
MULTIPLE REGRESSION MODEL

y 0 1x1 2x2
. . .

pxp

MULTIPLE REGRESSION EQUATION

E(y) 0 1x1 2x2
. . .

pxp

In Chapter 12 we presented simple linear regression and demonstrated its use in develop-
ing an estimated regression equation that describes the relationship between two variables.
Recall that the variable being predicted or explained is called the dependent variable and
the variable being used to predict or explain the dependent variable is called the indepen-
dent variable. In this chapter we continue our study of regression analysis by considering
situations involving two or more independent variables. This subject area, called multiple
regression analysis, enables us to consider more factors and thus obtain better estimates
than are possible with simple linear regression.

13.1

Multiple regression analysis is the study of how a dependent variable y is related to two or
more independent variables. In the general case, we will use p to denote the number of in-
dependent variables.

The concepts of a regression model and a regression equation introduced in the preceding
chapter are applicable in the multiple regression case. The equation that describes how the
dependent variable y is related to the independent variables x1, x2, . . . , xp and an error term
is called the multiple regression model. We begin with the assumption that the multiple
regression model takes the following form.

In the multiple regression model, 0, 1, 2, . . . , p are the parameters and the error term 
(the Greek letter epsilon) is a random variable. A close examination of this model reveals
that y is a linear function of x1, x2, . . . , xp (the 0 1x1 2x2

. . .
pxp part) plus the

error term . The error term accounts for the variability in y that cannot be explained by the
linear effect of the p independent variables.

In Section 13.4 we will discuss the assumptions for the multiple regression model and
. One of the assumptions is that the mean or expected value of is zero. A consequence 

of this assumption is that the mean or expected value of y, denoted E( y), is equal to

0 1x1 2x2
. . .

pxp. The equation that describes how the mean value of y is re-
lated to x1, x2, . . . , xp is called the multiple regression equation.

If the values of 0, 1, 2, . . . , p were known, equation (13.2) could be used to compute
the mean value of y at given values of x1, x2, . . . , xp. Unfortunately, these parameter values
will not, in general, be known and must be estimated from sample data. A simple ran-
dom sample is used to compute sample statistics b0, b1, b2, . . . , bp that are used as the point
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The estimation process for multiple regression is shown in Figure 13.1.

13.2

In Chapter 12, we used the least squares method to develop the estimated regression equa-
tion that best approximated the straight line relationship between the dependent and inde-
pendent variables. This same approach is used to develop the estimated multiple regression
equation. The least squares criterion is restated as follows.

LEAST SQUARES CRITERION

min (yi yi)
2

estimators of the parameters 0, 1, 2, . . . , p. These sample statistics provide the follow-
ing estimated multiple regression equation.

THE ESTIMATION PROCESS FOR MULTIPLE REGRESSION

ESTIMATED MULTIPLE REGRESSION EQUATION

where

b0, b1, b2, . . . , bp are the estimates of 0, 1, 2, . . . , p

y estimated value of the dependent variable

y b0 b1x1 b2x2
. . . bpxp

In simple linear regression,
b0 and b1 were the sample
statistics used to estimate
the parameters 0 and 1.
Multiple regression
parallels this statistical
inference process, with b0,
b1, b2, . . . , bp denoting the
sample statistics used 
to estimate the parameters

0, 1, 2, . . . , p.
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where

yi

yi

observed value of the dependent variable for the ith observation

estimated value of the dependent variable for the ith observation

The estimated values of the dependent variable are computed by using the estimated mul-
tiple regression equation,

As expression (13.4) shows, the least squares method uses sample data to provide the val-
ues of b0, b1, b2, . . . , bp that make the sum of squared residuals [the deviations between the
observed values of the dependent variable ( yi) and the estimated values of the dependent
variable ( )] a minimum.

In Chapter 12 we presented formulas for computing the least squares estimators b0 and
b1 for the estimated simple linear regression equation b0 b1x. With relatively small
data sets, we were able to use those formulas to compute b0 and b1 by manual calculations.
In multiple regression, however, the presentation of the formulas for the regression coeffi-
cients b0, b1, b2, . . . , bp involves the use of matrix algebra and is beyond the scope of this
text. Therefore, in presenting multiple regression, we focus on how computer software
packages can be used to obtain the estimated regression equation and other information.
The emphasis will be on how to interpret the computer output rather than on how to make
the multiple regression computations.

As an illustration of multiple regression analysis, we will consider a problem faced by the
Butler Trucking Company, an independent trucking company in southern California.Amajor
portion of Butler’s business involves deliveries throughout its local area. To develop better
work schedules, the managers want to estimate the total daily travel time for their drivers.

Initially the managers believed that the total daily travel time would be closely related
to the number of miles traveled in making the daily deliveries. A simple random sample of
10 driving assignments provided the data shown in Table 13.1 and the scatter diagram
shown in Figure 13.2. After reviewing this scatter diagram, the managers hypothesized that
the simple linear regression model y 0 1x1 could be used to describe the rela-
tionship between the total travel time ( y) and the number of miles traveled (x1). To estimate

y

yi

y b0 b1x1 b2x2
. . . bpxp

Driving x1 Miles y Travel Time
Assignment Traveled (hours)

1 100 9.3
2 50 4.8
3 100 8.9
4 100 6.5
5 50 4.2
6 80 6.2
7 75 7.4
8 65 6.0
9 90 7.6

10 90 6.1

PRELIMINARY DATA FOR BUTLER TRUCKING

file
Butler
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the parameters 0 and 1, the least squares method was used to develop the estimated re-
gression equation.

In Figure 13.3, we show the Minitab computer output from applying simple linear
regression to the data in Table 13.1. The estimated regression equation is

At the .05 level of significance, the F value of 15.81 and its corresponding p-value of .004
indicate that the relationship is significant; that is, we can reject H0: 1 0 because the 
p-value is less than .05. Note that the same conclusion is obtained from the t value
of 3.98 and its associated p-value of .004. Thus, we can conclude that the relationship be-
tween the total travel time and the number of miles traveled is significant; longer travel
times are associated with more miles traveled. With a coefficient of determination (ex-
pressed as a percentage) of R-sq 66.4%, we see that 66.4% of the variability in travel time
can be explained by the linear effect of the number of miles traveled. This finding is fairly
good, but the managers might want to consider adding a second independent variable to 
explain some of the remaining variability in the dependent variable.

In attempting to identify another independent variable, the managers felt that the num-
ber of deliveries could also contribute to the total travel time. The Butler Trucking data, with
the number of deliveries added, are shown in Table 13.2. The Minitab computer solution
with both miles traveled (x1) and number of deliveries (x2) as independent variables is 
shown in Figure 13.4. The estimated regression equation is

y .869 .0611x1 .923x2

y 1.27 .0678x1

y b0 b1x1
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SCATTER DIAGRAM OF PRELIMINARY DATA FOR BUTLER TRUCKING
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MINITAB OUTPUT FOR BUTLER TRUCKING WITH ONE
INDEPENDENT VARIABLE

In the Minitab output the
variable names Miles and
Time were entered as the
column headings on the
worksheet; thus, x1 Miles
and y Time.

In the next section we will discuss the use of the coefficient of multiple determination in
measuring how good a fit is provided by this estimated regression equation. Before doing
so, let us examine more carefully the values of b1 .0611 and b2 .923 in equation (13.6).

One observation can be made at this point about the relationship between the estimated
regression equation with only the miles traveled as an independent variable and the equation
that includes the number of deliveries as a second independent variable. The value of b1

is not the same in both cases. In simple linear regression, we interpret b1 as an estimate of
the change in y for a one-unit change in the independent variable. In multiple regression
analysis, this interpretation must be modified somewhat. That is, in multiple regression analy-
sis, we interpret each regression coefficient as follows: bi represents an estimate of the change
in y corresponding to a one-unit change in xi when all other independent variables are held con-
stant. In the Butler Trucking example involving two independent variables, b1 .0611. Thus,

Driving x1 Miles x2 Number y Travel Time
Assignment Traveled of Deliveries (hours)

1 100 4 9.3
2 50 3 4.8
3 100 4 8.9
4 100 2 6.5
5 50 2 4.2
6 80 2 6.2
7 75 3 7.4
8 65 4 6.0
9 90 3 7.6

10 90 2 6.1

DATA FOR BUTLER TRUCKING WITH MILES TRAVELED (x1) AND NUMBER
OF DELIVERIES (x2) AS THE INDEPENDENT VARIABLES

file
Butler
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MINITAB OUTPUT FOR BUTLER TRUCKING WITH TWO
INDEPENDENT VARIABLES

In the Minitab output the
variable names Miles,
Deliveries, and Time were
entered as the column
headings on the worksheet;
thus, x1 Miles, x2

Deliveries, and y Time.

.0611 hours is an estimate of the expected increase in travel time corresponding to an increase
of one mile in the distance traveled when the number of deliveries is held constant. Similarly,
because b2 .923, an estimate of the expected increase in travel time corresponding to an in-
crease of one delivery when the number of miles traveled is held constant is .923 hours.

Note to student: The exercises involving data in this and subsequent sections were designed
to be solved using a computer software package.

1. The estimated regression equation for a model involving two independent variables and 
10 observations follows.

a. Interpret b1 and b2 in this estimated regression equation.
b. Estimate y when x1 180 and x2 310.

2. Consider the following data for a dependent variable y and two independent variables, x1

and x2.

y 29.1270 .5906x1 .4980x 2

test

x1 x2 y

30 12 94
47 10 108
25 17 112
51 16 178
40 5 94
51 19 175
74 7 170

(continued)
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Exer2
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