Response

Unknown 4 is butanal, CH₃CH₂CH₂CHO

You should have obtained an analysis table similar to the one opposite:

m/z	Possible Structures	Associated X	Inferences loss (amu)
72		et kan di saman salam menengan salam s	M *
71	C_5H_{11} , C_3H_7CO	1	aldehyde, acetal
57	C_4H_9 , (C_3H_5O)	15	CH ₃ loss - methyl compound
44	$CH_2 = CHOH, CO_2$	28	aldehyde with γ -H, anhydride
43	CH ₃ CO, C ₃ H ₇	29	CHO or C ₂ H ₅ loss from ethyl compound or aldehyde
41	C_3H_5		shows presence of 3-carbon chain
39	C_3H_3		shows presence of 3-carbon chain
29	CHO, C ₂ H ₅	43	aldehyde and/or C ₂ H ₅ compound
27 	C ₂ H ₃		confirms hydrocarbon chain

Unknown 4 cannot be aromatic as the M_r is below that of benzene (78). The loss of H from M⁺ is typical of aldehydes and acetals. The other compounds mentioned in the (M - X) table are irrelevant as they are aromatic or contain nitrogen. The presence of m/z 29 confirms an aldehyde rather than an acetal. The base peak m/z 44 is especially characteristic of aldehydes having γ -H atoms, which rearrange to give the ion CH_2 = $CHOH^+$ (Fig. 9.1b). $(M - CH_3)^+$ and $(M - CH_3CH_2)^+$ are both present indicating an alkyl chain, along with other typical hydrocarbon ions at m/z 27, 39 and 41. Putting this together to reach the required M_r of 72 we get

$$\gamma$$
 β α $CH_3-CH_2-CH_2-CH_0$

Scanned with CamScan

As shown, this has three γ -H and therefore would form m/z 44,

Other structures you might have thought of are (CH3)2CHCHO (but this has no γ -H so could not form m/z 44) or CH₃COCH₂CH₃ (would give m/z 57, 43, 29 and 27, but not the all-important base peak m/z 44). If you thought 4 was pentane or one of its isomers because of the odd mass ions which could be hydrocarbon cations such as m/z 27, 29, 39, 41, 43, 57 this was not a bad guess because some of them are hydrocarbon ions, but m/z 44 cannot be obtained from pentane. Odd electron ions like m/z 44 are always very significant in mass spectra.

Analyse the spectrum of Unknown 5, Fig. 9.1j, which contains a nitrogen atom. Suggest a possible structure for the compound, using the correlations in Fig. 9.1a and 9.1b. 100 80 60 123 20 50 100 mlz

Mass spectrum of Unknown 5

Fig. 9.1j.

Response

Unknown 5 is nitrobenzene, C₆H₅NO₂

You should have obtained an analysis table similar to the one below:

m/z	Possible Structure	Associated X Loss (amu)	Inferences
123	C ₆ H ₅ NO ₂		M ⁺ - odd mass, so contains odd number of N
107	C ₆ H ₅ NO	16	Loss of O - nitrocompound
93	C_6H_5O , C_6H_6N	30	Loss of NO from nitrocompound, or aromatic methyl ether
77	C ₆ H ₅	46	Loss of NO ₂ from nitrocompound, aliphatic alcohols?, ethyl o-ester?
65	C ₅ H ₅	· 58	Does not make sense
93	C ₆ H ₅ O		Parent for m/z 66 and 65?
65	C ₅ H ₅	28	Loss of CO from m/z 93
93	C_6H_6N	- <u>- </u>	Parent for m/z 66 and 65?
65	C_5H_5	28	Loss of HCNH?
107	C ₆ H ₅ NO		Parent for m/z 77?
77	C_6H_5	30	Loss of NO from m/z 107
51	C_4H_3	26	Loss of HC=CH from m/z 77

The intense M⁺ and higher ions are very characteristic of an aromatic compound. The losses of O (16 amu), NO (30 amu), and NO₂ (46 amu) are characteristic of nitrocompounds. This accounts for the ions at m/z 107, 93 and 77. The presence of m/z 51 confirms that m/z 77 is $C_6H_5^+$, because this ion always gives some m/z

51 by loss of ethyne. You will not see one without the other. If m/z 77 is $C_6H_5^+$, then 5 must contain a single NO₂ group to get the M_r of 123. The m/z 93 ion could be C_6H_5O or C_6H_6N , but only the former can lose 28 amu easily (CO) to give $C_5H_5^+$ at m/z 65. If you said 5 was C_6H_5NH —NO this was consistent with the formation of m/z 93, but this ion would be expected to lose HCN to give m/z 64. Congratulations if you said 5 was C_6H_5O —NO. This was a very logical structure to deduce, and in fact nitrobenzenes do rearrange to nitrites before they lose NO (see Section 9.9)
