which a sample mean is used to
test a hypothesis about an unknown population mean;
usually the mean for a population that has received a
treatment. The question is to determine whether the
treatment has an effect on the population mean (see
Figure 8.2).

3. Hypothesis testing is structured as a four-step process
that is used throughout the remainder of the book.

a. State the null hypothesis (H0), and select an alpha
level. The null hypothesis states that there is no
effect or no change. In this case, H0 states that the
mean for the treated population is the same as the
mean before treatment. The alpha level, usually 
� � .05 or � � .01, provides a definition of the
term very unlikely and determines the risk of a
Type I error. Also state an alternative hypothesis
(H1), which is the exact opposite of the null
hypothesis.

b. Locate the critical region. The critical region is
defined as extreme sample outcomes that would be
very unlikely to occur if the null hypothesis is true.
The alpha level defines “very unlikely.” 

c. Collect the data, and compute the test statistic. The
sample mean is transformed into a z-score by the
formula

The value of � is obtained from the null
hypothesis. The z-score test statistic identifies the
location of the sample mean in the distribution of
sample means. 

d. Make a decision. If the obtained z-score is in the
critical region, reject H0 because it is very unlikely
that these data would be obtained if H0 were true. In
this case, conclude that the treatment has changed the
population mean. If the z-score is not in the critical
region, fail to reject H0 because the data are not
significantly different from the null hypothesis. In
this case, the data do not provide sufficient evidence
to indicate that the treatment has had an effect.

4. Whatever decision is reached in a hypothesis test, there
is always a risk of making the incorrect decision. There
are two types of errors that can be committed.

A Type I error is defined as rejecting a true H0. 
This is a serious error because it results in falsely
reporting a treatment effect. The risk of a Type I error
is determined by the alpha level and, therefore, is under
the experimenter’s control.

A Type II error is defined as the failure to reject a false
H0. In this case, the experiment fails to detect an effect
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SUMMARY
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RESOURCES 271

that actually occurred. The probability of a Type II error
cannot be specified as a single value and depends in part
on the size of the treatment effect. It is identified by the
symbol � (beta).

5. When a researcher expects that a treatment will change
scores in a particular direction (increase or decrease), 
it is possible to do a directional, or one-tailed, test. 
The first step in this procedure is to incorporate the
directional prediction into the hypotheses. For example,
if the prediction is that a treatment will increase scores,
the null hypothesis says that there is no increase and the
alternative hypothesis states that there is an increase. To
locate the critical region, you must determine what kind
of data would refute the null hypothesis by demonstra-
ting that the treatment worked as predicted. These
outcomes are located entirely in one tail of the
distribution, so the entire critical region (5%, 1%, 
or 0.1% depending on �) will be in one tail.

6. A one-tailed test is used when there is prior justification
for making a directional prediction. These a priori
reasons may be previous reports and findings or
theoretical considerations. In the absence of the a
priori basis, a two-tailed test is appropriate. In this
situation, you might be unsure of what to expect in the
study, or you might be testing competing theories.

7. In addition to using a hypothesis test to evaluate the
significance of a treatment effect, it is recommended
that you also measure and report the effect size. One

measure of effect size is Cohen’s d, which is a
standardized measure of the mean difference. Cohen’s
d is computed as
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8. The power of a hypothesis test is defined as the
probability that the test will correctly reject the null
hypothesis.

9. To determine the power for a hypothesis test, you
must first identify the treatment and null distributions.
Also, you must specify the magnitude of the treatment
effect. Next, you locate the critical region in the null
distribution. The power of the hypothesis test is the
portion of the treatment distribution that is located
beyond the boundary (critical value) of the critical
region.

10. As the size of the treatment effect increases, statistical
power increases. Also, power is influenced by several
factors that can be controlled by the experimenter:

a. Increasing the alpha level increases power.
b. A one-tailed test has greater power than a two-tailed

test.
c. A large sample results in more power than a small

sample.

KEY TERMS

hypothesis test (233)

null hypothesis (236)

alternative hypothesis (236)

level of significance (237)
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Type I error (244)

Type II error (245)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 8 on the book

companion website. The website also provides access to a workshop titled Hypothesis
Testing, which reviews the concept and logic of hypothesis testing.
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Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The statistical computer package SPSS is not structured to conduct hypothesis tests
using z-scores. In truth, the z-score test presented in this chapter is rarely used in actual
research situations. The problem with the z-score test is that it requires that you know
the value of the population standard deviation, and this information is usually not avail-
able. Researchers rarely have detailed information about the populations that they wish
to study. Instead, they must obtain information entirely from samples. In the following
chapters we introduce new hypothesis-testing techniques that are based entirely on sam-
ple data. These new techniques are included in SPSS.

FOCUS ON PROBLEM SOLVING

1. Hypothesis testing involves a set of logical procedures and rules that enable us to
make general statements about a population when all we have are sample data.
This logic is reflected in the four steps that have been used throughout this chap-
ter. Hypothesis-testing problems are easier to tackle when you learn to follow 
the steps.

State the hypotheses and set the alpha level.

Locate the critical region.

Compute the test statistic (in this case, the z-score) for the sample.

Make a decision about H0 based on the result of step 3.

2. Students often ask, “What alpha level should I use?” Or a student may ask, “Why
is an alpha of .05 used?” as opposed to something else. There is no single correct
answer to either of these questions. Keep in mind that the aim of setting an alpha
level in the first place: to reduce the risk of committing a Type I error. Therefore,
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the maximum acceptable value is � � .05. However, some researchers prefer to
take even less risk and use alpha levels of .01 or smaller.

Most statistical tests are now done with computer programs that provide an
exact probability (p value) for a Type I error. Because an exact value is available,
most researchers simply report the p value from the computer printout rather than
setting an alpha level at the beginning of the test. However, the same criterion
still applies: A result is not significant unless the p value is less than .05.

3. Take time to consider the implications of your decision about the null hypothe-
sis. The null hypothesis states that there is no effect. Therefore, if your decision
is to reject H0, you should conclude that the sample data provide evidence for a
treatment effect. However, it is an entirely different matter if your decision is to
fail to reject H0. Remember that when you fail to reject the null hypothesis, the
results are inconclusive. It is impossible to prove that H0 is correct; therefore, you
cannot state with certainty that “there is no effect” when H0 is not rejected. At
best, all you can state is that “there is insufficient evidence for an effect.”

4. It is very important that you understand the structure of the z-score formula 
(p. 242). It will help you understand many of the other hypothesis tests that are
covered later.

5. When you are doing a directional hypothesis test, read the problem carefully,
and watch for key words (such as increase or decrease, raise or lower, and more
or less) that tell you which direction the researcher is predicting. The predicted
direction determines the alternative hypothesis (H1) and the critical region. For
example, if a treatment is expected to increase scores, H1 would contain a
greater than symbol, and the critical region would be in the tail associated with
high scores.

DEMONSTRATION 8.1

HYPOTHESIS TEST WITH Z

A researcher begins with a known population—in this case, scores on a standardized test that
are normally distributed with � � 65 and � � 15. The researcher suspects that special train-
ing in reading skills will produce a change in the scores for the individuals in the population.
Because it is not feasible to administer the treatment (the special training) to everyone in the
population, a sample of n � 25 individuals is selected, and the treatment is given to this
sample. Following treatment, the average score for this sample is M � 70. Is there evidence
that the training has an effect on test scores?

State the hypothesis and select an alpha level. The null hypothesis states that the
special training has no effect. In symbols,

H0: � � 65 (After special training, the mean is still 65.)

The alternative hypothesis states that the treatment does have an effect.

H1: � � 65 (After training, the mean is different from 65.)

At this time you also select the alpha level. For this demonstration, we will use � � .05.
Thus, there is a 5% risk of committing a Type I error if we reject H0.

S T E P  1
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Locate the critical region. With � � .05, the critical region consists of sample means
that correspond to z-scores beyond the critical boundaries of z � 
1.96.

Obtain the sample data, and compute the test statistic. For this example, the dis-
tribution of sample means, according to the null hypothesis, is normal with an expected
value of � � 65 and a standard error of

In this distribution, our sample mean of M � 70 corresponds to a z-score of

Make a decision about H0, and state the conclusion. The z-score we obtained is
not in the critical region. This indicates that our sample mean of M � 70 is not an extreme
or unusual value to be obtained from a population with � � 65. Therefore, our statistical
decision is to fail to reject H0. Our conclusion for the study is that the data do not provide
sufficient evidence that the special training changes test scores.

DEMONSTRATION 8.2

EFFECT SIZE USING COHEN’S D

We will compute Cohen’s d using the research situation and the data from Demonstration 8.1.
Again, the original population mean was � � 65 and, after treatment (special training), the
sample mean was M � 70. Thus, there is a 5-point mean difference. Using the population
standard deviation, � � 15, we obtain an effect size of

Cohen’s d ��
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�� �
1
5
5
� � 0.33

According to Cohen’s evaluation standards (see Table 8.2), this is a medium treatment
effect.
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PROBLEMS

1. In the z-score formula as it is used in a hypothesis test,
a. Explain what is measured by M – � in the

numerator.
b. Explain what is measured by the standard error in

the denominator.

2. The value of the z-score in a hypothesis test is
influenced by a variety of factors. Assuming that all
other variables are held constant, explain how the
value of z is influenced by each of the following:
a. Increasing the difference between the sample mean

and the original population mean.

b. Increasing the population standard deviation.
c. Increasing the number of scores in the sample.

3. In words, define the alpha level and the critical region
for a hypothesis test.

4. If the alpha level is changed from � � .05 to � � .01,
a. What happens to the boundaries for the critical

region?
b. What happens to the probability of a Type I error?

5. Although there is a popular belief that herbal remedies
such as ginkgo biloba and ginseng may improve

30991_ch08_ptg01_hr_231-280.qxd  9/2/11  11:30 PM  Page 274



learning and memory in healthy adults, these effects
are usually not supported by well-controlled research
(Persson, Bringlov, Nilsson, & Nyberg, 2004). In a
typical study, a researcher obtains a sample of n � 36
participants and has each person take the herbal
supplements every day for 90 days. At the end of the
90 days, each person takes a standardized memory
test. For the general population, scores from the test
are normally distributed with a mean of � � 80 and a
standard deviation of � � 18. The sample of research
participants had an average of M � 84.
a. Assuming a two-tailed test, state the null hypothesis

in a sentence that includes the two variables being
examined.

b. Using symbols, state the hypotheses (H0 and H1)
for the two-tailed test.

c. Sketch the appropriate distribution, and locate the
critical region for � � .05.

d. Calculate the test statistic (z-score) for the sample.
e. What decision should be made about the null

hypothesis, and what decision should be made
about the effect of the herbal supplements?

6. Childhood participation in sports, cultural groups, 
and youth groups appears to be related to improved 
self-esteem for adolescents (McGee, Williams, Howden-
Chapman, Martin, & Kawachi, 2006). In a representative
study, a sample of n � 100 adolescents with a history of
group participation is given a standardized self-esteem
questionnaire. For the general population of adolescents,
scores on this questionnaire form a normal distribution
with a mean of � � 40 and a standard deviation of 
� � 12. The sample of group-participation adolescents
had an average of M � 43.84.
a. Does this sample provide enough evidence to

conclude that self-esteem scores for these adolescents
are significantly different from those of the general
population? Use a two-tailed test with � � .01.

b. Compute Cohen’s d to measure the size of the
difference.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

7. A local college requires an English composition course
for all freshmen. This year they are evaluating a new
online version of the course. A random sample of 
n � 16 freshmen is selected and the students are
placed in the online course. At the end of the semester,
all freshmen take the same English composition exam.
The average score for the sample is M � 76. For the
general population of freshmen who took the
traditional lecture class, the exam scores form a
normal distribution with a mean of � � 80.
a. If the final exam scores for the population have a

standard deviation of � � 12, does the sample
provide enough evidence to conclude that the new
online course is significantly different from the

traditional class? Assume a two-tailed test with 
� � .05.

b. If the population standard deviation is � � 6, is the
sample sufficient to demonstrate a significant dif-
ference? Again, assume a two-tailed test with � � .05.

c. Comparing your answers for parts a and b, explain
how the magnitude of the standard deviation
influences the outcome of a hypothesis test.

8. A random sample is selected from a normal population
with a mean of � � 50 and a standard deviation of 
� � 12. After a treatment is administered to the
individuals in the sample, the sample mean is found 
to be M � 55.
a. If the sample consists of n � 16 scores, is the

sample mean sufficient to conclude that the
treatment has a significant effect? Use a 
two-tailed test with � � .05.

b. If the sample consists of n � 36 scores, is the
sample mean sufficient to conclude that the
treatment has a significant effect? Use a 
two-tailed test with � � .05.

c. Comparing your answers for parts a and b, explain
how the size of the sample influences the outcome
of a hypothesis test.

9. A random sample of n � 36 scores is selected from a
normal population with a mean of � � 60. After a
treatment is administered to the individuals in the
sample, the sample mean is found to be M � 52.
a. If the population standard deviation is � � 18, is 

the sample mean sufficient to conclude that the
treatment has a significant effect? Use a two-tailed
test with � � .05.

b. If the population standard deviation is � � 30, is 
the sample mean sufficient to conclude that the
treatment has a significant effect? Use a two-tailed
test with � � .05.

c. Comparing your answers for parts a and b, explain
how the magnitude of the standard deviation
influences the outcome of a hypothesis test.

10. Miller (2008) examined the energy drink consumption
of college undergraduates and found that males use
energy drinks significantly more often than females. 
To further investigate this phenomenon, suppose that 
a researcher selects a random sample of n � 36 male
undergraduates and a sample of n � 25 females. On
average, the males reported consuming M � 2.45 drinks
per month and females had an average of M � 1.28.
Assume that the overall level of consumption for
college undergraduates averages � � 1.85 energy
drinks per month, and that the distribution of monthly
consumption scores is approximately normal with a
standard deviation of � � 1.2.
a. Did this sample of males consume significantly

more energy drinks than the overall population
average? Use a one-tailed test with � � .01.
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b. Did this sample of females consume significantly
fewer energy drinks than the overall population
average? Use a one-tailed test with � � .01

11. A random sample is selected from a normal
population with a mean of � � 40 and a standard
deviation of � � 10. After a treatment is
administered to the individuals in the sample, the
sample mean is found to be M � 42.
a. How large a sample is necessary for this sample

mean to be statistically significant? Assume a 
two-tailed test with � � .05.

b. If the sample mean were M � 41, what sample size
is needed to be significant for a two-tailed test with
� � .05?

12. There is some evidence that REM sleep, associated
with dreaming, may also play a role in learning and
memory processing. For example, Smith and Lapp
(1991) found increased REM activity for college
students during exam periods. Suppose that REM
activity for a sample of n � 16 students during the
final exam period produced an average score of 
M � 143. Regular REM activity for the college
population averages � � 110 with a standard
deviation of � � 50. The population distribution is
approximately normal.
a. Do the data from this sample provide evidence for a

significant increase in REM activity during exams?
Use a one-tailed test with � � .01.

b. Compute Cohen’s d to estimate the size of the
effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

13. There is some evidence indicating that people with
visible tattoos are viewed more negatively than people
without visible tattoos (Resenhoeft, Villa, & Wiseman,
2008). In a similar study, a researcher first obtained
overall ratings of attractiveness for a woman with 
no tattoos shown in a color photograph. On a 7-point
scale, the woman received an average rating of 
� � 4.9, and the distribution of ratings was normal
with a standard deviation of � � 0.84. The researcher
then modified the photo by adding a tattoo of a
butterfly on the woman’s left arm. The modified 
photo was then shown to a sample of n � 16 students
at a local community college and the students used 
the same 7-point scale to rate the attractiveness of 
the woman. The average score for the photo with the
tattoo was M � 4.2.
a. Do the data indicate a significant difference in rated

attractiveness when the woman appeared to have a
tattoo? Use a two-tailed test with � � .05.

b. Compute Cohen’s d to measure the size of the effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

14. A psychologist is investigating the hypothesis that
children who grow up as the only child in the
household develop different personality characteristics
than those who grow up in larger families. A sample
of n � 30 only children is obtained and each child is
given a standardized personality test. For the general
population, scores on the test from a normal
distribution with a mean of � � 50 and a standard
deviation of � � 15. If the mean for the sample is 
M � 58, can the researcher conclude that there is a
significant difference in personality between only
children and the rest of the population? Use a two-
tailed test with � � .05.

15. A researcher is testing the hypothesis that consuming a
sports drink during exercise improves endurance. A
sample of n � 50 male college students is obtained and
each student is given a series of three endurance tasks
and asked to consume 4 ounces of the drink during
each break between tasks. The overall endurance score
for this sample is M � 53. For the general population
of male college students, without any sports drink, the
scores for this task average � � 50 with a standard
deviation of � � 12.
a. Can the researcher conclude that endurance scores

with the sports drink are significantly higher than
scores without the drink? Use a one-tailed test with
� � .05.

b. Can the researcher conclude that endurance scores
with the sports drink are significantly different than
scores without the drink? Use a two-tailed test with
� � .05.

c. You should find that the two tests lead to different
conclusions. Explain why.

16. Montarello and Martins (2005) found that fifth-grade
students completed more mathematics problems
correctly when simple problems were mixed in 
with their regular math assignments. To further
explore this phenomenon, suppose that a researcher
selects a standardized mathematics achievement test
that produces a normal distribution of scores with 
a mean of � � 100 and a standard deviation of 
� � 18. The researcher modifies the test by inserting
a set of very easy problems among the standardized
questions, and gives the modified test to a sample 
of n � 36 students. If the average test score for 
the sample is M � 104, is this result sufficient to
conclude that inserting the easy questions improves
student performance? Use a one-tailed test with 
� � .01.
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17. Researchers have often noted increases in violent
crimes when it is very hot. In fact, Reifman, Larrick,
and Fein (1991) noted that this relationship even
extends to baseball. That is, there is a much greater
chance of a batter being hit by a pitch when the
temperature increases. Consider the following
hypothetical data. Suppose that over the past 30 years,
during any given week of the major-league season, an
average of � � 12 players are hit by wild pitches.
Assume that the distribution is nearly normal with 
� � 3. For a sample of n � 4 weeks in which the
daily temperature was extremely hot, the weekly
average of hit-by-pitch players was M � 15.5. Are
players more likely to get hit by pitches during hot
weeks? Set alpha to .05 for a one-tailed test.

18. A researcher plans to conduct an experiment 
testing the effect of caffeine on reaction time 
during a driving simulation task. A sample of 
n � 9 participants is selected and each person
receives a standard dose of caffeine before being
tested on the simulator. The caffeine is expected to
lower reaction time by an average of 30 msec.
Scores on the simulator task for the regular
population (without caffeine) form a normal
distribution with � � 240 msec. and � � 30.
a. If the researcher uses a two-tailed test with � � .05,

what is the power of the hypothesis test?
b. Again assuming a two-tailed test with � � .05,

what is the power of the hypothesis test if the
sample size is increased to n � 25?

19. A sample of n � 40 is selected from a normal
population with � � 75 msec. and � � 12, and a
treatment is administered to the sample. The 
treatment is expected to increase scores by an 
average of 4 points.
a. If the treatment effect is evaluated with a two-tailed

hypothesis test using � � .05, what is the power of
the test?

b. What is the power of the test if the researcher uses
a one-tailed test with � � .05?

20. Briefly explain how increasing sample size influences
each of the following. Assume that all other factors are
held constant.
a. The size of the z-score in a hypothesis test.
b. The size of Cohen’s d.
c. The power of a hypothesis test.

21. Explain how the power of a hypothesis test is
influenced by each of the following. Assume that all
other factors are held constant.
a. Increasing the alpha level from .01 to .05.
b. Changing from a one-tailed test to a two-tailed test.

22. A researcher is investigating the effectiveness of a new
medication for lowering blood pressure for individuals
with systolic pressure greater than 140. For this
population, systolic scores average � � 160 with a
standard deviation of � � 20, and the scores form a
normal-shaped distribution. The researcher plans to
select a sample of n � 25 individuals, and measure
their systolic blood pressure after they take the
medication for 60 days. If the researcher uses a 
two-tailed test with � � .05,
a. What is the power of the test if the medication has

a 5-point effect?
b. What is the power of the test if the medication has

a 10-point effect?

23. A researcher is evaluating the influence of a treatment
using a sample selected from a normally distributed
population with a mean of � � 80 and a standard
deviation of � � 20. The researcher expects a 12-point
treatment effect and plans to use a two-tailed
hypothesis test with � � .05.
a. Compute the power of the test if the researcher uses

a sample of n � 16 individuals. (See Example 8.6.)
b. Compute the power of the test if the researcher uses

a sample of n � 25 individuals.

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics

30991_ch08_ptg01_hr_231-280.qxd  9/2/11  11:30 PM  Page 277

www.aplia.com/statistics



