

Citrus Tristeza Virus

- Citrus Tristeza Virus (CTV) causes economically the most damaging disease of Citrus.
- CTV is a phloem-limited virus whose natural host range is restricted to citrus and other related species.

- During the 19th century, *Phytophthora* root rot caused destruction of sweet orange trees. As a result of this, Phytophthoratolerant sour orange rootstock was adopted by farmers.
- From 1890, area under citrus cultivation increased and citrus plants were supplied from CTV affected areas to CTV-free areas.

Taxonomy

Family: Closteroviridae

Genus: Closterovirus

Species: Citrus Tristeza virus

Losses caused by CTV

- Severe decline of millions of citrus trees occurred due to CTV epidemics in areas where the sour orange (*Citrus aurantium*) was used as a rootstock.
- In 1930, Argentina had 19 million trees on sour orange rootstock. After 15 years, 10 million productive trees were lost.
- In Brazil, over a period of 12 years, the disease destroyed more than 6 million trees.
- California lost about 3 million trees. Similarly, in Florida, thousands of trees became unproductive.
- In Spain, about 10 million trees were destroyed.

Symptoms

- There are three distinct syndromes of CTV infection:
- Quick decline, stem pitting and seedling yellows.
- The most notorious is quick decline (QD) which is associated with the name Tristeza.
- Stem pitting causes economic losses in many countries of the world.
- Seedling yellow is usually observed by biological indexing but in rare cases in the field.

Symptoms...

- Stem Pitting (SP)
- Stem pitting symptom results from interference with growth of the stem.
- The cambium divides and differentiates in healthy areas producing new xylem on the inward side and new phloem towards bark side leading to increased girth of the tree trunk.
- Stem pits develop in areas where growth is restricted. The surrounding areas grow normally leaving the disrupted areas as pits.

Symptoms

- Poor growth of trees is observed which are affected with severe stem pitting.
- The flow of photosynthetic products and water and nutrients is hampered.
- If bark from the trunk is removed, deep and elongated pits can be observed in the wood.
- If symptoms become severe, trunks show a rope like appearance.
- Stunting of severely affected trees occur yielding poor quality fruit.

Stem Pitting

Stem Pitting

Seedling Yellows (SY)

- In case of mild seedling yellow symptoms, slight yellowing of new leaves occurs.
- Severe SY results in production of very small new leaves.
- These leaves become much chlorotic and the plants stop their growth.

Seedling Yellow (leaf symptoms)

Decline

- Decline is the most devastating disease caused by CTV.
- The infected trees show defoliation, root decay, stunted growth and twig dieback.
- Death of declined tree occurs showing fruiting on tree but with no leaves.

Leaf Clearing Symptoms Caused by CTV

Branch Dieback caused by CTV

CTV Symptoms (Decline)

CTV Symptoms (Decline)

Transmission

- Dispersal of CTV occurs by propagation of virusinfected buds and through vector transmission.
- Virus-infected buds are responsible for most CTV introductions into new areas.
- Vector transmission is important for local spread.
- The virus has been also been experimentally transmitted to healthy plants by dodder (*Cuscuta subinclusa*).
- The most efficient vector species:
- Toxoptera citricida
- Aphis gossypii (Glover)

Movement in Citrus Host

- Systemic movement is thought to involve two distinct processes:
- **Cell-to-cell movement** which allows the virus to transverse the cell wall between adjacent cells.
- Long-distance movement that allows the virus to enter the sieve elements from an adjacent cell.
- Specific virus-encoded movement proteins as well as some host proteins are utilized by most viruses facilitating their translocation through plasmodesmata channels.

Disease Cycle

- The aphid acquires the virus after feeding on infected plants for 5-60 minutes and can transmit virus to healthy plant.
- CTV is considered to be graft-transmitted but seed transmission has not been reported.
- Mild strains of virus don't produce noticeable symptoms while others are severe causing decline and death of the tree.

Factors Favouring

- Composition of the aphid fauna, aphid population density and environmental conditions favouring new flush determine the rate of spread of virus.
- In locations where A . gossypii was predominant, CTV incidence increased from 5 to 95% infected trees in 8–15 years.
- In areas where *T. citricida* was predominant, the disease assumed alarming position in only 2–4 years with a rapid increase.

Management

- 1. Quarantine:
- Quarantine schemes need to be adopted.
- 2. Cultural methods:
- Use only certified, virus-free bud wood, grafted onto resistant rootstocks.
- In Pakistan, *Citrus jambhiri* (Jatti khatti) is resistant root stock.
- Replace individual diseased trees or the entire blocks if they have become unproductive with certified trees on tolerant rootstocks.
- 3. Vector control:
- Insecticidal spray should be done to control aphids in nurseries and on trees to be used as sources of bud wood.

*Sources

- 1. Recommended books.
- 2. Latest research articles downloaded from Google.
- 3. Google images.

• *Solely for academic purpose and guidance of students.