
Some of the earliest work
on probability originated in
a series of letters between
Pierre de Fermat and
Blaise Pascal in the 1650s.

SAMPLE SPACE

The sample space for an experiment is the set of all experimental outcomes.

Experimental outcomes are
also called sample points.

Probability is a numerical measure of the likelihood that an event will occur. Thus,
probabilities can be used as measures of the degree of uncertainty associated with the four
events previously listed. If probabilities are available, we can determine the likelihood of
each event occurring.

Probability values are always assigned on a scale from 0 to 1. A probability near zero
indicates an event is unlikely to occur; a probability near 1 indicates an event is almost
certain to occur. Other probabilities between 0 and 1 represent degrees of likelihood that an
event will occur. For example, if we consider the event “rain tomorrow,” we understand that
when the weather report indicates “a near-zero probability of rain,” it means almost no chance
of rain. However, if a .90 probability of rain is reported, we know that rain is likely to occur.
A .50 probability indicates that rain is just as likely to occur as not. Figure 4.1 depicts the view
of probability as a numerical measure of the likelihood of an event occurring.

4.1

In discussing probability, we define an experiment as a process that generates well-defined
outcomes. On any single repetition of an experiment, one and only one of the possible
experimental outcomes will occur. Several examples of experiments and their associated
outcomes follow.

By specifying all possible experimental outcomes, we identify the sample space for an
experiment.

An experimental outcome is also called a sample point to identify it as an element of the
sample space.

.50 1.0

Increasing Likelihood of Occurrence

Probability:

The occurrence of the event is
just as likely as it is unlikely.

PROBABILITY AS A NUMERICAL MEASURE OF THE LIKELIHOOD 
OF AN EVENT OCCURRING

Experiment Experimental Outcomes

Toss a coin Head, tail
Select a part for inspection Defective, nondefective
Conduct a sales call Purchase, no purchase
Roll a die 1, 2, 3, 4, 5, 6
Play a football game Win, lose, tie
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COUNTING RULE FOR MULTIPLE-STEP EXPERIMENTS

If an experiment can be described as a sequence of k steps with n1 possible outcomes
on the first step, n2 possible outcomes on the second step, and so on, then the total
number of experimental outcomes is given by (n1) (n2) . . . (nk).

Consider the first experiment in the preceding table—tossing a coin. The upward face
of the coin—a head or a tail—determines the experimental outcomes (sample points). If we
let S denote the sample space, we can use the following notation to describe the sample space.

The sample space for the second experiment in the table—selecting a part for inspection—
can be described as follows:

Both of the experiments just described have two experimental outcomes (sample points).
However, suppose we consider the fourth experiment listed in the table—rolling a die. The
possible experimental outcomes, defined as the number of dots appearing on the upward
face of the die, are the six points in the sample space for this experiment.

Being able to identify and count the experimental outcomes is a necessary step in assigning
probabilities. We now discuss three useful counting rules.

The first counting rule applies to multiple-step experi-
ments. Consider the experiment of tossing two coins. Let the experimental outcomes be
defined in terms of the pattern of heads and tails appearing on the upward faces of the two
coins. How many experimental outcomes are possible for this experiment? The experiment
of tossing two coins can be thought of as a two-step experiment in which step 1 is the toss-
ing of the first coin and step 2 is the tossing of the second coin. If we use H to denote a head
and T to denote a tail, (H, H) indicates the experimental outcome with a head on the first
coin and a head on the second coin. Continuing this notation, we can describe the sample
space (S) for this coin-tossing experiment as follows:

Thus, we see that four experimental outcomes are possible. In this case, we can easily list
all the experimental outcomes.

The counting rule for multiple-step experiments makes it possible to determine the
number of experimental outcomes without listing them.

{( , ), ( , ), ( , ), ( , )}

{1, 2, 3, 4, 5, 6}

{Defective, Nondefective}

{Head, Tail}

Viewing the experiment of tossing two coins as a sequence of first tossing one coin
(n1 2) and then tossing the other coin (n2 2), we can see from the counting rule that
(2)(2) 4 distinct experimental outcomes are possible. As shown, they are S {(H, H),
(H, T ), (T, H), (T, T )}. The number of experimental outcomes in an experiment involving
tossing six coins is (2)(2)(2)(2)(2)(2) 64.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A tree diagram is a graphical representation that helps in visualizing a multiple-step
experiment. Figure 4.2 shows a tree diagram for the experiment of tossing two coins. The
sequence of steps moves from left to right through the tree. Step 1 corresponds to tossing
the first coin, and step 2 corresponds to tossing the second coin. For each step, the two pos-
sible outcomes are head or tail. Note that for each possible outcome at step 1 two branches
correspond to the two possible outcomes at step 2. Each of the points on the right end of
the tree corresponds to an experimental outcome. Each path through the tree from the
leftmost node to one of the nodes at the right side of the tree corresponds to a unique
sequence of outcomes.

Let us now see how the counting rule for multiple-step experiments can be used in the
analysis of a capacity expansion project for the Kentucky Power & Light Company
(KP&L). KP&L is starting a project designed to increase the generating capacity of one of
its plants in northern Kentucky. The project is divided into two sequential stages or steps:
stage 1 (design) and stage 2 (construction). Even though each stage will be scheduled and
controlled as closely as possible, management cannot predict beforehand the exact time re-
quired to complete each stage of the project. An analysis of similar construction projects re-
vealed possible completion times for the design stage of 2, 3, or 4 months and possible
completion times for the construction stage of 6, 7, or 8 months. In addition, because of the
critical need for additional electrical power, management set a goal of 10 months for the
completion of the entire project.

Because this project has three possible completion times for the design stage (step 1)
and three possible completion times for the construction stage (step 2), the counting rule
for multiple-step experiments can be applied here to determine a total of (3)(3) 9 experi-
mental outcomes. To describe the experimental outcomes, we use a two-number notation;
for instance, (2, 6) indicates that the design stage is completed in 2 months and the con-
struction stage is completed in 6 months. This experimental outcome results in a total of
2 6 8 months to complete the entire project. Table 4.1 summarizes the nine experi-
mental outcomes for the KP&L problem. The tree diagram in Figure 4.3 shows how the nine
outcomes (sample points) occur.

The counting rule and tree diagram help the project manager identify the experimental
outcomes and determine the possible project completion times. From the information in

Without the tree diagram,
one might think only three
experimental outcomes are
possible for two tosses of a
coin: 0 heads, 1 head, and
2 heads.

Step 2
Second Coin

Experimental
Outcome

(Sample Point)

(H, H )

(H, T )

(T, H )

(T, T )

Step 1
First Coin

Head

Tail

Head

Tail

Head

Tail 

TREE DIAGRAM FOR THE EXPERIMENT OF TOSSING TWO COINS
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Completion Time (months)

Stage 1 Stage 2 Notation for Total Project
Design Construction Experimental Outcome Completion Time (months)

2 6 (2, 6) 8
2 7 (2, 7) 9
2 8 (2, 8) 10
3 6 (3, 6) 9
3 7 (3, 7) 10
3 8 (3, 8) 11
4 6 (4, 6) 10
4 7 (4, 7) 11
4 8 (4, 8) 12

EXPERIMENTAL OUTCOMES (SAMPLE POINTS) FOR THE KP&L PROJECT

Step 2
Construction

Experimental
Outcome

(Sample Point)

(2, 6)

(2, 7)

(2, 8)

(3, 6)

(3, 7)

(3, 8)

(4, 6)

(4, 7)

(4, 8)

Step 1
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2 
m

o.
 

4 m
o. 

3 mo. 7 mo.

6 mo. 

8 mo. 

7 mo.

6 mo.

8 mo. 

7 mo.

6 mo. 

8 mo. 

Total Project
Completion Time

8 months

9 months

10 months

9 months

10 months

11 months

10 months

11 months

12 months

TREE DIAGRAM FOR THE KP&L PROJECT
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Figure 4.3, we see that the project will be completed in 8 to 12 months, with six of the nine
experimental outcomes providing the desired completion time of 10 months or less. Even
though identifying the experimental outcomes may be helpful, we need to consider how
probability values can be assigned to the experimental outcomes before making an assess-
ment of the probability that the project will be completed within the desired 10 months.

A second useful counting rule allows one to count the number of experi-
mental outcomes when the experiment involves selecting n objects from a (usually larger)
set of N objects. It is called the counting rule for combinations.

In sampling from a finite
population of size N, the
counting rule for
combinations is used to find
the number of different
samples of size n that can
be selected.

COUNTING RULE FOR COMBINATIONS

The number of combinations of N objects taken n at a time is

and, by definition, 0! 1

N!

n!

N(N 1)(N 2) . . . (2)(1)

n(n 1)(n 2) . . . (2)(1)

where

CN
n

N

n

N!

n!(N n)!

The notation ! means factorial; for example, 5 factorial is 5! (5)(4)(3)(2)(1) 120.
As an illustration of the counting rule for combinations, consider a quality control pro-

cedure in which an inspector randomly selects two of five parts to test for defects. In a group
of five parts, how many combinations of two parts can be selected? The counting rule in
equation (4.1) shows that with N 5 and n 2, we have

Thus, 10 outcomes are possible for the experiment of randomly selecting two parts from a
group of five. If we label the five parts as A, B, C, D, and E, the 10 combinations or experi-
mental outcomes can be identified as AB, AC, AD, AE, BC, BD, BE, CD, CE, and DE.

As another example, consider that the Florida lottery system uses the random selection
of six integers from a group of 53 to determine the weekly winner. The counting rule for
combinations, equation (4.1), can be used to determine the number of ways six different
integers can be selected from a group of 53.

The counting rule for combinations tells us that almost 23 million experimental outcomes
are possible in the lottery drawing. An individual who buys a lottery ticket has 1 chance in
22,957,480 of winning.

A third counting rule that is sometimes useful is the counting rule for
permutations. It allows one to compute the number of experimental outcomes when 
n objects are to be selected from a set of N objects where the order of selection is 

53

6

53!

6!(53 6)!

53!

6!47!

(53)(52)(51)(50)(49)(48)

(6)(5)(4)(3)(2)(1)
22,957,480

C5
2

5

2

5!

2!(5 2)!

(5)(4)(3)(2)(1)

(2)(1)(3)(2)(1)

120

12
10

The counting rule for
combinations shows that
the chance of winning the
lottery is very unlikely.
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important. The same n objects selected in a different order are considered a different experi-
mental outcome.

The counting rule for permutations closely relates to the one for combinations; how-
ever, an experiment results in more permutations than combinations for the same number
of objects because every selection of n objects can be ordered in n! different ways.

As an example, consider again the quality control process in which an inspector selects
two of five parts to inspect for defects. How many permutations may be selected? The
counting rule in equation (4.2) shows that with N 5 and n 2, we have

Thus, 20 outcomes are possible for the experiment of randomly selecting two parts from a
group of five when the order of selection must be taken into account. If we label the parts
A, B, C, D, and E, the 20 permutations are AB, BA, AC, CA, AD, DA, AE, EA, BC, CB,
BD, DB, BE, EB, CD, DC, CE, EC, DE, and ED.

Now let us see how probabilities can be assigned to experimental outcomes. The three ap-
proaches most frequently used are the classical, relative frequency, and subjective methods. Re-
gardless of the method used, two basic requirements for assigning probabilities must be met.

P5
2

5!

(5 2)!

5!

3!

(5)(4)(3)(2)(1)

(3)(2)(1)

120

6
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COUNTING RULE FOR PERMUTATIONS

The number of permutations of N objects taken n at a time is given by

PN
n n!

N

n

N!

(N n)!

BASIC REQUIREMENTS FOR ASSIGNING PROBABILITIES

1. The probability assigned to each experimental outcome must be between 0
and 1, inclusively. If we let Ei denote the ith experimental outcome and P(Ei)
its probability, then this requirement can be written as

2. The sum of the probabilities for all the experimental outcomes must equal 1.0.
For n experimental outcomes, this requirement can be written as

P(E1) P(E2) . . . P(En ) 1

0 P(Ei) 1 for all i

The classical method of assigning probabilities is appropriate when all the experi-
mental outcomes are equally likely. If n experimental outcomes are possible, a probability
of 1/n is assigned to each experimental outcome. When using this approach, the two basic
requirements for assigning probabilities are automatically satisfied.
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For an example, consider the experiment of tossing a fair coin; the two experimental
outcomes—head and tail—are equally likely. Because one of the two equally likely out-
comes is a head, the probability of observing a head is 1/2, or .50. Similarly, the proba-
bility of observing a tail is also 1/2, or .50.

As another example, consider the experiment of rolling a die. It would seem reasonable to
conclude that the six possible outcomes are equally likely, and hence each outcome is assigned
a probability of 1/6. If P(1) denotes the probability that one dot appears on the upward face of
the die, then P(1) 1/6. Similarly, P(2) 1/6, P(3) 1/6, P(4) 1/6, P(5) 1/6, and
P(6) 1/6. Note that these probabilities satisfy the two basic requirements of equations (4.3)
and (4.4) because each of the probabilities is greater than or equal to zero and they sum to 1.0.

The relative frequency method of assigning probabilities is appropriate when data are
available to estimate the proportion of the time the experimental outcome will occur if the
experiment is repeated a large number of times. As an example, consider a study of waiting
times in the X-ray department for a local hospital. A clerk recorded the number of patients
waiting for service at 9:00 on 20 successive days and obtained the following results.

These data show that on 2 of the 20 days, zero patients were waiting for service; on 5
of the days, one patient was waiting for service; and so on. Using the relative frequency
method, we would assign a probability of 2/20 .10 to the experimental outcome of zero
patients waiting for service, 5/20 .25 to the experimental outcome of one patient waiting,
6/20 .30 to two patients waiting, 4/20 .20 to three patients waiting, and 3/20 .15 to
four patients waiting. As with the classical method, using the relative frequency method
automatically satisfies the two basic requirements of equations (4.3) and (4.4).

The subjective method of assigning probabilities is most appropriate when one cannot
realistically assume that the experimental outcomes are equally likely and when little rele-
vant data are available. When the subjective method is used to assign probabilities to the
experimental outcomes, we may use any information available, such as our experience or
intuition. After considering all available information, a probability value that expresses our
degree of belief (on a scale from 0 to 1) that the experimental outcome will occur is speci-
fied. Because subjective probability expresses a person’s degree of belief, it is personal.
Using the subjective method, different people can be expected to assign different proba-
bilities to the same experimental outcome.

The subjective method requires extra care to ensure that the two basic requirements of
equations (4.3) and (4.4) are satisfied. Regardless of a person’s degree of belief, the proba-
bility value assigned to each experimental outcome must be between 0 and 1, inclusive, and
the sum of all the probabilities for the experimental outcomes must equal 1.0.

Consider the case in which Tom and Judy Elsbernd make an offer to purchase a house.
Two outcomes are possible:

E1 their offer is accepted

E2 their offer is rejected

Number of Days
Number Waiting Outcome Occurred

0 2
1 5
2 6
3 4
4 3

Total 20
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Judy believes that the probability that their offer will be accepted is .8; thus, Judy would set
P(E1) .8 and P(E2) .2. Tom, however, believes that the probability that their offer will
be accepted is .6; hence, Tom would set P(E1) .6 and P(E2) .4. Note that Tom’s prob-
ability estimate for E1 reflects a greater pessimism that their offer will be accepted.

Both Judy and Tom assigned probabilities that satisfy the two basic requirements. The
fact that their probability estimates are different emphasizes the personal nature of the
subjective method.

Even in business situations where either the classical or the relative frequency approach
can be applied, managers may want to provide subjective probability estimates. In such
cases, the best probability estimates often are obtained by combining the estimates from the
classical or relative frequency approach with subjective probability estimates.

To perform further analysis on the KP&L project, we must develop probabilities for each of
the nine experimental outcomes listed in Table 4.1. On the basis of experience and judg-
ment, management concluded that the experimental outcomes were not equally likely.
Hence, the classical method of assigning probabilities could not be used. Management then
decided to conduct a study of the completion times for similar projects undertaken by KP&L
over the past three years. The results of a study of 40 similar projects are summarized in
Table 4.2.

After reviewing the results of the study, management decided to employ the relative fre-
quency method of assigning probabilities. Management could have provided subjective
probability estimates but felt that the current project was quite similar to the 40 previous
projects. Thus, the relative frequency method was judged best.

In using the data in Table 4.2 to compute probabilities, we note that outcome (2, 6)—
stage 1 completed in 2 months and stage 2 completed in 6 months—occurred six times in
the 40 projects. We can use the relative frequency method to assign a probability of
6/40 .15 to this outcome. Similarly, outcome (2, 7) also occurred in six of the 40 projects,
providing a 6/40 .15 probability. Continuing in this manner, we obtain the probability as-
signments for the sample points of the KP&L project shown in Table 4.3. Note that P(2, 6)
represents the probability of the sample point (2, 6), P(2, 7) represents the probability of
the sample point (2, 7), and so on.

Bayes’ theorem (see 
Section 4.5) provides a
means for combining
subjectively determined
prior probabilities with
probabilities obtained by
other means to obtain
revised, or posterior,
probabilities.

Completion Time (months)
Number of

Past Projects
Stage 1 Stage 2 Having These
Design Construction Sample Point Completion Times

2 6 (2, 6) 6
2 7 (2, 7) 6
2 8 (2, 8) 2
3 6 (3, 6) 4
3 7 (3, 7) 8
3 8 (3, 8) 2
4 6 (4, 6) 2
4 7 (4, 7) 4
4 8 (4, 8) 6

Total 40

COMPLETION RESULTS FOR 40 KP&L PROJECTS
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