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Preface

The purpose of this book is to provide the reader with a thorough grounding in the
central ideas and techniques of econometric theory, as well as to give all the tools
needed to carry out an empirical project.

For the first task, regarding the econometric theory, the book adopts a very analytical
and simplified approach in explaining the theories presented in the text. The use of
mathematics in econometrics is practically unavoidable, but the book tries to satisfy
both those readers who do not have a solid mathematical background as well as those
who prefer the use of mathematics for a more thorough understanding. To achieve
this task, the book adopts an approach that provides, when it is required, both a
general and a mathematical treatment of the subject in two separate sections. Thus, the
reader‘who doesn’t want to get involved with proofs and mathematical manipulations
may: concentrate on the ‘general (verbal) approach’ skipping the ‘more mathematical’
approach, without any loss of continuity. Similarly, readers who want to go through the
’mathematics involved in every topic are able to do so by studying the relevant sections
in each chapter. Having this choice, in cases thought of as important, the text also uses
matrix algebra to prove mathematically some of the points; while the main points of
that analysis are also presented in a simplified manner to make the text accessible even
to those who have not taken a course in matrix algebra.

Another important feature regarding the use of mathematics in the text is that it
presents all calculations required to get the reader from one equation to another, as
well as providing explanations of mathematical tricks used in order to obtain these
equations when necessary. Thus readers with a limited background in mathematics
will also find some of the mathematical proofs quite accessible, and should therefore
not be disheartened in progressing through them.

From the practical or applied econometrics point of view, the book is innovative in
two_ways: (a) it presents very analytically (step by step) all the statistical tests, and
(b) after each test presentation it explains how these tests can be carried out using
appropriate econometric softwares such as EViews and Microfit. We think that this
is one of the strongest features of the book, and we hope that the reader will find
it very useful in applying those techniques using real data. This approach was chosen
because from our teaching experience we have realized that students find econometrics
quite a hard course of study, simply because they cannot see the ‘beauty’ of it, which
emerges only when they are able to obtain results from actual data and know how to
interpret those results to draw conclusions. Applied econometric analysis is the essence
of econometrics, and we hope that the use of EViews and/or Microfit will make the
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practice of econometrics more satisfying and enjoyable, and its study fascinating too.
For readers who need a basic introduction regarding the use of EViews and Microfit,
they can start the book from the last chapter (Chapter 21) which discusses practical
issues in using those two econometrics packages. '

While the text is introductory (and is thus mostly suitable for undergraduates),
it can also be useful to those who undertake postgraduate courses that require
applied work (perhaps through an MSc project). All of the empirical results
from the examples reported in the book are reproducible. A website has been
established including all the files that are required for plotting the figures,
reestimating the regressions and all other relevant tests presented in the book. The

files are given in three different formats, namely xls (for excel), wfl (for EVieWs) and fit

(for Microfit). If any errors or typos are detected please let Dimitrios know by e-mailing

him at D.Asteriou@city.ac.uk.
DIMITRIOS ASTERIOU

&
STEPHEN G. HALL
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2 Introduction

What is econometrics?

The study of econometrics has become an essential part of every undergraduate course
in Economics and it is not an exaggeration to say that it is also a very essential part
of every economist’s training. This is because the importance of applied economics is
constantly increasing while the quantification and evaluation of economic theories and
hypotheses constitutes now, more than ever, a bare necessity. Theoretical economics
may suggest that there is a relationship among two, or more, variables but applied
economics demands both evidence that this relationship is a real one, observed in
everyday life, and quantification of the relationship between the two variables as well.

The study of the methods that enable us to quantify economic relationships using
actual data is known as econometrics. .

Literally, econometrics means ‘measurement (which is the meaning of the Greek

word metrics) in economics’. However, in essence, econometrics include all those
statistical and mathematical techniques that are utilized in the analysis of economic
data. The main target of using these statistical and mathematical tools in economic
data is to attempt to prove or disprove certain economic propositions and models.

The stages of apnlied
econometric wor

Applied econometric work ., . . < has (or should at least, have) as a starting
point a model or ..;i economic theory. Frou: this theory, the first task of the applied
econome*; ician is to formulate an econometric model that can be used in an empirically
testable form. Then, the next task is to collect data that can be used to perform the test,
and after that to proceed with the estimation of the modei.

After the estimation of the model is done, the applied econometrician has to perform
specification tests to make sure that the model she/he used was the appropriate one, as
well as some diagnostic checking in order to check the performance and the accuracy
of the estimation procedure. If those tests suggest that the model is adequate, then the
next test is to apply hypothesis testing in order to test the validity of the theoretical
predictions, and then she/he will be able to use the model for making predictions and
policy recommendations. If it is found that the specification tests and the diagnostics
suggest that the model used was not an appropriate one, then the econometrician will
have to go back to the econometric model formulation stage and revise the model,
repeating the whole procedure from the beginning (for a graphical depiction of these
stages see Figure 1.1). The aim of this book is to deal with these issues and provide
readers with all the basic mathematical and analytical tools that will enable them to
carry out applied econometric work of this kind.
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. Figure 1.1 The stages of applied econometric analysis

Source: Based on Maddala (2001).
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8 Statistical Background and Basic Data Handling

Economic data sets come in various forms. While some econometric methods can be
applied straightforwardly to different types of data sets, it is essential to examine the
special features of some sets. In the next sections we describe the most important data
structures encountered in applied econometric work. '

Cross-sectional data

A cross-sectional data set consists of a sample of individuals, households, firms,
countries, regions, cities or any other type of units at a specific point in time. In some
cases, the data across all units do not correspond to exactly the same time period.
Consider a survey that collects data from questionnaires applied to different families
that were surveyed during different days within a month. In this case, we can ignore
the minor time differences in collecting the data and the data collected will still be
viewed as a cross-sectional data set.

In econometrics, cross-sectional variables are usually denoted by the subscript i, with
i taking values from 1, 2, 3,..., N; for N number of cross-sections. So, if for example Y
denotes the income data we have collected for N number of individuals, this variable,
in a cross-sectional framework, will be denoted by:

y; fori=1,2,3,...,N Co@

Cross-sectional data are widely used in economics and other social sciences. Ih
economics, the analysis of cross-sectional data is mainly associated with applied
microeconomics. Labour economics, state and local public finance, business
economics, demographic economics and health economics are some of the most
common fields included within microeconomics. Data on individuals, households,
firms, cities and regions at a given point in time are utilized in these cases in order to
test microeconomic hypotheses and evaluate economic policies.

Time series data

A time series data set consists of observations on one or several variables over time.
So, time series data are arranged in chronological order and can have different time
frequencies, such as biannual, annual, qQuarterly, monthly, weekly, daily and hourly.
Examples of time series data can include stock prices, gross domestic product (GDP),
money supply, ice-cream sale figures, among many others.

Time series data are denoted with the subscript t. So, for example, if Y denotes the
GDP of a country from 1990 to 2002 then we denote that as:

Y, fort=1,2,3,...,T (2.2)

wheret =1 for 1990 and t = T = 13 for 2002.

Because past events can influence future events and lags in behaviour are prevalent
in social sciences, time is a very important dimension in time series data sets. A variable
__which is lagged one period will be denoted as Y;_; and obviously when it is lagged s

LT Tttt Aesdies Linarind will he.denoted as. Yoy
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A key feature of time series data, that makes it more difficult to analyse than cross-
sectional data, is the fact that economic observations are commonly dependent across
time. By this we mean that most economic time series are closely related to their
recent histories. 50, while most econometric procedures can be applied with both cross-
sectional and time series data sets, in the case of time series there is a need for more
things to be done in specifying the appropriate econometric model. Additionally, the
fact that economic time series display clear trends over time has led to new econometric
techniques that try to address these features. -

Another important feature is that time-series data that follow certain frequencies
might exhibit a strong seasonal pattern. This feature is encountered mainly with weekly,
monthly and quarterly time series. Finally, it’s important to say that time series data
are mainly associated with macroeconomic applications.

Panel data

A panel data set consists of a time series for each cross-sectional member in the data
set; as an example we could consider the sales and the number of employees for 50
firms over a five-year period. Panel data can also be collected on a geographical basis;
for example we might have GDP and money supply data for a set of 20 countries and
for 20-year periods.

Panel data are denoted by the use of both i and t subscripts that we have used before
for crosgs-sectional and time series data respectively. This is simply because panel data
have both cross-sectional and time series dimensions. So, we will denote GDP for a set
of countries and for a specific time period as:

. " ¥y fort=1,23,...,T and i=1,2,3,...,N (2.3)

To bgtter understand the structure of panel data consider a cross-sectional and a time
series variable as N x 1 and T x 1 matrices respectively:

Y1990 Y ARGENTINA
Y1991 YgraziL
Y1992 Yparacuay
YARGENTINA _ : ;Y1990 - ) (2.4)
L ]
Y2002 Y VENEZUELA

Here Y{‘RGENT’NA is GDP for Argentina from 1990 to 2002 and Y’.1990 is GDP for 1990
for 20 different Latin American countries.
The panel data Y}, variable will then be an N x T matrix of the following form:

YARG,1990 YBRA,1990 YvEN, 1990

YarG,1991 YBRA,1991 YyEN,1991
. . . (2.5)

it =

YarRG,2002 YBrA2002  YVEN,2002/ 14N

where the t dimension is depicted vertically and the i dimension horizontally.
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Most undergraduate econometrics books do not contain discussion of the
econometrics of panel data. However, the advantages of panel data, combined with
the fact that many issues in economics are difficult, if not impossible, to analyse
satisfactorily without the use of panel data makes their use more than necessary. The
final part of this textbook, is, for this reason, devoted to the analysis of panel data
techniques and methods of estimation.

[
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12 Statistical Background and Basic Data Handling

Before going straight into the statistical and econometric tools, a preliminary analysis
is extremely important in order to get a basic ‘feel’ for the data. This chapter briefly
describes ways of viewing and analysing data by examining various types of graphs
and summary statistics. This process provides the necessary background for the sound
application of regression analysis and interpretation of results. In addition, we shall
see how to apply several types of transformation to the raw data, so as to isolate or
remove one or more components of a time series, and/or to obtain the format most
suitable for the ultimate regression analysis. While the focus is on time series data, some
of the points and procedures apply to cross-sectional data as well. =~ -

.

Looking at raw data

The point of departure is simply to look at the numbers in a spreadsheet, taking note
of the number of series, start and end dates, range of values, and so on. If we look more
closely at the figures, we may notice outliers or certain discontinuities/structural breaks
(e.g. a large jump in the values at a point in timne). These are very important as they
can have a substantial impact on regression results, and must therefore be kept in mind
when formulating the model and interpreting the output.

Graphical analysis

Looking at the raw data (i.e. the actual numbers) may tell us certain things, but various
graphs facilitate the inspection process considerably. Graphs are essential tools for
seeing the ‘big picture’, and they reveal a large amount of information about the series
in one view. They also make checking for outliers or structural breaks much easier than
poring through a spreadsheet! The main graphical tools are:

1 Histograms: give an indication of the distribution of a variable;

2 Scatter plots: give combinations of values from two series for the purpose of
determining their relationship (if any);

3 Line graphs: facilitate comparisons of series;
4 Bar graphs; and
S Pie charts.

Graphs in MFit

Creating grophs

To create a line graph of a variable against time, we need to type in the Microfit
Command Editor window:

plot x

¥
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The above command produces a plot of variable x against time over the entire sample
period. If we need a certain sample period then we need to type:

sample tp tj; plot x

where tj and #; stand for the start and the end of our subsample period respectively.
For example, -

sample 1990gl 1994qg4; plot x

Furthermore, we can plot up to a maximum of 50 variables against another variable.
When issuing this command, namely xplot, we must specify at least two variable names.
For example:

xplot x y
or
sample 1990g1 1994qg4; xplot x y z

The above commands produce a plot of the variables x and z against the variable y
regarding the subsample period 1990q1 1994q4 (note that all graphs are produced in the
Process Menu). The default graph display may be edited using the graph control facility.
Click the graph button to access it. Graph control contains many options for adjusting
the various features of the graph; each option has its own property page. Click the
appropriate page tab to view it. To apply a change we have made without closing graph
control, click the apply now button. To exit graph control without implementing
the changes click cancel. The most commonly used page tabs are: 2D Gallery, Titles,
Trends and Background.

Saving graphis

When we plot a graph, the Graph Editor window opens. A displayed graph can be saved
as a bitmap (BMP) (click on the 2nd button) or as a Windows metafile (WMF) (click
on the 3rd button). If we are using MS Word then we can copy and paste the graph by
clicking on the 4th button first, and then open MS Word and paste the graph. The 1st
button sends the graph to the nearest printer.

Graphs in EViews

In EViews we can plot/graph the data in a wide variety of ways. One way is to double-
click on the variable of interest (the one we want to obtain a graph from) and a new
window will appear that will actually look like a spreadsheet with the values of the
variable we double-clicked. Then in order to obtain graphs we need to go to View/Line
Graph in order to obtain a plot of the series against time (if it is a time series) or against
observations (for undated or irregular — cross sectional data). Another option is to
click on View/Bar Graph which gives the same figure as with the line option but with
bars for every observation instead of a line plot. Obviously the line graph option is
preferable in describing time series, and the bar graph for cross-sectional data.

In case we need to plot together more than one series, we may first open/create a
group of series in EViews. In order to open a group we either select the series we want
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to be in the group by clicking on them with the mouse one by one, having the control
button pressed, or by typing on the EViews command line the word:

group

and then pressing enter. This will lead to a new EViews window in which to specify
the series to include in the group. So, in this window, we need to type the name of the
series we want to plot together, and then click OK. Again, a spreadsheet appears with
the values for the variables selected to appear in the group. By clicking on View there
are two graphs options: Graph will create graphs of all series together in the group,
whilst Multiple Graphs will create graphs for each individual series in the group. In
both Graph and Muiltiple Graphs options there are different types of graphs that can
be obtained. One which can be very useful in econometric analysis is the scatter plot.

In order to obtain a scatter plot of two series in EViews we may open a group (following.

the procedure described above) with the two series we want to plot and then go to
View/Graph/Scatter. There follow four different options of scatter plots, (a) simple
scatter, (b) scatter with a fitted regression line, (c) scatter with a line that fits as close as
possible to the data and (d) a scatter with a kernel density function.

Another simple and convenient way of obtaining a scatter plot in EViews is by use
of the command: N

scat X Y

s
where X and Y should be replaced by the names of the series to be plotted on the X and
Y axes respectively. Similarly, a very easy way of obtaining a time plot of a time series,

_can be done by the command ’

R}

plot X

where again X is the name of the series we want to plot. The plot command can be used
in order to obtain time plots of more than one series in the same graph by specifying
more than one variable separated by spaces such as:

plot X Y 2

A final option to obtain graphs in EViews is to click on Quick/Graph and then specify
the names of the series that we need to plot (either one or more). A new window opens
that offers different options of graph types and different options of scales. After making
the choice, press OK to obtain the relevant graph.

After a graph is obtained, we can easily copy and paste graphs from EViews into a
document in a word processor. To do this we first need to make sure that the active
object is the window that contains the graph (the title bar of the window should have
a bright colour, if it does not click anywhere on the graph and it will be activated -
the title bar will become bright). We then either press ctrl+c, or alternatively click on
Edit/Copy. The Copy Graph as Metafile window appears with various options: to
either copy the file to the clipboard in order to paste it into the programme required
(the word processor for example), or alternatively to copy the file to a disk file. Also, we
can choose whether the graph will be in colour or use bold lines. If we copy the graph
to the clipboard we can paste it in a different programme very easily by either pressing
.. etrl+v or by clicking on Edit/Paste. Conventional Windows programmes allow the

~.zgraph to be edited, changing its size or position in the programme.

i
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Summary statistics

To gain a more precise idea of the distribution of a variable x; we can estimate various

' _simple measures such as the mean (or average), often defined as x, the variance often

defined as axz and its square root, the standard deviation again stated as ox. Thus

1 ‘ ‘
-x=-T-i§x,. o (3.1)
o |
oy = —T—j—l—i‘;lu,- - %* | (3.2)

ox = \/;xi ' (3.3)

To analyse two or more variables we might also consider their covariance and

correlations defined later. However, we would stress that these summary statistics
contain far less information than a graph and the starting point for any good piece
of empirical analysis should be a graphical check of all the data.

Summary statistics in MFit

In order to obtain summary statistics in Microfit we need to type the command:

cor X

,where X is the name of the variable needed to obtain summary statistics from. Apart
from summary statistics (minimum, maximum, mean, standard deviation, skewness,

kurtosis and coefficient of variation) Microfit will also give the autocorrelation function
of this variable. In order to obtain the histogram of a variable the respective
command is:

hist X

The histogram may be printed, copied and saved like every other graph from Microfit.

Summary statistics in EViews

In order to obtain summary descriptive statistics in EViews we need again either
to double-click and open the series window, or to create a group with more than
one series as described in the graphs section above. After that click on View/Descriptive
Statistics/Histogram and Stats for the one variable window case. This will pro-
vide summary statistics like the mean, median, minimum, maximum, standard
deviation, skewness, kurtosis and the Jarque-Berra Statistic for testing for normality of
the series together with its respective probability limit. If opening a group, clicking
View/Descriptive Statistics provides two different choices: one using a common
sample for all series, and another using the most possible observation by not caring
about different sample sizes among different variables.
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Components of a time series

An economic or financial time series consists of up to four components:

1 trend (smooth, long-term/consistent upward or downward movement);
2 cycle (rise and fall over periods longer than a year, e.g. due to a business cycle);
3 seasonal (within-year pattern seen in weekly, monthly or quarterly data); or

4 irregular (random component; can be subdivided into episodic [unpredictable but
identifiable] and residual [unpredictable and unidentifiable]).

Note that not all time series have all four components, although the irregular

component is present in every series. As we shall see later, various techniques are"

available for removing one or more components from a time series.

Indices and base dates

An index is a number that expresses the relative change in value (e.g. price or quantity)
from one period to another. The changes are measured relative to the value in a base
date (which may be revised from time to time). Common examples of indices are the
consumer price index (CPI) and the JSE all-share price index. In many cases, such as
the preceding examples, indices are used as a convenient way of summarizing .many
prices in one series (the all-share index is comprised of many individual companies’
share prices). Note that two indices may only be compared directly if they have the

same base date, which may lead to the need to change the base date of a certain
© index.

Splicing two indices and changing the base date of an index

Suppose we have the following data:

Year Price index Price index Standardized price index
(1985 base year) (1990 base year) (1990 base)

1985 100 45.9

1986 132 60.6

1987 196 . 89.9

1988 213 97.7

1989 258 118.3

1990 218 ’ 100 100

1991 85 85

1992 . 62 62

In this (hypothetical) example, the price index for the years 1985 to 1990 (column 2)
uses 1985 as its base year (i.e. the index takes on a value of 100 in 1985), while from
1991 onwards (column 3) the base year is 1990. To make the two periods compatible,

[,
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we need to convert the data in one of the columns so that a single base year is used.
This procedure is known as splicing two indices.

¢ If we want 1990 as our base year, then we need to divide all the previous values (i.e. '
in column 2) by a factor of 2.18 (so that the first series now takes on a value of 100
in 1990). The standardized series is shown in the last column in the table.,

e Similarly, to obtain a single series in 1985 prices, we would need to multiply the
values for the years 1991 to 1993 by a factor of 2.18. ) '

Even if we have a complete series with a single base date, we may for some reason
want to change that base date. The procedure is similar: simply multiply or divide ~
depending on whether the new base date is earlier or later than the old one - the entire
series by the appropriate factor to get a value of 100 for the chosen base year.

Data transformations
Changing the frequency of time series data

EViews allows us to convert the frequency of a time series (e.g. reducing the frequency
from monthly to quarterly figures). The choice of method for calculating the reduced
frequency depends partly on whether we have a stogk variable or a flow variable. In
general, for stock variables (and indices such as the CPI) we would choose specific dates
(e.g. beginning, middle or end of period) or averaging, while for flow variables we
would use the total sum of the values (e.g. annual gross domestic product, GDP, in

1998 is the sum of quarterly GDP in each of the four quazters of 1998). Increasing the

' frequency of a time series (e.g. from quarterly to monthly) involves extrapolation and
should be used with great caution. The resultant series will appear quite smooth and is
a ‘manufactured’ series which would normally be used for ease of comparison with a
series of similar frequency.

Nominal versus real data

A ratherstricky question in econometrics is the choice between nominal and real
terms for our data. The problem with nominal series is that they incorporate a price
component that can obscure the fundamental features that we are interested in. This
is particularly problematic when two nominal variables are being compared, since the
dominant price component in each will produce close matches between the series,
resulting in a spuriously high correlation coefficient. To circumvent this problem, one
can convert nominal series to real terms by using an appropriate price deflator (e.g. the
CPI for consumption expenditure or the PPI for manufacturing production). However,
sometimes an appropriate deflator is not available, which renders the conversion
process somewhat arbitrary.

The bottom line is: think carefully about the variables you are using and the
relationships you are investigating, and choose the most appropriate format for the
data - an:d be consistent.
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Logs

Logarithmic transformations are very popular in econometrics, for several reasons.
First, many economic time series exhibit a strong trend (i.e., a consistent upward
or downward movement in the values). When this is caused by some underlying
growth process, a plot of the series will reveal an exponential curve. In such cases,
the exponential/growth component dominates other features of the series (e.g. cyclical
and irregular components of time series) and may thus obscure the more interesting
relationship between this variable and another growing variable. Taking the natural
logarithm of such a series effectively linearizes the exponential trend (since the log
function is the inverse of an exponential function). For example, one may want to
work with the (natural) log of GDP, which will appear on a graph roughly as a straight
line, rather than the exponential curve exhibited by the raw GDP series.

Second, logs may also be used to linearize a model which is non-linear in the

parameters. Aii example is the Cobb-Douglas production function:
Y = ALKPe¥ (3.4)

(where u is a disturbance term and e is the base of the natural log).
Taking logs of both sides we obtain:

A

In(Y) =In(A) +aln(K) + bIn(L) + u . (3.5)

Each variable (and the constant term) can be redefined as follows: y = In(Y); k= lln(K);
1= In(L); a= In(A); so that the transformed model becomes: '

y=a+ak+bl+u (3.6)

which is linear in the parameters and hence can easily be estimated using ordinary least
squares (OLS) regression.

A third advantage of using logarithmic transformations is that it allows the regression
coefficients to be interpreted as elasticities, since for small changes in any variable
x, (change in logx) = (relative change in x itself). (This follows from elementary
differentiation: d(In x)/dx = 1/x and thus d(Inx) = dx/x.)

In the log-linear production function above, a measures the change in In(Y)

associated with a small change in In(X), i.e. it represents the elasticity of output with
respect to capital.

Differencing

In the previous section it was noted that a log transformation linearizes an exponential
trend. If one wants to remove the trend component from a (time) series entirely — i.e.

to render it stationary — one needs to apply differencing, i.e. compute absolute changes
from one period to the next. Symbolically,

AY, =Y - Yi_y 3.7)

e

o

ey
]



[N

—
C

Working with Data: Basic Data Handling i 19

"which is known as first-order differencing. If a differenced series still exhibits a trend,

it needs to be differenced again (one or more times) to render it stationary. Thus we
have second-order differencing:

A2Y; =AY, - Yi_1) = AY; - AY;_;
= (Y; — yt——l)_"- (Y1 = Yi_2) : 3.8)

and so on.

Growth rates

In many instances, it makes economic sense to analyse data and model relationships in
growth-rate terms. A prime example is GDP, which is far more commonly discussed in
growth-rate terms rather than levels. Using growth rates allows one to investigate the
way that changes (over time) in one variable are related to changes (over the same time
period) in another variable. Because of the differencing involved, the calculation of
growth rates in effect removes the trend component from a series.

There are two types of growth rates: discretely compounded and continuously
compounded. Discretely compounded growth rates are computed as follows:

t

growth rate of Yy = (Yy — Yy _1)/Y: 1

where t refers to the time period.

It is more usual in econometrics to calculate continuously compounded growth rates,
which essentially combine the logarithmic and differencing transformations. Dealing
with annual data is simple: the continuously compounded growth rate is the natural
log of thé ratio of the value of the variable in one period to the value in the previous
period (or, alternatively, the difference between the logged value in one year and the
logged value in the previous year):

growth rate of Y; = In(Y;/Y;_1) = In(Y;) — In(Y;_1)

For monthly data, there is a choice between calculating the (annualized) month-on-
previous-month growth rate and the year-on-year growth rate. The advantage of the
former is that it provides the most up-to-date rate and is therefore less biased than a year-
on-year rate. Month-on-month growth rates are usually annualized, i.e. multiplied by
a factor of 12 to give the amount the series would grow in a whole year if that monthly
rate applied throughout the year. The relevant formulae are as follows:

annualized month-on-month growth rate
=12%In(Y;/Y;_y) (continuous)
OR [(Y;/Y;—12 — 1] (discrete)
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annualized quarter-on-quarter growth rate
=4 xIn(Y,/Y,_1) (continuous)
OR [(Y¢/Ye_1)* — 11 (discrete)

(Multiply these growth rates by 100 to obtain percentage growth rates.)

However, month-on-previous-month growth rates (whether annualized or not) are
often highly volatile, in large part because time series are frequently subject to seasonal
factors (the Christmas boom being the best-known). 1t is in order to avoid this seasonal
effect that growth rate- usually compare a period with the corresponding period a year

earlier (e.g "~ .., 2000 with January 1999). This is how the headline inflation rate is *.

calculated, fur instance. Similar arguments apply to quarterly and other data. (Another
advantage of using these rates in regression analysis is that it allows one year for the
impact of one variable to take effect on another variable.) This type of growth rate
computation involves seasonal differencing:

ASY, =Y, — Y,_g

The formula for calculating the year-on-year growth rate using monthly data is:

growth rate of Yy = In(Y/Y;_12) = In(Yy) — In(Y_12)

In sum, calculating year-on-year growth rates simultaneously removes trend and
seasonal components from time series, and thus facilitates the examination (say, in
correlation or regression analysis) of other characteristics of the data (such as cycles or
irregular components). '
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Introduction to regression: the classical linear
regression model (CLRM)

Why do we do regressions?

Econometric methods such as a regression can help to overcome the problem of
complete uncertainty and provide guidelines on planning and decision-making. Of
course, building up a model is not an easy task. Models should meet certain criteria (for
example the model should not suffer from serial correlation) in order to be valid and a
lot of work is usually needed before we end up with a good model. Furthermore, much
decision-making is required on which variables to include or not include in the model.
Too many may cause problems (unneeded variables misspecification), while too few

may cause other problems (»mitted variables misspecification or incorrect functional
form). .

The classical lincar regression model

The classical linear regression model is a way of examining the nature and form of the
relationship among two or more variables. In this chapter we consider the case of
only two variables. One important issue in the regression analysis is the direction of
causation between the two variables; in other words, we want to know which variable,is
causing/affecting the other. Alternatively, this can be stated as which variable depends
on the other. Therefore, we refer to the two variables as the dependent variable (usually
denoted by Y) and the independent or explanatory variable (usually denoted by X). We
want to explain/predict the value of Y for different values of the explanatory vatiable X.
Let us assume that X and Y are linked by a simple linear relationship:

E(Y,):a-f-ﬂxt (4.1)
where E(Y}:) denotes the average value of Y, for given X; and unknown population
parameters a and B (the subscript ¢ indicates that we have time series data). Equation
(4.1) is called the population regression equation. The actual value of Y; will not always

equal its expected value E(Y;). There are various factors that can ‘disturb’ its actual
behaviour and therefore we can write actual Y; as

Yr = E(Ye) + 1y
or
Y =a+ X+ u; (4.2)
where u; is a disturbance. There are several reasons why a disturbance exists:
1 Omission of explanatory variables. There might be other factors (other than X;)

affecting Y, that have been left out of equation (4.2). This may be possible either
because we do not know these factors, or even knowing them there might be

A it o A SRS
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a possibility that we are unable to measure them in order to use them in a regression.

analysis.

Aggregation of variables. In some cases it is desirable to avoid having too many
variables and therefore we attempt to summarize in aggregate a number of relation-
ships in only one variable. Therefore, we end up with only a good approximation
of Y;, having discrepancies which are captured by the disturbance term.

Model specification. We might have a misspecified model in terms of its structure.
For example, it might be that Y; is not affected by X;, but that it is affected by the
vatue of X in the previous period (i.e. X;_j). In this case, if X; and X;_; are closely
related, estimation of (4.2) will lead to discrepancies which again are captured by the
error term.

Functional misspecification. The relationship between X and Y might be a non-linear
relationship. We will deal with non-linearities in other chapters of this text.

Measurement errors. If the measurement of one or more variables is not correct then
errors appear in the relationship and this contributes to the disturbance term.

Now the question is whether it is possible or not to estimate the population regression
function based on sample information. Yhe answer is that we may not be able
to estimate it ‘accurately’ because of sampling fluctuations. However, although
the poepulation regression equation is unknown - and will remain unknown - to
any, investigator, it is possible to estimate it after gathering data from a sample.
A first step for the researcher is to do a scatter plot of the sample data and try
to fix (one way or another) a straight line to the scatter of points as shown in

"Figure 4.1.
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800 -
600 -|
.Y 400

200 +

T T T T
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Figure 4.1 Scatter plot of Y on X
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There are many ways of fixing a line including:

1 By eye.
2 Connecting the first with the last observation.

3 Taking the average of the first two observations and the average of the last two
observations and connecting those two points.

4 Applying the method of ordinary least squares (OLS).

The first three methods are naive ones, while the last is the most appropriate method
for this type of situation. The OLS method is the topic of the next section.

The ordinary least squares (OLS)
method of estimation

Consider again the population regression eguation
Vi=a+ BXt +uy - (43)

This equation is not directly observable. However, we can gather data and obtain
estimates of a and 8 from a sample of the population. This gives us the following
relationship which is a ftted straight line with intercept a and slope 8:

Ve =a+BX, T (4.4)

Equation (4.4) can be referred to as the sample regression equation. Here, & and § are
sample estimates of the population parameters a and 8, and )7, denotes the predicted
value of Y. (Once we have the estimated sample regression equation we can easily
predict Y for various values of X.)

When we fit a sample regression line to a scatter of points, it is obviously desirable to
select a line in such a manner that it is as close as possible to the actual Y, or, in other
words that provides residuals that are the smallest possible. In order to do this we adopt
the following criterion: choose the sample regression function in such a way that the
sum-of the squared residuals is as small as possible (i.e. is minimized). This method of
estimation has some desirable properties that make it the most popular technique in
uncomplicated applications of regression analysis. Namely:

1 By using the squared residuals we eliminate the effect of the sign of the residuals so
it is not possible for a positive and negative residual to offset each other. For example
if we were to minimize the sum of the residuals this could be achieved by setting
the forecast for Y(¥) equal to the mean of Y(¥). But this would not be a very well
fitting line at all. So clearly we want a transformation which makes all the residuals
the same sign before making them as small as possible.

By squaring the residuals, we give more weight to the larger residuals and so we, in
effect, work harder to reduce the very large errors.
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3 The OLS method chooses @ and B estimators that follow some numerical and
statistical properties (such as unbiasedness and efficiency) that we will discuss later.

We can now see how to derive the OLS estlmators Denotmg by RSS the sum of the
squared residuals, we have:

n
RSS =i + 05+ -+l =Y i? B
t=1 ’ i

However, we know that:>

i =Y — Vo= —a~hXp) : (4.6)
and therefore:
. n
RSS = Z a? = Zm —¥0?=Y (Yt —a—BXp)? (4.7)
t=1

To minimize equation (4.7), the first-order condition is to take the partial derivatives
of RSS with respect to d and 8 and set them to zero. Thus, we have:

»

3RSS & L s
—==-2) (V;-a-pX)=0 (4.8)
da
t=1
’and
aRSS " R
W:—ZZ)Q(}Q—&——,HX,-):O 4.9
t=1 .

The second-order partial derivatives are:

32RSS
. i = 2n (4.10)
32RSS :
= =23 X} (4.11)
aﬁ t=1
32 n
.RS.S =23 X (4.12)
dadp t=1 :

Therefore, it is easy to verify that the second-order conditions for a minimum are met.

Since }_ a = na (for simplicity of notation we omit the upper and lower limits of the
summation symbol), we can (by using that and rearranging), rewrite equations (4.8)
and (4.9) as follows:

Y Yi=na-gY X (4.13)
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and

ZXtY, =&ZX[ +/§ZX%

(4.14)

The only unknowns in the above two equations are a and B. Therefore, we can solve
the above system of two equations with two unknowns in order to obtain @ and j. First,

we divide both sides of (4.13) by n to have:

Vi na BYX

n n n

Denoting by ¥ = ¥ Y;/nand X = ¥ X;/n, and rearranging, we obtain:

- 5)'(
Substituting (4.16) in (4.14) we get:

Z:X[yt = }_’th —5)_&’2)([ +ﬁZX?

or

S XY= s Ve X~ Y X Y X+ B KR

and finally, factorizing the § terms:
_XVN X th 2_ th)

Thus, we can obtain 3 as:

ZX(Y: -— l/nZYtZXt

B =
X2 - 1/n(LX,)*

And given 5 we can use (4.16) to obtain a.

Alternative expressions for 3

We can express the numerator and denominator of (4.20) as follows:

S =X - =) XY - % YoV X
- 2
S~ %2 = X2 - ()

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

[ et
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and then have that:

SXe - X)Ye - V)

b= (4.23).
or even: V
G = -ZZ—X)% ' (429
t

where obviously x; = (X; — X), and y; = (Y; — Y), which are deviations from their
respective means. :

Alternatively, we can use the definitions of Cov(X, Y) and Var(X) in order to obtam
an alternative expression for § as illustrated below:

f = DXtV -1y Vi3 Xe X Xe¥r - YX (4.25)

TX2-yn(TX): T2 - (%)?

or
LY —X)(lftz— Y) (4.26)
LXe =X
If we further divide both nominator and denominator by 1/n we have
L1 —X -¥
j= /ny (Xt XY - ¥) 4.27)
I/ (X~ X)?
and finally express § as:
= Cov(X¢, Yy) (4.28)

Var(Xy)

where Cov(X;, Y;) and Var(X;) are sample variances and covariances.

The assumptions of the CLRM
General

In the previous section we described the desirable properties of estimators. However,
we need to make clear that there is no guarantee that the OLS estimators will
possess any of these properties. Unless a number of assumptions — which this section
presents — hold.

In general, when we calculate estimators of populatlon parameters from sample data
we are bound to make some initial assumptions about the population distribution.
Usually, they amount to a set of statements about the distribution of the variables
that we are investigating, without which our model and estimates cannot be justified.
Therefore, it is very important not only to present the assumptions but also to move
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beyond them, to the extent that we will at least study what happens when they go
wrong, and how we may test whether they have gone wrong. This will be examined in
the third part of this book.

The assumptions

The CLRM consists of eight basic assumptions about the ways in which the observations
are generated: :

1 Linearity. The first assumption is that the dependent variable can be calculated as a

I'e

. - o . N . (4
linear function of a speciiic set of independent variables, plus a disturbance term. .

This can be expressed mathematically as follows: the regression model is linear in
the unknown coefficients @ and g so that, Yy =a + X, + 14, fort =1,2,3,...,n.

2 X; has some variation. By this assumption we mean that not all observations of X,
are the same, at least one has to be different so that the sample Var(X) is not 0. It
is important to distinguish between the sample variance which simply shows how
much X varies over the particular sample and the stochastic nature of X. In many
places in this book we will make the assumption that X is non stochastic (see point 3
below). This means that the variance of X at any point of time is zero so Var(X;) =0
and if we could somehow repeat the world over again X would always take exactly
the same values. But of -course over any sample there will (indeed must) be, some
variation in X.

R
3 X is non-stochastic and fixed in repeated samples. By this assumption we first mean
that X; is a variable whose values are not determined by some chance mechanism,
they are determined by an experimenter or investigator, and second that it is possible
to repeat the sample with the same independent variable values. This implies that
Cov(Xs,upy=0forall s,and t = 1,2,...,n, that is that X; and u; are uncorrelated.

4 The expected value of the disturbance term is zero. This means that the disturbance
is a genuine disturbance, so that if we took a large number of samples the mean
disturbance would be zero. This can be shown as E(it;) = 0. We need this assumption
in order to be able to interpret the deterministic part of a regression model, « + 8X;,
as a ‘statistical average’ relation.

5 Homoskedasticity. This requires that all disturbance terms have the same variance, so
that Var(u;) = 02 = constant for ali t.

6 Serial independence. This requires that all disturbance terms are independently
distributed, or more easily are not correlated with one another, so that Cov(u;, us) =
E(uy — Eup)(us — Eus) = E(uus) = O for all t # s. This assumption has a special
significance in economics; to grasp what it means in practice, recall that we nearly
always obtain our data from time series in which each t is one year, or one-quarter, or
one week, ahead of the last. The condition means, therefore, that the disturbance in
one period should not be related to the disturbance in the next or previous periods.
This condition is frequently violated since, if there is a disturbing effect at one time, it
is likely to persist. In this discussion we will be studying violations of this assumption

_quite carefully.:
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7 Normality of residuals. The disturbance u;, Liz, ..., uUp are assumed to be indeperidently
and identically normally distributed with mean zero and common variance o2. -

8 n>2 and multicollinearity. This says that the number of observations must be at
least greater than two, or in general it must be greater than the number of
independent variables and that there are no exact linear relationships among the
variables. :

Violations of the assumptions

The first three assumptions basically state that X; is a ‘well-behaved’ variable that was
not chosen by chance, and that we can in some sense.‘control’ for it by choosing it
again and again. These are needed because X; is used to explain what is happening (the
explanatory variable). )

Violation of assumption one creates problems which are in general called
misspecification errors, such as wrong regressors, nonlinearities and changing
parameters. We discuss those problems analytically in Chapter 9. Violation of
assumptions two and three results in errors in variables and problems which are
discussed in Chapter 11. Violation of the fourth assumption leads to a biased intercept,
while violations of assumptions S and 6 lead to problems of heteroskedasticity and serial
correlation respectively. These problems are discussed in Chapters 7 and 8 respectively.
Finally, assumption seven has important implications in hypothesis testing, and
violation of assumption 8 leads to problems of perfect multicollinearity which are
discussed in Chapter 6 (see Table 4.1).

,Properiies of the OLS estimators

We now return to the properties that we would like our estimators to have. Based on the
assumptions of the CLRM we can prove that the OLS estimators are Best Linear Unbiased

Table 4.1 The assumptions of the CLRM

Assumption Mathematical Violation Chapter
. expression may imply
(1) Linearity of the model Yi=a+ BXt + u; Wrong regressors 9
Nonlinearity 9
. Changing parameters 9
(2) X is variable Var(X) is not 0 Errors in variables 9
(3) X is non-stochastic and Cov(Xs,up) =0 Autoregression 11
fixed in repeated samples forallsand t=1,2,...,n
(4) Expected value of E(u) =0 Biased intercept. —
disturbance is zero
(5) Homoskedasticity Var(u;) = o2 = constant Heteroskedasticity 7
(6) Serial independence Cov(up,ug)=0forallt #s Autocorrelation 8
(7) Normality of disturbance  ty ~ N(u,0?) Outliers 9
(8) No linear relationships ZL, i Xiy + 3 Xjt) £ 0 i #j Multicollinearity 6
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s

Estimators (BLUE). In order to do that, we first have to decompose the tegression
coefficients estimated under OLS into their random and non-random components.
As a starting point note that Y; has a non-random component (a + ﬂth, as well as
a random component which is captured by the residuals u;. Therefore, the Cov(X,Y) -
which depends on values of Y, - will have a random and non-random component:

Cov(X,Y) = Cov(Xy, [a+ BX +ul) (4.29)
= Cov(X, a) + Cov(X, BX) + Cov(X, u)

However, because o« and g are constants we have that Cov(X,aq)'= 0 and that
Cov(X, 8X) = BCov(X, X) = BVar(X). Thus:

Cov(X, Y) = BVar(X) + Cov(X, u) " (4.30)
and substituting that in equation (4.28) yields:

Cov(X,Y) _ Cov(X, u)

b=arcxo =P v : _(4‘31)

which says that the OLS coefficient 8 estimated from any sample has a non-random
component, 8, and a random component which depends on the Cov(X;, u;). '

Linearity \

Based on assumption 3, we have that X is non-stochastic and fixed in repeated samples.
Therefore, the X values can be treated as constants so that what we need is merely to
concentrate on the Y values. If the OLS estimators are linear functions of the Y values
then they are linear estimators. From (4.24) we have that:

(4.32)

Since the X; are regarded as constants, then x; are regarded as constantg as well. We
have that: l

3_me_Zme?)_thYr—f/Zxr (4.33)
I % X '
t t _ t
but because Y 3" x; = 0, we can have that
- x¢Y,
ﬂ: Z £t = Ztht (434)

Y

where z; = x;/ J" ¥ can also be regarded as constant and, therefore, A is indeed a linear
estimator of the Y;.

H :
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Unbiasedness

Unbiasedness of A

To prove that A is an unbiased estimator of 8 we need to show that E(B) = B. We have:

Cov(X, u)] (4.35)

E® B E [ﬂ T Var)

However, 8 is a constant, and using assumption 3 - that X; is non-random - we can
take Var(X) as a fixed constant to take them out of the expectation expression and have:

- 1
E(B) =E@p) + WX—)E[COV(X' u)] (4.36)

Therefore, it is enough to show that E{Cov(X, u)] = 0. We know that:
1 & '
E[Cov(X,w)] = E{ = Y " (X; — X)(u¢ — D) (4.37)
e

where 1/n is constant, so we can take it out of the expectation, while we can also break
the sum into the sum of its expectations to give:

.

1 < _ < -
E[Cov(X¢, un)) = — [E(Xy = K00y = i) + -+ + E(Xn = X) (un — i0)]

il
N -

n
D E[Xe - X — )] (4.38)
t=1

Furth"e}more, because X; is non-random (again from assumption 3) we can take it out
of the expectation term to give

. .
E[Cov(X,u)] = % Z(Xt — X)E(u; — i) (4.39)
t=1

Finally: using assumption 4, we have that E(u;) = 0 and therefore E(u) = 0. So,
E[Cov(X, w)] = 0 and this proves that

EB)=p
or, to put it in words, that § is an unbiased estimator of the true population parameter 8.

Unbiasedness of a

We know that a = Y — gX, so

E@) = E(Y) — E(BX (4.40)
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But we also have that

E(Yp) = a+ BXy + EQu) = a + BXy ‘ (4.41)
where we eliminated the E(u;) term because, according to assumption 4, E(14) = 0. So:

EY)=a+ X (4.42)
Substituting (4.42) into (4.40) gives:
E@) = a+ X — E(B)X (4.43)
But we have proved before that E(B) = B, therefore:
E@ =a+pX—-BX=a (4.44)

which proves that @ is an unbiased estimator of a.

Efficiency and BLUEness

3

Under assumptions 5 and 6, we can prove that the OLS estimators are the most efficient
among all unbiased linear estimators. Thus, we can conclude that the OLS procedure
yields BLU estimators. _ ,

The proof that the OLS estimators are BLU is relatively complicated. It entails a
procedure which goes the opposite way to that followed so far. First we start the
estimation from the beginning trying to derive a BLU estimator of 8, based on the
properties of linearity, unbiasedness and minimum variance one by one, and then we
check whether the BLU estimator, derived by this procedure, is the same as the OLS

-estimator.

So, we want to derive the BLU estimator of g, say f, concentrating first on the property
of linearity. For § to be linear we need to have:

B=81Y1+8Ys+ - +8u¥n=) _§Y; (4.45)

where the §; terms are constants the values of which are to be determined.

Proceeding with the property of unbiasedriess, for 8 to be unbiased we must have
E(ﬁ) = B. We know that: ’

E@) =E(Yevt) =3 8E(D (4.46)

Substituting E(Y;) = a + BX; (because Y; = a + 8X; + u;, and also because X; is non-
stochastic and E(u;) = 0; given by the basic assumptions of the model), we get:

EB) =) sa+BX)=a) s +B) 5Xt (4.47)

TR
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and therefore, in order to have unbiased 8 we need:
Y 6=0 and Y 45X, =1 (4.48)

Next, we proceed by deriving an expression for the variance (that we need to
minimize) of the .

- o . 12
Var(5) = E[f - E))

[
E[Y v —E(} & Y,)]Z
[

E[Y6Y - stE(Yt)]Z

= B[S seve - Even]” (4.49)

In this expression we can use Yy = a+ 8X¢ + uy and E(Y;) = a + BX; to give:

Var(g) = E[Z St(@a+BXe +ur — (a+ ﬂxt)]z

- =E (Z Stut)z
- EO38 + 0303 + 3 4 508
+ 28182uqup + 28y 83U U3 + )
= 82Ew?) + 83EW3) + S2EW) 4+ + S2Eu?)
+ 28182E(qup) + 28183E(uyuz) +---) (4.50)

Using assumptions 5 (Var(u;) = 62)and 6 (Cov(uy, us) = E(upus) = 0 for all t # s5) we
obtain that: : :

var(f) = 3 8202 (4.51)

L ]
We now need to choose §; in the linear estimator (4.46) to be such as to minimize
the variance (4.51) subject to the constraints (4.49), which ensure unbiasedness (with
this then having a linear, unbiased minimum variance estimator). We formulate the

Langrangean function:
L=0o2)"82 -2 (Z s,) Az (Z 85¢Xy — 1) (4.52)

where Ay and X, are Langrangean multipliers.
Following the regular procedure, which is to take the first-order conditions (i.e. the

partial derivatives of L with respect to 8¢, Ay and A) and set them equal to zero; and after
rearrangement and mathematical manipulations (we omit the mathematical details of
the derivation because it is very lengthy and tedious, and because it does not use any




36 . The Classical Linear Regression Model

of the assumptions of the model anyway) we obtain the optimal é; as:

Xt

= 2
th

5t

(4.53)

Therefore, we have that §; = z; of the OLS expression given by (4.34). So, substituting
this into our linear estimator § we have:

B=Y &Y =) Y
=Z:zt(yl - }-,+}—/)*

== Zzt(yt—}-,)-*-PZZt

=B (4.54)
Thus, the § of the OLS is the BLUE.

The advantage of the BLUEness condition is that it provides us with an éxpression
for the variance by substituting the optimal §; given in (4.53) into (4.51) to give:

13

2
Var(B) = Var(ﬁ) = Z <Zx;2) o2

2 2
_Xxo 2 1 (4.55)

()" I

Consistency

Consistency is the idea that as the sample becomes infinitely large the parameter
estimate given by a procedure such as OLS converges on the true parameter value.
This is obviously true when the estimator is unbiased, as shown above, as consistency
is really just a weaker form of unbiasedness. However the proof above rests on our
assumption 3 that the X variables are fixed. If we relax this assumption then it is no
longer possible to prove the unbiasedness of OLS but we can still establish that it is a
consistent estimator. So when we relax assumption 3 OLS is no longer a BLU estimator
but it is still consistent.

We showed in equation (4.31) that B = B + Cov(X,u)/Var(X), dividing the top and
the bottom of the last term by n gives

]

A Cov(X,u)/n
=gy 0 T .56
p=# Var(X)/n (4.36)

* We add and subtract Y.
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Using the law of large numbers', we know that Cov(X, u)/n converges to its expectation
which is Cov(X¢, uy). Similarly, Var(X)/n converges to Var(Xy). So, asn —» 00; ﬁ - B+
Cov(X¢, up)/ Var(X;), which is equal to the true population parameter Bif Cov(X;,up) =0
(i.e. if X; and u; are uncorrelated). Thus § is a consistent estimator of the true populatjon
parameter S.

The overall goodness of fit

We showed before that the regression equation obtained from the OLS method fits a
scatter diagram quite closely. However, we need to know how close it is to the scattered
observed values to be able to judge whether a particular line describes the relationship
among Y; and X; better than an alternative line. In other words, it is desirable to know
a measure which describes the closeness of fit. This measure will also inform us about
how well the obtained equation accounts for the behaviour of the dependent variable.

In order to obtain such a measure, we first have to decompose the actual value of Y;
into a predicted value, which comes from the regression equation ¥; plus the equation’s
residuals:

Y = f’t + iy 4.57)

subtracting ¥ from both sides we have:

'

Ye -V =Y, -V +iy (4.58)

. We need to obtain a measure of the total variation in Y; from its mean Y. Therefore,
we take the sum of equation (4.58):

S -1 =3 -7+ (4.59)

Then square both terms to get:

S —1)2 = (¥ - ¥+ i)? (4.60)
Note, that if we divide the measure that we have on the left-hand side of the above
equation by n, we would simply get the sample variance of Y;. So Y(Y; — ¥)? is an
appropriate measure of the total variation in Y¢, often called the total sum of squares
(TSS). Continuing:

S -V =dY -2+ Y @ +2Y (¥ - Dy (4.61)

where }:(f/t ~¥)2 s the explained sum of squares from the OLS - usually called ESS -and
Y &% is the unexplained part of the total variation in Y;, or alternatively the remaining
or residual sum of squares (RSS). It is easy to show that the cross-product term drops out
of the equation using the properties of the OLS residuals (from the first order conditions
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we had that =23 (Y; — &~ 8X;) = 0 and —2 Y X (Y; — @ — fX;) = 0 which says that
=2Y iy =0and -2 Y Xy = 0):

S (Ve = Py = (@ + Xy ~ Vit
=ay i +BY Xl — VY it =0 (4.62)
Thus equation (4.61) reduces to:
TSS = ESS + RSS . (4.63)

where both TSS and ESS are expressed in units of Y squared. By relating ESS to TSS we

can derive a pure number called the coefficient of determination (and dendted by R?): .

. ESS

R?= .6
TSS ' 4 ‘4)
which measures the proportion of the total variation in Y; (TSS) that is explained by
the sample regression equation (ESS). By dividing each of the terms in (4.63) by TSS we
can obtain an alternative equation which gives us the range of the values of R2:

RSS y
—R2 - . 4.65
1 1_2+TSS ( )

When the sample regression function fails to account for any of the variation in
Y; then ESS = 0 and all the variation in Y; is left unexplained: RSS = TSS. In this case
R? = 0 and this’is its lower bound. At the opposite extreme, when the sample regression
equation predicts perfectly every value of Y, no equation error occurs, thus RSS = 0
and ESS = TSS which gives us an R? equal to its upper bound value of 1.

Therefore, the values of R lie in between 0 and 1, and show how closely the equation
fits the data. An R? of 0.4 is better than a value of 0.2, but not twice as good. The value
of 0.4 indicates that 40% of the variation in Y; is explained by the sample regression
equation (or by the regressnrs).

Problems associated with R?

There are a number of serious problems associated with the use of R? in judging the
performance of a single equation, or as a basis of comparison of different equations:

1 Spurious regression problem (this problem will be fully discussed in chapters 16 and 17). In
the case where two or more variables are actually unrelated, but exhibit strong trend
like behaviour, the R? can take on very high values (sometimes even greater than

0.9). This may mislead the researcher into believing that there is actually a strong
relationship between the variables.

2 High correlation of X; with another variable Z,. It might be that there is a variable Z,

~that determines the behaviour of Y; and is highly correlated with X;. Then, even
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though a large value of RZ shows the importance of X; in determining Y;, the omitted
variable Z; may be responsible for this.

3 Correlation does not necessarily implies causality. No matter how high the value of
R2, this cannot suggest causality among Y; and X;, because R? is a measure of
correlation between the observed value Y; and the predicted value Y. To whatever
extent possible, refer to economic theory, previous empirical work and.intuition to
determine a causally related variable to include in a sample regression.

4 Time series equation vs cross section equations. Time series equations almost always
generate higher R? values than cross-section equations. This arises because cross-
sectional data contain a great deal of random variation (usually called ‘noise’) which
makes ESS small relative to TSS. On the other hand, even badly specified time series
equations can give R%s of 0.999 for the spurious regression reasons presented in point
1 above. Therefore, comparisons of time series and cross—sectlonal equations using
R? are not possible.

5 Low R2does not mean wrong choice of X;. Low values of R? are not necessarily the result
of using a wrong explanatory variable. The functional form that is used might be an
inappropriate one (i.e. linear instead of quadratic) or - in the case of time series — the
choice of time period might be incorrect and lagged terms might need to be included
instead.

6 RZ2s from equations with different forms of Y; are not comparable. Assume we estimate
the following population regression equations:

Yt =4ag + bOXt + e . (466)

InYy =a; +b1InX; +u; (4.67)

comparing their R? is not correct. This is due to the definition of R%. The R?
in the first equation shows the proportion of variation in Y; explained by X;,
whilé in the second equation shows the proportion of the variation in the natural
logarithm of Y; explained by the natural logarithm of X;. In general, whenever the
dependent variable is changed in anyway, the RZ should not be used to compare the
‘models.

Hypothesis testing and
confidence intervals

Under the assumptions of the CLRM, we know that the estimators & and § obtained
by OLS follow a normal distribution with means a and g and variances 052 and ag

respectively. It follows that the variables:

a—a a -8

U{‘i T5

(4.68)

have a standard normal distribution (i.e. a normal distribution with O mean and

variance 1). If we replace the unknown o; and 94 by their estimates s; and sg
this is no longer true. However, it is relatively easy (the proof of this, however, is
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beyond the scope of this book) to show that the following random variables (after the
replacement):

a-a and p-8
S‘:, Sﬁ

(4.69)

follow the student’s t-distribution with n — 2 degrees of freedom. The student’s t-
distribution is close to the standard normal distribution except that it has fatter tails,
particularly when the number of degrees of freedom is small.

Testing the significance of the OLS coefficients

Knowing the distritnitinn ~f ur estimated cneferoic o0 e are nble &0- conduct
hypothesis tes..:yp wu: order to ssses: el statistical ©° L icance. in general the

following steps should be involved:

Step 1 Set the null and alternative hypothesis. 1t can be either Hy: 8 = 0; Ha: 8 # 0
(two-tailed test), or if there is prior knowledge about the sign of the estimated
coefficient (let’s assume positive), Hp: 8 = 0; Hg: B > 0 (one-tail test).

Step 2 Calculate the t-statistic by t = B - /3)/5‘,?, where here because g under null
is equal to zero it becomes B/s: (note that this is the t-statistic that: is

automatically provided by EViews and Microfit in their stanndard regression
outputs).

Step 3 Find from the t-tables the t-critical for n — 2 degrees of freedom.

Step 4 If {tsqae] > £t reject the null hypothesis.

Note that if we want to test a different hypothesis (i.e. that 8 = 1), then we need

to change our null and alternative hypothesis in step 1 and calculate manually the

t-statistic by the t = (§ — B/s; formula. In this case it is not appropriate to use the
* t-statistic which is provided by EViews and Microfit.

A rule of thumb of significance tests

The procedure for hypothesis testing outlined above presupposes that the researcher
selects a significance level and then compares the value of the t-statistic with the critical
value for this level. Several rules of thumb based on this approach have been developed,
and these are useful in the sense that we do not need to consult statistical tables in cases
of large samples (degrees of freedom > 30).

Note that the critical value for a 5% level of significance and for a very large sample
{(n — o0) reaches the value of £1.96. For the same level and for 30 degrees of freedom
it is +£2.045, while for 60 degrees of freedom it is exactly £2.00. Therefore, for large
samples it is quite safe to use as a rule of thumb a critical value of (¢ > 2. For a one-tail
test the rule of thumb changes with the t-value being |t| > 1.65. The rules stated above
are nothing more that convenient approximations to these values. For ‘small’ samples
we must use the specific values given in the t-table, as the above rules are not safe to
apply.

A
i
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The p-value approoch

EViews and Microfit apart from reporting ¢ statistics for the estimated coefficients also
report p values which can be used as an alternative approach in assessing the significance
of regression coefficients. The p value shows what is the smallest level at which we would
be able to accept the null hypothesis of a test. It is very useful because the significance
levels chosen for a test are always arbitrary. Why, for example, 5% and not 1% or
10%. The p value approach is also more informative than the ‘choice of significance
levels and find critical values’ approach, because one can obtain exactly the level of
significance of the estimated coefficient. For example, a p-value of 0.339 says that if the
true g = O there is a probability of 0.339 of observing an estimated value of § which
is greater than or equal to the OLS estimate purely by chance. So the estimated value
could have arisen by chance with a fairly high probability even if the true value is zero.
Similarly if the p-value was 0.01, this says that there is a very small probability of a
value for g equal or greater than the OLS estimate arising purely by chance when the
true value of 8 is zero. Furthermore, if we have in mind a conventional significance
level (lets say 5% or 0.05) we conclude that the coefficient is significantly different from
zero at the 5% level if the p-value is less than or equal to 0.05. If it is greater than 0.05
then we cannot reject the null hypothesis that the coefficient is actually zero at our 5%
significance level.

Confidence intervals

For the null hypothesis that Ho:8 = B; and for an r% significance level we can accept
*the null when our ‘t’ test lies in the following region:

- B
~tin-a S 2 S lpnop (4.70)
B

where £, ,,_» is the critical value from the student ‘t’ tables for an r% significance
=2 g

~ level and n — 2 degrees of freedom (as we assume there are only two parameters being

estimated). So we can construct a confidence interval for the range of values of 8 for
which we would accept the null hypothesis.

8- tr,n—ZSfj <P = B+ tr,n—ZSﬁ“ (4.71)
or alternatively
B+ trn-255 4.72)

of course the same holds for « being & £¢, ,,_55;.
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How fo estimate a simple regression
in Microfit and EViews

Simple regression in Microfit

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Open Microfit.
Click on File/New in order to create a new file.

Choose the required frequency for time series or ‘undated’ for cross-sectional
data and specify the number of variables as well as the. start and end
for time series data or the number of observations for cross-sectional data.

When asked to provide names and descriptions for variables give the names

Y and X, and the descriptions that you want and think will enable you to -

remember the definitions of your variables (giving descriptions is optional but
is recommended as it is sometimes really helpful). Press <GO>.

Either type the data into Microfit or copy/paste the data from Excel®. Be very

careful pasting the data, to provide the appropriate information requ1red by
Microfit. Press <GO> at the end.

Once you have put the data in Microfit, you then have to create a constant.
Either go to the process editor (by pressing the process button) and type C = 1
(and then press <GO=>), or click on Edit/Constant (intercept) term and

provide a name for your intercept by typing it in the corresponding wmdow
(let us assume that you name your constant term C).

Go to the single editor (by clicking the ‘single’ button) and type into tHe single
editor: .

Y C X

and then click <START>. The regression output is presented in a new window
which provides estimates for alpha (the coefficient of the constant term), beta

(the coefficient of X) and some additional statistics that will be discussed in
later chapters of this book.

Simple regression in EViews

Step 1:
Step 2:
Step 3:

Step 4:

Open EViews.
Click on File/New/Workfile in order to create a new file.

Choose the frequency of the data in the case of time series data, or [Undated
or Irregular] in the case of cross-sectional data and specify the start and end
of your data set. You will have a new window, which automatlcally contains a
constant (¢) and a residual (resid) series.

In the command line type:

genr x=0 (press ‘enter’)
genr y=0 (press ‘enter’)

‘
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Step 5:

Step 6:

which creates two new series named x and y that contain zeros for every
observation. Open x and y as a group by selecting them and double clicking
with your mouse. -

Then either type the data into EViews or copy/paste the data from Excel. In
order to be able to type (edit) the data of your series or to paste anything into-
the EViews cells, the ‘edit +/-' button must be pressed. After finishing with
editing the series press the ‘edit +/— button again to lock or secure the data.

Once the data have been entered into EViews, the regression line (to obtain
alpha and beta) may be estimated either by typing:

ls y ¢ x (press ‘enter’)

on the command line, or by clicking on Quick/Estimate equation and then
writing your equation (i.e. y ¢ x) in the new window. Note that the option for
OLS (LS - Least Squares (NLS and ARMA)) is automatically chosen by EViews
and the sample is automatically chosen to be the maximum possible.

Either way, the regression result output is obtained in a new window which
provides estimates for alpha (the coefficient of the constant term), beta (the
coefficient of X) and some additional statistics that will be discussed in later
chapters of this book.

,Reading the EViews simple regression results output

n =no of abs.

Name of the Y variable

Estimated
coefficients
(B,

Dependent Variable: LOG(IMP)
Method: Least Squares
ate: 02/18/04 Time: 15:30 ~

Shows the method
of estimation

Vari;big Coefficient Std. Error t-Statistic Prob.
0.631870 0.344368 1 .834867X 0.0761

Cc \
X " LOG(GDP) 1.926936 0.168856 11.411‘2 0.0000 .

.
Constant

0.966057 Mean dependent var 10.81363
0.963867 S.D. dependent var 0.138427 .
0.026313 Akaike info criterion .353380

R-squared
Adjusted A-squared
S.E. of regression

Sum squared rg; 021464 Schwarz criterion .218711
Log likelih 7X.00763 F-statistic 41.1430
Durbin-Watson stat 0.475694 Prob(F-statistic) 000000

|\

t-Statistics for
estimated coeffs

R? RSS D-W stat.
(see Chapter 7)
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Presentation of regression results

The results of a regression analysis can be presented in various different ways. However,
the most common way is to write the estimated equation with standard errors of
coefficients written in brackets below the estimated coefficients and include some more
statistics below the equation. For the consumption function that will be presented in
Computer Example 2, the results are surnmarized as shown below:

Cr = 15.116 + 0.160Y
(6.565) (0.038) . . (4.73)
R2=-0932 n=20 6=6879 (4.74)

. .
From this summary we can (a) read estimated effects of changes in the explanatory-

variables on the dependent variable, (b) predict values of the dependent variable
for given values of the explanatory variable, (c) perform hypothesis testing for

the estimated coefficients, and (d) construct confidence intervals for the estimated
coefficients.

Applications
Application 1: the demand function

From economic theory we know that the demand for a commodity depends ba'sically
on the price of that commodity (the law of demand). Other possible determiriants can
include prices of other competing goods (close substitutes) or those that complement
that commodity (close complements), and of course the level of income of the
consumer. In order to include all those determinants we need to employ a multiple
regression analysis. However, for pedagogical purposes we have to restrict ourselves to
one explanatory variable. Therefore, we can assurne a partial demand function where
the quantity demanded is affected only by the price of the product. (Another way of
doing this is to assume a ceteris paribus (other things remaining the same) demand
function, in which we simply assume that the other variables entering the relationship
remain constant, and thus do not affect the quantity demanded.) The population
regression function will have the form:

qr =ag+ ai1pr + (4.75)

where the standard notation is used with gt denoting quantity demanded and p; the
price of the product. From economic theory we expect a; to be negative reflecting the
law of demand (the higher the price the less the quantity demanded). We can collect
time series data for sales of a product and the price level of this product and estimate
the above specification. The interpretation of the obtained results will be as follows.
For aj: if the price of the product will be increased by one unit of measurement (i.e. if
measured in £ an increase of £1.00), the consumption of this product will be decreased
(because a; will be negative) by @; units. For ag: if the price of the product is zero
consumers will consume @ quantity of this product. R? is expected to be somehow

,.___.,
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low (lets say 0.6) suggesting that there are additional variables that affect the quantity
demanded, that we did not include in our equation, while it is also possible to obtain
the price elasticity of this product for a given year (lets say 1999) from the equation:

{’_99_ﬂ = !f.9_9_a . (4.76)
qo9 AP . 499

Application 2: a production function

One of the most basic relationships in economic theory is the production function,
that, usually, relates output (denoted by Y) to the possible factor inputs affecting
production, such as labour (L) and capital (K). The general form of this relationship
can be expressed by:

Yy = f(Ke, Le) (4.77)

A frequently utilized form of this function - due to its properties that we will see
later - is the well-known Cobb-Douglas production function:

Yy = AKALY (4.78)

where a and g are constant terms that express the responsiveness of output to capital
and labour respectively. A can be regarded as an exogenous efficiency/technology
parameter. Obviously the greater is A, the higher is maximum output keeping labour
and capital constant. In the short run we can assume that the stock of capital is fixed
(short-run can be viewed here as a period that once the decision about capital has been
made it cannot be changed by the producar until the next period). Then, in the short
run, maximum output depends only on the labour input, and the production function
becomes: -

Yt :g(Lr) (479)

Using the Cobb-Douglas form of function (and for K; constant and equal to Kp) we

. will have:

Y = (AK§HLF = a*L? (4.80)

where A* = (Akg). This short-run production function is now a bivariate model, and
after applying a logarithmic transformation can be estimated with the OLS method.
Taking the natural logarithm of both sides and adding an error term we have:

InY, =In(A%) + B In(L) + 1y
=c+ B In(Ly) + ur (4.81)
where ¢ = In(A*), and B is the elasticity of output with respect to labour (one of

the properties of the Cobb-Douglas production function). This elasticity denotes the
percentage change in output that results from a 1 per cent change in the labour input.



46 The Classical Linear Regression Model

We may use time series data on production and employment for the manufacturing

sector of <. try (or aggregate GDP and employment data) to obtain estimates of ¢
and 8 for the above model.

Application 3: Okun's law

Okun (1962) developed an empirical reli+ .nship, using quarterly data from 1947:2 to
1960:4, between changes in the statt ae economy (vepturcd by changes in GNP)
and changes in the unemploymem fi e, known as Okun s law. His results provnde an
impes e e 2t sitivity of ¢ ~wth.

The basic relatlonsnm isarof connectic L oearsung e of unermnlormeant (JNEMP)
(which constitires o 1t varie” e mvarotes. “he gree oo rate of GNP

2

(the indepernucisi v -dble\ ns

AU NEMP¢ = a+ DAGNP; + ug (4.82)
Applying OLS the sample - sression equation that Okun obtained was:

AUNEMP; = 0.3 — 0.3AGNP,

%

R? =0.63 o (483)
The constant in this egv~* »uiows the mean change in the unemployinent rate
when the growth - .+ wi€ economy is equal to zero, so from the obtained results
we conclude *’...i when the economy does not grow the unemployment rate rises by -
0.3 per : i, The negative b coefficient suggests that when the state of the economy
improves, the unemployment rate falls. The relationship, though, is less than one to
one. A 1 per cent increase in GNP is connected with only a 0.3 per cent decrease in the
unemployment rate. This result is called Okun'’s law. It is easy to collect data on GNP
and unemployment, calculate their respective growth rates and check whether Okun’s
law is valid for different countries and different time periods.

Application 4: the Keynesian consumption function

Another basic relationship in economic theory is the Keynesian consumption function

that simply states that consumption (C;) is a positive linear function of disposable (after
tax) income (Y;’). The relationship is as follows:

Ce=a+oyf . (4.84)

where g is the autonomous consumption (consumption even when disposable income
is zero) and § is the marginal propensity to consume. In this function we expect
a>0and 0 > & > 1. A4 = 0.7 means that the marginal propensity to consume is

0.7. A Keynesian consumption function is estimated below as a worked-out computer
exercise example.

PRSI
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Computer example- the Keynesmn
'consumphon function

Table 4.2 provides data for consumption and disposable income for 20 randomly -

selected people.

(a) Put the data in Excel and calculate « and 8 assuming a linear relationship among
X and Y using both expressions for g as given by (4.20) and (4.28).

{b) Calculate o and g using the ‘Data Analysis’ menu provided in ExcelfD and check
whether the results are the same as the ones obtained in (a).

{(c) Create a scatter plotof X and Y. )
(d) Use Microfit and EViews to calculate ¢ and 8 and scatter plots of X and Y.

Solutio_n

(a) First, we have to obtain the products X « Y and X2 as well as the summations of X,
Y, X * Y and XZ. These are given in Table 4.3.

The command for cell C2 is ‘=B2*A2’; C3 is ‘=B3*A3’ and so on; D2 is ‘=B2*B2’ or
‘=B2"2’. For the summations in A22 the command is ‘=SUM(A2:A21)"and similarly for
B22 is./=SUM(B2:B21)’ and so on.

We can then calculate a« and g using (4.20) as follows: For g we need to type in a
cell the following ‘=(C22-(A22*B22)/20)/(D22-((B22"2)/20))’. For « we need to type in
a different cell the following ‘=AVERAGE(A2:A21)-G2*AVERAGE(B2:B21)".

* If we do this correctly we should find that 8 = 0.610888903 and « = 15.11640873.

Table 4.2 Data for simple regression example

Consumption Y Disposable income X
72.30 100
91.65 120

135.20 200
94.60 130

M 163.50 240

100.00 114
86.50 126

142.36 213

120.00 156

112.56 167

132.30 189

149.80 214

115.30 188

132.20 197

149.50 206

100.25 142
79.60 112
90.20 134

116.50 169

126.00 170
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X'Y X-squared
100.00 7230.00 | 10000.00
120.00{ 10998.00 14400.00
200.00 | 27040.00 [ 40000.00
130.00 [ 12298.00 16900.00
240.00 [ 39240.00 57600.00
114.00 | 11400.00 12996.00
126.00 | 10899.00 15876.00
213.00 | 30322.68 45369.00
156.00 | 18720.00 | 24336.00
167.00] 18797.52 27889.00
189.00 | 25004.70 35721.00
214.00| 32057.20 45796.00
188.00{ 21676.40 35344.00
197.00 1 26043.40 38809.00
206.00| 30797.00 | 42436.00
142.00 | 14235.50 20164.00
112.00 8915.20 12544.00
134.00] 12086.80 17956.00
169.00 | 19688.50 28561.00
170.00] 21420.00 28900.00

3287.00 } 398869.90 | 571597.00

10.610888903
alpha [ 15.11640873

Y X
Y 628.096654
X 958.4404 1568.9275

Alternatively, using equation (4.28), we may go to the menu Tools/Data Analysis
and from the data analysis menu choose the command covariance. We are then asked
to specify the Input Range, the columns that contain the data for ¥ and X (i.e. enter
‘$A$1:3B$21’ or simply select this area using the mouse). Note that if we include the
labels (Y, X) in our selection we have to tick the Labels in the First Row box. We are
asked to specify our Output Range as well, which can be either a different sheet (not
recommended) or any empty cell in the current sheet (i.e. we might specify cell F5). By
clicking <OK> we obtain the display shown in Table 4.4.

In order to obtain beta we have to write in cell G2 ‘=G7/H7’. The command for alpha
remains the same as in the previous case.

(b) Go to Tools/Data Analysis and from the data analysis menu choose the command
Regression. We are then asked to specify our Input Y Range which is the column that
contains the data for the dependent (Y) variable (i.e. write ‘$A$1:3A3$21") and Input
X Range which is the column that contains the data for the independent (X) variable
(i.e. write '$B$1:$B$21’). Again we can select those two areas using the mouse, and if

——_n
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Table 4.5 Regression output from Excel
Regression Stalistics
Muiltiple A 0.9654959
R Square 0.93218233
Adjusted R square 0.92841469
Standard error 6.87960343
Observations 20
ANOVA
df 5SS MS F | Significance F
Regression 1 11710.01214 11710.0121 | 247.41757 5.80822E-12
Residual 18 851,9209813 47.3289434
Total 19 12561.93308
Coefficients | Standard error t Stat P-value Lower 95%
Intercept 15.1164087 6.565638115 | 2.302351799 | 0.0334684 1.322504225
X 0.6108889 0.038837116 | 15.72951266 | 5.30BE-12 0.529295088
180 4
160W
140 4
v
Y 120
100 4
BOJ
60

T
80 120 160

X

T T 1
200 240 280

Figure 4.2 Scatter plot
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we include the labels (Y, X) in our selection we have to tick the Labels in the First
Row box. We will also be asked to specify Output Range similarly as above. By clicking
<OK> the display shown in Table 4.5 is obtained.

Apart from estimates for a (which is the coefficient of the Intercept) and B (Wthh
is the coefficient of X), Table 4.5 shows more statistics that will be discussed in the

Chapters.

(c) To obtain a scatter plot of Y and X, click on the chart wizard button and then
specify XY scatter and click next - go to series and enter the values for X and Y using
the mouse, click next again - enter titles for the diagram and the X and Y variables
and then click finish to obtain the graph. By clicking on the dots of the scatter plot
and using the right button of the mouse, add Trendline can be chosen for the graph.
The graph will look like that shown in Figure 4.2.
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(d) To obtain the regression results in Microfit we need to apply the following steps:

1 Open Microfit.
2 Choose File/New in order to create a new file.

3 Choose Undated and specify the number of variables (in this case 2) as well as the
number of observations (in this case 20).

4 When asked to provide names and descriptions for the variables, give the names
Y and X, and the descriptions ‘Consumption’ and ‘Disposable Income’ respectively
(giving descriptions is optional but it is recommended to give descriptions of your
variables because sometimes it is really helpful). Press <GO>.

5 Either type the data into Microfit or copy/paste the data from Excel®. Press <GO>
at the end.

6 Having entered the data in Microfit, we need to create a constant. Either go to the
process editor (by pressing the process button) and write:

C =1 (and then press <GO>)

or go to Edit/Constant (intercept) term and provide a name for the intercept by

typing it in the corresponding window (let’s assume that we name the consjant term
as C).

7 Go to the single editor (by clicking the single button) and write: '
Y C X

and click <START>. The output shown in Table 4.6 is shown in a new window

and provides estimates for alpha (the coefficient of the constant term), beta (the

coefficient of X) and some additional statistics that will be discussed enter in the
next sections of the chapter.

(e) To obtain regression results in EViews, the following steps are required:

1 Open EViews.
2 Choose File/New/Workfile in order to create a new file.

3 Choose Undated or Irregular and specify the number of observations (in this case
20). A new window appears which automatically contains a constant (c) and a
residual (resid) series.

4 In the command line type:

genr x=0 (press enter)
genr y=0 (press enter)

which creates two new series named x and y that contain zeros for every observation.

Open x and y as a group by selecting them and double clicking with the
mouse.

S Either type the data in EViews or copy/paste the data from Excel®. To edit the series
press the edit +/— button. After finishing with editing the series press the edit +/-
button again to lock or secure the data.
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Table 4.6 Microfit Results from a Simple Regression Model

Dependent variable is Y

20 observations used for estimation from 1 to 20

T-RatiofProb]

Regressor , Coefficient - Standard Error
c 15.1164 6.5656 2.3024 [.033)
X 0.61089 - 0.038837 15.7295 {.000)
R-Squared 0.93218 R-bar-squared 0.92841
S.E. of regression 6.8796 F-stat. F(1,18) 247.4176 [.000])
Mean of dependent S.0D. of dependent

variable 115.5160 variable 257129
Residual sum of

squares 851.9210 Equation log-likelihood —-65.8964
Akaike info. criterion —67.8964 Schwarz bayesian —68.8921

criterion
DW-statistic 2.2838
Diagnostic Tests

Test Statistics LM Version i F Version

A: Serial Correlation
B: Functional Form
C: Normality

D: Heteroscedasticity

CHSQ(1) =0.72444 [0.395]
CHSQ(1) = 0.19091 [0.662]
CHSQ(2) = 0.35743 [0.836]
CHSQ(1) =0.40046 [0.527]

F(1, 17) =0.63891 [.435)
F(1,17)=0.16384 [.691]
Not applicable

F(1, 18) =0.36778 [.552]

A lagrange multiplier test of residual serial correlation,

B Ramsey's RESET test using the square of the fitted values.

C Based on a test of skewness and kurtosis of residuals.

D Based on the regression of squared residuals on squared fitted values.

) .
Table 4.7 EViews results from a simple regression model

Dependent Variable: Y
Method: Least Squares
Date: 01/09/04 Time: 16:13
Sample: 1-20

Included observations: 20

Variable Coefficient Std. Error 1-Statistic Prob.
(o 15.11641 6.565638 2.302352 0.0335
X * 0.610889 0.038837 15.72951 0.0000
R-squared 0.932182 Mean dependent var 115.5160
Adjusted R-squared 0.928415 S.D. dependent var 25.71292
S.E. of regression 6.879603 Akaike info criterion 6.789639
Sum squared resid 851.9210 Schwarz criterion 6.889212
Log likelihood —65.89639 F-statistic 247.4176
Durbin—-Watson stat 2.283770 Prob(F-statistic) 0.000000

6 After entering the data into EViews, the regression line (to obtain alpha and beta) .

can be estimated either by writing:

ls y ¢ x (press enter)
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on the EViews command line, or by clicking on Quick/Estimate equation and then
writing the equation (i.e. y ¢ x) in the new window. Note that the option for OLS
(LS — Least Squares (NLS and ARMA)) is automatically chosen by EViews and the
sample is automatically chosen to be from 1 to 20. -

Either way the output shown in Table 4.7 is shown in a new window which provides

estimates for alpha (the coefficient of the constant term) and beta (the coefficient
of X).

Questions

1 An outlier is an observation that is very far from the sample regression function.
Suppose the equation is initially estimated using all observations and then

-reestimated omitting outliers. How will the estimated slope coefficient change? How
will RZ change? Explain.

2 Regression equations are sometimes estimated using an explanatory variableé that is
a deviation from some value of interest. An example is a capacity utilization rate-

unemployment rate equation, such as: .

Uy = ag + ay(CAP; — CAP{) + e

where CAP{ is a single value representing the capacity utilization rate corresbonding
to full employment (the value of 87.5% is sometimes used for this value).

(a) Will the estimated intercept from this equation differ from that in the equation
with only CAP; as an explanatory variable? Explain.

(b) Will the estimated slope coefficient from this equation differ from that in the
equation with only CAP; as an explanatory variable? Explain.

3 Prove that the OLS coefficient for the slope parameter in the simple linear regression
model is unbiased.

4 Prove that the OLS coefficient for the slope parameter in the simple linear regression
model is BLUE.

5 State the assumptions of the simple linear regression model and explain why they
are necessary.

Exercise 4.1

The following data refer to the quantity sold for a good Y (measured in kg), and the
price of that good X (measured in pence per kg), for 10 different market locations:

Y: 198 181 170 179 163 145 167 203 251 147
X: 23 245 24 27.2 27 244 247 221 21 25

Y
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(a) Assuming a linear relationship among the two variables, obtain the OLS estimators
of a and B. '

(b) On a scatter diagram of the data, draw in your OLS sample regression'line. .

(c) Estimate the elasticity of demand for this good at the point of sample means (i.e.
when Y = ¥ and X = X).
Exercise 4.2

The table below shows the average growth rates of GDP and employment for 25 OECD
countries for the period 1988-97.

Countries Empl. GDP Countries Empl. GDP
Australia 1.68 3.04 Korea 2.57 7.73
Austria 0.65 2.55 Luxembourg 3.02 5.64
Belgium 0.34 2.16 Netherlands 1.88 2.86
Canada 1.17 2.03 New Zealand 091 2.01
Denmark  0.02 2.02 Norway 0.36 298
Finland -1.06 1.78 Portugal 033 2.79
France 0.28 2.08 Spain 0.89 2.60
Germany 0.08 2.71 Sweden -0.94 1.17
Greece 0.87 2.08 Switzerland 0.79 1.15

] Iceland —0.13 1.54 Turkey 2.02 4.18

! Ireland 2.16 6.40 United Kingdom 0.66 1.97
Italy —0.30 1.68 United States 1.53 2.46
Japan 1.06 2.81

s

(a) Assuming a linear relationship obtain the OLS estimators.

(b) Provide an interpretation of the coefficients.

Exercise 4.3

In the Keynesian consumption function: .

Cr=a+sY?

the estimated marginal propensity to consume is simply § while the average propensity
to consume is C/Y¥ = a/v4 +35. Using data from 200 UK households on annual income
and consumption (both of which were measured in UKE ) we found the following
regression equation:

Cy = 138.52+0.725Y¢ R? =0.862

(a) Provide an interpretation of the constant in this equation and comment about its
sign and magnitude.

(b) Calculate the predicted consumption of a hypothetical household with annual
income £40,000.
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(c) With Y4 on the x-axis draw a graph of the estimated MPC and APC.

Exercise 4.4

Obtain annual data for the inflation rate and the unemployment rate of a country.
(a) Estimate the following regression which is known as the Phillips curve:

Ty =dg +HIUNEMP[ + ug

where n; is inflation and UNEMP; is unemployment. Present the results in the °

usual way.

(b) Estimate the alternative model:

T — 7y =dag +ayUNEMPs g + 1y

and calculate the NAIRU (i.e. when 7y — m;_1 = 0). 0
(c) Reestimate the above equations splitting your sample into different decades. What

factors account for differences in the results? Which period has the ‘best-fitting’
equation? State the criteria you have used.

.t

Exercise 4.5

The following equation has been estimated by OLS:

Rt = 0.567 + 1.045R,,; n =250
(0.33) (0.066)

where R, and R,,;; denote the excess return of a stock and the excess return of the market
index for the London Stock Exchange.

(a) Derive a 95% confidence interval for each coefficient.

(b) Are these coefficients statistically significant? Explain what is the meaning of your
findings regarding the CAPM theory.

(c) Test the hypothesis Hy: 8 = 1 and Hg: ﬂ < 1 at the 1% level of significance. If you
reject Hp what does this indicate about this stock?

e
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Exercise 4.6

Obtain time series data on real business fixed investment (I) and an appropriate rate of
interest (r). Consider the following population regression function:

It =ag+ayr + e

(a) What are the expected signs of the coefficients in this equation?

(b) Explain the rationale for each of these signs.

(c) How can you use this equation to estimate the intere'st elasticity of investment?
(d) Estimate the population regression function.

(e) Which coefficients are statistically significant? Are the signs those expected?

(f) Construct a 99% confidence interval for the coefficient of r;.

(g) Estimate the log-linear version of the population regression function:
Inlf =ag+aj Inr +u;

(h) Is the estimated interest rate elasticity of investment significant?
(i) Do you expect this elasticity to be elastic or inelastic and why?

(j) Perform a hypothesis test of whether investment is interest-elastic.

¢

Exercise 4.7

"The file salaries_01.wf1 contains data for senior officers from a large number of UK firms.
The variable salary is the salary that each one of them gets, measured in thousand
pounds. The variable years_senior measures the number of years for which they are
senior officers, while the variable years_cormp measures the number of years for which
they have worked in the company at the time of the research.

(a) Find summary statistics for the three above-mentioned variables and discuss them.

b) Estim'ate a simple regression that explains whether and how salary level is affected
by the years for which they are senior officers. Estimate another regression that now
explains whether and how salary level is affected by the years for which they have
worked in the same company. Report your results and comment on them. Which
relationship seems to be more robust and why?
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So far, we have restricted ourselves to the single case of a two-variable relationship in a
regression equation. However, in econormics it is quite rare to have such relationships.
Usually the dependent variable, Y, depends on a big set of explanatory variables or
regressors, and so we have to extend our analysis to more than one regressor. The
multiple regression model generally has the following form: ’

Y= g1 Xt + BaXot + B3X3r + -+ + B X + Ut , 5.1

where Xy, is a vector equal to unity (to allow for the constant term) and can be omitted
from (5.1), and Xj; (j = 2,3, ..., k) is the set of explanatory variables or regressors. From
this it follows that (5.1) contains k parameters to be estimated, which gives the degrees
of freedom as well.

Derivation of the multiple regression
coefficients

The three-variable model
The three-variable model relates Y to a constant and two explanatory variables X, and

X3. Thus, we have:

¢

Ye = B1 + BaXor + B3X3 + Uy (5.2)

As before we need to minimize the sum of the squared residuais (RSS):
n
RSS = Y i} (5.3)
t=1

where i is the difference between the actual Y, and the fitted ¥, predicted by the
regression equation. Therefore:

iy =Yy — Ve =Y — By — BoaXor — B3 X3t (5-4)

substituting (5.4) into (5.3) we get:

M o N 2
(Ye - b1 = BaXor - B3Xat) (5.5)

n
RSS=) il =
t=1 1

n
t=
The next step is to take the First Order Conditions (F.O.C.s) for a minimum:

dRSS o . .
Py ~2 )" (Ye - b1~ BoXar — B3X3) =0 (5.6)
1 t=1
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RSS !
S =22 Xa(Vi-hi-BoXa - BiXy)=0 (D)
ﬂZ t=1
aRSS 4 .. .
o (Ye = A1 — BoXaot - BaXar) = 0 (5.8)

And again we end up with a system of three equations with three unknowns $;, A and

B3, which can be easily solved to give estimates of the unknowns. Equatxon (5.6) can
be transformed, for example, easily to give:

n n n
2= Z Br+D_ BaXor+ Y B3Xa . (5.9)
t=1 t=1 t=1 t=1 .
- ~ n N n
Z Ye=nfr+B2 )Xo+ B3 Xz (5.10)
t=1 t=1 t=1 .

dividing throughout by n and defining X; = Y}, X;/m:
Y = B + BaXp + B3X3 - (5.11)

and we obtain a solution for £;:

B1 =7V - faX - B3X (5.12)

A

Using equation (5.12) and the second and third of the FO.C.s, and after manipulations,
we obtain a solution for £:

3 Cov(Xy, Y)Var(X3) — Cov(X3, Y)Cov(X3, X3)

(5.13)
Var(X3)Var(X3) — [Cov(X2, X3)12
and g3 will be similar to (5.13) by rearranging Xo; and X3;:
ﬁ Cov(X3, Y)Var(Xy) — Cov(Xq, Y)Cov(X3, X2) (5.14)

Var(X3)Var(X,) — [Cov(X3, X2)]2

The k-variables case

With k explanatory vanables the model is as presented initially in equation (5.1), so
we have:

Yy = g1 X1t + BaXor + B3X3p + - + By Xy + 11t (5.15)

while again we obtain fitted values as:

Ve = BiXue + BoXar + B3Xar + - + BrXie (5.16)
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and
iy =Y = Ve =Y — b1 X1t — BaXor — B3X3t — -+ = B X (5.17)
Furthermore we again want to minimize RSS, so:
n n o . R . 2
RSS=Y i =) (Yt —B1 X1t — B2 X2t — B3 X3t — - — ﬂkxkt) -(5.18)
t=1 t=1

Taking the FO.C.s for a minimum this time we obtain k equations for k unknown
regression coefficients, as: :

n n n R
YoYe=nbi+B2) Xat+-+ B Y Xt (5.19)
t=1 =1 t=1

n . n . n . n .
S VeXor =81 Xor+ B2 X5+ + B ) XueXat (5.20)
t=1 t=1 t=1 t=1
(5.21)

n n n n
D ViXy_1:=H1 Do Xu—we+ B2 ) XatXpwe+ o+ B D XeXe—t (5.22)

t=1 t=1 =1 t=1
“n L .n n :
LN Y Xk =B Y X+ B2 ) XoeXpe + o+ B D XE (5.23)

t=1 t=1 t=1 t=1

The above k equations can be solved uniquely for the 8s, and it is easy to show that:
Br=Y - poX; — - — BXy (5.24)

However, the expressions for $, 83, ..., Bx are very complicated and the mathematics
will not be presented here. The analysis should be done with the use of matrix algebra
which is the context of the next section. Standard computer programmes do all the
calculations and provide estimates immediately.

Derivation of the coefficients with matrix algebra

Equation (5.1) can be easily written in matrix notation as:

Y=XB8+u (5.25)
where
Yy 1 X2y X31 ... Xiq
Yo 1 X2 X322 ... Xi3
Y= . » X=1. . . . ’
Yr 1 Xor Xsr ... Xkt
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B1 0
B2 uy
B=\1 .1, u=
N\ Bk Un

Thus, Yisa T x 1 vector, X is an T x k matrix, g isa k x 1 vectoranduisan T x 1

vector. Our aim is to minimize RSS. Note that in matrix notation RSS = @'i. Thus,
we have:

' = (Y - XB)' (Y — X8) B (5.26)
= (Y - B'X)Y - XP) G2
=YY -YXB-F XY+ XXB . (5.28)
=Y'Y-2YX'§ + ' X'XB 4 (5.29)

We now need to differentiate the above expression with respect to ﬁ and set this result
equal to zero:

§5§—S =-2X'Y +2X'XB =0 . (5.30)
a8 .

which is a set of k equations and k unknowns. Re-writing (5.30) we have:
X'XB = X'Y (5.31)

and multiplying both sides by the inverse matrix (X’'X)~1 we finally get:
B=XX)"1XY (5.32)

which is the solution for the OLS estimators in the case of muitiple regression analysis.

The structure of the X’X and XY matrices

For a better understanding of the above solution, it is quite useful to examine the
structure of the (X’X) and (X'Y) matrices that give us the solution for 8. Recall that
X = (X; — X) denote deviations of variables from their means, so, we have that:

Y3, Ykaky Y xatkar - X Xatike
S XXz  LX,  Yiakar o 2 X3e3ke
(K%)= | Txarkze Trarkze x5, - TXardie (5.33)
-~ - ‘ - - - - -2
D XgeXat Do XpeX3r D XkeXar - Z“'kt

A
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and:
Xl
2_X3tht
Ey)=|Txapt | - {5.39)
2 Xgehe
1t is simple to see that the matrix (x’x) in the case of a four explanatory variables
regression model (k = 4) will reduce to its 3 x 3 equivalent; for k = 3 to its 2'x 2
and so on. When we have the simple linear regression model with two explanatory

variables (k = 2, the constant and the slope coefficient), we will have (x'x) = }:i%t
and (x’y) = Y X2:7;. Therefore the OLS formula will be:

B2 = (x'x)" 1 (x'y)

= (ng)“ (Ziz}?) (5.35)

X
T4

~4

= p* : (5.36)

¢

which is the same with expression (4.24) that we derived analytically without matrix
algebra in Chapter 4.

* .

The assumptions of the multiple regression model

Very briefly we can state again the assumptions of the model which are not much
different from the simple two-variable case:

"1 The dependent variable is a linear function of the explanatory variables.

2 All explanatory variables are non-random.

3 All explanatory variables have values that are fixed in repeated samples, and as n - oo
the variance of their sample values 1/n 3 (X — 5(,-)2 - Qj(j=2,3,...,k) where the
Q; are fixed constants.

E(ug) =0 for all t.
Var (ur) = E(u?) = 02 = constant for all t.
Cov(uy, 1j) = E(ug, uj) =0 forall j # .

Each u; is normally distributed.

L NN s

There are no exact linear relationships among the sample values of any two or more
of the explanatory variables.
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The variance~covariance matrix of the errors

Recall from the matrix representation of the model that we have an n x 1 vector u of

error terms. If we form an n x n matrix uw’u and take the expected value of this matrix
we get.

E(uf) E(uyup) E(uyuz) --- E(uyup)
EQuyuy) E(u%) E(upuz) --- E(uauy)

E(uu’) = E(u3ul) E(uzuy) E(u%) E(zl3u,,) (5.37)
E(u,,ul) E(upup) E(uyuz) --- E(u )

Now, since each error term, u;, has a zero mean, the diagonal elements of this matrix

will represent the variance of the disturbances, and the non-diagonal terms will be the *

covariances among the different disturbances. Hence, this matrix is called the variance~
covariance matrix of the errors, and using assumptions S (Var(iy) = E(uz) =og2) and 6
(Cov(u,, uj) = E(u,,u,) = 0) will be like:

2

2 0 0 -.. 0
0 2 0 0 O
Euu)=f0 0 o2 ... 0 |=0%In " (5.38)
.. ... - PR ’
0 0 0 -.. o2

where I, is an n x n identity matrix.

Properties of the multiple regression
model OLS estimators

As in the simple two-variable regression model, based on the assumptions of the CLRM,
we can prove that the OLS estimators are Best Linear Unbiased Estimators (BLUE). We

concentrate on the slope coefficients (83, B3, B4, ..., Bx) rather than the constant (8;)
because these are the paraineters of greatest interest.

Linearity

For OLS estimators to be linear, assumptions 2 and 3 are needed. Since the values of the
explanatory variables are fixed constants, it can easily be shown that the OLS estimators
are linear functions of the Y values. Recall the solution for 8:

B =X'X)"IX'Y (5.39)
where since X is a matrix of fixed constants then W = (X’X)~1 X' is also a i x k matrix

of fixed constants. Since W is a matrix of fixed constants, ﬁ is a linear function of ¥, so
by definition it is a linear estimator.

— e
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Unbiasedness

We know that:
f=XX)"Ixy , (5.40)
and we also have that:
Y=XB+u : (5.41)
Substituting this into equation (5.40) above we obtain:

B = (X'X)"1X'(XB +u)
= X'X)"IX'XB + (X'X)"1X'u
=B+ X'X)"IX'u [since (X’X)"1X'X =1} (5.42)

Taking expectations of (5.42) yields:

EB) = EB) + (X'X) " 1X'E(u) ' (5.43)
=B [since E(B) = B and E(u) = 0] (5.44)

,Therefore [§ is an unbiased estimator of g.

Cons’iSiency

Unbiasedness simply means that whatever the sample size we expect that on average
the estimated g will equal the true g, however the above proof of this rests on the
assumption that X is fixed and this is a strong and often unrealistic assumption. If we
relax this assumption however we can still establish that 8 is consistent, this simply
means that as the estimation sample size goes to infinity 8 will converge in probability
on its true value. Thus plim(8) = B. The proof of consistency will not be presented
here as it is tedious and beyond the scope of this book. However the key assumption
to this proof is that the X variable while not being fixed must be uncorrelated with the
error term.

BLUEness

Before we proceed with the proof that the OLS estimators for the multiple regression
model are BLUESs, it is good to first find expressions for the variances and convariances
of the OLS estimators.
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Consider the symmetric k x k matrix of the form:

E(B - BYB — BY
E(B) ~ B1)? EBy — B1)B2 ~ B2) -+ E(B1 — B1) Bk — Br)

The Classical Linear Regression Model

EBz~-B2)(B1~B1)  EBa—B)% -~ EB2—B2) Bk ~ Br)
= (5.45)
EBx — Bi)(B1 — B1) EBx — Br)Ba — B2) - E(f - 207
Because of unbiasedness of 8 we have that E(? E
, wemioTr l"n\nfi. ﬁ».\ v & amt Ry é-\\ -
N e A T | R J (5.46)
".j'lﬂ'v'(f}k, By v B2y - Var (fy)
which ic ~~%... . ¢ variance-covariance mau £ 8. We need to find an expression for
(e Ul sader that from (5.32) we have: .
B=XX) Ay (5.47)
K
substituting Y = X8 + u, we get:
B = XXX (XB +u
- (XIX)—IX'Xﬂ + (X,X)—l X'u
=B+ X'X)"1X'u (5.48)
B-B=XX)"Xu (5.49)
By the definition of variance-covariance we have that:
Var(8) = E{(8 — B)(B — BY)
= E{[(X'X) "I Xul[(X’X) "' X u)}
= E(X/X)y" X un'X(X'X)~ 1y*
= (X'X)" X Euu)X(x'x)~ 1" .
= (X'X)" X6 21X (X'X) !
=o2(X'X)"] (5.50)

-_—
* This is because (BA) = A’B'.
T This is because, by assumption 2, the Xs are non-random.

fr———
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Now for the BLUEness of the ﬁ, let us assume that there is ﬁ* which is any other -
linear estimator of 8, which can be expressed as:

BT = X' X)"IX + Z)(v) (5.51)
where Z is a matrix of constants. Substituting for Y = X8 + u, we get:

B = ((X'X)"IX +Z)(XB +w)
=B+ ZXB+ (X'X)"1X'u+Zu (5.52)

and for f* to be unbiased we require that:
IX =0 (5.53)
Using (5.53), we can rewrite (5.52) as:
a* ryy—1ys7
B —B=XX)"'Xu+2Zu (5.59)
Going back to the definition of the variance-covariance:

E((B - BYB - BY] = {(X'X)"1 X u + Zu}{((X’X) "1 X'u + Zu}’ (5.55)
=c2(X'X)"! 4 6277’ (5.56)

.
which says that the variance~covariance matrix of the alternative estimator ﬂ* is equal
to the variance-covariance matrix of the OLS estimator 8 plus o2 times ZZ/, and
therefore greater than the variance-covariance of 8. Hence g8 is BLUE.

R? and adjusted R?

The regular coefficient of determination, R? is again a measure of the closeness of fit
in the multiple regression model as in the simple two-variable model. However, R?
cannot be used as a means of comparing two different equations containing different
numbers of explanatory variables. This is because when additional explanatory
variables are included, the proportion of variation in Y explained by the Xs,
RZ, will always be increased. Therefore, we will always obtain a higher R regardless
of the importance or not of the additional regressor. For this reason we need a
different measure that will take into account the number of explanatory variables
included in each model. This measure is called the adjusted R? (and is denoted by
R?) because it is adjusted for the number of regressors (or adjusted for the degrees of
freedom). i .
Recall that RZ = ESS/TSS = 1 — RSS/TSS, so that the adjusted R? is just:

2 _ RSS/(n-k) _1 RSS(n—-1)

- Y .57
TSS/(n ~ 1) TS8S(n — k) (5-57)
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Thus, an increase in the number of Xs included in the regression function, increases
k and this will reduce RSS (which if we do not adjust will increase R2). Dividing now,
RSS by n — k, the increase in k tends to offset the fall in RSS and this is why RZ is a
‘fairer’ measure in comparing different equations. The criterion of selecting a model is
to include an extra variable only if it increases RZ2. Note that because (1 — 1)/(n — k)
is never less than 1, RZ will never be higher than R%. However, while R2 has values
between O and 1 only, and can never be negative, R2 can have a negative value in

some cases. A negative R? indicates that the model does not adequately describe the
data-generating process.

General criteria for model selection

We said before that ii...ci.mg the v
regression model will decrease th: RSS, and R2 will therefore increase. However, the
cost of that is a loss in terms of degrees of freedom. A different method - apart from
RZ - of allowing for the number of Xs to change when assessing goodness of fit is'to

use different criteria for model comparison, such as the Akaike Informatlon Criterion
(AIC) developed by Akaike (1974) and given by:

AIC = (E) e2k/n . (5.58)
n 1]
the Finite Prediction Error (FPE) developed again by Akaike (1970):
RSS\ n+k o,
FPE = ( . ) — (5.59)
the Schwarz Bayesian Criteriun (Ovw; ucviieped by Schwarz (1978):
SBC = (55-5) ekm (5.60)

or the Hannan and Quin (1979) Criterion (HQC):

HQC = (F%S-) (nm2kin (5.61)

among many others. (Other criteria include those by Shibata, 1981, Rice, 1984, and a
Generalized Gross Validation, GCV, method developed by Craven and Wahba, 1979.)
Note that some programmes including Eviews reports the logarithm of the AIC (5.58)
and (5.61).

Ideally, we select the model that minimizes all those statistics, as compared to an
alternative one. In general, however, it is quite common to have contradictory results
coming from different criteria. For example, the SBC penalizes model complexity more
heavily than any other measure, and might therefore give a different conclusion.
A model that outperforms another in several of these criteria might generally be
preferred. However, in general the AIC is one of the most commonly used in time
series analysis. Both AIC and SBC are provided by EViews in the standard regression
results output, while Microfit provides only SBC.

..9ev o1 explanatory variables in a multiple °
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Multiple regréssioh estimation in
Microfit and EViews

Multiple regression in Microfit

Step 1
Step 2

Step 3
Step 4

Open Microfit.

Click on File/New in order to create a new file or File/Open to open an
existing file.

If it is a new file follow the steps 3-6 described in the simple regression case.

Go to the single editor (by clicking the ‘single’ button) and type into the single
editor: )

Y C X2 X3 X4 ... XK

where X2, ..., XK are the names of the variables to add into the explanatory
variables list. Of course Y is the dependent variable and C is the constant
created in Microfit. After determining the equation, click <START>.
The regression result outputs in a new window which provides estimates for
B1 (the coefficient of the constant term C), and B3, ..., B (the coefficients of
Xs) and some additional statistics that will be discussed in later chapters of
this book.

Multiple regression in EViews

Step 1

- Open EViews.

Step 2 Click File/New/Workfile in order to create a new file or File/Open to open an

éxisting file.

Step 3 If a new file, follow steps 3-5 described in the simple regression case.

Step 4 Once the data have been entered in EViews, then the regression line can be

estimated (to obtain g; (the coefficient of the constant term C) and 83, ..., B
(the coefficients of Xs)) through two different ways. One is by typing in the
EViews command line:

s vy ¢ x2 x3 ... xk (press ‘enter’)

_where y is to be substituted with the name of the dependent variable as it
appears in the EViews file, and, similarly, x2, ... xk will be the names of the
explanatory variables.

The second way is to click on Quick/Estimate equation and then write the
equation (i.e. y c x2...xk) in the new window. Note that the option for LS
(LS — Least Squares (NLS and ARMA)) is automatically chosen by EViews and
the sample is automatically chosen to be the maximum possible. :
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Below we show an example of a regression result output from EViews (the case of
Microfit is similar).

Reading the EViews multiple regression results output

Name of the Y variable
Estimated

coefticients

By B2 iy)

Dependent Variable: LOG (IMP)
Method: Least Squates
; 02/18/04 Time: 15:30

S ™990:1 1998:2
IntiydethQb: ations: 34

n=no of obs.

Shows the method
of estimation

&i;bie\ Coefficient

Std. Error {-Statistic Prob.

Conslam\ c A 0.631870
% L0a6(6DR) 1.926936
X

0.344368 1.834867 0.0761
0.168856 14117 0.0000
0.137400 1.996179 | 0.0548

LOG(CPI) 0.274276
/ﬁjareu 0.956057
Xz

Adjusted A-squared .963867

.E. 0.026313
Sum square i 021464
Log likeli 7X.00763
Durbil 0. SS%

Mean dependent var
8.0. dependent var
Akaike info criterion
Schwarz criterion
Fstatistic

/2

t-statistics for
estimated coelts

D-W stat,
{see Chapter 7}

AIC

SBC

Hypothesis testing

Testing individual coefficients

As in simple regression analysis, in multiple regression a single test of hypothesis on a
regression coefficient is carried out as a normal t test. We can again have one-tail tests (if
there is some prior belief/theory for the sign of the coefficient) or two-tail tests, carried
out in the usual way B - ﬂ)/sﬁ follows t,,_x), and we can immediately make a decision
" about the significance or not of the Bs using the criterion |t-stat| > }t-crit} having the

t-statistic provided immediately by either Microfit or EViews (note that especially for
large samples we can use the ‘rule of thumb’ {t-stat| > 2).

Testing linear restrictions

Sometimes in economics we need to test whether there are particular relationships
between the estimated coefficients. Take for example a production function of the

=
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standard Cobb-Douglas type:

Q = AL®Kk# (5.62) |

where Q is output, L denotes labour units, K is capita and A is an exogenous technology '

parameter. If we take logarithms and add an error term we have:
InQ=c+alnl+8InK+u - (5.63)

where ¢ =1In A, a constant and a and g coefficients are simply the elasticities of labour
and capital respectively. In this example it might be desirable to test whethera+8 =1,
which implies constant returns to scale (i.e. if we double inputs the output will be
doubled as well). ’

Therefore, we have estimates a and B that we want them to obey a linear restriction.
If we impose this restriction to the Cobb-Douglas production function we will have:

InQ=c+1-8InL+8InK+u
InQ-InL=c+B8(InK—-InL)+u (5.64)
Q*=c+BK*+u
where Q* = InQ — InL and K* = InK - InL. Thus, we can estimate (5.64) to get B
and then obtain @ = 1 — 8. The estimates obtained this way are known as restricted

least squares estimates and equation (5.64) is referred to as the restricted equation while
obviously (5.63) is the unrestricted equation.

Sometimes, it is even possible to impose more than just one restriction at a time. For
example suppose we have the unrestricted equation:
3 . -

Ye = B1 + B2Xor + B3 X3t + BaXar + BsXse + € (5.65)

and we need to impose the following restrictions:

B3+Bs=1 and By =§hs

Substituting the restrictions to the unrestricted equation we have:

Ye = B1 + BsXar + (1 — Ba) X3 + BaXar + Bs Xse + e

Ye = B1 + BsXar + X3¢ — BaX3e + BaXar + BsXst +
Yt - X3 = B1 + Bs(Xap + Xsp) + B (Xar ~ X3p) + et

Y§ =81+ Bs(Xp) + Ba(X3,) + e

(5.66)

where Y; =Y - X3¢, XT[ = Xyt + X5¢ and X;t = X4t — X3¢.

Therefore, in this case we can estimate the restricted equation (5.66) and get £, fs
and B4 and then calculate §3 and 8, from the restrictions imposed above.

So far, things are simple. However, the problem is that usually we are not able to just
accept the restrictions as given without testing for their validity. There are three basic
ways of constructing a test; the Likelihood Ratio procedure, the Wald procedure and
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the Lagrange Multiplier (or LM) procedure. The exact derivation of these procedures
"is beyond the scope of this book but we will attempt to give an intuitive account of
these three. The idea of most tests is to asses the difference between an unrestricted
model and a restricted version of the same model. If the restriction does not affect
the fit of the model very much then we would want to accept the restriction as being
valid. If on the other hand the model fits much worse then we would reject the model.
Of course this means we have to have some firm measure of how much worse the fit
can get and still be insignificant. In general this measure comes from a measure of
how good a model is which is called the likelihood function, at an intuitive level this
shows us how likely the model is to be correct. The exact way we use this to form a
test is based on the fact that if we take twice the difference between the likelihood
function of the unrestricted and restricted model this value will have a x2 distribution
with the number of degre. . ol ircedom equal to the number of restrictions imposed

on the model. This gis s iise to the asic Likeliliood Ratio test which simply involves -

estimating the model bot!. with the restriction and without it and constructing a test
based on these two estimates. The x2 distribution is an asymptotic one, which means
that itis really only the correct one for an infinitely large sample, however in some cases
we can calculate a version of the Likelihood Ratio test which is correct in small samples
and then it may have an F distribution for example. Any test which involves estimating
the model BOTH with and without the restriction is a form of Likelihood Ratio test.
There are however two approximations to the Likelihood Ratio test which only require
us to estimate one model. If we only estimate the unrestricted model and then use a
formulae to approx’~. .:-_ ..e full likelihood ratio test this is called a Wald test. The
‘t' test acmsated with OLS coefficients for example are a particular form of Wald test.
Ve estimate the unrestricted model and then we can test the hypothesis that the true

" coefficient is zero, but we do not actually estimate the complete model subject to this
restriction. The final method (the LM procedure) only estimates a restricted model and
then tests for a relaxation of these restrictions by again applying a formulae but not
actually re-estimating the model. This final procedure has proved very useful in recent
years as it allows us to test a model for many possible forms of misspecification without
having to estimate many different models. All three forms may have asymptotic xZ
distributions or they may have distributions which correct for the small sample such
as an F or ‘t’ distribution.

The F-form of the likelihood ratio test

The most common method is to estimate both the unrestricted equation and the
restricted equation and to take the RSS of both models denoted as RSSy; and RSSp
respectively (the subscript U stands for unrestricted, R for restricted).

It should be obvious that RSSp > RSSy. However, if the restrictions are valid, then
this difference should be minimal. It is beyond the scope of this text to prove that there
is a statistic given by the following expression:

(RSSp — RSSy)/(ky — kg)
SSRy /(n — ky)

(5.67)
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that follows an F-type distribution with (ky — kg, n—ky) degrees of freedom, and that is
the appropriate statistic to help us determine whether the restrictions are valid or not.
So, summarizing, the F-test (which is a special form of the likelihood ratio procedure)
for testing linear restrictions can be conducted as follows:

Step 1 The null hypothesis is that the restrictions are valid.
Step 2 [Estimate both the restricted and unrestricted models and obtain RSSg and RSSy .

Step 3 Calculate F-statistical by expression (5.67) above where ky and kg are the
number of regressors in each model.

Step 4 Find F-critical for (ky — kg, 11 — kyy) degrees of freedom from the F-tables.
Step 5 If F-statistical > F-critical reject the nu!ll hypothesis.

Testing the joint significance of the Xs

This is simply the F-type test for the overall goodness of fit, but it can be understood
more easily as a special case of a LR-type test. Consider the following two (unrestricted
and super-restricted) models:

Yi =81+ B2Xot + B3 X3¢ + BaXqp + BsXsp + et _ (5.68)
' Yi=p1+e (5.69)

The second model is called super-restricted because we imposed a number of restrictions
equal to the number of explanatory variables excluding the constant (i.e. k — 1
festrictions).

The null hypothesis in this case is 82 = 83 = 84 = Bs = 0, or to put it in words ‘none
of the coefficients in the model apart from the intercept is statistically significant’. If
we fail to reject this hypothesis, this means that we have a very poor model and we
must reformulate it.

-In this special case we can show that we do not need to estimate both models in order
to calculate the F statistic. First, we can get RSSy by estimating the full model. Then
we can get RSSsg by minimizing Zétz = Y (Y; — B1)? with respect to g;. However, we
know that 81 = ¥ and therefore RSSgg = Y"(Y; — Y1)% which is the same as TSSy.

Therefore, the F statistic is now:

(TSSy — RSSy)/(k —1) _ ESSy/(k—1)  R*/(k—1)
" RSSy/(n—k) T RSSy/n—-k) T (1—R2)y/(n—k)

(5.70)

which can easily be calculated by the R? of the unrestricted model.

F -test for overall significance in Microfit and EViews

Both Microfit and EViews provide the F statistic for the overall significance of the Xs as
a part of the summary statistics for a regression model. What we need is just to make
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sure that F-statistical > F-critical (k — 1,n — k) in order to reject the null hypothesis. If
we cannot reject the null, then we have to reformulate our model.

Adding or deleting explanatory variables

Frequently we might face problems of deciding whether to add or delete one or more
explanatory variables from an estimated model. When only one variable is involved, a
safe criterion is to check its t-ratio, but when a set of variables is involved then we might
need to assess their combined influence in the model. Consider the following model:

Ye =81+ BoXor + -+ B Xye + €1 (5.71)
Ye = B1B1 + B2Xor + -+ BiXue + BrarXks1e + -+ BnXomt + €

.
In this case we agair: nave a rewricted and unrestricted model with n — k more variables
which we are interested in to assess their combined effect. The null hypothesis here is
Bx+1 = Bkyz = --- = Bm = 0 which says that the joint significance of these omitted
variables is zero. Alternatively, we can have model (5.72) as the initial model and might
want to test that variables Xy, ; = Xz, = --- = X, are redundant to this model. This
can be tested by either a regular F-test or by a likelihood ratio (LR) test. The F-type

test as we explained before is based on the difference of the RSS of the restricted and
unrestricted regressions.

The LR statistic is computed as:

%

LR = -2(Ip - Itp)
where Ip and Iy are the maximized values of the log-likelihood function of the
unrestricted and restricted equations respectively. The LR statistic follows a x?
distribution with degrees of freedom equal to the number of restrictions (i.e. the number
of omitted or added variables).

Omitted and redundant variables test in EViews
Suppose that we have estimated the unrestricted model:
IsY C X1 X2 X3

and want to test whether X4 and XS are omitted from the model. From the regression
window select View/Coefficient tests/Omitted Variables-Likelihood Ratio. A new
window with a dialog box opens, where we specify the names of the variables we want
to test (i.e. write X4 X5) and click <OK>. EViews reports the two statistics concerning
the hypothesis testing (i.e. the F and LR statistics with their probability limits). If F-
stat > F-critical or if LR-stat > x2-critical then we reject the null that the two series do
not belong to the equation. Similar steps have to be carried out for a variable deletion
test, where we choose View/Coefficient tests/Redundant Variables-Likelihood Ratio

and specify the names of the variables that were included in the initial mode] and
whose significance we want to test.

iy

(5.72)
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Omitted and redundant variables test in Microfit

Similarly, in Microfit, after estimating a regression and closing the results window a
new window pops out with 10 different choices numbered consecutively from O to 9.

* Choice 2 is about hypothesis testing, which is exactly what we discussed in the second

part of this chapter. Choosing 2: Move to hypothesis testing menu and clicking <OK> -
a new window again opens with 10 different choices. From those choices, choice 5
concerns the variable deletion test and choice 6 the variable addition test. in each
case we need to specify the names/labels of variables to add or delete. Microfit reports
results of LR, F and Lagrange multiplier (LM) test statistics. In each case, if the statistical
value is bigger than the critical value we reject the null hypothesis about the validity
of the restrictions.

How to perform the Wald test in EViews and Microfit

As noted above a particular set of restrictions or hypothesis may be tests in 3 different
ways, the Likelihood Ratio procedure gives rise to the F-test above which involves
estimating the model twice and this may be cumbersome to do. The Wald procedure
however allows us to test any restriction on a model once we have estimated it without
estimating any further models. It is therefore often quite convenient to use a series of
Wald tests after we have estimated our model.

The Wald test in EViews

We can test various linear restrictions in EViews and Microfit using the Wald test. For
EViews we first estimate the unrestricted equation, then from the regression output
window we choose View/Coefficient Tests/Wald-Coefficient Restrictions.... We
then need to enter the restrictions in the new dialog box (in the case of more than one
restriction we have to separate them by commas). The restrictions should be entered as
equations involving the estimated coefficients and constants. The coefficients should
be referred to as C(1) for the constant, C(2) for the coefficient of the first explanatory
variable and so on. After entering the restrictions click <OK>. EViews reports the F

. statistic of the Wald test and a Chi-square statistic. If the statistical value is bigger than

the critical then we reject the null hypothesis.

The Wald test in Microfit

Similarly, in Microfit, after estimating a regression and closing the results window a
new window pops out with 10 different choices numbered consecutively from 0 to
9. Choosing 2: Move to hypothesis testing menu and clicking <OK> a new window
opens, again with 10 different choices. From those choices, choice 7 concerns the Wald
test for linear restrictions. We need to specify the restrictions as equations, where this
time the coefficients should be referred to as A1 for the constant, A2 for the coefficient
of the first explanatory variable, and so on. Microfit reports the Wald statistics as a
Chi-square distributed statistic. If the statistical value is bigger than the critical value,
then we reject the null hypothesis.
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The t test (A special case of the
Wald procedure)

A third method is to test the restriction without actually estimating the restricted

equation, but simply using a t test on the actual restriction. Think of the Cobb-Douglas
production function:

InQ=c+alnL+8InK+u (5.73)

and the restriction a + 8 = 1. What we can do is to obtain by OLS @ and § and test
whether @ + A = 1. We know that & and £ are normally distributed:

an~ N(a,aaz) and g~ N(ﬂ,ag)

.
where o2 refers to the respective variances. Furthermore, we know that any linear -

combination of two normal variables will also be normal. So, we have:

a+ B ~N@a+ B, Var@+ By

where
Var(a + B) = Var(@) + Var() + 2Cov(a, B)
Converting the above into standard normal distribution 4
Aa+ﬂim+m ___ A~ N@© 1)
Var(a) + Var(8) + 2Cov(a, B)

or

a+p~-1

ath ~N(©, 1)

Var(a) + Var(8) + 2Cov(a, B)

because under the null hypothesis a + g = 1. Also, we do not know the variances and
covariances exactly, but these can be estimated. If we substitute

an estimated value for the denominator in the above equation (let’s say u) which can
be taken from the residuals variance/covariance matrix, then its statistical distribution
changes to the student’s t distribution with n — k degrees of freedom. Thus, we can
apply a t test calculating the following:

a+p-1
Var(a) + Var(g) + 2Cov(a, )

Lstat =

(5.74)

and as always if |f5q] > |t-crit] then we reject the null. Because this test
requires several auxiliary calculations, one of the previously presented methods is
generally recommended.

The LM fest

The final way to test a set of restrictions on a model rests on only estimating the
restricted model, this is the Lagrange Multiplier (LM) test, it is particularly useful, as we

-
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will see later, as it allows us to test for more general models which might often be much

more difficult to estimate. Let’s assume that we have again the unrestricted model:

Y = By + BaXar + B3X3r + BaXqr + BsXse +ur | (5.75)
and after imposing
B3+Bs=1 and By =ps
we have:
Y7 =By +Bs(Xip) + Ba(X3) +ur (5.76)

as was shown above.
The LM test involves the following steps:

Step 1 The nuil hypothesis is that the restrictions are valid.
Step 2 Estimate the restricted model in (5.76) and save the residuals iig.

Step 3 Regress iig on the four explanatory variables of the unrestricted model in (5.75):

iR = 81 + 82 Xop +83X3¢ + 84Xar + 85 X5t + &1

Step 4 Calculate the x2-statistic = nR? which is distributed with 4 degrees of freedom,
Wwhere h is the number of restrictions (in this case 2).

Step 5. Find x2-critical for h degrees of freedom.
Step 6 If x2-statistical > x2-critical reject the null hypothesis.

L

The LM test in Microfit and EViews

There is no routine to use to calculate the LM procedure to test simple linear restrictions
in‘Microfit and EViews as it is almost always more convenient to use a Wald or
Likelihood Ratio test, so to calculate the LM test for the above restrictions we would
have to manually follow the steps above. However when we come to test more complex

* departures from our model such as serial correlation or ARCH effects the LM procedure

becomes very useful and both programmes have a number of routines which make use
of this procedure as we will see later.

Computer example: Wald, omitted and
redundant variables tests

The file wage.xls contains data regarding wage rates (wage), years of education (educ),
years of working experience (exper) and years spent with the same company (tenure)
for 900 UK financial analysts. We want to estimate an equation which includes as
determinants of the logarithm of the wage rate the variables, educ, exper and tenure.
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First we need to construct/generate the dependent variable. In order to do that we
have to type the following command in the EViews command line:

genr lnwage = log(wage}

Then, in order to estimate the multiple regression model, we have to select from the
EViews toolbar Quick/Estimate Equation and type into the Equation Specification
box the required model as:

lnwage c¢ educ exper tenure

The results from this equation are shown in Table 5.1. :

We can also save the equation (named unrestrictO1) and save the régression results
(by clicking on the ‘freeze’ button) at an output table (named Table0O1 in the file). As
may be seen from the equation, all three variables have positive coefficients; These are
all above the 'ruje of thumb’ critica! i-viiae of 2, hence all are significant. So, it may
be said that wages will increase as education, experience and tenure increases. Despite
the significance of these three variables, the adjusted R2 is quite low (0.145) as there
are probably other variables that affect wages.

A Wald test of coefficient restrictions

Let's now assume that we want to test whether the effect of the tenure variable is the
same with that of experience (exper variable). Referring to the estimation equation, we
can see that the coefficient of exper is C(3) and the coefficient of tenure is C(4).

In order to test the hypothesis that the two effects are equal we need to conduct a
Wald test in EViews. This can be done by clicking on View/Coefficient Tests/Wald-
Coefficient Restrictions, in the regression results output and then by typing the
restriction as:

C(3) = C(4) (5.77)

Table 5.1 Resuits from the wage equation

Dependent Variable: LNWAGE
Method: Least Squares

Date: 02/02/04 Time: 11:10
Sample: 1 900

Included observations: 900

Variable Coelfficient Std. Error t-Statistic Prob.

(9 5.528329 0.112795 49.01237 0.0000
EDUC 0.073117 0.006636 11.01871 0.0000
EXPER 0.015358 0.003425 4.483631 0.0000
TENURE 0.012964 0.002631 4.927939 0.0000
R-squared 0.148647 Mean dependent var . 6.786164
Adjusted R-squared 0.145797 S.D. dependent var 0.420312
S.E. of regression 0.388465 Akaike info criterion 0.951208
Sum squared resid 1352110 Schwarz criterion 0.972552
Log tikelihood —424.0434 F-statistic 52.14758
Durbin-Watson stat 1.750376 Prob(F-statistic) 0.000000
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in the Wald Test window (and then click <OK>). EViews then generates the F statistic
(we saved this output as TableO2WALD). The results of the Wald test are reported
in Table 5.2.

The F statistic is equal to 0.248, which is lower than the F critical value of 3.84.
‘As’ F-statistical is less than F-critical, we cannot reject the null hypothesis. The
null hypothesis is that the two coefficients are the same, and hence we accept this
conclusion. '

A redundant variable test

Suppose we want to conduct a redundant variable test for the explanatory variable
tenure, i.e. years with current employer, to determine whether this variable is significant
in determining the logarithm of the wage rate. In order to do that we need to click on
View/Coefficient Tests/Redundant variables-Likelihood ratio, and type the name of
the variable (tenure) that we want to check. The results of this test are shown in Table 5.3.

We can now save this output as TableO3BREDUNDANT. The results give us an F-
statistic of 24.285, for comparison to the value of F-critical of 3.84. As F-statistical is

Table 5.2 Walid test results
Equation: Untitled

Null Hypothesis: C(3) = C(4)

F-statistic 0.248656 Probability 0.618145
Chi-square 0.248656 Probability 0.618023

Table 5.3 Redundant variable test results
Redundant Variables: TENURE

F-statistic 24.28459 Probability 0.000001
Log likelihood ratio 24.06829 Probability 0.000001
Test Equation:

Dependent Variable: LNWAGE
Method: Least Squares

Date: 01/30/04 Time: 16:47
Sample: 1 900

Included observations: 900

Variable - Coefficient Std. Error t-Statistic Prob.

C 5.537798 0.114233 48.47827 0.0000
EDUC 0.075865 0.006697 11.32741 0.0000
EXPER 0.019470 0.003365 5.786278 0.0000
AR-squared 0.125573 Mean dependent var 6.786164
Adjusted R-squared 0.123623 S.D. dependent var 0.420312
S.E. of regression 0.393475 Akaike info criterion 0.975728
Sum squared resid 138.8757 Schwarz criterion 0.991736
Log likelihood —436.0776 F-statistic 64.40718

Durbin—Watson stat 1.770020 Prob(F -statistic) 0.000000
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greater than F-critical, we can reject the null hypothesis. Therefore, we can conclude
that the coefficient of the variable tenure is not zero, and therefore tenure is not

redundant i.e. it has a significant effect in determining the wage rate.

An omitted variable test

Suppose now, that we want to conduct an omitted variable test for the explanatory
variable educ. To do that, we first need to estimate a model that does not include

Table 5.4 Wage equation test results

Dependent Variable: LNWAGE
Method: Least Squares

Date: 02/02/04 Time: 11:57
Sample: 1 900

Included observations: 900

Variable Coefficient Std. Error t-Statistic Prob.
C 6.697589 0.040722 164.4699 0.0000
EXPER -0.002011 0.003239 -0.621069 0.5347
TENURE 0.015400 0.002792 5.516228 0.0900
R-squared 0.033285 Mean dependent var 6.786164
Adjusted R-squared 0.031130 S.D. dependent var 0.420312
S.E. of regression 0.413718 Akaike info criterion 1.076062
Sum squared resid 153.5327 Schwarz criterion , 1.092070
Log likelihood —481.2280 F-statistic 15.44241
Durbin—-Watson stat 1.662338 Prob(F -statistic) 0.000000
Table 5.5 Onmitted variable test results
Omiitted Variables: EDUC
F-Statistic 121.4120 Probability 0.000000
Log likelihood ratio 114.3693 Probability 0.000000
Test Equation:
Dependent Variable: LNWAGE
Method: Least Squares
Date: 02/02/04 Time: 12:02
Sample: 1 900
Included observations: 900
Variable Coefficient Std. Error t-Statistic Prob.
C 5.528329 0.112795 49.01237 0.0000
EXPER 0.015358 0.003425 4.483631 0.0000
TENURE 0.012964 0.002631 4.927939 0.0000
EDUC 0.073117 0.006636 11.01871 0.0000
R-squared 0.148647 Mean dependent var 6.786164
Adjusted R-squared 0.145797 8.D. dependent var 0.420312
S.E. of regression 0.388465 Akaike info criterion 0.951208
Sum squared resid 135.2110 Schwarz criterion 0.972552
" Log likelihood ) —424.0434 F-statistic 52.14758
Durbin—-Watson stat 1.750376 Prob(F-statistic}) 0.000000

—
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- educ as an explanatory variable and then check whether the omission of educ was of
importance in the model or not. So we estimate the following equation by typing on
the EViews command line:

. 1s lnwage ¢ exper tenure

: and the results of this regression model are shown in the Table 5.4.
’ In order to conduct the omitted variable test we now need to click on
View/Coefficient Tests/Omitted variables-Likelihood ratio, and type the name of
the variable (educ) that we want to check. The results of this test are shown in Table 5.5.
L We see from these results that the F statistic is equal to 121.41 which is much bigger
than the critical value (see also the very small value of the probability limit), suggesting
that the variable educ was really an omitted variable that plays a very important role in
the determination of the log of wage rate.

Duesiions and exsrzizes

Questions

[ 1 Derive the OLS solutions for A for the k explanatory variables case using
}_ | matrix algebra. :

[\

Prove that the OLS estimates for the k explanatory variables case are BLUE.

[ 3 Show how one can test for constant returns to scale for the following Cobb-Douglas
! } type production function:

Q = ALK#

where. Q is output, L denotes labour units, K is capita and A is an exogenous
technology parameter.

[ 4 Describe the steps involved for performing the Wald test for linear restrictions.

b S Write down a regression equation and show how you can test whether one of the
explanatory variables in redundant.

| .
Exercise 5.1

I ; The file health.xls contains data for the following variables: birth_weight = the weight
' of infants after birth, when low can put an infant in risk of illnesses; cig = number of
cigarettes that the mother was smoking during pregnancy; and fam_inc = the income
(. of the family, the higher the family income the better the access to parental care from
‘ '. - the family in general. Therefore, we would expect that both variables should affect
l birth_weight.

(a) Run a regression that includes both variables and explain the signs of
the coefficients.

e

(b) Estimate a regression that includes only fam_inc, and comment on your results.
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(c) Estimate a regression that includes only cig and comment on your results.

(d) Present all three regressions summarized in a table and comment on your results,
especially by comparing the changes in the estimated effects and the RZ of the three
different models. What does the F statistic suggest about the joint significance of
the explanatory variables in the multiple regression case?

{e) Test the hypothesis that the effect of cig is two times bigger than the respective
effect of fam_inc using the Wald test.

Exercise 5.2

Use the data from the file wage.wfl and estimate an equation which includes as
determinants of the logarithm of the wage rate the variables, educ, exper and tenure.

(a) Comment on your results.

(b) Conduct a test of whether another year of general workforce experience (capturéd
by exper) has the same effect on log(wage) as another year of education (captured
by educ). State clearly your null and alternative hypotheses and your restricted and
unrestricted models. Use the Wald test to check for that hypothesis.

(¢) Conduct a redundant variable test for the explanatory variable exper. Comment on
your results. f

(d) Estimate a model with exper and educ only and then conduct an omitted variable
test for tenure in the model. Comment on your results. ’

Exercise 5.3 -

Use the data in the file money_uk.wf1l to estimate the parameters «, 8 and y, in the
equation below:

InM/P)y=a+B8InY; +yInR; + ug

(a) Briefly outline the theory behind the aggregate demand for money. Relate your
discussion to the specification of the equation given above. In particular explain,
first the meaning of the dependent variable and then the interpretation of g and y.

(b) Perform appropriate tests of significance on the estimated parameters in order to

- investigate each of the following propositions: (i) that the demand for money

increases with the level of real income, (ii) the demand for money is income-elastic,
and (iii) the demand for money is inversely related to the rate of interest.

Exercise 5.4

The file living.xIs contains data for a variety of economic and social measures for a
sample of 20 different countries, where:

Y =GNP per capita, 1984 $US; )
X2 = average % annual inflation rate (1973-84);
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X3 =% of labour force in-agriculture;
X4 = life expectancy at birth, 1984 (years);
XS =number enrolled in secondary education as % of age group.

(a) Insert the data in EViews or Microfit.

(b) Estimate the regression coefficients in each of the following equations:

Yt =81 + BaXot +ur
Y =81+ BaXor + B3 X3r +ue
Yr = B1 + BaXor + B3 X3¢ + BaXar +ut
Yi = B1 + B2Xpt + B3X3p + BaXat + BsXsr + uy
(c) How robust are the estimated coefficients? By this we mean, to what extent do the

estimated values of each g; change as further explanatory variables are added to the
right-hand side of the equation?

(d) Assuming Y to be an index of economic development, carry out tests of significance
on all slope coefficients in the final regression equation model. State clearly the null
and alternative hypotheses for each case and give reasons for setting them like that.

Exercise 5.5

The file Cobb_Douglas_us.wfl contains data for output (Y), labour (L) and stock of
tapital (K) for the United States. Estimate a Cobb-Douglas type regression equation
and check for constant returns to scale using the Wald test.
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Assumption number 8 of the CLRM requires that there are no exact linear relationships
among the sample values of the explanatory variables. This requirement can also be
stated as the absence of perfect multicollinearity. In this chapter we will show how
the existence of perfect multicollinearity leads to the fact that the method of OLS
cannot provide estimates for the population parameters, while we will also examine
the more common and realistic case of imperfect multicollinearity and its effects

on OLS estimators. Finally, we will examine possible ways of detecting problematic
multicollinearity and ways of resolving these problems.

Perfect multicollinearity
To understand mi collinearity consider the following model:

Y=81+82X2+B3X3+u 6.1)
where hypothetical sample values for X, and X3 are given below:

Xy: 1 2 3 4
X3 2 4 6 8 10 12

L3
From this we can easily observe that X3 = 2X3. Therefore, while equation (6.1) seems to
contain two explanatory variables X5 and X3 which are distinct, in fact the information
provided by X3 is not distinct from that of X5 . This is because, as we have seen, X3 is an
exact linear function of X,. When this situation occurs, X, and X3 are said to be'linearly
dependent, which implies that X, and X3 are perfectly collinear. More formally, two
variables X; and X3 are linearly dependent if one variable can be expressed as a linear
function of the other variable. When this occurs then the equation:

§1X2+38:X3 =0 (6.2)

can be satisfied for non-zero values of both §; and §;. In our example we have: X3 =

2X,, therefore (—-2)X5 + (1)X3 = 0, so §; = ~2 and 83 = 1. Obviously if the only

solution in (6.2) is §; = 83 = 0 (usually called the trivial solution) the X; and X3 are
linearly independent. The absence of perfect multicollinearity requires that 6.2 does
not hold exactly.

In the case of more than two explanatory variables (lets take five), the case for linear
dependence is that one variable can be expressed as an exact linear function of one or
more or even all of the other variables. So this time the expression

81X1 +682X9 +83X3 +84X4 +85X5=0 (6.3)

can be satisfied with at least two non-zero coefficients.

An application to better understand this situation can be given by the dummy
variable trap. Take for example X; to be the intercept (so as X1 = 1) and X3, X3, X4
and X5 to be seasonal dummies for quarterly time series data (i.e. X, takes the value
of 1 for the first quarter, zero otherwise; X3 takes the value of 1 for the second quarter,
zero otherwise and so on). Therefore, in this case we have that X2 + X3+ X4+ X5 = 1;

Violating the Assumptions of the CLRM
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and because X; = 1 then X; = X3 + X3 + X4 + Xs. So, the solution is‘61 =1,8=-1
83 =—1,84 = —1, and §5 = —1, and this set of variables is linearly dependent. '

Consequences of perfect multicollinearity

It is fairly easy to show that under conditions of perfect multicollinearity, the OLS
estimators are not unique. Consider, for example, the model:

Y =B + B2X2 + B3X3 + ut ‘ (6.4)

where we have that X3 = 8] + 82X5; and §; and §, are known constants. Substituting
this into (6.4) gives:

Y = g1 + B2X2 + B3(81 +82X2) +u
= (B1 +B381) + (B2 + B382)X2 +u
=01 +02X2+¢ (6.5)

where of course ¥; = (8] + B361) and ¥ = (82 + B352).

Sowhat we can estimate from our sample data is the coefficients ¥; and #,. However,
no matter how good the estimates of #; and 9, will be, we will never be able to
obtain unique estimates of 8;, 82 and #3. In order to obtain those we have to solve
the following equations:

91 = A1 + B3d1

By = Bo + B3z

However, this is a system of two equations and three unknowns f;, f, and £3.
Unfortunately, as in any system that has more variables than equations, this will have
an infinite number of solutions. For example, select an arbitrary value for 83, lets say k.
Then for f3 = k we can find ; and §; as

: Br =1~ &1k

B2 = bz — 82k

Since there are infinite values that can be used for k we can have an infinite number of
solutions for §1, f2 and B3. So under perfect multicollinearity no estimation method
can provide us with unique estimates for the population parameters. In terms of matrix
notation, and for a more general case if one of the columns of matrix X is an exact linear
function of one or more of the other column then the matrix X’X will be singular,
which implies that its determinant will be zero (|X’X| = 0). Since the OLS estimators
are given by:

B =X IXyY
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we need the inverse matrix of X’X which is calculated by the eXpress;
ion

1
X'X) ™ =——[adj(X’
and because |X'X| = 0 then it cannot be inverted.
Another way of showing this is by trying to evaluate the ex -
T
squares estimator, for from (5.13): Pression for the least

Cov(Xy, Y)Var(X3) — Cov(X3, Y)Cov(xz’ X3)

P2 = Var(Xz)Var(X3) — [Cov(_XZ,X3)12

substitutin: X3 =87 + 82X,
S
G, (i anvar® . . - Covis +8;Xp, V)Cov(x

2 =

. 2, 51 + 4
Crrig)Var(dy +82X2) ~ [Cov(Xy, 8, + 52X o) ]2 2X2)

dropping the a<itive §; term:

fo = Cov(Xa, Y)Var(83X3) — Cov(82X3, Y)Cov(x,, 82X,y
Var(X2)Var(82X3) — 1Cov(X3, 6, X,))2

taking out of the Var and Cov the term &3

. Cov(Xs, Y)6§ Var(X3) — 62Cov(X>, Y)52COV(X2 ‘X~,)
2 = s
Var(X2)83 Var(X2) — [62Cov(X, X2))2

and using the fact that Cov(X3, X3) = Var(X>)

by = 82Cov(Xo, Y) Var(X) — 85Cov(Xa, Y) Var( X2)
2 82Var(X2)? — 62 Var(X5)2 =

olo

which means that the regression coefficient is ‘mdeterminate. So

that the consequences of perfect multicollinearity are extremely Se’ri;"e. have seen
perfect multicollinearity seldom arises with actual data. The occurre us. However,
multicollinearity often results from correctable mistakes, such a the dunce of pe.rfect
trap presented before, or including variables asIn X and In x2 i, the Samemmy Yarlable
the more relevant question and the real problem is how to de €quation. So,

al with th .
case of imperfect multicollinearity, which will be examined ip the neme more realistic
section.

Imperfect multicollinearity

Imperfect multicollinearity exists when the explanatory varjapjeg in an i
correlated, but this correlation is less than perfect. Imperfect mu]ticollin:ql_latlon are
expressed as follows: when the relationship among the two explanator arlt?z can l?e
(6.4) for example is X3 = X, + v where v is a random variable that Can)’bVarTables in
the ‘error’ in the exact linear relationship among the two Variables; if he viewed as
values then we can obtain OLS estimates. As a practical note, in reaiity ev as non-z.ero
regression equation will contain some degree of. correlation among its :‘;{Yp{:z;ttxgle
ry
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Multicollinearity 89

variables. For example, time series data frequently contain a common upward time
trend causing variables of this kind to be highly correlated. So, the problem is to identify
whether the degree of multicollinearity observed in one relationship is sufficiently high
as to create problems. Before proceeding to that point we need to examine the effects
of imperfect multicollinearity in the OLS estimators.

Consequences of nnperfeci
multicollinearity

In general, when imperfect multicollinearity exists among two or more explanatory
variables, not only are we able to obtain OLS estimates but these estimators will also
be the best (BLUE). However, the BLUEness of these estimators should be examined
in a more detailed way. Implicit in the BLUE property is the efficiency of the OLS
coefficients. As we will show later, although OLS estimators are those with the smallest
possible variance of all linear unbiased estimators, imperfect multicollinearity affects
the attainable values of these variances and therefore estimation precision. Using the
- matrix solution again, imperfect multicollinearity implies that one column of the
X matrix is now an approximate linear function of one or more of the others. Therefore,
now matrix |X’X| will be close to singularity which implies again that its determinant
will be close to zero. As we have said before, when forming the inverse (X'X)~! we have
to divide by the reciprocal of [X X|, which means that the elements (and partlcu]a rly the
diagonal elements) of (X’ X)~1 will be large. Hence, because the variance of 4 is given by:

¢

var(f) = o2(X'X)~! (6.6)

we see that thé variances and consequently the standard errors of the OLS estimators
will tend to be large when there is a relatively high degree of multicollinearity. In other
words, while OLS provides linear unbiased estimators with the minimum variance
property, these variances are often substantially larger than those obtained in the
absence of multicollinearity.

To explain this in more detail consider the expression that gives the variance of the
partial slope of variable X; which is given by (for the case of two explanatory variables):

2
~ o
= = 6.7
. vartp2) Y (X2~ X2)2(1 —r2) (6.7)
R 2
var(f3) = d (6.8)

Y (X3 - X3)2(1-r?)

where rZ is the square of the sample correlation coefficient between X, and X3. It can
be seen that (keeping other things equal) a rise in r (which means higher degree of
multicollinearity) will lead to an increase in the variances and therefore to an increase
in the standard errors of the OLS estimators.

Extending this to more than two explanatory variables, the variance of g; will be
given by:

ol

X 2
L(Xj - Xp2(1 - R?)

var(f;) = (6.9)
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where Ri2 is the coefficient of determination from the auxiliary regression of Xj on
all other explanatory variables in the original equation. The expression can be re-
written as:

2 1

var(f;) = 4
PTG~ Xp2 - R

(6.10)

The second term in this expression is called the variance inflation factor (VIF) for Xj:

1

VIF; = —————
(1-RH

J

. ‘
This name is given because it is easy to show that cases of high degrees of'

intercorrelation among the Xs will result in a high value of Ri2 which inflates the
variance of §j. If R? = O then VIF = 1 (which is its lowest value). As R? rises, VIFj

rises at an increasing rate, approaching infinity in the case of perfect multicollinearity
(RI.2 = 1). The table below presents various values for Ri2 and the corresponding VIF;.

Rf VIF;
1
0 1
0.5 2
0.8 5
0.9 10
0.95 20 K]
0.975 40
0.99 100
0.995 200
0.999 1000

VIF values that exceed 10 are generally viewed as evidence of the existence of
problematic multicollinearity as we will discuss below. From the table we can see that
this occurs when R? > 0.9. Concluding, imperfect multicollinearity can substantially
diminish the precision with which the OLS estimators are obtained. This has obviously
more negative effects on the estimated coefficients. One important consequence is

that large standard errors will lead to confidence intervals for the 5,' parameters that are
calculated by:

B;i & typ -k Sa
ﬁ[ a,n—~k i
to be very wide, increasing uncertainty about the true parameter values.

Another consequence has to do with the statistical inference regarding the OLS
estimates. Recall that the t-ratio is given by t = ,é,-/sﬁ.. The inflated variance associated

I

with multicollinearity, raises the denominator of this statistic causing its value to
fall. Therefore, we might have t-statistics which suggest the insignificance of the
coefficients while this is only due to multicollinearity. Note here that the existence
of multicollinearity does not necessarily mean small t-stats. This can be because the
variance is also affected by the variance of X; (presented by writing ) _(X; — X,-)Z) and

Violating the Assumptions of the CLRM
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the residual’s variance (g 2). Multicollinearity affects not only the variances of the OLS.
estimators, but the covariances as well. By this fact, the possibility of sign reversal
arises. Also, when severe multicollinearity is present, the addition or deletion of just
a few sample observations can substantially change the estimated coefficient causing
‘unstable’ OLS estimators. Concluding, the consequences of imperfect multicollinearity .
can be summarized as follows: C

1 Estimates of the OLS coefficients may be imprecise in the sense that large standard
errors lead to wider confidence intervals.

2 Affected coefficients may fail to attain statistical signiﬁéance due to low t-statistics,
which may lead us to wrongly drop an influential variable from our regression

model.
3 The signs of the estimated coefficients can be the opposite of those expected.

4 The addition or deletion of a few observations may result in substantial changes in
the estimated coefficients.

Detecting problematic multicollinearity

Simplé correlation coefficient

Multicollinearity is caused by intercorrelations among the explanatory variables.
Therefore, the most logical way in order to detect multicollinearity problems would
appear to be through the correlation coefficient for those two variables. When an
equation contains only two explanatory variables, the simple correlation coefficient
is an adequate measure for detecting multicollinearity. If the value of the correlation
coefficient is large, then problems from multicollinearity might emerge. The problem
here is to define what value can be considered as large, and most researchers appear to
consider the value of 0.9 as the threshold beyond which problems are likely to occur.
This can be understood from the VIF for a value of r = 0.9 as well.

R? from auxiliary regressions

In the case where we have more than two variables, the use of the simple correlation
coefficient to detect bivariate correlations and therefore problematic multicollinearity is
highly unreliable. This is because an exact linear dependency can occur among three or
more variables simultaneously. Therefore, in these cases we use auxiliary regressions.
Candidates for dependent variables in auxiliary regressions are those displaying the
symptoms of problematic multicollinearity discussed in the previous section. If a near-
linear dependency exists, the auxiliary regression will display a small equation standard
error, a large R% and a statistically significant t-value for the overall significance of
the regressors.
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Computer examples
Example 1: induced multicollinearity

The file multicol.wf1 contains data for three different variables, namely Y, X2 and X3,
where X2 and X3 are constructed to be highly collinear. The correlation matrix of the
three variables can be obtained from EViews by opening all three variables together in
a group, by clicking on Quick/Group Statistics/Correlations. EViews requires us to
define the series list that we want to include in the group and we type:

Y X2 X3

and then click <OK>. The results will be as shown in Table 6.1.
The results are of course symmetrical, while the diagonal elements are equal to 1

because they are correlation coefficients of the same series. We can see that+ is highly )

positively correlated with both X2 and X3, and also that X2 and X3 are nearly the same
variables (the correlation coefficient is equal to 0.999995, i.e. very close to 1). From this
we obviously suspect that there will be a very high possibility of the negative effects
of multicollinearity.

Estimating a regression with both explanatory variables by typing in the EViews
command line:

ls y ¢ x2 x3

Table 6.1 Correlation matrix

Y X2 X3 4
Y 1 0.8573686 0.857437
X2 0.8573686 1 0.999995

X3 0.8574376 0.999995 1

Table 6.2 Regression results (full model)

Dependent Variable: Y
Method: Least Squares
Date: 02/17/04 Time: 01:53
Sample: 1 25

Included observations: 25

Variable Coefficient Std. Error t-Statistic Prob.

o] 35.86766 19.38717 1.850073 0.0778
X2 —6.326498 33.75096 —-0.187446 0.8530
X3 1.789761 8.438325 0.212099 0.8340
R-squared 0.735622 Mean dependent var 169.3680
Adjusted R-squared 0.711587 S.D. dependent var 79.05857
S.E. of regression 42.45768 Akaike info criterion 10.44706
Sum squared resid 39658.40 Schwarz criterion 10.569332
Log likelihood -127.5882 F-statistic 30.60702
Durbin—-Watson stat 2.875574 Prob(F -statistic) 0.000000
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we get the results shown in Table 6.2. Here we see that the effect of X2 on Y is negative
and the effect of X3 is positive, while both variables appear to be insignificant. This
latter result is very strange considering the fact that both variables are highly correlated
with Y as we have seen above. However, estimating the model including only X2, either
by typing on the EViews command line: :

ls ¥y © x2

or by clicking on the Estimate button of the Equation Results window and respecifying.
the equation by excluding/deleting the X3 variable, we get the results shown in
Table 6.3. This time we see that X2 is positive and statistically significant (with a t
statistic of 7.98). '

Reestimating the model, this time including only X3, we get the results shown in
Table 6.4. This time we see that X3 is highly significant and positive.

Table 6.3 Regression results (omittirig X3)

Dependent Variable: Y
Method: Least Squares
Date: 02/17/04 Time: 01:56
Sample: 125

Included observations: 25

Variable Coefficient Std. Error t-Statistic - Prob.

c 36.71861 18.56953 1.977358 0.0601
X2 0.832012 0.104149 7.988678 0.0000
R-squared ' 0.735081 Mean dependent var 169.3680
Adjusted R-squared 0.723563 S.D. dependent var 79.05857
S.E. of regression 41.56686 Akaike info criterion 10.369°0
Sum squared resid 39739.49 Schwarz criterion 10.46661
Log likelihood -127.6138 F-statistic 63.81897

Durbin—Watson stat 2.921548 Prob(F-statistic) 0.000000

Table 6.4 Regression results (omitting X2)

Dependent Variable: Y
Method: Least Squares
Date: 02/17/04 Time: 01:58
Sample: 125

Included observations: 25

Variable Coefficient Std. Error t-Statistic * Prob.

c 36.60968 18.57637 1.970766 0.0609
X3 0.208034 0.026033 7.991106 0.0000
R-squared 0.735199 Mean dependent var 169.3680
Adjusted R-squared 0.723686 S.D. dependent var 79.05857
S.E. of regression 41.55758 Akaike info criterion 10.36866
Sum squared resid 39721.74 Schwarz criterion 10.46617
Log likelihood -127.6082 F-statistic 63.85778

Durbin—Watson stat 2.916396 Prob(F-statistic) 0.000000
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Table 6.5 Auxiliary regression results (regressing X2 to X 3)

Dependent Variable: X2
Method: Least Squares
Date: 02/17/04 Time: 02:03
Sample: 125

Included observations: 25

Variable Coefficient Std. Error - t-Statistic Prob.

[ —-0.117288 0.117251 -1.000310 0.3276
X3 0.250016 0.000164 1521.542 0.0000
R-squared > 0.999990 Mean dependent var 159.4320
Adjusted R-squared 0.999990 S.D. dependent var 81.46795
S.E. of regression " 0.262305 Akaike info criterion - 0.237999
Sum squared resid 1.582488 Schwarz criterion *  0.335509.
Log liketihood = 0.974992 F-statistic 2315090.
Durbin-Watson stat 2.082420 Prob(F -statistic) 0.000000

Finally, running an auxiliary regression of X2 on a constant and X3 yields the
results shown in Table 6.5. Here note that the value of the ¢ statistic is extremely high
(1521.542!) while R? is nearly 1.

The conclusions from this analysis can be summarized as follows:

1]
1 The correlation among the explanatory variables was very high, which might suggest

that multicollinearity is present and that it might be serious. However, we mentioned

in the theory that looking just at the correlation coefficients of the explanatory _

variables is not enough to detect multicollinearity.

2 Standard errors or t-ratios of the estimated coefficients changed from estimation

to estimation, suggesting that the problem of mult:collmeanty in this case was
really serious.

3 The stability of the estimated coefficients was also very problematic, with

negative and positive coefficients being estimated for the same variable in two
alternative specifications.

4 R? from auxiliary regressions are substantially high suggesting that multicollinearity
really exists and that it unavoidably affects our estimations.

Example 2: with the use of real economic data

Let us now examine the problem of multicollinearity once more, this time using
real ecoriomic data. The file imports_uk.wfl contains quarterly data for four different
variables, namely, imports (IMP), gross domestic product (GDP), the consumer price
index (CPI) and the producer price index (PPI) for the UK economy.

The correlation matrix of the three variables can be obtained from EViews by
opening all the variables together in a group, by clicking on Quick/Group
Statistics/Correlations. EViews asks us to define the series list that we want to include
in the group and we type in:

imp gdp cpi ppi
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Table 6.6 Correlation matrix
IMP GDP CPI PPI

IMP  1.000000 0.979713 0.916331 0.883530
GDP 0.979713 1.000000 0.910961 0.899851
CPI 0916331 0.910961 1.000000 0981983
PPl 0.883530 0.899851 0.981983 1.000000

Table 6.7 First model regression resuits (including only CP/)

Dependent Variable: LOG(IMP)
Method: Least Squares

Date: 02/17/04 Time: 02:16
Sample: 1990:1 1998:2
Included observations: 34

Variable Coefficient Std. Error t-Statistic Prob.

c 0.631870 0.344368 1.834867 0.0761
LOG(GDP) 1.926936 0.168856 11.41172 0.0000
LOG(CPI) 0.274276 0.137400 1.996179 i 0.0548
R-squared 0.966057 Mean dependent var 10.81363
Adjusted R-squared 0.963867 S.D. dependent var 0.138427
S.E. of regression 0.026313 Akaike info criterion —-4.353390
Sum squared resid 0.021464 Schwarz criterion —-4.218711
Log likelihood 77.00763 F-statistic . 441.1430
Durbin-Watson stat 0.475694 Prob(F-statistic) 0.000000

]

and then click <OK>. The results are shown in Table 6.6. From the correlation matrix
we can see that in general the correlations among the variables are very high, but the
highest correlation is among CPI anid PPl (0.98) as expected.

Estimating a regression with the logarithm of imports as the dependent variable and
the logarithms of GDP and CPI only as explanatory variables by typing in the EViews
command line:

1s log({imp) c log{gdp) log(cpi)

we get the results shown in Table 6.7. The R2 of this regression is very high, and both
variable$ appear to be positive with the log(GDP) being very highly significant as well.
The log(CPI) is also significant but only marginally.

Estimating, however, the model including the logarithm of PPI as well, either by
typing on the EViews command line:

1ls log{imp) c log(gdp} logl{cpi} log{ppi)

or by clicking on the Estimate button of the Equation Results window and respecifying
the equation by adding the log(PPI) variable in the list of variables, we get the results
shown in Table 6.8. Now log(CPI) is highly significant, while log(PPI) (which is highly
correlated with log(CPI) and therefore should have more or less the same effect on
log (IMP)) is negative and highly significant. This of course is due to the inclusion of both
priceindices in the same equation specification, due to the problem of multicollinearity.
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Table 6.8 Second model regression results {(including both CP/ and PP/)

Dependent Variable: LOG(IMP)
Method: Least Squares

Date: 02/17/04 Time: 02:19
Sample: 1990:1 1998:2
Included observations: 34

Variable Coefficient Std. Error t-Statistic’ Prob.
c 0.213906 0.358425 0.596795 0.5551
LOG(GDP) 1.969713 0.156800 12.56198 0.0000
LOG(CPI) 1.025473 0.323427 3.170645 . 0.0035
LOG(PPI) —0.770644 0.305218 -2.524894 . 0.0171
R-squared 0.972006 Mean dependent var 10.81363
Adjusted R-squared 0.969206 S.D. dependent var 0.138427
S.E. of regression 0.024291 Akaike info criterion ~4.487253
Sum squared resid 0.017702 Schwarz criterion —~4.307682
Log likelihood 80.28331 F-statistic 347.2135
Durbin — Watson stat 0.608648 Prob(F-statistic) 0.000000
Table 6.9 Third model regression results (including only PP/) '
Dependent Variable: LOG(IMP)
Method: Least Squares
Date; 02/17/04 Time: 02:22 P
Sarnple: 1990:1 1998:2
Included observations: 34
Variable Coefficient Std. Error t-Statistic Prob.
C 0.685704 0.370644 1.850031 0.0739
LOG(GDP) 2.093849 0.172585 12.13228 0.0000
LOG(PPI) 0.119566 0.136062 0.878764 0.3863
R-squared 0.962625 Mean dependent var 10.81363
Adjusted R-squared 0.960213 S.D. dependent var 0.138427
S.E. of regression 0.027612 Akaike info criterion —4.257071
Sum squared resid 0.023634 Schwarz criterion —4.122392
Log likelihood 75.37021 F-statistic 399.2113
Durbin-Watson stat 0.448237 Prob(F-statistic) 0.000000

Estimating the equation this time without log(CPI) but with log(PPI) we get the
results shown in Table 6.9, which shows that log(PPI) is positive and insignificant! So,
it is clear that the significance of log(PPI) in the specification above was due to the
linear relationship that connects the two price variables.

So, the conclusions from this analysis are similar to the case of the collinear data set
in Example 1 above, and can be summarized as follows:

1 The correlation among the explanatory variables was very high.

PRGSO
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2 Standard errors or t-ratios of the estimated coefficients changed-from estimation

to estimation.
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3 The stability of the estimated coefficients was also quite problematic, with
negative and positive coefficients being estimated for the same variable in two
alternative specifications.

In this case it is clear that multicollinearity is present, and that it is also serious,
because we included two price variables which ‘are quite strongly correlated. We
leave it as an exercise for the reader to check the presence and the seriousness of
multicollinearity only with the inclusion of log(GDP) and log(CPI) as explanatory
variables (Exercise 6.1 below).

Suesiions ond exercises
Questions

1 Define multicollinearity and explain its consequences in simple OLS estimates.

2 In the following model:
Y =81+ B2X2 + B3X3 + BaXg + Ut

assume that X4 is a perfect linear combination of X5. Show that in this case it is
impossible to obtain OLS estimates.

3 From Chapter § we know that 8 = (X’X)~1(X’Y). What happens to 8 when there is
perfect collinearity among the Xs? How would you know if perfect collinearity exists.

4 Explain what the VIF is and what is its use.

5 Show how we can proceed in order to detect possible multicollinearity in a regression
model.

Exercise 6.1

The file imports_uk.wfl contains quarterly data for imports (imp), gross domestic
product (gdp) and the consumer price index (cpi) for the USA. Use these data to estimate
the following model:

Inimpy = By + B2 Ingdpy + B3 In cpiy + uy

Check whether there is multicollinearity in the data. Calculate the correlation matrix
of the variables and comment regarding the possibility of multicollinearity. Also, run
the following additional regressions:

Inimpy = By + B2 Ingdp; + vy
Inimpy = B1 + B In ¢piy + uy
Ingdp: = B1 + B2 In cpiy + uy

What can you conclude about the nature of multicollinearity from these results?
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Exercise 6.2

The file imports_uk_y.wfl contains yearly observations of the variables mentioned in
Exercise 6.1. Repeat Exercise 6.1 using the yearly data. Do your results change?

Exercise 6.3

The file imports_us.wfl contains data for imports (I), gross national product (Y) and

the consumer price index (P) for the USA. Use these data to estimate the following
model: '

Inly =8y +B2InY + B83InP; + 1y

Check whether there is multicollinearity in the data. Calculate the correlation matrix

of the variables and comment regarding the possibility of multicollinearity. Also, run
the following additional regressions: '

Inl; =81+ 82InY; +u;
Inly = By +B2InPp +uy
lnYt =:ﬂ1 +ﬂ2]ﬂpt+llt

R

What can you conclude about the nature of multicollinearity from these results?

Exercise 6.4

The file cars.wfl contains data on new cars sold in the United States as a function
of various variables. Develop a suitable model for estimating a demand function for
cars in the United States. If you include all variables as regressors, do you expect to
find multicollinearity and why? Provide alternative estimated models and check their

respective coefficients. Do they change significantly? Explain how you could attempt
to resolve this problem.

Exercise 6.5

Use the data in the file money_uk02.wf1 to estimate the parameters «, 8 and y, in the
eguation below:

InM/P)y =a+8InYs +yInRy +uy

where Ry; is the 3-months treasury bill rate. For the rest of the variables the usual
notation applies. h

(@) Use as an additional variable in the above equation Ry; which is the dollar
interest rate.

J—

P—
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(b) Do you expect to find multicollinearity and why?

(c) Calculate the correlation matrix of all the variables. Which correlation coefficient
is the largest?

(d) Calculate auxiliary regressions and conclude whether the degree of multicollinearity
in (a) is serious or not. i
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Introduction: what is heierosked_qsﬁcil'y?

A good start might be made by first defining the words homoskedasticity and
heteroskedasticity. Some authors spell the former homoscedasticity, but McCulloch
(1985) appears to have settled this controversy in favour of homoskedasticity, based
on the fact that the word has a Greek origin. From our teaching experience we have
realized that students are somehow ‘afraid’ of the term heteroskedasticity, and that they
use the term quite a lot when they want to demonstrate the difficulty of econometrics.
We think, therefore, that it is essential to make clear both the meaning and origin of
the word. On the positive side, Studenmund (2001) very nicely states that, although
difficult to spell, it provides a really impressive comeback when parents ask ‘what’d you
learn for all that money?’ :

Both words can be split into two parts, having as a first part the Greek words homo
(which means same or equal) or hetero (which means different or unequal), and
as a second part the Greek word skedastic (which means spread or scatter). So,
homoskedasticity means equal spread, and heteroskedasticity, on the other hand,
means unequal spread. In econometrics the measure we usually use for spread is the
variance, and therefore heteroskedasticity deals with unequal variances.

Recalling the assumptions of the classical linear regression model presented
in Chapters 4 and 5, assumption 5 was that the disturbances should have a
constant (equal) variance independent of i, given in mathematical form by the
following equation:*

var(u;) = a? (7.1)

Therefore, having an equal variance means that the disturbances are homoskedastic.

However, it is quite common in regression analysis to have cases where thi.
assumption is violated. (In general heteroskedasticity is more likely to take place in
a cross-sectional framework. However, this does not mean that heteroskedasticity in
time series models is impossible.) In such cases we say that the homoskedasticity
assumption is violated, and that the variance of the error terms depends on exactly
which observation is discussed, i.e.:

var(u;) = aiz (7.2)

Note that the only difference between (7.1) and (7.2) is the subscript i attached to the
a2, whict! means that the variance can change for every different observation in the
samplei=1,2,3,...,n

In order to make this clearer, it is useful to go back to the simple two-variable
regression model of the form:

Yi=a+BX;i+u; (7.3)

Consider, first, a scatter plot with a population regression line of the form given in
Figure 7.1 and compare it with that of Figure 7.2. Points X, X, and X3 in Figure 7.1,
although referring to different values of X(X| < X; < X3), have an effect on Y that

* Because heteroskedasticity is often analysed in a pure cross section setting in most of
this chapter we will index our variables by i rather than t.
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0 ' X, X, X; X

Figure 7.1 Data with a constant variance

0 X, X, X X

Figure 7.2 An example of heteroskedasticity with increasing variance

they are concentrated closely around the regression line with an equal spread above
and below the regression line (j.e. equal spread=homoskedastic).

On the other hand, points X;, X3 and X3 in Figure 7.2 again refer to different values of
X but, this time, it is clear that the higher the value of X the higher is the ‘speed’ around
theline. In this case the spread is different or unequal for each X; (given from the dashed
lines above and below the regression line), and therefore we have heteroskedasticity. It
is now clear that in Figure 7.3 we have the opposite case (for lower X; the variance is
higher).

An example for the first case of heteroskedasticity (depicted in Figure 7.2) can be
given in terms of income and consumption patterns. People with low levels of income

income will be spent on buying food, clothing and transportation; so, at low levels

Violating the Assumptions of the CLRM
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0 X, X, X, X

Figure 7.3 An example of heteroskedasticity with falling variance

of income, consumption patterns will not differ much and the spread will be more or
less low. On the other hand; rich people have a much wider choice and flexibility in
spending. Some might consume a lot, some might be large savers or investors in the
stockmarket, implying that the average consumption (given by the regression line) can
be quite different from the actual consumption. So the spread for high incomes will be
definitely higher than that for lower incomes.

An example of the opposite case (such as the one depicted in Figure 7.3) can
be attributed either to improvements in data-collection techniques (think here of
large banks that have sophisticated data-processing facilities and therefore are able
fo calculate with fewer errors customer estimates compared to smaller banks with no
such facilities), or to error-learning models where experience decreases the chances of
making large errors (think for example of the Y variable being score performance on a
test and the X variable being the times tiiat individuals have taken the test in the past,
or hours of preparation for the test; the larger the X, the smaller the variability in terms
of Y will be).

The aim of this chapter is, after examining the consequences of heteroskedasticity on
OLS estimators, to present tests for detecting heteroskedasticity in econometric models,
as well as to show ways of resolving heteroskedasticity:.

Consequences of heteroskedasticity on
OLS estimators

A general approach

Consider the classical linear regression model:

Yi= 81+ B2X2i + B3X3i + - + B Xki + Ui (7.4)

e
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If the error term wu; in this equation is known to be heteroskedastic, then the
consequences on the OLS estimators gs (or 8), can be summarized as follows:

1 The OLS estimators for the ﬁs are still unbiased and consistent. This is because none
of the explanatory variables is correlated with the error term. So, a correctly specified
equation that suffers only from the presence of heteroskedasticity will give us values
of Bs which are relatively good.

2 Heteroskedasticity affects the distribution of the s increasing the variances of the
distributions and therefore making the estimators of the OLS method inefficient
(because it violates the minimum variance property). To understand this consider

Figure 7.4 which shows the distribution of an estimator § with and without"

heteroskedasticity. It is obvious that heteroskedasticity does not cause bias because
B is centred around B (so E(8) = p) but widening the distribution makes it no
longer efficient. So OLS is no longer the most efficient estimator. )

3 Heteroskedasticity also affects the variances (and therefore the standard errors as
‘well) of the estimated Bs. In fact the presence of heteroskedasticity causes the OLS
method to underestimate the variances (and standard errors) hence leading to higher

* than expected values of t statistics and F statistics. Therefore, heteroskedasticity has
a wide impact on hypothesis testing: neither the t statistics or the F statistics ate
reliable any more for hypothesis testing because they will lead us to reject the null
hypothesis too often.

* A mathematical approach

We want to see how the presence of heteroskedasticity affects the OLS estimators. In
order to do that, first we will show what happens in the simple regression model, then
we will present the effect of heteroskedasticity in the form of the variance—covariance

B

Figure 7.4 The effect of Heteroskedasticity on an estimated parameter

——
i

,___
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matrix of the error terms of the multiple regression model, and after that we will be
able to show with the use of matrix algebra the effect of heteroskedasticity in a multiple
regression framework. :

Effect on the OLS estimators of the simple regression model

So, for the simple linear regression model - with only one explanatory variable and a
constant regressed on Y, as the one we analysed in Chapter 4 - it is easy to show that the
variance of the slope estimator will be affected by the presence of heteroskedasticity.
Recall from equation (4.56) for the variance of the OLS coefficient B, we
had that:

2
Var(f) = Z (£;2> o2

i

2.2
P&
_ZXot 2 ] (7.5)

(£

this is only in the case when the error terms are homoskedastic so that the variance
of the residuals is constant o2. The only difference between (4.56) and the equation
presented here is that we use the subscript i instead of t, because in this chapter we
mainly have models of cross-sectional data. This is because heteroskedasticity is more
likely to appear in cases of cross-sectional data, as we have mentioned above. In the
case of heteroskedasticity, the variance changes with every individual observation i,
and therefore the variance of 8 will now be given by:

2

n ; Y x26? :

Var(B) = E ( Xi > g2 = &L (7.6)
)0 (o) |

which is clearly different from (7.5). Now we are able to explain the bias that occurs in
the presence of heteroskedasticity. If heteroskedasticity is present and we calculate the
variance of given by the standard OLS formula (7.5) instead of the correct (7.6), then
we will be bound to underestimate the true variance and standard error of B. Therefore,
we will have t-ratios that will be falsely high, incorrectly leading us to the conclusion
that an explanatory variable X is statistically significant, while its impact on Y is in
fact zero. Also, the confidence intervals for g8 will be narrower than their correct values,
leading us again to think that we have a higher precision in our estimates than the true,
statistically justifiable case.

Effect on the variance—covariance matrix of the error terms

Second, it is useful to see how the presence of heteroskedasticity will affect the form
of the variance-covariance matrix of the error terms of the classical linear multiple
regression model.
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Recall from Chapter 5 (p. 66ff.) that the variance-covariance matrix of the errors,
because of assumptions 5 and 6, looks like:

2 0 0 .. o0
0 2 0 0 o

Euuy=]10 0 o2 0 | =o21, (7.7)
0 0 0 .. o2

where I is an n x n identity matrix.

The presence of heteroskedasticity, states clearly that assumption 5 is no longer valid. g

Therefore, the variance~covariance matrix of the residuals will no longer look like the
classical case, but will be as follows:

a2 0 0 0
0 o2 0 0 ©

Ewu)=[0 0 o? 0of|=¢ - (7.8)
.
0O 0 0 op

Effect on the OLS estimators of the multiple regression model

+

Recall that the variance—covariance matrix of the OLS estimators 8 is given by:

Cov(B) = El( — BY(B — B)]
= E{[(X’X) " 1 X u)[(X'X) "1 X 1]}
= E{(X’X) "1 X uw’' X (X' X)~1}*
= X'X) " X' Euu)X(x’'X)" 1
= X'X)"Ix'exxx)-1 (7.9)

which is totally different from the classical expression a2(X’X)~1. This is because
assumption 5 no longer holds, and of course 2 denotes the new variance-covariance
matrix presented above, whatever form it may happen to take. Therefore, using
the classical expression to calculate the variances, standard errors and t-statistics of
the estimated Bs will lead us to the wrong conclusions. Formulae 7.9 forms the basis
for what is often called ‘Robust’ inference, i.e. the derivation of standard errors and
‘t’ statistics which are correct even when some of the OLS assumptions are violated.
Basically what happens is that we assume a particular form for the @ matrix and then
use (7.9) to calculate a corrected covariance matrix.

* This is because (AB) = B'A’.
! This is because, according to assumption 2, the Xs are non-random.
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Deiecling heleroskédasliciiy

In general there are two ways of detecting the presence of heteroskedasticity. The first is
by inspection of different graphs, and this is called the informal way, while the second
way is by applying appropriate tests that can detect heteroskedasticity. The informal
way is the topic of the next section. The formal methods include various tests for the
presence of heteroskedasticity, some of which will be presented in later sections.

The informal way

In the informal way, and in the two variable case that we have seen before, it
is obvious that we can easily detect heteroskedasticity by simple inspection of the
scatter plot. However, this cannot be done in the multiple regression case. In this
case useful information regarding the possible presence of heteroskedasticity can be
given by plotting the squared residuals against the dependent variable and/or the
explanatory variables.

Gujarati (1978) presents cases in which from the pattern of graphs of this kind, we
can deduct useful information regarding heteroskedasticity. The possible patterns are
presented in Figures 7.5-7.9 respectively. In Figure 7.5 we see that there is no systematic
pattern among the two variables, which suggests that we have a ‘healthy’ model, or at
least one that does not suffer from heteroskedasticity. In the next figures, though we
have evidence of heteroskedasticity, in Figure 7.6 we see a clear pattern that suggests
heteroskedasticity, in Figure 7.7 there is a clear linear relationship between Y; (or X;) and
uiz, while Figures 7.8 and 7.9 exhibit a quadratic relationship. Knowing the relationship
hetween the two variables can be very useful because it enables us to transform the data
in such a manner as to eliminate the heteroskedasticity.

a2

0 )A’orX,

Figure 7.5 A ‘healthy’ distribution of squared residuals
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Figure 7.6 An indication of the presence of heteroskedasticity
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Figure 7.7 Another indi

The Breusch—Pagan LM test

\?orX,-

cation of Heteroskedasticity

Breusch and Pagan (1979) developed a Lagrange Multiplier (LM) test for
heteroskedasticity. Let’s assume that we have the following model:

Yi= g1+ B2X2i + B3X3i +--- + B Xki + 1 (7.10)

where var(y;) = oiz. The Breusch-Pagan test involves the following steps:

Step1 Run a regression of model (7.
regression equation.

10) and obtain the residuals @; of this
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(4] ?orX,-

Figure 7.8 A non linear relationship leading to heteroskedasticity

0 ?orXi

Figure 7.9 Another form of non linear heteroskedasticity

Step 2 Run the following auxiliary regression:

.

ﬁ%:al+a222,~+a3Z3,'+---+apr,'+V,' (7.11)

where Zy; is a set of variables that we think determine the variance of the
error term. (Usually for Z; we use the explanatory variables of the original
regression equation, i.e. the Xs.)

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of
homoskedasticity is that:

Hy: ay=ay=---=ap=0 , (7.12)
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while the alternative is that at least one of the as is different from zero and
that at least one of the Zs affects the variance of the residuals which will be
different for different t.

Step 4 Compute the LM = nR? statistic, where n is the number of observations used in
order to estimate the auxiliary regression in step 2, and R? is the coefficient of
determination of this regression. The LM statistic follows the x2 distribution
with p — 1 degrees of freedom.

.

Step 5 Reject the null and conclude that there is significant evidence of hetero-
skedasticity when LM-statistical is bigger than the critical value (LM-stat >
X;::Z—l,u)' Alternatively, compute the p value and reject the null if the p value is
less than the level of significance « (usually & = 0.05).

In this - as also in all other LM tests that we will examine later - the auxiliary equation
is implicitly making an assumptjon about the form of heteroskedasticity we expect
to find in the data. There are three more LM tests which introduce different forms
of auxiliary regressions, suggesting different functional forms about the relationship
of the squared residuals (il?, which is a proxy for o2 since it is not known) and the
explanatory variables. s

The Breusch—Pagan test in EViews

~ The Breusch-Pagan test can be performed in EViews as follows. First we need to estimate
the regression equation model with OLS; so we need to use the command

ls y ¢ x1 x2 x3 ... xk

where y is our dependent variable and x1 to xk are our explanatory variables. Then to
obtain the residuals we use the generate (genr) command as follows:

genr ut=resid

Note that it is important to type and execute this command immediately after obtaining
the equation results so that the resid vector has the residual of the equation estimated
previously. Here ut is just a name we provide for the error terms of this model.

We then need to calculate the squared residuals as follows:

genr utsg=ut”2
and after that obtain the estimate of the auxiliary regression from the command:
ls utsg c z1 z2 23 ... zp

To compute the LM statistic we need to do the calculation LM =n * R% where n is
the number of observations and R? is the coefficient of determination of the auxiliary
regression. ,

After that we need to compare LM -critical with LM-statistical and conclude.
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The Glesjer LM test

Glesjer's (1969) test involves the following steps (Note that the steps are the same as the
Breusch-Pagan test above with the only exception of step 2 that involves a different
auxiliary regression equation.):

Step 1 Run a regression of model (7.10) and obtain the residuals &; of this regression
equation.

Step 2 Run the following auxiliary regression:

litj| = a1 +azZi + a3Z3i + - - + apZp; + v; (7.13)

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of
homoskedasticity is that:

H(): a1=a2=---=ap=0 (7.14)

while the alternative is that at least one of the as is different from zero.

Step 4 Compute the LM = nR? statistic, where n is the number of observations used in
order to estimate the auxiliary regression in step 2, and R? is the coefficient of
determination of this regression. The LM statistic follows the x2 distribution
with p — 1 degrees of freedom.

Step 5 Reject the null and conclude that there is significant evidence of
heteroskedasticity when LM-statistical is bigger than the critical value
(LM -stat > X;—l,a)' Alternatively, computc the p-value and reject the null if
the p-value is less than the level of significance « (usually o = 0.05).

The Glesjer test in EViews

The Glesjer test can be performed in EViews as follows. First we need to estimate the
regression equation model with OLS, so, we need to use the command:

lsw ¢ X1 x2 x3 ... xk

where y is our dependent variable and x1 to xk are our explanatory variables. Then to
obtain the residuals we use the generate (genr) command as follows:

genr ut=resid
Note that it is important to type and execute this command immediately after obtaining
the equation results so that the resid vector has the residual of the equation estimated
previously. Here ut is just a name we provide for the error terms of this model. We then

need to calculate the squared residuals as follows:

genr absut=abs{ut)
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and after that obtain the estimate of the auxiliary regression from the command:

1ls absut c 21 z2 z3 ... zp

To compute the LM statistic we need to do the calculation LM = 1 % RZ, where 1 is

the number of observations and RZ is the coefficient of determination of the auxiliary
regression.

After that we need to compare LM -critical with LM-statistical and conclude

The Harvey—Godfrey LM test '

Harvey (1976) and Godfrey (1978) developed the following test:

Step 1 Run a regression of model (7.10) and obtain the residuals &; of this regression
equation.

Step 2 Run the following auxiliary regression:

]
]n(ft,-z) =ay +axZy+azZsi+---+aplyi + Vi - (7.15)

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of
homoskedasticity is that:

HOZ a1=a2=-.-=ap=0 (716)

while the alternative is that at least one of the gs is different from zero.

Step4 ComputethelM = nR? statistic, where 7 is the number of observations used in
order to estimate the auxiliary regression in step 2, and RZ is the coefficient of
determination of this regression. The LM statistic follows the x? distribution
with p — 1 degrees of freedom.

Step 5 Reject the null and conclude that there is significant evidence of hetero-
skedasticity when LM-statistical is bigger than the critical value (LM-stat >
X[%—l,a)' Alternatively, compute the p-value and reject the null if the p-value
is less than the level of significance o (usually o = 0.05).

The Harvey-Godirey test in EViews

The Harvey-Godfrey test can be performed in EViews as follows. First we need to
estimate the regression equation model with OLS, so we use the command:

s y ¢ x1 x2 x3 ... xk

where y is our dependent varlable and x1 to xk are our explanatory variables. Then to
obtain the residuals we use the generate (genr) command as follows:

genr ut=resid

.——y
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Note that it is important to type and execute. this command immediately after
obtaining the equation results so that the resid vector has the residual of the equation
estimated previously. Here ut is just a name we provide for the error terms of this model.

We then need to calculate the squared residuals as follows:

genr utsqg=ut”2

and after that obtain the estimate of the auxiliary regression from the command: .

1s log(utsqg) c zl 22 23 ... zZp

To compute the LM statistic we need to do the calculation LM = n * RZ, where n is
the number of observations and R? is the coefficient of determination of the auxiliary

regression.
After that we need to compare LM-critical with LM-statistical and conclude.

The Park LM test

Park (1966) developed an alternative LM test, involving the following steps:

Step 1 Run a regression of model (7.10) and obtain the residuals i; of this regression
equation.

Step 2 Run the following auxiliary regression:
Ini?) =ay +az In Zy; +az In Z3; +--- +ap In Zy; +v; (7.17)

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis‘ of
homoskedasticity is that:

. Hy: ay=az=--=ap=0 (7.18)

while the alternative is that at least one of the as is different from zero and
then at least one of the Zs affects the variance of the residuals which will be
different for different t.

Step4 Compute the LM = nR? statistic, where n is the number of observations used in
order to estimate the auxiliary regression in step 2, and RZ is the coefficient of
determination of this regression. The LM statistic follows the x 2 distribution
with p — 1 degrees of freedom.

Step 5 Reject the null and conclude that there is significant evidence of hetero-
skedasticity when LM-statistical is bigger than the critical value (LM-stat >
X3-1,u)- Alternatively, compute the p-value and reject the null if the p-value

is less than the level of significance « (usually « = 0.05).
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The Park test in EViews

The Park test can be performed in EViews as follows. First we need to estimate the
regression equation model with OLS, so we need to use the command:

ls y ¢ x1 x2 x3 ... xk
L ]
where y is our dependent variable and x1 to xk are our explanatory variables. Then to
obtain the residuals we need to use the generate (genr) command as follows:

genr ut=resid .
Note that it is important to type and execute this command immediately after obtaining
the equation results so that the resid vector has the residual of the equation estimated

previously. Here ut is just a name we provide for the error terms of this model. We then
need to calculate the squared residuals as follows:

genr utsg=ut’ 2
and after that to obtain the estirnation of the auxiliary regression from this command:
1s log(utsq) c log{zl) log(z2) log(z3) ... log(zp)

To compute the LM statistic we need to do the calculation LM = n * R?, where n is
the number of observations and RZ is the coefficient of determination of the auxiliary
regression.

After that we need to compare LM-critical with LM-statistical and conclude.

An obvious criticism for all the above LM tests is that they require a prior knowledge
about what might be causing the heteroskedasticity captured in the form of the auxiliary
equation. Alternative models have been proposed and they are presented below.

The Goldfeld—Quandt test

Goldfeld and Quandt (1965) proposed an alternative test based on the idea that if the
variances of the residuals are the same across all observations (i.e. homoskedastic), then
the variance for one part of the sample should be the same as the variance for another
part of the sample. What is necessary for the test to be applicable is to identify a variable
to which the variance of the residuals is mostly related (this can be done with plots of

the residuals against the explanatory variables). The steps of the Goldfeld-Quandt test
are as follows:

Step 1 Identify one variable that is closely related to the variance of the disturbance
term, and order (or rank) the observations of this variable in descending order
(starting with the highest and going to the lowest value).

Step 2 Split the ordered sample into two equally sized sub-samples by omitting

¢ central observations, so that the two sub-samples will contain %(n —0)
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observations. The first will contain the largest values and the second will
contain the lJowest ones. :

Step 3 Run an OLS regression of Y on the X variable that you have used in step 1 for
each sub-sample and obtain the RSS for each equation.

Step 4 Calculate the F-statistic as follows:

RSS] '
= — 7.
F= %55, , (7.19)

where in the nominator (R$S7) you put the RSS with the largest value. The F
statistic is distributed with Fy ,501_¢y—k,1/2(n—c)—k) degrees of freedom.

Step 5 Reject the null hypothesis of homoskedasticity if F-statistical > F-critical.

The idea behind the formula is that if the error terms are homoskedastic, then the
variance of the residuals will be the same for each sample so that the ratio is unity. If
the ratio is significantly larger then the null of equal variances will be rejected. One
question here is what the appropriate value of ¢ would be. This is arbitrarily chosen
and it should usually be between 1/6 and 1/3 of the observations.

The problem with the Goldfeld-Quandt test is that it does not take into account
cases where heteroskedasticity is caused by more than one variable and it is not always
suitable for time series data. However, itis a very popular model for the simple regression
case (with only one explanatory variable).

The __G'oldfeld—Quondt test in EViews

To perform the Goldfeld-Quandt test in EViews we first need to sort the data in
descending order according to the variable that we identified and that we think causes
the heteroskedasticity X. To do this click on Procs/Sort Series, enter the name of the
variable (in this case X) in the sort key dialog box and check descending for the sort
order. We then need to break the sample into two different sub-samples and run OLS
of Y on X for both sub-samples in order to obtain the RSSs. For this we need to use the

following commands:

smpl start end

ls y ¢ x

scalar rssl=@ssr

for the first sample
and

smpl start end

ls y ¢ x

scalar rss2=@ssr

where in both cases the start and the end points should be defined appropriately
depending on the frequency of our data set and of the number of middle point

observations that should be excluded.
We then need to calculate the F stat which is given by RRS1/RSS2 or by the following

command:

genr F_GQ=RSS1/RSS2
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and compare this with the F-critical value given by:
genr f-crit=@gfdist(.95,nl-k,n2-k)
or alternatively to obtain the p-value and conclude from it by:

genr p-value=1l-@fdist(.05,nl-k,n2-k)

White’s test

White (1980) developed a more general test for heteroskedasticity that eli.minates the".

problems that appeared in the previous tests. White’s test is also an LM test, but it has
the advantages that (a) it does not assume any prior knowledge of heteroskedasticity,
(b} it does not depend on the normality assumption as the Breusch-Pagan test and (c)
it proposes a particular choice for the Zs in the auxiliary regression.

‘The steps involved in White’s test assuming a model with two explanatory variables
like the one presented here:

= By + BaXoi + B3X3i + U (7.20)
are the following:

.

Step 1 Run a regression of model (7.20) and obtain the residuals ii; of this regression
equation.

Step 2 Run the following auxiliary regression:

2 = ay + azXp; + a3X3; + asXZ; + asX3; + agX2iX3i + Vi (7.21)

i.e. regress the squared residuals on a constant, all the explanatory variables,
the squared explanatory variables, and their respective cross products.

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of
homoskedasticity is that:

HOI a1=a2=...=ap=0 (7.22)

while the alternative is that at least one of the as is different from zero.

Step4 Compute the LM = nR? statistic, where 1 is the number of observations used in
order to estimate the auxiliary regression in step 2, and R? is the coefficient of

determination of this regression. The LM statistic follows the x2 distribution
with 6 — 1 degrees of freedom.

Step 5 Reject the null and conclude that there is significant evidence of hetero-
skedastmty when LM-statistical is bigger than the critical value (LM-stat >
X6 1) Alternatively, compute the p-value and reject the null if the p-value
is less than the level of significance « (usually a = 0.05). e :

;e
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Because White's test is more general, and because of its advantages, presented above,
it is recommended over all the previous tests, although one practical problem is that
due to the cross product terms the number of regressors in (7.21) can become large.

White's test in EViews

EViews already has a routine after obtaining results by OLS for executing White’s test
for heteroskedasticity. After obtaining the OLS results, we click on View/Residual
Tests/White Heteroskedasticity (no cross terms) if we don’t want to include the cross-
product terms of our explanatory variables in the auxiliary regression; or, alternatively,
click on View/Residual Tests/ White Heteroskedasticity (cross terms) if we want
to include the cross-product terms of our explanatory variables in the auxiliary
regression. EViews in both cases provides us with the results of the auxiliary regression
equation that is estimated in each case, as well as with the LM test and its respective
p-value.

Computer example: heteroskedasticity tests

The file houseprice.wf1 contains data regarding the house prices of a sample of 88
London houses together with some characteristics regarding those houses. Analytically,
we have the following variables:

! Price = the price of the houses measured in pounds.
Rooms = the number of bedrooms in each house.

Sqfeet = the size of the house measured in square feet.

We would like to see whether the number of bedrooms and the size of the house play
an important role in determining the price of each house.

By a simple scatter plot inspection of the two explanatory variables against the
dependent variable we can see (Figures 7.10 and 7.11) that there is clear evidence
of heteroskedasticity in the relationship regarding the Rooms variable, but also some
evidence of the same problem for the size proxy (Sqfeet) variable with larger variations
in prices for larger houses.

The Breusch—Pagan test

Testing for heteroskedasticity in a more formal way, we can first apply the Breusch~
Pagan test:

Step 1 We estimate the regression equation:
price = b1 + bprooms + bzsqfeet + u

the results of which are presented in Table 7.1.
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Figure 7.10
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Figure 7.11 Much weaker evidence of heteroskedasticity

Step 2 We then obtain the residuals of this regression model (we name them as ut) by
typing the following command in the command line:

genr ut=resid

and the squared residuals by typing the command:

genr utsg=ut”sqg

F P

o)



Heteroskedasticity

Table 7.1 Basic regression model results
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Dependent Variable: PRICE
Method: Least Squares
Date: 02/03/04 Time: 01:52
Sample: 1 88

Included observations: 88

Variable Coefficient Std. Error t-Statistic Prob.
c -19315.00 31046.62 -0.622129 0.5355
Rooms 15198.19 9483.517 1.602590 0.1127
Sqfeet 128.4362 13.82446 9.290506 0.0000
R-squared 0.631918 Mean dependent var 293546.0
Adjusted R-squared 0.623258 S.D. dependent var 102713.4
S.E. of regression 63044.84 Akaike info criterion 24.97458
Sum squared resid 3.38E+11 Schwarz criterion 25.05903
Log likelihood -1095.881 F-statistic 72.96353
Durbin—Watson stat 1.858074 Prob(F-statistic) 0.000000
Table 7.2 The Breusch—Pagan test auxiliary regression
Dependent Variable: UTSQ
Method: Least Squares
Date: 02/03/04 Time: 02:09
Sample: 1 88
Included observations: 88
Variable . Coefficient Std. Error t-Statistic Prob.
Cc . —8.22E + 09 3.91E + 09 -2.103344 0.0384
Rooms 1.19E + 09 1.19E+ 09 0.995771 0.3222
Sqfeet . 3881720. 1739736. 2.231213 0.0283
R-squared 0.120185 Mean dependent var 3.84E + 09
Adjusted R-squared 0.099484 S.D. dependent var 8.36E 409
S.E. of regression 7.93E + 09 Akaike info criterion 48.46019°
Sum squared resid 5.35E + 21 Schwarz criterion 48.54464
Log likelihood —-2129.248 F-statistic 5.805633
Durbin—Watson stat 2.091083 Prob(F-statistic) 0.004331

Then we estimate the auxiliary regression using as Zs the explanatory variables
that we have in our original equation model:

utsq = ay + azrooms + azsqfeet + v

The results of this equation are presented in Table 7.2.

The LM statistic is distributed under a chi-square distribution with degrees
of freedom equal to the number of slope coefficients included in the auxiliary
regression (or k — 1) which in our case is 2. The chi-square critical can be

given by:

genr chi=@gchisg(.95,2)

and is equal to 5.991465.
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Step 3 Because the LM-stat > chi-square critical value we conclude that the null can
be rejected, and therefore there is evidence of heteroskedasticity.

The Glesjer test

For the Glesjer test the steps are similar to the above but the dependent variable in

the auxiliary regression is now the absolute value of the error terms. So, we need to
construct this variable as follows:

genr absut=abs{ut)
and then estimate the auxiliary equation of the form:
absut = ay + azrooms + azsqfeet + v

The results of this model are given in Table 7.3. Again we need to calcuiate the LM
statistic:

LM =obs xR? = 88 +0.149244 = 13.133472 ’

which is again bigger than the chi-square critical value, and therefore we again conclude
that there is sufficient evidence of heteroskedasticity.

K]

The Harvey—Godfrey test
For the Harvey-Godfrey test the auxiliary regression has the form:

log (utsq) = ay + azrooms + azsqfeet +v

Table 7.3 The Glesjer test auxiliary regression

Dependent Variable: ABSUT
Method: Least Squares
Date: 02/03/04 Time: 02:42
Sample: 1 88

Included observations: 88

Variable Coefficient Std. Error t-Statistic Prob.

(o] ~23493.96 19197.00 -1.223835 0.2244
Rooms 8718.698 ' 5863.926 1.486836 0.1408
Sqfeet 19.04985 ’ 8.548052 2.228560 0.0285
R-squared 0.149244 Mean dependent var 45976.49
Adjusted R-squared 0.129226 S.D. dependent var 41774.94
S.E. of regression 38982.40 Akaike info criterion 24.01310
Sum squared resid 1.29E+11 Schwarz criterion 24.09756
Log likelihood : ~1053.577 F-statistic 7.455547
Durbin-Watson stat 2.351422 Prob(F -statistic) —~— " 0.001039

[

[ -
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Table 7.4 The Harvey—Godfrey test-auxiliary regression

Dependent Variable: LOG(UTSQ)
Method: Least Squares

Date: 02/03/04 Time: 02:46
Sample: 1 88

Included observations: 88

Variable Coefficient Std. Error t-Statistic Prob.
c 17.77296 . 0.980629 18.12405 0.0000
Rooms 0.453464 0.299543 1.513852 0.1338
Sqfeet 0.000625 0.000437 1.432339 0.1557
A-squared 0.098290 Mean dependent var 20.65045
Adjusted R-squared 0.077073 S.D. dependent var 2.072794
. S.E. of regression 1.991314 © Akaike info criterion 4.248963
Sum squared resid 337.0532 Schwarz criterion 4.333418
Log likelihood —183.9544 F-statistic 4.632651
Durbin—Watson stat 2.375378 Prob(F-statistic) 0.012313

and the results of this auxiliary regression model are given in Table 7.4. In this case the
LM statistic is:

LM = obs * R? = 88 % 0.098290 = 8.64952

which i§ again bigger than the chi-square critical value, and therefore we again conclude
that there is sufficient evidence of heteroskedasticity.

ihe Park test

Finally, for the Park test the auxiliary regression has the form:
log (utsq) = ay + azlog(rooms) + azlog(sqfeet) + v (7.23)
the results of which are given in Table 7.5. In this case the LM statistic is:

. LM = obs + R = 88 « 0.084176 = 7.407488

which is again bigger than the chi-square critical value, and therefore we again conclude
that there is sufficient evidence of heteroskedasticity.

The Goldfeld—Quandt test

The Goldfeld-Quandt test requires that we first order the observations according to the
variable that we think mostly causes the heteroskedasticity. Taking this to be the rooms
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Table 7.5 The Park test auxiliary regression

Dependent Variable: LOG(UTSQ)
Method: Least Squares
Date: 02/03/04 Time: 02:50

Sample: 1 88

Included observations: 88

Variable Coefficient Std. Error t-Statistic Prob.
C 9.257004 6.741695 1.373097 0.1733
Log(Rooms) 1.631570 1.102917 1.479322 0.1428
Log(Sqfeet) 1.236057 0.969302 1.275204 0.2057
R-squared 0.084176 Mean dependent var 20.65045
Adjusted A-squared 0.062627 S.D. dependent var « 2.072794
S.E. of regression 2.006838 Akaike info criterion 4.264494" .
Sum squared resid 342.3290 Schwarz criterion 4.348949
L_og likelihood © —184.6377 F -statistic 3.906274
Durbin—Watson stat 2.381246 Prob( F-statistic) 0.023824

variable, we perform this test following the steps described below:

Stép 1

Step 2

Step 3

First we click on Procs/Sort Series and enter the name of the variable (in this

case roomis) in the sort key dialog box and click on the box to check descending
for the sort order.

¥
We then need to break the sample into two different sub-samples, subtracting
¢ number of intermediate observations. Choosing ¢ close to 1/6 of the total
observations we have that ¢ = 14. Therefore each sub-sample will contain

(88 — 14)/2 = 37 observations. The first sample will have observatiori‘s 1to37
and the second will have observations 51 to 88.

Now we need to run an OLS of price on rooms for both sub-samples in order
to obtain the RSSs. For this we need to use the following commands:

smpl 1 37 [sets the sample to
sub-sample 1]

ls price c rooms [estimates the regression
equation]

scalar rssl=@ssr [creates a scalar which will

be the value of the RSS

of the regression equation
estimated by the previous
commandj

Similarly for the second sub-sample we type the following commands:

smpl 51 88
ls price c rooms
scalar rss2=@ssr

and the results for both sub-samples are presented in Tables 7.6 and 7.7. Since
RSS1 is bigger than RSS2, the F statistic can be calculated as follows:

—genr F_GQ=RSS1/R§S2— ~~— . T T R e

ey



- Heteroskedasticity 123
[ - : -
‘( A Table 7.6  The Goldfeld~Quandit test (first sub-sample resuilts)
i .
Dependent Variable: PRICE
- Method: Least Squares
N Date: 02/03/04 Time: 03:05
? Sample: 1 37
e A Included observations: 37
Variable Coefficient Std. Error © t-Statistic Prob.
H c —150240.0 124584.0 —1.205933 0.2359
Rooms 110020.7 28480.42 3.863028 : 0.0005
(" R-squared 0.298920 Mean dependent var 325525.0
} . [ Adjusted A-squared 0.278889 S.D. dependent var 134607.0
e S.E. of regression 114305.9 Akaike info criterion 26.18368
Sum squared resid 4.57E+ 11 Schwarz criterion 26.27076
Log likelihood —482.3981 F-statistic 14.92298
( A Durbin—-Watson stat 1.718938 Prob(F-statistic} 0.000463
]
Table 7.7 The Goldfeld-Quandt test (second sub-sample resulits)
1 Dependent Variable: PRICE
Method: Least Squares
Date: 02/03/04 Time: 03:05
Sarnple: 51 88
() Included observations: 38
‘ ( Variable Coefficient Std. Error t-Statistic . Prob.
c } 227419.1 85213.84 2.668805 0.0113
( 1 Rooms 1191544 29273.46 0.407039 0.6864
1 ’ R-squared . 0.004581 Mean dependent var 261911.2
Adjusted R-squared -0.023069 S.D. dependent var 54751.89
S.E. of regression £5379.83 Akaike info criterion : 24.73301
(1 Sum squared resid 1.10E+11 Schwarz criterion 24.81920
) Log likelihood —-467.9273 F-statistic 0.165681
L Durbin-Watson stat ) 1.983220 Prob(F-statistic) 0.686389

{7‘ | and F-critical will be given by:

genr F_crit=eqfdist{.95,37,37)

g '
3 The F-statistic = 4.1419 is bigger than F-critical=1.7295, and therefore we
conclude that there is evidence of heteroskedasticity.

. The White test

([‘ ! For the White Test, we simply need to estimate the equation model (presented in the
L first table with results of this example) and then click on View/Residual Tests/White
(no cross products) to get the results shown in Table 7.8. Note that the auxiliary
B regression does not include the cross products of the explanatory variables in this case.
{ B The LM-stat = 16.20386 is bigger than the critical value and the p-value also next to the
LM-test provided by EViews is 0.02757, both suggesting evidence of heteroskedasticity.
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Table 7.8 The White test (no cross products)

White Heteroskedasticity Test:

F-statistic 4.683121 Probability 0.001857
Obs*R-squared 16.20386 Probability 0.002757
Test Equation:

Dependent Variable: RESID"2
Method: Least Squares

Date: 02/03/04 Time: 03:15
Sample: 1 88

Included observations: 88

Variable Coefficient Std. Error {-Statistic Prob.
C 7.16E + 08 1.27€ +10 0.562940 0.5750
Rooms 7.21E+09 5.67E + 09 1.272138 0.2069
Rooms™2 —-7.67E + 08 6.96E + 08 ~1.102270 0.2735
Sqleet -20305674 9675923. -2.098577 0.0389
Sgfeet"2 5049.013 1987.370 2.540550 0.0129
R-squared 0.184135 Mean dependent var 3.84E+09
Adjusted R-squared 0.144816 S.D. dependent var 8.36E + 09
S.E. of regression 7.73E + 09 Akaike info criterion 48.43018
Sum squared resid 4.96E + 21 Schwarz criterion 48.57094
Log likelihood —2125.928 F-statistic 4.683121
Durbin—Watson stat 1.640895 Prob(F -statistic) 0.001857

If we choose the version of the White test with the cross products (by clicking on
View/Residual Tests/ White (cross products) we get the results shown in Table 7.9. In
this case as well, as in all cases above, we have that the LM-stat (17.22519) is bigger
than the critical and therefore there is evidence of heteroskedasticity.

Engle’s ARCH test*

So far we have examined for the presence of autocorrelation in the error terms of a
regression model. Engle (1982) introduced a new concept allowing for autocorrelation
to occur in the variance of the error terms, rather than in the error terms themselves.
To capture this autocorrelation Engle developed the Autoregressive Conditional
Heteroskedasticity (ARCH) model, the key idea behind which is that the variance of u;
depends on the size of the squared error term lagged one period (that is uf_l).

More analytically, consider the regression model:

Ye = B1 + B2 Xop + B3X3t + -+ + BiXge + Ut (7.24)
and assume that the variance of the error term follows an ARCH(1) process:
a2 2
Var(ue) = of = yo + y1u;_ (7.25)

If there is no autocorrelation in Var(u;), then y should be zero and therefore atz =¥
So, we have a constant (homoskedastic) variance.

* This test only applies to a time series context and so in this section we revert to indexing
our variables by ¢.
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Table 7.9 “The White test (cross products)

White Heteroskedasticity Test:
F-statistic ' 3.991436 Probability . 0.002728
Obs* R-squared 17.22519 Probability 0.004092
Test Equation: »
Dependent Variable: RESID"2
Method: Least Squares
Date: 02/03/04 Time: 03:18
Sample: 1 88
Included observations: 88
Variable Coefficient Std. Error t-Statistic Prob.
c 1.08E +10 1.31E+10 ’ 0.822323 0.4133
Rooms 7.00E + 09 5.67E + 09 1.234867 0.2204
Rooms"2 —-1.28E + 09 8.39E + 08 —1.523220 0.1316
Rooms*Sqfeet 1979155. 1819402. 1.087805 0.2799
Sqfteet —23404693 10076371 —2.322730 0.0227
Sqfeet™2 4020.876 2198.691 1.828759 0.0711
A-squared 0.195741 Mean dependent var 3.84E + 09
Adjusted R-squared 0.146701 S.D. dependent var 8.36E + 09
S.E. of regression 7.72E+09 Akaike info criterion 48.43858
Sum squared resid 4.89E + 21 Schwarz criterion 48.60749
Log likelihood —-2125.297 F-statistic 3.991436
Durbin-Watson stat 1.681398 Prob(F -statistic) 0.002728

The model can easily be extended for higher-order ARCH(p) effects having that:
Var(uy) = of = yo + y1ut_| +ypu?_, + -+ ypu%_p (7.26)

and here the null hypothesis is that:

Ho: yi=y2=--=yp=0 (7.27)
that is, no ARCH effects present. The steps involved in the ARCH test are:
Step 1 Estimate equation (7.24) by OLS and obtain the residuals, ;.
Step 2 Eiegress the squared residuals (u[Z) against a constant, ”12—1' 11[2_2, A uf_p (the
value of p will be determined by the order of ARCH(p) for which you want

to test).

Step 3 Computé the LM statistic = (n — p)R%, from the regression in step 2. If
LM > xZ for a given level of significance reject the null of no ARCH effects
and conclude that ARCH effects are indeed present.

The ARCH-LM test in EViews and Microfit

After estimating a regression equation in EViews, in order to perform the ARCH LM test
we go from the estimation results window to View/Residual Tests/ARCH LM test. ..
EViews asks for the number of lags to be included in the test, and after specifying that
and clicking on <OK> we obtain the results of the test. The interpretation is as usual.
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In Microfit after estimating the regression model, close the results window by clicking
on <close> to obtain the Post Regression menu. From that menu choose option 2, and
move to the Hypothesis Testing menu and click <OK>. From the hypothesis testing
menu choose option 2, Autoregressive Conditional Heteroskedasticity tests (OLS &
NLS), and again click <OK>. We are then asked to determine the number of lags in the
Input an integer window and after clicking <OK> we obtain the results of the test.
An example with the use of EViews is given below.

Computer example of the ARCH-LM test

To apply the ARCH-LM test we first need to estimate the equation and then click on
View/Residual Tests/ARCH LM Test and specify the lag order. Applying the ARCH-LM
test to the initial model (for ARCH(1) effects, i.e. in lag order we typed 1):

Ct =by +byD¢ + b3P; + uy (7.28)
w¢ obtain the results shown in Table 7.10, where it is obvious from both the LM statistic
{and the probability limit) as well as from the ¢ statistic of the lagged squared residuai
term that it is highly significant that this equation has ARCH(1) effects. i
Resolving heteroskedasticity
If we find that heteroskedasticity is present, there are two ways of proceeding: (a) we can
re-estimate the model in a way which fully recognizes the presence of the problem, this

would involve applying the generalized (or weighted) least squares method. This would
then produce a new set of parameter estimates which would be more efficient than the

Table 7.10 The ARCH-LM test resulis

ARCH Test:

F-statistic 12.47713 Probability 0.001178

Obs”A-squared 9.723707 Probability 0.001819

Test Equation:

Dependent Variable: RESID™ 2

Method: Least Squares

Date: 02/12/04 Time: 23:21

Sample(adjusted): 1985:2 1994.2

Included observations: 37 after adjusting endpoints

Variabie Coefficient Std. Error t-Statistic Prob.

[ 0.000911 0.000448 2.030735 0.0499

RESIDM2(—-1) 0.512658 0.145135 3.532298 0.0012

R-squared 0.262803 Mean dependent var. 0.001869

Adjusted R-squared 0.241740 S.D. dependent var. 0.002495

S.E. of regression 0.002173 Akaike info. criterion —9.373304

Sum squared resid - 0.000165 Schwarz criterion -9.286227
_Log likelihood-.- - ~——--- 175.4061 - CFestatistic - 71247713

Durbin-Watson stat 1.454936 Prob(F-statistic) 0.001178

M
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OLS ones and a correct set of covariances and ‘t’ statistics. Or (b) we can recognize that
while OLS is no longer best it is still consistent and the real problem is the covariances
and ‘t’ statistics which are simply wrong. We can then correct the covariances and ‘¢’
statistics by basing them on a formulae such as (7.9). Of course this will not change the
actual parameter estimates which will remain less than fully efficient.

Generalized (or weighted) least squares

Generalized least squares

Consider the following model:
Yi=B1+ BaXai + B3X3i+ -+ + By Xyi + uj (7.29)

where the variance of the error term instead of being constant is heteroskedastic, i.e. is
Var(uj) = aiz.
If we divide each term in (7.29) by the standard deviation of the error term, o}, then

we obtain the modified model:

Y; 1 Xo; Xa; Xy; .
LR R M S| S N B S (7.30)
i oj gj gi oi  Oi

or
Vi = B1XYi + BaX5 + B3X3; + -+ BXf + uf 730

For the modified model, we have that:

Var(u}) = Var (ﬂ) LL(C (7.32)
gj o

Therefore, estimates obtained by OLS of regressing Yl.* to XL., X3 ;:" ey X;’. are now
" BLUE. This procedure is called generalized least squares (GLS).

Weighted least squares

The GLS procedure is also the same as the weighted least squares (WLS), where we have
weights, w;, adjusting our variables. To see the similarity define w; = }i, and rewrite the

original model as:
wiYj = Broj + B2(X2iwi) + B3(X3iwi) + - - - + B (Xyiwi) + Wjw;) (7.33)

which if we define as w;Y; = Y,.*, and (Xywi) = X,‘(‘i, we have the same equation
as (7.31):

Y= By XYj + Ba X + B3X5i + -+ BicXi + u (7:34)
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Assumptions regarding the structure of o2

Although GLS and WLS are simple to grasp and appear to be straightforward, one major
practical problem is that a isunknown and therefore estimation of (7.31) and/or (7 33)

is not possible without makmg explicit assumptions regardmg the structure of a
However, if we have a prior beljef about the structure of a , then GLS and WLS work
in practice. In order to see this, consider the case where in (7 29) we know that:

Var(u;) = o = o?Z? ) (7.35)

where Z; is a variable of which the values are known for all i. Dividing every term in

(7.35) by Z; we get:

Y; X X X
- ﬂ1—+ﬂ2—2—’+ﬁ —i+ +,8ki4|-ﬂ (7.36)
i Zl ’

or’

Y =1 X1+ B X3+ B3X3i + ... + B Xg; +uf . (7.37)
where starred terms denote variables divided by Z;. In this case we have that: '

* Uj 2
Var(u}) = Var (?) =0 (7.38)
1

4

So, the heteroskedasticity problem has been resolved from the original model. Note,
however, that this equation has no constant term; the constant in the original
regression (81 in 7.24) becomes the coefficient on X} in 7.37. Care should be taken
in interpreting the coefficients especially when Z; is an explanatory variable in the
original model (7.29). Assume, for example, that Z; = X3;, then we have that:

Yi
Z ,81 7 )32 +ﬁ3 Fy. +ﬁk Z, iy Z, (7.39)
or
Yi 1 Xai Xki | Ui
— =B — + —_— e — R
z; ~ Pz g 16 ezt (7.40)

If this form of WLS is used, then the coefficients obtained should be interpreted very
carefully. Note that 83 is now the constant term of (7.37) while it was a slope coefficient
in (7.29); and on the other hand, g; is now a slope coefficient in (7.37), while it was the
intercept in the original model (7.29). Therefore a researcher interested in the effect of
X3iin (7.29) should examine the intercept in (7.37), and similarly for the other case.

Heteroskedasticity-consistent estimation methods

White (1980) proposed a method of obtaining consistent estimators of the variances
and covariances of the OLS estimators. We will not presenit the mathematical details of
this method here as they are quite tedious and beyond the scope of this text. However, -
several computer packages (EViews is one of them) are now able to compute White’s
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heteroskedasticity-corrected variances and standard errors. An example of using White’s
method of estimation in EViews is given in the computer example below.

Computer example: resolving heteroskedasticity

Recall the example above concerning heteroskedasticity tests. Since with all tests we
found evidence of heteroskedasticity, alternative methods of estimation than OLS need
to be used. If we estimate the equation-by OLS we get the results shown in Table'7.11.

However, we know that because of heteroskedasticity, the standard errors of the OLS
coefficients estirnates are incorrect. In order to obtain White's corrected standard error
estimates we need to click on Quick/Estimate Equation and click on the Options
button which is located at the lower right of the Equation Specification window.
After that the Estimation Options window opens where we need to click on the
Heteroskedasticity Consistent Covariance box, and then similarly to click on the
box next to White and then on <OK>. When we return to the Equation Specification
window, we must enter the required regression equation by typing:

price ¢ rooms sgfeet

and theln click <OK>. The results obtained will be as shown in Table 7.11 where now
the White’s standard errors are not the same as those from the simple OLS case although

the coefficients are, of course, identical.
Calculating the confidence interval for the coefficient of sgfeet for the simple OLS case
(the incorrect case) we have (the t-stat for 0.05 and 86 degrees of freedom is 1.662765):

128.4362 — 1.662765 * 13.82446 < b3 < 128.4362 + 1.66276S * 13.82446
105.44 < b3 < 151.42

Table 7.11 Regression results with heteroskedasticity

Dependent Variable: PRICE

' Method: Least Squares

Date: 02/03/04 Time: 01:52
Sample: 1 88
Included observations: 88

Variable Coefficient Std. Error t-Statistic Prob.

(% —-19315.00 31046.62 -0.622129 0.5355
Rooms 15198.19 9483.517 1.602590 0.1127
Sqgfeet 128.4362 13.82446 9.290506 0.0000
R-squared 0.631918 Mean dependent var 293546.0
Adjusted R-squared 0.623258 S.D. dependent var 102713.4
S.E. of regression 63044.84 Akaike info criterion 24.97458
Sum squared resid 3.38E+11 Schwarz criterion 25.05903
Log fikelihood —1095.881 F-statistic 72.96353
Durbin—Watson stat 1.858074 Prob(F -statistic) 0.000000
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while for the White corrected case it will be:

128.4362 — 1.662765 » 19.59089 < b3 < 128.4362 + 1.662765 » 19.59089
112.44 < b3 < 144.38

Therefore, the White’s corrected standard errors provide us with a better (more accurate)
estimation.

Table 7.12 Heteroskedasticity-corrected regression results (White's method)

Dependent Variable: PRICE

Method: Least Squares ¢
Date: 02/05/04 Time: 20:30

Sample: 1 88

Included observations: 88

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.
C —~19315.00 " 41520.50 ~0.465192 0.6430
Rooms 15198.19 . 8943.735 1.699311 ) 0.0929
Sqfeet . 128.4362 19.59089 6.555914 0.0000
. %
R-squared 0.631918 Mean dependent var . 293546.0
Adjusted A-squared 0.623258 8.D. dependent var 102713.4
S.E. of regression 63044.84 Akaike info criterion 24.97458
Sum squared resid 3.38E+ 11 Schwarz criterion . 25.05903
L.og likelihood —1095.881 F-statistic , 72.96353
Durbin—Watson stat 1.757956 Prob(F -statistic) 0.000000

Table 7.13 Heteroskedasticity-corrected regression results (weighted LS method)

Date: 02/05/04 Time: 20:54

Sample: 1 88

Included observations: 88

Weighting series: SQFEET "~ (—.5)

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient Std. Error t-Statistic Prob.

C 8008.412 36830.04 0.217442 0.8284
Rooms 11578.30 9036.235 1.281319 0.2036
Sqfeet 121.2817 18.36504 6.603944 0.0000

Weighted Statistics

R-squared 0.243745 Mean dependent var 2844453

Adjusted R-squared 0.225950 S.D.‘Hependenl var 67372.90
S.E. of regression 59274.73 Akaike info criterion 24.85125
Sum squared resid 2.99E+11 Schwarz criterion 24.93570
Log likelihood —-1090.455 F-statistic 53.20881
Durbin—Watson stat 1.791178 Prob(F-statistic) . 0.000000

Unweighted Statistics

R-squared 0.628156 Mean dependent var 293546.0
Adjusted R-squared 0.619406 S.D. dependent var 102713.4
S.E.ofregression . 63366.27 ... .Sumsquaredresid L 341E+11
Durbin—Watson stat 1.719838
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1 1( s o " Alternatively, EViews allows us to use the weighted or generalized least squares
’ method as well. If we assume that the variable which is causing the heteroskedasticity
is the sq feet variable, or in mathematical notation we assume that:

then the weight variable will be 1/,/sqfeef. To do. this we need to click on
by Quick/Estimate Equation and then on Options, this time checking next to the
f Weighted LS/TSLS box and enter the weighting variable 1/./sqfeet in the box by typing:

sqfeet™ (-.5)
‘L F The results from this method are given in Table 7.13 below and are clearly different from

the simple OLS estimation. We will leave it as an exercise for the reader to calculate and
compare standard errors and confidence intervals for this case.

F:
1 Duestions and exoercises

g’ J Questions

1 State briefly what are the consequences of heteroskedasticity in simple OLS.
} R 2 Describe the Goldfeld-Quandt test for detection of heteroskedasticity.

L j 3 Show how one can apply the method of weighted least squares in order to resolve
heteroskedasticity.

] 4 Discuss and show mathematically what is the problem in terms of interpretation
H of the estimated coefficients, when applying WLS and the weight is an'explanatory
‘variable of the original model.

b 5 Consider the following model:

Yi=pB1+ BaXoi + B3 X3 + 1y

where Var(u;) = 02X5;. Find the generalized least squares estimates.

6 Define heteroskedasticity and provide examples of econometric models where
heteroskedasticity is likely to exist.

L]

Exercise 7.1

Use the data in the file houseprice.wfl to estimate a model of:

price; = B + Basqfeet; + u;

i Check for heteroskedasticity using the White and the Goldfeld-Quandt tests. Obtain
' the generalized least squares estimates for the following assumptions: (a) Var(u;) =
crzsqfeet,- and (b) Var(u;) = crzsqfeetiz. Comment on the sensitivity of the estimates and
their standard errors to the heteroskedastic specification. For each of the two cases, use
both the White and the Goldfeld-Quandt tests to see whether heteroskedasticity has
been eliminated.

f
E( -} Var(u;) = criz = azsqfeet (7.41) "
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Exercise.7.2

Use the data in Greek_SME.wfl to estimate the effect of size (proxied by number of
employees) to the profit/sales ratio. Check whether the residuals in this equation
are heteroskedastic by applying all the tests we have described (both formal and
informal) for detection of heteroskedacity. If there is heteroskedasticity, obtain the
White’s corrected standard error estimates and construct confidence intervals to see
the differences of the simple OLS and the White’s estimates.

Exercise 7.3

Use the data in police.wfl to estimate the equation that relates the actual value
of the current budget (Y) with the expected value of the budget (X). Check for
heteroskedasticity in this regression equation with all the known tests described in
this chapter.

Exercise 7.4 \ '

The file sleep.xls contains data for 706 individuals concerning sleeping habits and
possible determinants of sleeping time. Estimate the following regression equation:

sleep = bg + by totwrk + byeduc + byage + byyngkid + bsmale + u (7.42)

(a) Check whether there is evidence of heteroskedasticity.
(b) Is the estimated variance of u higher for men than women?

(c) Reestimate the model correcting for heteroskedasticity. Compare the results
obtained in (c) with those in part fromn the simple OLS estimation.

Exercise 7.5
Use the data in the file houseprice.xIs to estimate the following equation:

price = bq + by lotsize + bysqrft + b3bdrms + u (7.43)

(a) Check whether there is evidence of heteroskedasticity.

(b) Reestimate the equation but this time instead of price use log(price) as the dependent
variable. Check for heteroskedasticity again. Is there any change in your conclusjon
in (a)?

(c) What does this ;iérm-ple sﬁggest about heteroskedasticity and the transformation
used for the dependent variable?
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Introduction: what is avtocorrelation?

We know that the use of OLS to estimate a regression model leads us to BLUE Estimates
of the parameters only when all the assumptions of the CLRM are satisfied. In the
previous chapter we examined the case where assumption 5 does not hold. This chapter
examines the effects on the OLS estimators when assumption 6 of the CLRM is violated.

Assumption 6 of the CLRM states that the covariances and correlations between
different disturbances are all zero: '

Cov(ug, us) =0 forallt #s (8.1)

This assumption states that the error terms u; and us are independently distributed, .

which is called serial independence. If this assumption is no longer true, then the
disturbances are not pairwise independent, but are pairwise autocorrelated (or serially
correlated). In this situation:

Cov(up, us) #0 forsomet #s o 8.2)

which means that an error occurring at period t may be correlated with one at period s.

Autocorrelation is most likely to occur in a time-series framework. When data are
ordered in chronological order, the error in one period may affect the error in the
next (or other) time period(s). (It is highly likely that there will be intercorrelations
among successive observations especially when the interval is short, such as daily,
weekly or monthly frequencies compared to a cross-sectional data set.) For example
an unexpected increase in consumer confidence can cluse a consumption function
equation to underestimate consumption for two or more periods. In cross-sectional
data, the problem of autocorrelation is less likely to exist because we can easily change
the arrangement of the data without meaningfully altering the results. (However, this
is not true in the case of spatial autocorrelation, but this is beyond the scope of this
text.)

What causes avtocorrelation?

One factor that can cause autocorrelation is omitted variables. Suppose that Y; is related
to X,; and X34 but we, wrongfully, do not include X3; in our model. The effect of X3;
will be captured by the disturbances u;. If X3;, as many economic time series depends
on X3¢_1,X3¢-2 and so on. This will lead to unavoidable correlation among u; and
uy_1,4r_2 and so on. Thus, omitted variables can be a cause for autocorrelation.
Autocorrelation can also occur due to misspecification of the model. Suppose that Y; is
connected to X7 with a quadratic relationship Yy = #; +52X%,+ut, but we, wrongfully,
assume and estimate a straight line Yy = 8; + 82 X2; + 1. Then, the error term obtained
from the straight line specification will depend on X%t. If X5; is increasing or decreasing
over time, u; will also be increasing or decreasing over time, indicating autocorrelation.
A third factor is systematic errors in measurement. Suppose a company updates its
inventory at a given period in time; if a systematic error occurred in its measurement,

then the cumulative jnventory stock will-exhibit accumulated measuremerit €fTors.

These errors will show up as an autocorrelated procedure.
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First and higher order avtocorrelation

The simplest and most commonly observed case of autocorrelation is first-order serial
correlation. (The terms serial correlation and autocorrelation are identical and w1ll be
used in this text mterchangeably) Consider the multiple regression model:

=By + B2 X + B3 X3¢ + - + By Xy + Ut (8.3)

in which the current observation of the error term (u;) is a function of the previous
(lagged) observation of the error term (u;_1) i.e.:

up = pup_1 + &¢ _(8.9)

where p is the parameter depicting the functional relationship among observations of
the error term (u;) and ¢, is a new error term which is iid (identically independently
distributed). The coefficient p is called the first-order autocorrelation coefficient and
takes values from —1 to 1 (or |p] < 1) in order to avoid explosive behaviour (we will
explain this analytically in Chapter 13, where we describe the ARIMA models).

It is obvious that the size of p will determine the strength of serial correlation, and
we can differentiate three cases:

(a) If p is zero, then we have no serial correlation, because u; = ¢; and therefore an iid
error term.

() If p' approaches unity, the value of the previous observation of the error (u;_1)
becomes more important in determining the value of the current error term (u,)
and therefore greater positive serial correlation exists. In this case the current

« observation of the error term tends to have the same sign as the previous observation
of the error term (i.e. negative will lead to negative, and positive will lead to
positive). This is called positive serial correlation. Figure 8.1 shows how the residuals
of a case of positive serial correlation appear.

(c) If p approaches —1, again obviously the strength of serial correlation will be very

high. This time, however, we now have negative serial correlation. Negative serial
correlation implies that there is some saw tooth like behaviour in the time plot of
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Figure 8.1 Positive serial correlation
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Figure 8.2 Negative serial correlation

the error terms. The signs of the error terms have a tendency to switch signs from

negative to positive and vice versa in consecutive observations. Figure 8.2 depicts
the case of negative serial correlation.

) ]
In general, in economics, negative serial correlation is much less likely to happen
e . . i’
that positive serial correlation.

Serial correlation can take many forms and we can have disturbances that follow
higher orders of serial correlation. Consider the following model:

Ye = B1+ BaXoe + B3 X3t +- - + B Xy + Uy (8.5)
where

Up = piip_1 + paUit_2 + -+ pplt_p + &t (8.6)
In this case, we say that we have pth-order serial correlation. If we have quarterly data
and we omit seasonal effects, for example, we might expect to find that a 4th-order
serial correlation is present; while, similarly, monthly data might exhibit 12th-order

serial correlation. In general, however, cases of higher-order serial correlation are not
as likely to happen as the first-order type that we analytically examined before.

Consequences of avtocorrelation on the OLS
estimators
A general approach

Consider the classical linear regression model:

Yt = B1 + BoXot + B3 X3t + -+ + By Xpe + Ut (8.7)

If the-error term (&) in this equationis known to exhibit serial correlation, then the
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consequences on the OLS estimates can be summarized as follows:

1 The OLS estimators of the s are still unbiased and consistent. This is because both
unbiasedness and consistency do not depend on assumption 6 (see the proofs of
unbiasedness and consistency in Chapters 4 and 5) which is in this case violated.

2 The OLS estimators will be inefficient and therefore no longer BLUE.

3 The estimated variances of the regression coefficients will be biased and inconsistent,
and therefore hypothesis testing is no longer valid. In most of the cases, RZ will
be overestimated (indicating a better fit than the one that truly exists) and the t-
statistics will tend to be higher (indicating higher significance of our estimates than
the correct one).

A more mathematical approach

First we will examine how serial correlation affects the form of the variance-covariance
matrix of the residuals, and then we will use this to show why the variance of the 8s
in a multiple regression model will no longer be correct.

Effect on the variance—covariance matrix of the error terms

Recall from Chapter 5 (p. 66ff.) that the variance-covariance matrix of the residuals,
because of assumptions 5 and 6, looks like: »

o2 0 0 ... 0
0 ¢2 0 0 O

Euud)=]0 0 o2 0 | =02In (8.8)
0 0 o0 .. o2

where Iy is an n x n identity matrix.

The presence of serial correlation shows clearly that assumption 6 is violated.
Therefore, the non-diagonal terms of the variance-covariance matrix of the residuals
will no longer be zero. Let’s assume that the error terms are serially correlated of order
one. We therefore have that:

. ur = pug_1 + &¢ (8.9)

Using the lag operator, LX; = X;_j, equation (8.9) can be rewritten as:

(1- pL)llt = £t (8.10)

or

1
Uy = —————¢
T a-oht

=1 +pL+p%L% +- g

=&t +p&r1 + pzft—z + p38t—3 +o (8.11)
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Squaring both sides of (8.11) and taking expectations, yields: H
2 o2 O

E(up) = Var(u;) = (8.12)

o 1=p2
Note that the solution for Var(u;) does not involve t, therefore the u; series has a
constant variance given by: ] i
2 .
2 O

%=1 mpy; (8.13) ) ;
Using (8.11) it is simple to show that the covariances E(u;, 1;_1) will be giv.en by: . L
Eu, up_1) = pog 8.19) g i
E(ut, up_3) = %0 (8.15)
.(8.16) ] {
E(ut, up—g) = pSo2 (8.17) B

]
Thus the variance-covariance matrix of the disturbances (for the first-order serial

correlation case) will be given by: } , L
1 0 o2 ... pn1 " |
Euu)=o2| * ! P A =" (8.18) ‘ ]l
=1 =2 n-3 1 ’
| S
Effect on the OLS estimators of the multiple regression model . j 15
Recall that the variance-covariance matrix of the OLS estimators § is given by: .
Cov(f) = E{(B — B)(B - B)') 1 (5
= E{[(X'X) "X u)((X'X) "1 X u)
= E((X'X) " X uu'X(x'x)~ 1) % g

= (XX~ IXE@u)x(x'x)~ 1
= (X'X)"IX/ 2 X (X'X) ! (8.19) L 1
which is totally different from the classical expression o2(X’X)~1. This is because
assumption 6 is no longer valid, and of course 25 denotes the new variance~covariance

matrix presented above, whatever form it may happen to take. Therefore, using L i
the classical expression to calculate the variances, standard errors and t-statistics of

heteroskedasticity case in Chapter 10. o).
TThis is because (AB) = B'A’. - N [ e . T
__ . $This is because, according to assumption 2, the Xs are non-random.

*We denote this matrix of Q3 in order to differentiate from the Q matrix in the I‘ j

—
b ’e
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the estimated ﬁs will lead us to incorrect conclusions. Formulae 8.19 (which is also
similar to 7.9) forms the basis for what is often called ‘Robust’ inference, i.e. the
derivation of standard errors and ‘t’ statistics which are correct even when some of the
OLS assumptions are violated. Basically what happens is that we assume a particular
form for the  matrix and then use (8.19) to calculate a corrected covariance matrix.

The graphical method

One simple way to detect autocorrelation is by examining whether the residual plots
against time and the scatter plot of it; against i;_, exhibit patterns similar to those
presented in Figures 8.1 and 8.2 above. In such cases we say that we have evidence of
positive serial correlation when the pattern is similar to that of Figure 8.1, and negative
serial correlation if similar to that of Figure 8.2. An example with real data is given

below.

Example: detecting autocorrelation using the graphical method

The file ser_corr.wfl contains the following quarterly data from 1985q1 to 1994q2:
Icons = the consumer’s expenditure on food in £millions at
+ constant 1992 prices.
Idisp = disposable income in £millions at constant 1992 prices.
Iprice = the relative price index of food (1992 = 100).
Denoting Icons, Idisp and lprice by C;, D¢ and P; respectively, we estimate in EViews the

following regression equation:
Ce =by +byD¢ + b3 Py + 1y
by typing in the EViews command line:
1ls lcons c ldisp lprice

Results from this regression are shown in Table 8.1.
After estimating the regression, we store the residuals of the regression in a vector by

typing the command:
genr resOl=resid

A plot of the residuals obtained by the command:
plot res0O1l

is presented in Figure 8.3, while a scatter plot of the residuals against the residuals at
t — 1 obtained by using the command:

scat res0l1l (-1) resOl

is given in Figure 8.4.
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Regression results from the computer example

Dependent Variable: LCONS
Method: Least Squares
Date: 02/12/04 Time: 14:25
Sample: 1985:1 1994:2
Included observations: 38

Variable Coefficient Std. Error t-Statistic Prob.
(o] 2.485434 0.788349 3.152708, 0.0033
LDISP 0.529285 0.292327 1.810589 0.0788
LPRICE -0.064029 0.146506 ~0.437040 0.6648
R-squared 0.234408 Mean dependent var s 4.609274,
Adjusted RA-squared 0.190660 S.D. dependent var 0.051415 -
S.E. of regression 0.046255 Akaike info criterion —-3.233656
Sum squared resid 0.074882 Schwarz criterion -3.104373
Log likelihood 64.43946 F-statistic 5.358118
Durbin—Watson stat 0.370186 Prob(F -statistic) 0.009332
0.12 4
K
0.08 1
0.04 '
RESO1
0.00
—0.04 1
-0.08 VL LORAGELER AN BN S SIS SLSLEEAS RGN Bl
85 86 87 88 B89 90 91 92 93

Figure 8.3 Residuals plot from computer example

From both these figures it is clear that the residuals are serially correlated and
particularly positively serially correlated.

The Durbin—~Watson test

The most frequently used statistical test for the presence of serial correlation is the
Durbin-Watson (DW) test (see Durbin and Watson, 1950), which is valid when the

following assumptions are met:

(a) the regressmn model mcludes a constant;

(b) serial correlation is assumed to be of first- order only, and
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. Figure 8.4 Residuals scatter plot from computer example

(c) the equation does not include a lagged dependent variable as an explanatory
variable.

Consider the model:
Y =1+ BaXar + B3X3t + - + BeXe + 1t (8-20)
where:
up=pur_1+e ol <l | 8.21)
Then under the null hypothesis Hg: o = 0 the DW test involves the following steps:

Step 1  Estimate the model by using OLS and obtain the residuals i;.
Step 2 Calculate the DW test statistic given by:

’ n_ iy — it N 2
d = 2=zl Ve-1) 8.22)
i1 il

Step 3 Construct Table 8.2, substituting with your calculated dy, dr, 4—dy and 4—dy
that you will obtain from the DW critical values table that is given in the
Appendix. Note that table of critical values is according to k” which is the
number of explanatory variables excluding the constant.

Step 4a To test for positive serial correlation the hypotheses are:

Hgy: p = 0 no autocorrelation.

Hg: p > 0 positive autocorrelation.
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Table 8.2 The DW test

i » »e 5
< >ie ><
Reject Hy | Zone of |« » Zone of !
.c. tindecisi R indecisi i .
+ve §.C Em ecision '. Do not reject Hy indecision i Reject Ho
i 1 or Ho or both i —ves.c.
i i
H o i
0 d, d, 2 4-d; 4-d, : 4

1 If d <dp we reject Hg and conclude in favour of positive serial«correlation.,

2 If d>dy we cannot reject Hp and therefore there is no positive serial ‘
correlation.

3 In the special case where dj <d <dy the test is inconclusive,

Step 4b To test for negative serial correlation the hypotheses are:

Hp: p =0 no autocorrelation.

Ha:  p < 0 negative autocorrelation.

11f d>4 — d; we reject Hyp and conclude in favour of negative serial
correlation.

2 1f d <4 — dy we cannot reject Ho and therefore there is no negative serial
correlation.

3 In the special case where 4 — dy <d <4 — d; the test is inconclusive.

The inconclusiveness of the DW test comes from the fact that the small sample
distribution for the DW statistic depends on the X variables and is difficult to determine
in general a prefered testing procedure is the LM test to be described later.

A rule of thumb for the DW tesf.

From the estimated residuals we can get an estimate of p as:

n ity
Le=p Urilr—1 = (8.23)
t

b=
R
=14

It is shown in the Appendix that the DW statistic is approximately equal tod = 2(1 - p).
Because p by definition ranges from —1 to 1, the range for 4 will be from 0 to 4.
Therefore, we can have three different cases:

(@) p=0; d =2: therefore, a value of d near to 2 indicates that there is no evidence of

serial correlation.

(b) p=~1;d==0: a strong positive autocorrelation means that p will be close to +1, and

" thus d will get very low values (close to zero) for positive autocorrelation.
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(¢) p~ —1; d~4:similarly, when p is close to —1 then d will be close to 4 indicating
strong negative serial correlation. ) '

From this analysis we can see that, as a rule of thumb, when the DW test statistic is
very close to 2 then we do not have serial correlation. .

The DW test in EViews and Microfit

Both EViews and Microfit report the DW test statistic directly in the diagnostics of every
regression output; the DW statistic is reported in the final line of the left-hand corner.
The only work that remains for the researcher is to construct the table with the critical
values and check whether serial correlation exists or not, and of what kind. An example
is given below.

Computer example of the DW test

From the regression results output of the previous example (graphical detection of
autocorrelation) we observe that the DW statistic is equal to 0.37. Finding the critical
values d; and dy for n = 38 and k' = 2 and putting those in the DW table we have
the results shown in Table 8.3.-It is obvious that 4 = 0.37 is less than d; = 1.11, and
therefdre there is strong evidence of positive serial correlation.

The Breusch‘—Godfrey LM test for serial correlation

The DW test has several drawbacks that make its use inappropriate in various cases.
For instance (a) it may give inconclusive results, (b) it is not applicable when a lagged
dependent variable is used, and (c) it can’t take into account higher orders of serial
correlation.

For these reasons Breusch (1978) and Godfrey (1978) developed an LM test which
can accommodate all the above cases. Consider the model:

Yi = B1 + B2Xor + B3 X3 + - + B Xy + Ut (8.24)

Table 8.3 An example of the DW test

Reject Hy | Zone of » Zone of
+ve s.C. indecision Do not reject Hy indecision Reject Ha
or Ho or both —ve s.C.
|
0 T d d, 2 4, 4d, 4

037 1.11 1.33
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where

Ut = p1t_1 + p2ur_2 + -+ pplir_p + £¢ (8.25)

The Breusch-Godfrey LM test combines these two equations:

Yr =81+ BoXor + B3X3t + -+ By Xy + p11p-1 + p2Up2 + - -
+ pput_p + €t ) (826)

and therefore the null and the alternative hypotheses are:

Hg:  py = p2 =--- = pp = 0 no autocorrelation.

Ha: at least one of the ps is not zero, thus, serial correlation.

The steps for carrying out the test are the following:

‘Step 1 Estimate (8.24) by OLS and obtain i;.

Step 2 Run the following regression model with the number of lags used (p) bei;lg
determined according to the order of serial correlation you are willing to test.

Ut =g +o1Xze ... oRXRe +OR4 18t .. @R4pllt_p ¢

Step 3 Compute the LM statistic = (n — p)R? from the regression run in step 2. If this
LM statistic is bigger than the x,? critical value for a given level of significance,
then we reject the null of serial correlation and conclude that serial correlation
is present. Note that the choice of p is arbitrary. However, the periodicity of

the data (quarterly, monthly, weekly etc.) will often give us a suggestion for
the size of p.

The Breusch-Godfrey test in EViews and Microfit

After estimating a regression equation in EViews, in order to perform the Breusch~
Godfrey LM test we move from the estimation results window to View/Residual
Tests/Serial Correlation LM test ... EViews asks for the number of lags to be included
in the test, and after specifying that and clicking on <OK> the results of the test are
obtained. The interpretation is as usual. =~

Microfit reports the LM test for first-order serial correlation directly in the diagnostic
tests section of the regression results output. The Breusch - Godfrey LM test is for
Microfit test A. If we need to test for higher-order serial correlation we close the results
window by clicking on <close> to obtain the Post Regression menu. From that menu
choose option 2. Move to the Hypothesis Testing menu and click <OK>. From the
hypothesis testing menu choose option 1, LM tests for Serial Correlation (OLS, IV,
NLS and IV-NLS), and click <OK>. You will then be asked to determine the number
of lags in the Input an integer window and after clicking <OK> the results of the test—
will be obtained: An example with the use of EViews is given below.
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Computer example of the Breusch—Godtrey test |

Continuing with the consumption, disposable income and price relationship, we
proceed by testing for fourth-order serial correlation due to the fact that we have
quarterly data. In order to test for serial correlation of fourth order we use the Breusch~
Godfrey LM test. From the estimated regression results window we go to View/Residual
Tests/Serial Correlation LM Test and specify as the number of lags the number 4. The
results of this test are shown in Table 8.4. ' ’

We can see from the first columns that the values of both the LM statistic and the
F statistic are quite high, suggesting the rejection of the null of no serial correlation.
It is also evident that this is so due to the fact that the p-values are very small (smaller
than 0.05 for a 95% confidence interval). So, serial correlation is definitely present.
However, if we observe the regression results, we see that only the first lagged residual
term is statistically significant, indicating, most probably, that the serial correlation
is of first order. Rerunning the test for a first-order serial correlation the results are as
shown in Table 8.5.

This time the LM statistic is much higher, as well as the ¢ statistic of the lagged
residual term. So, the autocorrelation is definitely of first order.

Durbin's h test in the presence of lagged dependent variables

We meéntioned before in the assumptions of the DW test, that the DW test is
not ‘applicable when our regression model includes lagged dependent variables as

Table 8.4 Results of the Breusch—Godfrey test (4th order s.c.)

Breusch-Godirey Serial Correlation LM Test:

F-statistic 17.25931 Probability 0.000000

Obs*A-squared 26.22439 Probability 0.000029
Test Equation:

Dependent Variable: RESID
Method: Least Squares
Date: 02/12/04 Time: 22:51

Variable Coefficient Std. Error t-Statistic Prob.
c —0.483704 0.489336 —0.988491 0.3306
LDISP . 0.178048 0.185788 0.958341 0.3453
LPRICE —0.071428 0.093945 —0.760322 0.4528
RESID(—1) 0.840743 0.176658 4.759155 0.0000
RESID(-2) —0.340727 0.233486 —1.459306 0.1545
RESID(-3) 0.256762 0.231219 1.110471 0.2753
RESID(-4) 0.196959 0.186608 1.055465 0.2994
R-squared 0.690115 Mean dependent var 1.28E-15
Adjusted R-squared 0.630138 S.D. dependent var 0.044987
S.E. of regression 0.027359 Akaike info criterion —4.194685
Sum squared resid 0.023205 Schwarz criterion ~3.893024
Log likelihood 86.69901 F-statistic 11.50621

Durbin—Watson stat 1.554119 Prob(F-statistic) 0.000001




146 Violating the Assumptions of the CLRM

Table 8.5 Resuits of the Breusch—-Godfrey test (1st order s.c.)

Breusch—Godfrey Serial Correlation LM Test:

F-statistic 5347468 Probability 0.000000
Obs*A-squared 23.23001 Probability 0.000001
Test Equation:

Dependent Variable: RESID
Method: Least Squares
Date: 02/12/04 Time: 22:55

Variable Coefficient Std. Error t-Statistic Prob.
C -0.585980 0.505065 —~1.160208 . 0.2540
LDISP 0.245740 0.187940 1.307546 0.1998 .
LPRICE -0.116819 0.094039 —1.242247 0.2226
RESID(-1) 0.828094 0.113241 7.312638 0.0000
R-squared 0.611316 Mean dependent var 1.28E -~ 15
Adjusted R-squared 0.577020 S.D. dependent var 0.044987
S.E. of regression 0.029258 Akaike info criterion ~4.126013
Sum squared resid 0.029105 Schwarz criterion —~3.953636
Log likelihood 82.39425 F-statistic 17.82489
Durbin-Watson stat 1.549850 Prob(F -statistic) 0.000000

13
explanatory variables. Therefore, if the model under examination has the form:

Ye = p1+B2Xor + B3X3e + -+ + BXpe + vYe1 +ur . 827

the DW test is no longer valid.

Durbin (1970) devised a test statistic that can be used for such models, and this h
statistic has the form:

d n
h={1- - _— 8.28)
( 2) 1 - no2 (

where 7 is the number of observations, d is the regular DW statistic defined in (8.22)
and a)% is the estimated variance of the coefficient of the lagged dependent variable.

For large samples this statistic follows a normal distribution. So, the steps involved in
the h test are the following:

Step 1 Estimate (8.27) by OLS to obtain the residuals and calculate the DW statistic
given by (8.22). (As we noted before, in practical terms this step using EViews
involves only the estimation of the equation by OLS. EViews provides the DW
statistic in its reported regression diagnostics. Using Microfit this step alone
will also give the h statistic so step 2 is not needed.)

Step 2 Calculate the h statistic given by (8.28).
Step 3 The hypotheses are:

Hg:  p = 0 no autocorrelation.

Hga:~p =0 autocorrelation is present.

-
1

e
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Figure 8.5 Durbin’s h test, graphically

. Step4 Compare the h statistic with the critical value (for large samples and for o =
{ ( 0.05, z = £1.96). If the h statistic exceeds the critical value, then Hy is rejected
! and we conclude that there is serial correlation (see also Figure 8.5).

g
" J The h test in EViews and Microfit

[ { EViews reports only the DW test, independently of whether a lagged dependent variable
{ . is used as a regressor or not. Therefore step 2 is needed in order to calculate the h statistic.
. In Microfit, though, inclusion of a lagged dependent variable gives by default the h
statistic in the diagnostics of the regression results output window. This is located next
! > to the DW statistic and is the last line of the right-hand corner. Microfit also reports the
l : probability limit for this statistic, so if it is bigger than 0.05 the reader can understand
very quickly that serial correlation is not present in this case. An example of the h test
using EViews is given below. ~

. Computer example of Durbin’s h test

J. If we want to estimate the following regression model:
}’ l C[ zbl +b2Dt+b3Pt+b4C[_] + u;

which includes a lagged dependent variable, we know that the DW test is no longer
j ] valid. Thus, in this case we need to use either Durbin’s h test or the LM test. Running

L the regression model by typing:
ls lcons ¢ ldisp lprice lcons(-1)

we get the results shown in Table B.6.
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Table 8.6 Regression results with a lagged dependent variable

Dependent Variable: LCONS ;
Method: Least Squares [ ﬁ
Date: 02/12/04 Time: 22:59

Sample(adjusted): 1985:2 1994:2

Included observations: 37 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob. 1‘1
C —0.488356 0.575327 —0.848831 0.4021

LODISP 0.411340 0.169728 2.423524 0.0210

LPRICE —0.120416 0.086416 —1.393442 0.1728 . l
LCONS(-1) 0.818289 0.103707 7.890392 . 0.0000 i
R-squared 0.758453 Mean dependent var 4.608665

Adjusted R-squared 0.736494 S.D. dependent var 0.051985 3
S.E. of regression . 0.026685 Akaike info criterion -4.307599 :
Sum squared resid 0.023500 Schwarz criterion —4.133448 1 l
Log likelihood 83.69058 F-statistic 34.53976

Durbin—-Watson stat 1.727455 Prob(F-statistic) 0.000000

- The DW statistic is equal to 1.727455, and from this we can get the h statistic fram :
the formula: . .

. : i
. d n ’ R
h={1-2) |—— !
( 2) 1 —na? ! =
v
where 03 is the variance of the coefficient of LCONS(-1) = (0.103707)2 =0.0107551.
Typing in EViews the following command we get the value of the h statistic:
r !
scalar h= (1-1.727455/2) (37/(1-37%0.103707))"(.5) b
and by double clicking on the scalar h we can see the value at the low left-hand corner as: ‘

scalar h=1.0682889

and therefore because h <z — critical = 1.96 we fail to reject the Hy hypothesis and : { '
conclude that this model does not suffer from serial correlation.

Applying the LM test for this regression equation by clicking on View/Residual 3
Tests/Serial Correlation LM Test and specifying the lag order to be equal to 1 (by j ‘

typing 1 in the relevant box) we get the results shown in Table 8.7. From these results
it is again clear that there is no serial correlation in this model.

Resolving autocorrelation

Since the presenée of autocorrelation provides us with inefficient OLS estimators, it ) " r

presented in the next two sections.
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Breusch—Godfrey Serial Correlation LM Test:

Table 8.7 The Breusch—Godfrey LM test (again)

F-statistic 0.680879 Probability 0.415393
Obs*A-squared 0.770865 Probability 0.379950
Test Equation:
Dependent Variable: RESID
Method: Least Squares
Date: 02/12/04 Time: 23:10
Variable Coefficient Std. Error t-Statistic Prob.
c 0.153347 0.607265 0.252521 0.8023
LDISP 0.018085 0.171957 0.105171 0.9169
LPRICE 0.003521 0.086942 0.040502 0.9679
LCONS(-1) —0.054709 0.123515 —0.442932 0.6608
RESID(-1) 0.174392 0.211345 0.825154 0.4154
R-squared 0.020834 Mean dependent var 9.98E-16
Adjusted A-squared -0.101562 S.D. dependent var - 0.025549
S.E. of regression 0.026815 Akaike info criterion —4.274599
Sum squared resid 0.023010 Schwarz criterion —4.056908
Log likelihood 84.08009 F-statistic 0.170220
Durbin—Watson stat 1.855257 Prob(F-statistic) 0.952013
When p is known
Consider the model:

Yo =B + B2Xor + B3X3p + -+ + By Xy + 1y (8.29)

where we know that 1, is autocorrelated and we speculate that it follows a first-order
serial correlation, so that:

Up = plig_1 + &

If (8.29) holds for period ¢, it will hold for period t — 1 as well, so:

Yeo1 = B1+ B2Xzt—1 + B3 X301 + -+ By Xge—1 + Up 1

pYt—1 = P1p + B2pXar—1 + B3P X3t 1 + - + BrpXpr—1 + ol

" Multiplying both sides of (8.31) by p, yields:

and subtracting (8.32) from (8.29) we obtain:

(8.30)

(8.31)

(8.32)

Ye—pYr_1 = B1(1 ~ p) + B2 (Xap — pXppr_1) + B3(X3p — pX3¢-1) + - -~
+ B Xy — 0Xge—1) + (up — puy_y)

or

Y} = BY + B2X5, + B3XGy 4o+ BrX}, + &t

(8.33)

(8.34)




150 Violating the Assumptions of the CLRM

Table 8.8 Regression results for determining the value of p

Dependent Variable: RESO1

Method: Least Squares

Date: 02/12/04 Time: 23:26

Sample(adjusted): 1985:2 1994.2

Included observations: 37 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.
RES01(—-1) 0.799544 0.100105 7.987073 0.0000
R-squared 0.638443 Mean dependent var —0.002048
Adjusted R-squared 0.638443 S.D. dependent var 0.043775
S.E. of regression 0.026322 Akaike info criterion —-4.410184
Sum squared resid 0.024942 Schwarz criterion . —4.366646
Log likelihood 82.58841 Durbin—~Watson stat 1.629360".
Table 8.9 The generalized differencing regression results
Dependent Variable: LCONS_STAR
Method: Least Squares
Date: 02/12/04 Time: 23:49
Sample: 1985:1 1994:2 P
Included observations: 38
Variable Coefficient Std. Error t-Statistic .Prob
BETA1_STAR 4.089403 1 .055839 3.873131 + 0.0004
LDISP_STAR 0.349452 0.231708 1.508155 0.1405
LPRICE_STAR -0.235900 0.074854 -3.151460 0.0033
R-squared 0.993284 Mean dependent var 0.8974724
Adjusted R-squared 0.992900 S.D. dependent var 0.302420
S.E. of regression 0.025482 Akaike info criterion —4.426070
Sum squared resid 0.022726 Schwarz criterion —4.296787
Log likelihood 87.09532 Durbin—Watson stat 1.686825

where Y = Yy — oYy, ] = B1(1 — p), and X}; = (Xt ~ pXjr-1)-

Note that with this differencing procedure we lose one observation. In order to avoid
this loss of one observation it is suggested that ¥; and X;; should be transformed for

the first observation as follows:

Y} =Y1/1-p2 and X} =Xj1y/1-p? (8.35)
The transformation that generated Y/, g} and X} is known as quasi-differencing

or generalized differencing. Note that the error term in (8.34) satisfies all the CLRM
assumptions. So, if p is known we can apply OLS to (8.34) and obtain ~tim-~*- -

are BLUE. An example of the use of generalizad 4377 .
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Computer example of the generalized differencing approach

In order to apply the generalized differencing estimators we first need to find an estimate
of the p coefficient. Remember that from the first computer example we obtained the
residual terms and we named them resO1. Running a regression of resO1 to res01(—1) we
get the results shown in Table 8.9, from which we have that the p coefficient is equal
to 0.799.

In order then to transform the variables for the first observatlon we need to enter the
following commands in the EViews command window:

scalar rho=c(1) [saves the estimate of the r coefficient]

smpl 1985:1 1985:1 [sets the sample to be only the first observatlon]
genr lcons_star=((l1-rho”2)"(0.5)) *lcons

genr ldisp_star=((l-rho”2)"(0.5))*1ldisp

genr lprice_star=((1l-rho”2)7(0.5)})*lprice

genr betal_star=((l1-rho"2)}"(0.5))

where the three commands generate the starred variables and the final command creates
the new constant.

To transform the variables for observations 2 to 38 we need to type the following
commands in the EViews command window:

smpl 1985:2 1994:2
genr lcons_star=lcons-rho*lcons(-1)
génr ldisp_star=1disp-rho*disp(-1)
genr lprice_star=lprice-rho*lprice(-1)
genr betal_star=1-rho

And in order then to estimate the generalized differenced equation we need first to
change the sample to all observations by typing:

smpl 1985:1 1994:2
and then to execute the following command:

ls lcons_star betal_star ldisp_star lprice_star

the results of which are shown in Table 8.9.

When p is unknown

Although the method of generalized differencing seems to be very easy to apply, in
practice the value of p is not known. Therefore, alternative procedures need to be
developed in order to provide us with estimates of p and then of the regression model
(8.34). Several procedures have been developed, with two being the most popular and
important: (a) the Cochrane-Orcutt iterative procedure, and (b) the Hildreth-Lu search
procedure. These two procedures are presented below.
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The Cochrane-Orcutt iterative procedure

Cochrane and Orcutt (1949) developed an iterative procedure that can be presented
through the following steps:

Step 1 Estimate the regression model (8.29) and obtain the residuals ii,.

Step 2 Estimate the first-order serial correlation coefficient p by OLS from ity = pit; _1+
Et.
Step 3 Transform the original variables as Y} = Y; — pY,_1, 87 = f1(1 - p), and X}, =

(Xit — pXj—p) fort = 2,...,nand as Y} = Y11 — p? and X}; = X;;v/1 - j2
fort = 1. . ‘

Step 4 Run the regression using the transformed variables and find the residuals of »

this regression. Since we do not know that the j obtained from step 2 is the
‘best’ estimate of p, go back to step 2 and repeat step 2 to step 4 for several
rounds until the following stopping rule holds.

Stopping rule The iterative procedure can be stopped when the estimates of p from
two successive iterations differ by no more than some preselected (very small) value,
such as 0.001. The final g is used to get the estimates of (8.34). In general, the iterattve
procedure converges quickly and does not require more than 3 to 6 itérations.

EViews utilizes an iterative non-linear method for estimating generalized differenc-
ing results with AR(1) errors (autoregressive errors of order 1) in the presence of serial
correlation. Since the procedure is iterative, it requires a number of repetitions in order
to achieve convergence which is reported in the EViews results below the included
observations information. The estimates from this iterative method can be obtained
by simply adding the AR(1) error terms to the end of the equation specification list. So,
if we have a model with variables Y and X, the simple linear regression command is:

‘lsycx

If we know that the estimates suffer from serial correlation of order 1, then results can
be obtained through the iterative process by using the command: )

1s y ¢ x ar(1)

EViews provides results in the regular way about the constant and the coefficient of the
X variable, together with an estimate for p which will be the coefficient of the AR(1)
term. An example is provided at the end of this section.

The Hildreth—Lu search procedure

Hildreth and Lu (1960) developed an alternative method to the Cochrane-Orcutt
iterative procedure, their method consisting of the following steps:

Step 1 Choose a value for p (say p1), and for this value transform the model as in

o (8.34) and estimate it by QLS. e e e -
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Step 2 From the estimation in step 1 obtain the residuals & and the residual sum of
squares (RSS(p1)). Next choose a different value of p (say p2) and repeat steps
1 and 2. -

Step 3 By varying p from —1 to +1 in some predetermined systematic way (lets say at
steps of length 0.03), we can get a series of values of RSS(p;). We choose that p
for which RSS is minimized and the equation (8.34) that was estimated using
that optimal p as the optimal solution.

This procedure is very hectic and involves lots of calculations. EViews provides results
very quickly with the Cochrane-Orcutt iterative method (as we have shown above),
and is usually preferred in cases of autocorrelation. '

Computer example of the iterative procedure

To obtain results with the EViews iterative method and assuming a serial correlation of
order one, we type the following command in EViews:

1s lcons ¢ ldisp lprice ar (1)

the results from which are shown in Table 8.10.

We observe that it required 13 iterations in order to obtain convergent results. Also,
the AR(1) coefficient (which is in fact the p) is equal to 0.974 which is much bigger
than obtained in the previous computer example. However, this is not always the
case; other examples lead to smaller discrepancies. The case here might be affected
by the quarterly frequency of the data. If we use an AR(4) term in addition by the

Table 8.10 Results with the iterative procedure

Dependent Variable: LCONS

Method: Least Squares

Date: 02/12/04 Time: 23:51

Sample(adjusted): 1985:2 1994:2

Included observations: 37 after adjusting endpoints

~ Convergence achieved after 13 iterations

v

Variable Coefficient Std. Error t-Statistic Prob.
Cc 9.762759 1.067582 9.144742 0.0000
LDISP + —0.180461 0.222169 -0.812269 0.4225
LPRICE —0.850378 0.057714 -14.73431 0.0000
AR(1) 0.974505 0.013289 73.33297 0.0000
R-squared 0.962878 Mean dependent var. 4.608665
Adjusted R-squared 0.959503 S.D. dependent var. 0.051985
S.E. of regression 0.010461 Akaike info. criterion —6.180445
Sum squared resid 0.003612 Schwarz criterion —6.006291
Log likelihood 118.3382 F-statistic 285.3174
Durbin—-Watson stat 2.254662 Prob(F-statistic) 0.000000

inverted AR Roots 0.97
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Table 8.11 Resuilts with the iterative procedure and AR(4) term

Dependent Variable: LCONS

Method: Least Squares

Date: 02/12/04 Time: 23:57

Sample(adjusted): 1986:1 1994:2

Included observations: 34 after adjusting endpoints
Convergence achieved after 11 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 10.21009 0.984930 10.36632 - 0.0000
LDISP —0.308133 0.200046 -1.540312 0.1343
LPRICE -0.820114 0.065876 —12.44932 0.0000
AR(1) 0.797678 0.123851 6.440611 0.0000
AR(4) 0.160974 0.115526 1.393404 . 0.1741
R-squared 0.967582 Mean dependent var 4.610894 .
Adjusted R-squared 0.963111 S.D. dependent var 0.053370
S.E. of regression 0.010251 Akaike info criterion —6.187920
Sum squared resid 0.003047 Schwarz criterion ~5.963455
Log likelihood 110.1946 F-statistic 216.3924
Durbin-Watson stat 2.045794 Prob(f-statistic) 0.000000
Inverted AR Roots 0.97 0.16+0.55i 0.16-0.55i -0.50

1
command:

1s lcons ¢ ldisp lprice ar(l) ar(4)
we get a p coefficient (see Table 8.11) which> is very close to the one from the previous
example.

S A—— 3 e o iy, S 5‘) &
e gsvEel aNerdises
Questions

1 What is autocorrelation? Which assumption of the CLRM is violated and why?

2 Explain what are the consequences of autocorrelation and how can it be resolved
when p is known.

3 Explain how autocorrelation can be resolved when p is unknown.

4 Describe the steps of the DW test for autocorrelation. What are its disadvantages and
which alternative tests can you suggest?

Exercise 8.1
The file investment.wfl contains data for the following variables, I =investment, Y =

income and R = interest rate. Estimate a regression equation that has as dependent
variable the investment, and as explanatory variables income and the interest rate.
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have covered in Chapter 8. If autocorrelation exists, use the Cochrane-Orcutt iterative
procedure to resolve autocorrelation.

Exercise 8.2

The file product.wfl contains data for the following variables, g = quantity of a good
produced during various years, p = price of the good, f = amount of fertilizer used in
the production of this good and r = amount of rainfall during each production year.
Estimate a regression equation that explains the quantity produced of this product.
Check for autocorrelation using both the informal and all the formal ways (tests) that we
have covered in Chapter 8. If autocorrelation exists, use the Cochrane-Orcutt iterative

procedure to resolve autocorrelation.

Appendix
The DW test statistic given in (8.22) can be expanded to give:
A2 -~ A A
de Z?:z uy + z:':z “tz_l ~ 23 ity _q (8.36)
i if

Because ii; are generally small, the summations from 2 to n or from 2 to n — 1 will both
be approximately equal to the summation from 1 to n. Thus: -

n n n
: PED RS (8.37)
t=2 t=2 t=1
So, we have that (8.36) is now:

d~1+1~
n ~2
t=14%

but from equation (8.23) we have that 5 = 2 0, ityit;_1/ Y-0_; i1, and therefore:

d>~2-2p>~2(1-p) (8.39)

Finally, because p takes values from +1 to —1, then d will take values from O to 4.

22 i Ml (8.38)
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\
i ] . <
! b3 : One of the most important problems in econometrics is that in reality we are never
- certain about the form or specification of the equation we want to estimate. For example
o one of the most common specification errors is to estimate an equation which omits
r‘ i ‘ . one or more influential explanatory variables or an equation that contains explanatory
variables that do not belong to the ‘true’ specification. We will first see how these
" problems affect the OLS estimates, and then provide ways of resolving these problems.
! Other misspecification problems due to the functional form can result from the
( : assumption which states that the relation among the Y and Xs is linear being no longer
- true. Therefore, here we present a variety of models that allow us to formulate and
estimate various non-linear relationships.
Furthermore, we examine the problems emerging from measurement errors regarding
l“f our variables, as well as formal tests for misspecification. Finally, alternative approaches
to selecting the best model are presented in the final section.

o Omitting influential or including
non-influential explanatory variables

f." j Consequences of omitting influential variables

Omitting explanatory variables that play an important role in the determination of
the dependent variable causes these variables to become a part of the error term in the
population function. Therefore, one or more of the CLRM assumptions will be violated.
To explain this in detail, consider the population regression function:

,—-_,‘

Y =81+82X2+B3X3+u 9.1)

where B # 0 and B3 # O, and let’s assume that this is the ‘correct’ form of

( ! this relationship.
i However, let us also suppose that we make an error in our specification and

we estimate:

Y =81+ 8:Xp + u* (9.2)

) .. where X3 is wrongly omitted. In this equation we are forcing u to include the omitted
[ Lo variable X3 as well as any other purely random factors. In fact in equation (9.2) the

error term is:
u* = Bg3X3+u 9.3)

= Based on the assumptions of the CLRM, now the assumption that the mean error is
zero is violated:

f _ E(u*) = E(B3X3 + ) = E(B3X3) + E(u) = E(B3X3) # 0 (9.4)

P and, furthermore, if the excluded variable X3 happens to be correlated with X,

| - then the error term in equation (9.2) is no longer independent of X,. The result

L _ of both these complications lead to estimators of 8y and that are biased and
P 1 2
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inconsistent. This is often called omitted variable bias. It is easy to show that the
case is the same when we omit more than one variable from the ‘true’ population
equation.

Including a non-influential variable

We have seen that omitting influential explanatory variables causes special com-
plications for the OLS estimators. However, if an estimated equation includes variables
that are not influential the problem is not so serious. In this case let’s assume that the
correct equation is: ¢

Y =81 +B82X2+u (9.5)

and this time estimate:

Y =p1+ B2X2+ B3X3 + u (9.6)

where X3 is wrongly included in the model specification. ;

In this case since X3 does not belong to equation (9.6), its population coefficient
should be equal to zero (83 = 0). If 83 = 0 then none of the CLRM assumptions are
violated when we estimate equation (9.6) and therefore OLS estimators will yield both
unbiased and consistent estimators. However, although the inclusion of an irrelevant
variable does not lead to bias, the OLS estimators of 8; and 8, are uhlikely to be
fully efficient. In the case that X3 is correlated with X5, then an unnecessary element
of multicollinearity will be introduced to the estimation, which will unavoidably
lead to a higher standard error in the coefficient of X5. This might lead to the
wrong conclusion of having non-significant t values for explanatory variables that are

_influential.

Therefore, because of the inclusion of irrelevant variables, it does not necessarily
follow that a coefficient with an insignificant ¢ statistic is non-relevant. So, dropping
insignificant variables from a regression model has to be dealt with very cautiously. In
general, in non-influential conditions we should expect that:

1 The value of R? will fall, since degrees of freedom increase, while the RSS should
remain more or less unchanged.

2 Sign reversal will not occur for the coefficients of the remaining regressors, nor should
their magnitudes change appreciably.

3 t statistics of the remaining variables are not affected appreciably.

However, selection of a non-influential variable that is highly correlated with one or

-more of the remaining variables can alter their t statistics. Thus, those guidelines

are valid only under ideal circumstances, as we have mentioned before. Intuition,
economic theory and previous empirical findings should be used to determine whether
or not to delete variables from an equation.

L

!

Ca
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Omission and inclusion of relevant and
irrelevant variables at the same time

In this case suppose that the correct equation is:

Y =81+ B2X2 + B3X3 + ub v 9.7)
and we estimate:

Y = 1+ BaXp + BaXy +u" 9.8)

Therefore, here we not only omit the relevant variable X3, but we also include the
non-influential variable X4 at the same time. As we analysed above, the consequences
of the first case are to have biased and inconsistent estimates, and the second gives
inefficient estimates. In general, the consequences of omitting an influential variable
are very serious and we therefore need to have a way of detecting such problems.
One way of doing this is by observing a lot of the residuals of the estimated equation.
We saw in the discussion in Chapter 8 that visual observation of the residuals can give
us an indication of problems of autocorrelation, where we will also describe formal tests
to detect autocorrelation and to resolve it also.

The plug-in solution in the omitted variable bias

Sometimes, it is possible to face omitted variable bias because a key variable that affects
Y is not available. For example, consider a model where the monthly salary of an
individual is associated with whether or not he/she is male or female (sex), and the
years each individual has spent in education (education). Both of these factors can be
easily quantified and included in the model. However, if we also assume that the salary
level can be affected by the socio-economic environment in which each person was
brought up, then it is hard to find a variable that captures that to be included in what
should be the appropriate equation: "

(salary_level) = By + Ba(sex) + Bz(education) + B4(background) (9.9)

,
Not including the background variable in this model may lead to biased and inconsistent
estimates of 8, and 3. Our major interest, however, is to get appropriate estimates
for those two slope coefficients. We do not care that much for 8;, and we can never
hope for a consistent estimator of 83 since background is unobserved. Therefore a
way to resolve this problem and effectively get appropriate slope coefficients is to
include a proxy variable for the omitted variable, such as, in this example, the family-
income (fm_inc) of each individual. In this case, of course, frm_inc does not have to
be the same as background, but we need fm_inc to be correlated with the unobserved
variable background.
In order to illustrate this more properly, consider the following model:

Y =81+ 82Xz + B3X3 + e X +u (9.10)
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where X, and X3 are variables that are observed (such as sex and education), while X}
is unobserved (such as background), but we have a variable X4 which is a ‘good’ proxy
variable for X} * (such as fin_inc).

For X4 we requue at least some relationship to X3, for example a simple linear form
such as:

Xi=n+rXq+e (9.11)

where an error e should be included because Xj and X4 are not exactly related.
Obviously, if then the variable X} is not an appropriate proxy for X4, while in general

we include proxies that have a positive correlation, so, yp > 0. The coefficient y; is,
included in order to allow X7 and X4 to be measured on different scales, and obviously

they can be either positive or negatively related.

Therefore, in order to resolve the omitted variable bias, we can assume that X4 and
X3 are the same and therefore run the regression:

Y =31+ BaXo+ B3X3 + Baly1 +vaXg+e)+u
= (B1 + Bay1) + B2X2 + B3 X3 + Bava X4 + (U + Bge) )
=aj+ BaXo+ B3 X3 +agXy+x . (9.12)

where x = u + B4e, is a composite error which depends on the model of interest (9 10)
and the error from the proxy variable equation (9.11). Obviously, a; = {#; + Bayy) is
the new intercept and a4 = B4y, is the slope parameter of the proxy variable. As we
‘mentioned earlier, by estimating (9.12) we do not get unbiased estimators of g1 and
B4, but we do get unbiased estimators of ay, 82, f3 and a4. The important thing is we
get ‘appropriate’ estimates for the parameters 2 and g3 which are of most interest in
our analysis. ,

On the other hand, it is easy to show that using a proxy variable can still lead to
bias. Suppose that the unobserved variable X} is related to all (or some) of the observed
variables. Then equation (9.11) becomes:

XZ =y +y2Xo +y3X3 + s Xg+w (9.13)

Equation (9.11) simply assumes that y, = y3 = 0, and by substituting equation (9.13)
into equation (9.10) we get:

= (B1 + Bay1) + (B2 + Bav2) X2 + (B3 + Bay3)X3
+ BavaXq + (U + Baw) (9.14)

from which we get that plim(f,) = Bo + B4y2 and plim(B3) = B3 + Bay3. Therefore,
connecting this to the previous example, if education has a positive partial correlation
with fim_inc, we will have a positive bias (inconsistency) in the estimate of the education

~coefficient. However, we can reasonably hope that the bias we face in this case willbe

smaller than in the case of ignoring the problem of omitted variable entirely.
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Various functional forms

Introduction

A different situation where we may face specification errors is that of using an incorrect
functional form. The most obvious case has to do with the basic assumption of having
an equation that can be represented by a linear relationship. If this is not true, then
we might adopt a linear estimating equation while the real population relationship
is non-linear.

For example, if the true regression equation is:

Y = AXE X} e (9.15)
and we estimate the linear form given by:
. Y=a+BXs+yX3+u ’ (9.16)

then the parameters g and y in the non-linear model represent elasticities, while 8
(and y) in the linear model show an estimate of the change in Y after a one-unit
change in 8 (and y). Therefore, 8 and y are clearly incorrect estimators of the true
population parameters.

One way to detect wrong functional forms is to visually observe the pattern -of
the residuals. If we observe a systematic pattern in the residuals then we can suspect the
possit;ility of misspecification. However, apart from that it is also useful tc know the
various possible non-linear functional forms that we might have to estimate together
with the properties regarding marginal effects and elasticities. Table 9.1 presents a
siimmary of the forms and features of the various alternative models.

Linear-log functional form

In a linear-log model, the dependent variable remains the same but the independént
variable appears in logs. Thus the model is: ‘

Y=8+8InX+u 9.17)

Table 9.1 Forms and features of different functional forms

Name - Functional form Marginal effect Elasticity

(dY/dX) (X/Y)(dY/dX)
Linear Y =By + X B2 BaX/Y
Linear-log Y =81 +82I0X Ba/X Ba/Y
Reciprocal Y = B¢ + B2(1/X) ~Ba/ X2 ~B2/(XY)
Quadratic Y = By + B X + B3 X? B2 + 283X (B2 +2B3X)X/Y
Interaction Y = py + BaX + 3XZ B2+ B3Z (B2 +B3)X/Y
Log-linear nY =By + BaX B2Y B2 X
Log-reciprocal InY =81+ B01/X) —BaY/X? —BoX
Log-quadratic InY =By + BoX + B3 X? Y (B2 + 283X) X(B2 +2B3X)
Double-log nY =pgy+BaInX BaY/X

B
Logistic In[Y/(1 = )] =81 + B2X Ba2Y{(1-Y) ﬂ§(1 - X
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f1+B2InX

Figure 9.1 A linear-log functional form

This relation gives a marginal effect (dY/dX) equal to dY/dX = gp/X. Solvihg this
for dY: )

L]

_a4X _ B2 ax1 B2 . :
dY = B X = 100 [100 X ] = To0 % change in X) (9.18)

So, a 1% change in X will lead to B,/100 units change on Y (note that this.is not a
percentage but a unit change).

A plot of this function for positive 8; and g5 is given in Figure 9.1, while an example
from economic theory can be the production of total output of an agricultural product
(Y) with respect to hectares of land used for its cultivation (X).

Reciprocal functional form

A different example is that of:

Y=8+850/X)+u (9.19)

a plot of which is shown in Figure 9.2.

This form is frequently used with demand curve applications. Note that because
demand curves are typically downward-sloping we expect that 2 is positive and also,
while X becomes sufficiently large, ¥ asymptotically approaches ;.

Polynomial functional form

This model will include terms of the explanatory variable X increased in different
powers according to the degree of the polynomial (k). We have:

Y =81+ BoX + B3X2 4+ B XK +u (9.20)
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Figure 9.2 A reciprocal functional form .

To estimate this model we simply generate new variables X 2, x3 and so on and then
regress these variables to Y. Obviously if k = 3 then the polynomial is cubic, while for
k = 2 itis quadratic. Quadratic formulations are frequently used in order to fit U-shaped
curves (like for example cost functions). In general, polynomials of order higher than
2 should be avoided, first because of reduction of the degrees of freedom, and second
because there is a possibility of high correlation between X and X2 and the estimated
coefficients are unreliable.

Functional form including interaction terms

Sometimes it is possible that the marginal effect of a variable depends on another
variable: For example Klein and Morgan (1951) suggested that the marginal propensity
to consume is affected by asset holdings of individuals, meaning that a wealthier person
is likely to have a higher marginal propensity to consume out of his income. Thus in
the Keynesian consumption function:

C=a+8Y+u (9.21)

*
where C denotes consumption and y income, g is the marginal propensity to consume;
we have that 8 = g1 + B4, where A denotes assets. Substituting this into (9.21)
we get:

C=a+ (B1 +B2A)Y +u
=a+ 1Y + gAY + u (9.22)

The term AY is known as the interaction term. Note that in this case the marginal
effect will be given by dC/dY = B, + B2A, so we need to know the value of A in order
to calculate it.
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Log-linear functional form

So far we have examined models where non-linearity emerges only from the
explanatory variables. Now we examine a model in which the dependent variable
appears transformed. Consider the model:

InY = By + X +u (9.23)

B2, now, is the marginal effect of C on InY and not on Y. This ‘is known as the
instantaneous rate of growth. Differentiating both sides with respect to X we obtain:

g, = dInY _1dv _av 1 )
2TTAX TYaX Ty ax

The term dY /Y is the change in Y divided by Y. Therefore, when multiplied by 100, g
gives the change in Y per unit change in X.

The log-linear model is widely applied in economics (and lately especially in the
human capital literature). This theory suggests, for example, that the more educated a
person is, the higher should be his/her salary. Therefore, let us say that there is a return
to an extra year of education, labelled as . Then for the first period, the monthly salary
will be equal to s1 = (1 + 8)sq, for a two year return it will be s = (1 +9)Zso, and so oh.

Then for k years it will be s; = (1 +6)Xsq. Taking logarithms of both sides we have that:

Insg = kIn(1 + 08) + In(sg) = By + B2k . 9.25)

where of course k is years in education for each individual. Thus, we have obtained a

log-linear relationship between salary and years of education, where the OLS coefficient -

B2 is that one more year of education will give 1008, per cent more in monthly

. salary earnings.

The double-log functional form

The double-log model is very popular in cases where we expect variables to have

constant ratios. A common specification is the Cobb-Douglas type of production
function of the form:

Ye = AKLP (9.26)

where the standard notation is used. Taking logarithms of both sides and adding an
error term we get:

InYy =y +alnK; +BInLt +uy 9.27)

and it is easy to show, here, that @ and 8 are the elasticities of K¢ and L; respectively.
To demonstrate that, consider changes in K while keeping L constant; then we have:

a,_,‘“ny _/ydy Kdy
T dinK ~ (1/K)dK ~ Y dK

T (9:28)

©.24) "
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Also, another way to show this is by taking the derivative of ¥ with respect to K;
from the initial function (9.26): '

B .
day a—1;8 _ AK?Lt _ Y )
K= aAK{" 'L, =a K _aE 9.29)
and therefore:
dY K

It is easy to show that the same holds for 8. We leave this as an exercise for
the reader. Table 9.2 provides interpretations of the marginal effects in the various
logarithmic models.

The Box—Cox transformation

As we demonstrated above, the choice of the functional form plays a very important
role in the interpretation of the estimated coefficients, and therefore we need to have
a formal test which will be able to direct us to choose which functional form to use in
cases where we are uncertain about the population relationship.

For example, think of a model with two explanatory variables (X, and X3). We must
be able to determine whether to use the linear, log-linear, linear-log or double-log
specification. When the choice is between the linear and linear-log model, or among
the log-linear and double-log specifi¢ation, things are easy because we have the same
dependent variable in each of the two models. So, we can estimate both models and
choose the functional form that yields the higher R%. However, in cases where the
dependent variable is not the same, as for example in the linear form:

Y =581 +8X (9.31)

.Table 9.2 Interpretation of marginal effects in logarithmic models

Name Functional form Marginal effect : Interpretation

Linear Y =81 + B2X AY = BrAX 1 unit change in X will
induce a B unit
changein Y

Linear-log Y =81+ B2inX AY = B5/100(100A X/ X] 1 per cent change in X

will induce a B/100

unit change in Y
Log-linear nNY = g1+ 82X 100AY/Y = 10082AX 1 unit change in X will

induce a 10082

per cent change in Y
Double-log InNY =81+ 8InX 100AY/Y = Bo[100A X/ X] 1 per cent change in X

will induce a Bo

per cent change in Y
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‘and the double-log form:

InY =g +B,InX (9.32)

then we cannot compare the two models with the use of R?.
In such examples, we need to scale the Y variable in such a way that we will be
able to compare the two models. The procedure is based on the work of Box and Cox

(1964), and is usually known as the Box—Cox transformation. The procedure follows
the following steps:

Step1 Obtain the geometric mean of the sample Y values. This is:
Y = (Y YaV3-. Y 1/7 = exp (l/nZIn yi) (9:33)

Step 2 Transform the sample Y values by dividing each of them by ¥ obtained above
to get: '

y* = v;/V . (9.34)

Step 3 Estimate equations (9.31) and (9.32) substituting Y* as the dependent v'ariable
in voth of them. The RSS of the two equations are now directly corhparable,
and the equation with the lower RSS should be preferred.

Step 4 If we need to know whether one of the equations is significantly better than
the other, then we have to calculate the following statistic:

1 RSSp

where RSS; is the RSS of the equation with the higher RSS, and RSS; of the
other equation. The above statistic follows a x? distribution with 1 degree
of freedom. If xZ-statistical exceeds the y2-critical value then we can say
with confidence that the model with the lower RSS is superior at the level
of significance for which the x2-critical is obtained.

-Measurement errors

Up to this point our discussion has dealt with situations where explanatory variables
are either omitted or included contrary to the correct model specification. However,
another possibility exists that can create problems in the OLS coefficients. Sometimes in
econometrics it is not possible to collect data on the variable that truly affects economic
behaviour, or we might even collect data for which one or more variables are measured
incorréctly. In such cases, variables used in the econometric analysis are different from
the correct values and can therefore potentially create serious estimation problems.
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L Measurement error in the dependent variable

We begin our analysis by examining the case where there is a measurement error in the
dependent variable only, and we assume that the true population equation is:

mtlizedn

Y=81+82X2+4+ -+ B Xy +u (9.36)

Lo . which we further assume satisfies the assumptions of the CLRM, but we are unable to
observe the actual values of Y. Not having information about the correct values of Y
Ll . leads us to use available data on Y containing measurement errors.

! ,

E 1 The observed values of Y* will differ from the actual relationship as follows:

l Y*=Y+w (9.37)
(! where w denotes the measurement error in Y.

To obtain a model which can be estimated econometrically, we have that Y = Y* - w
z and we insert this into equation (9.36) obtaining:

Y*=B1+B2Xo+ -+ B Xy + (U +w) (9.38)

)
7 | Therefore, we now have an error term (u+w). Since Y*, X5, ..., Xy are now observed,
we can ignore the fact that Y* is not a perfect measure of Y and estimate the model.
The obtained OLS coefficients will be unaffected only if certain conditions about w
occur. Firstly, we know from the CLRM assumptions that u has a zero mean and is
uncorrelated with all Xs. If the measurement error w has a zero ‘mean as well, then
we get an unbiased estimator for the constant g; in the equation, if not then the OLS
} » ( estimator for 8) is biased, but this is rarely important in econometrics. Second, we need
I to have a condition for the relationship of w with the explanatory variables. :
’ If the measurement error in Y is uncorrelated with the Xs then the OLS estimators
for the slope coefficients are unbiased and consistent, and vice versa. As a final note,
(3 in case u and w are uncorrelated then var(u +w) =02 + 02 > o 2.
L Therefore the measurement error leads to a larger residual variance which of course
leads to larger variances of the OLS estimated coefficients. However, this is expected
"+ and there is nothing we can do to avoid it.

Measurement error in the explanatory variable
L In this case we have as the true populatioh equation:

Y=81+p2X2+u (9.39)
which satisfies the assumption of the CLRM and therefore OLS will provide unbiased
and consistent estimators of both g1 and g,. Now with X, non-observed, we have only

\ a measure of X3, let’s say X3. The relationship between X; and X3 is:

Xy = XE -V (9.40)
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and inserting this into the population model gives:

Y=8+BX5—-Vv)+u (9.41)
=1 + B2 X5 + (U~ B2V) (9.42)

If it was the case that £ and v are uncorrelated with X; and both pave a zero mean,
then the OLS estimators are consistent estimators for both g; and g;. However,as
shown below this is not generally the case. Also, again since ¢ and v are uncorrelated,
the residual variance is var(e — gv) = 082 + ﬂ%avz. Thus, only when 8; = 0 does the

measurement error not increase the variance, and the variances of 81 and g, will be-

again higher.
Recall that the OLS slope estimator is given by:

5, =X - X) ¥ -1
> (x5 - X3)°
_ L (X3 -X3) (B1+BaX5 +u—Pav) — B1 — Bo X5 — i1 + oV ‘
T (x3 - X3)°
_ (X5 -X) (B (X3 -5‘5)_+ (;‘ ~W) = p(v V) "(9.43)
T (x5 - X3) ’

For unbiasedness we want E(ﬁz) = B2. Taking the expected value of (9.43) we have:

E(B2) = By +E (Z(XZ_XZ)("_") -8 Z(XZ“XZ)(V_V))

Lg-%7 L g-x)
_ Cov (X3, u) Cov (X3,v)
=#2 E( Var (X5 2 Var (X3) )

(9.44)

Therefore, we need to check whether these covariances are equal to zero or not. We
have that:

Cov (X3, u) = E (X3u) — E (X3) E(u) (9.45)
But because E(g) = O this reduées to:
Cov (X3, u) = E (X5u) = E[(X2 + v)u] = E(Xau) + E(vu) (9.46)

Since the actual X is uncorrelated with u, the first expectation in (9.46) equals zero.

Also, assuming that the two errors (v and u) are indeépendent, the second expectatjon
is zero as well.
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For the covariance of X3 with v we have:

Cov (X3,v) = E(X5v) — E(X3) E(v) (9.47)

= E{(X3 +v)v] _ (9.48)

=E(Xv) + E0%) =0+ 02 (9.49)

The term E(X3v) is zero because the actual X> is independent of the measurement
error. However, because Cov(X%,v) = o,? which is non-zero, the observed X, (i.e. X;)
is correlated with its measurement error. Thus the slope coefficient is biased (because
E(Bp) = B2 + o2). Finally, since its magnitude of bias is not affected by its sample size,
the OLS estimator under measurement error in one of the explanatory variables is not
only biased, but inconsistent as well.

Tests for misspecification

Normality of residuals

We mentioned before that one way of detecting misspecification problems is through
observing the regression residuals. Recall also that one of the assumptions of the CLRM
is that the residuals are normally distributed with a zero mean and a constant variance.
Violatibn of this assumption leads to the inferential statistics of a regression model
(i.e. -t-stats, F-stats, etc.) not being valid. Therefore, it is quite essential to test for
normality of residuals.

. Inorder to test for this we first need to calculate the second, third and fourth moments
of the residuals and then compute the Jarque-Berra (1990) JB statistic. The test can be
done following the four simple steps presented below:

Step 1 Calculate the second, third and fourth moments (note that 3 is the skewness
of the residuls and that w4 is the kurtosis of the residuals) of the residuals (i)

in the regression equation as:
02 3 RS
u u
z 0 Lu (9.50)

n ’ n3 = n ’ Hq = n

. m2 =

Step 2 Calculate the Jarque-Berra statistic by
2 2
H3 (nqg —3)
B=n|—= + ——— .
JB=n [ et >4 :I (9.51)

which has a x2 distribution with 2 degrees of freedom.
Step 3 Find the x2(2) critical value from the tables of x2 distribution.

Step4 If JB > x2-critical we reject the null hypothesis of normality of residuals.
Alternatively, if the p-value is less than 0.05 (for a 95% significance level),
then we again reject the null hypothesis of normality. '
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Figure 9.3 Histogram and statistic for regression residuals

The J-B normality test for residuals in EViews

To check for normality of residuals in a regression model we need to check on the
histogram and the J-B statistic. To do this we first need to estimate the desired equation,
either by typing the command for the equation estimation in the EViews command line,
or by choosing Quick/Estimate Equation, then specify the equation and click <OK>.
After the estimation the series RESID which is always in every EViews workfile will
contain the residuals of this regression (note: the series RESID contains the residuals
of the most recent estimated equation in EViews, so if another equation is estimated
afterwards, the series RESID will change). To check for normality, we need to double-
click on the RESID series and from the series object toolbar click on View/Descriptive
Statistics/Histogram and Stats. This procedure will give us the graph and summary
statistics shown in Figure 9.3. _

From the histogram we can see that the residuals do not seem to be normally
distributed. Also, at the lower right-hand corner of the figure we can see the value
of the J-B statistic and its respective probability limit. The residuals come from a simple
regression model that included only one explanatory variable and 38 observations. So,
we can obtain the xz critical value for 2 degree of freedom, a = 0.05 and n = 38, by
the following command in EViews:

scalar chi_crit=eqgchisqg(.95,2)

This will create a scalar named chi_crit in our workfile, and the result of the scalar
can be displayed in the status line at the bottom of the EViews main window, after
double-clicking on the scalar. The value of the chi_crit is equal to 3.841, and since it
is higher than the J-B statistic we cannot reject the null hypothesis that the residuals
are normally distributed. Also, since the p-value is equal to 0.415 and greater than the

~chosen level of significance (0.05), we again conclude that we cannot reject the null

hypothesis of normality.
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The Ramsey RESET test for general misspecification

One of the most commonly used tests for general misspecification is Ramsey’s (1969)
Regressions Specification Error Test (RESET) as with many tests this has both an F-form
and an LM form. Suppose that the ‘true’ population model is:

Y = g1 + B2X2 + B3X3 +u (9.52)
and we wrongly estimate:

Y = 1 + B2 X +0t* (9.53)

where we omit X% because we do not actually know what the real nature of Y is.
The RESET test for such misspecification is based on the fitted values of Y obtained

from regression (9.53) as:

Y =81 + B2 X2 (9.54)

The RESET test involves including various powers of ¥ as proxies for X% that can capture
possible non-linear relationships. Before implementing the test we need to decide how
many terms we will include in the expanded regression. There is no formal answer to
this question, but in general the squared and cubed terms have proven to be useful in
most applications; so the expanded equation will be:

Y =81 + BaXo + 86172 + 6,73 + ¢ (9.55)

Then the situation boils down to a regular F-type test for the additional explanatory
variables ¥2 and V3. If one or more of the coefficients are significant then this is
evidence of general misspecification. A big drawback of the RESET test is that if we reject
the null hypothesis of a correct specification, this merely indicates that the equation
is misspecified in one way or another, without providing us with alternative models
which are correct.

So, summing up, the RESET test can be performed step by step as follows:

Step 1 Estimate the model that we think is correct in describing the population
equation, and obtain the fitted values of the dependent variable Y.

Step 2 Estimate the model in step 1 again, this time including 2 and ¥ as additional
explanatory variables.

Step 3 The model in step 1 is the restricted model and that in step 2 is the unrestricted
model. Calculate the F statistic for these two models.

Step 4 Find the F-critical value from the F tables for 2, n — k — 3 degrees of freedom.

Step 5 If F-statistic > F-critical we reject the null hypothesis of correct specification
and conclude that our model is somehow misspecified. Alternatively, we can
use the p-value approach. 1f the p-value for the F-stat is smaller than the
required level of significance (usually 0.05), then we again reject the null
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Table 9.3 Ramsey RESET test example

Dependent Variable: LCONS
Method: Least Squares
Date: 02/16/04 Time: 15:03
Sample: 1985:1 1994:2 -
Included observations: 38

Variable Coefficient Std. Error t-Statistic Prob.

(o] 2.717238 0.576652 4.712091 0.0000
LDISP 0.414366 0.126279 3.281340 . 0.0023
R-squared 0.230230 Mean dependent var 4.609274
Adjusted R-squared 0.208847 S.D. dependent var 0.051415
S.E. of regression 0.045732 Akaike info criterion * -3.280845 .
Sum squared resid 0.075291 Schwarz criterion ~3.194656
Log likelihood 64.33606 F-statistic 10.76719
Durbin—-Watson stat 0.412845 Prob(F -statistic) 0.002301

hypothesis of correct specification. A Langrange multiplier test is also available
and the x2 distribution will have 2 degrees of freedom.

The RESET test can also be calculated using the LM procedure describéd in chapter 5.
To perform this we would take the residuals from the restricted model (9.53) and
regress them on 2 and ¥3, TR? from this regression would give an LM test with a
chi? distribution with 2 degrees of freedom. '

Ramsey’s RESET test in EViews

Assume that we estimated the following regression model from the file cons.wfl, by
typing into the EViews command line:

1s lcons c ladisp

which regresses the logarithm of a consumer’s expenditure on food (lcons) on the
logarithm of disposable income (ldisp). The results obtained from this regression are
shown in Table 9.3.

In order to test for general misspecification with Ramsey’s RESET test we click on
View/Stability Tests/Ramsey RESET Test . . ., after which a new window opens (RESET
Specification) which asks us to specify the number of fitted terms we want to use. If
we choose 1 it will include only Y2, if we choose 2 it will include both Y2 and ¥3, and
so on. Let’s assume that we choose only 1 and click <OK=>. The results are shown in
Table 9.4.

From the results we can see that F-stat is quite high. Even though we do not have
F-critical, from the p-value we can see that because the p-value for the F-stat is smaller
than the required level of significance (0.05), we can safely reject the null hypothesis
of correct specification and conclude that our model is misspecified. Notice, as well,
that the coefficient of the squared fitted termris statistically significant (t-stat = 4.66).
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Ramsey’s RESET test in Microfit

Microfit reports Ramsey’s test in the regression results output under diagnostic tests, as
test B, and it includes one fitted squared term. It reports statistical values and p-values
of both the LM test and the F-type test described above. The interpretation is as usual
with the use of the p-value approach as presented in the example above.

Tests for non-nested models

If we want to test models which are non-nested we cannot use the F-type test. By non-
nested models we mean models in which neither equation is a special case of the other,
in other words we do not have a restricted and an unrestricted model.

Suppose, for example, that we have the following two maodels:

Y =81+ B82X2+83X3 +u , (9.56)
Y=81+8InX; +63InX3+¢ (9.57)

and that we want to test the first against the second, and vice versa. There are two

different approaches.
The first is an approach proposed by Mizon and Richard (1986), who simply suggest
the estimation of a comprehensive model of the form:

Y =681 + 62X +83X3 +84In X3 +85InX3 + ¢ (9.58)

Table 9.4 Ramsey RESET test example (continued...)

Ramsey RESET Test:

F-statistic 21.75213 Probability 0.000044
Log likelihood ratio 18.36711 Probability 0.000018
Test Equation:

Dependent Variable: LCONS
Method: Least Squares
Date: 02/16/04 Time: 15:09
Sample: 1985:1 1994:2
Included observations: 38

Variable Coefficient Std. Error t-Statistic Prob.

C ' —204.0134 44.32789 —4.602370 0.0001
LDISP —204.4012 43.91503 —4.654471 0.0000
FITTED"2 53.74844 11.52431 4663919 0.0000
R-squared 0.525270 Mean dependent var 4.609274
Adjusted A-squared 0.498142 S.D. dependent var 0.051415
S.E. of regression 0.036423 Akaike info criterion —3.711559
Sum squared resid 0.046433 Schwarz criterion -3.582275
Log likelihood 73.51961 F-statistic 19.36302

Durbin—Watson stat 0.795597 Prob(F-statistic) 0.000002
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then applying an F test for significance of §; and &3 having as the restricted model
equation (9.57), or test for 84 and §5 having as an restricted model equation (9.56).
The second approach is proposed by Davidson and MacKinnon (1993), who suggest
that if model (9.56) is true, then the fitted values of (9.57) should be insignificant in
(9.56) and vice versa. Therefore, in order to test (9.56) we need to first estimate (9.57)
and take the fitted values of this model, which we may call Y. The test is then based
. on the t statistic on Y in the following equation:

Y =81+ B2X2 4+ B3X3 +¢Y +v (9.59)

where a significant ¢ coefficient will suggest, of course, rejection of (9.56). A drawback -

of this test is that the comprehensive equation (9.58) may not make sense from an
economic theory point of view.

The case is exactly the opposite if we want to test (9.57) against (9.56). There are
some drawbacks with these testing techniques:

1 It is not necessary to have results that clearly suggest which model is better. Both
‘models may be rejected or neither model may be rejected. If the case is that nelther
is rejected we choose the one with the higher RZ,

2 Rejecting (9.56) does not necessarily mean that (9.57) is the correct alternative.

3 The situation is even more difficult if the two competing models also have different
dependent variables. Tests have been proposed to deal with this problem but they
are beyond the scope of this text and will not be presented here.

Example: the Box~Cox transformation
in EViews

This example looks at the relationship between income and consumption, proposing

two functional forms and using the Box—-Cox transformation to decide which of the

two is preferable. A Raumsey RESET test is also performed. '
We use data for income, consumption and the consumer price index, in quarterly

frequency from 1985 gq! up to 1994 ¢! and g2. The file name is box_cox.wfl and the
variable names are inc, cons and cpi respectively.

We can specify the consumption function in two ways:

Ce = B11 + Br2Yr +uy (9.60)

or
InC; = 821 + B22InY +uy, (9.61)
where C; is real consumption (adjusted for inflation), 811, Bi12, B21 and B2 are

~ coefficients to be estimated, Y; is real-income-(adjusted-for-inflation)-andujy; and u3;
are the disturbance terms for the two alternative specifications.

. A
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We therefore need to restate the nominal data into real terms for both equations, and
to create the log of the variables in order to estimate equation (9.61). We can use cpi to
remove the effects of price inflation, as follows: '

CPly e
Xreal = Xnominal * (ﬁfﬁg) (9.62)

In EViews, we use the following commands:
scalar cpibase=102.7
genr consreal=cons* (cpibase/cpi)

gern increal=inc*(cpibase/cpi)

And we can transform the logarithm of the variables consreal and inc real in EViews
using the commands:

gern lincr=log(increal)
genr lconsr=log(consreal)

We now have all of our data sets in place for the Box-Cox transformation. First we need
to obtain the geometric mean which can be calculated as:

Y= (V1YaY3-- Y)V/" = exp (l/nZln y,-) : (9.63)

In EViews, the first step is to prepare the sum of the logs of the dependent variable, to
do which we type the following command in the EViews command line:

scalar scons = @sum(lconsr)

In order to view a scalar value in EViews we need to double click on the scalar and its
value will appear at the lower right-hand corner. We observe that the sum of the logs
is calculated as 174.704. The command to find the geometric mean of the dependent
variable, with n = 38 observations, is:

scalar constilda=exp((1/38)*scons)

and we need to transform the sample Y values, i.e. Iconsr, by dividing each by constilda
to generate a new series constar. In EViews the command is:

genr cohstar=lconsr/constilda

The new series constar can now be substituted as the dependent variable in equations
(9.60) and (9.61) above to provide the following new equations:

Cf =pB11 +B12Ye +uye (9.64)
and

CZ‘ = P21 + B2 InY; +uy; (9.65)
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Table 9.5 Regression model for the Box—Cox test

Dependent Variable: CONSTAR
Method: Least Squares

Date: 02/25/04 Time: 16:56
Sample: 1985:1 1994:2
Included observations: 38

Variable Coefficient Std. Error t-Statistic Prab.

Cc —0.025836 0.008455 -3.055740" 0.0042
LINCR 0.015727 0.001842 8.536165 0.0000
R-squared 0.669319 Mean dependent var . 0046330
Adjusted R-squared 0.660133 8.D. dependent var 0.001096 .
S.E. of regression 0.000639 Akaike info criterion -11.82230
Sum squared resid 1.47E-05 Schwarz criterion -11.73611
Log likelihood 226.6238 F-statistic 72.86612
Durbin—Watson stat 0.116813 Prob{ F-statistic) 0.000000

To run these two regression in EViews, the commands are:

1s constar ¢ increal
ls constar ¢ lincr

the results of which are presented in Tables 9.5 and 9.6 respectively. Summarized results
are presented in Table 9.7. From the summarized results we see that the constant and
income terms in both functional forms are significant; the R2 values are similar at
65-67%.

The residual sums of squares (RSS) of the regressions are 1.54E — 05 and 1.47E - 05
for the linear (9.64) and the double-log model (9.65) respectively. Thus equation (9.65)
has the lower RSS, and would be the preferred option. In order to test this result, we
can calculate the Box—Cox test statistic which is given by the following equation:

1 RSS;
= (0.5 38) % In(1.54 % 10™5/1.47 + 10~%) ' (9.67)
= 19  In(1.0476) = 0.8839 (9.68)

where RSS; is the higher RSS value, obtained from the linear function (9.64).

The critical value, taken from the Chi-square distribution with one degree of freedom
(one independent variable) and 0.05 level of significance, is 3.841. Thus the test statistic
.isless than-the critical-value and-so we cannot concludé that the log function is superior
to the linear function at a 5% level of significance.
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Table 9.6 Regressi()n model for the Box—Cox test (continued...)

Dependent Variable: CONSTAR
Method: Least Squares

Date: 02/25/04 Time: 16:56
Sample: 1985:1 1994:2
Included observations: 38

Variable Coefficient Std. Error : t-Statistic Prob.
C 0.030438 0.001928 15.78874 0.0000
INCREAL 0.000161 1.95E-05 8.255687 0.0000
R-squared ~ 0.654366 Mean dependent var 0.046330
Adjusted R-squared 0.644765 S.D. dependent var 0.001096
S.E. of regression 0.000653 Akaike info criterion ~11.77808
Sum squared resid 1.54E-05 Schwarz criterion -11.69189
Log likelihood 225.7835 F-statistic 68.15636
Durbin—Watson stat 0.117352 Prob(F-statistic) 0.000000

Table 9.7 Summary of OLS results for the Box—Cox test

Variables Linear Model Log-Log Model

Constant 0.0304 ~0.025836
(15.789) (—3.056)

Income 0.000161 0.015727
(8.256) ) (8.536)

R2 0.654366 0.669319

Sample,size (n) 38 38

Approaches in choosing an
appropriate model

The traditional view: average economic regression

In the past, the traditional approach to econometric modelling was to start by
formulating the simplest possible model to obey the underlying economic theory, and
after estimating that model to perform various tests in order to determine whether or
not it was satisfactory. .

A satisfactory model in that sense would be: (a) one having significant coefficients
(i.e. high t ratios), and coefficients whose signs correspond with the theoretical
predictions, (b) one with a good fit (i.e. high RZ), and (c) one having residuals that
do not suffer from autocorrelation or heteroskedasticity. '

If one or more of these points are violated, then researchers try to find better methods
of estimation (i.e. the Cochrane~Orcutt iterative method of estimation for the case of
serial correlation), or to check other possible cases of bias such as whether important
variables have been omitted from the model, or whether redundant variables have been
included in the model, or to consider alternative forms of functional forms, and so on.

This approach, which essentially starts with a simple model and then ‘builds up’
the models as the situation demands, is called the ‘simple to specific approach’ or
the ‘average econoniic regression (AER)’, a term coined by Gilbert (1986) because
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3 t
this was the method that most traditional econometric research was following in . ﬂ
practice. ’
The AER approach has received major criticisms: : l i
1 One obvious criticism is the fact that the procedure followed in the AER approach ‘ } (
suffers from data mining. Since, usually, only the final model is presentéd by the

researcher, we do not have any information regarding the number of variables that
were actually used in the model before obtaining the ‘final’ model results.

2 Another criticism is that the alterations to the original model are carried out in an l t
arbitrary manner based mainly on the beliefs of the researcher. It is, therefore, quite "
possible for two different researchers examining the same case to come up with totally
different conclusions. - 3

———

3 By definition the initial starting model is incorrect as it has omitted variables. This
will mean that all the diagnostic tests on this model are incorrect. So we may find -
‘that important variables are insignificant and exclude them. 3

The Hendry ‘general to specific approach’ ' ’ l

Following from these two major criticisms against the AER, an alternative approach .
has been developed which is called the ‘general to specific approach’ or the Hendry 3
approach, because it was mainly developed by Professor Hendry of the London School

of Economics (see Hendry and Richard, 1983). The approach is to start with a general :
model that contains ~ nested within it as special cases - other simpler models. Let us

use an example to understand this better. Assume that we have a variable Y that can }
be affected by two explanatory variables X and Z: the general to specific approach
proposes as a starting point the estimation of the following regression equation:

Yr=a+ foXt + B1Xe-1+ B2 Xe—2+ - + BmXtem
+v0lt + V1€t-1 + v2Ztz+ -+ ymZr-m . § {
+61Yt_1 +82Yt_2+"'+8th_m+U1 (9.69)

{
That is, to regress Y; on contemporaneous and lagged terms X; and Z; as well as ;
lagged values of Y;. This model is called an autoregressive (because lagged values of g
the dependent variable appear as regressors as well) distributed lag (because the effect :
of X and Z on Y is spread over a period of time from t — m to t) model (ARDL). Also, ]
models like (9.69) are known as dynamic models because they examine the behaviour
of a variable over time. . .\
The procedure then is, after estimating the model, to apply appropriate tests and . } 1

to narrow dowr the model to simpler ones which are. always nested-to the-previeusly ——  — S e A R
estimated model.

IR
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Let us consider the above example for m = 2 to see how we may proceed in practlce‘

‘with this approach. We have the original model:

Ye=a+ BoXt + B1Xe—1 + B2 Xe-2
+v0Zt + ViZe-1+v2Ze 2+ 81Y 1 +82Yr 2+ 1 (9.70)

where one restriction may be that all the Xs are non-important in the determination
of Y. Then for this we have hypothesis Hy: 8o = 81 = 82 = 0; and if we accept that, we
have a simpler model such as the one below:

Yy =ayZi +1Zi-1 +v2Zi 2+ 811 +82Y 2 +ue (9.71)

Another possible restriction may be that the second lagged term of each variable is
insignificant; i.e. hypothesis Hy: B2 = y2 = 83 = 0. Accepting this restriction will give
the following model:

Ye =a+ BoXe + B1Xt—1 + w0t + viZe—1 +01Ye_1 + iy (9.72)

It should be clear by now that models (9.71) and (9.72) are both nested models of the
initial (9.70) mode}; but (9.72) is not a nested model of (9.71), and therefore, we cannot

proceed to (9.72) after estimating (9.71).

An important question when we are proceeding from the general to the more
specific model, is how do we know what the final simplified model should be. To
answer this questlon, Hendry and Richard (1983) suggested that the simplified model

should

1 be data admissible;

2 be consistent with the theory;

3 use regressors that are not correlated with u;

4 exhibit parameter constancy;

5 exhibit data coherency, i.e. have residuals that are purely random (white noise); and

'6 be encompassing, meaning to include all possible rival models in the sense that it
allows us to interpret their results. :

[
ki
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Exercise 9.1

The file wages_01.wfl contains data for monthly wage rates (measured in UK pounds)
and IQ scores of a large number of City University graduates, after five years of
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employment:

(a) Find summary statistics for the above mentioned variables and discuss them.

(b) Estimate a functional form that will show how a one-point increase in the 1Q score
will change the respective wage rate by a constant amount measured in UK pounds.
What is the change in the wage rate for a 10-point increase in the IQ score?

(c) Estimate a functional form that will show how a one-point increase in the 1Q score
will have a percentage change effect on the wage rate. What is the percentage
change in the wage rate for a 10-point increase in the IQ score?

(d) Use the Box-Cox transformation to decide which of the two models is”
more appropriate.
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Introduction: the nature of
qualitative information

So far, we have examined equation specifications that are utilized in econometric
analysis, as well as techniques in order to obtain estimates of the parameters in an
equation and procedures for assessing the significance, accuracy and precision of those
estimates. An assumption implicitly made so far has been that we can always obtain
a set of numerical values for all the variables we want to use in our models. However,
it is easy to understand that there are variables that can play a very important role in
the explanation of an econometric model that are not numerical or easy to quantify.
Examples of these could be the following:

(a) gender may play a very important role in determining salaries earned from
employment; :

(b) different ethnic groups may follow different patterns regarding consumption
and savings;

(c) educational levels can definitely affect earnings from employment; and-/or

(d) being a member of a labour union may imply different treatment/attitudes than
not belonging to the union, and so on.

i

All these are cases for cross-sectional analysis.
Not easily quantifiable (or in general qualitative) information could also

be a case of a time-series econometric framework. Consider the following
examples:

(a) changes in a political regime may affect production processes, employment
conditions, and 50 on;

(b) a war can have an impact on all aspects of economic activity;

(c) certain days in a week or certain months in a year can have different effects in the
fluctuations of stock prices; and '

(d) seasonal effects are quite often observed in the demand of particular products, i.e.
ice cream in summer, furs during winter etc.

The aim of this chapter is to show the methods that should be used to include
information from qualitative variables into econometric models. This is possible by
what are known as dummy or dichotomous variables. The next section presents
the possible effects of qualitative variables in regression equations and the methods

required to use them. We then present special cases of dummy variables and the Chow
test for structural stability.

—
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The use of dummy variables
Intercept dummy variables

Consider the following cross-sectional regression equation:

Yi=B1+ B2Xzi + 4 (10.1)

The constant term (8;) in this equation measures the mean value of ¥; when Xy; is
equal to zero. The important thing here is that this regression equation assumes that
the value of By will be the same for all the observations in our data set. However, the
coefficient might be different depending on different aspects regarding our data set.
For example, regional differences might exist in the values of ¥;; ¥; might represent
the growth of GDP for EU countries for instance. Differences in growth rates are quite
possible between core countries and peripheral countries. The question now is how
can we quantify this information in order to enter it in the regression equation and
check for the validity or not of this possible difference? The answer to this question
is: with the use of a special type of variable - a dummy (or fake) variable that captures
qualitative effects by coding the different possible outcomes with numerical values.
This can usually be done by simply dichotomizing the possible outcomes and by

arbitrarily assigning the values of 0 and 1 to the two different possibilities. So, for the EU
countries example we can have a new variable, D, which can take the following values:

1 for core country

= (10.2)
0 for peripheral country

Note that the choice of which of the two different outcomes is to be assigned the value
of 1 does not alter the results in an important way, as we will show later.
Thus, entering this dummy variable in regression model (10.1) we get:

Yi= By + B2Xoi + 83D+ u; (10.3)

and in order to get the interpretation of D;, consider the two possible values of D, and

how those will affect the specification of equation (10.3). For D = 0 we will have:

.

Y; = B1 + B2 X3 + B3(0); + u; (10.4)
= B1 + Bz Xz + 1 (10.5)

which is the same as for the initial model. Whilst for D = 1 we will have:
Y; = B1 + B Xo; + B3(1); + iy (10.6)
= {81 + B3) + B2 Xz + u; (10.7)

where now the constant is different from g; and is equal to (8; + B3). So, we can see
that by including the dummy variable, the value of the intercept has changed, shifting
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the function (and therefore the regression line} up or down; depending on whether the
observation in question corresponds to a core or a peripheral country.

Graphically this can be depicted in Figures 10.1 and 10.2 where we have two cases
for B3: (a) the first being positive and shifting the regression line up, suggesting that
(if X,; is investment rates) the mean GDP growth for core countries is bigger than for
peripheral countries for any level of investment; and (b) the second being negative,
suggesting exactly the opposite result. :

Once the regression equation (10.3) is estimated, the coefficient g3 will be tested in
the usual way with the ¢ statistic. Only if 83 is significantly different from zero can we
conclude that we have a relationship such as depicted by Figures 10.1 and 10.2.

For other examples we could consider Y as the salary level and X the years of

experience of various individuals, with a dummy variable being the sex of each
individual (male = 1, female = O); or, in the time-series framework we might have

dummy variables for certain periods (like war dummies that take the value of 1 for the

ﬂ3>0
B1+ B3

B4

0 X

Figure 10.1 The effect of a dummy variable on the constant of the regression line

[)‘3<0
B

B+ B3

0 . X

-Figure-10.2—The-effect of a-dummy variable onthe constantof the regression line I
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period during the war and zero otherwise), or for certain events (like dummy variables

for oil price shocks, etc.).

Slope dummy variables

In the previous section, we examined how qualitative information can affect the
regression model, and we saw that only the constant in the relationship is allowed

“to change. The implicit assumption underlying this was that the relationships between

Y and the Xs were not affected by the inclusion of the qualitative dummy variable. -

The relationship between Y and the Xs is represented by the derivative (or slope)
of the function in the simple linear regression model, and by the partial derivatives
in the multiple regression model. Sometimes, however, it could be the case that slope
coefficients might be affected by differences regarding dummy variables.

Consider, for example, the Keynesian consumption function model, relating
consumer expenditure (Y;) to disposable income (X3;). This simple regression model
has the following form:

Yy = 1 + B2 Xzt + Ut (10.8)

The slope coefficient (8;) of this regression is the marginal propensity to consume
given by: ’

dY;
Dy B2 (10.9)

and shows the percentage of the disposable income that will be consumed. Assume
that we have time-series observations for total consumer expenditure and disposable
income from 1970 until 1999 for the UK economy. Assume, further, that we think that
a change in the marginal propensity to consume occurred in 1982 due to the oil price
shock that generally affected the economic environment. In order to test this, we need
to construct a dummy variable (D;) that will take the following values:

_}0 for years from 1970-81

. = . (10.10)
1 for years from 1982-99

This dummy variable, because we assume that it affected the slope parameter, must be
included in the model in the following multiplicative way:

Yo = B1 + B2Xoe + B3De X + 14t (10.11)

The effect of the dummy variable can be dichotomized again according to two different
outcomes. For D; = 0 we will have:

Y = 81+ B2Xoe + B3(0) Xz + 14y (10.12)
=P+ B2 Xz + 1y (10.13)




L)

188 Topics in Econometrics
which is the same as with the initial model, and for D = 1 we will have:

Yt = B1 + B2X2¢ + B3(1) X + 1y (10.14)

= B1 + (B2 + B3)Xy; + ut : (10.15)

So, before 1982 the marginal propensity to consume is given by 85, and after 1982 it
is B2 + B3 (higher if 83 is higher and lower if g3 is lower). To illustrate the effect better,
see Figures 10.3 and 10.4 for the cases where 83 > 0 and 83 < O respectively.

The combined effect of intercept and slope dummies

It is now simple to understand what the outcome will be when using a dummy

variable that is allowed to affect both the intercept and the slope coefficients. Consider
the model: :

Yt = B1+ B2Xot +uy © o (10.16)

Slope: B2+ B3 : Il

Slope: B>

0 X
Figure 10.3 The effect of a dummy variable on the constant of the regression line

Y
Slope:
B3<0
B
Slope: 2+ fis
0 X

riable on the constant of the regression line

“Figure 10.4 The effect of a dummy va
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Slbpe: Pt B4

B+ B3

By Slope: f;

0 : X

Figure 10.5 The effect of a dummy variable on the constant of the regression line

and let’s assume that we have a dummy variable defined as follows:

0 fort=1,...,
o s (10.17)

D=
1 fort=s+1,...,T

Then, using the dummy variable to examine its effects on both the constant and the
slope cogfﬁcients we will have:
Y = B + B2Xoe + 83Dt + B4 Dy Xop + 1y (10.18)
and the differeﬁt outcomes will be, for Dy = 0:
Y =81+ 82X + 1t (10.19)
which is the same as for the initial model, and for D = 1:
Ye =B+ 83)+ (B2 + B X + 1y (10.20)

The effects are shown graphically in Figure 10.5.

Computer example of the use of
dummy variables

The file dummies.wfl contains data on wages (wage) and IQ levels (ig) of 935
individuals. It also includes various dummy variables for specific characteristics of the
935 individuals. One is the durnmy variable male, which takes the value of 1 when the
individual is a male and the value of 0 if the individual is female.

We want to see the possible effects of the male dummy on the wage rates (i.e. to
examine whether males get different wages than females). First, we regress only wages
on the IQ levels and a constant, to examine whether IQ plays a score in the wage
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Table 10.1 The relationship between wages and 1Q

Dependent Variable: WAGE
Method: Least Squares
Date: 03/30/04 Time: 14:20
Sample: 1 935

Included observations: 935

Variable Coefficient Std. Error t-Statistic Prob.
C © 116.9916 85.64153 1.366061 0.1722
Q 8.303064 0.836395 9.927203 0.0000
R-squared 0.095535 Mean dependent var 957.9455
Adjusted R-squared 0.094566 S.D. dependent var 404.3608
S.E. of regression 384.7667 Akaike info criterion 14.74529
Sum squared resid . 1.38E+08 Schwarz criterion * 14.75564
Log likelihood —6891.422 F-statistic 98.54936
Durbin—Watson stat 0.188070 Prob(F-statistic) 0.000000

determination. The results are obtained by using the following command in EViews:

ls wage ¢ iqg
and they are presented in Table 10.1. . '
From these results we understand that IQ is indeed an important determinant (its
t statistic is highly significant), and because our model is linear we also have that a
1-unit increase in the IQ level corresponds to an 8.3-units increase in the wagg rate of
the individual. Independent of the IQ level, the wage rate is 116.9 units.

Using a constant dummy

Including the male dummy as a dummy affecting only the constant, we find the
regression results (shown in Table 10.2). The command in EViews for this estimation is
the following:

ls wage ¢ iqg male

From these results we can now see that, independent of the IQ, if the individual is a
femnale she will have a wage of 224.8 units, while if the individual is a male he will have
a wage of 722.8 units (224.8 + 498.0). This interpretation is of course based on the fact
that the coefficient of the dummy variable is highly statistically significant, reflecting
the fact that, indeed, males get higher wages than females.

Using a slope dummy
Continuing, we want to check whether the marginal effect is also affected by the sex.

In other words, we want to see whether, on average, an increase in the 1Q level of men
will mean higher wage increases than for women. To do this we estimate a regression

=
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Table 10.2 Wages and 1Q and the role of sex {using a constant dummy)
Dependent Variable: WAGE
Method: Least Squares
Date: 03/30/04 Time: 14:21
Sample: 1 935
Included observations: 935
Variable Coefficient Std. Error ) t-Statistic Prob.
c 224.8438 3.373884 0.0008
Q 5.076630 0.662354 7.664527 0.0000
MALE 498.0493 24.80715 0.0000
R-squared 0.455239 Mean dependent var 957.9455
Adjusted A-squared 0.454070 S.D. dependent var 404.3608
S.E. of regression 298.7705 Akaike info criterion 14.24043
Sum squared resid 83193885 Schwarz criterion 14.25596
Log liketihood —6654.402 F -statistic 389.4203
Durbin—-Watson stat 0.445380 Prob(F-statistic) 0.000000
Table 10.3 Wages and 1Q and the role of sex (using a slope dummy)
Dependent Variable: WAGE
Method: Least Squares
Date: 03/30/04 Time: 14:21
Sample: 1 935
Included observations: 935
Variable Coefficient Std. Error t-Statistic Prob.
Cc 412.8602 67.36367 6.128825 0.0000
Q - 3.184180 0.679283 4.687559 0.0000
MALE=*1Q 4.840134 0.193746 24.98181 0.0000
«R-squared 0.458283 Mean dependent var 957.9455
Adjusted A-squared 0.457120 S.D. dependent var 4(4.3608
S.E. of regression 297.9346 Akaike info criterion 14.23483
Sum squared resid 82728978 Schwarz criterion 14.25036
Log likelihood -6651.782 F-statistic 394.2274
Durbin-Watson stat 0.455835 Prob(F-statistic) 0.000000

in EViews that includes a multiplicative slope dummy (male * iq), using the command:
ls'wage ¢ ig male*iqg

The results of which are presented in Table 10.3. We observe that the slope dummy is

statistically significant indicating that there is a difference in the slope coefficient for

different sexes. Particularly, we have that the marginal effect for women is 3.18 while
that for men is equal to 3.18 + 4.84 = 8.02.

Using both dummies together

Finally, we can examine the above relationship further by using both dummies at the
same time to see the difference in the results. The results of this model are presented
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Table 10.4 Wages and IQ and the role of sex (using both constant and slope dummies)

Dependent Variable: WAGE
Method: Least Squares
Date: 03/30/04 Time: 14:23
Sample: 1935

Included observations: 935

Variable Coefficient Sid. Error 1-Statistic - Prob.
C 357.8567 84.78941 4.220535° 0.0000
QQ 3.728518 0.849174 4.390756 0.0000
MALE 149.1039 139.6018 1.068066 0.2858
MALE+ IQ 3.412121 1.350971 2.525680 . 0.0117
R-squared 0.458946 Mean dependent var 957.9455
Adjusted R-squared 0.457202 S.D. dependent var 404.3608
S.E. of regression 297.9121 Akaike info criterion 1423574
Sum squared resid 82627733 Schwarz criterion 14.25645
Log likelihood -6651.210 F-statistic 263.2382
Durbin—-Watson stat 0.450852 Prob(F-statistic) 0.000000

in Table 10.4 and suggest that only the effect on the slope is now significant, and the
effect on the constant is equal to zero. :

Special cases of the use of
dummy variables

Using dummy variables with multiple categories

A dummy variable might have more than two categories. Consider for example a model
of wage determination where Y; is the wage rate of a number of individuals and X;
is the years of experience of each individual in the sample. It is logical to assume that
the educational attainment level will affect the wage rate of each individual as well.
Therefore, in this case we can have several dummies defined for the highest level of
educational attainment of each individual, given by:

D = 1 if primary only (10.21)
0 otherwise

Dy = 1 if secondary only (10.22)
0 otherwise

Dy = 1 if BSc only (10.23)
0 otherwise

p =t EMSconly g
0 otherwise

e
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So, we can have a wage equation of the following form:
Y; =81+ 82Xy +axDy; +azDsz; + agDy; + u; (10.25)

Note that we did not use all four dummy variables. This is because if we use all four
dummy variables we will have exact multicollinearity since Dy + D, + D3 + D4 will
always be equal to 1, and therefore they will form an exact linear relationship with the
constant 81. This known as the dummy variable trap. To avoid this, the rule is that the
number of dummy variables that we use wil] always be one less than the total number
of possible categories. The dummy variables that will be omitted will define a reference
group, as will become clear in the interpretation of the dummies on the model.

The wage equation can be separated according to the use of the dummies as follows.
Dy =1, D3 =D4 =0 and then:

Y; = B1 + B2Xz; +az2Dpi +u; (10.26)
= (B1 +az) + B2 Xpi +u; (10.27)

so, the constant for the case of secondary education is (81 + a3).
D3 =1; D =D4 =0and:

Yi = B1 + B2 Xy + azD3; + (10.28)
= (B1 +a3) + B2Xp; + y; (10.29)

so that the constant for the case of BSc degree holders is (81 + a3).
IfD4 =1; Dy = D3 =0, then:

Y; = 81 + B2X2i + azDy; + y; (10.30)
= (B1 +aq) + B2 X3 + 1 (10.31)

so that the constant for the case of MSc degree holders is (81 + a4).
While if Dy = D3 = D4 =0, then:

Yi = 81+ B2X3; (10.32)

" and for this case the constant for the primary education is equal to the constant of the

original model, ;.

So, in fact we don’t need all four variables to depict all four outcomes. Taking as
reference variablé primary education, coefficients a;, a3 and a4 measure the expected
wage differential that workers with secondary, BSc and MSc degrees will have compared
to those with primary education only.

It is important to note that, mathematically, it does not matter which dummy
variable is omitted. We will leave this as an exercise for the reader to understand why
this is the case. However, the choice of the D; dummy to be used as the reference
dummy variable is a convenient one, because it is the lowest level of education and
therefore we expect the lowest wage rates to correspond to this category.

In terms of graphical depiction, the effect of the multiple dummy variable
‘educational level is shown in Figure 10.6.

3
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a4>0

/f1+d4
Ba+ag

Bitoag

B4

0 X

Figure 10.6 The effect of a dummy variable on the constant of the regression line

The dummy variable trap is a quite serious mistake and should be avoided by all
means. Fortunately, computer softwares will signal to the researcher a message that
OLS estimation is not possible, suggesting that there is a possibility of committing
exact multicollinearity due to the dummy variable trap by mistake (for more abqut
exact multicollinearity see Chapter 6). .

Using more than one dummy variable

The dummy variable analysis can be easily extended to cases of more than one dummy
variable, some of which may have more than one category. In cases like this, the
interpretation of the dummy variables, although following the regular form, might
appear more complicated and the researcher should take care using them.

To illustrate this, consider the previous model, hypothesizing that apart from the
educational level there are other qualitative aspects determining the wage rate, such as
age, gender and category of occupation. In this case we can have the following model:

Yi = 1 + BaXo; + B3EDUCy; + B4EDUCs; + BsEDUCy;
+ B6SEXM; + B7AGE,; + BgAGEjy;
+ BgOCUPy; 4 B1gOCUP3; + B11OCUPy; + u; (10.33)

where we have the following dummies:

0 otherwise"

EDUC = 1 if primary only (10.38)
0 otherwise
i 1
 EDUC, = [1 if secondary only (1035)
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and EDUC, defines the reference group.

and SEXF defines the reference group.

1
EDUC,4 = [0

1
SEXM =
0

SEXF =
b

if BSc only
otherwise

if MSc only
otherwise

if‘male
if female

1 if female
if male

for less than 30
otherwise

for 30 to 40
otherwise

for more than 40

0 otherwise

and AGE]) is the reference group. And finally:

O

if unskilled
otherwise

if skilled
otherwise

if clerical
otherwise

if self-employed
otherwise

with OCUP; being the reference group in this case.

Using seasonal dummy variables

195

(10.36)

(10.37)

(10.38)

(10.39)

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)

(10.45)

(10.46)

In the analysis of time series data, seasonal effects might play a very important role,
and the seasonal variations can be easily examined with the use of dummy variables.
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So, for example, for quarterly time series data we can introduce four dummy variables
as follows:

1 for the first quarter
Dy = . (10.47)
0 otherwise
1 forthes d t
D, = r .econ quarter (10.48)
0 otherwise
1 for the third
D3 = or e. ird quarter (10.49)
0 otherwise ¢ .
1 for the fourth
Dy = or e.our quarter (10.50)
0 otherwise .
and in a regression model we can use them as:
Yy = By + BaXo +axDyp +a3Ds3p + agDygr + ug - (10.51)

€

and can analyse (using the procedure described above) the effects on the average level
of Y of each of these dummies. Note that we have used only 3 of the 4 dummies in
order to avoid the dummy variable trap described above. Similarly, it will be easy for
the reader to understand that for monthly data sets we will have 12 dummy variables,
while if we use the constant as well we need to use only 11, keeping one as a reference
group. An illustrative example is given below using the January-effect hypothesis for
monthly stock returns.

Computer example of dummy varlables with
multiple categories

Using again the data in the file dummies.wfl we can examine the case of dummy
‘variables with multiple categories. In order to see the effect we can use, for example,
the educational level variable which has four different classifications as defined in the
previous section. The command to examine the effect of educational levels, in EViews,
is the following:

1ls wage c¢ educ2 educ3 educd

Note that we do not use all four dummies, because we have the constant and therefore
we shouldn’t include them all in order to avoid the dummy variable trap. The results
are given in Table 10.5.

The results provide statistically significant estimates for all coefficients, so we can
proceed with the interpretation. The effect on wages if an individual has finished only
primary education is given by the constant and is equal to 774.2. An individual who has
finished secondary education will have a wage of 88.4 units higher than that of those
with primary education only, an individual with a BSc will have 221.4 units more than
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Table 10.5 Duhmy variables with multiple categories '

Dependent Variable: WAGE

Method: Least Squares

Date: 03/30/04 Time: 14:48

Sample: 1 935 ]

Included observations: 935

Variable Coefficient Std. Error : t-Statistic Prob.

C 774.2500 40.95109 18.90670 0.0000

EDUC2 88.42176 45.30454 1.951719 0.0513

EDUC3 221.4167 48.88677 4.529174 0.0000

EDUC4 369.1184 47.69133 7.739739 0.0000

R-squared 0.100340 Mean dependent var 957.9455

Adjusted R-squared 0.097441 S.D. dependent var 404.3608

S.E. of regression 384.1553 Akaike info criterion 14.74424

Sum squared resid 1.37E+08 Schwarz criterion 14.76495

Log likelihood —6888.932 F-statistic 34.61189

Durbin—Watson stat 0.166327 Prob(F -statistic) 0.000000
Table 10.6 Changing the reference dummy variable

Dependent Variable: WAGE

Method: Least Squares

Date: 03/30/04 Time: 14:58

Sample: 1935

Included observations: 935

Variable Coefficient Std. Error t-Statistic Prob.

c 1143.368 24.44322 46.77651 0.0000

EDUCH ) -369.1184 47.69133 —7.739739 0.0000

EDUC2 ~280.6967 31.19263 -8.998812 0.0000

EDUC3 -147.7018 36.19938 —4.080229 0.0000

R-squared 0.100340 Mean dependent var 957.9455

Adjusted A-squared 0.097441 S.D. dependent var 404.3608

S.E. of regression 384.1553 Akaike info criterion 14.74424

Sum squared resid 1.37E+08 Schwarz criterion 14.76495

Log likelihood —6888.932 F -statistic 34.61189

Durbin—Watson stat 0.166327 Prob(F -statistic) 0.000000

Primary 774.2
Secondary  862.6
BSc 995.6
MSc 1,143.3

" that of primary, and finally an individual with an MSc will have 369.1 more units of
wage than primary only. So the final effects can be summarized as follows:

It is easy to show that if we change the reference variable the results will remain
unchanged. Consider the following regression equation model, which uses as a
reference category the educ4 dummy (the command in EViews is: Is wage c educl educ2
educ3), and of which the results are pfesented in Table 10.6. We leave it for the reader
to do the simple calculations and see that the final effects ar¢ identical to those of the
previous case. Thus, changing the reference dummy does not afiect our results at all.
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Table 10.7 Using more than one dummies together

Dependent Variable: WAGE
Method: Least Squares
Date: 03/30/04 Time: 15:03
Sample: 1 935

Included observations: 935

Variable Coefficient Std. Error t-Statistic Prob.
c 641.3229 41.16019 15.58115 . 0.0000
EDUC?2 19.73155 35.27278 0.559399 0.5760
EDUC3 112.4091 38.39894 2.927402 0.0035
EDUC4 197.5036 37.74860 5.232077 0.0000
AGE?2 —17.94827 29.59479 -0.606467 : 0.5444
AGE3 71.25035 30.88441 2.307001 0.0213
MALE 488.0926 20.22037 24.13865 0.0000
R-squared 0.462438 Mean dependent var 857.9455
Adjusted R-squared 0.458963 S.D. dependent var 404.3608
S.E. of regression 297.4286 Akaike info criterion 14.23568
Sum squared resid 82094357 Schwarz criterion - 14.27192
Log likelihood —6648.182 F-statistic 133.0523
Durbin—Watson stat 0.451689 Prob(F-statistic) 0.000000

The reader can check that changing the reference category to educ2 or educ3 yields the
same results.

Finally, we may have an example using three different dummies (educ, age and
male) together in the same equation (we will use educl, agel and female as reference
dummies to avoid the dummy variable trap) and we will leave this as an exercise for

the reader to try and interpret the results of this model. The results are presented in
Table 10.7.

Application: the January effect in
emerging stockmarkets

Asteriou and Kavetsos (2003) examined the efficient market hypothesis (in terms of
the presence or not of the ‘January effect’ for eight transition economies, namely the
Czech Republic, Hungary, Lithuania, Poland, Romania, Russia, Slovakia and Slovenia.
(For more details regarding the January effect see Gultekin and Gultekin, 1983, and
Jaffe and Westerfield, 1989.) In their analysis they used a monthly data set from 1991
to the early months of 2003 using monthly time series data, for the stockmarkets of
each of the aforementioned countries. The test for January effects is strongly based on
the use of seasonal dummy variables. In practice what needs to be done is to create
12 dummies (one for each month) that take the following values:

D .. |1 ifthereturn at time ¢ corresponds to month i
710 otherwise

— — _(10.52) o
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Table 10.8 Tests for seasonal effects

Variables Czech Rep. Hungary Lithuania Poland

coef t-stat coef t-stat coef t-stat coef t-stat
D1 0.016 0631 0.072 2.471 -0.008 -0.248 0.072 1.784
D2 0.004 0.146 -0.008 -—0.280 0.018 -0.543 0.033 0.826
D3 —0.001 -0.031 0.017 0.626 0.041 1220 -0.026 -0.650
D4 0.001 0.023 0.022 0.800 -0.014 -0.421 0.041 1.024
D5 -0.013 ~0.514 —-0.005 -0.180 -0.036 -1.137 0.049 1.261
D6 —-0.041 -1.605 0.004 0.126 -0.071 -2.106 -0.051 -1.265
D7 0.036 1.413 0.017 0.583 -0.013 -0.381 0.033 0.814
D8 —-0.022 -0.849 0.007 0.245 -0.009 --0.264 0014 | 0.341
D9 -0.029 -1.127 -0.027 -0.926 -0.086 -2.547 -0.034 -0.842
D10 -0.014 -0.532 0.011 0.387 -0.014 -0.420 0.025 0.611
D11 -0.039 -1.519 -0.002 -0.058 0.048 1.427 = 0.012 0.287
D12 0.033 1294 0.060 2.083 -0.01t -0.325 0.061 1.528
R2(0OLS) .0.105 0.070 0.196 0.070
B-G Test 12.934 (0.374) 12.409 (0.413) 34.718 (0.001) 34.591 (0.001)
LM(1) Test 0.351 (0.553) 0.039 (0.843) 4.705 (0.030) 2.883 (0.090)

Romania Russia Slovakia Slovenia

coef t-stat coef t-stat coef t-stat coef t-stat
D1 0.088 1.873 0.034 0.581 0.044 1.223 0.061 2.479
D2 0.007 0.154 0.065 1.125 0.081 2.274 -0.012 -—-0.482
D3 -0.064 —1.367 0.089 1536 -0.012 -0.327 -0.023 -0.934
D4 0.036 0846 0.078 1.347 .-0.048 -1.329 -0.013 -0.537
D5 0.009 ~ 0.218 0.027 0.471 -0.034 -0.939 0.011 0.455
D6 0.034 0.727 0.067 1.100 -0.012 -0.313 -0.028 -1.089
D7 -0.032 -0.689 —-0.025 —-0.404 0.002 0.044 0.048 1.854
D8 —-0.023 -0.499 -0.041 —-0.669 0.032 0.846 0.045 1.855
D9 -0.041 -0.877 -0.056 -0.919 -0.024 -0.631 0.006 0.232

. D10 0.007 0.147 0.047 0.810 -0.012 -0.340 0.033 1.336

D11 0.002 '0.033 0.035 0599 -0.018 -0.501 0.006 0.243
D12 -0.005 -0.103 0.086 1.487 0.037 1.028 0.007 0.305
R2(OLS) 0.141 © 0.075 0.103 0.155

B-G Test  16.476 (0.170)
LM(1) Test  1.355 (0.244)

17.014 (0.149)
0.904 (0.342)

24.517 (0.017)
13.754 (0.000)

27.700 (0.006)
0.612 (0.434)

From the methodology point of view, to test for seasonal effects in general corresponds
“to estimatigg the following equation:

Ryt = a1Dyt + azDay + a3D3p +--- + a12D12 + 1t

.

(10.53)

where R; indicates the stockmarket return at time t, a; is the average return of month
i, Dy are the seasonal dummy variables as defined above, and u,; is an iid (ideally
independently distributed) error term. The null hypothesis to be tested is that the
coefficients a; are equal. If they are equal there are no seasonal effects, and vice versa.

Then, to explicitly test for January effects, the regression model is modified as follows:

Rit = C+a2D2t +a3D3t +---+ allezt + u

(10.54)




f

200 Topics in Econometrics

Table 10.9 Tests for the January effect

Variables Czech Rep. Hungary Lithuania Poland

coef i-stat coef t-stat coef t-stat coef t-stat
C 0.016 0.631 0.072 2.471 -0.008 -0.248 0.072 1.784
D2 -0.012 -0.327 ~-0.079 -1.976 0.027 0.559 -0.039 -0.677
D3 -0.017 -0455 -0.054 -1.348 0050 1.038 -—0.098 -1.721
D4 —0.015 -0.416 -0.049 -1.227 -0.006 -0.123 -0.031 -0.537
Ds -0.029 -0.809 -0.077 -1906 -0.027 -0.591 -0.023 -0413
D6 -0.057 -1.581 -0.068 -1.658 —0.063 -1.314 -0.123 -2.156
D7 0.020 0553 -0.055 -1.335 -0.005 -0.094 -0039 -0686
D8 —0.038 -1.046 -0.064 -1.574 —0.001 -0.012 -0.058 -1.020
D9 ~0.045 -1.243 -0.098 -2.402 -0.078 -1.626 -0.106 -1.856
D10 -0.030 -0.822 -0.060 -1.474 -0.006 —0.122 —0.047 -0.829
D1t -0.055 -1.520 -0.073 -1.788 0057 1.184 —0.060 -1.058
D12 0.017 0469 -0.011 -0.274 -0.003 -0.055 -—0.010 -0.181
AR2(0OLS) 0.105 0.070 0.196 0.070
B-G Test 12.934 (0.374) 12.409 (0.413) 34.718 (0.001) 34.591 (0.001)
LM(1) Test  0.351 (0.553) 0.039 (0.843) 4.705 (0.030) 2.883 (0.090)

Romania Russia Slovakia Slovenia

coef t-stat coet t-stat coef t-stat coef t-stat
C 0.088 1.873 0.034 0.581 0.044 1.223 0.061 2.479
D2 -0.081 -1.215 0.031 0.385 0.038 0.743 -0.072 -2.094
D3 ~-0.152 -2.290 0.055 0.676 -0.055 -1.096 -0.084 -2.413
D4 -0.052 -0.813 0.044 0.542 -0.091 -1.805 -0.074 -2.133
D5 -0.078 -1.236 -0.006 -0.077 -0.077 -1.529 -0.050 -1.431
D6 —0.054 -0.810 0.034 0.402 -0.056 -1.069 -0.089 -2.489
D7 -0.120 -1.811 -0.058 -0.693 -0.042 -0.810 -0.012 -0.339
D8 -0.11t -1677 -0.074 -0.885 -0.012 -0.228 -0.015 -0.441
D9 -0.129 -1.944 -0.090 -1.067 -0.068 —1.300 -0.055 -1.589
D10 -0.081 -1.220 0.013 0.162 -0.056 —-1.105 -0.028 -0.808
D11 -0.086 —1.301 0.001 0.013 -0.062 -1.219 -0.055 -1.581
D12 -0.093 -1.397 0.052 0.641 —-0.007 -0.138 -0.053 -1.537
R2(0OLS) 0.141 0.075 0.103 0.155
B-G Test 16.476 (0.170) 17.014 (0.149) 24.517 (0.017) 27.700 (0.006)
LM(1) Test  1.355 (0.244) 0.904 (0.342) 13.754 (0.000) 0.612 (0.434)

where R, again indicates stockmarket returns, the intercept ¢ represents the mean return
for January, and in this case the coefficients a;, represent the difference between the
return of January and month i.

The null hypothesis to be tested in this case is that all dummy variable coefficients
are equal to zero. A negative value of a dummy coefficient would be proof of a January
effect. The estimation of the coefficients in equation (10.54) will specify which months
have lower average returns than those obtained in January.

The summarized results obtained from Asteriou and Kavetsos (2003) for equation
(10.54) are presented in Table 10.8, while those for the January effect are presented in
Table 10.9. From these results we see, first, that there are significant seasonal effects
for five out of the eight countries in the sample (note that bold indicates that the

_ coefficients-aré significant-in Table 10-8), while-they-also-found-evidence-in favour—

of the January effect (bold indicates coefficients in Table 10.9) for Hungary, Poland,

e
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Romania, Slovakia and Slovenia. For more details regarding the interp'retation of these
results see Asteriou and Kavetsos (2003).

Tests for structural stability

The dummy variable approach

The use of dummy variables can be considered as a test for sfability of the estimated
parameters in a regression equation. When an equation includes both a dummy
variable for the intercépt and a multiplicative dummy variable for each of the
explanatory variables, the intercept and each partial slope is allowed to vary, implying
different underlying structures for the two conditions (0 and 1) associated with the
dummy variable.

Therefore, using dummy variables is like conducting a test for structural stability. In
essence, two different equations are being estimated from the coefficients of a single
equation model. Individual t statistics are used to test the significance of each term,
including a dummy variable, while the statistical significance for the entire equation
can be established by a Wald test as described in Chapter 5.

The advantages of using the dummy variable approach when testing for structural
stability are the following:

{a) a single equation is used to provide the set of the estimated coefficients for two or
more structures;
(b) only one degree of freedom is lost for every dummy variable used in the equation;

(c) alarger sample is used for the estimation of the model (than the Chow test case that
we will describe below), improving the precision of the estimated coefficients; and

(d) it provides us with information regarding the exact nature of the parameter
instability (i.e. whether or not it affects the intercept and one or more of the partial
" slope coefficients). )

" The Chow test for structural stability

An alternative way to te