Response Unknown 4 is butanal, CH₃CH₂CH₂CHO You should have obtained an analysis table similar to the one opposite: | m/z | Possible Structures | Associated
X | Inferences
loss (amu) | |--------|---|--|---| | 72 | | et kan di saman salam menengan salam s | M * | | 71 | C_5H_{11} , C_3H_7CO | 1 | aldehyde, acetal | | 57 | C_4H_9 , (C_3H_5O) | 15 | CH ₃ loss - methyl compound | | 44 | $CH_2 = CHOH, CO_2$ | 28 | aldehyde with γ -H, anhydride | | 43 | CH ₃ CO, C ₃ H ₇ | 29 | CHO or C ₂ H ₅ loss
from ethyl compound
or aldehyde | | 41 | C_3H_5 | | shows presence of
3-carbon chain | | 39 | C_3H_3 | | shows presence of
3-carbon chain | | 29 | CHO, C ₂ H ₅ | 43 | aldehyde and/or C ₂ H ₅ compound | | 27
 | C ₂ H ₃ | | confirms
hydrocarbon chain | Unknown 4 cannot be aromatic as the M_r is below that of benzene (78). The loss of H from M⁺ is typical of aldehydes and acetals. The other compounds mentioned in the (M - X) table are irrelevant as they are aromatic or contain nitrogen. The presence of m/z 29 confirms an aldehyde rather than an acetal. The base peak m/z 44 is especially characteristic of aldehydes having γ -H atoms, which rearrange to give the ion CH_2 = $CHOH^+$ (Fig. 9.1b). $(M - CH_3)^+$ and $(M - CH_3CH_2)^+$ are both present indicating an alkyl chain, along with other typical hydrocarbon ions at m/z 27, 39 and 41. Putting this together to reach the required M_r of 72 we get $$\gamma$$ β α $CH_3-CH_2-CH_2-CH_0$ Scanned with CamScan As shown, this has three γ -H and therefore would form m/z 44, Other structures you might have thought of are (CH3)2CHCHO (but this has no γ -H so could not form m/z 44) or CH₃COCH₂CH₃ (would give m/z 57, 43, 29 and 27, but not the all-important base peak m/z 44). If you thought 4 was pentane or one of its isomers because of the odd mass ions which could be hydrocarbon cations such as m/z 27, 29, 39, 41, 43, 57 this was not a bad guess because some of them are hydrocarbon ions, but m/z 44 cannot be obtained from pentane. Odd electron ions like m/z 44 are always very significant in mass spectra. ************** Analyse the spectrum of Unknown 5, Fig. 9.1j, which contains a nitrogen atom. Suggest a possible structure for the compound, using the correlations in Fig. 9.1a and 9.1b. 100 80 60 123 20 50 100 mlz Mass spectrum of Unknown 5 Fig. 9.1j. ## Response Unknown 5 is nitrobenzene, C₆H₅NO₂ You should have obtained an analysis table similar to the one below: | m/z | Possible
Structure | Associated
X Loss
(amu) | Inferences | |-----|---|--|---| | 123 | C ₆ H ₅ NO ₂ | | M ⁺ - odd mass, so contains odd number of N | | 107 | C ₆ H ₅ NO | 16 | Loss of O - nitrocompound | | 93 | C_6H_5O , C_6H_6N | 30 | Loss of NO from nitrocompound, or aromatic methyl ether | | 77 | C ₆ H ₅ | 46 | Loss of NO ₂ from nitrocompound, aliphatic alcohols?, ethyl o-ester? | | 65 | C ₅ H ₅ | · 58 | Does not make sense | | 93 | C ₆ H ₅ O | | Parent for m/z 66 and 65? | | 65 | C ₅ H ₅ | 28 | Loss of CO from m/z 93 | | 93 | C_6H_6N | - <u>- </u> | Parent for m/z 66 and 65? | | 65 | C_5H_5 | 28 | Loss of HCNH? | | 107 | C ₆ H ₅ NO | | Parent for m/z 77? | | 77 | C_6H_5 | 30 | Loss of NO from m/z 107 | | 51 | C_4H_3 | 26 | Loss of HC=CH from m/z 77 | The intense M⁺ and higher ions are very characteristic of an aromatic compound. The losses of O (16 amu), NO (30 amu), and NO₂ (46 amu) are characteristic of nitrocompounds. This accounts for the ions at m/z 107, 93 and 77. The presence of m/z 51 confirms that m/z 77 is $C_6H_5^+$, because this ion always gives some m/z 51 by loss of ethyne. You will not see one without the other. If m/z 77 is $C_6H_5^+$, then 5 must contain a single NO₂ group to get the M_r of 123. The m/z 93 ion could be C_6H_5O or C_6H_6N , but only the former can lose 28 amu easily (CO) to give $C_5H_5^+$ at m/z 65. If you said 5 was C_6H_5NH —NO this was consistent with the formation of m/z 93, but this ion would be expected to lose HCN to give m/z 64. Congratulations if you said 5 was C_6H_5O —NO. This was a very logical structure to deduce, and in fact nitrobenzenes do rearrange to nitrites before they lose NO (see Section 9.9) *************