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Factorial Experiment
A factorial experiment can be defined as an experiment in which the
response variable is observed at all factor-level combinations of the
independent variables.

Related terms:

Sum of Squares, Analysis of Variance, Experimental Design, Factorials, Response
Variable

•

•
•

Factorial Experiments
Rudolf J. Freund, ... Donna L. Mohr, in Statistical Methods (Third Edition), 2010

9.7 Three or More Factors
Obviously factorial experiments can have more than two factors. As we have noted,
fertilizer experiments are concerned with three major fertilizer ingredients, N, P,
and K, whose amounts in a fertilizer are usually printed on the bag. The
fundamental principles of the analysis of factorial experiments such as the model
describing the data, the partitioning of sums of squares, and the interpretation of
results are relatively straightforward extensions of the two-factor case. Since such
analyses are invariably performed by computers, computational details are not
presented here.

The model for a multifactor factorial experiment is usually characterized by a large
number of parameters. Of special concern is the larger number and greater
complexity of the interactions. In the three-factor fertilizer experiment, for
example, the model contains parameters describing

three main effects: N, P, and K,

three two-factor interactions: , , and , and

one three-factor interaction: .

The interpretations of main effects and two-factor interactions remain the same
regardless of the number of factors in the experiment. Interactions among more
than two factors, which are called higher order interactions, are more difficult to
interpret. One interpretation of a three-factor interaction, say, , is that
it reflects the inconsistency of the  interaction across levels of K. Of course,
this is equivalent to the inconsistency of the  interaction across N, etc.

Example 9.6
It is of importance to ascertain how the lengths of steel bars produced by
several screw machines are affected by heat treatments and the time of day
the bars are produced. A factorial experiment using four machines and two
heat treatments was conducted at three different times in one day. This is a
three-factor factorial with factors:
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Heat treatment, denoted by HEAT, with levels W and L,

Time of experiment, denoted by TIME, with levels 1, 2, and 3
representing 8:00 a.m., 11:00 a.m., and 3:00 p.m., and

Machine, denoted by MACHINE with levels A, B, C, and D.

Each factor level combination was run four times. The response is the (code)
length of the bars. The data are given in Table 9.16.

Table 9.16. Steel Bar Data for Three-Factor Factorial

8:00 AM 6 7 1 6 4 6 4

9 9 2 6 6 5 0 5

1 5 0 7 0 3 0 5

3 5 4 3 1 4 1 4

11:00
AM

6 8 3 7 3 6 2 9

3 7 2 9 1 4 0 4

1 4 1 11 1 1 6

8 0 6 3 1 3

3:00 PM 5 10 10 6 8 0 4

4 11 2 5 0 7 3

9 6 6 4 3 10 4 7

6 4 1 8 7 0 0

Solution
The analysis of variance for the factorial experiment is performed with PROC
ANOVA of the SAS System with the results, which are quite straightforward,
shown in Table 9.17. The HEAT and MACHINE effects are clearly significant,
with no other factors approaching significance at the 0.05 level. In fact, some
of the  values are suspiciously small, which may raise doubts about the data
collection procedures.

Table 9.17. Analysis of Variance for Steel Bar Data

Time

HEAT TREATMENT W
MACHINES

HEAT TREATMENT L
MACHINES

A B C D A B C D

Analysis of Variance Procedure

Dependent Variable: LENGTH

https://www.sciencedirect.com/topics/mathematics/analysis-of-variance
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No specifics are given on the structure of the factor levels; hence post hoc
paired comparisons are in order. The HEAT factor has only two levels; hence
the only statement to be made is that the sample means of 2.938 and 4.979
for L and W indicate that W produces longer bars. Duncan's multiple range
test is applied to the MACHINE factor with results given in Table 9.18.

Table 9.18. Analysis of Variance for Steel Bar Data, Duncan's Multiple Range
Test for Machine

Number of Means 2 3 4

Critical Range 1.436 1.510 1.558

Means with the same letter are not significantly
different.

Duncan Grouping Mean N MACHINE

A 5.875 24 B

A 5.667 24 D

B 3.417 24 A

C 0.875 24 C

Model 23 590.3333333 25.6666667 4.13

Error 72 447.5000000 6.2152778

Corrected Total 95 1037.8333333

R Square C.V. Root MSE LEN

0.568813 62.98221 2.493046 3.9

Source DF Anova SS Mean Square F
Valu

TIME 2 12.8958333 6.4479167 1.04

HEAT 1 100.0416667 100.0416667 16.1

TIME*HEAT 2 1.6458333 0.8229167 0.13

MACHINE 3 393.4166667 131.1388889 21.1

TIME*MACHINE 6 71.0208333 11.8368056 1.90

HEAT*MACHINE 3 1.5416667 0.5138889 0.08

TIME*HEAT*MACHINE 6 9.7708333 1.6284722 0.26

Analysis of Variance Procedure

Dependent Variable: LENGTH
Source

Source

DF

DF

Sum of
Squares

Sum of
Squares

Mean Square

Mean Square

F
Valu

F
Valu

Alpha = 0.05 cdf = 72 cMSE = 6.215278
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Factorial experiments with many factors often produce a large number of factor
level combinations. The resulting requirement for a large number of observations
may make it impossible to provide for replicated values in the cells. Since higher
order interactions are difficult to interpret, their mean squares make good
candidates for the estimate of . Of course, if these interactions do exist, the
resulting tests are biased.

9.7.1 Additional Considerations
ecial experimental designs are available to overcome partially the often excessive
number of experimental units required for factorial experiments. For example, the
estimation of a polynomial response regression does not require data from all the
factor level combinations provided by the factorial experiment; hence special
response surface designs are available for use in such situations. Also, since higher
order interactions are often of little interest, designs have been developed that
trade the ability to estimate these interactions for a reduction in sample size. For
additional information on such topics, refer to a book on experimental design (for
example, Kirk (1995)).

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780123749703000093

Figure 9.5 is a profile plot illustrating the HEAT by MACHINE means. In
general, for any machine, heat W gives a longer bar and the differences
among machines are relatively the same for each heat. This is consistent with
the lack of interaction.

FIGURE 9.5. Profile Plot for Steel Bar Data in Example 9.6.

Design of Experiments
Kandethody M. Ramachandran, Chris P. Tsokos, in Mathematical Statistics with
Applications in R (Second Edition), 2015
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9.3.3 Fractional Factorial Design
In a fractional factorial experiment, only a fraction of the possible treatments are
actually used in the experiment. A full factorial design is the ideal design, through
which we could obtain information on all main effects and interactions. But
because of the prohibitive size of the experiments, such designs are not practical to
run. For instance, consider Example 9.2.2. Now if we were to add say, two different
densities, three sizes of fish, and three types of food, the number of factors
becomes five, and total number of distinct treatments will be
4 × 4 × 2 × 3 × 3 = 288. This method becomes very time consuming and expensive.
The number of relatively significant effects in a factorial design is relatively small.
In these types of situations, fractional factorial experiments are used in which trials
are conducted on only a well-balanced subset of the possible combinations of
levels of factors. This allows the experimenter to obtain information about all main
effects and interactions while keeping the size of the experiment manageable. The
experiment is carried out in a single systematic effort. However, care should be
taken in selection of treatments in the experiment so as to be able to answer as
many relevant questions as possible. The fractional factorial design is useful when
the number of factors is large. Because we are reducing the number of factors, a
fractional factorial design will not be able to evaluate the influence of some of the
factors independently. Of course, the question is how to choose the factors and
levels we should use in a fractional factorial design. The question of how fractional
factorial designs are constructed is beyond the scope of this book.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780124171138000096

Design of Experiments

Rudolf J. Freund, ... Donna L. Mohr, in Statistical Methods (Third Edition), 2010

■

■

■

Example 10.1
A Factorial Experiment with Different Plot Sizes
We are interested in the yield response of corn to the following factors:

WTR: levels of irrigation with levels 1 and 2,

NRATE: rate of nitrogen fertilization with levels 1, 2, and 3, and

P: planting rates with levels 5, 10, 20, and 40 plants per experimental
plot.

The response variable is total dry matter harvested (TDM).  The experiment is
a  factorial experiment. Because of physical limitations the
experiment was conducted as follows:

The experiment used four fields with 24 plots to accommodate all factor
level combinations.

Normally each of the 24 plots would be randomly assigned one factor
level combination. However, because it is physically impossible to assign
different irrigation levels to the individual plots, each field was divided in
half and each half randomly assigned an irrigation level.

The 12 factor levels of the other factors (NRATE and P) were randomly
assigned to each half field.

1
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Table 10.1. Example of an Experimental Design

REP = 1

1 1 7 3.426 13 2.084 20 2.064 37 2.851

1 2 7 7.070 12 7.323 24 7.321 38 7.865

1 3 6 4.910 10 6.620 22 8.292 43 7.528

2 1 5 2.966 12 3.304 20 4.055 37 2.075

2 2 7 3.484 12 2.894 22 5.662 26 3.485

2 3 5 1.928 10 4.347 20 3.178 33 3.900

REP = 2

1 1 6 3.900 11 3.015 27 3.129 38 3.175

1 2 7 5.581 14 7.908 19 6.419 37 7.685

1 3 5 3.350 13 5.986 20 6.515 32 10.515

2 1 5 2.574 12 4.390 20 2.855 42 3.042

2 2 5 3.952 11 4.744 21 5.472 30 5.125

2 3 6 4.494 11 5.480 20 4.871 36 5.294

REP = 3

1 1 5 3.829 10 3.173 18 2.741 33 2.166

1 2 5 3.800 13 7.568 19 7.797 34 6.474

1 3 8 6.156 15 7.034 23 7.754 40 8.458

2 1 6 2.872 12 5.759 21 4.512 42 4.864

2 2 5 2.826 14 3.840 21 4.494 30 4.804

2 3 5 3.107 10 3.620 20 4.620 32 5.376

REP = 4

A possible additional complication arises from the fact that the specified
planting rates do not always produce that exact number of plants in each
plot. Therefore the actual plants per plot are also recorded. For the time
being, we will assume that this complication does not affect the analysis of
the data. We will return to this problem in Chapter 11, Exercise 14 where the
effect of the different number of plants in each plot will be examined. The
data are shown in Table 10.1. The NRATE and WTR combinations are
identified as rows, and the four sets of columns correspond to the four
planting rates (P). The two entries in the table are the actual number of plants
per plot (NO) and the total dry matter (TDM). The solution is presented in
Section 10.6.

WTR NRATE NO TDM NO TDM NO TDM NO TDM
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1 1 5 3.325 11 4.193 20 3.409 40 4.877

1 2 6 4.984 12 7.627 20 6.562 39 9.093

1 3 6 4.067 12 4.394 20 7.089 28 7.088

2 1 6 2.986 11 5.327 20 5.390 43 5.632

2 2 5 2.417 11 3.592 20 4.311 33 5.975

2 3 9 4.180 12 5.282 19 4.498 35 6.519

Source: Personal communication from R. M. Jones and M. A. Sanderson, Texas
Agricultural Experiment Station, Stephenville, and J. C. Read, Texas Agricultural
Experiment Station, Dallas.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B978012374970300010X

WTR NRATE NO TDM NO TDM NO TDM NO TDM

Unbalanced Designs and Missing Data

Barry Kurt Moser, in Linear Models, 1996

In complete, balanced factorial experiments, the same number of replicate values is
observed within each combination of the factors. Kronecker products may be used
in such experiments to construct covariance and sum of squares matrices.
However, in other types of experiments, the number of replicates per combination
of the factors varies, or certain factor combinations may have no observations at all.
Kronecker products are often not useful for constructing covariance and sums of
squares matrices in such unbalanced and missing data experiments. To
accommodate these unbalanced and missing data situations, replication and
pattern matrices are introduced.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780125084659500077

Maximum Likelihood Estimation and Related Topics
Barry Kurt Moser, in Linear Models, 1996

Example 6.3.2
Consider the two-way balanced factorial experiment given in Example 6.3.1. The
model can be written as Y = Xβ+E where X = 1  ⊗ I , β = (β …, β )′ and

Let the sums of squares due to the overall mean, the random blocks, the fixed
treatments, and the random interaction of blocks and treatments be represented

b t 1 t
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by Y′B Y, Y′C Y, Y′B Y, and Y′C Y, respectively, where p  = 1, r  = b − 1, p  = t − 1, r
= (b − 1)(t − 1) and

Note that I  ⊗ I , = B  + C  + B  + C . Furthermore, 
, and .

Therefore, 
where a  = tσ  and a  = σ . Furthermore,

Therefore, by Theorem 6.3.1, the MLE of β is given by

and the MLEs of a  and a  are

and

Therefore, the MLEs of σ  and σ  are

and

These are the same MLEs derived in Example 6.3.1.

Although this chapter deals mainly with maximum likelihood estimators of
multivariate normal models, Theorem 6.3.1 also motivates a further generalization
of the Gauss–Markov theorem. The Gauss–Markov theorem was introduced in
Section 5.2 for the model Y = Xβ + E when the n × 1 error vector E had a
distribution with E(E) = 0 and cov(E) = σ I . In Section 5.4 the Gauss–Markov
theorem was extended to include the model Y = Xβ + E with E(E) = 0 and cov(E) =
σ V where V is an n × n positive definite matrix of known constants. In the next
theorem, the Gauss–Markov theorem is again extended to include an even broader
class of covariance matrices.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780125084659500065
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•

Experimental Design for Mixture Studies
D. Voinovich, ... R. Phan-Tan-Luu, in Comprehensive Chemometrics, 2009

1.13.4.2 D-Optimal Designs
As occurs in experimental situations involving factorial experiments, also in
mixture design the number of experiences increases rapidly along with the number
of the various dimensional faces when q ≥ 5. Moreover, the ultimate size of the
design will also be a function of the number of model coefficients to be calculated.
To reduce the size of the design for conducting experiments, in particular within
irregularly shaped experimental regions due to physical or economic constraints on
the design variables, the modern iterative methods for generating optimal designs
for experiments can be applied.

Let us consider again the four-component system presented in Example 7, where
the constrained experimental domain of interest was defined through the
composition of a set of remarkable points of the domain itself:

the 10 vertices

the 15 midpoints of the edges

the 7 face centroids

the overall centroid

This set of points may be used to estimate the response surface enabling the
exploration of the entire region of interest. Generally, the investigator may wish to
know the value of one or more responses at any point of the experimental domain.
In this way, it will be possible to know the evolution of each response within the
experimental domain. In this example, we initially assume that the special cubic
polynomial may be adequate to model the response under study within the region
of interest defined by Equations (36) and (53) and is shown in Figure 13:

This model for a four-component system has p = 14 parameters to be estimated by
taking observations in the constrained composition space. The composition points
for measuring the considered responses must be chosen in an appropriate way to
ensure that the experimental data will provide the desired information. In other
words, results of mixture experiments must enable the coefficient estimation of a
model that, once its adequacy to represent the evolution of the measured response
has been established, can be used for prediction in any point of the domain of
interest with an acceptable precision (see Chapter 1.12).

The simplest strategy might be carrying out the experiments on the 33 candidate
points listed in Table 9. However, given the large expenditures in terms of time and
cost of experimentation frequently involved in research projects, reducing the
number of experiments may be a requirement to be considered. If this be the case,
then the objective is to select a subset of points from a list of candidate design
points covering the feasible region (here, the 33 experiments), which will provide
precise estimates of the parameters in the model (given in Equation (57)). To be
able to compare various experimental designs for selecting an optimum design,
the use of some quantitative criterion is recommended.

20,21

20
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Table 9. The candidate design points for exploring the constrained region defined
in Equations (36) and (53)

1 0.150 0.050 0.100 0.700

2 0.020 0.200 0.100 0.680

3 0.150 0.050 0.700 0.100

4 0.020 0.180 0.100 0.700

5 0.020 0.180 0.700 0.100

6 0.020 0.200 0.680 0.100

7 0.150 0.150 0.100 0.600

8 0.100 0.200 0.100 0.600

9 0.150 0.150 0.600 0.100

10 0.100 0.200 0.600 0.100

11 0.150 0.050 0.400 0.400

12 0.085 0.115 0.100 0.700

13 0.150 0.100 0.100 0.650

14 0.020 0.190 0.100 0.690

15 0.020 0.200 0.390 0.390

16 0.060 0.200 0.100 0.640

17 0.085 0.115 0.700 0.100

18 0.150 0.100 0.650 0.100

19 0.020 0.180 0.400 0.400

20 0.020 0.190 0.690 0.100

21 0.060 0.200 0.640 0.100

22 0.125 0.175 0.100 0.600

23 0.150 0.150 0.350 0.350

24 0.100 0.200 0.350 0.350

25 0.125 0.175 0.600 0.100

26 0.125 0.175 0.350 0.350

27 0.085 0.115 0.400 0.400

28 0.020 0.190 0.395 0.395

29 0.150 0.100 0.375 0.375

30 0.060 0.200 0.370 0.370

31 0.088 0.156 0.100 0.656

Design points X1 X2 X3 X4
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32 0.088 0.156 0.656 0.100

33 0.088 0.156 0.378 0.378

Among the most useful criteria for assessing the quality of a particular design,
there is the minimum–maximum variance, the G-optimality criterion, referring to
the maximum variance function over the experimental region. If this is the design
criterion selected, starting from a set of candidate points, all possible forms of the
model matrix (X), along with their corresponding information matrix (X′X) and the
dispersion matrix (X′X)  can be calculated for some determined number of runs
(representing fractions of the starting design). In this way, at any point of the
experimental domain of interest the variance function, σ d, where d = x(X′X) x′,
can be computed and thus its maximum value, d , be known. The maximum
variance function provides a measure of how close a given design is to optimum.
However, to assess the optimum in percentage terms, the G-efficiency (G stands
for global) of a design, involving also the number of model parameters and the
number of observations in the design, may also be considered:

Let us apply the strategy to this example. The approach will involve a step-by-step
procedure, as illustrated earlier in Chapter 1.12.

Step 1. Find if there exists a subset of experiments, N < 33, providing
information of sufficient quality.

Fix the minimal value of N ≥ N  = 15 (since the number of coefficient in
the model is 14).

Fix the maximal value of N ≤ N  = 25.

Select an optimum experimental design ξ  for fitting the assumed 14-
term mixture model from a set Ξ of possible designs ξ  based on a
specific optimality criterion (a type I criterion). The set Ξ contains a
number of different experimental designs given by

Repeat this algorithm for different values of N (N  ≤ N ≤ N ) to obtain the
optimal solution set ξ . Here, we refer to the D-optimality criterion,
requiring the maximization of the determinant of the information matrix
as the selected type I criterion. In Table 10 some design properties of the
generated optimal design solutions are given. The determinant of the
moment matrix (|M|), trace (X′X) , and maximum variance function d
are usually used to assess the statistical properties of the designs
generated by the algorithm. The values for the design properties
measured by the type I criteria for the resultant D-optimal designs are
shown in Figures 16 and 17.

Step 2. For every value of N (15 ≤ N ≤ 25), at least one optimal experimental
design ξ  has been obtained by following the selected optimality criterion
(here the D-optimality criterion). In this way, 14 possible D-optimal
experimental designs have been generated and thus the question of what
design or designs would be the best choice for experimentation must be
answered. For this purpose, it should be considered a type II criterion such as
the d  over the region of interest. A representation of the evolution of this
criterion is given in Figure 18.

Design points X1 X2 X3 X4
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max
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It is clear that the experimental domain of interest is well represented by the 33
candidate design points. However, our objective is to find a reduced
experimental design consisting of N runs (N < 33) that enables us to know the
value of the property under study with an acceptable precision for the 33
candidate points. In this example, all the D-optimal experimental designs
involving more than 17 points might be considered to know the value of the
studied property with an acceptable precision. Then, which design should be
chosen?

The spirit of any algorithm for selecting a subset of design points should be to
help and not to dictate a design.  Among all the acceptable solutions,
therefore, the final design will be chosen based on type III criteria, such as the
number of experiments involved, the experimentation costs, and the easy
feasibility.

Step 3. Given the objectives of the study and the assumed model for the
response, we have a set of design points that allows us to generate useful
information throughout the domain of interest with an acceptable quality.
Remember that this is possible only if the model represents the studied
response well. For validation of the model, however, some additional
checkpoints are needed. It is evident that to detect lack of fit the additional
points must not be the same that were used to estimate the model coefficients.
These points are chosen so that useful information is provided to answer the
following question: how well does the model represent the response behavior
in the experimental domain of interest?

In the experimental domain of interest these points must be very far from the
points belonging to ξ . Using the criteria for characterizing the distance
between the points belonging to ξ  (the candidate checkpoint set) and those
belonging to ξ , let us choose the points located at the middle of the line
joining the overall centroid to the vertices. Thus, there are 10 checkpoints
possible, whose composition is as follows:

A 0.221 0.119 0.103 0.239 0.539

B 0.209 0.054 0.178 0.239 0.529

C 0.221 0.119 0.103 0.539 0.239

D 0.216 0.054 0.168 0.239 0.539

E 0.216 0.054 0.168 0.539 0.239

F 0.209 0.054 0.178 0.529 0.239

G 0.180 0.119 0.153 0.239 0.489

H 0.179 0.094 0.178 0.239 0.489

I 0.180 0.119 0.153 0.489 0.239

J 0.179 0.094 0.178 0.489 0.239

If we wish to reduce the number of checkpoints, the points with the smallest
distance may be omitted. For instance, if to check the model lack of fit only five
additional points are admitted, the following points should be chosen:

22
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A 0.119 0.103 0.239 0.539

B 0.054 0.178 0.239 0.529

C 0.119 0.103 0.539 0.239

D 0.054 0.168 0.239 0.539

E 0.054 0.168 0.539 0.239

Figure 19 illustrates the candidate design points used for generating D-optimal
designs, along with the checkpoints for testing lack-of-fit model adequacy
marked with a star symbol.

Table 10. Some optimality criteria for the D-optimal design solutions generated
for the four-component system considered in Example 7: the determinant of
the moment matrix (|M|), the trace of the dispersion matrix tr (X′X) , the
maximum variance function (d ), and G-efficiency (G )

15 1.220E−04 4.678E + 07 1.26 74

16 1.221E − 04 4.120E + 07 1.08 81

17 1.216E − 04 3.219E + 07 1.00 83

18 1.223E − 04 2.648E + 07 0.98 79

19 1.229E − 04 2.714E + 07 0.97 76

20 1.223E − 04 2.354E + 07 0.89 79

21 1.232E − 04 2.382E + 07 0.86 78

22 1.230E − 04 2.401E + 07 0.84 76

22 1.236E − 04 2.490E + 07 0.85 75

23 1.227E − 04 2.517E + 07 0.83 73

23 1.233E − 04 2.308E + 07 0.84 72

24 1.226E − 04 2.195E + 07 0.83 70

25 1.216E − 04 2.127E + 07 0.83 68

25 1.227E − 04 2.111E + 07 0.83 67

Checkpoints X1 X2 X3 X4

−1

max eff

N |M|1/14 tr (X′X)−1 dmax %Geff
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Figure 16. Trend of ∣M∣  criterion for the D-optimal designs generated by
the algorithm.

Figure 17. Trend of tr (X′X)  criterion for the D-optimal designs generated by
the algorithm.

1/14

−1
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Figure 18. Trend of d  criterion for the D-optimal designs generated by the
algorithm.

Figure 19. Design points in the constrained region for the four-component
system (Example 7), along with the checkpoints for testing lack-of-fit model
adequacy marked with the symbol ★.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780444527011000843

max

https://www.sciencedirect.com/science/article/pii/B9780444527011000843


5/3/2020 Factorial Experiment - an overview | ScienceDirect Topics

https://www.sciencedirect.com/topics/mathematics/factorial-experiment 16/20

Complete, Balanced Factorial Experiments

Barry Kurt Moser, in Linear Models, 1996

Theorem 4.4.1
Let Y be an n × 1 random vector associated with the observations of a complete,
balanced factorial experiment with an n × 1 mean vector μ = E (Y) and n × n covariance
matrix Σ = cov (Y). The expected mean square associated with the sum of squares
Y′AY is  where tr (A) equals the
degrees of freedom associated with Y′AY.

Example 4.4.1
Consider the experiment described in Examples 4.3.1 and 4.3.3 in which a finite
model was assumed. The sums of squares due to the random effect B and the fixed
effect T are Y′A Y and Y′A Y, respectively, where , 

, and the btr × 1 random vector 
. The mean vector 

. Note that  and .
Therefore, by Theorem 4.4.1, the expected mean square of the random effect B
equals

and the expected mean square of the fixed factor T equals

Thus, the expected mean square of the random effect B provides an unbiased
estimate of trσ  + σ . Likewise, the expected mean square of the fixed factor T
provides an unbiased estimate of .
The EMSs of the other effects can be calculated in a similar manner and are left to
the reader.

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780125084659500041
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Chronometry of Mental Development
Arthur R. Jensen, in Clocking the Mind, 2006
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Age Differences in the Effects of Procedural Conditions
Except for the overall relative slowness of RT for younger children, it is risky to
generalize the details of any given paradigm or experimental procedure to others.
Even rather subtle variations in these factors have effects on RT that are generally
of greater magnitude in younger than in older children. This argues especially
strongly for strict standardization of chronometric procedures in studies of
preadolescent subjects if meaningful comparisons are to be made across different
studies of a particular phenomenon.

Complex factorial experiments on the effects of varying several experimental
conditions have been performed by Rogers Elliott (1970, 1972), using several age
groups from 5 to 13 years and young adults (college students). In all studies, the
RT task was SRT to an auditory stimulus. The five independent variables were: (1)
age (years), (2) preparatory interval (PI = 1, 2, 4, 8, or 16 s); (3) PI constant or varied
within a test session; incentive (monetary rewards for faster SRT); (4) incentive-shift
(various combinations of shifting from a high to a low reward, e.g., HL, LH); and (5)
amount of practice (1–10 sessions). Variation in all four of these conditions
produced significant main effects, often surprisingly large. Within age groups most
of the first-order interactions among the experimental variables were also
significant. The results of such a multifactorial study with all its interactions are
quite complex; they are most easily summarized graphically, as shown in Figure
5.10.

Figure 5.10. Auditory SRT as a function of five independent variables explained in
the text.

(Reprinted from Elliott (1970, p. 94), with permission of Academic Press Inc.)Copyright © 1970

Read full chapter
URL: https://www.sciencedirect.com/science/article/pii/B9780080449395500069

Big Data Analytics
Saumyadipta Pyne, ... Madhav V. Marathe, in Handbook of Statistics, 2015

6.4 Decision Support Environments
The epidemiological modeling tools described above are capable of providing very
detailed information on spatiotemporal disease dynamics. The size and scale of the
data and the expertise required to use the simulations demand a user friendly

https://www.sciencedirect.com/topics/social-sciences/chronometrics
https://www.sciencedirect.com/science/article/pii/B9780080449395500069
https://www.sciencedirect.com/science/article/pii/B9780444634924000083
https://www.sciencedirect.com/science/handbooks/01697161
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environment that provides an easy way to set up experiments and analyze the
results. Recently, a number of visual analytics tools have been developed to support
epidemiological research (see Livnat et al., 2010, 2012). We have built a tool called
the SIBEL.  See http://isisdemo.vbi.vt.edu/didactic/isis.html for a demo version of
SIBEL that allows a user to set up detailed factorial experiments (see Fig. 7). Using
a simple interface to an underlying digital library, a user can choose from among
many preconstructed instances: (i) a social contact network; (ii) a within-host
disease progression model; and (iii) a set of interventions. Each intervention
requires additional details such as compliance level, subpopulations to which the
interventions are applied and intervention triggers. An experiment consists of
sweeping one or more parameters across a user-specified range of values. After
setting up the experiment, the user is provided access to the results of the
simulations. A set of basic analyses are performed automatically and the results are
displayed. The standard plots and epidemic curves provide very detailed
information about the epidemic. Additional information such as the
spatiotemporal dynamics and disease dendrogram (how the disease moved over
the social network) is also available. A key aspect of this tool is its simplicity—we
can train public health analysts to make effective use of the system in about 3 h.
Several other groups are actively developing similar systems. They include: (i) The
Biosurveillance Ecosystem (BSV) being developed by DTRA; (ii) The BARD model
repository at the Los Alamos National Laboratory; (iii) The Texas Pandemic toolkit
being developed at the University of Texas, Austin, http://flu.tacc.utexas.edu/; (iv)
The MIDAS funded Apollo project at the University of Pittsburgh and the
framework at RTI; (v) The FRED modeling framework at the University of
Pittsburgh; and (vi) The EpiC framework being developed by MoBs laboratory at
Northeastern University.

6
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Figure 7. SIBEL interface (a). Example simulated epidemic curves (b).
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