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·Preface 

The purpose of this book is to provide the reader with a thorough grounding in the 
central ideas and techniques of econometric theory, as well as to give all the tools 
needed to carry out an empirical project. 

For the first task, regarding the econometric theory, the book adopts a very analytical 
and simplified approach in explaining the theories presented in the text. The use of 
mathematics in econometrics is practically unavoidable, but the book tries to satisfy 
both those readers who do not have a solid mathematical background as well as those 
who prefer the use of mathematics for a more thorough understanding. To achieve 
this task, the book adopts an approach that provides, when it is required, both a 
general and a mathematical treatment of the subject in two separate sections. Thus, the 
reader 'Who doesn't want to get involved with proofs and mathematical manipulations 
mar- concentrate on the 'general (verbal) approach' skipping the 'more mathematical' 
approach, without any loss of continuity. Similarly, readers who want to go through the 
mathematics Involved in every topic are able to do so by studying the relevant sections 
' in each chapter. Having this choice, in cases thought of as important, the text also uses 
matrix -algebra to prove mathematically some of the points; while the main points of 
that analysis are also presented in a simplified manner to make the text accessible even 
to those who have not taken a course in matrix algebra. 

Another important feature regarding the use of mathematics in the text is that it 
presents all calculations required to get the reader from one equation to another, as 
well as providing explanations of mathematical tricks used in order to obtain these 
equations when necessary. Thus readers with a limited background in mathematics 
will also ijnd some of the mathematical proofs quite accessible, and should therefore 
not be disheartened in progressing through them. 

From the practical or applied econometrics point of view, the book is innovative in 
two. ways: (a) it presents very analytically (step by step) all the statistical tests, and 
(b) after each test presentation it explains how these tests can be carried out using 
appropriate econometric softwares such as EViews and Microfit. We think that this 
is one of the strongest features of the book, and we hope that the reader will find 
it very useful in applying those techniques using real data. This approach was chosen 
because from our teaching experience we have realized that students find econometrics 
quite a hard course of study, simply because they cannot see the 'beauty' of it, which 
emerges only when they are able to obtain results from actual data and know how to 
interpret those results to draw conclusions. Applied econometric analysis is the essence 
of econometrics, and we hope that the use of EViews and/or Microfit will make the 
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xxiv Preface 

practice of econometrics more satisfying and enjoyable, and its study fascinating too. 
For readers who need a basic introduction regarding the use of EViews and Microfit, 
they can start the book from the last chapter (Chapter 21) which discusses practical 
issues in using those two econometrics packages. 

While the text is introductory (and is thus mostly suitable for undergraduates), 
it can also be useful to those who undertake postgraduate courses that require 
applied work (perhaps through an MSc project). All of the . empirical results 
from the examples reported in the book are reproducible. A website has been 
established including all the files that are required for plotting the figures, 
reestimating the regressions and all other relevant tests presented in the book. The 
files are given in three different formats, namely xis (for excel), wfl (for EVie\.vs) and fit 
(for Microfit). If any errors or typos are detected please let Dimitrios know bye-mailing 
him at D.Asteriou@city.ac.uk. 

0IMITRIOS ASTERIOU 

& 
STEPHEN G. HALL 
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2 Introduction 

What is econometrics? 

The study of econometrics has become an essential part of every undergraduate course 
in Economics and it is not an exaggeration to say that it is also a very essential part 
of every economist's training. This is because the importance of applied economics is 
constantly increasing while the quantification and evaluation of economic theories and 
hypotheses constitutes now, more than ever, a bare necessity. Theoretical economics 
may suggest that there is a relationship among two, or more, variables but applied 
economics demands both evidence that this relationship is a real one, observed in 
everyday life, and quantification of the relationship between the two variables as well. 
The study of the methods that enable us to quantify economic relationships using 
actual data is known as econometrics. • 

Literally, econometrics means 'measurement (which is the meaning of the Greek 
word metrics) in economics'. However, in essence, econometrics include all those 
statistical and mathematical techniques that are utilized in the analysis of econ01pic 
data. The main target of using these statistical and mathematical tools in economic 
data is to attempt to prove or disprove certain economic propositions and ~odels. 

The stages. of applied 
econometric work 

Applied econometric work; . , ... '"<has (or should at least, have) as a sfarting 
point a model w ,,;1 economic theory. Fr01u this theory, the first task of the applied 
econom.,.':, iCiafl is to formulate an econometric model that can be used in an empirically 
testable form. Then, the next task is to collect data that can be used to perform the test, 
and after that to proceed with the estimation of the model. 

After the estimation of the model is done, the applied econometrician has to perform 
specification tests to make sure that the model she/he used was the appropriate one, as 
well as some diagnostic checking in order to check the performance and the accuracy 
of the estimation procedure. If those tests suggest that the model is adequate, then the 
next test is to apply hypothesis testing in order to test the validity of the theoretical 
predictions, and then she/he will be able to use the model for making predictions and 
policy recommendations. If it is found that the specification tests and the diagnostics 
suggest that the model used was not an appropriate one, then the econometrician will 
have to go back to the econometric model formulation stage and revise the model, 
repeating the whole procedure from the beginning (for a graphical depiction of these 
stages see Figure 1.1). The aim of this book is to deal with these issues and provide 
readers with all the basic mathematical and analytical tools that will enable them to 
carry out applied econometric work of this kind. 
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Estimation 
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1 
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1 
J Using the model for 

J l predictions and policy 

. Figure 1.1 The stages of applied econometric analysis 

[ · Source: Based on Maddala (2001). 
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8 Statistical Background and Basic Data Handling 

Economic data sets come in various forms. While some econometric methods can be 
applied straightforwardly to different types of data sets, it is essential to examine the 
special features of some sets. In the next sections we describe the most important data 
structures encountered in applied econometric work. · 

Cross-sectional data 

A cross-sectional data set consists of a sample of individuals, households, firms, 
countries, regions, cities or any other type of units at a specific point in time. In some 
cases, the data across all units do not correspond to exactly the Sa!Jle time period. 
Consider a survey that collects data from questionnaires applied to different families 
that were surveyed during different days within a month. In this case, we can ignore 
the minor time differences in collecting the data and the data collected will still be 
viewed as a cross-sectional data set. 

In econometrics, cross-sectional variables are usually denoted by the subscript i, with 
i taking values from 1, 2, 3, ... , N; for N number of cross-sections. So, if for example Y 
denotes the income data we have collected for N number of individuals, this variable, 
in a cross-sectional framework, will be denoted by: 

Y; fori= 1, 2, 3, ... , N (2.1) 

Cross-sectional data are widely used in economics and other soci~l sciences. Ih 
economics, the analysis of cross-sectional data is mainly associated with applied 
microeconomics. Labour economics, state and local public finance, business 
economics, demographic economics and health economics are some of tl;~e most 
common fields included within microeconomics. Data on individuals, households, 
firms, cities and regions at a given point in time are utilized in these cases in order to 
test microeconomic hypotheses and evaluate economic policies. 

Time series data 

A time series data set consists of observations on one or several variables over time. 
So, time series data are arranged in chronological order and can have different time 
frequencies, such as biannual, annual, quarterly, monthly, weekly, daily and hourly. 
Examples of time series data can include stock prices, gross domestic product (GDP), 
money supply, ice-cream sale figures, among many others. 

Time series data are denoted with the subscript t. So, for example, if Y denotes the 
GDP of a country from 1990 to 2002 then we denote that as: 

Yt fort=1,2,3, ... ,T (2.2) 

where t = 1 for 1990 and t = T = 13 for 2002. 
Because past events can influence future events and lags in behaviour are prevalent 

in social sciences, time is a very important dimension in time series data sets. A variable 
--- --------- whicl:!__i_~}agged one period will be denoted as Yt-l and obviously when it is lagged s 

·- • ·- ·- ••.. _,, __ L.~~~;rvl uziJLhP_denoted,as .. Y ..... .~c. 
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The Structure of Economic Data 9 

A key feature of time series data, that makes it more difficult to analyse than cross­
sectional data, is the fact that economic observations are commonly dependent across 
time. By this we mean that most economic time series are closely related to their 
recent histories. So, while most econometric procedures can be applied wi,th both cross­
sectional and time series data sets, in the case of time series there is a need for more 
things to be done in specifying the appropriate econometriC model. Additionally, the 
fact that economic time series display clear trends over time has led to new econometric 
techniques that try to address these features. 

Another important feature is that time-series data that follow certain frequencies 
might exhibit a strong seasonal pattern. This feature is encountered mainly with weekly, 
monthly and quarterly time series .. Finally, it's important to say that time series data 
are mainly associated with macroeconomic applications. 

Panel data 

A panel data set consists of a time series for each cross-sectional member in the data 
set; as an example we could consider the sales and the number of employees for 50 
firms over a five-year period. Panel data can also be collected on a geographical basis; 
for example we might have GDP and money supply data for a set of 20 countries and 
for 20-year periods. 

Panel data are denoted by the use of both i and t subscripts that we have used before 
for cro~s-sectional and time series data respectively. This is simply because panel data 
have both cross-sectional and time series dimensions. So, we will denote GOP for a set 
of countries and for a specific time period as: 

Yit for t = 1, 2, 3, ... , T and i = 1, 2, 3, ... , N (2.3) 

To better understand the structure of panel data consider a cross-sectional and a time 
series vari~ble as N x 1 and T x 1 matrices respectively: 

Yt990 ("ARGENTINA 
Y1991 YBRAZIL 

Y1992 YPARAGUAY 
y:RGENTINA = I ; v.t99o = . I (2.4) I • 

Y2oo2 \YvENEZUELA 

Here y:RGENTINA is GOP for Argentina from 1990 to 2002 and Yr90 is GOP for 1990 
for 20 different Latin American countries. 

The panel data Y;t variable will then be an N x T matrix of the following form: 

c·G.l990 YBRA,l990 YvtN,!990) 
YARG,l991 YBRA,I991 YvEN,1991 

(2.5) Yit = . 

YARG,2002 YBRA,2002 Yv£~,2002 TxN 

where the t dimension is depicted vertically and the i dimension horizontally. 
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10 Statistical Background and Basic Data Handling 

Most undergraduate econometrics books do not contain discussion of the 
econometrics of panel data. However, the advantages of panel data, combined with 
the fact that many issues in economics are difficult, if not impossible, to analyse 
satisfactorily without the use of panel data makes their use more than necessary. The 
final part of this textbook, is, for this reason, devoted to the analysis of panel data 
techniques and methods of estimation. 
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12 Statistical Backgrou11d and Basic Data Handling 

Before going straight into the statistical and econometric tools, a preliminary analysis 
is extremely important in order to get a basic 'feel' for the data. This chapter briefly 
describes ways of viewing and analysing data by examining various types of graphs 
and summary statistics. This process provides the necessary background for the sound 
application of regression analysis and interpretation of results. In addition, we shall 
see how to apply several types of transformation to the raw data, so as to isolate or 
remove one or more components of a time series, and/or to obtain the format most 
suitable for the ultimate regression analysis. While the focus is on time series data, some 
of the points and procedures apply to cross-sectional data as well. 

Looking at raw data 

The point of departure is simply to look at the numbers in a spreadsheet, taking note 
of the number of series, start and end dates, range of values, and so on. If we look more 
closely at the figures, we may notice outliers or certain discontinuities/structural breaks 
(e.g. a large jump in the values at a point in time). These are very important as they 
can have a substantial impact on regression results, and must therefore be kept in mind 
when formulating the model and interpreting the output. 

Graphical analysis 

Looking at the raw data (i.e. the actual numbers) may tell us certain things, bu~ various 
graphs facilitate the inspection process considerably. Graphs are essential tools for 
seeing the 'big picture', and they reveal a large amount of information about the series 
in one view. They also make checking for outliers or structural breaks much easier than 
poring through a spreadsheet! The main graphical tools are: 

1 Histograms: give an indication of the distribution of a variable; 

2 Scatter plots: give combinations of values from two series for the purpose of 
determining their relationship (if any); 

3 Line graphs: facilitate comparisons of series; 

4 Bar graphs; and 

S Pie charts. 

Graphs in Mfit 

Creoting graphs 

To create a line graph of a variable against time, we need to type in the Microfit 
Command Editor window: 

plot x 
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The above command produces a plot of variable X against time over the entire sample 
period. If we need a certain sample period then we need to type: 

sample to t1; plot x 

where t0 and t1 stand for the start and the end of our subsample period respectively. 
For example, 

sample 1990ql 1994q4; plot x 

Furthermore, we can plot up to a maximum of SO variables against another variable. 
When issuing this command, namely xplot, we must specify at least two variable names. 
For example: 

xplot x y 

or 

sample 1990ql 1994q4; xplot x y z 

The above commands produce a plot of the variables x and z against the variable y 
regarding the subsample period 1990q 1 1994q4 (note that all graphs are produced in the 
Process Menu). The default graph display may be edited using the graph control facility. 
Click the graph button to access it. Graph control contains many options for adjusting 
the various features of the graph; each option has its own property page. Click the 
appropriate page tab to view it. To apply a change we have made without closing graph 
contrO'l, click the apply now button. To exit graph control without implementing 
the changes click cancel. The most commonly used page tabs are: 2D Gallery, Titles, 
Trends and Background. 

Saving grapi tS 

When we plot a graph, the Graph Editor window opens. A displayed graph can be sa•!ed 
as a bitmap (BMP) (click on the 2nd button) or as a Windows metafile (WMF) (click 
on the 3rd button). If we are using MS Word then we can copy and paste the graph by 
cJicking on the 4th button first, and then open MS Word and paste the graph. The 1st 
button sends the graph to the nearest printer. 

Graphs In EViews 

In EViews we qn plot/graph the data in a wide variety of ways. One way is to double­
click on the variable of interest (the one we want to obtain a graph from) and a new 
window will appear that will actually look like a spreadsheet with the values of the 
variable we double-clicked. Then in order to obtain graphs we need to go to View/Line 
Graph in order to obtain a plot of the series against time (if it is a time series) or against 
observations (for undated or irregular - cross sectional data). Another option is to 
click on View/Bar Graph which gives the same figure as with the line option but with 
bars for every observation instead of a line plot. Obviously the line graph option is 
preferable in describing time series, and the bar graph for cross-sectional data. 

In case we need to plot together more than one series, we may first open/create a 
group of series in EViews. In order to open a group we either select the series we want 



-a·-,,, 

:~ .. ~~: 

14 Statistical Background and Basic Data Handling 

to be in the group by clicking on them with the mouse one by one, having the control 
button pressed, or by typing on the £Views command line the word: 

group 

and then pressing enter. This will lead to a new £Views window in which to specify 
the series to include in the group. So, in this window, we need to type the name of the 
series we want to plot together, and then click OK. Again, a spreadsheet appears with 
the values for the variables selected to appear in the group. By clicking on View there 
are two graphs options: Graph will create graphs of all series together in the group, 
whilst Multiple Graphs will create graphs for each individual series• in the group. In 
both Graph and Multiple Graphs options there are different types of graphs that can 
be obtained. One which can be very useful in econometric analysis is the scatter plot. 
In order to obtain a scatter plot of two series in EViews we may open a grout' (following .. 
the procedure described above) with the two series we want to plot and then go to 
View/Graph/Scatter. There follow four different options of scatter plots, (a) simple 
scatter, (b) scatter with a fitted regression line, (c) scatter with a line that fits as clos~ as 
possible to the data and (d) a scatter with a kernel density function. 

Another simple and convenient way of obtaining a scatter plot in EViews is by use 
of the command: 

scat X Y 

' where X andY should be replaced by the names of the series to be plotted on the X and 
Y axes respectively. Similarly, a very easy way of obtaining a time plot of a time series, 
can be done by the command · 

.I 

plot X 

where again X is the name of the series we want to plot. The plot command can be used 
in order to obtain time plots of more than one series in the same graph by specifying 
more than one variable separated by spaces such as: 

plot X Y Z 

A final option to obtain graphs in EViews is to click on Quick/Graph and then specify 
the names of the series that we need to plot (either one or more). A new window opens 
that offers different options of graph types and different options of scales. After making 
the choice, press OK to obtain the relevant graph. 

After a graph is obtained, we can easily copy and paste graphs from EViews into a 
document in a word processor. To do this we first need to make sure that the active 
object is the window that contains the graph (the title bar of the window should have 
a bright colour, if it does not click anywhere on the graph and it will be activated -
the title bar will become bright). We then either press ctrl+c, or alternatively click on 
Edit/Copy. The Copy Graph as Metafile window appears with various options: to 
either copy the file to the clipboard in order to paste it into the programme required 
(the word processor for example), or alternatively to copy the file to a disk file. Also, we 
can choose whether the graph will be in colour or use bold Jines. If we copy the graph 
to the clipboard we can paste it in a different programme very easily by either pressing 
ctrl+v or by clicking on Edit/Paste. Conventional Windows programmes allow the 
graph to be edited, changing its size or position in the programme. 
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Summary statistics 

To gain a more precise idea of the distribution of a variable Xt we can estimate various 
. simple measures such as the mean (or average), often defined as x, the variance often 
defined as a} and its square root, the standard deviation again stated as ax. Thus 

- 1 T 
X= yLXi 

i=l 

2 1 T 
ax=-· ·"'c - 'l T-1~ x; -x)"" 

i=l 

ax=N 

(3.1) 

(3.2) 

(3.3) 

To analyse two or more variables we might also consider their covariance and 
correlations. defined later. However, we would stress that these summary statistics 
contain far less information than a graph and the starting point for any good piece 
of empirical analysis should be a graphical check of all the data. 

Summary statistics in Mfit 

In order to obtain summary statistics in Microfit we need to type the comman{l: 
·; 

cor X 

, where X is the name of the variable needed to obtain summary statistics from. Apart 
from summary statistics (minimum, maximum, mean, standard deviation, skewness, 
kurtosis and coefficient of variation) Microfit will also give the autocorrelation function 
of this variable. In order to obtain the histogram of a variable the respective 
comman'd is: 

hist X 

The histogram may be printed, copied and saved like every other graph from Microfit. 

Summary statistics in EViews 

In order to obtain summary descriptive statistics in EViews we need again either 
to double-click and open the series window, or to create a group with more than 
one series as described in the graphs section above. After that click on View /Descriptive 
Statistics/Histogram and Stats for the one variable window case. This will pro­
vide summary statistics like the mean, median, minimum, maximum, standard 
deviation, skewness, kurtosis and the jarque-Berra Statistic for testing for normality of 
the series together with its respective probability limit. If opening a group, clicking 
View/Descriptive Statistics provides two different choices: one using a common 
sample for all series, and another using the most possible observation by not caring 
about different sample sizes among different variables. 
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Components of a time series 

An economic or financial time series consists of up to four components: 

1 trend (smooth, long-term/consistent upward or downward movement); 

2 cycle (rise and fall over periods longer than a year, e.g. due to a business cycle); 

3 seasonal (within-year pattern seen in weekly, monthly or quarterly data); or 

4 irregular (random component; can be subdivided into episodic [unpredictable but 
identifiable] and residual [unpredictable and unidentifiable]). 

Note that not all time series have all four components, although tqe irregular 
component is present in every series. As we shall see later, various techniques are· 
available for removing one or more components from a time series. 

Indices and base dates 

An index is a number that expresses the relative change in value (e.g. price or guantity) 
from one period to another. The changes are measured relative to the value in a base 
date (which may be revised from time to time). Common examples of indices are the 
consumer price index (CPI) and the JSE all-share price index. In many cases, such as 
the preceding examples, indices are used as a convenient way of summarizing .many 
prices in one series (the all-share index is comprised of many individual companies' 
share prices). Note that two indices may only be compared directly if they have the 
same base date, which may lead to the need to change the base date of a certain 
index. 

Splicing two indices and changing the base date of an index 

Suppose we have the following data: 

Year 

1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 ' 

Price index 
(1985 base year) 

100 
132 
196 
213 
258 
218 

Price index 
(1990 base year) 

100 
85 
62 

Standardized price index 
(1990 base) 

45.9 
60.6 
89.9 
97.7 

118.3 
100 
85 
62 

In this (hypothetical) example, the price index for the years 1985 to 1990 (column 2) 
uses 1985 as its base year (i.e. the index takes on a value of 100 in 1985), while from 
1991 onwards (column 3) the base year is 1990. To make the two periods compatible, 
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we need to convert the data in one of the columns so that a single base year is used. 
This procedure is known as splicing two indices. 

• If we want 1990 as our base year, then we need to divide all the previou,s values (i.e. 
in column 2) by a factor of 2.18 (so that the first series now takes on a value of 100 
in 1990). The standardized series is shown in the last column in the table .. 

• Similarly, to obtain a single series in 1985 prices, we would need to multiply the 
values for the years 1991 to 1993 by a factor of 2.18. 

Even if we have a complete series with a single base date, we may for some reason 
want to change that base date. The procedure is similar: simply multiply or divide -
depending on whether the new base date is earlier or later than the old one- the entire 
series by the appropriate factor to get a value of 100 for the chosen base year. 

Data transformations 

Changing the frequency of time series data 

EViews allows us to convert the frequency of a time series (e.g. reducing the frequency 
from monthly to quarterly figures). The choice of method for calculating the reduced 
frequency depends partly on whether we have a sto~;k variable or a flow variable. In 
gener:tl, for stock variables (and indices such as the CPI) we would choose specific dates 
(e.g. beginning, middle or end of period) or averaging, while for flow variables we 
would use the total sum of the values (e.g. annual gross domestic product, GOP, in 

, 1998 is the sum of quarterly GOP in each of the four qua&ters of 1998). Increasing the 
frequency of a time series (e.g. from quarterly to monthly) involves extrapolation and 
should be used with great caution. The resultant series will appear quite smooth and is 
a 'manufactured' series which would normally be used for ease of comparison with a 
series of similar frequency. 

Nominal versus real data 

A rather•tricky question in econometrics is the choice between nominal and real 
terms for our data. The problem with nominal series is that they incorporate a price 
component that can obscure the fundamental features that we are interested in. This 
is particularly problematic when two nominal variables are being compared, since the 
dominant price component in each will produce close matches between the series, 
resulting in a spuriously high correlation coefficient. To circumvent this problem, one 
can convert nominal series to real terms by using an appropriate price deflator (e.g. the 
CPl for consumption expenditure or the PPI for manufacturing production). However, 
sometimes an appropriate deflator is not available, which renders the conversion 
process somewhat arbitrary. 

The bottom line is: think carefully about the variables you are using and the 
relationships you are investigating, and choose the most appropriate format for the 
data - ax;d be consistent. 
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Logs 

Logarithmic transformations are very popular in econometrics, for several reasons. 
First, many economic time series exhibit a strong trend (i.e., a consistent upward 
or downward movement in the values). When this is caused by some underlying 
growth process, a plot of the series will reveal an exponential curve. In such cases, 
the exponential/growth component dominates other features of the series (e.g. cyclical 
and irregular components of time series) and may thus obscure the more interesting 
relationship between this variable and another growing variable. Taking the natural 
logarithm of such a series effectively linearizes the exponential trend (since the log 
function is the inverse of an exponential function). For example, one may want to 
work with the (natural) log of GDP, which will appear on a graph roughly cw; a straight 
line, rathf'r th;m the exponential curve exhibited by the raw GDP series. • 

Second, logs •nay also be used to linearize a model which is non-linear in the 
parameters. All example is the Cobb-Douglas production function: 

Y = ALaKfJeu (3.4) 

(where u is a disturbance term and e is the base of the natural log). 
Taking logs of both sides we obtain: 

ln(Y) = ln(A) +a ln(K) + b ln(L) + u (3.5) 

Each variable (and the constant term) can be redefined as follows: y = ln(Y); k = ln(K); 
1 = ln(L); a= ln(A); so that the transformed model becomes: ' 

y = a + ak + bl + u (3.6) 

which is linear in the parameters and hence can easily be estimated using ordinary least 
squares (OLS) regression. 

A third advantage of using logarithmic transformations is that it allows the regression 
coefficients to be interpreted as elasticities, since for small changes in any variable 
x, (change in logx) ::::: (relative change in x itself). (This follows from elementary 
differentiation: d(ln x)jdx = 1/x and thus d(ln x) = dxjx.) 

In the log-linear production function above, a measures the change in In( Y) 

associated with a small change in ln(K), i.e. it represents the elasticity of output with 
respect to capital. 

Differencing 

In the previous section it was noted that a log transformation linearizes an exponential 
trend. If one wants to remove the trend component from a (time) series entirely- i.e. 
to render it stationary- one needs to apply differencing, i.e. compute absolute changes 
from one period to the next. Symbolically, 

~Yt = Yt- Yt-1 (3.7) 
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which is known as first-order differencing. If a differenced series still exhibits a trend, 
it needs to be differenced again (one or more times) to render it stationary. Thus we 
have second-order differencing: 

and so on. 

Growth rates 

6 2 Yt = 6(Yt- Yt-1) = 6Yt- 6Yt-1 

= (Yt- Yt-1)..., (Yt-1- Yi_z) (3.8) 

In many instances, it makes economic sense to analyse data and model relationships in 
growth-rate terms. A prime example is GOP, which is far more :::ommonly discussed in 
growth-rate terms rather than levels. Using growth rates allows one to investigate the 
way that changes (over time) in one variable are related to changes (over the same time 
period) in another variable. Because of the differencing involved, the calculation of 
growth rates in effect removes the trend component from a series. 

There are two types of growth rates: discretely compounded and continuously 
compounded. Discretely compounded growth rates are computed as follows: 

growth rate of Yt = (Yt- Yt-1)/Yt-1 

where t refers to the time period. 
' It is more usual in econometrics to calculate continuously compounded growth rates, 
"':1ich essentially combine the logarithmic and differencing transformations. Dealing 
with annual data is simple: the continuously compounded growth rate is the natural 
log of the ratio of the value of the variable in one period to the value in the previous 
period (or, alternatively, the difference between the logged value in one year and the 
lbgged value in the previous year): 

growth rate of Yt = ln(Yt!Yt-1) = ln(Yt) -ln(Yt-1) 

For monthly data, there is a choice between calculating the (annualized) month-on­
previous-month growth rate and the year-on-year growth rate. The advantage of the 
former is that it provides the most up-to-date rate and is therefore less biased than a year­
on-year rate. Month-on-month growth rates are usually annualized, i.e. multiplied by 
a factor of 12 to give the amount the series would grow in a whole year if that monthly 
rate applied throughout the year. The relevant formulae are as follows: 

annualized month-on-month growth rate 

= 12 * ln(Yt!Yt_ 1) (continuous) 

OR [(YtfYt-1) 12 - I] (discrete) 
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annualized quarter-on-quarter growth rate 

= 4 * ln(Yt/Yr_1) (continuous) 

OR [(Yt!Yr_ 1 )
4 - 1] (discrete) 

(Multiply these growth rates by 100 to obtain percentage growth rates.) 
However, month-on-previous-month growth rates (whether annualized or not) are 

often highly volatile, in large part because time series are frequently subject to seasonal 
factors (the Christmas boom being the best-known). It is in order to avoid this seasonal 
effect that growth rater dsually compare a period with the corresponding pe.riod a year 
earlier (e.g r '"' . 1 .WOO with January 1999). This is how the headline inflation rate is 
calculated, fur instance. Similar arguments apply to quarterly and other data. (Another 
advantage of using these rates in regression analysis is that it allows one year for the 
impact of one variable to take effect on another variable.) This type of growth rate 
computation involves seasonal differencing: 

Ll 5 Yt = Yr- Yr-s 

The formula for calculating the year-on-year growth rate using monthly data is: 

growth rate o(Yr = ln(Yr/Yr-12) = ln(Yr) -ln(Yr-12) 

In sum, calculating year-on-year growth rates simultaneously removes trend and 
seasonal components from time series, and thus facilitates the examination (say, in 
correlation or regression analysis) of other characteristics of the data (such as cycles or 
irregular components). 
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24 Tile Classical Linear Regression Model 

Introduction to reeression: the classical linear 
regression model (CLRM) 

Why do we do regressions? 

Econometric methods such as a regression can help to overcome the problem of 
complete uncertainty and provide guidelines on planning and decision-making. Of 
course, building up a model is not an easy task. Models should meet certain criteria (for 
example the model should not suffer from serial correlation) in order to be valid and a 
lot of work is usually needed before we end up with a good model. Furthermore, much 
decision-making is required on which variables to include or not include in the model. 
Too many may cause problems (unneeded variables misspecification), while too few 
may cause other problems !:m1itted variables misspecification or incorrect functional 
form). 

The classical linear regression model 

The classical linear regression model is a way of examining the nature and form of the 
relationship among two or more variables. In this chapter we consider the case of 
only two variables. One important issue in the regression analysis is the direction of 
causation between the two variables; in other words, we want to know which variable,is 
causing/affecting the other. Alternatively, this can be stated as which variable depends 
on the other. Therefore, we refer to the two variables as the dependent variable (usually 
denoted by Y) and the independent or explanatory variable (usually denoted by X). We 
want to explain/predict the value of Y for different values of the explanatory vatiable X. 
Let us assume that X and Yare linked by a simple linear relationship: 

E(Yr) =a+flXt (4.1) 

where E(Yr) denotes the average value of Yt for given Xr and unknown population 
parameters a and fJ (the subscript t indicates that we have time series data). Equation 
( 4.1) is called the population regression equation. The actual value of Yt will not always 
equal its expected value E(Yr). There are various factors that can 'disturb' its actual 
behaviour and therefore we can write actual Yt as 

Yt = E(Yr) +lit 

or 

Yt =a+fJXr+llt (4.2) 

where Ut is a disturbance.·There are several reasons why a disturbance exists: 

1 Omission of explanatory variables. There might be other factors (other than Xr) 
affecting Yt that have been left out of equation (4.2). This may be possible either 
because we do not know these factors, or even knowing them there might be 
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a possibility that we are unable to measure them in order to use them in a regression 
analysis. 

2 Aggregation of variables. In some cases it is desirable to avoid having too many 
variables and therefore we attempt to summarize in aggregate a number of rela'tion­
ships in only one variable. Therefore, we end up with only a good approximation 
of Yt, having discrepancies which are captured by the disturbance term. 

3 Model specification. We might have a misspecified model in terms of its structure. 
For example, it might be that Yt is not affected by Xt, but that it is affected by the 
value of X in the previous period (i.e. Xt_ 1). In this case, if Xt and Xt_ 1 are closely 
related, estimation of (4.2) will lead to discrepancies which again are captured by the 
error term. 

4 Functional misspecification. The relationship between X and Y might be a non-linear 
relationship. We will deal with non-linearities in other chapters of this text. 

5 Measurement errors. If the measurement of one or more variables is not correct then 
errors appear in the relationship and this contributes to the disturbance term. 

Now the question is whether it is possible or not to estimate the population regression 
function based on sample information. l.he answer is that we may not be able 
to estimate it 'accurately' because of sampling fluctuations. However, although 
the papulation regression equation is unknown - and will remain unknown - to 
any_ investigator, it is possible to estimate it after gathering data from a sample. 
A first step for the researcher is to do a scatter plot of the sample data and try 
to fix (one way or another) a straight line to the scatter of points as shown in 

'figure 4.1. 
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There are many ways of fixing a line including: 

1 By eye. 

2 Connecting the first with the last observation. 

3 Taking the average of the first two observations and the average of the last two 
observations and connecting those two points. 

4 Applying the method of ordinary least squares (OLS). 

The first three methods are naive ones, while the last is the most appropriate method 
for this type of situation. The OLS method is the topic of the next section. 

The ordinary least squares (OLS) 
method of estimation 

Consider again the population regression equation 

Yt =a -J- f3Xt + llt (4.3) 

This equation is not directly observable. However, we can gather data and obta.in 
estimates of a and f3 from a sample of the population. This gives us the following 
relationship which is a fitted straight line with intercept a and slope~: 

Yt =a +~Xt .I (4.4) 

Equation (4.4) can be referred to as the sample regression equation. Here, a and~ are 
sample estimates of the population parameters a and {3, and Yt denotes the predicted 
value of Y. (Once we have the estimated sample regression equation we can easily 
predict Y for various values of X.) 

When we fit a sample regression line to a scatter of points, it is obviously desirable to 
select a line in such a manner that it is as close as possible to the actual Y, or, in other 
words that provides residuals that are the smallest possible. In order to do this we adopt 
the following criterion: choose the sample regression function in such a way that the 
sum'of the squared residuals is as small as possible (i.e. is minimized). This method of 
estimation has some desirable properties that make it the most popular technique in 
uncomplicated applications of regression analysis. Namely: 

1 By using the squared residuals we eliminate the effect of the sign of the residuals so 
it is not possible for a positive and negative residual to offset each other. For example 
if we were to minimize the sum of the residuals this could be achieved by setting 
the forecast for Y(Y) equal, to the mean of Y(Y). But this would not be a very well 
fitting line at all. So clearly we want a transformation which makes all the residuals 
the same sign before making them as small as possible. 

2 By squaring the residuals, we give more weight to the larger residuals and so we, in 
effect, work harder to reduce the very large errors. 
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3 The OLS method chooses a and p estimators that follow some numerical and 
statistical properties (such as unbiasedness and efficiency) that we will discuss later. 

We can now see how to derive the OLS estimators. Denoting by RSS the sum of the 
squared residuals, we have: 

n 
A2 Az A2 "A2 

RSS = u1 + u2 + · · · + un = ~ ut (4.5) 
t=l 

However, we know that: 

ilt = <Yt- Yt> = <Yt- a- PXt) (4.6) 

and therefore: 

n n n 
" A2 " A 2 " A A 2 RSS = ~ ut = ~(Yt- Yt) = ~(Yt- a- f3Xt) (4.7) 
t=l t=l t=l 

To minimize equation (4.7), the first-order condition is to take the partial derivatives 
of RSS with respect to a and P and set them to zero. Thus, we have: 

n A 

a~~s = -2 L:<Yt- a- f3Xt> = o 
aa t=l 

and 

n A 

0 aR~S = _2 LXt<Yt- a- f3Xt) = 
a13 t=l 

The second-order partial derivatives are: 

a2RSS = 2n 
aa2 

n 2 a2RSS = z LXt 
apz t=l 

n 
a2Rs~ = 2 L:xt 
aaaf3 t=l 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Therefore, it is easy to verify that the second-order conditions for a minimum are met. 
Since La = na (for simplicity of notation we omit the upper and lower limits of the 

summation symbol), we can (by using that and rearranging), rewrite equations (4.8) 
and (4.9) as follows: 

L Yt = na - p L Xt (4.13) 
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and 

L:xrvr =a L:xr + fi L:xr (4.14) 

The only unknowns in the above two equations are a and fl. Therefore, we can solve 
the above system of two equations with two unknowns in order to obtain a and fi. First, 
we divide both sides of (4.13) by n to have: 

LYt na fiL:Xt --=----
11 n n 

(4.15) 

Denoting by Y = L Yt!n and X = L XtJn, and rearranging, we obtain: 

a= v- fix (4.16) 

Substituting (4.16) in (4.14) we get: 

L:xrYr = v L:xr- fix L:xr + fi L:xf (4.17) 

or 

L:xrYr = ~ L:vr L:xr- fi~ :Lxr r:xr + fi L:xr · (4.18) 

and finally, factorizing the fi terms: 

LXrYt = L:Yr .. L:Xr + fi [ :Lxf- (L::t)z] 

Thus, we can obtain fi as: 

~ _ L:XtYt -1/nL:Yt L:Xt 
- L:Xf-1;n(L:Xr)2 

And given fi we can use ( 4.16) to obtain a. 

Alternative expressions for P 
We can express the numerator and denominator of (4.20) as follows: 

L:<Xr -X)(Yr- Y) = :LXrYt- ~ :LYr :Lxr 

:L<Xr -X)2 
= :Lxt- ~ (:Lxr)

2 

-~"'/ 

(4.19) 

(4.20) 

( 4.21) 

(4.22) 
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and then have that: 

or even: 

• L<Xt - X)(Yt - Y) 
f3 = -=-.:.-='L:-<X-t--'_-'-x-='--)-;:;2---'-

~ = LXtYt 
LX2 

t 

29 

(4.23) 

(4.24) 

where obviously Xt = (Xt -X), and Yt = (Yt - Y), which are deviations from their 
respective means. 

Alternatively, we can use the definitions of Cov(X, Y) and Var(X) in order to obtain 
an alternative expression for p as illustrated below: . 

or 

• LXrYr-lfnLYtLXt LXtYt-YX f3 - - =---'---'----;;-

- Lxf- 1/n (LXr) 2 - Lxf- (X) 2 

• L<Xt - XHYt - Y) 
f3 = =---'L=-<X-t--'_-'-x-='--)-=2---'-

If we further divide both nominator and denominator by 1/n we have 

and finally express ~ as: 

• lfn L<Xt - X)(Yt - f') 
f3 = --'---"1 ;:::..n'-=L:=:-<-X-t -'-_.:...,X;...)-;;-2 --'-

• Cov(Xr, Yr) 
f3 = Var(Xt) 

where Cov(Xr, Yr) and Var(Xr) are sample variances and covariances. 

The a~sumptions of the CLRM 

General 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

In the previous section we described the desirable properties of estimators. However, 
we need to make clear that there is no guarantee that the OLS estimators will 
possess any of these properties. Unless a number of assumptions- which this section 
presents- hold. 

In general, when we calculate estimators of population parameters from sample data 
we are bound to make some initial assumptions about the population distribution. 
Usually, they amount to a set of statements about the distribution of the variables 
that we are investigating, without which our model and estimates cannot be justified. 
Therefore, it is very important not only to present the assumptions but also to move 
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beyond them, to the extent that we will at least study what happens when they go 
wrong, and how we may test whether they have gone wrong. This will be examined in 
the third part of this book. 

The assumptions 

The CLRM consists of eight basic assumptions about the ways in which the observations 
are generated: 

1 Linearity. The first assumption is that the dependent variable can be calculated as a 
lineiir f,nction of 2 ~per'iic set of independent variables, plus a disturjjance term .. 
Thi~ ran be expressed mathematically as follows: the regression model is linear in 
the unknown coefficients rx and fl so that, Yt = a+ fiXt +lit, for t = 1, 2, 3, ... , n. 

2 Xr has some variation. By this assumption we mean that not all observations of"Xt 
are the same, at least one has to be different so that the sample Var(X) is not 0. It 
is important to distinguish between the sample variance which simply 'shows how 
much X varies over the particular sample and the stochastic nature of X. In many 
places in this book we will make the assumption that X is non stochastic (see point 3 
below). This means that the variance of X at any point of time is zero so Var(Xr) =-0 
and if we could somehow repeat the world over again X would always take exactly 
the same values. But of ·course over any sample there will (indeed must) be, some 
variation in X. 

.I 

3 Xt is non-stochastic and fixed in repeated samples. By this assumption we first mean 
that Xr is a variable whose values are not determined by some chance mechanism, 
they are determined by an experimenter or investigator, and second that it is possible 
to repeat the sample with the same independent variable values. This implies that 
Cov(Xs, Ut) = 0 for all s, and t = 1, 2, ... , n, that is that Xt and Ut are uncorrelated. 

4 The expected value of the disturbance term is zero. This means that the disturbance 
is a genuine disturbance, so that if we took a large number of samples the mean 
disturbance would be zero. This can be shown as E(llt) = 0. We need this assumption 
in order to be able to interpret the deterministic part of a regression model, a+ fiXr, 
as a 'statistical average' relation. 

5 Homoskedasticity. This requires that all disturbance terms have the same variance, so 
that Var(ut) = a2 =constant for all t. 

6 Serial independence. This requires that all disturbance terms are independently 
distributed, or more easily are not correlated with one another, so that Cov(ur, us)= 
E(ur - Eur )(us - Eus) = E(urus) = 0 for all t t= s. This assumption has a special 
significance in economics;· to grasp what it means in practice, recall that we nearly 
always obtain our data from time series in which each t is one year, or one-quarter, or 
one week, ahead of the last. The condition means, therefore, that the disturbance in 
one period should not be related to the disturbance in the next or previous periods. 
This condition is frequently violated since, if there is a disturbing effect at one time, it 
is likely to persist. In this discussion we will be studying violations of this assumption 
quite carefully. 
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7 Normality of residuals. The disturbance u1, u2 , ... , un are assumed tb be independently 
and identically normally distributed with mean zero and common variance a2. 

8 n>2 and multicollinearity. This says that the number of observations must be at 
least greater than two, or in general it must be greater than the number of 
independent variables and that there are no exact linear relationships among the 
variables. 

Violations of the assumptions 

The first three assumptions basically state that Xt is a 'well-behaved' variable that was 
not chosen by chance, and that we can in some sense 'control' for it by choosing it 
again and again. These are needed because Xt is used to explai'n what is happening (the 
explanatory variable). 

Violation of assumption one creates problems which are in general .called 
misspecification errors, such as wrong regressors, nonlinearities and changing 
parameters. We discuss those problems analytically in Chapter 9. Violation of 
assumptions two and three results in errors in variables and problems which are 
discussed in Chapter 11. Violation of the fourth assumption leads to a biased intercept, 
while violations of assumptions 5 and 6lead to problems of heteroskedasticity and serial 
correlation respectively. These problems are discussed in Chapters 7 and 8 respectively. 
Finally, assumption seven has important implications in hypothesis testing, and 
violation of assumption 8 leads to problems of perfect multicollinearity which are 
discussed in Chapter 6 (see Table 4.1). 

Properties of the OLS estimators 

We now r!"turn to the properties that we would like our estimators to have. Based on the 
assumptions of the CLRM we can prove that the OLS estimators are Best Linear Unbiased 

Table 4.1 The assumptions of the CLAM 

Assumption Mathematical Violation Chapter 

• expression may imply 

(1) Linearity of the model Yt = Cl + {JX, + Ut Wrong regressors 9 
Nonlinearity 9 
Changing parameters 9 

(2) X is variable Var(X) is not 0 Errors in variables 9 

(3) X is non-stochastic and Cov(X5 , Ut) = 0 Autoregression 11 
fixed in repeated samples for all s and t = 1 , 2, ... , n 

(4) Expected value of E(Ut) =0 Biased intercept 
disturbance is zero 

(5) Homoskedasticity Var(Ut) = a 2 =constant Heteroskedasticity 7 

(6) Serial independence Cov(u1, u5 ) = 0 for all t 1= s Autocorrelation 8 

(7) Normality of disturbance Ut ~ N(f.l,a2) Outliers 9 

(8) No linear relationships L-T=l (8;X;, + OjXjt) I= 0 il=j Multicollinearity 6 



32 The Classical Linear Regression Model 
-, 

Estimators (BLUE). In order to do that, we first have to decompose the regression 
coefficients estimated under OLS into their random and non-random components. 

As a starting point note that Y1 has a non-random component (a+ f3Xt ), as well as 
a random component which is captured by the residuals u1. Therefore, the Cov(X, Y)­

which depends on values of Y1 - will have a random and non-random component: 

Cov(X, Y) = Cov(X1, [a+ fiX+ u]) (4.29) 

= Cov(X, a)+ Cov(X, {JX) + Cov(X, u) 

However, because a and f3 are constants we have that Cov(X, a) · = 0 and that 
Cov(X,{JX) = {3Cov(X,X) = pVar(X). Thus: 

Cov(X, Y) = f3 Var(X) + Cov(X, u) (4.30) . 

and substituting that in equation (4.28) yields: 

- = Cov(X, Y) = f3 + Cov(X, u) 
f3 ~rtX) ~rtX) (4.31) 

which says that the OLS coefficient [3 estimated from any sample has a non-random 
component, {3, and a random component which depends on the Cov(X1, u1). 

Linearity 
.I 

Based on assumption 3, we have that X is non-stochastic and fixed in repeated samples. 
Therefore, the X values can be treated as constants so that what we need is merely to 
concentrate on the Y values. If the OLS estimators are linear functions of the Y values 
then they are linear estimators. From (4.24) we have that: 

[3 = I:XtYt 
L:x2 t 

(4.32) 

Since the X 1 are regarded as constants, then x1 are regarded as constant~ as well. We 
havetha~ ' 

[3 = LXtYt = L:xtCYt- Y) = L:xtYt- Y L:xt 
L:xf L:xf L:xf 

(4.33) 

but because Y L x1 = 0, we can have that 

" LXtYt = LZtYt tl= "2 L.xt 
(4.34) 

where Zt = x1 1 L xf can also be regarded as constant and, therefore, [3 is indeed a linear 
estimator of the Y1 , 
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Unbiasedness 

Uribiasedness of ~ 

To prove that~ is an unbiased estimator of f3 we need to show that E(~) = {3. We have: 

[ 
Cov(X, u)] 

E(~) = E f3 + Var(X) (4.35) 

However, f3 is a constant, and using assumption 3- that Xr is non-random- we can 
take Var(X) as a fixed constant to take them out of the expectation expression and have: 

• 1 
E(f3) = E(f3) + --X-E[Cov(X, u)] 

Var( ) 

Therefore, it is enough to show that E[Cov(X, u)] = 0. We know that: 

[
1 n _ ] 

E[Cov(X, u)] = E n L(Xr- X)(Ut- ii) 

t=l 

(4.36) 

(4.37) 

where 1/n is constant, so we can take it out of the expectation, while we can also break 
the sum into the sum of its expectations to give: 

1 - - ] E[Cov(Xr, lit)] = - (E(X 1 - X)(ui - u) + · · · + E(Xn - X)(un - u) 
rz 

1 n -
=- LE((Xr -X)(ur- u)] 

n 
t=l 

(4.38) 

Furtherm,ore, because Xr is non-random (again from assumption 3) we can take it out 
of the expectation term to give 

1 n -
E[Cov(X, u)] = n L(Xt- X)E(ur- u) (4.39) 

t=l 

• 
Finally, using assumption 4, we have that E(ur) = 0 and therefore E(li) = 0. So, 

E[Cov(X, u)) = 0 and this proves that 

E(~) = f3 

or, to put it in words, that~ is an unbiased estimator of the true population parameter {3. 

Unbiasedness of a 
We know that a= Y- fiX, so 

E(a) = E(Y)- E(~)X (4.40) 
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But we also have that 

E(Yt) =a+ f3Xt + E(llt) =a+ f3Xt (4.41) 

where we eliminated the E(ur) term because, according to assumption 4, E(ur) = 0. So: 

E(Y) =a+ f3X (4.42) 

Substituting ( 4.42) into ( 4.40) gives: 

E(a) =a+ {JX - E(/3)5< (4.43) 

But we have proved before that E(/J) = {3, therefore: 

E(a) = a + f3X - {JX = a (4.14) 

which proves that a is an unbiased estimator of a. 

Efficiency and BLUEness 

Under assumptions S and 6, we can prove that the OLS estimators are th'e most efficient 
among all unbiased linear estimators. Thus, we can conclude that the OLS procedure 
yields BLU estimators. 

The proof that the OLS estimators are BLU is relatively complicated. It entails a 
procedure whiCh goes the opposite way to that followed so far. First we start the 
estimation from the beginning trying to derive a BLU estimator of {3, based on the 
properties of linearity, unbiasedness and minimum variance one by one, and then we 
check whether the BLU estimator, derived by this procedure, is the same as the OLS 
estimator. 

So, we want to derive the BLU estimator of {3, say jj, concentrating first on the property 
of linearity. For jj to be linear we need to have: 

iJ = .S1 Y1 + ozYz + · · · + onYn = :L:)tYt (4.45) 

where the 8t terms are constants the values of which are to be determined. 
Proceeding with the property of unbiasedness, for jj to be unbiased we must have 

E(jj) = {3. We know that: 

E(jj) =E(_L)tYt) = LorE(Yr) (4.46) 

Substituting E( Yt) = a + f3Xt (because Yt = a + f3Xt + llt, and also because Xt is non­
stochastic and E(ur) = 0; given by the basic assumptions of the model), we get: 

E(jj) = L:or(a + f3Xr) =a Lor+ f3 L:orXt (4.47) 
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and therefore, in o"rder to have unbiased ~ we need: 

l:)t = 0 and . :L>tXt = 1 (4.48) 

Next, we proceed by deriving an expression for the variance (that we need to 
minimize) of the~. 

Var(~) = E [~ - E(~) t 
= E [L 8t Yt - E (L 8t Yt) t 
=E[L8tYt- L8tE(Yr)t 

= E [L 8t(Yt- E(Yt))t 

In this expression we can use Yt =a+ fJXt + Ut and E(Y1) =a+ fJXt to give: 

.. 

Var(~) = E [L 81 (a+ tJXt + Ut -(a+ .BXr)t 

= E (L8tut)
2 

22 22 22 22 = E(c5 1 u1 + 82 u2 + 83 u3 + · · · + 8nu11 

+ 2.5 1 o2u1u2 + 28 1 .s3 u1 u3 + ... ) 
ZE 2 ZE 2 2 2 ZE 2 =.51 (u1) + 82 (liz)+ li3E(u3 ) +···+on (lin) 

+ 28182E(Lquz) + 281o3E(ulu3) + · · ·) 

(4.49) 

(4.50) 

Using assumptions 5 (Var(Ut) = a 2) and 6 (Cov(ut, u5 ) = E(UtUs) = 0 for all t f= s) we 
obtain that: 

Var(p) = L 8fa2 (4.51) 

We now need to choose 81 in the linear estimator (4.46) to be such as to minimize 
the variance (4.5 1) subject to the constraints (4.49), which ensure unbiasedness (with 
this then having a linear, unbiased minimum variance estimator). We formulate the 
Langrangean function: 

L = a 2 L 8( - A 1 (:L 8t) - AZ (L: litXt - 1) (4.52) 

where Al and AZ are Langrangean multipliers. 
Following the regular procedure, which is to take the first-order conditions (i.e. the 

partial derivatives of L with respect to 8t, A 1 and AZ) and set them equa.l to zero; and after 
rearrangement and mathematical manipulations (we omit the mathematical details of 
the derivation because it is very lengthy and tedious, and because it does not use any 
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of the assumptions of the model anyway) we obtain the optimal 8t as: 

Xt 
8t = L.xf (4.53) 

Therefore, we have that 8t = Zt of the OLS expression given by (4.34). So, substituting 
this into our linear estimator iJ we have: 

iJ = L8tYt = "LztYt 

= "Lzt(Yt- Y + Y)* 

= Llt(Yt- Y) + y Llt 

= LZtYt = L.xt~t 
L.xt 

=~ 

Thus, the ~ of the OLS is the BLUE. 

(4.54) 

The advantage of the BLUEness condition is that it provides us with an expression 
for the variance by substituting the optimal lit given in (4.53) into (4.51) to give: 

Consistency 

Var(iJ) = Var(,8) = L (__!.!._)
2 

a2 
L.xf 

L,xfa2 2 1 
2=a --

(L.xf) L.xf 
(4.55) 

Consistency is the idea that as the sample becomes infinitely large the parameter 
estimate given by a procedure such as OLS converges on the true parameter value. 
This is obviously true when the estimator is unbiased, as shown above, as consistency 
is really just a weaker form of unbiasedness. However the proof above rests on our 
assumption 3 that the X variables are fixed. If we relax this assumption then it is no 
longer possible to prove the unbiasedness of OLS but we can still establish that it is a 
consistent estimator. So when we relax assumption 3 OLS is no longer a BLU estimator 
but it is still consistent. 

We showed in equation (4.31) that~ = {3 + Cov(X, u)fVar(X), dividing the top and 
the bottom of the last term by n gives 

*We add and subtract Y. 

Cov(X,u)fn 
.8 = f3 + Var(X)/n 

(4.56) 
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Using the law of large numbers·, we know that Cov(X, u)jn converges to its expectation 
which is Cov(Xt, Ut). Similarly, Var(X)jn converges to Var(Xt). So, as 11 --* oo; p--* f3 + 
Cov(Xt, u1)jVar(Xt), which is equal to the true population parameter f3 if Cov(Xt, Ut) = 0 
(i.e. if X1 and Ut are uncorrelated). Thus p is a consistent estimator of the true population 
parameter {J. 

.. · 

The overall goodness of fit 

We showed before that the regression equation obtained from the OLS method fits a 
scatter diagram quite closely. However, we need to know how close it is to the scattered 
observed values to be able to judge whether a particular line describes the relationship 
among Yt and Xt better than ari alternative line. In other words, it is desirable to know 
a measure which describes the closeness of fit. This measure will also inform us about 
how well the obtained equation accounts for the behaviour of the dependent variable. 

In order to obtain such a measure, we first have to decompose the actual value of Yt 
into a predicted value, which comes from the regression equation Yt plus the equation's 
residuals: 

Yt = Yt + Ut (4.57) 

subtracting Y from both sides we have: 

Yt - y = Yt - y + itt (4.58) 

We need to obtain a measure of the total variation in Y1 from its mean Y. Therefore, 
we take the sum of equation (4.58): 

L:<Yt- Y) = L:<Yt- Y+ut) (4.59) 

Then square both terms to get: 

" -2 ". - 2 L.)Yt- Y) = L..,(Yt- Y +itt) (4.60) 

Note, that if we divide the measure that we have on the left-hand side of the above 
equation by n, we would simply get the sample variance of Y1. So L:<Yt - Y) 2 is an 
appropriate measure of the total variation in Y1, often called the total sum of squares 
(TSS). Continuing: 

" -2 ". -2 "2 ". -L...<Yt- Y) = L..,(Yt- Y) + L... u1 + 2 L...(Yt- Y)ut (4.61) 

where L:<Yt- Y) 2 is the explained sum of squares from the OLS- usually called ESS -and 
I: ii¥ is the unexplained part of the total variation in Y1, or alternatively the remaining 
or residual sum of squares (RSS). It is easy to show that the cross-product term drops out 
of the equation using the properties of the OLS residuals (from the first order conditions 
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we had that -2 L(Yt- a- ~Xr) = 0 and -2 L XrO't -a- i3Xr) = 0 which says that 
-2 L: fit = 0 and -2 L: Xrf't = 0): 

L)Yr- Y)ur = l:<a + ~Xr- Y}iir 

=a l:ur +iJl:Xrilr- vL:>r = o (4.62) 

Thus equation (4.61) reduces to: 

TSS = ESS + RSS (4.63) 

where both TSS and ESS are expressed in units of Y squared. By relating ESS to TSS we 
can derive a pmr number called the coefficient of determination (and denoted by R2 ): . 

RZ _ ESS 
- TSS 

(4.64) 

which measures the proportion of the total variation in Y1 (TSS) that is e~plained by 
the sample regression equation (ESS). By dividing each of the terms in (4.63) byTSS we 
can obtain an alternative equation which gives us the range of the values of R2: 

I= RZ + RSS 
TSS 

(4.65) 

When the sample regression function fails to account for any of the variation in 
Yt then ESS = 0 and all the variation in Yr is left unexplained: RSS = TSS. In this case 
R2 = 0 and this·is its lower bound. At the opposite extreme, when the sample regression 
equation predicts perfectly every value of Yr no equation error occurs, thus RSS = 0 
and ESS = TSS which gives us an R2 equal to its upper bound value of 1. 

Therefore, the values of R2 lie in between 0 and 1, and show how closely the equation 
fits the data. An Rz of 0.4 is better than a value of 0.2, but not twice as good. The value 
of 0.4 indicates that 40% of the variation in Yt is explained by the sample regression 
equation (or by the regressors). 

Problems associated with R2 

.There are a number of serious problems associated with the use of R2 in judging the 
performance of a single equation, or as a basis of comparison of different equations: 

1 Spurious regression problem (this problem will be fully discussed in chapters 16 and 17). In 
the case where two or more variables are actually unrelated, but exhibit strong trend 
like behaviour, the Rz can take on very high values (sometimes even greater than 
0.9). This may mislead the researcher into believing that there is actually a strong 
relationship between the variables. 

2 High correlation of Xr with another variable Zr. It might be that there is a variable Zt 
that determines the behaviour of Yr and is highly correlated with Xr. Then, even 
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though a large value of R2 shows the importance of Xt in determining Yt, the omitted 
variable Zt may be responsible for this. 

3 Correlation does not necessarily implies causality. No matter how high the value of 
R2, this cannot suggest causality among Yt and Xt, because R2 is a measure of 
correlation between the observed.value Yt and the predicted value Yt. To whatever 
extent possible, refer to economic theory, previous empirical work and-intuition to 
determine a causally related variable to include in a sample regression. 

4 Time series equation vs cross section equations. Time series equations almost always 
generate higher R2 values than cross-section equations. This arises because cross­
sectional data contain a great deal of random variation (usually called 'noise') which 
makes ESS small relative to TSS. On the other hand, even badly specified time series 
equations can give R2s of 0.999 for the spurious regression reasons presented in point 
1 above. Therefore, comparisons of time series and cross-sectional equations using 
R2 are not possible. 

S Low R2 does not mean wrong choice of Xt. Low values of R2 are not necessarily the result 
of using a wrong explanatory variable. The functional form that is used might be an 
inappropriate one (i.e. linear instead of quadratic) or- in the case of time series- the 
choice of time period might be incorrect and lagged terms might need to be included 
instead. 

6 R2 s from equations with different forms of Yt are not comparable. Assume we estimate 
the following population regression equations: 

Yt = a0 + boXt + et 

In Yt = ar + br In Xt + Ut 

(4.66) 

(4.67) 

' comparing their R2 is not correct. This is due to the definition of R2 . The R2 

in the first equation shows the proportion of variation in Yt explained by Xt, 
while in the second equation shows the proportion of the variation in the natural 
logarithm of Yt explained by the natural logarithm of Xt. In general, whenever the 
dependent variable is changed in anyway, the R2 should not be used to compare the 

·models. 

Hypot.hesis testing and 
confidence intervals 

Under the assumptions of the CLRM, we know that the estimators a and p obtained 
by OLS follow a normal distribution with means a and {3 and variances a? and a? 

a {3 
respectively. It follows that the variables: 

a-a 

a a 
and P-f3 

ag 
(4.68) 

have a standard normal distribution (i.e. a normal distribution with 0 mean and 
variance 1). If we replace the unknown aa and ag by their estimates sa and sg 
this is no longer true. However, it is relatively easy (the proof of this, however, is 
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beyond the scope of this book) to show that the following random variables (after the 
replacement): 

a-a 
S· a 

and 
/3-{3 

sjJ 
(4.69) 

follow the student's t-distribution with n - 2 degrees of freedom. The student's t­
distribution is close to the standard normal distribution except that it has fatter tails, 
particularly when the number of degrees of freedom is small. 

Testing the significance of the OLS coefficients 

Knowing the rl:~trihnH"n ~r _,pr f'StirrptPr! ~~,(~r'c J Wf' "'" "''"''(> (0· conduct 
hypothesis te~'-· :~ II' urder tc : . .;~es:. u1ea .>lutlst;,..._,.., .. ,LdllU:. ill general the 
following steps should be iu, ulved: 

Step 1 Set the null and alternative hypothesis. It can be either Ho: f3 = 0; Ha: f3 ,;. 0 
(two-tailed test), or if there is prior knowledge about the sign of the estimated 
coefficient (let's assume positive), H0: f3 = 0; Ha: f3 > 0 (one-tail test). 

Step 2 Calculate the t-statistic by t = ((3- {3)/Sfi, where here because f3 u'nder null 
is equal to zero it becomes (3;sjJ (note that this is the t-statistic that• is 
automatically provided by EViews and Microfit in their starldard regression 
outputs). 

Step 3 Find from the t-tables the t-critical for n- 2 degrees of freedom. 

Step 4 If /lstati > itcrit I reject the null hypothesis. 

.I 

Note that if we want to test a different hypothesis (i.e. that f3 = 1), then we need 
to change our null and alternative hypothesis in step 1 and calculate manually the 
t-statistic by the t = ((3 - {3)/SjJ formula. In this case it is not appropriate to use the 
t-statistic which is provided by EViews and Microfi.t. 

A rule of thumb of significance tests 

The procedure for hypothesis testing outlined above presupposes that the researcher 
selects a significance level and then compares the value of the t -statistic with the critical 
value for this level. Several rules of thumb based on this approach have been developed, 
and these are useful in the sense that we do not need to consult statistical tables in cases 
of large samples (degrees of freedom >30). 

Note that the critical value for a So/o level of significance and for a very large sample 
(n- oo) reaches the value of ±1.96. For the same level and for 30 degrees of freedom 
it is ±2.045, while for 60 degrees of freedom it is exactly ±2.00. Therefore, for large 
samples it is quite safe to use as a rule of thumb a critical value of it/ > 2. For a one-tail 
test the rule of thumb changes with the t-value being It 1 > 1.65. The rules stated above 
are nothing more that convenient approximations to these values. For 'small' samples 
we must use the specific values given in the t-table, as the above rules are not safe to 
apply. 
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The p-value approach 

EViews and Microfit apart from reporting t statistics for the estimated coefficients also 
report p values which can be used as an alternative approach in assessing the significance 
of regression coefficients. The p value shows what is the smallest level at which we would 
be able to accept the null hypothesis of a test. It is very useful because the significance 
levels chosen for a test are always arbitrary. Why, for example, 5% and not 1% or 
10%. The p value approach is also more informative than the 'choice of significance 
levels and find critical values' approach, because one can obtain exactly the level of 
significance of the estimated coefficient. For example; a p-value of 0.339 says that if the 
true fJ = 0 there is a probability of 0.339 of observing an estimated value of ~ which 
is greater than or equal to the OLS estimate purely by chance. So the estimated value 
could have arisen by chance with a fairly high probability even if the true value is zero. 
Similarly if the p-value was 0.01, this says that there is a very small probability of a 
value for~ equal or greater than the OLS estimate arising purely by chance when the 
true value of fJ is zero. Furthermore, if we have in mind a conventional significance 
level (lets say 5% or 0.05) we conclude that the coefficient is significantly different from 
zero at the 5% level if the p-value is less than or equal to 0.05. If it is greater than 0.05 
then we cannot reject the null hypothesis that the coefficient is actually zero at our 5% 
significance level. 

Confidence intervals 

For the null hypothesis that Ho:fJ = {} 1 and for an r% significance level we can accept 
'the null when our 't' test lies in the following region: 

~- flt 
-tr,n-2 .:5 -- .:5 tr,n-2 

siJ 
(4.70) 

where tr,n-2 is the critical value from the student 't' tables for an r% significance 
level and n - 2 degrees of freedom (as we assume there are only two parameters being 
estimated). So we can construct a confidence interval for the range of values of p1 for 
which we would accept the null hypothesis. 

/3 - tr,n-25 iJ .:5 fJ1 .:5 /3 + tr,n-25 iJ (4.71) 

or alternatively 

/3 ± tr,n-25 iJ (4.72) 

of course the same holds for a being a ± tr,n-2Sii. 
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How to estimate a simple regression 
in Microfit and EViews 

Simple regression in Microfit 

Step 1: Open Microfit. 

Step 2: Click on File/New in order to create a new file. 

Step 3: Choose the required frequency for time series or 'undated' for cross-sectional 
data and specify the number of variables as well as the· start and end 
for time series data or the number of observations for cross-sectional data. 

Step 4: When asked to provide names and descriptions for variables give the names 
Y and X, and the descriptions that you want and think will enable you to 
remember the definitions of your variables (giving descriptions is optional but 
is recommended as it is sometimes really helpful). Press <GO;>. 

Step 5: Either type the data into Microfit or copy/paste the data from Excel®. Be ve'ry 
careful pasting the data, to provide the appropriate information required by 
Microfit. Press <GO> at the end. ' 

Step 6: Once you have put the data in Microfit, you then have to create a constant. 
Either go to the process editor (by pressing the process button) and type C = I 
(and then press <GO>), or click on Edit/Constant (interc~pt) term an'd 
provide a name for your intercept by typing it in the corresponding window 
(let us assume that you name your constant term C) . 

Step 7: Go to the single editor (by clicking the 'single' button) and type into the single 
editor: 

Y C X 

and then click <START>. The regression output is presented in a new window 
which provides estimates for alpha (the coefficient of the constant term), beta 
(the coefficient of X) and some additional statistics that will be discussed in 
later chapters of this book. 

Simple regression in EViews 

Step I: Open EViews. 

Step 2: Click on File;New ;Workfile in order to create a new file. 

Step 3: C.hoose the frequency of the data in the case of time series data, or [Undated 
or Irregular] in the case of cross-sectional data and specify the start and end 
of your data set. You will have a new window, wh}ch automatically contains a 
constant (c) and a residual (resid) series. 

Step 4: In the command line type: 

genr x=O (press •enter') 
genr y=O (press 'enter') 
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which creates two new series named x and y that contain zeros for every 
observation. Open x and y as a group by selecting them and double clicking 
with your mouse. 

Step 5: Then either type the data into EViews or copy/paste the data from Excel. In 
order to be able to type (edit) the data of your series or to paste anything into 
the EViews cells, the 'edit+!-' button must be pressed. After finishing with 
editing the series press the 'edit+/-' button again to lock or secure the data. 

Step 6: Once the data have been entered into EViews, the regression line (to obtain 
alpha and beta) may be estimated either by typing: 

ls y c x (press 'enter') 

on the command line, or by clicking on Quick/Estimate equation and then 
writing your equation (i.e. y c x) in the new window. Note that the option for 
OLS (LS - Least Squares (NLS and ARMA)) is automatically chosen by EViews 
and the sample is automatically chosen to be the maximum possible. 

Either way, the regression result output is obtained in a new window which 
provides estimates for alpha (the coefficient of the constant term), beta (the 
coefficient of X) and some additional statistics that will be discussed in later 
chapters of this book. 

, Reading the EViews simple regression results output 

Estimated 
'coefficients 
(>.{!,) 

Name of the Yvariable 

\ 
n =no of obs. 

Shows the method 

of estimation 

Varia Coefficient Std. Error t-Statistic Prob. 

Constant -=::::::::::::; C 0.631870 0.344368 

X_ _. LOG(GOP) 1.926936 0.168856 

R-squared 

R' 

0.966057 
0.963867 
0.026313 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F·statistic 
Prob(F-statistic) 

t-Statistics for 
estimated coeHs 

ASS O-W stat. 
(see Chapter 7) 



44 The Classical Linear Resression Model 

Presentation of regression results 

The results of a regression analysis can be presented in various different ways. However, 
the most common way is to write the estimated equation with standard errors of 
coefficients written in brackets below the estimated coefficients and include some more 
statistics below the equation. For the consumption function that will be presented in 
Computer Example 2, the results are summarized as shown below: 

Ct = 15.116 + 0.160Yf 

(6.565) (0.038) 

R2 = 0.932 n = 20 a = 6.879 

(4.73) 

(4.74) 

From this summary we can (a) read estimated effects of changes in the ~xplanatory· 
variables on the dependent variable, (b) predict values of the dependent variable 
for given values of the explanatory variable, (c) perform hypothesis testing for 
the estimated coefficients, and (d) construct confidence intervals for the estimated 
coefficients. 

Applications 

Application 1: the demand function 

From economic theory we know that the demand for a commodity depends basically 
on the price of that commodity (the law of demand). Other possible determirlants can 
include prices of other competing goods (close substitutes) or those that complement 
that commodity (close complements), and of course the level of income of the 
consumer. In order to include all those determinants we need to employ a multiple 
regression analysis. However, for pedagogical purposes we have to restrict ourselves to 
one explanatory variable. Therefore, we can assume a partial demand function where 
the quantity demanded is affected only by the price of the product. (Another way of 
doing this is to assume a ceteris paribus (other things remaining the same) demand 
function, in which we simply assume that the other variables entering the relationship 
remain constant, and thus do not affect the quantity demanded.) The population 
regression function will have the form: 

qt = ao + a1Pt +Zit (4.75) 

whe're the standard notation is used with qt denoting quantity demanded and Pt the 
price of the product. From economic theory we expect a 1 to be negative reflecting the 
law of demand (the higher the price the less the quantity demanded). We can collect 
time series data for sales of a product and the price level of this product and estimate 
the above specification. The interpretation of the obtained results will be as follows. 
For a1: if the price of the product will be increased by one unit of measurement (i.e. if 
measured in£ an increase of £1.00), the consumption of this product will be decreased 
(because a 1 will be negative) by a1 units. For a0 : if the price of the product is zero 
consumers will consume a0 quantity of this product. R 2 is expected to be somehow 
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low (lets say 0.6) suggesting that there are additional variables that affect the quantity 
demanded, that we did not include in our equation, while it is also possible to obtain 
the price elasticity of this product for a given year (lets say 1999) from the equation: 

P99 t:..q P99-
--=-al 
qgg Llp . qgg 

(4.76) 

Application 2: a production function 

One of the most basic relationships in economic theory is the production function, 
that, usually, relates output (denoted by Y) to the possible factor inputs affecting 
production, such as labour (L) and capital (K). The general form of this relationship 
can be expressed by: 

Yt = f<Kr,Lt) (4.77) 

A frequently utilized form of this function - due to its properties that we will see 
later- is the well-known Cobb-Douglas production function: 

Yt =AKfL~ (4.78) 

where a and {3 are constant terms that express the responsiveness of output to capital 
and ~abour respectively. A can be regarded as an exogenous efficiency/technology 
parameter. Obviously the greater is A, the higher is maximum output keeping labour 
and capital constant. In the short run we can assume that the stock of capital is fixed 
(short-run can be viewed here as a period that once the decision about capital has been 
made it cannot be changed by the produc,~r until the next period). Then, in the short 
run, maximum output depends only on the labour input, and the production function 
becomes:· 

Yt =g(Lr) (4.79) 

Using the Cobb-Douglas form of function (and for Kt constant and equal to Ko) we 
will have: 

Yt = (AK0)Lf = A* Lf (4.80) 

where A* = (AK0). This short-run production function is now a bivariate model, and 
after applying a logarithmic transformation can be estimated with the OLS method. 
Taking the natural logarithm of both sides and adding an error term we have: 

In Yt = ln(A *) + f3 ln(L1) +lit 

= c + {3 ln(Lr) +lit (4.81) 

where c = ln(A*), and {3 is the elasticity of output with respect to labour (one of 
the properties of the Cobb-Douglas production function). This elasticity denotes the 
percentage change in output that results from a 1 per cent change in the labour input. 
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We may use time series data on production and employment for the manufacturing 
sector of :• · <' . try (or aggregate GOP and employment data) to obtain estimates of c 
and fJ for the above model. 

Application 3: Okun' s law 

Okun (1962) developed an empirical rek nsllip, using quarterly data from 1947:2 to 
1960:4, between changes in the statr: :-cro '"C.)nomy (ccpturcd. b)~ changes in GNP) 
and changes in the unemployment fi• c, known as Okun's law. His results provide an 
imp~·,.. ·•~·· sith·:tydf~,_, ···wth. 
The basic relationsi11p '" tnat of conrprH J. ~~ '"~ .... " ... .r~ "t unrr·p-,l_f'"'"n<:>.nt (UNEMP) 
(which constitn'.·.· " ,,l vari.... .. _v .. Jl_,_ •l-,e grc .. nte of GNP· 
(the indepelluLiJi \ ~;~abfe\ fl~ r 

t1l .\Jt.MP1 =a+ bt1GNPt +lit 

Applying OLS the sample bression equation that Okun obtained was: 

t1UNEMPr = 0.3- 0.3t1GNP1 

R2 = 0.63 

(4.82) 

(4.83) 

The constant in thi~ eo"~·· ,uows the mean change in the unemployment rate 
when the growth ~ __ ... e economy is equal to zero, so from the obtain~d results 
we conclude·-.. Jl when the economy does not grow the unemployment rate rises by 
0.3 per : ;.:Jit. The negative b coefficient suggests that when the state of the economy 
ir:-;proves, the unemployment rate falls. The relationship, though, is less than one to 
one. A 1 per cent increase in GNP is connected with only a 0.3 per cent decrease in the 
unemployment rate. This result is called Okun's law. It is easy to collect data on GNP 
and unemployment, calculate their respective growth rates and check whether Okun's 
law is valid for different countries and different time periods. 

Application 4: the Keynesian consumption fundion 

Another basic relationship in economic theory is the Keynesian consumption function 
that simply states that consumption (C1) is a positive linear function of disposable (after 
tax) income (Y;1). The relationship is as follows: 

d Ct =a+ 8Y1 
(4.84) 

where a is the autonomous consumption (consumption even when disposable income 
is zero) and 8 is the marginal propensity to consume. In this function we expect 
a > 0 and 0 > 8 > 1. A 8 = 0. 7 means that the marginal propensity to consume is 
0.7. A Keynesiancunsumption function is estimated below as a worked-out computer 
exercise example. 
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Computer example: the Keynesian 
consumption function 

47 

Table 4.2 provides data for consumption and disposable income for 20 randomly 
selected people. ' 

(a) Put the data in Excel and calculate a and f3 assuming a linear relationship among 
X and Y using both expressions for f3 as given by (4.20) and (4.28). 

(b) Calculate a and f3 using the 'Data Analysis' menu provided in Excel® and check 
whether the results are the same as the ones obtained in (a) . 

(c) Create a scatter plot of X and Y. 

(d) Use Microfit and EViews to calculate a and f3 and scatter plots of X and Y. 

Solution 

(a) First, we have to obtain the products X* Y and xz as well as the summations of X, 
Y, X* Y and X 2. These are given in Table 4.3. 

The command for cell C2 is '=B2*A2'; C3 is '=B3*A3' and so on; 02 is '=B2*B2' or 
'=82"2'. For the summations in A22 the command is '=SUM(A2:A21)'·and similarly for 
822 is.'=SUM(B2:B21)' and so on. 

YV_e can then calculate a and f3 using (4.20) as follows: For f3 we need to type in a 
cell the following '=(C22-(A22*B22)/20)/(D22-((B22"2)/20))'. For a we need to type in 
a different cell the following '=AVERAGE(A2:A21)-G2*AVERAGE(B2:B21)'. 

' If we do this correctly we should find that f3 = 0.610888903 and a= 15.11640873. 

Table 4.2 Data for simple regression example 

Consumption Y 

72.30 
91.65 

135.20 
94.60 

163.50 
100.00 
86.50 

142.36 
120.00 
112.56 
132.30 
149.80 
115.30 
132.20 
149.50 
100.25 
79.60 
90.20 

116.50 
126.00 

Disposable income X 

100 
120 
200 
130 
240 
114 
126 
213 
156 
167 
189 
214 
188 
197 
206 
142 
112 
134 
169 
170 
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Table 4.3 Excel calculations 

Table 4.4 Excel calculations (continued) 

Alternatively, using equation (4.28), we may go to the menu Tools/Data Analysis 
and from the data analysis :nenu choose the command covariance. We are then asked 
to specify the Input Range, the columns that contain the data for Y and X (i.e. enter 
'$A$1:$B$21' or simply select this area using the mouse). Note that if we include the 
labels (Y, X) in our selection we have to tick the Labels in the First Row box. We are 
asked to specify our Output Range as well, which can be either a different sheet (not 
recommended) or any empty ceJI in the current sheet (i.e. we might specify ceJI FS). By 
clicking <OK> we obtain the display shown in Table 4.4. 

In order to obtain beta we have to write in cell GZ '==G7/H7'. The command for alpha 
remains the same as in the previous case. 

(b) Go to Tools;Data Analysis and from the data analysis menu choo'se the command 
Regression. We are then asked to specify our Input Y Range which is the column that 
contains the data for the dependent (Y) variable (i.e. write '$A$ I :$A$21 ') and Input 
X Range which is the column that contains the data for the independent (X) variable 
(i.e. write '$B$1:$B$21'). Again we can select those two areas using the mouse, and if 
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Table 4.5 Regression output from Excel 
Regression Statistics 
Multiple R 0.9654959 
R Square 0.93218233 
Adjusted R square 0.92841469 
Standard error 6.87960343 
Observations 20 

A NOVA 
df ss MS F Significance F 

Regression 1 11710.0121 11710.0121 247.41757 5.80822E-12 
Residual 18 851.9209813 47.3289434 
Total 19 12561.93308 

Coefficients Standard error tStat P-value Lower95% 
Intercept 15.1164087 6.565638115 2.302351799 ' 0.0334684 1.322504225 
X 0.6108889 0.038837116 15.72951266J5.308E-12 0.529295088 

180 

160 

140 

y 120 

100 

80 

60 
80 120 160 200 240 280 

X 

Figure 4.2 Scatter plot 

we include the labels (Y, X) in our selection we have to tick the Labels in the First 
Row box. We will also be asked to specify Output Range similarly as above. By clicking 
<OK> the display shown in Table 4.5 is obtained. 

Apart from estimates for a (which is the coefficient of the Intercept) and fJ (which 
is the coefficient of X), Table 4.5 shows more statistics that will be discussed in the 
Chapters. 
(c) To obtain a scatter plot of Y and X, click on the chart wizard button and then 
specify XY scatter and click next- go to series and enter the values for X and Y using 
the mouse, click next again - enter titles for the diagram and the X and Y variables 
and then click finish to obtain the graph. By clicking on the dots of the scatter plot 
and using the right button of the mouse, add Trendline can be chosen for the graph. 
The graph will look like that shown in Figure 4.2. 
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(d) To obtain the regression results in Microfit we need to apply the following steps: 

I Open Microfit. 

2 Choose File/New in order to create a new file. 

3 Choose Undated and specify the number of variables (in this case 2) as well as the 
number of observations (in this case 20). 

4 When asked to provide names and descriptions for the variables, give the names 
Y and X, and the descriptions 'Consumption' and 'Disposable Income' respectively 
(giving descriptions is optional but it is recommended to give descriptions of your 
variables because sometimes it is really helpful). Press <GO>. 

S Either type the data into Microfit or copy/paste the data from Excel®. Press <GO> • 
at the end. 

6 Having entered the data in Microfit, we need to create a constant. Either go to the 
process editor (by pr~:Ssing the process button) and write: 

C = I (and then press <GO>) 

or go to Edit/Constant (intercept) term and provide a name for the intercept by 
typing it in the corresponding window (let's assume that we name the con~tant term 
as C). 

7 Go to the single editor (by clicking the single button) and write: 

Y C X 

and click <START>. The output shown in Table 4.6 is shown in a new' window 
and provides estimates for alpha (the coefficient of the constant term), beta (the 
coefficient of X) and some additional statistics that will be discussed enter in the 
next sections of the chapter. 

(e) To obtain regression results in EViews, the following steps are required: 

I Open EViews. 

2 Choose FilejNew ;Workfile in order to create a new file. 

3 Choose Undated or Irregular and specify the number of observations (in this case 
20). A new window appears which automatically contains a constant (c) and a 
residual (resid) series. 

4 In the command line type: 

genr x=O (press enter) 
genr y=O (press enter) 

which creates two new series named x and y that contain zeros for every observation. 
Open x and y as a group by selecting them and double clicking with the 
mouse. 

5 Either type the data in EViews or copy/paste the data from Excel®. To edit the series 
press the edit+/- button. After finishing with editing the series press the edit+/­
button again to lock or secure the data. 
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Simple Regression 

Table 4.6 Microfit Results from a Simple Regression Model 

Dependent variable is Y 
20 observations used for estimation from 1 to 20 

Regressor 

c 
X 

R-Squared 
S.E. of regression 
Mean of dependent 
variable 

Residual sum of 
squares 

Akaike info. criterion 

OW-statistic 

Coefficient 

15.1164 
0.61089 

0.93218 
6.8796 

115.5160 

851.9210 
-67.8964 

2.2838 

Standard Error 

6.5656 
0.038837 

R-bar-squared 
F-stat. F(1,18) 
S.D. of dependent 
variable 

Equation log-likelihood 
Schwarz bayesian 
criterion 

Diagnostic Tests 

Test Statistics LMVersion F Version 

5i 

T-Ratio[Prob] 

2.3024 [.033) 
15.7295 [.000) 

0.92841 
247.4176 (.000) 

25.7129 

-65.8964 
-68.8921 

A: Serial Correlation 
B: Functional Form 
C: Normality 

CHSQ(1) = 0.72444 [0.395) 
CHSQ(1)=0.19091 (0.662) 
CHSQ(2) = 0.35743 [0.836) 
CHSQ(1) = 0.40046 [0.527) 

F(1, 17) = 0.63891 (.435) 
F(1,17)=0.16384(.691) 
Not applicable 

D: Heteroscedasticity F(1, 18) =0.36778 (.552] 

A Lagrat;~ge multiplier test of residual serial correlation. 
B Ramsey's RESET test using the square of the fitted values. 
C Based on a test of skewness and kurtosis of residuals. 
D Based on the regression of squared residuals on squared fitted values. 

Table 4.7 EViews results from a simple regression model 

Dependent Variable: Y 
Method: Le~st Squares 
Date: 01109104 Time: 16:13 
Sample: 1-20 
Included observations: 20 

Variable 

c 
X 

R·squared 
Adjusted R-squared 
S.E. of regression · 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

15.11641 
0.610889 

0.932182 
0.928415 
6.879603 

851.9210 
-65.89639 

2.283770 

Std. Error 

6.565638 
0.038837 

t-Statistic 

2.302352 
15.72951 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Prob. 

0.0335 
0.0000 

115.5160 
25.71292 

6.789639 
6.889212 

247.4176 
0.000000 

6 After entering the data into EViews, the regression line (to obtain alpha and beta) 
can be estimated either by writing: 

ls y c x (press enter) 
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on the EViews command line, or by clicking on Quick/Estimate equation and then 
writing the equation {i.e. y c x) in the new window. Note that the option for OLS 
(LS - Least Squares (NLS and ARMA)) is automatically chosen by EViews and the 
sample is automatically chosen to be from 1 to 20. 

Either way the output shown in Table 4. 7 is shown in a new window which provides 
estimates for alpha (the coefficient of the constant term) and beta (the coefficient 
of X). 

e~.~; ~;.t~~ ti· i; ~~!t ~/~· ~~-~~ ::·:_;•.;~:~·);, :;;~~ ~~r.\~ ... 

Questions 

1 An outlier is :m observation that is very far from the sample regression function. 
Suppose the equation is initially estimated using all observations and t~en 

reestimated omitting outliers. How will the estimated slope coefficient change? How 
will R2 change? Explain. 

2 Regression equations are sometimes estimated using an explanatory variable that is 
a deviation from some value of interest. An example is a capacity utilization rate­
unemployment rate equation, such as: 

Ut = ao + a1 (CAPt -CAP[)+ er 

where CAP~ is a single value representing the capacity utilization rate corresponding 
to full employment (the value of 87.5% is sometimes used for this value). 

(a) Will the estimated intercept from this equation differ from that in the equation 
with only CAPt as an explanatory variable? Explain. 

(b) Will the estimated slope coefficient from this equation differ from that in the 
equation with only CAPt as an explanatory variable? Explain. 

3 Prove that the OLS coefficient for the slope parameter in the simple linear regression 
model is unbiased. 

4 Prove that the OLS coefficient for the slope parameter in the simple linear regression 
model is BLUE. 

5 State the assumptions of the simple linear regression model and explain why they 
are necessary. 

Exercise 4.1 

The following data refer to the quantity sold for a good Y (measured in kg), and the 
price of that good X (measured in pence per kg), for 10 different market locations: 

Y: 198 181 170 179 163 145 167 203 251 147 
X: 23 24.5 24 27.2 27 24.4 24.7 22.1 21 25 
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(a) Assuming a linear relationship among the two variables, obtain the OLS estimators 
of a and {3. 

(b) On a scatter diagram of the data, draw in your OLS sample regression·line. 

(c) Estimate the elasticity of demand for this good at the point of sample means (i.e. 
when Y = Y and X = X). 

Exercise 4.2 

The table below shows the average growth rates of GDP and employment for 25 OECD 
countries for the period 1988-97. 

Countries Empl. GDP Countries Empl. 

Australia 1.68 3.04 Korea 2.57 
Austria 0.65 2.55 Luxembourg 3.02 
Belgium 0.34 2.16 Netherlands 1.88 
Canada 1.17 2.03 New Zealand 0.91 
Denmark 0.02 2.02 Norway 0.36 
Finland -1.06 1.78 Portugal 0.33 
France 0.28 2.08 Spain 0.89 
Germany 0.08 2.71 Sweden -0.94 
Greece 0.87 2.08 Switzerland 0.79 
Iceland -0.13 1.54 Turkey 2.02 
Ireland 2.16 6.40 United Kingdom 0.66 
Italy -0.30 1.68 United States 1.53 
japan 1.06 2.81 

(a) Ass~ming a linear relationship obtain the OLS estimators. 

(b) Provide an interpretation of the coefficients. 

Exercise 4.3 

In the Keynesian consumption function: 

d Ct=a+8Yt 

GDP 

7.73 
5.64 
2.86 
2.01 
2.98 
2.79 
2.60 
1.17 
1.15 
4.18 
1.97 
2.46 

the estimated marginal propensity to consume is simply 8 while the average propensity 
to consume is c;yd = a;Yd +8. Using data from 200 UK households on annual income 
and consumption (both of which were measured in UK£ ) we found the following 
regression equation: 

Ct = 138.52 + 0.725Yf R2 = 0.862 

(a) Provide an interpretation of the constant in this equation and comment about its 
sign and magnitude. 

(b) Calculate the predicted consumption of a hypothetical household with annual 
income £40,000. 
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(c) With Y1 on the x-axis draw a graph of the estimated MPC and APC. 

Exercise 4.4 

Obtain annual data for the inflation rate and the unemployment rate of a country. 

(a) Estimate the following regression which is known as the Phillips curve: 

rr1 = ao + a1 UNEMP1 + u1 

where rr1 is inflation and UNEMP1 is unemployment. Present the results in the 
usual way. 

(b) Estimate the alternative model: 

rr1 -rr1_ 1 = a0 + a 1 UNEMP1_ 1 + u1 

and calculate the NAIRU (i.e. when rr1 -nr-1 = 0). 

(c) Reestimate the above equations splitting your sample into different decades. What 
factors account for differences in the results? Which period has the 'best-fitting' 
equation? State the criteria you have used. ·' 

Exercise 4.5 

The following equation has been estimated by OLS: 

Rt = 0.567 + 1.045Rmt n = 250 

(0.33) (0.066) 

where R1 and Rmt denote the excess return of a stock and the excess return of the market 
index for the London Stock Exchange. 

(a) Derive a 95% confidence interval for each coefficient. 

(b) Are these coefficients statistically significant? Explain what is the meaning of your 
findings regarding the CAPM theory. 

(c) Test the hypothesis Ho: f3 = 1 and Ha: {3 < 1 at the 1% level of significance. If you 
reject Ho what does this indicate about this stock? 
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Exercise 4.6 

Obtain time series data on real business fixed investment (I) and an appropriate rate of 
interest (r). Consider the following population regression function: 

It = ao + a1 't + er 

(a) What are the expected signs of the coefficients in this equation? 

(b) Explain the rationale for each of these signs. 

(c) How can you use this equation to estimate the interest elasticity of investment? 

(d) Estimate the population regression function. 

(e) Which coefficients are statistically significant? Are the signs those expected? 

(f) Construct a 99% confidence interval for the coefficient of 't· 

(g) Estimate the log-linear version of the population regression function: 

In It = ao + a 1 In rr + ur 

(h) Is the estimated interest rate elasticity of investment significant? 

(i) Do you expect this elasticity to be elastic or inelastic and why? 

(j) Perform a hypothesis test of whether investment is interest-elastic. 

Exercise 4.7 

'The file salaries_oi:wn contains data for senior officers from a large number of UK firms. 
The variable salary is the salary that each one of them gets, measured in thousand 
pounds. The variable years_senior measures the number of years for which they are 
senior officers, while the variable years_comp measures the number of years for which 
they have worked in the company at the time of the research. 

(a) Find summary statistics for the three above-mentioned variables and discuss them. 

(b) Estim:te a simple regression that explains whether and how salary level is affected 
by the years for which they are senior officers. Estimate another regression that rtow 
explains whether and how salary level is affected by the years for which they have 
worked in t.he same company. Report your results and comment on them. Which 
relationship seems to be more robust and why? 
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Derivation of the multiple regression coefficients 

Properties of the multiple regression model OLS estimators 

R2 and adjusted R2 

General criteria for model selection 

Multiple regression estimation in Microfit and EViews 

Hypothesis testing 

The F-form of the likelihood ratio test 

Testing the joint significance of the Xs 

Adding or deleting explanatory variables 

The t test (A special case of the Wold procedure) 

The LM test 

Computer example: Wold, omitted and redundant variables tests 

Questions and exercises 
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So far, we have restricted ourselves to the single case of a two-variable relationship in a 
regression equation. However, in economics it is quite rare to have "such relationships. 
Usually the dependent variable, Y, depends on a big set of explanatory variables or 
regressors, and so we have to extend our analysis to more than one regressor. The 
multiple regression model generally has the following form: 

Yt = f3IX1t + /32Xu + /33X3t + · · · + f3kXkt + ut (5.1) 

where X It is a vector equal to unity (to allow for the constant term) and can be omitted 
from (5.1), and X;t (j = 2, 3, ... , k) is the set of explanatory variables or regressors. From 
this it follows that (5.1) contains k parameters to be estimated, which gives the degrees 
of freedom as well. 

Derivation of the multiple regression 
co.efficients 

The three-variable model 

The three-variable model relates Y to a constant and two explanatory variables x2 and 
X3. Thus, we have: 

Yt = /31 + /32X2t + /33X3t + Ut (5.2) 

As before we need to minimize the sum of the squared residuals (RSS): 

n 

RSS = Ll/f (5.3) 
t=l 

where f1t is the difference between the actual Yt and the fitted Yt, predicted by the 
regression equation. Therefore: 

fit = Yt - Yt = Yt - P1 - ~2Xu- P3X3t (5.4) 

substituting (5.4) into (5.3) we get: 

n 2 n • • • )2 
RSS = L ut = L ( Yt - /3} - f32X2t - f33X3t (5.5) 

t=l t=l 

The next step is to take the First Order Conditions (F.O.C.s) for a minimum: 

n • ) 
aR:s = -2 L ( Yt - P1 - P2X2t -f3JX3t = 0 
iJ/31 t=l 

(5.6) 
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aRSS ~ ( - - - ) -.- = -2 LX2t Yt- fh- {JzXzt- f33X3c = 0 
a{Jz t=I 

(5.7) 

aRSS ..;-, ( - - - ) -,- = -2 LX3t Yt- fJ1- fJzXzt- f33X3t = 0 
ap3 t=I 

(5.8) 

And again we end up with a system of three equations with three unknowns /3 1, /Jz and 
/33, which can be easily solved to give estimates of the unknowns. Equation (5.6) can 
be transformed, for example, easily to give: 

n n n n 

L Yt = L /J1 + L /JzXzt + L i3JX3t (5.9) 
t=l t=l t=l 1=1 

n n n 

L Yr = n/31 + /Jz L Xzr + /33 L X3c (5.10) 

t=l t=l t=l 

dividing throughout by nand defining X; = 2:::~1= 1 X;fn: 

Yc = /J1 + /JzXz + fi3x3 (5.11) 

and we obtain a solution for /31: 

/J1 = Y - /JzX - /33X (5.12) 

Using equation (5.12) and the second and third of the F.O.C.s, and after manipulations, 
we obtain a solution for /Jz: 

- Cov(Xz, Y) Var(X3) - Cov(X3, Y)Cov(Xz, X3) 
fJz=----~------~------~----~----

Var(Xz) Var(X3) - [Cov(Xz, X3)]2 

and /33 will be similar to (5.13) by rearranging Xu and X3r: 

- Cov(X3, Y) Var(Xz) - Cov(Xz, Y)Cov(X3, Xz) 
f33 = 

Var(X3) Var(Xz) - [Cov(X3, Xz)] 2 

The k-variables case 

(5.13) 

(5.14) 

With k explanatory variables the model is as presented initially in equation (5.1), so 
we have: 

Yt = fJ1X1t + fJzXzt + f33X3t + · · · + fJkXkc +lit (5.15~ 

while again we obtain fitted values as: 

Yt = ihX 1t + /JzXzt + /33X3t + · · · + /JkXkt (5.16) 
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Multiple Regression 59 

and 

itt= Yt- Yt = Yt- fhX1t- fi2X2r- fi3X3r- · · ·- fikXkt (5.17) 

Furthermore we again want to minimize RSS, so: 

n 2 n • • • • 2 
RSS = L ut = L (Yr -/hXH- fJ2Xu- /33X3r- ·· ·- fJkXkr) (5.18) 

t=l t=l 

Taking the F.O.C.s for a minimum this time we obtain k equations for k unknown 
regression coefficients, as: 

n n n 

L Yr = nfit + fi2 L X2r + · · · + Pk L Xkt (5.19) 
t=l t=l l=l 

n n n 11 

L YtX2t =fit L Xu+ P2 L x~t + ... + fik L XkrXu (5.20) 
t= 1 t= 1 t= 1 t= 1 

(5.21) 

n 11 n n 

LYtXk-l,t =fit Lxk-lt + P2 LX2rXk-1t + ·· · + Pk LXkrXk-t,t (5.22) 
l=l t=l t=l t=l 

,. n n n n 

L YrXk,t = Pt L Xkr + P2 L X2rXk,t + · · · + Pk L xfr (5.23) 
t=l t=l t=l l=l 

The above k equations can be solved uniquely for the f3s, and it is easy to show that: 

Pt = Y- P2X2 - · · · - PkXk (5.24) 

However, the expressions for fi2. fi3, ... , Pk are very complicated and the mathematics 
wHI not be presented here. The analysis should be done with the use of matrix algebra 
which is the context of the next section. Standard computer programmes do all the 
calculations and provide estimates immediately. 

Derivation of the coefficients with matrix algebra 

Equation (5.1) can be easily written in matrix notation as: 

where 

y = xp +u 

y ~ (~~)- X~(; 
X21 X31 
X22 X32 

x2T x3T 

(5.25) 

xkl) xk3 
' 

xkT 
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{J = (:,:) ' u = (~,:) 
I Pk Un 

Thus, Y is a T x 1 vector, X is an T x k matrix, {J is a k x 1 vector and u is an T x 1 
vector. Our aim is to minimize RSS. Note that in matrix notation RSS = u'u. Thus, 
we have: 

u'u = (Y- Xp)'(Y- Xp) 
= (Y' - p' X')(Y - Xp) 
= Y'Y - Y'XP - p' X'Y + fi' X'XP 

= Y'Y - 2YX' p' + p' X'Xp 

(5.26) 

(5.27) 

(5.28) . 

(5.29) 

We now need to differentiate the above expression with respect to p and set this result 
equal to zero: · 

aRSS __ 2X'Y + 2X'XP = 0 
ap 

which is a set of k equations and k unknowns. Re-writing (5.30) we have: 

X'XP = X'Y 

and multiplying both sides by the inverse matrix (X'X)- 1 we finally get: 

P = (X'X)-1X'Y 

(5.3,()) 

.l 

(5.31) 

(5.32) 

which is the solution for the OLS estimators in the case of multiple regression analysis. 

The structure of the X'X and X'Y matrices· 

For a better understanding of the above solution, it is quite useful to examine the 
structure of the (X'X) and (X'Y) matrices that give us the solution for p. Recall that 
Xt = (Xt -X) denote deviations of variables from their means, so, we have that: 

( L-' LX2tX3t :Lx2ti4t LX,x,) xu ... 

LX3tX2t :L-2 LX3tX4t ... LX]tXkt x3t 
cx'x) = :L~:~.X2t L X4tX3t :L-2 ... LX4tXkt (5.33) x4t 

... ... 

LXktX2t LXktX3t LXktX4t :L-2 ... xkt 
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and: 

I:xzrYt 
LX3tYt 

<x'y) = I I: x4rYr 

LXktYt 

61 

(5.34) 

It is simple to see that the matrix (x'x) in the case of a four explanatory variables 
regression model (k = 4) will reduce to its 3 x 3 equivalent; for k = 3 to its 2 x 2 
and so on. When we have the simple linear regression model with two explanatory 
variables (k = 2, the constant and the slope coefficient), we will have (x'x) = L;x~t 
and (x'y) = L:xztYt· Therefore the OLS formula will be: 

fiz = (x'x)- 1 (x'y) 

= (L:xU-1 (I:xzr) 

L:xzy = fi* 
= L:x~ 

(5.35) 

(5.36) 

which is the same with expression (4.24) that we derived analytically without matrix 
algebra in Chapter 4. 

The assu,mptions of the multiple regression model 

V~ry briefly we can state again the assumptions of the model which are not much 
different from the simple two-variable case: 

1 The dependent variable is a linear function of the explanatory variables. 

2 All explanatory variables are non-random. 

3 All explanatow variables have values that are fixed in repeated samples, and as n ~ oo 
the variance of their sample values 1/n I:<X;r- X;)2 ----+ Q; ( j = 2, 3, ... , k) where the 
Q; are fixed constants. 

4 E(ur) = 0 for all t. 

5 Var{Ut) = E(u'f> = a 2 = constant for all t. 

6 Cov(ur, u;) = E(ur, u;) = 0 for all j f:- t. 

7 Each lit is normally distributed. 

8 There are no exact linear relationships among the sample values of any two or more 
of the explanatory variables. 
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The variance-covariance matrix of the errors 

Recall from the matrix representation of the model that we have an 11 x 1 vector u of 
error terms. If we form an 11 x n matrix u'u and take the expected value of this matrix 
we get: 

( 

E(uT) E(u1u2 ) E(u1u3 ) . · · E(u1u11 )) 

Ecu2 u 1 ) E(u~) E(u2 u3 ) . . . E(u2 u11 ) 

E(uu') = E(l~~~t 1 ) £(1~~~2) E~~~) · · · £(1~~~111 ) 

E(u11 u1) E(u 11uz) E(u 11u3 ) . . . E(u~) 

(5.37) 

Now, since each error term, Ut, has a zero mean, the diagonal elements of ~his matrix 
will represent the variance of the disturbances, and the non-diagonal terms will be the 
covariances among the different disturbances. Hence, this matrix is called the variance­
covariance matrix of the errors, and using assumptions 5 ( Var(llt) = E<uf) = a 2 ) and 6 
(Cov(ur, u;) = E(ur, u;) ·= 0) will be like: 

(

a2 0 0 · ·· 0) 
0 a 2 0 0 0 

E(uu') = -~- .~. ~-~ . . . -~- = a
2

In 

0 0 0 ... a2 

where In is an 11 x n identity matrix. 

Properties of the multiple regression 
model OLS estimators 

(5.38) 

As in the simple two-wuiable regression model, based on the assumptions of the CLRM, 
we can prove that the OLS estimators are Best Linear Unbiased Estimators (BLUE). We 
concentrate on the slope coefficients ({Jz, /33, {34 , ... , fJk) rather than the constant ({31) 

because these are the parameters of greatest interest. 

Linearity 

For OLS estimators to be linear, assumptions 2 and 3 are needed. Since the values of the 
explanatory variables are fixed constants, it can easily be shown that the OLS estimators 
are linear functions of the Y values. Recall the solution for p: 

p = (X'X)- 1X'Y (5.39) 

where since X is a matrix of fixed constants then W = (X'X)- 1 X' is also an x k matrix 

of fixed constants. Since W is a matrix of fixed constants, [3 is a linear function of Y, so 
by definition it is a linear estimator. 
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Multiple Regression 

Unbiasedness 

We know that: 

p = (X'X)- 1X'Y 

and we also have that: 

Y = XP+u 

Substituting this into equation (5.40) above we obtairi: 

p = (X'X)- 1X'<XP + U) 

= (X'X)- 1X'Xp + (X'X)- 1X'u 

= p + (X'X)- 1X'u [since (X'X)- 1X'X =I] 

Taking expectations of (5.42) yields: 

E<P> = E(/3) + (X'X)- 1X'E(u) 

= p [since E(/3) = p and E(u) = 0] 

,Therefore {3 is an unbiased estimator of p. 

Consistency 

63 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

Unbiasedness simply means that whatever the sample size we expect that on average 
the estimated fi will equal the true {3, however the above proof of this rests on the 
assumption that X is fixed and this is a strong and often unrealistic assumption. If we 
relax this assumption however we can still establish that fi is consistent, this simply 
means thin as the estimation sample size goes to infinity {3 will converge in probability 
on its true value. Thus p lim<fi> = {3. The proof of consistency will not be presented 
here as it is te~ious and beyond the scope of this book. However the key assumption 
to this proof is that the X variable while not being fixed must be uncorrelated with the 
error term. 

BLUEness 

Before we proceed with the proof that the OLS estimators for the multiple regression 
model are BLUEs, it is good to first find expressions for the variances and convariances 
of the OLS estimators. 
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Consider the symmetric k x k matrix of the form: 

E(p - fJ)(P - p)' 

( 

A 2 E(fJ1 - fJ1) 

~ E~z- PzH~d1l 

E(tlk - fJk )(fJl - fJ1) 

£(~1 - fJ1 )(~z - fJz) 

E(~z- fJz)2 

E<~k - fJk><Pz - fJz) 

· · · £(~1 - fJ1H~k - fJk)) 
· · · E(fJz- fJz)(fJk - f3k) 

EC/k -- ,\):: 

Because of unbiasedness of p we have that E(~' . .;J: 

,,,J71 ._,,,. ,_.,..,fi, R~\ 

.C(B --- i . ,j:f - IP' "- • .1) 

' A A 
·., :=u-.·cf3k, fJ1) -•'l'(Pk, />z) 

• vwt ii, i'r, \\ 

::'..:-'' ·{j15z,. i-'KJJ·, 
.. ' 

Var(A) 

(5.45) 

(5.46) 

Which jr r~·1. .. : .e variance-covariance ffidt' f iJ. We need to find an expression for 
\r:'' · __ . ,.de; that from (5.32) we have: 

P = (X'X)- 1 )~ -.· 

substituting y = xp + u, we get: 

{J = (X'X)- 1X'(X{J + U) 

= (X'X)- 1X'Xp + (X'X)-1 X'u 

= fJ + (X'X)- 1X'u 

P- fJ = (X'X)-1X'u 

By the definition of variance-covariance we have that: 

Var(p) = E[(p - fJ)(P - p)'] 

= E{[(X'X)- 1X'u][(X'X)- 1X'u]'J 

= E[(X'X)- 1 X'uu'X(X'X)- 1 )* 

= (X'X)- 1X'E(uu')X(X'X)- 1t 

= (X'X)- 1 X'a2 IX(X'X)-1 

= a 2 (X'X)- 1 

*This is because (BA)' = A'B'. 
t This is because, by assumption 2, the Xs are non-random. 

(5.47) 
·, 

(5.48) 

(5.49) 

(5.50) 
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Multiple Regression 65 

Now for the BLUEness of the [1, let us assume that there is [1* which is any other 
linear estimator of {J, which can be expressed as: 

jJ* = [(X'X)- 1X' + Z](Y) 

where Z is a matrix of constants. Substituting for Y = X{J + u, we get: 

jJ* = [(X'X)-1 X'+ Z](X{J + u) 

= p + ZX{J + (X'X)- 1X'u + Zu 

"* and for p to be unbiased we require that: 

ZX=O 

Using (5.53), we can rewrite (5.52) as: 

jJ*- fJ = (X'X)-1X'u + Zu 

Going back to the definition of the variance-covariance: 

.. 
E[(p- fJ)(P- Pl'l = {(X'X)- 1X'u + Zu}((X'X)-1X'u + Zu}' 

= u 2 (X'X)- 1 + u 2ZZ' 

(5.5 1) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

' "* which says that the variance-covariance matrix of the alternative estimator p is equal 
to the variance-covariance matrix of the OLS estimator [1 plus u 2 times ZZ', and 
therefore .greater than the variance-covariance of [1. Hence [1 is BLUE. 

R2 and adiusted R2 

The regular coefficient of determination, R2 is again a measure of the closeness of fit 
in the mtiltiple regression model as in the simple two-variable model. However, R2 

cannot be used as a means of comparing two different equations containing different 
numbers of explanatory variables. This is because when additional explanatory 
variables are included, the proportion of variation in Y explained by the Xs, 

R2, will always be increased. Therefore, we will always obtain a higher R2 regardless 
of the importance or not of the additional regressor. For this reason we need a 
different measure that will take into account the number of explanatory variables 
included in each model. This measure is called the adjusted R2 (and is denoted by 
iF) because it is adjusted for the number of regressors (or adjusted for the degrees of 
freedom). · 

Recall that R2 = ESSjTSS = 1 - RSS/TSS, so that the adjusted R2 is just: 

iF= 
1 

_ RSSj(n- k) = 
1 

_ RSS(n- 1) 
TSSj(n- 1) TSS(n- k) 

(5.57) 



66 The Classical Linear Regression Model 

Thus, an increase in the number of Xs included in the regression function, increases 
k and this will reduce RSS (which if we do not adjust will increase Rz). Dividing now, 
RSS by n - k, the increase in k tends to offset the fall in RSS and this is why f?.2 is a 
'fairer' measure in comparing different equations. The criterion of selecting a model is 
to include an extra variable only if it increases k2 . Note that because (n- 1)/(11- k) 
is never less than 1, k 2 will never be higher than R2 . However, while R2 has values 
between 0 and 1 only, and can never be negative, k 2 can have a negative value in 
some cases. A negative k2 indicates that the model does not adequately describe the 
data-generating process. 

General criteria for model selection 

We said before that : > ••..•.. >Jillg the n,,,, 'JE" ot explanatory variables in a multiple · 
regression model will decrease tt: J<SS, and R2 will therefore increase. However, the 
cost of that is a loss in terms of degrees of freedom. A different method - apart from 
k 2 - of allowing for the number of Xs to change when assessing goodness of fit is"to 
use different criteria for model comparison, such as the Akaike Information Criterion 
(AIC) developed by Akaike (1974) and given by: 

AIC = ( R~S) e2k/n 

the Finite Prediction Error (FPE) developed again by Akaike (1970): 

FPE= (RSS) n+k 
11 n- k 

the Schwarz Baye~ian Critenuu ~.::.u'--i uLv<:;\;iJed by Schwarz (1978): 

SBC = ( R~S) ekfn 

or the Hannan and Quln (1.979) Criterion (HQC): 

(
RSS) · HQC = --;:;- (In n)2k(n 

(5.58) 
' 

I (5.59) 

(5.60) 

(5.61) 

among many others. (Other criteria include those by Shibata, 1981, Rice, I 984, and a 
Generalized Gross Validation, GCV, method developed by Craven and Wahba, 1979.) 
Note that some programmes including Eviews reports the logarithm of the AIC (5.58) 
and (5.61). 

Ideally, we select the model that minimizes all those statistics, as compared to an 
alternative one. In general, however, it is quite common to have contradictory results 
coming from different criteria. For example, the SBC penalizes model complexity more 
heavily than any other measure, and might therefore give a different conclusion. 
A model that outperforms another in several of these criteria might generally be 
preferred. However, in general the AIC is one of the most commonly used in time 
series analysis. Both AIC and SBC are provided by EViews in the standard regression 
results output, while Microfit provides only SBC. 
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Multiple regression estimation in 
Microfit and EViews 

Multiple regression in Microfit 

Step 1 Open Microfit . 

Step 2 Click on File/NeW in order to create a new file or File/Open to open an 
existing file. 

Step 3 If it is a new file follow the steps 3-6 described in the simple regression case. 

Step 4 Go to the single editor (by clicking the 'single' button) and type into the single 
editor: 

Y C X2 X3 X4 . . . XK 

where X2, ... , XK are the names of the variables to add into the explanatory 
variables list. Of course Y is the dependent variable and C is the constant 
created in Microfit. After determining the equation, click <START>. 
The regression result outputs in a new window which provides estimates for 
fh (the coefficient of the constant term C), and {32, ... , fJk (the coefficients of 
Xs) and some additional statistics that will be discussed in later chapters of 
this book. 

Multiple regression in EViews 
' 
Step 1 Open EViews. 

Step 2 Click File/New/Workfile in order to create a new file or File/Open to open an 
existing file. 

Step 3 If a new file, follow steps 3-S described in the simple regression case. 

Step 4 Once the data have been entered in EViews, then the regression line can be 
estimated (to obtain {3 1 (the coefficient of the constant term C) and {32 , ... , fJk 
(the coefficients of Xs)) through two different ways. One is by typing in the 
EViews command line: 

ls y c x2 x3 ... xk (press 'enter') 

_where y is to be substituted with the name of the dependent variable as it 
appears in the EViews file, and, similarly, x2, ... xk will be the names of the 
explanatory variables. 

The second way is to click on Quick/Estimate equation and then write the 
equation (i.e. y c x2 ... xk) in the new window. Note that the option for OLS 
(LS - Least Squares (NLS and ARMA)) is automatically chosen by EViews and 
the sample is automatically chosen to be the maximum possible. 



68 The Classical Linear Regression Model 

Below we show an example of a regression result output from EViews (the case of 
Microfit is similar). 

Reading the EViews multiple regression results output 

Name of the Yvariable 
Estimated 
coefficients 
({I,, /1,, II,) 

x2 

R2 

AIC 
SBC 

Hypothesis testing 

Testing individual coefficients 

\ 

Std. Error 

0.344368 
0.168856 
0.137400 

n =no of obs. 

Shows the method 
of estimation 

Prob. 

0.0761 

Mean dependent var 
S.D. dependent var 

estimated coetfs 

D-Wstat. 
(see Chap1er 7) 

As in simple regression analysis, in multiple regression a single test of hypothesis on a 
regression coefficient is carried out as a normal t test. We can again have one-tail tests (if 
there is some prior belief/theory for the sign of the coefficient) or two-tail tests, carried 
out in the usual way ((/J- {3)/sp follows tn-k), and we can immediately make a decision 

about the significance or not of the /Js using the criterion it-stat! > it-criti having the 
t-statistic provided immediately by either Microfit or EViews (note that especially for 
large samples we can use the 'rule of thumb' lt-stati > 2). 

Testing linear restrictions 

Sometimes in economics we need to test whether there are particular relationships 
between the estimated coefficients. Take for example a production function of the 
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Multiple Regression 69 

standard Cobb-Douglas type: 

Q =ALaKf3 (5.62) 

where Q is output, L denotes labour units, K is capita and A is an exogenous technology 
parameter. If we take logarithms and add an error term we have: 

In Q = c + a In L + 13 InK + u (5.63) 

where c =InA, a constant and a and 13 coefficients are simply the elasticities of labour 
and capital respectively. In this example it might be desirable to test whether a+ 13 = 1, 
which implies constant returns to scale (i.e. if we double inputs the output will be 
doubled as well). 

Therefore, we have estimates a and P that we want them to obey a linear restriction. 
If we impose this restriction to the Cobb-Douglas production function we will have: 

In Q = c + (1- ,8) lnL + 13 InK+ u 

InQ -lnL = c+ l3(1nK -lnL) + u 

Q* = c + {JK* + u 

(5.64) 

where Q* = In Q - lnL and K* = InK - In L. Thus, we can estimate (5.64) to get P 
and then obtain a = 1 - p. The estimates obtained this way are known as restricted 
least squares estimates and equation (5.64) is referred to as the restricted equation while 
obvipusly (5.63) is the unrestricted equation. 

Sometimes, it is even possible to impose more than just one restriction at a time. For 
example suppose we have the unrestricted equation: 
' 

Yt = .Bt + .BzXu + .B3X3t + ,84X4t + .BsXst + et 

and we need to impose the following restrictions: 

,83 + ,84 = 1 and .Bz == .Bs 

Substituting the restrictions to the unrestricted equation we have: 

Yt = .Bt + .BsXu + (1 - ,84)X3t + f34X4t + .BsXst + et 

Yt = .81 + .BsXzt + X3t - ,84X3t + f34X4t + f3sXst + et 

Y~ - X3t = .81 + .Bs <Xu + Xst) + ,84 (X4t - X3t) + er 

r; = .81 + .Bs<Xjt) + .84(Xzt) + et 

where Y! = Yt - X3t• Xit =Xu+ Xst and Xzt = X4t- X3t· 

(5.65) 

(5.66) 

Therefore, in this case we cari estimate the restricted equation (5.66) and get Pt. Ps 
and P4 and then calculate P3 and /Jz from the restrictions imposed above. 

So far, things are simple. However, the problem is that usually we are not able to just 
accept the restrictions as given without testing for their validity. There are three basic 
ways of constructing a test; the Likelihood Ratio procedure, the Wald procedure and 
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the Lagrange Multiplier (or LM) procedure. The exact derivation of these procedures 
is beyond the scope of this book but we will attempt to give an intuitive account of 
these three. The idea of most tests is to asses the difference between an unrestricted 
model and a restricted version of the same model. If the restriction does not affect 
the fit of the model very much then we would want to accept the restriction as being 
valid. If on the other hand the model fits much worse then we would reject the model. 
Of course this means we have to have some firm measure of how much worse the fit 
can get and still be insignificant. In general this measure comes from a measure of 
how good a model is which is called the likelihood function, at an intuitive level this 
shows us how likely the model is to be correct. The exact way we use this to form a 
test is based on the fact that if we take twice the difference between the likelihood 
function of the unrestricted and restricted model this value will have a x2 distribution 
with the number of degre . ot in.edom equal to the number of restrictions imposed 
on the model. Thh ,~;\ ... ~ i!Sf' to lh•.~ :··:.1~;ii ~..ik.t:!i';uud Ratio test which simpiy involves 
estimating the model bot'. with the restriction and without it and constructing, a test 
based on these two estimates. The x2 distribution is an asymptotic one, which means 
that it is really only the correct one for an infinitely large sample, however in some cases 
we can calculate a version of the Likelihood Ratio test which is correct in small samples 
and then it may have an F distribution for example. Any test which involves estimating 
the model BOTH with and without the restriction is a form of Likelihood Ratio test. 
There are however two approximations to the Likelihood Ratio test which only require 
us to estimate one model. Jf we only estimate the unrestricted model and then use iJ. 
formulae to apprnv;,- _ ... e full likelihood ratio test this is called a Wald test. The 
't' test .:w:.:,l ;a ted with OLS coefficients for example are a particular form of Wald test. 
v:e estimate the unrestricted model and then we can test the hypothesis that the true 
coefficient is zero, but we do not actually estimate the complete model subject to this 
restriction. The-final method (the LM procedure) only estimates a restricted model and 
then tests for a relaxation of these restrictions by again applying a formulae but not 
actually re-estimating the model. This final procedure has proved very useful in recent 
years as it allows us to test a model for many possible forms of misspecification without 
having to estimate many different models. All three forms may have asymptotic x2 

distributions or they may have distributions which correct for the small sample such 
as an For 't' distribution. 

The F-form of the likelihood ratio test 

The most common method is to estimate both the unrestricted equation and the 
restricted equation and to take the RSS of both models denoted as RSSu and RSSR 
respectively (the subscript U stands for unrestricted, R for restricted). 

It should be obvious that RSSR > RSSu. However, if the restrictions are valid, then 
this difference should be minimal. It is beyond the scope of this text to prove that there 
is a statistic given by the following expression: 

(RSSR- RSSu)/(ku- kR) 

SSRu/(n- ku) 

'7:' 

(5.67) 
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that follows an F-type distribution with (ku- kR, n- ku) degrees of freedom, and that is 
the appropriate statistic to help us determine whether the restrictions are valid or not. 
So, summarizing, the F-test (which is a special form of the likelihood ratio procedure) 
for testing linear restrictions can be conducted as follows: 

Step I The null hypothesis is that the restrictions are valid. 

Step 2 Estimate both the restricted and unrestricted models and obtain RSS R and RSSu. 

Step 3 Calculate F-statistical by expression (5.67) above where ku and kR are the 
number of regressors in each model. 

Step 4 Find F-critical for (ku- kR, n- ku) degrees of freedom from the F-tables. 

Step 5 IfF-statistical > F-critical reject the null hypothesis. 

Testing the ioint significance of the Xs 

This is simply the F-type test for the overall goodness of fit, but it can be understood 
more easily as a special case of a LR-type test. Consider the following two (unrestricted 
and super-restricted) models: 

Yt = fh + fJzXzt + fJ3X3t + f34X4t + fJsXst + er 

Yt = lh + Et 

(5.68) 

(5.69) 

The second model is called super-restricted because we imposed a number of restrictions 
equal to the number of explanatory variables excluding the constant (i.e. k - 1 
testrictions). 

The null hypothesis in this case is {Jz = {33 = {J4 = fJs = 0, or to put it in words ·none 
of the coefficients in the model apart from the intercept is statistically significant'. If 
we fail to -reject this hypothesis, this means that we have a very poor model and we 
must reformulate it. 

·In this special case we can show that we do not need to estimate both models in order 
to calculate the F statistic. First, we can get RSSu by estimating the full model. Then 
we can get RSSsR by minimizing"£ El = "£(Yt- {31 ) 2 with respect to {31 . However, we 
know thatfJ1 = Yt and therefore RSSsR = "£(Yt- Yr)2 which is the same as TSSu. 

Therefore, the F statistic is now: 

(TSSu- RSSu)/(k- 1) 

. RSSu /(n- k) 

ESSu/(k- 1) 

RSSuf(n- k) 

R2 /(k - 1) 

(1- R2)/(n- k) 

which can easily be calculated by the R2 of the unrestricted model. 

F -test for overall significance in Microfit and EViews 

(5.70) 

Both Microfit and EViews provide the F statistic for the overall significance of the Xs as 
a part of the summary statistics for a regression model. What we need is just to make 
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sure that F-statistical > F -critical (k- 1,11- k) in order to reject the null hypothesis. If 
we cannot reject the null, then we have to reformulate our model. 

Adding or deleting explanatory variables 

Frequently we might face problems of deciding whether to add or delete one or more 
explanatory variables from an estimated model. When only one variable is involved, a 
safe criterion is to check its t-ratio, but when a set of variables is involved then we might 
need to assess their combined influence in the model. Consider the following model: 

Yr = fh + f3zXzr + · · · + f3kXkr + er 

Yr = f3If3I + fJzXzr + · · r fJkXkr + f3k+IXk+lt + · · · + f3mXmt + Et 

(5.71) 

(5.72) 

In this case we again have a rf:':,,ricted and unrestricted model with n- k more variables 
which we are interested in to assess their combined effect. The null hypothesis here is 
flk+I = f1k+2 = · · · = f3m = 0 which says that the joint significance of these omitfed 
variables is zero. Alternatively, we can have model (5. 72) as the initial model and might 
want to test that variables Xk+I = Xk+Z = · ·. = Xmt are redundant to this model. This 
can be tested by either a regular F-test or by a likelihood ratio (LR) test. The F-type 
test as we explained before is based on the difference of the RSS of the restricted and 
unrestricted regressions. 

The LR statistic is computed as: 

LR = -2(/R -lu) 
.I 

where lR and lu are the maximized values of the log-likelihood function of the 
unrestricted and restricted equations respectively. The LR statistic follows a x2 

distribution with degrees of freedom equal to the number of restrictions (i.e. the number 
of omitted or added variables). 

OmiHed and redundant variables test in EViews 

Suppose that we have estimated the unrestricted model: 

Is Y C XI X2 X3 

and want to test whether X4 and X5 are omitted from the model. From the regression 
window select View/Coefficient tests/Omitted Variables-Likelihood Ratio. A new 
window with a dialog box opens, where we specify the names of the variables we want 
to test (i.e. write X4 X5) and click <OK>. EViews reports the two statistics concerning 
the hypothesis testing (i.e. the F and LR statistics with their probability limits). IfF­
stat > F -critical or if LR-stat > x2 -critical then we reject the null that the two series do 
not belong to the equation. Similar steps have to be carried out for a variable deletion 
test, where we choose View/Coefficient tests/Redundant Variables-Likelihood Ratio 
and specify the names of the variables that were included in the initial model and 
whose significance we want to test. 
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OmiHed and redundant variables test in Microfit 

Similarly, in Microfit, after estimating a regression and closing the results window a 
new window pops out with 10 different choices numbered consecutively from 0 to 9. 
Choice 2 is about hypothesis testing, which is exactly what we discussed in the second 
part of this chapter. Choosing 2: Move to hypothesis testing menu and clicking <OK> 
a new window again opens with 10 different choices. From those choices, choice 5 
concerns the variable deletion test and choice 6 the variable addition test. In each 
case we need to specify the names/labels of variables to add or delete. Microfit reports 
results of LR, F and Lagrange multiplier (LM) test statistics. In each case, if the statistical 
value is bigger than the critical value we reject the nulf hypothesis about the validity 
of the restrictions. 

How to perform the Wold test in EViews and Microfit 

As noted above a particular set of restrictions or hypothesis may be tests in 3 different 
ways, the Likelihood Ratio procedure gives rise to the F-test above which involves 
estimating the model twice and this may be cumbersome to do. The Wald procedure 
however allows us to test any restriction on a model once we have estimated it without 
estimating any further models. It is therefore often quite convenient to use a series of 
Wald te;;ts after we have estimated our model. 

The Wold test in EViews 

We can test various linear restrictions in EViews and Microfit using the Wald test. For 
EViews ~e first estimate the unrestricted equation, then from the regression output 
window we choose View/Coefficient Tests/Wald-Coefficient Restrictions.... We 
then rieed .to enter the restrictions in the new dialog box (in the case of more than one 
restriction we have to separate them by commas). The restrictions should be entered as 
equations involving the estimated coefficients and constants. The coefficients should 
be referred to as C(l) for the constant, C(2) for the Coefficient of the first explanatory 
variable and so on. After entering the restrictions click <OK>. EViews reports the F 
statistic of the Wald test and a Chi-square statistic. If the statistical value is bigger than 
the criticar then we reject the null hypothesis. 

The Wold test in Microfit 

Similarly, in Microfit, after estimating a regression and closing the results window a 
new window pops out with 10 different choices numbered consecutively from 0 to 
9. Choosing 2: Move to hypothesis testing menu and clicking <OK> a new window 
opens, again with 10 different choices. From those choices, choice 7 concerns the Wald 
test for linear restrictions. We need to specify the restrictions as equations, where this 
time the coefficients should be referred to as A 1 for the constant, A2 for the coefficient 
of the first explanatory variable, and so on. Microfit reports the Wald statistics as a 
Chi-square distributed statistic. If the statistical value is bigger than the critical value, 
then we reject the null hypothesis. 
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The f test (A special case of the 
Wald procedure) 

A third method is to test the restriction without actually estimating the restricted 
equation, but simply using at test on the actual restriction. Think of the Cobb-Douglas 
production function: 

In Q = c + alnL + {3lnK + u (5.73) 

and the restriction a + f3 = 1. What we can do is to obtain by OLS a and fi and test 
whether a+ fj = 1. We know that a and (3 are normally distributed: 

a~N(a,af) and fi~N(fJ,aj) 

where a 2 refers to the respective variances. Furthermore, we know that" any linear · 
combination of two normal variables will also be normal. So, we have: 

a+ (3 ~ N(a + {3, Var(a + /J)) 

where 

Var(a + /J) = Var(a) + Var(/3) + 2Cov(a, /J) 

Converting the above into standard normal distribution 

or 

a+/J-.<a+f3) •• ~N(0,1) 
Var(a) + Var(f3) + 2Cov(a, {J) 

" " 1 
a+~ - • • ~ N(O, 1) 

Var(a) + Var(f3) + 2Cov(a, {3) 

-, 

because under the null hypothesis a + fJ = 1. Also, we do not know the variances and 
covariances exactly, but these can be estimated. If we substitute 
an estimated value for the denominator in the above equation (let's say u) which can 
be taken from the residuals variance/covariance matrix, then its statistical distribution 
changes to the student's t distribution with n - k degrees of freedom. Thus, we can 
apply a t test calculating the following: 

a+/3-1 
tstat = . - . · 

Var(a) + Var({3) + 2Cov(a, {3) 
(5.74) 

and as always if itstatl > lt-critl then we reject the null. Because this test 
requires several auxiliary calculations, one of the previously presented methods is 
generally recommended. 

The LM test 

The final way to test a set of restrictions on a model rests on only estimating the 
restricted model, this is the Lagrange Multiplier (LM) test, it is particularly useful, as we 
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will see later, as it allows us to test for more general models which might often be much 
more difficult to estimate. Let's assume that we have again the unrestriCted model: 

Yt = ~1 + ~2X2t + ~3X3t + ~4X4t + ~sXst + ut (5. 75) 

and after imposing 

~3 + ~4 = 1 and ~2 = ~s 

we have: 

Y! = ~1 + ~s(Xit) + ~4(Xzt) + Ut (5.76) 

as was shown above. 
The LM test involves the following steps: 

Step 1 The null hypothesis is that the restrictions are valid. 

Step 2 Estimate the restricted model in (5.76) and save the residuals fiR. 

Step 3 Regress uR on the four explanatory variables of the unrestricted model in (5.75): 

fiR = J1 + J2Xu + J3X3t + J4X4t + JsXst + t:t 

Step 4 Calculate the x2-statistic = nR2 which is distributed with h degrees of freedom, 
,where h is the number of restrictions (in this case 2). 

StepS. Find x2-critical for h degrees of freedom. 

Step 6 If x 2-statistical > x2-critical reject the null hypothesis. 

The LM test in Microfit and EViews 

There is no routine to use to calculate the LM procedure to test simple linear restrictions 
in ·Microfit and EViews as it is almost always more convenient to use a Wald or 
Likelihood Ratio test, so to calculate the LM test for the above restrictions we would 
have to manually follow the steps above. However when we come to test more complex 

-- departures [rom our model such as serial correlation or ARCH effects the LM procedure 
becomes very useful and both programmes have a number of routines which make use 
of this procedure as we will see later. 

Computer example: Wald, omitted and 
redundant variables tests 

The file wage.xls contains data regarding wage rates (wage), years of education (educ), 
years of working experience (exper) and years spent with the same company (tenure) 
for 900 UK financial analysts. We want to estimate an equation which includes as 
determinants of the logartthm of the wage rate the variables, educ, exper and tenure. 
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First we need to construct/generate the dependent variable. In order to do that we 
have to type the following command in the EViews command line: 

genr lnwage =log (wage) 

Then, in order to estimate the multiple regression model, we have to select from the 
EViews toolbar Quick/Estimate Equation and type into the Equation Specification 
box the required model as: 

lnwage c educ exper tenure 

The results from this equation are shown in Table 5.1. 
We can also save the equation (named unrestrictOl) and save the regression results 

(by clicking on the 'freeze' button) at an output table (named TableOl in the file). As 
may be seen from the equation, all three variables have positive coefficientsi These are 
all above the ·rule of thumb' critic;;! 1-v;:,;..le of 2, hence all are significant. So, it may 
be said that wages will increase as education, experience and tenure increases. Despite 
the significance of these three variables, the adjusted R2 is quite low (0.145) as there 
are probably other variables that affect wages. 

A Wold test of coefficient restrictions 

Let's now assume that we want to test whether the effect of the tenure variable is the 
same with that of experience (exper variable). Referring to the estimation equation, we 
can see that the coefficient of exper is C(3) and the coefficient of tenure is C(4). 

In order to test the hypothesis that the two effects are equal we need to conduct a 
Wald test in EViews. This can be done by clicking on View/Coefficient Tests/Wald­
Coefficient Restrictions, in the regression results output and then by typing the 
restriction as: 

C(3) = C(4) 

Table 5.1 Results from the wage equation 

Dependent Variable: LNWAGE 
Method: Least Squares 
Date:02102/04 Time: 11:10 
Sample: 1 900 
Included observations: 900 

Variable Coefficient 
---
c 5.528329 
EDUC 0.073117 
EX PER 0.015358 
TENURE 0.012964 

R-squared 0.148647 
Adjusted R-squared 0.145797 
S.E. of regression 0.388465 
Sum squared resid 135.2110 
Log likelihood -424.0434 
Durbin-Watson stat 1.750376 

·-·---··---·--··· ·-···-

Std. Error t-Statistic 

0.112795 49.01237 
0.006636 11.01871 
0.003425 4.483631 
0.002631 4.927939 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

--·- ···~ 

(5.77) 

Prob. 

0.0000 
0.0000 
0.0000 
0.0000 

6.786164 
0.420312 
0.951208 
0.972552 

52.14758 
0.000000 
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in the Wald Test window (and then click <0~> ). EViews then generates the F statistic 
(we saved this output as Table02WALD). The results of the Wald test are reported 
in Table 5.2. 

The F statistic is equal to 0.248, which is lower than the F critical value of 3.84. 
As F-statistical is less than F-critical, we cannot reject the null hypothesis. The 
null hypothesis is that the two coefficients are the same, and hence we accept this 
conclusion. 

A redundant variable test 

Suppose we want to conduct a redundant variable test for the explanatory variable 
tenure, i.e. years with current employer, to determine whether this variable is significant 
in determining the logarithm of the wage rate. In order to do that we need to click on 
View/Coefficient Tests/Redundant variables-Likelihood ratio, and type the name of 
the variable (tenure) that we want to check. The results of this test are shown in Table 5.3. 

We can now save this output as Table03REDUNDANT. The results give us an F­
statistic of 24.285, for comparison to the value ofF-critical of 3.84. As F-statistical is 

Table 5.2 Wald test results 

Equation: Untitled 

Null Hypothesis: C(3) = C(4) 

F -statistic 
Chi-square 

0.248656 
0.248656 

Probability 0.618145 
Probability 0.618023 

Table 5.3 Redundant variable test results 

Redundant Variables: TENURE 

F -statistic 
Log likelihood ratio 

Test Equation: 
Dependent Variable: LNWAGE 
Method: Leflst Squares 
Date: 01/30704 Time: 16:47 
Sample: 1 900 
Included observations: 900 

24.28459 
24.06829 

Variable Coefficient 

c 
EDUC 
EX PER 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat . 

5.537798 
0.075865 
0.019470 

0.125573 
0.123623 
0.393475 

138.8757 
-436.0776 

1.770020 

Std. Error 

0.114233 
0.006697 
0.003365 

Probability 
Probability 

t-Statistic 

48.47827 
11.32741 
5.786278 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

0.000001 
0.000001 

Prob. 

0.0000 
0.0000 
0.0000 

6.786164 
0.420312 
0.975728 
0.991736 

64.40718 
0.000000 
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greater than F-critical, we can reject the null hypothesis. Therefore, we can conclude 
that the coefficient of the variable te11ure is not zero, and therefore te11ure is not 
redundant i.e. it has a significant effect in determining the wage rate. 

An omitted variable test 

Suppose now, that we want to conduct an omitted variable test for the explanatory 
variable educ. To do that, we first need to estimate a model that ~oes not include 

Table 5.4 Wage equation test results 

Dependent Variable: LNWAGE 
Method: Least Squares 
Date: 02102104 Time: 11:57 
Sample: 1900 
Included observations: 900 

Variable 

c 
EXPER 
TENURE 

R-squared 

Coefficient 

6.697589 
-0.002011 

0.015400 

0.033285 
0.031130 
0.413718 

Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

153.5327 
-481.2280 

1.662338 

Std. Error 

0.040722 
0.003239 
0.002792 

!-Statistic 

164.4699 
-0.621069 

5.516228 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F -statistic) 

Table 5.5 Omitted variable test results 

Omitted Variables: EDUC 

F-Statistic 
Log likelihood ratio 

Test Equation: 
Dependent Variable: LNWAGE 
Method: Least Squares 
Date: 02102104 Time: 12:02 
Sample: 1 900 
Included observations: 900 

121.4120 
114.3693 

Variable Coefficient 

c 5.528329 
EX PER 0.015358 
TENURE 0.012964 
EDUC 0.073117 

R-squared 0.148647 
Adjusted R-squared 0.145797 
S.E. of regression 0.388465 
Sum squared resid 135.2110 
Log likelihood --A24.0434 
Durbin-Watson stat 1.750376 

Std. Error 

0.112795 
0.003425 
0.002631 
0.006636 

Probability 
Probability 

t-Statistic 

49.01237 
4.483631 
4.927939 

11.01871 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

Prob. 

0.0000 
0.5347 
0.0000 

' 
6.786164 
0.420312 
1:076062 

'1~:~~~~~0 
0.000000 

0.000000 
0.000000 

Prob. 

0.0000 
0.0000 
0.0000 
0.0000 

6.786164 
0.420312 
0.951208 
0.972552 

52.14758 
0.000000 
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educ as an explanatory variable and then check whether the omission of educ was of 
importance in the model or not. So we estimate the following equation by typing on 
the EViews command line: 

ls lnwage c exper tenure 

and the results of this regression model are shown in the Table 5.4. 
In order to conduct the omitted variable test we now need to click on 

View/Coefficient Tests/Omitted variables-Likelihood ratio, and type the name of 
the variable (educ) that we want to check. The results of this test are shown in Table 5.5. 

We see from these results that the F statistic is equal to 121.41 which is much bigger 
than the critical value (see also the very small value of the probability limit), suggesting 
that the variable educ was really an omitted variable that plays a very important role in 
the determination of the log of wage rate. 

Q -:• .. d .. "' ~~..,. .. ~"-"'"';[!"""'"' ,...,..._. 4''""'""'""""-'£:~-~ ~·~·iil~~>t?lr.P~il.:.l'l 'l;t>'!Joi« ·s;v~_,-ij ;;"..t;:!!l...,.,:' . ..,......,p 

Questions 
1 Derive the OLS solutions for j3 for the k explanatory variables case using 

matrix algebra. 

2 Prove that the OLS estimates for the k explanatory variables case are BLUE. 

3 Show how one can test for constant returns to scale for the following Cobb-Douglas 
type prodqction function: 

Q = ALaKf3 

where. Q is output, L denotes labour units, K is capita and A is an exogenous 
technology parameter. 

4 Describe the steps involved for performing the Wald test for linear restrictions. 

5 Write down a regression equation and show how you can test whether one of the 
explanatory variables in redundant. 

Exercise 5.1 

The file health.xls contains data for the following variables: birth_ weight= the weight 
of infants after birth, when low can put an infant in risk of illnesses; cig =number of 
cigarettes that the mother was smoking during pregnancy; and fam_inc =the income 
of the family, the higher the family income the better the access to parental care from 
the family in general. Therefore, we would expect that both variables should affect 
birth_ weight. 

(a) Run a regression that includes both variables and explain the signs of 
the coefficients. 

(b) Estimate a regression that includes only fam_inc, and comment on your results. 
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(c) Estimate a regression that includes only cig and comment on your results. 

(d) Present all three regressions summarized in a table and comment on your results, 
especially by comparing the changes in the estimated effects and the R2 of the three 
different models. What does the F statistic suggest about the joint significance of 
the explanatory variables in the multiple regression case? 

(e) Test the hypothesis that the effect of cig is two times bigger than the respective 
effect of fam_inc using the Wald test. 

Exercise 5.2 

Use the data from the file wage.wfl and estimate an equation which i!lcludes as 
determinants of the logarithm of the wage rate the variables, educ, exper and tenure. 

(a) Comment on your results. 

(b) Conduct a test of whether another year of general workforce experience (captured 
by exper) has the same effect on log(wage) as another year of education (captured 
by educ). State clearly your null and alternative hypotheses and your resfrict~d and 
unrestricted models. Use the Wald test to check for that hypothesis. 

(c) Conduct a redundant variable test for the explanatory variable exper. Comment on 
your results. ' 

(d) Estimate a model with exper and educ only and then conduct an omitted variable 
test for tenure in the model. Comment on your results. , 

Exercise 5.3 

Use the data in the file money _uk. wfl to estimate the parameters a .{3 and y, in the 
equation below: 

ln(M/P)r =a+ {Jln Yt + y lnRr + Ut 

(a) Briefly outline the theory behind the aggregate demand for money. Relate your 
discussion to the specification of the equation given above. In particular explain, 
first the meaning of the dependent variable and then the interpretation of f3 and y. 

(b) Perform appropriate tests of significance on the estimated parameters in order to 
investigate each of the following propositions: (i) that the demand for money 
increases with the level of real income, (ii) the demand for money is income-elastic, 
and (iii) the demand for money is inversely related to the rate of interest. 

Exercise 5.4 

The file living.xls contains data for a variety of economic and social measures for a 
sample of 20 different countries, where: 

Y =GNP per capita, 1984 $US; 
X2 =average% annual inflation rate (1973-84); 
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X3 =% of labour force in -agriculture; 
X4 =life expectancy at birth, 1984 (years); 
XS =number enrolled in secondary education as o/o of age group. 

(a) Insert the data in EViews or Microfit. 

(b) Estimate the regression coefficients in each of the following equations: 

Yt = lh + fJzXzt + ut 

Yt = fh + fJzXzt + f33X3t + Ut 

Yt = fJ1 + fJzXzt + f33X3t + f34X4t + ut 

Yt = fJI + fJzXu + fJ3X3t + fJ4X4t + fJsXst + llt 

(c) How robust are the estimated coefficients? By this we mean, to what extent do the 
estimated values of each /3; change as further explanatory variables are added to the 
right-hand side of the equation? 

(d) Assuming Y to be an index of economic development, carry out tests of significance 
on all slope coefficients in the final regression equation model. State clearly the null 
and alternative hypotheses for each case and give reasons for setting them like that. 

Exercise 5.5 

The file Cobb_Douglas_us.wfl contains data for output (Y), labour (L) and stock of 
tapital (K) for the United States. Estimate a Cobb-Douglas type regression equation 
and ch~ck for constant returns to scale using the Wald test. 
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Assumption number 8 of the CLRM requires that there are no exact linear relationships 
among the sample values of the explanatory variables. This requirement can also be 
stated as the absence of perfect multicollinearity. In this ·chapter we will show how 
the existence of perfect multicollinearity leads to the fact that the method of OLS 
cannot provide estimates for the population parameters, while we will also examine 
the more common and realistic case of imperfect multicollinearity and its effects 
on OLS estimators. Finally, we will examine possible ways of detecting problematic 
multicollinearity and ways of resolving these problems. 

Perfect multicollinearity 

To understand rr;~, .• ..:ollinearity consider the following model: 

Y = /h + f3zXz + !3JX3 + u (6.1) 

where hypothetical sample values for Xz and x3 are given below: 

Xz: 1 2 3 4 5 6 
X): 2 4 6 8 10 12 

From this we can easily observe that X3 = 2X2 . Therefore, while equation (6.1) seems to 
contain two explanatory variables Xz and X3 which are distinct, in fact the information 
provided by x3 is not distinct from that of Xz. This is because, as we have seen, X3 is an 
exact linear function of Xz. When this situation occurs, Xz and X3 are said to be' linearly 
dependent, which implies that Xz and X3 are perfectly collinear. More formally, two 
variables Xz and X3 are linearly dependent if one variable can be expressed as a linear 
function of the other variable. When this occurs then the equation: 

o1X 2 + .s2x3 = o (6.2) 

can be satisfied for non-zero values of both a1 and oz. In our example we have: X3 = 
2Xz, therefore ( -2)X 2 + ( l)X3 = 0, so a1 = -2 and oz = 1. Obviously if the only 
solution in (6.2) is 81 = oz = 0 (usually called the trivial solution) t)1e Xz and X3 are 
linearly independent. The absence of perfect multicollinearity requires that 6.2 does 
not hold exactly. 

In the case of more than two explanatory variables (lets take five), the case for linear 
dependence is that one variable can be expressed as an exact linear function of one or 
more or even all of the other variables. So this time the expression 

.s1x1 + ozXz + o3X 3 + o4X 4 + .s5x 5 = o (6.3) 

can be satisfied with at least two non-zero coefficients. 
An application to better understand this situation can be given by the dummy 

variable trap. Take for example X 1 to be the intercept (so as X 1 = 1) and Xz, X3, X 4 

and Xs to be seasonal dummies for quarterly time series data (i.e. Xz takes the value 
of 1 for the first quarter, zero otherwise; x 3 takes the value of 1 for the second quarter, 
zero otherwise and so on). Therefore, in this case we have that Xz +X3 +X4 +Xs = 1; 
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and because X1 = 1 then X1 = X2 + X3 + X4 + Xs. So, the solution is 81 = 1, 82 = -1, .. 
o3 = -1, 84 = -1, and 85 = -1, and this set of variables is linearly dependent. 

Consequences of perfect multicollinearity 

It is fairly easy to show that under conditions of perfect multicollinearity, the OLS 
estimators are not unique. Consider, for example, the model: 

Y = fh + fJ2X2 + f33X3 + Ut (6.4) 

where we have that X3 = 81 + 82X2; and 81 and 82 are known constants. Substituting 
this into (6.4) gives: 

Y = fJ1 + fJ2X2 + /33(81 + 82X2) + u 

= CfJ1 + /3381) + (/32 + f3382>X2 + u 

= t}1 + tJ2X2 +e 

where of course lJ1 = (/31 + /3381) and t}2 = (/32 + /3382). 

(6.5) 

So what we can estimate from our sample data is the coefficients tJ 1 and t}2 . However, 
no matter how good the estimates of tJ1 and t}2 will be, we will never be able to 
obtain .unique estimates of f3t. {32 and {33 . In order to obtain those we have to solve 
the f~llowing equations: 

Jl = ~1 + ~381 

J2 = ~2 + ~382 

However,· this is a system of two equations and three unknowns ~1 , ~2 and ~3· 
Unfortunately, as in any system that has more variables than equations, this will have 
an infinite number of solutions. For example, select an arbitrary value for ~3 , lets say k. 
Then for ~3 = k we can find~~ and ~2 as 

~1 = J1- 81k 

~2 = U2- 82k 

Since there are infinite values that can be used fork we can have an infinite number of 
solutions for ~1 , t2 and t3. So under perfect multicollinearity no estimation method 
can provide us with unique estimates for the population parameters. In terms of matrix 
notation, and for a more general case if one of the columns of matrix X is an exact linear 
function of one or more of the other column then the matrix X'X will be singular, 
which implies that its determinant will be zero (jX'XI = 0). Since the OLS estimators 
are given by: 

jJ = (X'X)-l X'Y 
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we need the inverse matrix of X'X which is calculated by the exp . 
ress1on 

I 
<X'X)- 1=--[adj(X'X)] 

jX'Xj 

and because jX'Xj = 0 then it cannot be inverted. 
Another way of showing this is by trying to evaluate the exp . 

ress1on squares estimator, for from (5.13): 

A Cov(Xz, Y) Var(X3)- Cov(X3, Y)Cov(Xz, x
3

) 
f3z = Var(Xz}Var(X3>- [Cov(Xz,X3)]2 --;--

substitutir~. X3 = 81 + .SzXz 

• 

for the least 

• I. , 1 ; var(.S, "' _ - CuvtJI + 8zXz, Y)Cov(X
2

, 8
1 

+ 
82

x
2

) 
f3z = -- ,,._ .• z) Var(8 1 + 8zXz)- [Cov(Xz, 81 + 8zX~ 

dropping the ad 1itive .5 1 term: 

A Cov(Xz, Y) Var(8zXz)- Cov(8zXz, Y)Cov(Xz, 8zXz) · 
f3z = Var(Xz) Var(8zXz)- [Cov(Xz, 8zXz)]2-

taking out of the Var and Cov the term 82 

2 ' 
A Cov<Xz, Y)82 Var(Xz)- 8zCov(Xz, Y)8zCov(Xz X ) 

f3z = , z 
Var(Xz).S~ Var(Xz)- [.SzCov(Xz,Xz)J2-

and using the fact that Cov(Xz,Xz) = Var(Xz) 

A 8~Cov(X2 , Y) Var(Xz) - 8~Cov(Xz, Y) Var(Xz) 
0 

f3z = 8~ Var(Xz)Z - 8~ Var(Xz) 2 = o 
which means that the regression coefficient is indeterminat S 
that the consequences of perfect multicollinearity are extrem:i 

0
' . we have seen 

perfect multicollinearity seldom arises with actual data. The 
0 

y senou~. However, 
multicollinearity often results from correctable mistakes, such as c~urrence of perfect 
trap presented before, or including variables as In X and ln xz in tht e dummy variable 
the more relevant question and the real problem is how to deal wi e;ame equation. So, 
case of imperfect multicollinearity, which will be examined in th t the more realistic 

e next section. 

Imperfect multicollinearity 

Imperfect multicollinearity exists when the explanatory variable . 
s mane t· 

correlated, but this correlation is less than perfect. Imperfect mult' qua Ion are 
. . Icollinea 't b expressed as follows: when the re!atwnsh1p among the two expl n Y can e 

. . anatory va . bl . 
(6.4) for example IS X3 = X 2 + v where v IS a random variable th na es m 
the 'error' in the exact linear relationship among the two variabl at ~an be viewed as 

es· 1f v h 
values then we can obtain OLS estimates. As a practical note 1·n r 

1
'. as non-zero 

' ea lty ev I . regression equation will contain some degree of. correlation am . ery mu t1ple 
ong Its explanatory 
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variables. For example, time series data frequently contain a common upward time 
trend causing variables of this kind to be highly correlated. So, the problem is to identify 
whether the degree of multicollinearity observed in one relationship is sufficiently high 
as to create problems. Before proceeding to that point we need to examine the effects 
of imperfect multicollinearity in the OLS estimators. 

Consequences of imperfect 
multicollinearity 

In general, when imperfect multicollinearity exists among two or more explanatory 
variables, not only are we able to obtain OLS estimates but these estimators will also 
be the best (BLUE). However, the BLUEness of these estimators should be examined 
in a more detailed way. Implicit in the BLUE property is the efficiency of the OLS 
coefficients. As we will show later, although OLS estimators are those with the smallest 
possible variance of all linear unbiased estimators, imperfect multicollinearity affects 
the attainable values of these variances and therefore estimation precision. Using the 
matrix solution again, imperfect multicollinearity implies that one column of the 
X matrix is now an approximate linear function of one or more of the others. Therefore, 
now matrix jX'XI will be close to singularity which implies again that its determinant 
will be close to zero. As we have said before, when forming the inverse (X'X)- 1 we have 
to divide by the reciprocal of IX' X j, which means that the elements (and particularly the 
diagonal elements) of (X'X)-1 will be large. Hence, because the variance of fj is given by: 

var(fj) = a 2 (X'X)-l (6.6) 

we see that the variances and consequently the standard errors of the OLS estimators 
will tend to be large when there is a relatively high degree of multicollinearity. In other 
words, while OLS provides linear unbiased estimators with the minimum variance 
property, these variances are often substantially larger than those obtained in the 
absence of multicollinearity. 

To explain this in more detail consider the expression that gives the variance of the 
partial slope of variable X; which is given by (for the case of two explanatory variables): 

az 
var(fjz) = L(Xz _ Xz)z(l _ rZ) (6.7) 

a2 
var(~3) = L(X

3 
_ x

3
)z(l - r2) (6.8) 

where r2 is the square of the sample correlation coefficient between X2 and X 3 . It can 
be seen that (keeping other things equal) a rise in r (which means higher degree of 
multicollinearity) will lead to an increase in the variances and therefore to an increase 
in the standard errors of the OLS estimators. 

Extending this to more than two explanatory variables, the variance of f3; will be 
given by: 

CT2 

var(f;;) = L<X; _ X;)2(1 - RJ) 
(6.9) 
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where RJ is the coefficient of determination from the auxiliary regression of X; on 
all other explanatory variables in the original equation. The expression can be re­
written as: 

aZ 1 
" -2 

var(fJ;) = 'L)X; _ X;)Z (1 - Ri) 
(6.10) 

The second term in this expression is called the variance inflation factor (VIF) for X;: 

1 
VIF; = (1 _ RJ) 

• 
This name is given because it is easy to show that cases of high degrees of 
intercorrelation among the Xs will result in a high value of Rf which inflates the 

variance of fi;. If Rf = 0 then VJF = 1 (which is its lowest value). As RJ rises, ~IF; 
rises at an increasing rate, approaching infinity in the case of perfect multicollinearity 
(R? = 1). The table below presents various values for R? and the corresponding VIF;-

1 I · 

R2 
I 

V/Fj 
-
0 1 
0.5 2 
0.8 5 
0.9 10 
0.95 20 
0.975 40 
0.99 100 
0.995 200 
0.999 1000 

VIF values that exceed 10 are generally viewed as evidence of the existence of 
problematic multicollinearity as we will discuss below. From the table we can see that 
this occurs when R2 > 0.9. Concluding, imperfect multicollinearity can substantially 
diminish the precision with which the OLS estimators are obtained. This has obviously 
more negative effects on the estimated coefficients. One important consequence is 
that large standard errors will lead to confidence intervals for the fi; parameters that are 
calculated by: 

/3; ± ta,n-k 5p; 

to be very wide, increasing uncertainty about the true parameter values. 
Another consequence has to do with the statistical inference regarding the OLS 

estimates. Recall that the t-ratio is given by t = ft;/s P;. The inflated variance associated 

with multicollinearity, raises the denominator of this statistic causing its value to 
fall. Therefore, we might have t-statistics which suggest the insignificance of the 
coefficients while this is only due to multicollinearity. Note here that the existence 
of multicollinearity does not necessarily mean small t-stats. This can be because the 
variance is also affected by the variance of X; (prese~ted by writing '£<X; - X;) 2 ) and 
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the residual's variance (a 2 ). Multicollinearity affects not only the variances of the OLS 
estimators, but the covariances as well. By this fact, the possibility of sign reversal 
arises. Also, when severe multicollinearity is present, the addition or deletion of just 
a few sample observations can substantially change the estimated coefficient causing 
'unstable' OLS estimators. Concluding, the consequences of imperfect multicollinearity 
can be summarized as follows: 

1 Estimates of the OLS coefficients may be imprecise in the sense that large standard 
errors lead to wider confidence intervals. 

2 Affected coefficients may fail to attain statistical significance due to low t-statistics, 
which may lead us to wrongly drop an influential variable from our regression 
model. 

3 The signs of the estimated coefficients can be the opposite of those expected. 

4 The addition or deletion of a few observations may result in substantial changes in 
the estimated coefficients. 

Detecting problematic multicollinearity 

Simpl~ correlation coefficient 

Multicollinearity is caused by intercorrelations among the explanatory variables. 
therefore, the most logical way in order to detect multicollinearity problems would 
appear to be through the correlation coefficient for those two variables. When an 
equation contains only two explanatory variables, the simple correlation coefficient 
is an adequate measure for detecting multicollinearity. If the value of the correlation 
coefficient is large, then problems from multicollinearity might emerge. The problem 
here is to define what value can be considered as large, and most researchers appear to 
consider the value of 0.9 as the threshold beyond which problems are likely to occur. 
This can be understood from the VIF for a value of r = 0.9 as well. 

R2 from auxiliary regressions 

In the case where we have more than two variables, the use of the simple correlation 
coefficient to detect bivariate correlations and therefore problematic multicollinearity is 
highly unreliable. This is because an exact linear dependency can occur among three or 
more variables simultaneously. Therefore, in these cases we use auxiliary regressions. 
Candidates for dependent variables in auxiliary regressions are those displaying the 
symptoms of problematic multicollinearity discussed in the previous section. If a near­
linear dependency exists, the auxiliary regression will display a small equation standard 
error, a large R2 and a statistically significant t-value for the overall significance of 
the regressors. 
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Computer examples 

Example 1: induced multicollinearity 

The file multicol.wfl contains data for three different variables, namely Y, X2 and X3, 
where XZ and X3 are constructed to be highly collinear. The correlation matrix of the 
three variables can be obtained from EViews by opening all three variables together in 
a group, by clicking on Quick/Group Statistics/Correlations. EViews requires us to 
define the series list that we want to include in the group and we type: 

Y X2 X3 

and then click <OK>. The results will be as shown in Table 6.1. 
The results are of course symmetrical, while the diagonal elements are equal to 1 

because they are correlation coefficients of the same series. We can see that•Y is highly . 
positively correlated with both X2 and X3, and also that X2 and X3 are nearly the same 
variables (the correlation coefficient is equal to 0.999995, i.e. very close to 1 ). From this 
we obviously suspect that there will be a very high possibility of the negative effe\=ts 
of multicollinearity. 

Estimating a regression with both explanatory variables by typing in ~he EViews 
command line: 

ls y c x2 x3 

Table 6.1 Correlation matrix 
y X2 X3 

y 1 0.8573686 0.857437 
X2 0.8573~86 1 0.999995 
X3 0.8574376 0.999995 1 

Table 6.2 Regression results (full model) 

Dependent Variable: Y 
Method: Least Squares 
Date: 02117/04 Time: 0 1:53 
Sample: 125 
Included observations: 25 

Variable 

c 
X2 
X3 

R-squared 

Coefficient 

35.86766 
-6.326498 

1.789761 

0.735622 
0.711587 
42.45768 
39658.40 

Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

-127.5882 
2.875574 

Std. Error 

19.38717 
33.75096 
8.438325 

!-Statistic 

1.850073 
-0.187446 

0.212099 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

A 

.I 

---
Prob. 

0.0778 
0.8530 
0.8340 

-
169.3680 
79.05857 
10.44706 
10.59332 
30.60702 
0.000000 
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we get the results shown in Table 6.2. Here we see that the effect of XZ on Y is negative 
and the effect of X3 is positive, while both variables appear to be insignificant. This 
latter result is very strange considering the fact that both variables are highly correlated 
with Y as we have seen above. However, estimating the model including only XZ, either 
by typing on the EViews command line: 

ls y c x2 

or by clicking on the Estimate button of the Equation Results window and respecifying 
the equation by excluding/deleting the X3 variable, we get the results shown in 
Table 6.3. This time we see that XZ is positive and statistically significant (with a t 
statistic of 7 .98). · 

Reestimating the model, this time including only X3, we get the results shown in 
Table 6.4. This time we see that X3 is highly significant and positive. 

Table 6.3 Regression results (omitting X3) 

Dependent Variable: Y 
Method: Least Squares 
Date: 02/17/04 Time: 01:56 
Sample: 125 
Included observations: 25 

Variable 

c 
X2 

f.l-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

36.71861 
0.832012 

0.735081 
0.723563 
41.56686 
39739.49 

-127.6138 
2.921548 

Std. Error 

18.56953 
0.104149 

t-Statistic 

1.977358 
7.988678 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Table 6.4 Regression results (omitting X2) 

Dependent Variable: Y 
Method: Le.!st Squares 
Date: 02117104 Time: 01:58 
Sample: 125 
Included observations: 25 

Variable 

c 
X3 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

36.60968 
0.208034 

0.735199 
0.723686 
41.55758 
39721.74 

-127.6082 
2.916396 

Std. Error 

18.57637 
0.026033 

t-Statistic 

1.970766 
7.991106 

Mean dependent var 
S.D.depcndentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F-statistic) 

Prob. 

0.0601 
0.0000 

169.3680 
79.05857 
1 0.369~0 
10.46661 
63.81897 
0.000000 

Pro b. 

0.0609 
0.0000 

169.3680 
79.05857 
10.36866 
10.46617 
63.85778 
0.000000 
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Table 6.5 Auxiliary regression results (regressing X2 to X3) 

Dependent Variable: X2 
Method: Least Squares 
Date: 02117104 Time: 02:03 
Sample: 125 
Included observations: 25 

Variable Coefficient 

c -0.117288 
X3 0.250016 

R-squared ., 

Adjusted R-squared 
S.E. of regression 
Sum squared resid 

0.999990 
0.999990 
0.262305 
1.582488 

Log likelihood -0.974992 
Durbin-Watson stat 2.082420 

Std. Error t -Statistic 

0.117251 -1.000310 
0.000164 1521.542 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Prob. 

0.3276 
0.0000 

159.4320 
81.46795 
0.237999 • 0.335509. 
2315090. 
0.000000 

Finally, running an auxiliary regression of X2 on a constant and X3 yields the 
results shown in Table 6.5. Here note that the value of the t statistic is extremely high 
(1521.542!) while R2 is nearly 1. 

The conclusions from this analysis can be summarized as follows: 

1 The correlation among the explanatory variables was very high, which might suggest 
that multicollinearity is present and that it might be serious. However, we men~ioned 
in the theory that looking just at the correlation coefficients of the explanatory 
variables is not enough to detect multicollinearity. ' 

2 Standard errors or t-ratios of the estimated coefficients changed from estimation 
to estimation, suggesting that the problem of multicollinearity in this case was 
really serious. 

3 The stability of the estimated coefficients was also very problematic, with 
negative and positive coefficients being estimated for the same variable in two 
alternative specifications. 

4 R2 from auxiliary regressions are substantially high suggesting that multicollinearity 
really exists and that it unavoidably affects our estimations. 

Example 2: with the use of real economic data 

Let us now examine the problem of multicollinearity once more, this time using 
real economic data. The file imports_uk.wfl contains quarterly data for four different 
variables, namely, imports (IMP), gross domestic product (GDP), the consumer price 
index (CPI) and the producer price index (PPI) for the UK economy. 

The correlation matrix of the three variables can be obtained from EViews by 
opening all the 'variables together in a group, by clicking on Quick;Group 
Statistics;Correlations. EViews asks us to define the series list that we want to include 
in the group and we type in: 

imp gdp cpi ppi 
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IMP 
GOP 
CPI 
PPI 

Table 6.6 Correlation matrix 

IMP 

1.000000 
0.979713 
0.916331 
0.883530 

GOP CPI PPI 

0.979713 0.916331 0.883530 
1.000000 0.910961 0.899851 
0.910961 1.000000 0.981983 
0.899851 0.981983 1.000000 

Table 6.7 First model regression results (including only CPI) 

Dependent Variable: LOG(IMP) 
Method: Least Squares 
Date: 02117/04 Time: 02:16 
Sample: 1990:1 1998:2 
Included observations: 34 

Variable Coefficient 

c 
LOG(GDP) 
LOG(CPI) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat ,. 

0.631870 
1.926936 
0.274276 

0.966057 
0.963867 
0.026313 
0.021464 

77.00763 
0.475694 

Std. Error t-Statistic 

0.344368 
0.168856 
0.137400 

1.834867 
11.41172 

1.996179 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 
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Prob. 

0.0761 
0.0000 
0.0548 

10.81363 
0.138427 

-4.353390 
-4.218711 

441.1430 
0.000000 

and then click <OK>. The results are shown in Table 6.6. From the correlation matrix 
• we can see that in general the correlations among the variables are very high, but the 

highest correlation is among CPI and PPI (0.98) as expected. 
Estimating a regression with the logarithm of imports as the dependent variable and 

the logarithms of GDP and CPI only as explanatory variables by typing in the EViews 
command line: 

ls log(imp) c log(gdp) log(cpi) 

we get the results shown in Table 6.7. The R2 of th~s regression is very high, and both 
variable~ appear to be positive with the log(GDP) being very highly significant as well. 
The log(CP/) is also significant but only marginally. 

Estimating, however, the model including the logarithm of PPI as well, either by 
typing on the'EViews command line: 

ls log(imp) c log(gdp) log(cpi) log(ppi) 

or by clicking on the Estimate button of the Equation Results window and respecifying 
the equation by adding the log(PP/) variable in the list of variables, we get the results 
shown in Table 6.8. Now log(CP/) is highly significant, while log(PP/) (which is highly 
correlated with log(CP/) and therefore should have more or less the same effect on 
log (IMP)) is negative and highly significant. This of course is due to the inclusion of both 
price indices in the same equation specification, due to the problem of multicollinearity. 
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Table 6.8 Second model regression results {including both CP/ and PP/) 

Dependent Variable: LOG(IMP) 
Method: Least Squares 
Date: 02117104 Time: 02: 19 
Sample: 1990: 1 1998:2 
Included observations: 34 

Variable 

c 
LOG(GDP) 
LOG(CPI) 
LOG(PPI) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin -Watson stat 

Coefficient 

0.213906 
1.969713 
1.025473 

-0.770644 

0.972006 
0.969206 
0.024291 
0.017702 
80.28331 
0.608648 

Std. Error 

0.358425 
0.156800 
0.323427 
0.305218 

t-Statistic 

0.596795 
12.56198 
3.170645 

-2.524894 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F-statistic) 

Table 6.9 Third model regression results {including only PPI) 

Dependent Variable: LOG{IMP) 
Method: Least Squares 
Date: 02117/04 Time: 02:22 
Sample: 1990: 1 1998:2 
Included observations: 34 

Variable Coefficient 

c 
LOG(GDP) 
LOG(PPI) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.685704 
2.093849 
0.119566 

0.962625 
0.960213 
0.027612 
0.023634 
75.37021 
0.448237 

Std. Error 

0.370644 
0.172585 
0.136062 

t-Statistic 

1.850031 
12.13228 
0.878764 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F-statislic) 

Pro b. 

0.5551 
0.0000 
0.0035 
0.0171 

10.81363 
0.138427 

-4.487253 
-4.307682 

347.2135 
0.000000 

.I 

Prob. 

0.0739 
0.0000 
0.3863 

10.81363 
0.138427 

-4.257071 
-4.122392 

399.2113 
0.000000 

Estimating the equation this time without Iog(CP/) but with log(PPI) we get the 
results shown in Table 6.9, which shows that Iog(PPI) is positive and insignificant! So, 
it is clear that the significance of log(PPI) in the specification above was due to the 
linear relationship that connects the two price variables. 

So, the conclusions from this analysis are similar to the case of the collinear data set 
in Example 1 above, and can be summarized as follows: 

1 The correlation among the explanatory variables was very high. 

2 Standard errors or t-ratios of the estimated coefficients changed from estimation 
to estimation. 
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3 The stability of the estimated coefficients was also quite problematic, with 
negative and positive coefficients being estimated for the same variable in two 
alternative specifications. 

In this case it is clear that multicollinearity is present, and that it is also serious, 
because we included two price variables which ·are quite strongly correlated. We 
leave it as an exercise for the reader to check the presence and the seriousness of 
multicollinearity only with the inclusion of log(GDP) and log(CP/) as explanatory 
variables (Exercise 6.1 below). 

Ques~icr,ts !Utd exercises 

Questions 

1 Define multicollinearity and explain its consequences in simple OLS estimates. 

2 In the following model: 

Y = fh + fizXz + fi3X3 + fi4X4 + ur 

assume that X 4 is a perfect linear combination of x2 . Show that in this case it is 
impossible to obtain OLS estimates. 

3 From Chapter 5 we know that p = (X'X)- 1(X'Y). What happens top when there is 
p~rfect collinearity among the Xs? How would you know if perfect collinearity exists. 

4 Explain w~at the VIF is and what is its use. 

·5 Show how we can proceed in order to detect possible multicollinearity in a regression 
model. 

Exercise 6.1 

The file imports_uk.wfl contains quarterly data for imports (imp), gross domestic 
product (gdp) and the consumer price index (cpi) for the USA. Use these data to estimate 
the following model: 

• 
In impt = fit + fiz In gdpt + fi3 In cpir + Ut 

Check whetner there is multicollinearity in the data. Calculate the correlation matrix 
of the variables and comment regarding the po~sibility of multicollinearity. Also, run 
the following additional regressions: 

In impt = fit + fiz lngdpt + Ut 

In impt =fit + fiz In cpi1 +Lit 

lngdp1 =fit + fiz In cpit + Ut 

What can you conclude about the nature of multicollinearity from the_se results? 
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Exercise 6.2 

The file imports_uk_y.wfl contains yearly observations of the variables mentioned in 
Exercise 6.1. Repeat Exercise 6.1 using the yearly data. Do your results change? 

Exercise 6.3 

The file imports_us.wfl contains data for imports ([}, gross national product (Y) and 
the consumer price index (P) for the USA. Use these data to estimate the following 
model: • 

!nit= fh + {Jzln Yt + f33lnPt +lit 

Check whether there is multicollinearity in the data. Calculate the correlation matrix 
of the variables and comment regarding the possibility of multicollinearity. Also, run 
the following additional regressions: 

In It = {3 1 + {Jzln Yt + Ut 

lnlr = fJ1 + {JzlnPr +lit 

In Yt = fJ1 + {3zlnPt + Ut 

What can you conclude about the nature of multicollinearity from these results? 

Exercise 6.4 

The file cars.wfl contains data on new cars sold in the United States as a function 
of various variables. Develop a suitable model for estimating a demand function for 
cars in the United States. If you include all variables as regressors, do you expect to 
find multicollinearity and why? Provide alternative estimated models and check their 
respective coefficients. Do they change significantly? Explain how you could attempt 
to resolve this problem. 

Exercise 6.5 

Use the data in the file money_uk02.wfl to estimate the parameters a, {3 andy, in the 
equation below: 

ln(M/Plt =a+ {Jln Yt + y lnRlt + Ut 

where Rlt is the 3-months treasury bill rate. For ·the rest of the variables the usual 
notation applies. 

(a) Use as an additional variable in the above equation Rzr which is the dollar 
interest rate. 
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(b) Do you expect to find multicollinearity and why? 

(c) Calculate the correlation matrix of all the variables. Which correlation coefficient 
is the largest? 

(d) Calculate auxiliary regressions and conclude whether the degree of multicollinearity 
in (a) is serious or not. 
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Heteroskedasticity 101 

-Introduction: what. is heteroskedasticity? 

A good start might be made by first defining the words homoskedasticity and 
heteroskedasticity. Some authors spell the former homoscedasticity, but McCulloch 
(1985) appears to have settled this controversy in favour of homoskedasticity, based 
on the fact that the word has a Greek origin. From our teaching experience we have 
realized that students are somehow 'afraid' of the term heteroskedasticity, and that they 
use the term quite a lot when they want to demonstrate the difficulty of econometrics. 
We think, therefore, that it is essential to make clear both the meaning and origin of 
the word. On the positive side, Studenmund (2001) very nicely states that, although 
difficult to spell, it provides a really impressive comeback when parents ask 'what'd you 
learn for all that money?' 

Both words can be split into two parts, having as a first part the Greek words homo 
(which means same or equal) or hetero (which means different or unequal), and 
as a second part the Greek word skedastic (which means spread or scatter). So, 
homoskedasticity means equal spread, and heteroskedasticity, on the other hand, 
means unequal spread. In econometrics the measure we usually use for spread is the 
variance, and therefore heteroskedasticity deals with unequal variances. 

Recalling the assumptions of the classical linear regression model presented 
in Chapters 4 and S, assumption S was that the disturbances should have a 
constant (equal) variance independent of i, given in mathematical form by the 
following equation:* 

var(u;) = a 2 (7.1) 

Ther.efore, having an equal variance means that the disturbances are homoskedastic. 
However, it is quite common in regression· analysis to have cases where th', 

~ssumption is' violated. (In general heteroskedasticity is more likely to take place in 
a cross-sectional framework. However, this does not mean that heteroskedasticity in 
time series models is impossible.) In such cases we say that the homoskedasticity 
assumption is violated, and that the variance of the error terms depends on exactly 
which observation is discussed, i.e.: 

var(u;) = al (7.2) 

Note that the only difference between (7.1) and (7.2) is the subscript i attached to the 
a 2 , which means that the variance can change for every different observation in the 
sample i,;, 1, 2, 3, ... , n. 

In order to make this clearer, it is useful to go back to the simple two-variable 
regression modt'l of the form: 

Y; =a+ {3X; + u; (7.3) 

Consider, first, a scatter plot with a population regression line of the form given in 
Figure 7.1 and compare it with that of Figure 7.2. Points X1, X2 and X3 in Figure 7.1, 
although referring to different values of X(X1 < Xz < X3), have an effect on Y that 

• Because heteroskedasticity is often analysed in a pure cross section setting in most of 
this chapter we will index our variables by i rather than t. 
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Figure 7.2 An example of heteroskedasticity with increasing variance 

they are concentrated closely around the regression line with an equal spread above 
and below the regression line (i.e. equal spread=homoskedastic). 

On the other hand, pointsX1, Xz andX3 in Figure 7.2 again refer to different values of 
X but, this time, it is clear that the higher the value of X the higher is the 'speed' around 
the line. In this case the spread is different or unequal for each X; (given from the dashed 
lines above and below the regression line), and therefore we have heteroskedasticity. It 
is now clear that in Figure 7.3 we have the opposite case (for lower X; the variance is 
higher). 

An example for the first case of heteroskedasticity (depicted in Figure 7.2) can be 
given in terms ofincome and consumption patterns. ~eople with low levels of income 
do not have much flexibility in spending their money. A large propoffiorf of their 
income will be spent on buying food, clothing and transportation; so, at low levels 
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of income, consumption patterns will not differ much and the spread will be more or 
less low. On the other hand, rich people have a much wider choice and flexibility in 
spending. Some might consume a lot, some might be large savers or investors in the 
stockmarket, implying that the average consumption (given by the regression line) can 
be quite different from the actual consumption. So the spread for high incomes will be 
definitely higher than that for lower incomes. 

An example of the opposite case (such as the one depicted in Figure 7.3) can 
be attributed either to improvements in data-collection techniques (think here of 
large banks that have sophisticated data-processing facilities and therefore are able 
to calculate with fewer errors customer estimates compared to smaller banks with no 
such facilities), or to error-learning models where experience decreases the chances of 
making large errors (think for example of the Y variable being score performance on a 
test and the X variable being the times that individuals have taken the test in the past, 
or hours of preparation for the test; the larger the X, the smaller the variability in terms 
of Y will be). 

The aim of this chapter is, after examining the consequences of heteroskedasticity on 
OLS estimators, to present tests for detecting heteroskedasticity in econometric models, 
as well as .to show ways of resolving heteroskedasticity. 

Consequences of heteroskedasticity on 
OLS estimators 

A general approach 

Consider the classical linear regression model: 

Yi = lh + f3zXzi + f33X3i + · · · + f3kXki + Lli (7.4) 
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If the error term u; in this equation is known to be heteroskedastic, then the 
consequences on the OLS estimators ,Bs (or fl), can be summarized as follows: 

1 The OLS estimators for the [3s are still unbiased and consistent. This is because none 
of the explanatory variables is correlated with the error term. So, a correctly specified 
equation that suffers only from the presence of heteroskedasticity will give us values 
of [3s which are relatively good. 

2 Heteroskedasticity affects the distribution of the [3s increasing the variances of the 
distributions and therefore making the estimators of the OLS method inefficient 
(because it violates the minimum variance property). To understand tQ.is consider 
Figure 7.4 which shows the distribution of an estimator [3 with and without'·· 
heteroskedasticity. It is obvious that heteroskedasticity does not cause bias because 
[3 is centred around f3 (so £([3) = {3) but widening the distribution makes it no 
longer efficient. So OLS is no longer the most efficient estimator. 

3 Heteroskedasticity also affects the variances (and therefore the standard errors as 
. well) of the estimated [3s. In fact the presence of heteroskedasticity causes the OLS 
method to underestimate the variances (and standard errors) hence leading to higher 
than expected values of t statistics and F statistics. Therefore, heteroskedasticity has 
a wide impact on hypothesis testing: neither the t statistics or the F statistics a're 
reliable any more for hypothesis testing because they will lead us to reject the null 
hypothesis too often. 

· A mathematical approach 

We want to see how the presence of heteroskedasticity affects the OLS estimators. In 
order to do that, first we will show what happens in the simple regression model, then 
we will present the effect of heteroskedasticity in the form of the variance-covariance 
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Figure 7.4 The effect of Heteroskedasticity on an estimatea parameter 

\ 

') 

I:.! 
L~~.: 

t 
I 

.I 

J 

u 
Ll 
I I 

tl 

!_ 

I ~ 
l 

\ .. 

[' 

r. 
I. 

L 
'• r.~ 

... 

~ r·: L , 

I 
).-~ 
I 
I 

~[_ r~ 
·, 

.J 



i 
l ~ 

I ,. 
r· 
I . ~ 
l .~") 

~--·~ 
l J 

r ·i 
' ' 

u 
( l 
u 

I I I I . I 
\_. -~ 

i J 

\ I 

I J 

r 
1 

\. 
I 

I 

_"j 

I· 

! .. 
r 
L_) 

i.' 
I 

~-- .. 

., 

Heteroskedasticity 105 

matrix of the error terms of the multiple regression model, and after that we will be 
able to show with the use of matrix algebra the effect of heteroskedasticity in a multiple 
regression framework. 

Effect on the OLS estimators of the simple regression model 

So, for the simple linear regression model - with only one explanatory variable and a 
constant regressed on Y, as the one we analysed in Chapter 4- it is easy to show that the 
variance of the slope estimator will be affected by the presence of heteros.kedasticity. 
Recall from equation (4.56) for the variance of the OLS coefficient p, we 
had that: 

Var(P) = L (__!_!__)
2 

0 2 
L::x? 

I 

L::xfa2 2 1 
2 =a--

(L::xT) L::xf 
(7.5) 

this is only in the case when the error terms are homoskedastic so that the variance 
of the residuals is constant a 2 . The only difference between (4.56) and the equation 
presented here is that we use the subscript i instead oft, because in this chapter we 
mainly have models of cross-sectional data. This is because heteroskedasticity is more 
likely to appear in cases of cross-sectional data, as we have mentioned above. In the 
case of heteroskedasticity, the variance changes with every individual observation i, 
and therefore the variance of P will now be given by: 

2 2 

)

2 L::x;a; 
va,<P> ~I: (i':f a,'~ (I:xff (7.6) 

which is clearly different from (7 .5). Now we are able to explain the bias that occurs in 
the presence of heteroskedasticity. If heteroskedasticity is present and we calculate the 
variance of fi given by the standard OLS formula (7.5) instead of the correct (7.6), then 
we will lJ.e bound to underestimate the true variance and standard error of p. Therefore, 
we will have t-ratios that will be falsely high, incorrectly leading us to the conclusion 
that an explanatory variable X is statistically significant, while its impact on Y is in 
fact zero. Also,. the confidence intervals for f3 will be narrower than their correct values, 
leading us again to think that we have a higher precision in our estimates than the true, 
statistically justifiable case. 

Effect on the variance-covariance matrix of the error terms 

Second, it is useful to see how the presence of heteroskedasticity will affect the form 
of the variance-covariance matrix of the error terms of the classical linear multiple 
regression model. 
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Recall from Chapter S (p. 66ff.) that the variance-covariance matrix of the errors, 
because of assumptions S and 6, looks like: 

("' 
0 0 ... 

~}·''· E(uu') ~ .:. 

a2 0 0 
0 a2 ... (7.7) 
... .. . 
0 0 ... a2 

where In is an 11 x 11 identity matrix. 
The presence of heteroskedasticity, states clearly that assumption Sis no longer valid. 

Therefore, the variance-covariance matrix of the residuals will no longer look like the 
classical case, but will be as follows: 

("' 
0 

E(uu') ~ : 

a2 
2 
0 

0 

0 
0 

a2 
3 

0 

0 .~.) =s-2 

a2 n 

Effect on the OLS estimators of the multiple regression model 

Recall that the variance-covariance matrix of the OLS estimators p is given by: 

Cov(fl) = Ef(fi - fJ}(fi - ,8)'] 

= E([(X'X)- 1 X'u][(X'X)-1 X'u]'} 

= E((X'X)- 1X'uu'X(X'X)- 1}* 

= (X'X)- 1X'E(uu')X(X'X)-lt 

= (X'X)- 1X'QX(X'X)- 1 

(7.8) 

(7.9) 

which is totally different from the classical expression a 2 (X'X)- 1 . This is because 
assumption S no longer holds, and of course R denotes the new variance-covariance 
matrix presented above, whatever form it may happen to take. Therefore, using 
the classical expression to calculate the variances, standard errors and t-statistics of 
the estimated fis will lead us to the wrong conclusions. Formulae 7.9 forms the basis 
for what is often called 'Robust' inference, i.e. the derivation of standard errors and 
't' statistics which are correct even when some of the OLS assumptions are violated. 
Basically what happens is that we assume a particular form for the n matrix and then 
use (7 .9) to calculate a corrected covariance matrix. 

• This is because (AB)' = B'A'. 
t This is because, according to assumption 2, the Xs are non-random. 
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Detecting heteroskedasticity 

In general there are two ways of detecting the presence of heteroskedasticity. The first is 
by inspection of different graphs, and this is called the informal way, while the second 
way is by applying appropriate tests that can detect heteroskedasticity. The informal 
way is the topic of the next section. The formal methods include various tests for the 
presence of heteroskedasticity, some of which will be presented in later sections. 

The informal way 

In the informal way, and in the two variable case that we have seen before, it 
is obvious that we can easily detect heteroskedasticity by simple inspection of the 
scatter plot. However, this cannot be done in the multiple regression case. In this 
case useful information regarding the possible presence of heteroskedasticity can be 
given by plotting the squared residuals against the dependent variable and/or the 
explanatory variables. 

Gujarati (1978) presents cases in which from the pattern of graphs of this kind, we 
can deduct useful information regarding heteroskedasticity. The possible patterns are 
presented in Figures 7.5-7.9 respectively. In Figure 7.5 we see that there is no systematic 
pattern among the two variables, which suggests that we have a 'healthy' model, or at 
least one that does not suffer from heteroskedasticity. In the next figures, though we 
have eVIdence of heteroskedasticity, in Figure 7.6 we see a clear pattern that suggests 
heteroskedasticity, in Figure 7. 7 there is a clear linear relationship between Yi (or Xi) and 
u?, while Figures 7.8 and 7.9 exhibit a quadratic relationship. Knowing the relationship 

l . 

qetween the two variables can be very useful because it enables us to transform the data 
in such a mann<-r as to eliminate the heteroskedasticity. 

ij2 

--.-----------------•• • • • • • • • • • • • • • • • • • • • • • • •• 

0 YorX1 

Figure 7.5 A 'healthy' distribution of squared residuals 
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Figure 7.6 An indication of the presence of heteroskedasticity 
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Figure 7.7 Another indication of Heteroskedasticity 

The Breusch-Pagan LM fest 

Breusch and Pagan (1979) developed a Lagrange Multiplier (LM) test for 
heteroskedasticity. Let's assume that we have the following model: 

Y; = fh + {JzXz; + f33X3; + · · · + f3kXk; + u; (7.10) 

where var(u;) = al. The Breusch-Pagan test involves the following steps: 

Step 1 Run a regression of model (7.10) and obtain the residuals il; of this 
regression equation. 
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Figure 7.8 A non linear relationship leading to heteroskedasticity 
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Figure 7.9 Another form of non linear heteroskedasticity 

Step 2 Run the following auxiliary regression: 

Step 3 

Uf = a1 + azZz; + a3Z3; + · · · + apZp; + v; (7 .11) 

where Zk; is a set of variables that we think determine the variance of the 
error term. (Usually for Zk; we use the explanatory variables of the original 
regression equation, i.e. the Xs.) 

Formulate the null and the alternative hypotheses. The null hypothesis of 
homoskedasticity is that: 

Ho : a1 = az = · · · = ap = 0 (7.12) 
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while the alternative is that at least one of the as is different from zero and 
that at least one of the Zs affects the variance of the residuals which will be 
different for different t. 

Step 4 Compute the LM = nR2 statistic, where n is the number of observations used in 
order to estimate the auxiliary regression in step 2, and R2 is the coefficient of 
determination of this regression. The LM statistic follows the x2 distribution 
with p - 1 degrees of freedom. 

Step 5 Reject the null and conclude that there is significant evidence of hetero­
skedasticity when LM -statistical is bigger than the critical value (LM -stat > 

xff-l,a ). Alternatively, compute the p value and reject the null if the p value i~. 
less than the level of significance ex (usually ex = 0.05). 

In this- as also in all other LM tests that we will examine later- the auxiliary equation 
is implicitly making an assumptJon about the form of heteroskedasticity we expect 
to find in the data. There are three more LM tests which introduce different forms 
of auxiliary regressions, suggesting different functional forms about the relationship 
of the squared residuals (itf, which is a proxy for a 2 since it is not known) and the 
explanatory variables. 

The Breusch-Pagan test in EViews 

The Breusch-Pagan test can be performed in EViews as follows. First we need to estimate 
the regression equation model with OLS; so we need to use the command 

ls y c xl x2 x3 ... xk 

where y is our dependent variable and x 1 to xk are our explanatory variables. Then to 
obtain the residuals we use the generate (gem) command as follows: 

genr ut=resid 

Note that it is important to type and execute this command immediately after obtaining 
the equation results so that the resid vector has the residual of the equation estimated 
previously. Here ut is just a name we provide for the error terms of this model. 

We then need to calculate the squared residuals as follows: 

genr utsq=ut'2 

and after that obtain the estimate of the auxiliary regression from the command: 

ls utsq c zl z2 z3 ... zp 

To compute the LM statistic we need to do the calculation LM = n * R2·, where n is 
the number of observations and R2 is the coefficient of determination of the auxiliary 
regression. 

After that we need to compare LM-critical with LM-statistical and conclude. 
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The Glesjer LM test 

Glesjer's (1969) test involves the following steps (Note that the steps are the same as the 
Breusch-Pagan test above with the only exception of step 2 that involves a different 
auxiliary regression equation.): 

Step I Run a regression of model (7.10) and obtain the residuals ft; of this regression 
equation. 

Step 2 Run the following auxiliary regression: 

!u; I = a1 + azZ 2i + a3Z3; + ... + apZpi + v; (7.13) 

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of 
homoskedasticity is that: 

Ho : a 1 = a2 = · · · = ap = 0 (7.14) 

while the alternative is that at least one of the as is different from zero. 

Step 4 Compute the LM = nR2 statistic, where n is the number of observations used in 
order to estimate the auxiliary regression in step 2, and R2 is the coefficient of 
determination of this regression. The LM statistic follows the x2 distribution 
with p - 1 degrees of freedom. 

Step 5 Reject the null and conclude that there is significant evidence of 
hete:roskedasticity when LM -statistical is bigger than the critical value 
(LM-stat > xff-l,a). Alternatively, compute: the p-value and reject the null if 
the p-value is less than the level of significance a (usually a = 0.05). 

The Glesjer test in EViews 

The Glesjer test can be performed in EViews as follows. First we need to estimate the 
regression equation model with OLS, so, we need to use the command: 

ls •Y c xl x2 x3 ... xk 

where y is our dependent variable and x1 to xk are our explanatory variables. Then to 
obtain the residuals we use the generate (genr) command as follows: 

genr ut=resid 

Note that it is important to type and execute this command immediately after obtaining 
the equation results so that the resid vector has the residual of the equation estimated 
previously. Here ut is just a name we provide for the error terms of this model. We then 
need to calculate the squared residuals as follows: 

genr absut=abs(utl 
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and after that obtain the estimate of the auxiliary regression from the command: 

ls absut c zl z2 z3 ... zp 

To compute the LM statistic we need to do the calculation LM = n * R2, where 11 is 
the number of observations and R2 is the coefficient of determination of the auxiliary 
regression. 

After that we need to compare LM-critical with LM-statistical and conclude. 

The Harvey-Godfrey LM test 

-Harvey (1976) and Godfrey (1978) developed the following test: 

Step 1 Run a regression of model (7 .1 0) and obtain the residuals u; of this. regression 
equation. 

Step 2 Run the following auxiliary regression: 

ln<uh = a1 + azZ z; + a3Z3; + · · · + apZp; + v; (7 .IS) 

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of 
homoskedasticity is that: 

Ho : a1 = az = · · · = ap = 0 (7.16) 

while the alternative is that at least one of the as is different from zero. 

Step 4 Compute the LM = nR2 statistic, where n is the number of observations used in 
order to estimate the auxiliary regression in step 2, and R2 is the coefficient of 
determination of this regression. The LM statistic follows the x 2 distribution 
with p- 1 degrees of freedom. 

Step 5 Reject the null and conclude that there is significant evidence of hetero­
skedasticity when LM-statistical is bigger than the critical value (LM-stat > 

xff-t,a>· Alternatively, compute the p-value and reject the null if the p-value 
is less than the level of significance a (usually a = 0.05). 

The Harvey-Godfrey test in EViews 

The Harvey-Godfrey test can be performed in EViews as follows. First we need to 
estimate the regression equation model with OLS, so we use the command: 

ls y c xl x2 x3 ... xk 

where y is our dependent variable and xi to xk are our explanatory variables. Then to 
obtain the residuals we use the generate (gem) command as follows: 

genr ut=resid 

'• 

L~ 

L 
l j 
f·· i u 

~~ 
r I 

Ll 

~l 

l· l 
t j 

f: ': 

\: 

I r. 

,. 
~-

__ L_ 



[ ~ 

f ' l _ _j 

r· i 
L·j 
l 

l
r_] 

..J 

f l 

I I 
LJ 

f 1 

lJ 

f l 
\..~ .J 

[. 
·1 

·J 

[. J 

r 

[. 

f •; 

!. : 

•. 

Heteroskedasticity 113 

Note that it is important to type and execute. this command immediately after 
obtaining the equation results so that the resid vector has the residual of the equation 
estimated previously. Here ut is just a name we provide for the error terms of this model. 

We then need to calculate the squared residuals as follows: 

genr utsq=ut"2 

and after that obtain the estimate of the auxiliary regression from the command: 

ls log (utsq) c zl z2 z3 ... zp 

To compute the LM statistic we need to do the calculation LM = n * R2 , where n is 
the number of observations and R2 is the coefficient of determination of the auxiliary 
regression. 

After that we need to compare LM-critical with LM-statistical and conclude. 

The Park LM test 

Park (1966) developed an alternative LM test, involving the following steps: .. 

Step 1 Run a regression of model (7.10) and obtain the residuals u; of this regression 
equation. 

Step 2 Run the following auxiliary regression: 

ln(ilf) = a 1 + az In Z z; + a3 In Z3; + · · · + ap In Zp; + v; (7.17) 

Sfep 3 Formulate the null and the alternative hypotheses. The null hypothesis of 
homoskedasticity is that: 

Ho : a1 = az = · ·- = ap = 0 (7 .18) 

while the alternative is that at least one of the as is different from zero and 
r . then at least one of the Zs affects the variance of the residuals which will be 
l ·, different for different t. 
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Step 4 Compute the LM = nR2 statistic, where n is the number of observations used in 
order to estimate the auxiliary regression in step 2, and R2 is the coefficient of 
determination of this regression. The LM statistic follows the x 2 distribution 
with p- 1 degrees of freedom. 

Step 5 Reject the null and conclude that there is significant evidence of hetero­
skedasticity when LM-statistical is bigger than the critical value (LM -stat > 

xff_ 1,a>· Alternatively, compute the p-value and reject the null if the p-value 
is less than the level of significance a (usually a = 0.05). 
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The Park test in EViews 

The Park test can be performed in EViews as follows. First we need to estimate the 
regression equation model with OLS, so we need to use the command: 

ls y c xl x2 x3 ... xk: .. 
where y is our dependent variable and xi to xk are our explanatory '-:ariables. Then to 
obtain the residuals we need to use the generate (gem) command as follows: 

genr ut=resid 

Note that it is important to type and execute this command immediately after obtaining 
the equation results so that the resid vector has the residual of the equation estimated 
previously. Here ut is just a name we provide for the error terms of this model. We then 
need to calculate the squared residuals as follows: 

genr utsq=ut"2 

and after that to obtain the estimation of the auxiliary regression from this command: 

ls log(utsq) c log(zl) log(z2) log(z3) ... log(zp) 

To compute the LM statistic we need to do the calculation LM = n * Rz, where n is 
the number of observations and R2 is the coefficient of determination of the auxiliary 
regression. 

After that we need to compare LM-critical with LM-statistical and conclude. 

An obvious criticism for all the above LM tests is that they require a prior knowledge 
about what might be causing the heteroskedasticity captured in the form of the auxiliary 
equation. Alternative models have been proposed and they are presented below. 

The Goldfeld-Quandt test 

Goldfeld and Quandt (1965) proposed an alternative test based on the idea that if the 
variances of the residuals are the same across all observations (i.e. homoskedastic), then 
the variance for one part of the sample should be the same as the variance for another 
part of the sample. What is necessary for the test to be applicable is to identify a variable 
to which the variance of the residuals is mostly related (this can be done with plots of 
the residuals against the explanatory variables). The steps of the Goldfeld-Quandt test 
are as follows: 

Step 1 Identify one variable that is closely related to the variance of the disturbance 
term, and order (or rank) the observations of this variable in descending order 
(starting with the highest and going to the lowest value). 

Step 2 Split the ordered sample into two equally sized sub-samples by omiTting­
c central observations, so that the two sub-samples will contain !en- c) 
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observ~tions. The first will contain the largest values and the second will 
contain the lowest ones. 

Step 3 Run an OLS regression of Y on the X variable that you have used in step 1 for 
each sub-sample and obtain the RSS for each equation. 

Step 4 Calculate the F-statistic as follows: 

RSS1 
F = RSSz (7.19) 

where in the nominator (RSS1) you put the RSS with the largest value. The F 

statistic is distributed with FO/Z(n-c)-k,l/Z(n-c)-k) degrees of freedom. 

Step 5 Reject the null hypothesis of homoskedasticity ifF-statistical> F-critical. 

The idea behind the formula is that if the error terms are homoskedastic, then the 
variance of the residuals will be the same for each sample so that the ratio is unity. If 
the ratio is significantly larger then the null of equal variances will be rejected. One 
questionhere is what the appropriate value of c would be. This is arbitrarily chosen 
and it should usually be between 1/6 and 1/3 of the observations. 

The problem with the Goldfeld-Quandt test is that it does not take into account 
cases where heteroskedasticity is caused by more than one variable and it is not always 
suitable for time series data. However, it is a very popular model for the simple regression 
case (with only one explanatory variable). 

The Goldfeld-Quandt test in EViews 

To perform t~e Goldfeld-Quandt test in EViews we first need to sort the data in 
descending order according to the variable that we identified and that we think causes 
the heteroskedasticity X. To do this click on Procs/Sort Series, enter the name of the 
variable (in this case X) in the sort key dialog box and check descending for the sort 
order. We then need to break the sample into two different sub-samples and run OLS 
of Y on X for both sub-samples in order to obtain the RSSs. For this we need to use the 
f<?llowing commands: 

smpl start end 
ls y c x 
sca~ar rssl=®ssr 
for the first sample 
and 
smpl start end 
ls y c x 
scalar rss2=@ssr 

where in both cases the start and the end points should be defined appropriately 
depending on the frequency of our data set and of the number of middle point 
observations that should be excluded. 

We then need to calculate the F stat which is given by RRS1/RSS2 or by the following 
command: 

genr F_GQ=RSS1/RSS2 
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and compare this with the F -critical value given by: 

genr f-crit:®qfdist(.95,nl-k,n2-k) 

or alternatively to obtain the p-value and conclude from it by: 

genr p-value:l-®fdist(.OS,nl-k,n2-k) 

White's test 

White (1980) developed a more general test for heteroskedasticity that eli~inates the'· 
problems that appeared in the previous tests. White's test is also an LM test, but it has 
the advantages that (a) it does not assume any prior knowledge of heteroskedasticity, 
(b) it does not depend on the normality assumption as the Breusch-Pagan test and (c) 
it proposes a particular choice for the Zs in the auxiliary regression. 

The steps involved in White's test assuming a model with two explanatory variables 
like the one presented here: 

Y; = fh + fhXz; + f33X3; + u; (7 . .30) 

are the following: 

Step 1 

Step 2 

.I 

Run a regression of model (7.20) and obtain the residuals fl; of this regression 
equation. 

Run the following auxiliary regression: 

uf = a1 + azXz; + a3X3; + a4X~; + asX~; + a6Xz;X3; + v; (7.21) 

i.e. regress the squared residuals on a constant, all the explanatory variables, 
the squared explanatory variables, and their respective cross products. 

Step 3 Formulate the null and the alternative hypotheses. The null hypothesis of 
homoskedasticity is that: 

Step4 

Step 5 

Ho : a 1 = az = ... = ap = 0 (7.22) 

while the alternative is that at least one of the as is different from zero. 

Compute the LM = nRZ statistic, where n is the number of observations used in 
order to estimate the auxiliary regression in step 2, and R2 is the coefficient of 
determination of this regression. The LM statistic follows the x2 distribution 
with 6- 1 degrees of freedom. 

Reject the null and conclude that there is significant evidence of hetero­
skedasticity when LM-statistical is bigger than the critical value (LM-stat > 

xl_ 1 a>· Alternatively, compute the p-value and reject the null if the p-value 
is less than the level of significance o: (usually o: = 0.05). 
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Because White's test is more general, and because of its advantages, presented above, 
it is recommended over all the previous tests, although one practical problem is that 
due to the cross product terms the number of regressors in (7.21) can become large. 

White's test in EViews 

EViews already has a routine after obtaining results by OLS for executing White's test 
for heteroskedasticity. After obtaining the OLS results, we click on View/Residual 
Tests/White Heteroskedasticity (no cross terms) if we don't want to include the cross­
product terms of our explanatory variables in the auxiliary regression; or, alternatively, 
click on View/Residual Tests/White Heteroskedasticity (cross terms) if we want 
to include the cross-product terms of our explanatory variables in the auxiliary 
regression. EViews in both cases provides us with the results of the auxiliary regression 
equation that is estimated in each case, as well as with the LM test and its respective 
p-value. 

Computer example: heteroskedasticity tests 

The file houseprice.wfl contains data regarding the house prices of a sample of 88 
London houses together with some characteristics regarding those houses. Analytically, 
we have the. following variables: 

Price= the price of the houses measured in pounds. 

Rooms = the number of bedrooms in each house. 

Sq feet = the size of the house measured in square feet. 

We would like to see whether the number of bedrooms and the size of the house play 
an important role in determining the price of each house. 

By a simple scatter plot inspection of the two explanatory variables against the 
dependent variable we can see (Figures 7.10 and 7.11) that there is clear evidence 
of heteroskedasticity in the relationship regarding the Rooms variable, but also some 
evidence of the same problem for the size proxy (Sqfeet) variable with larger variations 
in prices for larger houses. 

The Breusch-Pagan test 

Testing for heteroskedasticity in a more formal way, we can first apply the Breusch­
Pagan test: 

Step 1 We estimate the regression equation: 

price = b1 + bzrooms + b3sq{eet + 11 

the results of which are presented in Table 7.1. 
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Figure 7.10 Clear evidence of heteroskedasticity 
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Figure 7.11 Much weaker evidence of heteroskedasticity 

Step 2 We then obtain the residuals of this regression model (we name them as ut) by 
typing the following command in the command line: 

genr ut=resid 

and the squared residuals by typing the command: 

genr utsq=ut~sq 
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Table 7.1 Basic regression model results 

Dependent Variable: PRICE 
Method: Least Squares 
Date: 02103104 Time: 01:52 
Sample: 188 
Included observations: 88 

Variable Coefficient 

c -19315.00 
Rooms 15198.19 
Sqfeet 128.4362 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.631918 
0.623258 
63044.84 
3.38E+11 
-1095.881 
1.858074 

Std. Error t-Statistic 

31046.62 -0.622129 
9483.517 1.602590 
13.82446 9.290506 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Table 7.2 The Breusch-Pagan test auxiliary regression 

Dependent Variable: UTSQ 
Method: Least Squares 
Date: 02/03104 Time: 02:09 
Sample: 188 
Included observations: 88 

Variable , Coefficient 

c 
Rooms 
Sqfeet 

-8.22E+09 
1.19E+09 
3881720. 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.120185 
0.099484 
7.93E+09 
5.35E+21 
-2129.248 
2.091083 

Std. Error t-Statistic 

3.91E+09 
1.19E +09 
1739736. 

-2.103344 
0.995771 
2.231213 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 
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Prob. 

0.5355 
0.1127 
0.0000 

293546.0 
102713.4 
24.97458 
25.05903 
72.96353 
0.000000 

Prob. 

0.0384 
0.3222 
0.0283 

3.84E+09 
8.36E+09 
48.46019 
48.54464 
5.805633 
0.004331 

Then we estimate the auxiliary regression using as Zs the explanatory variables 
that we have in our original equation model: 

utsq = a1 + azrooms + a3sq(eet + v 

The results of this equation are presented in Table 7.2. 
The LM statistic is distributed under a chi-square distribution with degrees 

of freedom equal to the number of slope coefficients included in the auxiliary 
regression (or k- 1) which in our case is 2. The chi-square critical can be 
given by: 

genr chi=®qchisq(.95,2) 

and is equal to 5.991465. 
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Step 3 Because the LM-stat >chi-square critical value we conclude that the null can 
be rejected, and therefore there is evidence of heteroskedasticity. 

The Glesjer test 

For the Glesjer test the steps are similar to the above but the dependent variable in 
the auxiliary regression is now the absolute value of the error tet!T\s. So, we need to 
construct this variable as follows: 

genr absut=abs(ut) 

and th~n estimate the auxiliary equation of the form: 

absut = a 1 + azrooms + a3sq(eet + v 

The results of this model are given in Table 7.3. Again we need to calculate the LM 
statistic: 

LM = obs * R2 = 88 * 0.149244 = 13.133472 

which is again bigger than the chi-square critical value, and therefore we again conclude 
that there is sufficient evidence of heteroskedasticity. 

The Harvey-Godfrey test 

For the Harvey-Godfrey test the auxiliary regression has the form: 

log(utsq) = a1 + azrooms + a3sq(eet + v 

Table 7.3 The Glesjer test auxiliary regression 

Dependent Variable: ABSUT 
Method: Least Squares 
Date: 02103104 Time: 02:42 
Sample: 1 88 
Included observations: 88 

Variable Coefficient 

c -23493.96 
Rooms 8718.698 
Sqfeet 19.04985 
-
R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Std. Error t-Statistic 

19197.00 -1.223835 
5863.926 1.486836 
8.548052 2.228560 

0.149244 Mean dependent var 
0.129226 S.D. dependent var 
38982.40 Akaike info criterion 
1.29E+11 Schwarz criterion 
-1053.577 F -statistic 
2.351422 Prob("F-statistic) 

Prob. 

0.2244 
0.1408 
0.0285 

45976.49 
41774.94 
24.01310 
24.09756 
7.455547 

. 0.001039 
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Table 7.4 The Harvey-Godfrey test auxiliary regression 

Dependent Variable: LOG(UTSQ) 
Method: Least Squares 
Date: 02103/04 Time: 02:46 
Sample: 188 
Included observations: 88 

Variable Coefficient 

c 17.77296 
Rooms 0.453464 
Sqfeet 0.000625 

R-squared 
Adjusted R-squared 

. S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Std. Error t-Statistic 

0.980629 18.12405 
0.299543 1.513852 
0.000437 1.432339 

0.098290 Mean dependent var 
0.077073 S.D.dependentvar 
1.991314 Akaike info criterion 
337.0532 Schwarz criterion 
-183.9544 F -statistic 
2.375378 Prob(F-statistic) 

--·------
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Pro b. 

0.0000 
0.1338 
0.1557 

20.65045 
2.072794 
4.248963 
4.333418 
4.632651 
0.012313 

and the results of this auxiliary regression model are given in Table 7.4. In this case the 
LM statistic is: 

LM = obs * R2 = 88 * 0.098290 = 8.64952 

which is again bigger than the chi-square critical value, and therefore we again conclude 
that there is sufficient evidence of heteroskedasticity. 

The Park test 

Finally, for the Park test the auxiliary regression has the form: 

log(utsq) = a1 + a2 log(rooms) + a3/og(sq(eet) + v (7.23) 

the results of which are given in Table 7.5. In this case the LM statistic is: 

LM = obs * R2 = 88 * 0.084176 = 7.407488 

which is again bigger than the chi-square critiral value, and therefore we again conclude 
that there is sufficient evidence of heteroskedasticity. 

The Goldfeld-Quandt test 

The Goldfeld-Quandt test requires that we first order the observations according to the 
variable that we think mostly causes the heteroskedasticity. Taking this to be the rooms 
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Table 7.5 The Park test auxiliary regression 

Dependent Variable: LOG(UTSO) 
Method: Least Squares 
Date: 02103104 Time: 02:50 
Sample: 188 
Included observations: 88 

Variable 

c 
Log( Rooms) 
Log( Sqfeet) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

9.257004 
1.631570 
1.236057 

0.084176 
0.062627 
2.006838 
342.3290 
-184.6377 
2.381246 

Std. Error 

6.741695 
1.102917 
0.969302 

!-Statistic 

1.373097 
1.479322 
1.275204 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

variable, we perform this test following the steps described below: 

Prob. 

0.1733 
0.1428 
0.2057 

20.65045 
2.072794 
4.264494'·. 
4.348949 
3.906274 
0.023824 

Step 1 First we click on Procs/Sort Series and enter the name of the variable (in this 
case rooms) in the sort key dialog box and click on the box to check descending 
for the sort order. 

Step 2 We then need to break the sample into two different sub-samples, subtracting 
c number of intermediate observations. Choosing c close to 1/6 of the total 
observations we have that c = 14. Therefore each sub-sample will contain 
(88- 14)/2 = 37 observations. The first sample will have observation's 1 to 37 
and the second will have observations 51 to 88. 

Step 3 Now we need to run an OLS of price on rooms for both sub-samples in order 
to obtain the RSSs. For this we need to use the following commands: 

smpl 1 37 

ls price c rooms 

scalar rssl=®ssr 

[sets the sample to 
sub-sample 1) 

[estimates the regression 
equation] 

[creates a scalar which will 
be the value of the RSS 
of the regression equation 
estimated by the previous 
command] 

Similarly for the second sub-sample we type the following commands: 

smpl 51 88 
ls price c rooms 
scalar rss2=®ssr 

and the results for both sub-samples are presented in Tables 7.6 and 7.7. Since 
RSS1 is bigger than RSS2, the F statistic can be calculated as follows: 

---genr F _GQ=RSS1/RSS2 --

--------------·-
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Table 7.6 The Goldfeld-Quandt test (first sub-sample results) 

Dependent Variable: PRICE 
Method: Least Squares 
Date: 02103104 Time: 03:05 
Sample: 137 
Included observations: 37 

Variable Coefficient 

c -150240.0 
Rooms 110020.7 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.298920 
0.278889 
114305.9 
4.57E+ 11 
-482.3981 
1.718938 

Std. Error t-Statistic 

124584.0 -1.205933 
28480.42 3.863028 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F -statistic) 

Table 7.7 The Goldfeld-Quandt test (second sub-sample results) 

Dependent Variable: PRICE 
Method: Least Squares 
Date: 02/03104 Time: 03:05 
Sample: 51 88 
Included observations: 38 

Variable Coefficient 

c 227419.1 
Rooms 11915.44 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.004581 
-0.023069 
:::5379.83 
1.10E+ 11 
-467.9273 
1.983220 

and F-critical will be given by: 

Std. Error t-Statistic 

85213.84 2.668805 
29273.46 0.407039 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

genr F_crit=®qfdist(.95,37,37) 
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Prob. 

0.2359 
0.0005 

325525.0 
134607.0 
26.18368 
26.27076 
14.92298 
0.000463 

Prob. 

0.0113 
0.6864 

261911.2 
54751.89 
24.73301 
24.81920 
0.165681 
0.686389 

The F-statistic = 4.1419 is bigger than F-critical= 1.7295, and therefore we 
conclude that there is evidence of heteroskedasticity. 

The White test 

For the White Test, we simply need to estimate the equation model (presented in the 
first table with results of this example) and then click on View/Residual Tests/White 
(no cross products) to get the results shown in Table 7.8. Note that the auxiliary 
regression does not include the cross products of the explanatory variables in this case. 
The LM-stat = 16.20386 is bigger than the critical value and the p-value also next to the 
LM-test provided by EViews is 0.02757, both suggesting evidence of heteroskedasticity. 
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Table 7.8 The White test (no cross products) 

White Heteroskedasticity Test: 

F -statistic 
Obs•R-squared 

Test Equation: 
Dependent Variable: RESID "2 
Method: Least Squares 
Date: 02103104 Time: 03: 15 
Sample: 188 
Included observations: 88 

4.683121 
16.20386 

Variable Coefficient 

c 
Rooms 
Rooms"2 
Sqfeet 
Sqfeet"2 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

7.16E+09 
7.21 E + 09 
-7.67E+08 
-20305674 
5049.013 

0.184135 
0.144816 
7.73E +09 
4.96E +21 
-2125.928 
1.640895 

Std. Error 

1.27E+ 10 
5.67E+09 
6.96E+08 
9675923. 
1987.370 

Probability 
Probability 

t-Statistic 

0.562940 
1.272138 
-1.102270 
-2.098577 
2.540550 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

0.001857 
0.002757 

Prob. 

0.5750 
0.2069 
0.2735 
0.0389 
0.0129 

3.84E+09 
8.36E+09 
48.43018 
48.57094 
4.683121 
0.001857 

If we choose the version of the White test with the cross products (by clicking on 
View/Residual Tests/ White (cross products) we get the results shown in Table 7.9. In 
this case as well, as in all cases above, we have that the LM-stat (17.22519) is bigger 
than the critical and therefore there is evidence of heteroskedasticity. 

Engle's ARCH test* 

So far we have examined for the presence of autocorrelation in the error terms of a 
regression model. Engk (1982) introduced a new concept allowing for autocorrelation 
to occur in the variallce of the error terms, rather than in the error terms themselves. 
To capture this autocorrelation Engle developed the Autoregressive Conditional 
Heteroskedasticity (ARCH) model, the key idea behind which is that the variance of Ut 

depends on the size of the squared error term lagged one period (that is uf_ 1). 

More analytically, consider the regression model: 

Yt = fh + f3zXzt + f33X3t + · · · + f3kXkt + Ut (7.24) 

and assume that the variance of the error term follows an ARCH(1) process: 

2 2 
Var(llt) = at = YO + Yl Ut-I (7.25) 

If there is no autocorrelation in Var(ut ), then YI should be zero and theref~re a,Z = YO· 

So, we have a constant (homoskedastic) variance. 

- • This test only appiies to a time series context and so i~ this section we revert to indexing 
our variables by t. 
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Table 7.9 The White test (cross products) 

White Heteroskedasticity Test: 

F-statistic 
Obs• R·squared 

Test Equation: 

3.991436 
17.22519 

Dependent Variable: RESID "2 
Method: Least Squares 
Date: 02103104 Time: 03: 18 
Sample: 188 
Included observations: 88 

Variable 

c 
Rooms 
Rooms"2 
Rooms • Sqfeet 
Sqfeet 
Sqfeet"2 

R-setuared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

1.08E+10 
7.00E+09 
-1.28E +09 
1979155. 
-23404693 
4020.876 

0.195741 
0.146701 
7.72E+09 
4.89E+21 
-2125.297 
1.681398 

Probability 
Probability 

Std. Error 

1.31 E + 10 
5.67E+09 
8.39E+08 
1819402. 
10076371 
2198.691 

t-Statistic 

0.822323 
1.234867 
-1.523220 
1.087805 
-2.322730 
1.828759 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F -statistic) 
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0.002728 
0.004092 

Prob. 

0.4133 
0.2204 
0.1316 
0.2799 
0.0227 
0.0711 

3.84E+09 
8.36E+09 
48.43858 
48.60749 
3.991436 
0.002728 

The model can easily be extended for higher-order ARCH(p) effects having that: 

2 2 2 2 
Var(llt) =at = YO+ YI ut-l + Y211t-2 + · · · + Ypllt-p (7.26) 

and here the null hypothesis is that: 

Ho: YI = Y2 = · · · = Yp = 0 (7.27) 

that is, no ARCH effects present. The steps involved in the ARCH test are: 

Step 1 Estimate equation (7.24) by OLS and obtain the residuals, ftr. 

Step 2 Regress the squared residuals (u'[') against a constant, u'f_ 1, u'f-2 , ... , u'f_p (the 
value of p will be determined by the order of ARCH(p) for which you want 
to test). 

Step 3 Compute the LM statistic = (n - p)R2 , from the regression in step 2. If 
LM > x'j for a given level of significance reject the null of no ARCH effects 
and conclude that ARCH effects are indeed present. 

The ARCH-LM test in EViews and Microfit 

After estimating a regression equation in EViews, in order to perform the ARCH LM test 
we go from the estimation results window to View/Residual Tests/ARCH LM test ... 
EViews asks for the number of lags to be included in the test, and after specifying that 
and clicking on <OK> we obtain the results of the test. The interpretation is as usual. 
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In Micro fit after estimating the regression model, close the results window by clicking 
on <close> to obtain the Post Regression menu. From that menu choose option 2, and 
move to the Hypothesis Testing menu and click <OK>. From the hypothesis testing 
menu choose option 2, Autoregressive Conditional Heteroskedasticity tests (OLS &: 
NLS), and again click <OK>. We are then asked to determine the number of lags in the 
Input an integer window and after clicking <OK> we obtain the results of the test. 
An example with the use of EViews is given below. 

Computer example of the ARCH-LM test 
• 

To apply the ARCH-LM test we first need to estimate the equation and then click on 
View /Residual Tests/ ARCH LM Test and specify the lag order. Applying the ARCH-LM 
test to the initial model (for ARCH(l) effects, i.e. in lag order we typed 1): 

Cr = b 1 + b2Dr + b3Pr + ur (7.28) 

we obtain the results shown in Table 7.10, where it is obvious from both the LM statistic 
(and the probability limit) as well as from the t statistic of the lagged squared residual 
term that it is highly significant that this equation has ARCH( I) effects. 

Resolving heteroskedasticity 

If we find that heteroskedasticity is present, there are two ways of proceeding: (a) we can 
re-estimate the model in a way which fully recognizes the presence of the problem, this 
would involve applying the generalized (or weighted) least squares method. This would 
then produce a new set of parameter estimates which would be more efficient than the 

Table 7.10 The ARCH-LM test results 

ARCH Test: 
F -statistic 
Obs*A-squared 

Test Equation: 
Dependent Variable: AESilY' 2 
Method: Least Squares 
Date: 02112104 Time: 23:21 
Sample(adjusted): 1985:2 1994:2 

12.47713 
9.723707 

Probability 
Probability 

Included observations: 37 after adjusting endpoints 

Variable 

c 
AESilY'2(-1) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 

_ Log likelihood- -
Durbin-Watson stat 

Coefficient 

0.000911 
0.512658 

0.262803 
0.241740 
0.002173 
0.000165 

175.4061. 
1.454936 

Std. Error 

0.000448 
0.145135 

t-Statistic 

2.030735 
3.532298 

Mean dependent var. 
S.D. dependent var. 
Akaike info. criterion 
Schwarz criterion 
F -sta:tistic · 
Prob( F -statistic) 

0.001178 
0.001819 

Pro b. 

0.0499 
0.0012 

0.001869 
0.002495 

-9.373304 
-9.286227 
12.47713 
0.001178 
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OLS ones and a correct set of covariances and 't' statistics. Or (b) we can recognize that 
while OLS is no longer best it is still consistent and the real problem is the covariances 
and 't' statistics which are simply wrong. We can then correct the covariances and 't' 
statistics by basing them on a formulae such as (7.9). Of course this will not change the 
actual parameter estimates which will remain less than fully efficient . 

Generalized (or weighted) least squares 

Generalized least squares 

Consider the following model: 

Y; = 13t + f3zXz; + f33X3; + · · · + f3kXk; + u; (7.29) 

where the variance of the error term instead of being constant is heteroskedastic, i.e. is 
Var(u;) = a?. 

If we divide each term in (7 .29) by the standard deviation of the error term, a;, then 
we obtain the modified model: 

or 

Y; 1 Xz; X3; Xk; u; - = lh- + f3z- + .83- + .. · + l3k- + -
a; a; a; a; a; a; 

Y;* = f3tXi; + fJzXz; + f33Xj; + · · · + fJkXki + uj 

For the modified model, we have that: 

Var(uj) = Var (~) = Var(u;) _ 
a· 2 -1 

l a. 
l 

(7.30) 

(7.31) 

(7.32) 

Therefore, estimates obtained by OLS of regressing Yt to XL, Xz;• Xj;, ... 'xzi are now 
BLUE. This procedure is called generalized least squares (GLS) . 

• 

Weighted least squares 

The GLS procedure is also the same as the weighted least squares (WLS), where we have 
weights, w;, adjusting our variables. To see the similarity define w; = }; , and rewrite the 
original model as: 

w;Y; = fJ1w; + .Bz(Xz;w;) + f33(X3;w;) + · · · + f3k(Xk;w;) + (u;w;) (7.33) 

which if we define as w;Y; = Y;*, and (Xk;w;) = Xki' we have the same equation 
as (7.31): 

Y;* = f3tXi; + fJzXz; + f33Xj; + · · · + fJkXki + uj (7.34) 
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Assumptions regarding the structure of a 2 

Although GLS and WLS are simple to grasp and appear to be straightforward, one major 
practical problem is that ul is unknown and therefore estimation of (7.31) and/or (7.33) 

is not possible without making explicit assumptions regarding the structure of al. 
However, if we have a prior belief about the structure of al, then GLS and WLS work 

in practice. In order to see this, consider the case where in (7.29) we know that: 

Var(u;) = al = a2 zf (7.35) 

where Z; is a variable of which the values are known for all i. Dividing ev~ry term in 
(7.35) by Z; we get: 

or 

Y; 1 X 2; X3; Xk; u; 
- = fh- + f3z- + f33- + · · · + f3k- + -
Z; Z; Z; Z; Z; Z; 

Yj = {31Xj; + {32Xi_; + f33Xj; + ... + f3kXki + uj 

where starred terms denote variables divided by Z;. In this case we have that: 

Var(u:") = Var ( u;) = u 2 
I Z; 

(7.36) 

(7.37) 

(7.38) 

So, the heteroskedasticity problem has been resolved from the original model. Note, 
however, that this equation has no constant term; the constant in the original 
regression ({31 in 7.24) becomes the coefficient on Xj in 7.37. Care should be taken 
in interpreting the coefficients especially when Z; is an explanatory variable in the 
original model (7.29). Assume, for example, that Z; = X3;, then we have that: 

or 

Y; 1 Xz; X3; Xki u; 
- = fJ1- + f3z- + !33- + · · · + f3k- + -
Z; Z; Z; Z; Z; Z; 

• 

Y· 1 Xz· Xk· u· 
__!_ = f3I- + f3z-' + f33 + · · · + !3k-' + __!_ 
Z; Z; Z; Z; Z; 

(7.39) 

(7.40) 

If this form of WLS is used, then the coefficients obtained should be interpreted very 
carefully. Note that f33 is now the constant term of (7.37) while it was a slope coefficient 
in (7.29); and on the other hand, f3I is now a slope coefficient in (7.37), while it was the 
intercept in the original model (7.29). Therefore a researcher interested in the effect of 
x3; in (7.29) should examine the intercept in (7.37), and similarly for the other case. 

Heteroskedasticity-consistent estimation methods 

White (1980) proposed a method of obtaining consistent estimators of the variances 
and covariances of the OLS estimators. We will not presept the mathematical details of 
this m~::thod here asJheY are quite tedious and beyond the scope of this text. However, 
several computer packages (EViews is one of them) are now able to compute White's 
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heteroskedasticity-corrected variances and standard errors. An example of using White's 
method of estimation in EViews is given in the computer example below. 

Computer example: resolving heteroskedasticity 

Recall the example above concerning heteroskedasticity tests. Since with all tests we 
found evidence of heteroskedasticity, alternative methods of estimation than OLS need 
to be used. If we estimate the equation· by OLS we get the results shown in Table 7 .11. 

However, we know that because of heteroskedasticity, the standard errors of the OLS 
coefficients estimates are incorrect. In order to obtain White's corrected standard error 
estimates we need to click on Quick/Estimate Equation and click on the Options 
button which is located at the lower right of the Equation Specification window. 
After that the Estimation Options window opens where we need to click on the 
Heteroskedasticity Consistent Covariance box, and then similarly to click on the 
box next to White and then on <OK>. When we return to the Equation Specification 
window, we must enter the required regression equation by typing: 

price c rooms sqfeet 

and then click <OK>. The results obtained will be as shown in Table 7.11 where now 
the White's standard errors are not the same as those from the simple OLS case although 
the coefficients are, of course, identicaL 

Calculating the confidence interval for the coefficient of sqfeet for the simple OLS case 
(the incorrect case) we have (the t-stat for 0.05 and 86 degrees of freedom is 1.662765): 

128.4362- 1.662765 * 13.82446 < b3 < 128.4362 + 1.662765 * 13.82446 

105.44 < b3 < 151.42 

Table 7.11 Regression results with heteroskedasticity 

Dependent Variable: PRICE 
Method: Least Squares 
Date: 02103/04 Time: 01:52 
Sample: 188 
Included observations: 88 

Variable Coefficient 

c -19315.00 
Rooms 15198.19 
Sqfeet 128.4362 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squareri resid 
Log likelihood 
Durbin-Watson stat 

Std. Error t-Statistic 

31046.62 -0.622129 
9483.517 1.602590 
13.82446 9.290506 

0.631918 Mean dependent var 
0.623258 S.D.dependentvar 
63044.84 Akaike info criterion 
3.38E+11 Schwarz criterion 
-1095.881 F -statistic 
1.858074 Prob(F -statistic) 

Prob. 

0.5355 
0.1127 
0.0000 

293546.0 
102713.4 
24.97458 
25.05903 
72.96353 
0.000000 
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while for the White corrected case it will be: 

128.4362- 1.662765 * 19.59089 < b3 < 128.4362 + 1.662765 * 19.59089 

112.44 < b3 < 144.38 

Therefore, the White's corrected standard errors provide us with a better (more accurate) 
estimation. 

Table 7.12 Heteroskedasticity-corrected regression results (White's method) 

Dependent Variable: PRICE 
Method: Least Squares 
Date: 02105104 Time: 20:30 
Sample: 188 
Included observations: 88 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable Coefficient Std. Error t-Statistic 

c -19315.00 41520.50 -0.465192 
Rooms 15198.19 8943.735 1.699311 
Sqfeet • 128.4362 19.59089 6.555914 

A-squared 0.631918 Mean dependent var 
Adjusted A-squared 0.623258 S.D.dependentvar 
S.E. of regression 63044.84 Akaike info criterion 
Sum squared resid 3.38E+ 11 Schwarz criterion 
Log likelihood -1095.881 F -statistic 
Durbin-Watson stat 1.757956 Prob{F -statistic) 

Pro b. 

0.6430 
0.0929 
0.0000 

' 293546.0 
102713.4 
24.97458 
2s.o59o3 

I 72.96353 
0.000000 

Table 7.13 Heteroskedasticity-corrected regression results (weighted LS method) 

Date: 02/05/04 Time: 20:54 
Sample: 188 
Included observations: 88 
Weighting series: SQFEET"(-.5) 
White Heteroskedasticity-Consistent Standard Errors & Covariance 

Variable CCJefficient Std. Error t-Statistic 

c 8008.412 36830.04 0.217442 
Rooms 11578.30 9036.235 1.281319 
Sqfeet 121.2817 18.36504 6.603944 
-
Weighted Statistics 

A-squared 0.243745 Mean dependent var 
Adjusted A-squared 0.225950 S.D. 'tlependent var 
S.E. of regression 59274.73 Akaike info criterion 
Sum squared resid 2.99E+11 Schwarz criterion 
Log likelihood -1090.455 F-statistic 
Durbin-Watson stat 1.791178 Prob{F -statistic) 

Unweighted Statistics 
---
A-squared 0.628156 Mean dependent var 
Adjusted A-squared 0.619406 S.D.dependentvar 
S.E. of regression 63366.27 Sumsquared.resid 
D-urbin-Watson stat 1.719838 

Prob. 

0.8284 
0.2036 
0.0000 

284445.3 
67372.90 
24.85125 
24.93570 
53.20881 
0.000000 

293546.0 
102713.4 

-- 3.41E+11 
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Alternatively, EViews allows us to use the weighted or generalized least squares 
method as well. If we assume that the variable which is causing the heteroskedasticity 
is the sq feet variable, or in mathematical notation we assume that: 

Var(u;) = al = a2sqfeet (7.41)' 

then the weight variable will be 1/Jsqfeet. To do this we need to click on 
Quick/Estimate Equation and then on Options, this time checking next to the 
Weighted LS/TSLS box and enter the weighting variable 1/ J sqfeet in the box by typing: 

sqfeet-(-.5) 

The results from this method are given in Table 7.13 below and are clearly different from 
the simple OLS estimation. We will leave it as an exercise for the reader to calculate and 
compare standard errors and confidence intervals for this case. 

Questitn~s ~tu~ ex:ercbes 

Questions 

1 State briefly what are the consequences of heteroskedasticity in simple OLS. 

2 Describe the Goldfeld-Quandt test for detection of heteroskedasticity. 

3 Show how one can apply the method of weighted least squares in order to resolve 
heteroskedasticity. 

4 Discuss and show mathematically what is the problem in terms of interpretation 
of the estimated coefficients, when applying WLS and the weight is an' explanatory 
'variable of the original model. 

5 Consider the following model: 

Y; = fJ1 + /hXz; + fJ3X3; + u; 

where Var(u;) = a 2Xz;. Find the generalized least squares estimates. 

6 Define heteroskedasticity and provide examples of econometric models where 
heteroskedasticity is likely to exist. 

Exercise 7.1 

Use the data in the file houseprice.wfl to estimate a model of: 

price; = {J1 + {J2sqfeet; + u; 

Check for heteroskedasticity using the White and the Goldfeld-Quandt tests. Obtain 
the generalized least squares estimates for the following assumptions: (a) Var(u;) = 
a2sqfeet; and (b) Var(u;) = a2sqfeetf. Comment on the sensitivity of the estimates and 
their standard errors to the heteroskedastic specification. For each of the two cases, use 
both the White and the Goldfeld-Quandt tests to see whether heteroskedasticity has 
been eliminated. 

~ 
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Exercise 7.2 

Use the data in Greek_SME.wfl to estimate the effect of size (proxied by number of 
employees) to the profit/sales ratio. Check whether the residuals in this equation 
are heteroskedastic by applying all the tests we have described (both formal and 
informal) for detection of heteroskedacity. If there is heteroskedasticity, obtain the 
White's corrected standard error estimates and construct confidehc,e intervals to see 
the differences of the simple OLS and the White's estimates. 

Exercise 7.3 

Use the data in police.wfl to estimate the equation that relates the actual v~Jue 
of the current budget (Y) with the expected value of the budget (X). Check for 
heteroskedasticity in this regression equation with all the known tests described in 
this chapter. 

Exercise 7.4 

The file sleep.xls contains data for 706 individuals concerning sleeping habits and 
possible determinants of sleeping time. Estimate the following regression equation: 

sleep = bo + b1 totwrk + bzeduc + b3age + b4 yngkid + bsmale + u (7 .42) 

(a) Check whether there is evidence of heteroskedasticity. 

(b) Is the estimated variance of u higher for men than women? 

(c) Reestimate the model correcting for heteroskedasticity. Compare the results 
obtained in (c) with those in part from the simJ!tle OLS estimation. 

Exercise 7.5 

Use the data in the file houseprice.xls to estimate the following equation: 

price= bo + b1lotsize + bzsqrft + b3bdrms + u (7.43) 

(a) Check whether there is evidence of heteroskedasticity. 

(b) Reestimate the equation but this time instead of price use log(price) as the dependent 
variable. Check for heteroskedasticity again. Is there any change in your conclusion 
in (a)? 

- ---- ------~ 

(c) What does this example suggest about heteroskedasticity and the transformation 
used for the dependent variable? 
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Introduction: what is autocorrelation? 

We know that the use of OLS to estimate a regression model leads us to BLUE Estimates 
of the parameters only when all the assumptions of the CLRM are satisfied. In the 
previous chapter we examined the case where assumption S does not hold. This chapter 
examines the effects on the OLS estimators when assumption 6 of the CLRM is violated. 

Assumption 6 of the CLRM states that the covariances and correlations between 
different disturbances are all zero: 

Cov(ut, Us) = 0 for all t ¥- s (8.1) 

This assumption states that the error terms lit and us are independently distributed, 
which is called serial independence. If this assumption is no longer true, then the 
disturbances are not pairwise independent, but are pairwise autocorrelated (or seria!ly 
correlated). In this situation: 

Cov(ut, u5 ) ¥- 0 for some t ¥- s (8.2) 

which means that an error occurring at period t may be correlated with one at periods. 
Autocorrelation is most likely to occur in a time-series framework. When data ar'e 

ordered in chronological order, the error in one period may affect the error in the 
next (or other) time period(s). (It is highly likely that there will be intercorrela-tions 
among successive observations especially when the interval is short, such '\S daily, 
weekly or monthly frequencies compared to a cross-sectional data set.) For example 
an unexpected 'increase in consumer confidence can c~use a consumption function 
equation to underestimate consumption for two or more periods. In cross-sectional 
data, the problem of autocorrelation is less likely to exist because we can easily change 
the arrangement of the data without meaningfully altering the results. (However, this 
is not true in the case of spatial autocorrelation, but this is beyond the scope of this 
text.) 

What causes autocorrelation? 

One factor that can cause autocorrelation is omitted variables. Suppose that Yt is related 
to Xzt and X 3t but we, wrongfully, do not include X3t in our model. The effect of X3t 
will be captured by the disturbances Ut. If X3t• as many economic time series depends 
on XJ,t-I.XJ,t-Z and so on. This will lead to unavoidable correlation among Ut and 
Ut-I• Ut-2 and so on. Thus, omitted variables can be a cause for autocorrelation. 

Autocorrelation can alsci occur due to misspecification of the model. Suppose that Yt is 
connected toXzt with a quadratic relationship Yt = {3 1 +{JzX~t+Ut, but we, wrongfully, 
assume and estimate a straight line Yt = {31 + {JzXzt +lit· Then, the error term obtained 
from the straight line specification will depend on X~t" If Xzt is increasing qr decreasing 
over time, Ut will also be increasing or decreasing over time, indicating autocorrelation. 

A third factor is systematic errors in measurement. Suppose a company updates its 
inventory at a given period in time; if a systematic error occurred in its measurement, 
then the.cumulative inventory stoEk will exhibit accumulated ·measuremenrerrois.-­
These errors will show up as an autocorrelated procedure. 
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First and higher order autocorrelation 

The simplest and most commonly observed case of autocorrelation is first-order serial 
correlation. (The terms serial correlation and autocorrelation are identical and will be 
used in this text interchangeably.) Consider the multiple regression model: ' 

Yt = fh + fJzXu + f33X3t + · · · + f3kXkt +lit (8.3) 

in which the current observation of the error term (Ut) is a function of the previous 
(lagged) observation of the error term (llt-1) i.e.: 

lit = Pllt-1 + et (8.4) 

where p is the parameter depicting the functional relationship among observations of 
the error term (ut) and et is a new error term which is iid (identically independently 
distributed). The coefficient p is called the first-order autocorrelation coefficient and 
takes values from -1 to 1 (or IPI < 1) in order to avoid explosive behaviour (we will 
explain this analytically in Chapter 13, where we describe the ARlMA models). 

It is obvious that the size of p will determine the strength of serial correlation, and 
we can differentiate three cases: 

(a) If p is zero, then we have no serial correlation, because lit = et and therefore an iid 
error term. ,. 

(b) If p approaches unity, the value of the previous observation of the error (ut_ 1) 

becomes more important in determining the value of the current error term (ut) 
and therefore greater positive serial correlation exists. In this case the current 
observation of the error term tends to have the same sign as the previous observation 
of the error term (i.e. negative will lead to negative, and positive will lead to 
positive). This is called positive serial correlation. Figure 8.1 shows how the residuals 
of a case of positive serial correlation appear. 

(c) If p approaches -1, again obviously the strength of serial correlation will be very 
high. This time, however, we now have negative serial correlation. Negative serial 
correlation implies that there is some saw tooth like behaviour in the time plot of 

u, 

• • • • • 
0 I •,. •• • Time 

• ••• • •• 
• 
• • 

u, 

• • • • • • • • • 
Ut-1 IW' -

Figure 8.1 Positive serial correlation 
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Figure 8.2 Negative serial correlation 

Ut-1 

the error terms. The signs of the error terms have a tendency to switch signs from 
negative to positive and vice versa in consecutive observations. Figure 8.2 depicts 
the case of negative serial correlation. 

• 
In general, in economics, negative serial correlation is much less likely to happen 

that positive serial correlation. ' 
Serial correlation can take many forms and we can have disturbances that follow 

higher orders of serial correlation. Consider the following model: 

Yt = lh + fJzXzr + f33X3t + · · · + fJkXkt + Ut (8.5) 

where 

lit = Pl Ut-1 + pzUt-2 +. · · + Ppllt-p + Et (8.6) 

In this case, we say that we have pth-order serial correlation. If we have quarterly data 
and we omit seasonal effects, for example, we might expect to find that a 4th-order 
serial correlation is present; while, similarly, monthly data might exhibit 12th-order 
serial correlation. In general, however, cases of higher-order serial correlation are not 
as likely to happen as the first-order type that we analytically examined before. 

Consequences of autocorrelation on the OLS 
estimators 

A general approach 

Consider the classical linear regression model: 

Yr = lh + f3zXzt + f33X3r + · · · + f3kXkt + ur (8.7) 

If the-error term (ur) in this equation is known to exhibit serial correlafion, then the __ _ 
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consequences on the OLS estimates can be summarized as follows: 

1 The OLS estimators of the {Js are still unbiased and consistent. This is because both 
unbiasedness and consistency do not depend on assumption 6 (see the proofs of 
unbiasedness and consistency in Chapters 4 and S) which is in this case violated . 

2 The OLS estimators will be inefficient and therefore no longer BLUE. 

3 The estimated variances of the regression coefficients will be biased and inconsistent, 
and therefore hypothesis testing is no longer valid. In most of the cases, R2 will 
be overestimated (indicating a better fit than the one that truly exists) and the t­
statistics will tend to be higher (indicating higher significance of our estimates than 
the correct one). 

A more mathematical approach 

First we will examine how serial correlation affects the form of the variance-covariance 
matrix of the residuals, and then we will use this to show why the variance of the {3s 
in a multiple regression model will no longer be correct. 

Effect on the variance-covariance matrix of the error terms 

Recall from Chapter 5 (p. 66ff.) that the variance-covariance matrix of the residuals, 
because of assumptions 5 and 6, looks like: 

("' 
0 0 ... 

~}.'!· E(uu') ~ : 

a2 0 0 
0 az ... (8.8) 
.. . ... 
0 0 ... aZ 

where In is an n x n identity matrix. 
The presence of serial correlation shows clearly that assumption 6 is violated. 

Therefore, the non-diagonal terms of the variance-covariance matrix of the residuals 
will no longer be zero. Let's assume that the error terms are serially correlated of order 
one. We therefore have that: 

Ut ~ PUt-1 + t:t 

Using the lag operator, LXt = Xt-1- equation (8.9) can be rewritten as: 

(1 - pL)ut = t:t 

or 

1 
u - E:t 

t - (1 - pL) 

= (1 + pL + P2 L 2 + ... )t:t 

= t:t + Pt:t-1 + P2
t:t-2 + P3t:t-3 + · · · 

(8.9) 

(8.10) 

(8.11) 
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Squaring both sides of (8.11) and taking expectations, yields: 

a2 
E E(uf) = Var(ut) = 

1 
_ p2 (8.12) 

Note that the solution for Var(ut) does not involve t, therefore the Ut series has a 
constant variance given by: 

2 al 
au= ---2 

1-p 
(8.13) 

Using (8.11) it is simple to show that the covariances E(ut, Ut_ 1) will be giv~n by: 

2 E(ut,Ut-1) =pau 

2 2 
E(ut, Ut-2) = P au 

E(llt, Ut-s) = p5a~ 

(8. 14) 

(8.15) 

(8.16) 

(8.17) 

• 
Thus the variance-covariance matrix of the disturbances (for the first-order serial 
correlation case) will be given by: 

E(uu') ~ u 2 
( .~. 

p p2 ... p"-1) 1 p n-2 ... 
P = S22 * 

... . .. 
pn-1 pn-2 pn-3 ... 1 

Effect on the OLS estimators of the multiple regression model 

Recall that the variance-covariance matrix of the OLS estimators fi is given by: 

Cov(p) = E[(ft - {J)(p - P>'J 

= E{[(X'X)-1 X'u][(X'X)-1 X'u]'} 

= E{(X'X)-1X'uu'X(X'X)-1}t 

= (X'X)- 1X'E(uu')X(X'X)- 1 ~ 

= (X'X)- 1 X'S22 X(X'X)- 1 

(8.18) 

(8.19) 

which is totally different from the classical expression a 2 (X'X)-1. This is because 
assumption 6 is no longer valid, and of course n2 denotes the new variance-covariance 
matrix presented above, whatever form it may happen to take. Therefore, using 
the classical expression to calculate the variances, standard errors and !-statistics of 

• We denote this matrix of r.lz in order to differentiate from the 
heteroskedasticity case in Chapter 10. 

t This is because (AB)' = B'A'. __ _ 
t This is because, according-to assumption :[,the Xs are non-random. 
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the estimated fts will lead us to incorrect conclusions. Formulae 8.19 (which is also 
similar to 7.9) forms the basis for what is often called 'Robust' inference, i.e. the 
derivation of standard errors and 't' statistics which are correct even when some of the 
OLS assumptions are violated. Basically what happens is that we assum~ a particular 
form for the Q matrix and then use (8.19) to calculate a corrected covariance matrix. 

Detecting autocorrelation 

The graphical method 

One simple way to detect autocorrelation is by examining whether the residual plots 
against time and the scatter plot of iit against ilt-l exhibit patterns similar to those 
presented in Figures 8.1 and 8.2 above. In such cases we say that we have evidence of 
positive serial correlation when the pattern is similar to that of Figure 8.1, and negative 
serial correlation if similar to that of Figure 8.2. An example with real data is given 
below. 

Example: detecting autocorrelation using the graphical method 

The file ser_corr. wf1 contains the following quarterly data from 198Sq 1 to 1994q2: 
Icons = the consumer's expenditure on food in £millions at 

, constant 1992 prices. 
ldisp = disposable income in £millions at constant 1992 prices. 
/price= the relative price index of food (1992 = 100). 

Denoting Icons, ldisp and /price by Cr, Dt and Pt respectively, we estimate in EViews the 
following regression equation: 

Cr = b1 + bzDt + b3Pr + ur 

by typing in the EViews command line: 

ls lcons c ldisp !price 

Results from this regression are shown in Table 8.1. 
After esl;imating the regression, we store the residuals of the regression in a vector by 

typing the command: 

genr resOl=resid 

A plot of the residuals obtained by the command: 

plot resOl 

is presented in Figure 8.3, while a scatter plot of the residuals against the residuals at 
t - 1 obtained by using the command: 

scat resOl (-1) resOl 

is given in Figure 8.4. 
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Table 8.1 Regression results from the computer example 

Dependent Variable: LCONS 
Method: Least Squares 
Date: 02112104 Time: 14:25 
Sample: 1985:1 1994:2 
Included observations: 38 

Variable 

c 
LDISP 
LPRICE 

R-squared 

Coefficient 

2.485434 
0.529285 

-0.064029 

0.234408 
0.190660 
0.046255 
0.074882 

Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

64.43946 
0.370186 

0.12 

0.08 

0.04 

0.00 

-0.04 

Std. Error 

0.788349 
0.292327 
0.146506 

t-Statistic 

3.152708, 
1.810589 

-0.437040 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

-0.08 +-r~,.-.....,..,,..........,..,.~.,..,...~...,.....,.......,,..,...,..,..,....,..............,.,..~,.., 
85 86 87 88 89 90 91 92 93 

Figure 8.3 Residuals plot from computer example 

Pro b. 

0.0033 
0.0788 
0.6648 

4.609274, 
0.051415"· 

-3.233656 
-3.104373 

5.358118 
0.009332 

., 

From both these figures it is clear that the residuals are serially correlated and 
particularly positively serially correlated. 

The Durbin-Watson test 

The most frequently used statistical test for the presence of serial correlation is the 
Durbin-Watson (DW) test (see Durbin and Watson, 1950), which is valid when the 
following assumptions are met: 

(a) the regress~n model if1cludes a constant; __ 

(b) serial correlation is assumed to be of first-order only; and 
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Figure 8.4 Residuals scatter plot from computer example 

(c) the equation does not include a lagged dependent variable as an explanatory 
variable. 

Con~ider the model: 

Yt = lh + fJ2X2t + f33X3t + · · · + f3kXkt + llt (8.20) 

where: 

Lit= Pllt-1 + Et IPI < 1 (8.21) 

Then under the null hypothesis H0 : p = 0 the OW test involves the following steps: 

Step 1 

Step 2 

Step 3 

Estimate the model by using OLS and obtain the residuals u1. 

Calculate the OW test statistic given by: 

"11 (. . 2 d = L-t=2 lit - Ut-I) -
"n ·2 
L-t=l 11t 

(8.22) 

Construct Table 8.2, substituting with your calculated du, dL, 4 -du and 4-dL 
that you will obtain from the OW critical values table that is given in the 
Appendix. Note that table of critical values is according to k' which is the 
number of explanatory variables excluding the constant. 

Step 4a To test for positive serial correlation the hypotheses are: 

Ho: p = 0 no autocorrelation. 

Ha: p > 0 positive autocorrelation. 
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Table 8.2 The DW test 

,.. ..:.. ..; ;.. ..:.. .. 

0 

Reject H0 
+Ve S.C. 

Zone of :.. ..: Zone of i 
indecision i 

0 
t . t H. i indecision · l o no rejec 0 l 

i or Ha or both · 
i 

Reject HCY. 
-ve s.c. 

dL du 2 4-dL 4-du 4 

1 If d::: dL we reject Ho and conclude in favour of positive serial correlation.,_ 

2 If d:::: du we cannot reject Ho and therefore there is no positive serial 
correlation. 

3 In the special case where dL < d < du the test is inconclusive. 

Step 4b To test for negative serial correlation the hypotheses are: 

Ho: p = 0 no autocorrelation. 

Ha: p < 0 negative autocorrelation. 

1 If d:::: 4 - dL we reject Ho and conclude in favour of negatLve serial 
correlation. 

2 If d::: 4 - du we cannot reject Ho and therefore there is no negative serial 
correlation. 

3 In the special case where 4 - du < d < 4 - dL the test is inconclusive. 

The inconclusiveness of the DW test comes from the fact that the small sample 
distribution for the DW statistic depends on the X variables and is difficult to determine 
in general a prefered testing procedure is the LM test to be described later. 

A rule of thumb for the OW test 

From the estimated residuals we can get an estimate of p as: 

n A A 

A Lt=2 lltllt-1 
p = ~n fl2 

L...t=l t 
(8.23) 

It is shown in the Appendix that the DW statistic is approximately equal to d = 2(1-p). 
Because p by definition ranges from -1 to I, the range for d will be from 0 to 4. 
Therefore, we can have three different cases: 

(a) p = 0; d = 2: therefore, a value of d near to 2 indicates that there is no evidence of 
serial correlation. 

(b) p-::::::. 1; d-::::::. 0: a strong positive autocorrelation mea_ns that p vvill be close to +1, and 
th-usawill get very low values (close to zero) for positive autocorrelation. 
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(c) p:::: - 1; d:::: 4: similarly, when p is close to -1 then d will be close to 4 indicating 
strong negative serial correlation. 

From this analysis we can see that, as a rule of thumb, when the DW test statistic is 
very close to 2 then we do not have serial correlation. 

The DW test in EViews and Microfit 

Both EViews and Micro fit report the DW test statistic directly in the diagnostics of every 
regression output; the DW statistic is reported in the final line of the left-hand corner. 
The only work that remains for the researcher is to construct the table with the critical 
values and check whether serial correlation exists or not, and of what kind. An example 
is given below. 

Computer example of the DW test 

From the regression results output of the previous example (graphical detection of 
autocorrelation) we observe that the DW statistic is equal to 0.37. Finding the critical 
values dL and du for n = 38 and k' = 2 and putting those in the DW table we have 
the results shown in Table 8.3. It is obvious that d = 0.37 is less than dL = 1.11, and 
therefdre there is strong evidence of positive serial correlation. 

The Breusch-Godfrey LM test for serial correlation 

The DW test has several drawbacks that make its use inappropriate in various cases. 
For instance (a) it may give inconclusive results, (b) it is not applicable when a lagged 
dependent variable is used, and (c) it can't take into account higher orders of serial 
correlation. 

For these reasons Breusch (1978) and Godfrey (1978) developed an LM test which 
can accommodate all the above cases. Consider the model: 

0 

Yt = lh + f3zXzt + f33X3t + · · · + f3kXkt + Ut 

Table 8.3 An example of the DW test 

~ 
Zone of Zone of 
indecision 

0 
. u indecision 

o not reJect no 
or Haor both 

du 2 4-dL 

0.37 1.11 1.33 

~ I 

Reject Ho. 
-ve s.c. 

4-du 

(8.24) 

.. i 

4 
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where 

Ut =PI Ut-I + P2llt-2 + · · · + Ppllt-p + Et 

The Breusch-Godfrey LM test combines these two equations: 

Yt = /h + fJzXzt + f33X3t + · · · + fJkXkt +PI Ut-I+ P211t-2 + · · · 

+ PpUt-p + Et 

and therefore the null and the alternative hypotheses are: 

Ho: PI = P2 = · · · = Pp = 0 no autocorrelation. 

Ha: at least one of the ps is not zero, thus, serial correlation. 

The steps for carrying out the test are the following: 

Step 1 Estimate (8.24) by OLS and obtain fit. 

(8.25) 

(8.26) 

' Step 2 Run the following regression model with the number of lag~ used (p) being 
determined according to the order of serial correlation you are willing to test. 

Ut = ao + aiX2t · · · aRXRt + aR+I Ut-I··· aR+PUt-p ·' 

Step 3 Compute the LM statistic = (n - p)R2 from the regression run in step 2. If this 
LM statistic is bigger than the xj critical value for a given level of significance, 
then we reject the null of serial correlation and conclude that serial correlation 
is present. Note that the choice of p is arbitrary. However, the periodicity of 
the data (quarterly, monthly, weekly etc.) will often give us a suggestion for 
the size of p. 

The Breusch-Godfrey test in EViews and Microfit 

After estimating a regression equation in £Views, in order to perform the Breusch­
Godfrey LM test we move from the estimation results window to View/Residual 
Tests/Serial Correlation LM test ... £Views asks for the number of lags to be included 
in the test, and after specifying that and clicking on <OK> the results of the test are 
obtained. The interpretation is as usual. ·-

Microfit reports the LM test for first-order serial correlation directly in the diagnostic 
tests section of the regression results output. The Breusch - Godfrey LM test is for 
Microfit test A. If we need to test for higher-order serial correlation we close the results 
window by clicking on <close> to obtain the Post Regression menu. From that menu 
choose option 2. Move to the Hypothesis Testing menu and click <OK>. From the 
hypothesis testing menu choose option 1, LM tests for Serial Correlation (OLS, IV, 
NLS and IV-NLS), and click <OK>. You will then be asked to determine the number 
of lags in the Input an integer window and_after_dicking-<OK> the-re-sults of the test~ 
will be obtafllec:l: An example with the use of £Views is given below. 
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Computer example of the Breusch-Godfrey test 

Continuing with the consumption, disposable income and price relationship, we 
proceed by testing for fourth-order serial correlation due to the fact that we have 
quarterly data. In order to test for serial correlation of fourth order we use the Breusch­
Godfrey LM test. From the estimated regression results window we go to View /Residual 
Tests/Serial Correlation LM Test and specify as the number of lags the number 4. The 
results of this test are shown in Table 8.4. 

We can see from the first columns that the values of both the LM statistic and the 
F statistic are quite high, suggesting the rejection of the null of no serial correlation. 
It is also evident that this is so due to the fact that the p-values are very small (smaller 
than 0.05 for a 95% confidence interval). So, serial correlation is definitely present. 
However, if we observe the regression results, we see that only the first lagged residual 
term is statistically significant, indicating, most probably, that the serial correlation 
is of first order. Rerunning the test for a first-order serial correlation the results are as 
shown in Table 8.5. 

This time the LM statistic is much higher, as well as the t statistic of the lagged 
residual term. So, the autocorrelation is definitely of first order. 

Durbin's h test in the presence of lagged dependent variables 

We m~ntioned before in the assumptions of the DW test, that the DW test is 
not applicable when our regression model includes lagged dependent variables as 

Table 8.4 Results of the Breusch-Godfrey test (4th order s.c.) 

Breusch-Godfrey Serial Correlation LM Test: 

F-statistic 
Obs• A-squared 

Test Equation: 

17.25931 
26.22439 

Dependent Variable: RESID 
Method: Least Squares 
Date: 02/12/04 Time: 22:51 

Variable 

c 
LDISP 
LPRICE 
RESID(-1) 
RESID(-2) 
RESID(-3) 
RESID(-4) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

-0.483704 
0.178048 

-0.071428 
0.840743 

-0.340727 
0.256762 
0.196959 

0.690115 
0.630138 
0.027359 
0.023205 

86.69901 
1.554119 

Std. Error 

0.489336 
0.185788 
0.093945 
0.176658 
0.233486 
0.231219 
0.186608 

Probability 
Probability 

t-Statistic 

-0.988491 
0.958341 

-0.760322 
4.759155 

-1.459306 
1.110471 
1.055465 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F-statistic) 

0.000000 
0.000029 

Prob. 

0.3306 
0.3453 
0.4528 
0.0000 
0.1545 
0.2753 
0.2994 

1.28E-15 
0.044987 

-4.194685 
-3.893024 
11.50621 

0.000001 
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Table 8.5 Results of the Breusch-Godfrey test (1st order s.c.) 

Breusch-Godfrey Serial Correlation LM Test: 

F-statistic 
Obs* R-squared 

Test Equation: 

53.47468 
23.23001 

Dependent Variable: RESID 
Method: Least Squares 
Date: 02112104 Time: 22:55 

Variable 

c 
LDISP 
LPRICE 
RESID(-1) 

A-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

-0.585980 
0.245740 

-0.116819 
0.828094 

0.611316 
0.577020 
0.029258 
0.029105 

82.39425 
1.549850 

Probability 
Probability 

Std. Error 

0.505065 
0.187940 
0.094039 
0.113241 

t-Statistic 

-1.160208 
1.307546 

-1.242247 
7.312638 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F -statistic) 

0.000000 
0.000001 

Prob. 

0.2540 
0.1998. 
0.2226 
0.0000 

1.28E ~ 15 
0.044987 

-4.126013 
-3.953636 
17.82489 

0.000000 

explanatory variables. Therefore, if the model under examination has the form: 

Yt = fh + fJzX zt + f33X3t + · · · + fJkXkt + Y Yt-l + u, (8.27) 

the OW test is no longer valid. 
Durbin (1970) devised a test statistic that can be used for such models, and this h 

statistic has the form: 

h=(1-~)J1-
11

nat (8.28) 

where n is the number of observations, d is the regular DW statistic defined in (8.22) 
and a? is the estimated variance of the coefficient of the lagged dependent variable. 

y 
For large samples this statistic follows a normal distribution. So, the steps involved in 
the h test are the following: 

Step 1 Estimate (8.27) by OLS to obtain the residuals and calculate the OW statistic 
given by (8.22). (As we noted before, in practical terms this step using EViews 
involves only the estimation of the equation by OLS. EViews provides the OW 
statistic in its reported regression diagnostics. Using Microfit this step alone 
will also give the h statistic so step 2 is not needed.) 

Step 2 Calculate the h statistic given by (8.28). 

Step 3 The hypotheses are: 

Ho: p = 0 no autocorrelation. 

Ha: -.o-<0 autocorrelation is {ffesent. 
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Figure 8.5 Durbin's h test, graphically 
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Step 4 Compare the h statistic with the critical value (for large samples and for ex = 
0.05, z = ± 1. 96). If the h statistic exceeds the critical value, then Ho is rejected 
and we conclude that there is serial correlation (see also Figure 8.5). 

The h t,est in EViews and Microfit 

EViews reports only the DW test, independently of whether a lagged dependent variable 
is used as a regressor or not. Therefore step 2 is needed in order to calculate the h statistic. 
Ip Microfit, though, inclusion of a lagged dependent variable gives by default the h 
statistic in the diagnostics of the regression results output window. This is located next 
to the DW statistic and is the last line of the right·hand corner. Microfit also reports the 
probability limit for this statistic, so if it is bigger than 0.05 the reader can understand 
very quickly that serial correlation is not present in this case. An example of the h test 
using EViews is given below. 

Computer example of Durbin's h test . 
If we want to estimate the following regression model: 

Ct = b1 + bzDt + b3Pt + b4 Ct-l + llt 

which includes a lagged dependent variable, we know that the DW test is no longer 
valid. Thus, in this case we need to use either Durbin's h test or the LM test. Running 
the regression model by typing: 

ls lcons c ldisp lprice lcons(-1) 

we get the results shown in Table 8.6. 
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Table 8.6 Regression results with a lagged dependent variable 

Dependent Variable: LCONS 
Method: Least Squares 
Date: 02112/04 Time: 22:59 
Sample(adjusted): 1985:2 1994:2 
Included observations: 37 after adjusting endpoints 

Variable 

c 
LDISP 
LPRICE 
LCONS(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

-0.488356 
0.411340 

-0.120416 
0.818289 

0.758453 
0.736494 
0.026685 
0.023500 

83.69058 
1.727455 

Std. Error t-Statistic 

0.575327 
0.169728 
0.086416 

-0.848831 
2.423524 

-1.393442 
7.890392 0.103707 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F-statistic) 

Prob. 

0.4021 
0.0210 
0.1728 
0.0000 

4.608665 
0.051985 

-4.307599 
-4.133'446 
34.53976 

0.000000 

The DW statistic is equal to 1.727455, and from this we can get the h statistic frQ!ll 
the formula: 

. d)CI: 
h = ( 1 - z V 1 - na? 

where a? is the variance of the coefficient of LCONS( -1) = (0.103707)2 = 0.0107551. 
y 

Typing in EViews the following command we get the value of the h statistic: 

scalar h= (1-1. 727455/2) (37/ (1-37*0 .103707)) A (. 5) 

and by double clicking on the scalar h we can see the value at the low left-hand corner as: 

scalar h=1.0682889 

and therefore because h < z- critical = 1.96 we fail to reject the Ho hypothesis and 
conclude that this model does not suffer from serial correlation. 

Applying the LM test for this regression equation by clicking on View/Residual 
Tests/Serial Correlation LM Test and specifying the lag order to be equal to 1 (by 
typing 1 in the relevant box) we get the results shown in Table 8.7. From these results 
it is again clear that there is no serial correlation in this model. 

Resolving autocorrelation 

Since the presence of autocorrelation provides us ~ith inefficient OLS estimators, it_ 
is important to have ways of correcting our-estlmates,and two different cases are 
presented in the next two sections. 
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Table 8.7 The Breusch-Godfrey LM test (again) 

Breusch-Godfrey Serial Correlation LM Test: 
F-statistic 0.680879 
Obs* R-squared 0.770865 

Test Equation: 
Dependent Variable: RESID 
Method: Least Squares 
Date: 02/12104 Time: 23:10 

Variable Coefficient 

c 
LDISP 
LPRICE 
LCONS(-1} 
RESID(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

When p is known 

Consider the model: 

0.153347 
0.018085 
0.003521 

-0.054709 
0.174392 

0.020834 
-0.101562 

0.026815 
0.023010 

84.08009 
1.855257 

Std. Error 

0.607265 
0.171957 
0.086942 
0.123515 
0.211345 

Probability 
Probability 

t-Statistic 

0.252521 
0.105171 
0.040502 

-0.442932 
0.825154 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Yt = fh + f3zXu + f3JX3t + · · · + f3kXkt + ut 
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0.415393 
0.379950 

Pro b. 

0.8023 
0.9169 
0.9679 
0.6608 
0.4154 

9.98E-16 
0.025549 

-4.274599 
-4.056908 

0.170220 
0.952013 

(8.29) 

where we know that Lit is autocorrelated and we speculate that it follows a first-order 
serial correlation, so that: 

Ut = PUt-1 + ft 

If {8.29) holds for period t, it will hold for period t- 1 as well, so: 

Yt-,I = fJ1 + fJzXzt-1 + f33X3t-1 + · · · + fJkXkt-1 + ut-1 

Multiplying both sides of (8.31) by p, yields: 

PYt-1 = fJ1P + f3zpXzt-1 + f33PX3t-1 + · · · + f3kPXkt-1 + Pllt-1 

and subtracting (8.32) from (8.29) we obtain: 

or 

Yt- pYt-1 = f31(1- p) + f3z(Xzt- pXzt-1) + f33(X3t- pX3t-1) + · .. 
+ f3k(Xkt- pXkt-1) +(lit- put-1) 

v; = tJi + f3zXit + f33X]t + · · · + f3kXk.t + et 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 
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Table 8.8 Regression results for determining the value of p 

Dependent Variable: RES01 
Method: Least Squares 
Date: 02112104 Time: 23:26 
Sample(adjusted}: 1985:2 1994:2 
Included observations: 37 after adjusting endpoints 

Variable 

RES01(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 

Coefficient 

0.799544 

0.638443 
0.638443 
0.026322 
0.024942 

82.58841 

Std. Error t-Statistic 

0.100105 7.987073 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 

Table 8.9 The generalized differencing regression results 

Dependent Variable: LCONS_STAR 
Method: Least Squares 
Date: 02112104 Time: 23:49 
Sample: 1985:1 1994:2 
Included observations: 38 

Variable 

BETA1_STAR 
LDISP _STAR 
LPRICE_STAR 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 

Coefficient 

4.089403 
0.349452 
-0.235900 

0.993284 
0.992900 
0.025482 
0.022726 

87.09532 

Std. Error 

1.055839 
0.231708 
0.074854 

t-Statistic 

3.873131 
1.508155 
-3.151460 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
Durbin-Watson stat 

where v; = Yt- pYt-I• J..~i =fit (1- p), and Xit = (X;t- pXit-1). 

Prob. 

0.0000 

-0.002048 
0.043775 

-4.410184 
-4.366646 

1.629360'·. 

_Prob 

0.0004 
0.1405 
0.0033 

0.974724 
0.302420 

-4.426070. 
-4.296787 

1.686825 

Note that with this differencing procedure we lose one observation. In order to avoid 
this .loss of one observation it is suggested that Y1 and Xn should be transformed for 
the first observation as follows: 

Yi = Y1~ and Xj1 =Xn~ (8.35) 

The transformation that generated v; I fii and X it is known as quasi-differencing 
or generalized differencing. Note that the error term in (8.34) satisfies all the CLRM 
assumptions. So, if pis known we can apply OLS to (8.34) and obtain ,...,H~~~-
are BLUE. Af1 __ example of the use of generali7~>rl ""'cr --~---
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Computer example of the generalized diHerencing approach 

In order to apply the generalized differencing estimators we first need to find an estimate 
of the p coefficient. Remember that from the first computer example we obtained the 
residual terms and we named them resO 1. Running a regression of resO 1 to resO 1 ( -1) we 
get the results shown in Table 8.9, from which we have that the p coefficient is equal 
to 0.799. 

In order then to transform the variables for the first observation we need to enter the 
following commands in the EViews command window: 

scalar rho=c ( 1) [saves the estimate of the r coefficient] 
smpl 1985:1 1985: 1 [sets the sample to be only the first observation] 
genr lcons_star=((1-rho-2)-(0.5))*lcons 
genr ldisp_star=((1-rho-2)-(0.5))*ldisp 
genr lprice_star=((1-rho-2)-(0.5))*lprice 
genr beta1 star=((1-rho-2)-(0.5)) 

where the three commands generate the starred variables and the final command creates 
the new constant. 

To transform the variables for observations 2 to 38 we need to type the following 
commands in the EViews command window: 

smpl 1985:2 1994:2 
genr lcons star=lcons-rho*lcons(-1) 
ge'nr ldisp=star=ldisp-rho*disp(-1) 
9enr lprice_star=lprice-rho*lprice(-1) 
genr beta1_star=1-rho 

And in order then to estimate the generalized differenced equation we need first to 
change the sample to all observations by typing: 

smpl 1985:1 1994:2 

and then to execute the following command: 

ls lcons_star beta1_star ldisp_star lprice_star 

the results of which are shown in Table 8.9. 

When p is unknown 

Although the method of generalized differencing seems to be very easy to apply, in 
practice the value of p is not known. Therefore, alternative procedures need to be 
developed in order to provide us with estimates of p and then of the regression model 
(8.34). Several procedures have been developed, with two being the most popular and 
important: (a) the Cochrane-Orcutt iterative procedure, and (b) the Hildreth-Lu search 
procedure. These two procedures are presented below. 
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The Cochrane-Orcutt iterative procedure 

Cochrane and Orcutt (1949) developed an iterative procedure that can be presented 
through the following steps: 

Step I Estimate the regression model (8.29) and obtain the residuals ilt. 

Step 2 Estimate the first-order serial correlation coefficient p by OLS from iit = PUt-!+ 
E:t· 

Step 3 Transform the original variables as v; = Yt- .OYt-I, .Bi = fh (1 - P}, and X it = 

(Xit- /1Xit_ 1) fort= 2, ... , nand as Yi = Y1JI- ,02 and Xj1 = Xil J1- ,02 
fort= 1. 

Step 4 Run the regression using the transformed variables and find the residuals of 
this regression. Since we do not know that the p obtained from step 2 is the 
'best' estimate of p, go back to step 2 and repeat step 2 to step 4 for several 
rounds until the following stopping rule holds. 

Stopping rule The iterative procedure can be stopped when the estimates of p from 
two successive iterations differ by no more than some preselected (very small) value, 
such as 0.001. The final p is used to get the estimates of (8.34). In general, the iteratfve 
procedure converges quickly and does not require more than 3 to 6 iterations. 

EViews utilizes an iterative non-linear method for estimating generalized differenc­
ing results with AR(l) errors (autoregressive errors of order 1) in the presenc~ of serial 
correlation. Since the procedure is iterative, it requires a number of repetitions in order 
to achieve convergence which is reported in the EViews results below the included 
observations information. The estimates from this iterative method can be obtained 
by simply adding the AR(l) error terms to the end of the equation specification list. So, 
if we have a model with variables Y and X, the simple linear regression command is: 

ls y c x 

If we know that the estimates suffer from serial correlation of order 1, then results can 
be obtained through the iterative process by using the command: 

ls y c x ar(l) 

EViews provides results in the regular way about the constant and the coefficient of the 
X variable, together with an estimate for p which will be the coefficient of the AR(l) 
term. An example is provided at the end of this section. 

The Hildreth-Lu search procedure 

Hildreth and Lu (1960) developed an alternative method to the Cochrane-Orcutt 
iterative procedure, their method consisting of the following steps: 

Step I Choose a value for p (say PI), and for this value transform the model as in 
_____ _{8.34) and estimate it by OLS. - --~~---
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Step 2 From the estimation in step 1 obtain the residuals &t and the residual sum of 
squares (RSS(p1)). Next choose a different value of p (say pz) and repeat steps 
1 and 2. 

Step 3 By varying p from -1 to + 1 in some predetermined systematic way (lets say at 
steps of length 0.05), we can get a series of values of RSS(p;). We choose that p 

for which RSS is minimized and the equation (8.34) that was estimated using 
that optimal pas the optimal solution. 

This procedure is very hectic and involves lots of calculations. EViews provides results 
very quickly with the Cochrane-Orcutt iterative method (as we have shown above), 
and is usually preferred in cases of autocorrelation. 

Computer example of the iterative procedure 

To obtain results with the EViews iterative method and assuming a serial correlation of 
order one, we type the following command in EViews: 

ls leans c ldisp lprice ar(l) 

the results from which are shown in Table 8.10. 
We observe that it required 13 iterations in order to obtain convergent results. Also, 

the A_R(l) coefficient (which is in fact the p) is equal to 0.974 which is much bigger 
than obtained in the previous computer example. However, this is not always the 
case; other examples lead to smaller discrepancies. The case here might be affected 
by the quarterly f,·equency of the data. If we use an AR(4) term in addition by the 

Table 8.10 Results with the iterative procedure 

Dependent Variable: LCONS 
Method: Least Squares 
Date: 02112104 Time: 23:51 
Sample(adjusted): 1985:2 1994:2 
Included observations: 37 after adjusting endpoints 
Convergence achieved after 13 iterations 

Variable Coefficient Std. Error t-Statistic 

c 9.762759 1.067582 9.144742 
WISP -0.180461 0.222169 -0.812269 
LPRICE -0.850378 0.057714 -14.73431 
AR(1) 0.974505 0.013289 73.33297 

R-squared 0.962878 Mean dependent var. 
Adjusted R-squared 0.959503 S.D. dependent var. 
S.E. of regression 0.010461 Akaike info. criterion 
Sum squared resid 0.003612 Schwarz criterion 
Log likelihood 118.3382 F-statistic 
Durbin-Watson stat 2.254662 Prob( F -statistic) 

Inverted AR Roots 0.97 

Pro b. 

0.0000 
0.4225 
0.0000 
0.0000 

4.608665 
0.051985 

-6.180445 
-6.006291 

285.3174 
0.000000 
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Table 8.11 Results with the iterative procedure and AR( 4) term 

Dependent Variable: LCONS 
Method: Least Squares 
Date: 02112104 Time: 23:57 
Sample(adjusted): 1986:1 1994:2 
Included observations: 34 after adjusting endpoints 
Convergence achieved after J J iterations 

Variable Coefficient Std. Error t-Statistic 

c 10.21009 0.984930 10.36632 
LDISP -0.308133 0.200046 -1.540312 
LPA/CE -0.820114 0.065876 -12.44932 
AA(1) 0.797678 0.123851 6.440611 
AA(4) 0.160974 0.115526 1.393404 

A-squared 0.967582 Mean dependent var 
Adjusted A-squared 0.963111 S.D.dependentvar 
S.E. of regression 0.010251 Akaike info criterion 
Sum squared resid 0.003047 Schwarz criterion 
Log likelihood 110.1946 F -statistic 
Durbin-Watson stat 2.045794 Prob(F -statistic) 

Inverted AR R:>ots 0.97 0.16+0.55i 0.16-0.55i 

command: 

ls leans c ldisp !price ar(l) ar(4) 

Prob. 

0.0000 
0.1343 
0.0000 
0.0000 
0.1741 

4.610894 
0.053370 

-6.187920 
-5.9634.55 

216.3924 
0.000000 

-o:so 

we get a p coefficient (see Table 8.11) which is very close to the one from the previous 
example. 

o:~J~\t-~~~~:}to/:~ rtli?lfd 
(\ 
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Questions 

1 What is autocorrelation? Which assumption of the CLRM is violated and why? 

2 Explain what are the consequences of autocorrelation and how can it be resolved 
when p is known. 

3 Explain how autocorrelation can be resolved when p is unknown. 

4 Describe the steps of the DW test for autocorrelation. What are its disadvantages and 
which alternative tests can you suggest? 

Exercise 8.1 

The file investment. wfl contains data for the following variables, I= investment, Y = 

income and R = interest rate. Estimate a regression equation that .has as dependent 
variable the investment, and as expl<matory variables income and the interest rate. 
Ch~c~Jor autocor:E~~tic:m usingJ:mth the infqrm_al and_.<iJLtheJQiffi_gJ w~ys (t~_sts)_t.b.at wg ___ _ 
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have covered in Chapter 8. If autocorrelation exists, use the Cochrane-Orcutt iterative 
procedure to resolve autocorrelation. 

Exercise 8.2 

The file product.wfl contains data for the following variables, q =quantity of a good 
produced during various years, p = price of the good, f = amount of fertilizer used in 
the production of this good and r = amount of rainfall during each production year. 
Estimate a regression equation that explains the quantity produced of this product. 
Check for autocorrelation using both the informal and all the formal ways (tests) that we 
have covered in Chapter 8. If autocorrelation exists, use the Cochrane-Orcutt iterative 
procedure to resolve autocorrelation. 

Appendix 

The DW test statistic given in (8.22) can be expanded to give: 

"'n A 2 "'n A 2 "'n A A 
d = L....t=2 ut + L....t=2 ut-1- 2 L....t=2 UtUt-1 

"'n A 2 
L....t=1 ut 

(8.36) 

Becaus~ Ut are generally small, the summations from 2 to n or from 2 to n- 1 will both 
be approximately equal to the summation from 1 to n. Thus: 

n n rz 
"'A2 "'A2 "'A2 
~ ut ::::::: ~ 11t-I ::::::: ~ 11t 
t=2 t=2 t=1 

So, we have that (8.36) is now: 

d::::::: 1 + 1- 2 L~=2 UtUt-1 "'11 A 2 
L....t=1 ut 

(8.37) 

(8.38) 

but from equation (8.23) we have that p = 2 L~1=2 UtUt-11 L~=I it¥, and therefore: 

d::::::: 2- 2p::::::: 2(1 - p) (8.39) 

Finally, because. p takes values from + 1 to -1, then d will take values from 0 to 4. 
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Regressors, Measurement 
Errors and Wrong 
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Omitting influential or including 
non-influential explanatory variables 

Various functional forms 

Measurement errors 
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One of the most important problems in econometrics is that in reality we are never 
certain about the form or specification of the equation we want to estimate. For example 
one of the most common specification errors is to estimate an equation which omits 
one or more influential explanatory variables or an equation that contains explanatory 
variables that do not belong to the 'true' specification. We will first see how these 
problems affect the OLS estimates, and then provide ways of resolving these problems. 

Other misspecification problems due to the functional form can result from the 
assumption which states that the relation among the Y and Xs is linear being no longer 
true. Therefore, here we present a variety of models that allow us to formulate and 
estimate various non-linear relationships. 

Furthermore, we examine the problems emerging from measurement errors regarding 
our variables, as well as formal tests for misspecification. Finally, alternative approaches 
to selecting the best model are presented in the final section. 

Omitting influential or including 
non-influential explanatory variables 

Consequences of omiHing influential variables 

Omitting explanatory variables that play an important role in the determination of 
the dependent variable causes these variables to become a part of the error term in the 
popul"tion function. Therefore, one or more of the CLRM assumptions will be violated. 
To explain this in detail, consider the population regression function: 

Y = fh + f3zXz + f33X3 + u (9.1) 

where {Jz 1= 0 and /33 I= 0, and let's assume that this is the 'correct' form of 
this relationship. 

However, let us also suppose that we make an error in our specification and 
we estimate: 

Y = .81+ .BzXz + u* (9.2) 

where x 3 is wrongly omitted. In this equation we are forcing u to include the omitted 
variable x3 as well as any other purely random factors. In fact in equation (9.2) the 
error term is: 

u* = f33X3 + u (9.3) 

Based on the assumptions of the CLRM, now the assumption that the mean error is 
zero is violated: 

E(u*) = E(,B3X3 + u) = E(,B3X3) + E(u) = £(,83X3l I= 0 (9.4) 

and, furthermore, if the excluded variable x3 happens to be correlated with Xz 
then the error term in equation (9.2) is no longer independent of Xz. The result 
of both these complications lead to estimators of {31 and {Jz that are biased and 
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inconsistent. This is often called omitted variable bias. It is easy to show that the 
case is the same when we omit more than one variable from the 'true' population 
equation. 

Including a non-influential variable 

We have seen that omitting influential explanatory variables causes special com­
plications for the OLS estimators. However, if an estimated equation includes variables 
that are not influential the problem is not so serious. In this case let's assume that the 
correct equation is: 

Y = lh + fJzXz + u (9.5) 

and this time estimate: 

Y = /h + f3zXz + f33X3 + u (9.6) 

where X 3 is wrongly included in the model specification. 
In this case since x 3 does not belong to equation (9.6), its population coefficient 

should be equal to zero (/33 = 0). If /33 = 0 then none of the CLRM assumptions are 
violated when we estimate equation (9.6) and therefore OLS estimators will yield both 
unbiased and consistent estimators. However, although the inclusion of an ir;elevant 
variable does not lead to bias, the OLS estimators of {31 and {Jz are unlikely to be 
fully efficient. In the case that X3 is correlated with Xz, then an unnecessary element 
of multicollinearity will be introduced to the estimation, which will unavoidably 
lead to a higher standard error in the coefficient of X 2 . This might lead to the 
wrong conclusion of having non-significant t values for explanatory variables that are 
influential. 

Therefore, because of the inclusion of irrelevant variables, it does not necessarily 
follow that a coefficient with an insignificant t statistic is non-relevant. So, dropping 
insignificant variables from a regression model has to be dealt with very cautiously. In 
general, in non-influential conditions we should expect that: 

1 The value of iF will fall, since degrees of freedom increase, while the RSS should 
remain more or less unchanged. 

2 Sign reversal will not occur for the coefficients of the remaining regressors, nor should 
their magnitudes change appreciably. 

3 t statistics of the remaining variables are not affected appreciably. 

However, selection of a non-influential variable that is highly correlated with one or 
more of the remaining variables can alter their t statistics. Thus, those guidelines 
are valid only under ideal circumstances, as we have mentioned before. Intuition, 
econo_mic theory and previQl!s ~mpirical findings should be used to determine-whether 
or not to delete variables from an equation. 
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Omission and inclusion of relevant and 
irrelevant variables at the some time 

In this case suppose that the correct ~quation is: 

Y = fh + f3zXz + f33X3 + u 

and we estimate: 

Y = f3I + {3zXz + f34X4 + u* 

(9.7) 

(9.8) 

Therefore, here we not only omit the relevant variable x3, but we also include the 
non-influential variable X4 at the same time. As we analysed above, the conseque~ces 
of the first case are to have biased and inconsistent estimates, and the second gives 
inefficient estimates. In general, the consequences of omitting an influential variable 
are very serious and we therefore need to have a way of detecting such problems . 
One way of doing this is by observing a lot of the residuals of the estimated equation. 
We saw in the discussion in Chapter 8 that visual observation of the residuals can give 
us an indication of problems of autocorrelation, where we will also describe formal tests 
to detect autocorrelation and to resolve it also. 

The plug-in solution in the omiHed variable bios 

Sometimes, it is possible to face omitted variable bias because a key variable that affects 
Y is not available. For example, consider a model where the monthly salary of an 
i'ndividual is associated with whether or not he/she is male or female (sex), and the 
years each individual has spent in education (education). Both of these factors can be 
easily quantified and included in the model. However, if we also assume that the salary 
level can be affected by the socio-economic environment in which each person was 
brought up, then it is hard to find a variable that captures that to be included in what 
should be the appropriate equation: · 

(salary_level) = f3I + {3z(sex) + f33(education) + f34(background) (9.9) . 
Not including the background variable in this model may lead to biased and inconsistent 
estimates of {32 and /33. Our major interest, however, is to get appropriate estimates 
for those two slope coefficients. We do not care that much for {3 1, and we can never 
hope for a consistent estimator of {33 since background is unobserved. Therefore a 
way to resolve this problem and effectively get appropriate slope coefficients is to 
include a proxy variable for the omitted variable, such as, in this example, the family­
income (fm_inc) of each individual. In this case, of course, fm_inc does not have to 
be the same as background, but we need fm_inc to be correlated with the unobserved 
variable background. 

In order to illustrate this more properly, consider the following model: 

Y = f3I + {3zXz + f33X3 + f34X4 + u (9.10) 
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where X2 and x 3 are variables that are observed (such as sex and education), while X4 

is unobserved (such as background), but we have a variable X 4 which is a 'good' proxy 
variable for X;j (such as fm_inc). 

For X4 we require at least some relationship to X4, for example a simple linear form 
such as: 

X4 = Yl + Y2X4 + e (9.11) 

where an error e should be included because X4 and X4 are not exactly related. 
Obviously, if then the variable X4 is not an appropriate proxy for X 4, while in general 
we include proxies that have a positive correlation, so, yz > 0. The coefficient y1 is .. 
included in order to allow X4 and X 4 to be measured on different scales, and obviously 
they can be either positive or negatively related. 

Therefore, in order to resolve the omitted variable bias, we can assume that X 4 i!nd 
X4 are the same and therefore run the regression: 

Y = r1I + /3zXz + f33X3 + f34(Y1 + yzX4 +e)+ u 

= (/31 + f34YI) -1- {JzXz + f33X3 + /34 yzX4 + (u + f34e) 

= a1 + {JzXz + f33X3 + a4X4 + x (9.12) 

where x = u + {34 e, is a composite error which depends on the model of inter~st (9.10) 
and the error from the proxy variable equation (9.11). Obviously, a1 = (fJI + f34YJ) is 
the new intercept and a4 = {34 y2 is the slope parameter of the proxy variable. As we 
mentioned earlier, by estimating (9.12) we do not get unbiased estimators of fJ1 and 
/34, but we do get unbiased estimators of a 1, {3z, /33 and a4. The important thing is we 
get 'appropriate' estimates for the parameters {32 and {33 which are of most interest in 
our analysis. 

On the other hand, it is easy to show that using a proxy variable can still lead to 
bias. Suppose that the unobserved variable X4 is related to all (or some) of the observed 
variables. Then equation (9.11) becomes: 

X4 = Yl + yzXz + YJX3 + Y4X4 + w (9.13) 

Equation (9.11) simply assumes that yz = y3 = 0, and by substituting equation (9.13) 
into equation (9.10) we get: 

Y = (fJJ + f34Y1) + ({Jz + f34Yz)Xz + (/33 + f34y3)X3 

+ f34y4X4 + (u + f34w) (9.14) 

from which we get that plim<fiz) = {Jz + {34 y2 and plim(~3 ) = /33 + f34Y3· Therefore, 
connecting this to the previous example, if education has a positive partial correlation 
with fm_inc, we will have a positive bias (inconsistency) in the estimate of the education 
coeffieient-;-However;-wecan-reascrnaolynopelnanlieoias we face in this case will be -----­
smaller than in the case of ignoring the problem of omitted variable entirely. 
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Various functional forms 

Introduction 

A different situation where we may face specification errors is that of using an incorrect 
functional form. The most obvious case has to do with the basic assumption of having 
an equation that can be represented by a linear relationship. If this is not true, then 
we might adopt a linear estimating equation while the real population relationship 
is non-linear. 

For example, if the true regression equation is: 

Y =AX~X~eu (9.15) 

and we estimate the linear form given by: 

Y =a+ {JXz + yX3 + u (9.16) 

then the parameters {J and y in the non-linear model represent elasticities, while {J 
(and y) in the linear model show an estimate of the change in Y after a one-unit 
change in {J (and y). Therefore, {J and y are clearly incorrect estimators of the true 
population parameters. 

One way to detect wrong functional forms is to visually observe the pattern -of 
the resicluals. If we observe a systematic pattern in the residuals then we can suspect the 
possibility of misspecification. However, apart from that it is also useful to know the 
various possible non-linear functional forms that we might have to estimate together 
with the properties regarding marginal effects and elasticities. Table 9.1 presents a 
summary of the forms and features of the various alternative models. 

Linear-log functional form 

In. a linear-log model, the dependent variable remains the same but the independent 
variable appears in logs. Thus the model is: 

Name 

Linear 
Linear-log 
Reciprocal 
Quadratic 
Interaction 
Log-linear 
Log-reciprocal 
Log-quadratic 
Double-log 
Logistic 

Y = fJ1 + {Jz In X + u 

Table 9.1 Forms and features of different functional forms 

Functional form 

Y = fJ1 + fJ2X 
Y = fJ1 + p2 In X 
y = fJ1 + fJ2(1/X) 
y = fJ1 + fJ2X + fJ3X2 
Y = fJ1 + fJ2X + fJ3XZ 
In Y = fJ1 + fJ2X 
In Y = fJ1 + fJ2(1/X) 
In Y = fJ1 + {J2 X + p3x2 

In Y = fJ1 + {J2 In X 
In[ Y /(1 ~ Y)] = fl1 + f32X 

Marginal effect 
(dY/dX) 

fJ2 
f32fX 
~f32/X2 
fJ2 + 2fJ3X 
#2 + f33Z 
f32 y 
~fJ2 YjX2 
Y(fJ2 + 2{J3X) 
f32 Y !X 
fl2 Y(1 - Y) 

(9.17) 

Elasticity 
(XIY)(dY/dX) 

P2X!Y 
#2/Y 
-f32f(XY) 
(f32 + 2f33X)X I Y 
(f32 + fJ3Z)X I Y 
fJ2X 
-f32X 
X(f32 + 2f33X) 
fJ2 
f32(1 - Y)X 

!' .. · 
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y 

p, + {12 lnX 

0 X 

Figure 9.1 A linear-log functional form 

This relation gives a marginal effect (dY jdX) equal to dY jdX = f3z/X. Solving this 
for dY: 

dX f3z [ dX] f3z 
dY = f3zx = wo 100 x = wo (% change in X) ' (9.18) 

So, a 1% change in X will lead to f3z!l00 units change on Y (note that this.is not a 
percentage but a unit change). 

A plot of this function for positive {31 and {32 is given in Figure 9.1, while an example 
from economic theory can be the production of total output of an agricultural product 
(Y) with respect to hectares of land used for its cultivation (X). 

Reciprocal functional form 

A different example is that of: 

Y = f3t + f3z(l/X) + u (9.19) 

a plot of which is shown in Figure 9.2. 
This form is frequently used with demand curve applications. Note that because 

demand curves are typically downward-sloping we expect that {32 is positive and also, 
while X becomes sufficiently large, Y asymptotically approaches {3 1. 

Polynomial functional form 

This model will include terms of the explanatory variable X increased in different 
powers according to the degree of the polynomial (k). We have: 

Y = fh + f3zX + f33X2 + · · · + f3kXk + u (9.20) 
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y 

~·-·································································································· 

0 X 

Figure 9.2 A reciprocal functional form 

To estimate this model we simply generate new variables x2, x 3 and so on and then 
regress these variables to Y. Obviously if k = 3 then the polynomial is cubic, while for 
k = 2 it is quadratic. Quadratic formulations are frequently used in order to fit U-shaped 
curves (like for example cost functions). In general, polynomials of order higher than 
2 should be avoided, first because of reduction of the degrees of freedom, and second 
because there is a possibility of high correlation between X and x 2 and the estimated 
coefficients are unreliable. 

FunCtional form including interaction terms 

"ometimes it is possible that the marginal effect of a variable depends on another 
variable. For example Klein and Morga"n ( 1951) suggested that the marginal propensity 
to consume is affected by asset holdings of individuals, meaning that a wealthier person 
is likely to have a higher marginal propensity to consume out of his income. Thus in 
the Keynesian consumption function: 

C =a+ ,BY+ u (9.21) 

where C denotes consumption andy income, .B is the marginal propensity to consume; 
we have that .B = fh + .BzA, where A denotes assets. Substituting this into (9.21) 
we get: 

C =a+ (,81 + .BzA)Y + u 

= a + ,81 Y + .BzAY + u (9.22) 

The term AY is known as the interaction term. Note that in this case the marginal 
effect will be given by dCjdY = .Bz + .BzA, so we need to know the value of A in order 
to calculate it. 
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Log-linear functional form 

So far we have examined models where non-linearity emerges only from the 
explanatory variables. Now we examine a model in which the dependent variable 
appears transformed. Consider the model: 

In Y = {J1 + {JzX + u (9.23) 

{Jz, now, is the marginal effect of C on In Y and not on Y. This 'is known as the 
instantaneous rate of growth. Differentiating both sides with respect to X we obtain: 

dln Y 1 dY dY 1 
{Jz = --;v( = Y dX = Y dX (9.24) 

The term dY jY is the change in Y divided by Y. Therefore, when multiplied by 100,_/32 
gives the change in Y per unit change in X. 

The log-linear model is widely applied in economics (and lately especially in the 
human capital literature). This theory suggests, for example, that the more educated a 
person is, the higher should be his/her salary. Therefore, let us say that there is a return 
to an extra year of education, labelled as B. Then for the first period, the monthly salary 
will be equal to s 1 = (1 +B)s0 , for a two year return it will be s2 = (1 +B)2so, and so oh. 
Then fork years it will be sk = ( 1 + B)k s0. Taking logarithms of both sides we have that: 

In sk = k ln(l +B)+ ln(so) = fJ1 + fJzk ' (9.25) 

where of course k is years in education for each individual. Thus, we have obtained a 
log-linear relationship between salary and years of education, where the OLS coefficient 
{Jz is that one more year of education will give IOO{J2 per cent more in monthly 
salary earnings. 

The double-log functional form 

The double-log model is very popular in cases where we expect variables to have 
constant ratios. A common specification is the Cobb-Douglas type of production 
function of the form: 

Yt = AKfLf (9.26) 

where the standard notation is used. Taking logarithms of both sides and adding an 
error term we get: 

In Yt = y + a In Kt + fJ In Lt + Ut (9.27) 

and it is easy to show, here, that a and fJ are the elasticities of Kt and Lt respectively. 
To demonstrate that, consider changes in K while keeping L constant; then we have: 

din Y (ljY)dY _ K dY _ 
-a--=--= = --

dinK (ljK)dK Y dK 
(9-:-ZB 
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Also, another way to show this is by taking the derivative of Y with respect to K; 
from the initial function (9.26): 

and therefore: 

dY dK = aAKa-lLfJ AKaLfJ t t =a _t __ t y K =a­K 

dY K 
a= dKY 

(9.29) 

(9.30) 

It is easy to show that the same holds for {3. We leave this as an exercise for 
the reader. Table 9.2 provides interpretations of the marginal effects in the various 
logarithmic models. 

The Box-Cox transformation 

As we demonstrated above, the choice of the functional form plays a very important 
role in the interpretation of the estimated coefficients, and therefore we need to have 
a formal test which will be able to direct us to choose which functional form to use in 
cases where we are uncertain about the population relationship. 

For ex~mple, think of a model with two explanatory variables (X2 and X3). We must 
be able to determine whether to use the linear, log-linear, linear-log or double-log 
specification. When the choice is between the linear and linear-log model, or among 
the log-linear and double-log specifig~tion, things are easy because we have the same 
dependent variable in each of the two models. So, we can estimate both models and 
choose the functional form that yields the higher R2 . However, in cases where the 
dependent variable is not the same, as for example in the linear form: 

Y = fJ1 + {JzX (9.31) 

.Table 9.2 Interpretation of marginal effects in logarithmic models 

Name Functional form Marginal effect Interpretation 

Linear Y .= fh + fJ2X t. y = fJ2t!.X 1 unit change in X will 
induce a {J2 unit 
change in Y 

Linear-log Y=fh +fJ2InX t. Y = fJ2/100[100t.X/X] 1 per cent change in X 
will induce a p2;1 00 
unit change in Y 

Log-linear In Y = fJ1 + fJ2X 100t.YjY = 100fi2t.X 1 unit change in X will 
induce a 1 OOfJ2 
percent change in Y 

Double-log In Y = fJ1 + fJ2 In X 100t. Y I Y = .82[100t.X !X] 1 per cent change in X 
will induce a fJ2 
percent change in Y 
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and the double-log form: 

In Y = lh + {Jz In X (9.32) 

then we cannot compare the two models with the use of Rz. 

In such examples, we need to scale the Y variable in such a way that we will be 
able to compare the two models. The procedure is based on the work of Box and Cox 
(1964), and is usually known as the Box-Cox transformation. The procedure follows 
the following steps: 

Step 1 Obtain the geometric mean of the sample Y values. This is: 

Y = (Y1Y2Y3 · · · Yn)I/n = exp (11n 2:)n Y;) (9:33) 

Step 2 Transform the sample Y values by dividing each of them by Y obtained above 
to get: 

Y* = Y;;Y ' (9.34) 

Step 3 Estimate equations (9.31) and (9.32) substituting Y* as the dependent variable 
in ooth of them. The RSS of the two equations are now directly comparable, 
and the equation with the lower RSS should be preferred. 

Step 4 If we need to know whether one of the equations is significantly better than 
the other, then we have to calculate th~~ following statistic: 

( .!.n) In (RSSz) 
2 RSS1 

(9.35) 

where RSS2 is the RSS of the equation with the higher RSS, and RSS1 of the 
other equation. The above statistic follows a x2 distribution with 1 degree 
of freedom. If x 2-statistical exceeds the x2-critical value then we can say 
with confidence that the model with the lower RSS is superior at the level 
of significance for which the x 2-critical is obtained. 

Measurement errors 

Up to this point our discussion has dealt with situations where explanatory variables 
are either omitted or included contrary to the correct model specification. However, 
another possibility exists that can create problems in the OLS coefficients. Sometimes in 
econometrics it is not possible to collect data on the variable that truly affects economic 
behaviour, or we might even collect data for which one_or more variables are, measured 
incorrectly. In such cases, variables used in the e-con~metric analysis are different from 
the correct values and can therefore potentially create serious estimation problems. 
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Measurement error in the dependent variable 

We begin our analysis by examining the case where there is a measurement error in the 
dependent variable on!~, and we assume that the true population equation is: 

Y = fJ1 + f3zXz + · · · + f3kXk + u (9.36) 

which we further assume satisfies the assumptions of the CLRM, but we are unable to 
observe the actual values of Y. Not having information about the correct values of Y 
leads us to use available data on Y containing measurement errors. 

The observed values of Y* will differ from the actual relationship as follows: 

Y* = y +w (9.37) 

where w denotes the measurement error in Y. 
To obtain a model which can be estimated econometrically, we have that Y = Y* - w 

and we insert this into equation (9.36) obtaining: 

Y* = {31 + {JzXz + · · · + f3kXk + (u + w) (9.38) 

Therefore, we now have an error term (u + w). Since Y*, Xz, ... , Xk are now observed, 
we can ignore the fact that Y* is not a perfect measure of Y and estimate the model. 
The o_btained OLS coefficients will be unaffected only if certain conditions about w 
occur. Firstly, we know from the CLRM assumptions that u has a zero mean and is 
uncorrelated with all Xs. If the measurement error w has a zero 'inean as well, then 
we get an unbiased estimator for the mnstant {31 in the equation, if not then the OLS 
estimator for {31 is biased, but this is rarely important in econometrics. Second, we need 
to have a condition for the relationship of w with the explanatory variables. 

If the measurement error in Y is uncorrelated with the Xs then the OLS estimators 
for the slope coefficients are unbiased and consistent, and vice versa. As a final note, 
in -case u and ware uncorrelated then var(u + w) =a3 +a;,> a3. 

Therefore the measurement error leads to a larger residual variance which of course 
leads to larger variances of the OLS estimated coefficients. However, this is expected 

· . and there i~ nothing we can do to avoid it. 

Measurement error in the explanatory variable 

In this case we have as the true population equation: 

Y = lh + f3zXz + u (9.39) 

which satisfies the assumption of the CLRM and therefore OLS will provide unbiased 
and consistent estimators of both lh and {32 . Now with X2 non-observed, we have only 
a measure of x2, let's say Xz. The relationship between Xz and Xz is: 

Xz =Xz- v (9.40) 
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and inserting this into the population model gives: 

y = /h + ,Bz{Xz- V) + u 

= fh + .BzXi + (u- ,Bzv) 

(9.41) 

(9.42) 

If it was the case that e and v are uncorrelated with Xi, and both have a zero mean, 
then the OLS estimators are consistent estimators for both fh and ,82 . However,as 
shown below ~his is not generally the case. Also, again since e and v are uncorrelated, 
the residual variance is var(e- .Bzv) = al + f3iaJ. Thus, only when .Bz "i 0 does the 
measurement error not increase the variance, and the variances of {1 1 and ,82 will be·· 
again higher. 

Recall that the OLS slope estimator is given by: 

. L (Xi - Xi,) (Y- Y) 
.Bz = -

L (Xi -Xi)2 

:L (Xi -Xi,) (.BI + .BzXi + u- ,Bzv) - .B1 - .B2Xi- ij + ,B2v 
:L (Xi -Xi,)

2 

L (Xi- Xi) (.Bz (Xi -Xi)+ (U- ii)- .Bz(v- v)) 

L (Xi -Xi)2 
(9.43) 

For unbiasedness we want E(fiz) = ,82 . Taking the expected value of (9.43) we have: 

~ ( L: (Xi -Xi,) (u - u) :L (Xi -Xi,) (v - v)) 
E(,Bz) = .Bz + E _ - .Bz _ 2 L: (Xi - Xi,)

2 L (Xi -Xi,) 

_ (Cov (Xi,, u) _ Cov (Xi,, v)) 
- .Bz + E Var (Xi) .Bz Var (Xi,) (9.44) 

Therefore, we need to check whether these covariances are equal to zero or not. We 
have that: 

Cov (Xi,, u) = E (Xi,u)- E (Xi) E(u) (9.45) 

But because E(e) = 0 this reduces to: 

Cov (Xi,, u) = E (Xi,u) = E [<Xz + v)u] = E(Xzu) + E(vu) (9.46) 

Since the actual X is uncorrelated with u, the first expectation in (9.46) equals zero. 
Also, assuming thaT me-two errorHv-and u) aie-independent~hesecon-d-expectation 
is zero as well. 
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For the covariance of Xz with v we have: 

Cov (Xz, v) = E (Xzv)- E (Xz) E(v) 

= E [(Xz + v)v] 

= E(Xzv) + E(v2 ) = 0 + a3' 

169 

(9.47) 

(9.48) 

(9.49) 

The term E(Xzv) is zero because the actual Xz is independent of the measurement 
error. However, because Cov(Xz, v) = a3 which is non-zero, the observed Xz (i.e. Xz) 
is correlated with its measurement error. Thus the slope coefficient is biased (because 
E(~z) = {Jz +a h. Finally, since its magnitude of bias is not affected by its sample size, 
the OLS estimator under measurement error in one of the explanatory variables is not 
only biased, but inconsistent as well. 

Tests for misspecification 

Normality of residuals 

We mentioned before that one way of detecting misspecification problems is through 
observing the regression residuals. Recall also that one of the assumptions of the CLRM 
is that the residuals are normally distributed with a zero mean and a constant variance. 
Violatibn of this assumption leads to the inferential statistics of a regression model 
(i.e .. t-stats, F-stats, etc.) not being valid. Therefore, it is quite essential to test for 
normality of residuals. 
. In order to test for this we first need to calculate the second, third and fourth moments 
of the residuals and then compute th~ ]argue-Berra (1990) JB statistic. The test can be 
done following the four simple steps presented below: 

Step 1 Calculate the second, third and fourth moments (note that J.LJ is the skewness 
of the residuls and that f.L 4 is the kurtosis of the residuals) of the residuals (u) 
in the regression equation as: 

"-z 
J.LZ = _L-_u . n , 

"-3 
f.L3 = L-_u . 

n ' 

Step 2 Calculate the ]argue-Berra statistic by 

f.L4 = L:ft4 
n 

JB=n[f.L~ + (f.L4-3)2] 
6 24 

which has a x2 distribution with 2 degrees of freedom. 

Step 3 Find the x2 (2) critical value from the tables of x2 distribution. 

(9.50) 

(9.51) 

Step 4 If JB > x2-critical we reject the null hypothesis of normality of residuals. 
Alternatively, if the p-value is less than 0.05 (for a 95% significance level), 
then we again reject the null hypothesis of normality. 
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Figure 9.3 Histogram and statistic for regression residuals 

The J-B normality test for residuals in EViews 

To check for normality of residuals in a regression model we need to check on tfle 
histogram and thej-B statistic. To do this we first need to estimate the desired equation, 
either by typing the command for the equation estimation in the EViews command line, 
or by choosing Quick/Estimate Equation, then specify the equation and clic\< <OK>. 
After the estimation the series RESID which is always in every EViews workfile will 
contain the residuals of this regression (note: the series RESID contains the residuals 
of the most recent estimated equation in EViews, so if another equation is estimated 
afterwards, the series RESID will change). To check for normality, we need to double­
click on the RESID series and from the series object toolbar click on View/Descriptive 
Statistics/Histogram and Stats. This procedure will give us the graph and summary 
statistics shown in Figure 9.3. 

From the histogram we can see that the residuals do not seem to be normally 
distributed. Also, at the lower right-hand corner of the figure we can see the value 
of the J-B statistic and its respective probability limit. The residuals come from a simple 
regression model that included only one explanatory variable and 38 observations. So, 
we can obtain the x 2 critical value for 2 degree of freedom, a = 0.05 and n = 38, by 
the following command in EViews: 

scalar chi_crit=®qchisq(.95,2) 

This will create a scalar named chi_crit in our workfile, and the result of the scalar 
can be displayed in the status line at the bottom of the EViews main window, after 
double-clicking on the scalar. The value of the chi_crit is equal to 3.841, and since it 
is higher than the J-B statistic we cannot reject the null hypothesis that the residuals 
are normally distributed. Also, since the p-value is equal to 0.415 and greater than the 
chosen level of sigffifitante (0.05), we-again concluaeth-at wecannatre-ject tne nulr -
hypothesis of normality. 
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The Ramsey RESET test for general misspecification 

One of the most commonly used tests for general misspecification is Ramsey's (1969) 
Regressions Spet;:ification Error Test (RESET) as with many tests this has both an F-form 
and an LM form. Suppose that the 'true' population model is: 

Y = lh + {JzXz + f33X~ + u (9.52) 

and we wrongly estimate: 

Y = fJ1 + {JzXz + u* (9.53) 

where we omit X~ because we do not actually know what the real nature of Y is. 
The RESET test for such misspecification is based on the fitted values of Y obtained 

from regression (9.53) as: 

Y = P1 + PzXz (9.54) 

The RESET test involves including various powers of Y as proxies for X~ that can capture 
possible non-linear relationships. Before implementing the test we need to decide how 
many terms we will include in the expanded regression. There is no formal answer to 
this ql;lestion, but in general the squared and cubed terms have proven to be useful in 
most applications; so the expanded equation will be: 

Y = fJ1 + fJzXz + .S1 Y2 + .5zY3 +" (9.55) 

Then the situation boils down to a regular f-type test for the additior.al explanatory 
variables Y2 and Y3. If one or more of the coefficients are significant then this is 
evidence of general misspecification. A big drawback of the RESET test is that if we reject 
the null hypothesis of a correct specification, this merely indicates that the equation 
is misspecified in one way or another, without providing us with alternative models 
which are correct. 

So, summing up, the RESET test can be performed step by step as follows: 

Step 1 Estimate the model that we think is correct in describing the population 
equation, and obtain the fitted values of the dependent variable Y. 

Step 2 Estimate the model in step 1 again, this time including Y2 and y3 as additional 
explanatory variables. 

Step 3 The model in step 1 is the restricted model and that in step 2 is the unrestricted 
model. Calculate the F statistic for these two models. 

Step 4 Find the F-critical value from the F tables for 2, n- k- 3 degrees of freedom. 

Step 5 IfF-statistic > F-critical we reject the null hypothesis of correct specification 
and conclu~e that our model is somehow misspecified. Alternatively, we can 
use the p-value approach. If the p-value for the F-stat is smaller than the 
required level of significance (usually 0.05), then we again reject the null 
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Table 9.3 Ramsey RESET test example 

Dependent Variable: LCONS 
Method: Least Squares 
Date: 02116104 Time: 15:03 
Sample: 1985:1 1994:2 . 
Included observations: 38 

Variable Coefficient 

c 2.717238 
LDISP 0.414366 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Std. Error t -Statistic 

0.576652 4.712091 
0.126279 3.281340. 

0.230230 Mean dependent var 
0.208847 S.D. dependent var 
0.045732 Akaike info criterion 
0.075291 Schwarz criterion 

64.33606 F -statistic 
0.412845 Prob(F -statistic) 

Prob. 

0.0000 
0.0023 

4.609274 
0.051415 

• -3.280845 '. 
-3.194656 
10.76719 

0.002301 

hypothesis of correct specification. A Langrange multiplier test is also available 
and the x2 distribution will have 2 degrees of freedom. 

The RESET test can also be calculated using the LM procedure described in chapter 5. 
To perform this we would take the residuals from the restricted model (9.5:l) and 
regress them on Y2 and Y3 , TR2 from this regression would give an LM test with a 
chi2 distribution with 2 degrees of freedom. ' 

Ramsey's RESET test in EViews 

Assume that we estimated the following regression model from the file cons.wfl, by 
typing into the EViews command line: 

ls lcons c ldisp 

which regresses the logarithm of a consumer's expenditure on food (Icons) on the 
logarithm of disposable income (ldisp). The results obtained from this regression are 
shown in Table 9.3. 

In order to test for general misspecification with Ramsey's RESET test we click on 
View /Stability Tests/Ramsey RESET Test ... , after which a new window opens (RESET 
Specification) which asks us to specify the number of fitted terms we want to use. If 
we choose 1 it will include only Y2 , if we choose 2 it will include both y2 and }/3, and 
so on. Let's assume that we choose only 1 and click <OK>. The results are shown in 
Table 9.4. 

From the results we can see that F-stat is quite high. Even though we do not have 
F-critical, from the p-value we can see that because the p-value for the F-stat is smaller 
than the required level of significance (0.05), we can safely reject the null hypothesis 
of correct specification and conclude that our model is misspecified. Notice, as well, 
that the coeffiGient of-the squared fitted term-is-statlstfcally significailf"(t -stat =4.66). 
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Ramsey's RESET test in Microfit 

Microfit reports Ramsey's test in the regression results output under diagnostic tests, as 
test B, and it includes one fitted squared term. It reports statistical values and p-values 
of both the J,.M test and the F-type test described above. The interpretation is as usual 
with the use of the p-value approach as presented in the example above. 

Tests for non-nested models 

If we want to test models which are non-nested we cannot use the F-type test. By non­
nested models we mean models in which neither equation is a special case of the other, 
in other words we do not have a restricted and an unrestricted model. 

Suppose, for example, that we have the following two models: 

Y = fh + fJzXz + f33X3 + u 

Y = fh + fJzlnXz + f33lnX3 + e 

(9.56) 

(9.57) 

and that we want to test the first against the second, and vice versa. There are two 
different approaches. 

The first is an approach proposed by Mizon and Richard (1986), who simply suggest 
the estimation of a comprehensive model of the form: 

Y = 81 + o2X2 + 83X3 + 84 ln X2 + 85 lnX3 + E 

Table 9.4 Ramsey RESET test example (continued ... ) 

Ramsey RESET Test: 

F-statistic 
Log likelihood ratio 

test Equation: 
Dependent Variable: LCONS 
Method: Least Squares 
Date: 02/16104 Time: 15:09 
Sample: 19,85:1 1994:2 
Included observations: 38 

Variable Coefficient 

c -204.0134 
-204.4012 

21.75213 
18.36711 

WISP 
FITTED~2 53.74844 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

---~---~-. 

0.525270 
0.498142 
0.036423 
0.046433 

73.51961 
0.795597 

Probability 
Probability 

Std. Error t -Statistic 

44.32789 
43.91503 
11.52431 

-4.602370 
-4.654471 

4.663919 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

(9.58) 

0.000044 
0.000018 

Pro b. 

0.0001 
0.0000 
0.0000 

4.609274 
0.051415 

-3.711559 
-3.582275 
19.36302 

0.000002 
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then applying an F test for significance of 8z and 83 having as the restricted model 
equation (9.57), or test for 84 and 8s having as an restricted model equation (9.56). 

The second approach is proposed by Davidson and MacKinnon (1993), who suggest 
that if model (9.56) is true, then the fitted values of (9.57) should be insignificant in 
(9.56) and vice versa. Therefore, in order to test (9.56) we need to first estimate (9.57) 
and take the fitted values of this model, which we may call Y. The test is then based 
on the t statistic on Y in the following equation: 

Y = fh + f3zXz + f33X3 + s Y + v (9.59) 

where a significant s coefficient will suggest, of course, rejection of (9.56). A. drawback ·. 
of this test is that the comprehensive equation (9.58) may not make sense from an 
economic theory point of view. 

The case is exactly the opposite if we want to test (9.57) against (9.56). There are 
some drawbacks with these testing techniques: 

1 It is not necessary to have results that clearly suggest which model is better. Both 
models may be rejected or neither model may be rejected. If the case is that neither 
is rejected we choose the one with the higher R2 . ' 

2 Rejecting (9.56) does not necessarily mean that (9.57) is the correct alternative. 

3 The situation is even more difficult if the two competing models also have different 
dependent variables. Tests have been proposed to deal with this problem but they 
are beyond the scope of this text and will not be presented here. 

Example: the Box-Cox transformation 
in EV1ews 

This example looks at the relationship between income and consumption, proposing 
two functional forms and using the Box-Cox transformation to decide which of the 
two is preferable. A Ramsey RESET test is also performed. 

We use data for income, consumption and the consumer price index, in quarterly 
frequency from 1985 q1 up to 1994 q1 and q2 . The file name is box_cox.wfl and the 
variable names are inc, cons and cpi respectively. 

We can specify the consumption function in two ways: 

Cr = f3u + fJ12 Yt +II It (9.60) 

or 

In Cr = {321 + {Jzzln Yt + uzt (9.61) 

where Ct is real consumption (adjusted for inflation), flu, fJiz, fJ21 and {Jzz are 
coefficientUo be estimated, Yt is real-income-{aEijusted-forinflation)and-ult and-u:zr 
are the disturbance terms for the two alternative specifications. 
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We therefore need to restate the nominal data into real terms for both equations, and 
to create the log of the variables in order to estimate equation (9.61). We can use cpi to 
remove the effects of price inflation, as follows: 

(
CPibase) 

X real = Xnominal * CPft 

In EViews, we use the following commands: 

scalar cpibase=l02.7 
genr consreal=cons*(cpibase/cpi) 
gern increal=inc*(cpibase/cpi) 

(9.62) 

And we can transform the logarithm of the variables consreal and inc real in EViews 
using the commands: 

gern lincr=log(increal) 
genr lconsr=log(consreal) 

We now have all of our data sets in place for the Box-Cox transformation. First we need 
to obtain the geometric mean which can be calculated as: 

Y = (Yl YzY3 · · · Yn)lfn = exp (11n Lin Yi) (9.63) 

In EViews, the first step is to prepare the sum of the logs of the dependent variable, to 
do which we type the following command in the EViews command line: 

scalar scons = ®sum(lconsr) 

In order to view a scalar value in EViews we need to double click on the scalar and its 
value will appear at the lower right-hand corner. We observe that the sum of the logs 
is calculated as 17 4.704. The command to find the geometric mean of the dependent 
'<:'ariable, with n = 38 observations, is: 

scalar constilda=exp((l/38)*scons) 

and we need to transform the sample Y values, i.e. /consr, by dividing each by constilda 
to generate a new series constar. In EViews the command is: 

genr cohstar=lconsr/constilda 

The new series constar can now be substituted as the dependent variable in equations 
(9.60) and (9.61) above to provide the following new equations: 

q = .Bu + .812 Yt + ult (9.64) 

and 

c; = .821 + .Bzz In Yt + Uzt (9.65) 
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Table 9.5 Regression model for the Box-Cox test 

Dependent Variable: CONS TAR 
Method: Least Squares 
Date: 02125104 Time: 16:56 
Sample: 1985:1 1994:2 
Included observations: 38 

Variable 

c 
LINCR 

R-squared 

Coefficient 

-0.025836 
0.015727 

0.669319 
0.660133 
0.000639 
1.47E-05 

Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

226.6238 
0.116813 

Std. Error 

0.008455 
0.001842 

t-Statistic 

-3.055740' 
8.536165 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

To run these two regression in EViews, the commands are: 

ls constar c increal 
ls constar c liner 

Prob. 

0.0042 
0.0000 

0.046330 
0.001096 ' .. 

-11.82230 
-11.73611 

72.86612 
0.000000 

.I 

the results of which are presented in Tables 9.5 and 9.6 respectively. Summarized results 
are presented in Table 9.7. From the summarized results we see that the constant and 
income terms in both functional forms are significant; the R2 values are similar at 
65-67%. 

The residual sums of squares (RSS) of the regressions are 1.54E- 05 and 1.47E- 05 
for the linear (9.64) and the double-log model (9.65) respectively. Thus equation (9.65) 
has the lower RSS, and would be the preferred option. In order to test this result, we 
can calculate the Box-Cox test statistic which is given by the following equation: 

( ~ )I (RSSz) 
2

11 n RSS1 

= (0.5 * 38) * ln(1.54 * w-5 /1.47 * w-5
) 

= 19 * ln(l.0476) = 0.8839 

where RSS2 is the higher RSS value, obtained from the linear function (9.64). 

(9.66) 

(9.67) 

(9.68) 

The critical value, taken from the Chi-square distribution with one degree of freedom 
(one independent variable) and 0.05level of significance, is 3.841. Thus the test statistic 

.is-less than-tche critical value and-so we carm·otTonclude-tnafl:he logfun-cffon is superior _____ _ 
to the linear function at a 5% level of significance. 
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Table 9.6 Regression model for the Box-Cox test (continued ... ) 

Dependent Variable: CONSTAR 
Method: Least Squares 
Date: 02125104 Time: 16:56 
Sample: 1985:1 1994:2 
Included observations: 38 

Variable Coefficient 

c 0.030438 

Std. Error t-Statistic 

0.001928 15.78874 
INC REAL 0.000161 1.95E-05 8.255687 

A-squared 0.654366 Mean dependent var 
Adjusted R-squared 0.644765 S.D.dependentvar 
S.E. of regression 0.000653 Akaike info criterion 
Sum squared resid 1.54E-05 Schwarz criterion 
Log likelihood 225.7835 F-statistic 
Durbin-Watson stat 0.117352 Prob(F -statistic) 

Table 9.7 Summary of OLS results for the Box-Cox test 

Variables 

Constant 

Income 

R2 
Sample,size (n) 

Linear Model 

0.0304 
(15.789) 

0.000161 
(8.256) 
0:654366 

38 

Approaches in choosing an 
appropriate model 

The traditional view: average economic regression 

Prob. 

0.0000 
0.0000 

0.046330 
0.001096 

-11.77808 
-11.69189 

68.15636 
0.000000 

Log-Log Model 

-0.025836 
(-3.056) 

0.015727 
(8.536) 
0.669319 

38 

In the past, the traditional approach to econometric modelling was to start by 
formulating the simplest possible model to obey the underlying economic theory, and 
after estimating that model to perform various tests in order to determine whether or 
not it wa~ satisfactory. 

A satisfactory model in that sense would be: (a) one having significant coefficients 
(i.e. high t ratios), and coefficients whose signs correspond with the theoretical 
predictions, (b) one with a good fit (i.e. high R2 ), and (c) one having residuals that 
do not suffer from autocorrelation or heteroskedasticity. 

If one or more of these points are violated, then researchers try to find better methods 
of estimation (i.e. the Cochrane-Orcutt iterative method of estimation for the case of 
serial correlation), or to check other possible cases of bias such as whether important 
variables have been omitted from the model, or whether redundant variables have been 
included in the model, or to consider alternative forms of functional forms, and so on. 

This approach, which essentially starts with a simple model and then 'builds up' 
the models as the situation demands, is called the 'simple to specific approach' or 
the 'average economic regression (AER)', a term coined by Gilbert (1986) because 
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this was the method that most traditional econometric research was following in 
practice. 

The AER approach has received major criticisms: 

1 One obvious criticism is the fact that the procedure followed in the AER approach 
suffers from data mining. Since, usually, only the final model is presented by the 
researcher, we do not have any information regarding the number of variables that 
were actually used in the model before obtaining the 'final' model results. 

2 Another criticism is that the alterations to the original model are carriep out in an 
arbitrary manner based mainly on the beliefs of the researcher. It is, therefore, quite·.· 
possible for two different researchers examining the same case to come up with totally 
different conclusions. 

3 By definition the initial starting model is incorrect as it has omitted variables. This 
will mean that all the diagnostic tests on this model are incorrect. So we may find 
that important variables are insignificant and exclude them. 

The Hendry 'general to specific approach' 

Following from these two major criticisms against the AER, an alternative approach 
has been developed which is called the 'general to specific approach' or the Hendry 
approach, because it was mainly developed by Professor Hendry of the London School 
of Economics (see Hendry and Richard, 1983). The approach is to start with a general 
model that contains - nested within it as special cases - other simpler models. Let us 
use an example to understand this better. Assume that we have a variable Y that can 
be affected by two explanatory variables X and Z: the general to specific approach 
proposes as a starting point the estimation of the following regression equation: 

Yt =a+ fJoXt + fJIXt-1 + f3zXt-2 + · · · + fJmXt-m 

+ YoZt + YJZt-1 + Y2Zt-2 + · · · + YmZt-m 

+.51 Yt-1 + 82Yt-2 + ... + 8mYt-m + Ut (9.69) 

That is, to regress Yt on contemporaneous and lagged terms Xt and Zt as well as 
lagged values of Yt. This model is called an autoregressive (because lagged values of 
the dependent variable appear as regressors as well) distributed lag (because the effect 
of X and Z on Y is spread over a period of time from t - m to t) model (ARDL). Also, 
models like (9 .69) are known as dynamic models because they examine the behaviour 
of a variable over time. 

The procedure then is, after estimating the model, to apply appropriate tests and 
to narrow down the 111odel to sill'liJlerpnesJ-Yhich_are.always nested-to the~previously 
estfmatecl model. 
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Let us consider the above example for m = 2 to see how we may proceed in practice 
·with this approach. We have the original model: 

Yt =a+ fJoXt + fJ1 Xt-1 + fJzXt-2 

+ YoZt + Y1Zt-1 + Y2Zt-2 + 81 Yt-1 + 82Yt-Z +lit (9.70) 

where one restriction may be that all the Xs are non-important in the determination 
of Y. Then for this we have hypothesis Ho: fJo = {31 = fJ2 = 0; and if we accept that, we 
have a simpler model such as the one below: 

Yt = ayoZt + Y1Zt-1 + Y2Zt-2 + 81 Yt-1 + 8zYt-2 + Ut (9.71) 

Another possible restriction may be that the second lagged term of each variable is 
insignificant; i.e. hypothesis Ho: {Jz = yz = 82 = 0. Accepting this restriction will give 
the following model: 

Yt =a+ fJoXt + fJ1Xt-1 + YoZt + YIZt-1 + 81 Yt-1 + Ut (9.72) 

It should be clear by now that models (9.71) and (9.72) are both nested models of the 
initial (9.70) model; but (9.72) is not a nested model of (9.71), and therefore, we cannot 
proceed to (9.72) after estimating (9.71). 

An important question when we are proceeding from the general to the more 
specifi~ model, is how do we know what the final simplified model should be. To 
answer this question, Hendry and Richard (1983) suggested that the simplified model 
should: 

1 be data admissible; 

2 be consistent with the theory; 

3 ';1Se regressors that are not correlated with u1; 

4 exhibit parameter constancy; 

5 exhibit data coherency, i.e. have residuals that are purely random (white noise); and 

· 6 be encompassing, meaning to include all possible rival models in the sense that it 
allows us to interpret their results. 

i~)t.: i{f: lt ·~] ~£ ~· .-;~ 

Exercise 9.1 

The file wages_Ol.wfl contains data for monthly wage rates (measured in UK pounds) 
and IQ scores of a large number of City University graduates, after five years of 
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employment: 

(a) Find summary statistics for the above mentioned variables and discuss them. 

(b) Estimate a functional form that will show how a one-point increase in the IQ score 
will change the respective wage rate by a constant amount measured in UK pounds. 
What is the change in the wage rate for a 10-point increase in the IQ score? 

(c) Estimate a functional form that will show how a one-point increase in the IQ score 
will have a percentage change effect on the wage rate. What is the percentage 
change in the wage rate for a 10-point increase in the IQ score? • 

(d) Use the Box-Cox transformation to decide which of the two models is· 
more appropriate. 
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Introduction: the nature of 
qualitative information 

1' 

Topics in Econometrics 

So far, we have examined equation specifications that are utilized in econometric 
analysis, as well as techniques in· order to obtain estimates of the parameters in an 
equation and procedures for assessing the significance, accuracy and precision of those 
estimates. An assumption implicitly made so far has been that we can always obtain 
a set of numerical values for all the variables we want to use in our models. However, 
it is easy to understand that there are variables that can play a very important role in 
the explanation of an econometric model that are not numerical or easy to quantify. 
Examples of these could be the following: 

(a) gender may play a very important role in determining salaries earned from 
employment; 

(b) different ethnic groups may follow different patterns regarding ~onsumption 
and savings; 

(c) educational levels can definitely affect earnings from employment; and·/or 

(d) being a member of a labour union may imply different treatment/attitudes t!ian 
not belonging to the union, and so on. 

All these are cases for cross-sectional analysis. 
Not easily quantifiable (or in general qualitative) information could also 

be a case of a time-series econometric framework. Consider the following 
examples: 

(a) changes in a political regime may affect production processes, employment 
conditions, and so on; 

(b) a war can have an impact on all aspects of economic activity; 

(c) certain days in a we{·k or certain months in a year can have different effects in the 
fluctuations of stock prices; and 

(d) seasonal effects are quite often observed in the demand of particular products, i.e. 
ice cream in summer, furs during winter etc. 

The aim of this chapter is to show the methods that should be used to include 
information from qualitative variables into econometric models. This is possible by 
what are known as dummy or dichotomous variables. The next section presents 
the possible effects of qualitative variables in regression equations and the methods 
required to use them. We then present special cases of dummy variables and the Chow 
test for structural stability. 
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Dummy Variables 

The use of dummy variables 

Intercept dummy variables 

Consider the following cross-sectional regression equation: 

Y; = /h + /3zXz; + U; 

185 

(10.1) 

The constant term (/31) in this equation measures the mean value of Y; when Xz; is 
equal to zero. The important thing here is that this regression equation assumes that 
the value of f3o will be the same for all the observations in our data set. However, the 
coefficient might be different depending on different aspects regarding our data set. 
For example, regional differences might exist in the values of Y;; Y; might represent 
the growth of GDP for EU countries for instance. Differences in growth rates are quite 
possible between core countries and peripheral countries. The question now is how 
can we quantify this information in order to enter it in the regression equation and 
check for the validity or not of this possible difference? The answer to this question 
is: with the use of a special type of variable- a dummy (or fake) variable that captures 
qualitative effects by coding the different possible outcomes with numerical values. 

This can usually be done by simply dichotomizing the possible outcomes and by 
arbitrarily assigning the values of 0 and 1 to the two different possibilities. So, for the EU 
countries example we can have a new variable, D, which can take the following values: 

{ 
1 for core country 

D = 0 for peripheral country 
(10.2) 

Note that the choice of which of the two different outcomes is to be assigned the value 
of 1 does not alter the results in an important way, as we will show later. 

Thus, entering this dummy variable in regression model (10.1) we get: 

Y; = f3I + /3zXz; + f33D; + u; (10.3) 

and in order to get the interpretation ofD;, consider the two possible values of D, and 
how those will affect the specification of equation (10.3). ForD= 0 we will have: 

Y; = {31 + {3zXz; + {33(0); + u; 

= f3I + f3zXz; + u; 

which is the same as for the initial model. Whilst forD = 1 we will have: 

Y; = 131 + f32X2; + {33(1); + u; 

= (/3I + /33) + /3zXz; + u; 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

where now the constant is different from {31 and is equal to ({31 + {33 ). So, we can see 
that by including the dummy variable, the value of the intercept has changed, shifting 

J 
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the function (and therefore the regression line) up or down; depending on whether the 
observation in question corresponds to a core or a peripheral country. 

Graphically this can be depicted in Figures 10.1 and 10.2 where we have two cases 
for p3: (a) the first being positive and shifting the regression line up, suggesting that 
(if Xz; is investment rates) the mean GDP growth for core countries is bigger than for 
peripheral countries for any level of investment; and (b) the second being negative, 
suggesting exactly the opposite result. 

Once the regression equation (10.3) is estimated, the coefficient {33 will be tested in 
the usual way with the t statistic. Only if /33 is significantly different from zero can we 
conclude that we have a relationship such as depicted by Figures 10.1 and 10.2. 

For other examples we could consider Y as the salary level and X the years of 
experience of various individuals, with a dummy variable being the sex of each , 
individual (male = 1, female = 0); or, in the time-series framework we might have · · 
dummy variables for certain periods (like war dummies that take the value of 1 for the 

y 

P1 

0 X 

Figure 1 0.1 The effect of a dummy variable on the constant of the regression line 
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f11 

0 X 

-Figure 1 Q,2-"Fhe-effect of a dummy variable-onthe constant-of-the regre·s-sion-line 
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period during the war and zero otherwise), or for certain events (like dummy variables 
for oil price shocks, etc.). 

Slope dummy variables 

In the previous section, we examined how qualitative information can affect the 
regression model, and we saw that only the constant in the relationship is allowed 
'to change. The implicit assumption underlying this was that the relationships between 
Y and the Xs were not affected by the inclusion of the qualitative dummy variable. 

The relationship between Y and the Xs is represented by the derivative (or slope) 
of the function in the simple linear regression model, and by the partial derivatives 
in the multiple regression model. Sometimes, however, it could be the case that slope 
coefficients might be affected by differences regarding dummy variables. 

Consider, for example, the Keynesian consumption function model, relating 
consumer expenditure (Yr) to disposable income (Xzr). This simple regression model 
has the following form: 

Yr = fh + fJzXzr + ur (10.8) 

The slope coefficient ({Jz) of this regression is the marginal propensity to consume 
given by: 

dYr 
dXzr = f3z (10.9) 

and shows the percentage of the disposable income that will be consumed. Assume 
that we have time-series observations for t•)tal consumer expenditure and disposable 
income from 1970 until1999 for the UK economy. Assume, further, that we think that 
a change in the marginal propensity to consume occurred in 1982 due to the oil price 
shock that generally affected the economic environment. In order to test this, we need 
to construct a dummy variable (Dr) that will take the following values: 

D = {0 for years from 1970-81 
1 for years from 1982-99 

(10.10) 

This dummy v'!riable, because we assume that it affected the slope parameter, must be 
included in the model in the following multiplicative way: 

Yr = fJ1 + fJzXzr + f33DrXzr + ur (10.11) 

The effect of the dummy variable can be dichotomized again according to two different 
outcomes. For Dr = 0 we will have: 

s 

Yr = fJ1 + fJzXzr + f33(0)Xzr + ur 

= fJ1 + fJzXzr + ur 

(10.12) 

(10.13) 
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which is the same as with the initial model, and forD = 1 we will have: 

Yr = flt + fJzXzr + J33(1)Xzr +lit 

= fJ1 + (fJz + f33)Xz; + ut 

(10.14) 

(10.15) 

So, before 1982 the marginal propensity to consume is given by {32 , and after 1982 it 
is {Jz + {33 (higher if f33 is higher and lower if {33 is lower). To illustrate the effect better, 
see Figures 10.3 and 10.4 for the cases where {33 > 0 and {33 < 0 respE:ctively. 

The combined effect of intercept and slope dummies 

It is now simple to understand what the outcome will be when using a dummy 
variable that is allowed to affect both the intercept and the slope coefficients. Consider 
the model: 

Yr = fJ1 + fJzXzr +lit (10.16) 

y 
Slope: P2+ /33 

p, 

Slope: P2 

0 X 

Figure 10.3 The effect of a dummy variable on the constant of the regression line 

y 

Slope: P2 

p, 

Slope: P2 + /33 

0 X 

-Fig-ore10~4 Tneeffect of a dummy variable on the constant of the regression line 
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y 
Slope: P2+ f34 

{3, Slope: P2 

0 X 

Figure 10.5 The effect of a dummy variable on the constant of the regression line 

and let's assume that we have a dummy variable defined as follows: 

{ 
0 for t = 1, ... , s 

D= 
1 for t = s + 1, ... , T 

(10.17) 

Then, using the dummy variable to examine its effects on both the constant and the 
slope coefficients we will have: 

Yt = fJ1 + f3zXu + f33Dt + f34DtXzt + llt 

and the different outcomes will be, for Dt = 0: 

Yt = fJ1 + f3zXzt + Ut 

which is the same as for the initial model, and forD= 1: 

Yt = <f3I + /33) + <f3z + f34)Xzt + ut 

The effects. are shown graphically in Figure 10.5. 

Computer. example of the use of 
dummy variables 

(10.18) 

(10.19) 

(10.20) 

The file dummies.wfl contains data on wages (wage) and IQ levels (iq) of 935 
individuals. It also includes various dummy variables for specific characteristics of the 
935 individuals. One is the dummy variable male, which takes the value of 1 when the 
individual is a male and the value of 0 if the individual is female. 

We want to see the possible effects of the male dummy on the wage rates (i.e. to 
examine whether males get different wages than females). First, we regress only wages 
on the IQ levels and a constant, to examine whether IQ plays a score in the wage 

.. 
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Table 10.1 The relati~nship between wages and IQ 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03130104 Time: 14:20 
Sample: 1 935 
Included observations: 935 

Variable Coefficient 

c 116.9916 
10 8.303064 

A-squared 0.095535 
Adjusted A-squared 0.094566 
S.E. of regression 384.7667 
Sum squared resid 1.38E+08 
Log likelihood -6891.422 
Durbin-Watson stat 0.188070 

Std. Error t-Statistic 

85.64153 1.366061 
0.836395 9.927203 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

Prob. 

0.1722 
0.0000 

957.9455 
404.3608 

14.74529 . 14.75564 
98.54936 
0.000000 

determination. The results are obtained by using the following command h1 EViews: 

ls wage c iq 

and they are presented in Table 10.1. . 
From these results we understand that IQ is indeed an important determinant (its 

t statistic is highly significant), and because our model is linear we also have that a 
1-unit increase in the IQ level corresponds to an 8.3-units increase in the wag~ rate of 
the individual. Independent of the IQ level, the wage rate is 116.9 units. 

Using a constant dummy 

Including the male dummy as a dummy affecting only the constant, we find the 
regression results (shown in Table 10.2). The command in EViews for this estimation is 
the following: 

ls wage c iq male 

From these results we can now see that, independent of the IQ. if the individual is a 
female she will have a wage of 224.8 units, while if the individual is a male he will have 
a wage of 722.8 units (224.8 + 498.0). This interpretation is of course based on the fact 
that the coefficient of the dummy variable is highly statistically significant, reflecting 
the fact that, indeed, males get higher wages than females. 

Using a slope dummy 

Continuing, we want to check whether the marginal effect is also affected by the sex. 
In other words, we want to see whether, on average, an increase in the IQ level of men 
wil~mean higher wag~nsreases tha_r1 tor women. To .do this we estimate_a..r.egr.ession..___~--
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Table 10.2 Wages and 10 and the role of sex (using a constant dummy) 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03130/04 Time: 14:21 
Sample: 1 935 
Included observations: 935 

Variable Coefficient 

c 224.8438 
10 5.076630 
MALE 498.0493 

R-squared 0.455239 
Adjusted R-squared 0.454070 
S.E. of regression 298.7705 
Sum squared resid 83193885 
Log likelihood -6654.402 
Durbin-Watson stat 0.445380 

Std. Error /-Statistic Pro b. 

66.64243 3.373884 0.0008 
0.662354 7.664527 0.0000 

20.07684 24.80715 0.0000 

Mean dependent var 957.9455 
S.D. dependent var 404.3608 
Akaike info criterion 14.24043 
Schwarz criterion 14.25596 
F -statistic 389.4203 
Prob( F -statistic) 0.000000 

Table 10.3 Wages and 10 and the role of sex (using a slope dummy) 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03/30/04 Time: 14:21 
Sample: 1 935 
Included observations: 935 

Variable Coefficient 

c 
IQ 
MALE*IQ 

·R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

412.8602 
3.184180 
4.840134 

0.458283 
0.457120 
297.9346 
82728978 
-6651.782 
0.455835 

Std. Error 

67.36367 
0.679283 
0.193746 

/-Statistic 

6.128825 
4.687559 

24.98181 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

Prob. 

0.0000 
0.0000 
0.0000 

957.9455 
40~.3608 

14.23483 
14.25036 

394.2274 
0.000000 

in EViews that includes a multiplicative slope dummy (male* iq), using the command: 

ls•wage c iq male*iq 

The results of which are presented in Table 10.3. We observe that the slope dummy is 
statistically significant indicating that there is a difference in the slope coefficient for 
different sexes. Particularly, we have that the marginal effect for women is 3.18 while 
that for men is equal to 3.18 + 4.84 = 8.02. 

Using both dummies together 

Finally, we can examine the above relationship further by using both dummies at the 
same time to see the difference in the results. The results of this model are presented 

s 
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Table 10.4 Wages and 10 and the role of sex (using both constant and slope dummies) 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03/30/04 Time: 14:23 
Sample: 1 935 
Included observations: 935 

Variable 

c 
10 
MALE 
MALE*IQ 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

357.8567 
3.728518 

149.1039 
3.412121 

0.458946 
0.457202 
297.9121 
82627733 
-6651.210 
0.450852 

Std. Error 

84.78941 
0.849174 

139.6018 
1.350971 

t-Statistic 

4.220535' 
4.390756 
1.068066 
2.525680 

Mean dependent var 
S.O.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F-statistic) 

Pro b. 

0.0000 
0.0000 
0.2858 
0.0117 

957.9455 
404.3608 

14.23574 
14.25645 

263.2382 
0.000000 

in Table 10.4 and suggest that only the effect on the slope is now significant, and the 
effect on the constant is equal to zero. 

Special cases of the use of 
dummy variables 

Using dummy variables with multiple categories 

A dummy variable might have more than two categories. Consider for example a model 
of wage determination where Y; is the wage rate of a number of individuals and X2; 

is the years of experience of each individual in the sample. It is logical to assume that 
the educational attainment level will affect the wage rate of each individual as well. 
Therefore, in this case we can have several dummies defined for the highest level of 
educational attainment of each individual, given by: 

DJ=g if primary only 
(10.21) 

otherwise 

Dz=g if secondary only 
(10.22) 

otherwise 

DJ= g if BSc only 
(10.23) 

otherwise 

{-1 ifMSc.onlr--· -
(10.24) D4 ~ 0 otherwise 
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So, we can have a wage equation of the following form: 

Y; = lh + {JzXz; + azDz; + a3D3i + a4D4i + u; (10.25) 

Note that we did not use all four dummy variables. This is because if we use all four 
dummy variables we will have exact multicollinearity since D 1 + Dz + D3 + D4 will 
always be equal to 1, and therefore they will form an exact linear relationship with the 
constant {31. This known as the dummy variable trap. To avoid this, the rule is that the 
number of dummy variables that we use will always be one less than the total number 
of possible categories. The dummy variables that will be omitted will define a reference 
group, as will become clear in the interpretation of the dummies on the model. 

The wage equation can be separated according to the use of the dummies as follows. 
If Dz = 1; D3 = D4 = 0 and then: 

Y; = {31 + {32X2; + a2D 2; + u; 

= CfJ1 + az) + fJzXz; + u; 

so, the constant for the case of secondary education is ({31 + a2 ). 

If D3 = 1; Dz = D4 = 0 and: 

Y; = fJ1 + fJzXz; + a3D3; + u; 

= CfJ1 + a3) + fJzXz; + u; 

so that the constant for the case of BSc degree holders is ({31 + a3 ). 

If D 4 = 1; Dz = D3 = 0, then: 

Y; = .B1 + {JzXz; + a3D 4; + u; 

= (fJI + a4) + {JzXz; + u; 

so that the constant for the case of MSc degree holders is ({J1 + a4). 
Wf1ile if D2 = D3 = D4 = 0, then: 

Y; = fJ1 + fJzXz; 

(10.26) 

(10.27) 

(10.28) 

(10.29) 

(10.30) 

(10.3!) 

(10.32) 

and for thi! case the constant for the primary education is equal to the constant of the 
original model, {31. 

So, in fact we don't need all four variables to depict all four outcomes. Taking as 
reference variable primary education, coefficients a2 , a3 and a4 measure the expected 
wage differential that workers with secondary, BSc and MSc degrees will have compared 
to those with primary education only. 

It is important to note that, mathematically, it does not matter which dummy 
variable is omitted. We will leave this as an exercise for the reader to understand why 
this is the case. However, the choice of the D1 dummy to be used as the reference 
dummy variable is a convenient one, because it is the lowest level of education and 
therefore we expect the lowest wage rates to correspond to this category. 

In terms of graphical depiction, the effect of the multiple dummy variable 
'educational level' is shown in Figure 10.6. 
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ff1+C<4 

fJ1+ et:3 

fl1+C<2 

P1 

0 X 

Figure 10.6 The effect of a dummy variable on the constant of the regression line 

The dummy variable trap is a quite serious mistake and should be avoided by all 
means. Fortunately, computer softwares will signal to the researcher a message that 
OLS estimation is not possible, suggesting that there is a possibility of committing 
exact multicollinearity due to the dummy variable trap by mistake (for more abqut 
exact multicollinearity see Chapter 6). 

Using more than one dummy variable 

The dummy variable analysis can be easily extended to cases of more than one dummy 
variable, some of which may have more than one category. In cases like this, the 
interpretation of the dummy variables, although following the regular form, might 
appear more complicated and the researcher should take care using them. 

To illustrate this, consider the previous model, hypothesizing that apart from the 
educational level there are other qualitative aspects determining the wage rate, such as 
age, gender and category of occupation. In this case we can have the following model: 

Yi = fh + f3zX2; + f33EDUC2; + f34EDUC3; + f3sEDUC4; 

+ {36SEXM; + fl7AGE2; + {38AGE3; 

+ {3g0CUP2; + fJwOCUP3; + f3tt OCUP 4; + u; 

where we have the following dummies: 

EDUC 
1 

= { 1 if primary only 
0 otherwise 

(10.33) 

(10.34) 

_ EDU(.;_z_= { 1_if seco~~ary only 
0 otherwise· 
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Dummy Variables 

· { 1 if BSc only 
EDUC3 = 0 otherwise 

{ 
1 if MSc only 

EDUC4 = 0 otherwise 

and EDUC1 defines the reference group. 

SEXM= g if male 

if female 

SEXF = {~ if female 

if male 

and SEXF defines the reference group. 

AGE1 = {~ for less than 30 

otherwise 

AGEz = g for 30 to 40 

otherwise 

AGE3 = g for more than 40 

otherwise 

and AGE1 is the reference group. And finally: 

OCUP1 = {~ if unskilled 

otherwise 

OCUPz = {~ if skilled 

otherwise 

OCUP3 = {~ if clerical 

otherwise 

OCUP4 = {~ if self-employed 

otherwise 

with OCVP1 being the reference group in this case. 

Using seasonal dummy variables 
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(10.36) 

(10.37) 

(10.38) 

(10.39) 

(10.40) 

(10.41) 

(10.42) 

(10.43) 

(10.44) 

(10.45) 

(10.46) 

In the analysis of time series data, seasonal effects might play a very important role, 
and the seasonal variations can be easily examined with the use of dummy variables. 
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So, for example, for quarterly time series data we can introduce four dummy variables 
as follows: 

D1 = {~ for the first quarter 

otherwise 
(10.47) 

Dz = {~ for the second quarter 

otherwise 
(10.48) 

DJ= g for the third quarter 

otherwise 
(10.49) 

D4 = {~ for the fourth quarter 

otherwise 
(10.50) 

and in a regression model we can use them as: 

Yr = fh + f3zXu + azDzt + a3D3t + a4D4r + Ut (10.51) 

and can analyse (using the procedure described above) the effects on the average level 
of Y of each of these dummies. Note that we have used only 3 of the 4 dummies in 
order to avoid the dummy variable trap described above. Similarly, it will be easy for 
the reader to understand that for monthly data sets we will have 12 dummy variables, 
while if we use the constant as well we need to use only 11, keeping one as a reference 
group. An illustrative example is given below using the January-effect hypothesis for 
monthly stock returns. 

Computer example of dummy variables with 
mult1ple categories 

Using again the data in the file dummies.wfl we can examine the case of dummy 
variables with multiple categories. In order to see the effect we can use, for example, 
the educational level variable which has four different classifications as defined in the 
previous section. The command to examine the effect of educational levels, in EViews, 
is the following: 

ls wage c educ2 educ3 educ4 

Note that we do not use all four dummies, because we have the constant and therefore 
we shouldn't include them all in order to avoid the dummy variable trap. The results 
are given in Table 10.5. 

The results provide statistically significant estimates for all coefficients, so we can 
proceed with the interpretation. The effect on wages if an individual has finished only 
primary education is given by the constant and is equal to 774.2. An individual who has 
finished-secondary education wilfhave a wageol8-8.4 units higher than that of those 
with primary education only, an individual with a BSc will have 221.4 units more than 
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Table 10.5 Dummy variables with multiple categories 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03/30/04 Time: 14:48 
Sample: 1 935 
Included observations: 935 

Variable Coefficient 

c 
EDUC2 
EDUC3 
EDUC4 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

774.2500 
88.42176 

221.4167 
369.1184 

0.100340 
0.097441 
384.1553 
1.37E+08 
-6888.932 
0.166327 

Std. Error t-Statistic 

40.95109 
45.30454 
48.88677 
47.69133 

18.90670 
1.951719 
4.529174 
7.739739 

Mean dependent var 
S.D. dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Table 10.6 Changing the reference dummy variable 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03/30/04 Time: 14:58 
Sample: 1 935 
Included observations: 935 

Variable· Coefficient 

c 
EDUC1 
EDUC2 
EDUC3 

1143.368 
-369.1184 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

-280.6967 
-147.7018 

0.100340 
0.097441 
384.1553 
1.37E+08 
-6888.932 
0.166327 

Std. Error t-Statistic 

24.44322 
47.69133 
31.19263 
36.19938 

46.77651 
-7.739739 
-8.998812 
-4.080229 

Mean dependent var 
S.D. dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 
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Pro b. 

0.0000 
0.0513 
0.0000 
0.0000 

957.9455 
404.3608 

14.74424 
14.76495 
34.61189 

0.000000 

Prob. 

0.0000 
0.0000 
0.0000 
0.0000 

957.9455 
404.3608 

14.74424 
14.76495 
34.61189 

0.000000 

that of primary, and finally an individual with an MSc will have 369.1 more units of 
wage than primary only. So the final effects can be summarized as follows: 

Primary 
Secondary 
BSc 
MSc 

?74.2 
862.6 
995.6 

1,143.3 

It is easy to show that if we change the reference variable the results will remain 
unchanged. Consider the following regression equation model, which uses as a 
reference category the educ4 dummy (the command in EViews is: Is wage c educ1 educ2 
educ3), and of which the results are presented in Table 10.6. We leave it for the reader 
to do the simple calculations and see that the final effects are identical to those of the 
previous case. Thus, changing the reference dummy does not affect our results at all. 
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Table 10.7 Using more than one dummies together 

Dependent Variable: WAGE 
Method: Least Squares 
Date: 03130104 Time: 15:03 
Sample: 1 935 
Included obseNations: 935 

Variable 

c 
EDUC2 
EDUC3 
EDUC4 
AGE2 
AGE3 
MALE 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

641.3229 
19.73155 

112.4091 
197.5036 
-17.94827 

71.25035 
488.0926 

0.462438 
0.458963 
297.4286 
82094357 
-6648.182 
0.451689 

Std. Error t-Statistic 

41.16019 
35.27278 
38.39894 
37.74860 
29.59479 
30.88441 
20.22037 

15.58115 
0.559399 
2.927402 
5.232077 

-0.606467 
2.307001 

24.13865 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 

Prob. 

0.0000 
0.5760 
0.0035 
0.0000 
0.5444 
0.0213 
0.0000 

957.9455 
404.3608 

14.23568 
14.27192 

133.0523 
0.000000 

The reader can check that changing the reference category to educ2 or educ3 yield,<; the 
same results. 

Finally, we may have an example using three different dummies (educ, age and 
male) together in the same equation (we will use educl, agel and female as reference 
dummies to avoid the dummy variable trap) and we will leave this as an exercise for 
the reader to try and interpret the results of this model. The results are presented in 
Table 10.7. 

Application: the January effect in 
emerging stockmarkets 

Asteriou and Kavetsos (2003) examined the efficient market hypothesis (in terms of 
the presence or not of the 'January effect' for eight transition economies, namely the 
Czech Republic, Hungary, Lithuania, Poland, Romania, Russia, Slovakia and Slovenia. 
(For more details regarding the January effect see Gultekin and Gultekin, 1983, and 
Jaffe and Westerfield, 1989.) In their analysis they used a monthly data set from 1991 
to the early months of 2003 using monthly time series data, for the stockmarkets of 
each of the aforementioned countries. The test for January effects is strongly based on 
the use of seasonal dummy variables. In practice what needs to be done is to create 
12 dummies (one for each month) that take the following values: 

Dit = { ~ if the return at time t corresponds to month i 
---- --- - --- - -•----

otherwise 
{10~52) __ _ 
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Table 10.8 Tests for seasonal effects 

Variables Czech Rep. Hungary Lithuania Poland 
--

coef t-stat coef t-stat coef t-stat coef t-stat 

D1 0.016 0.631 0.072 2.471 -O.OOB -0.24B 0.072 1.784 
D2 0.004 0.146 -O.OOB -0.2BO 0.01B 0.543 0.033 O.B26 
03 -0.001 -0.031 0.017 0.626 0.041 1.220 -0.026 -0.650 
D4 0.001 0.023 0.022 O.BOO -0.014 .-0.421 0.041 1.024 
D5 -0.013 -0.514 -0.005 -0.1BO -0.036 -1.137 0.049 1.261 
06 -0.041 -1.605 0.004 0.126 -0.071 -2.106 -0.051 -1.265 
D7 0.036 1.413 0.017 0.5B3 -0.013 -0.3B1 0.033 O.B14 
DB -0.022 -O.B49 0.007 0.245 -0.009 -0.264 0.014 0.341 
D9 -0.029 -1.127 -0.027 -0.926 -0.086 -2.547 -0.034 -O.B42 
D10 -0.014 -0.532 0.011 0.3B7 -0.014 -0.420 0.025 0.611 
D11 -0.039 -1.519 -0.002 -0.05B 0.04B 1.427 0.012 0.2B7 
D12 0.033 1.294 0.060 2.083 -0.011 -0.325 0.061 1.52B 

R2(0LS) 0.105 0.070 0.196 0.070 
8-G Test 12.934 (0.374) 12.409 (0.413) 34.71B (0.001) 34.591 (0.001) 
LM(1) Test 0.351 (0.553) 0.039 (O.B43) 4. 705 (0.030) 2.8B3 (0.090) 

Romania Russia Slovakia Slovenia 
---

coef t-stat coef t-stat coef t-stat coef t-stat 

D1 O.OBB 1.B73 0.034 0.5B1 0.044 1.223 0.061 2.479 
D2 0.007 0.154 0.065 1.125 0.081 2.274 -0.012 -0.4B2 
D3 -0.064 -1.367 0.089 1.536 -0.012 -0.327 -0.023 -0.934 
D4 0.036 O.B46 0.07B 1.347 .-0.04B -1.329 -0.013 -0.537 
D5 0.009 0.21B 0.027 0.471 -0.034 -0.939 0.011 0.455 
D6 0.034 0.727 0.067 1.100 -0.012 -0.313 -0.02B -1.0B9 
07 -0.032 -0.689 -0.025 -0.404 0.002 0.044 0.048 1.854 
DB -0.023 -0.499 -0.041 -0.669 0.032 0.846 0.045 1.855 
D9 -0.041 -O.B77 -0.056 -0.919 -0.024 -0.631 0.006 0.232 
D10 0.007 0.147 0.047 0.810 -0.012 -0.340 0.033 1.336 
D11 0.002 . 0.033 0.035 0.599 -0.01B -0.501 0.006 0.243 
D12 -0.005 -0.103 0.086 1.487 0.037 1.028 0.007 0.305 

R2(0LS) 0.141 0.075 0.103 0.1S5 
8-G Test 16.476 (0.170) 17.014 (0.149) 24.517 (0.017) 27.700 (0.006) 
LM{1) Test 1.355 (0.244) 0.904 (0.342) 13.754 (0.000) 0.612 (0.434) 

From the methodology point of view, to test for seasonal effects in general corresponds 
to estimatiQg the following equation: 

Rit = a 1Du + azDzt + a3D3t + · · · + a12D1u + llt (10.53) 

where Rt indicates the stockmarket return at time t, a; is the average return of month 
i, Dit are the seasonal dummy variables as defined above, and llt is an iid (ideally 
independently distributed) error term. The null hypothesis to be tested is that the 
coefficients a; are equal. If they are equal there are no seasonal effects, and vice versa. 

Then, to explicitly test for January effects, the regression model is modified as follows: 

R;t = c + azDzt + a3D3t + · · · + a12D12t + Ut (10.54) 
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Table 10.9 Tests for the January effect 

Variables Czech Rep. 

c 
D2 
D3 
D4 
D5 
D6 
D7 
DB 
D9 
D10 
D11 
D12 

R2 (0LS) 
8-G Test 
LM(1) Test 

c 
D2 
D3 
D4 
D5 
D6 
D7 
DB 
D9 
D10 
D11 
D12 

R2 (0LSl 
B-G Test 
LM(1) Test 

coef t-stat 

0.016 
-0.012 
-0.017 
-0.015 
-0.029 
-0.057 

0.020 
-0.03B 
-0.045 
-0.030 
-0.055 

0.017 

0.631 
-0.327 
-0.455 
-0.416 
-0.809 
-1.581 

0.553 
-1.046 
-1.243 
-0.822 
-1.520 

0.469 

0.105 
12.934 (0.374) 
0.351 (0.553) 

Romania 

coef 

0.088 
-0.081 
-0.152 
-0.052 
-0.078 
-0.054 
-0.120 
-0.111 
-0.129 
-0.081 
-0.086 
-0.093 

1-stat 

1.873 
-1.215 
-2.290 
-0.813 
-1.236 
-0.810 
-1.811 
-1.677 
-1.944 
-1.220 
-1.301 
--1.397 

0.141 
16.476 (0.170) 
1.355 (0.244) 

Hungary 

coef 

0.072 
-0.079 
-0.054 
-0.049 
-0.077 
-0.06B 
-0.055 
-0.064 
-0.098 
-0.060 
-0.073 
-0.011 

t-stat 

2.471 
-1.976 
-1.34B 
-1.227 
-1.906 
-1.65B 
-1.335 
-1.574 
-2.402 
-1.474 
-1.788 
-0.274 

0.070 
12.409 (0.413) 
0.039 (0.843) 

Russia 

coef 

0.034 
0.031 
0.055 
0.044 

-0.006 
0.034 

-0.058 
-0.074 
-0.090 

0.013 
0.001 
0.052 

t-stal 

0.581 
0.385 
0.676 
0.542 

-0.077 
0.402 

-0.693 
-0.885 
-1.067 

0.162 
0.013 
0.641 

0.075 
17.014 (0.149) 
0.904 (0.342) 

Lithuania 

coef 

-0.008 
0.027 
0.050 

~0.006 

-0.027 
-0.063 
-0.005 
-0.001 
-0.07B 
-0.006 

0.057 
-0.003 

t-stat 

~0.248 

0.559 
1.038 

-0.123 
-0.591 
-1.314 
-0.094 
-0.012 
-1.626 
-0.122 

1.184 
-0.055 

0.196 
34.71B (0.001) 
4.705 (0.030) 

Slovakia 

coef 

0.044 
0.038 

-0.055 
-0.091 
-0.077 
-0.056 
-0.042 
-0.012 
-0.068 
-0.056 
-0.062 
-0.007 

I-sla I 

1.223 
0.743 

-1.096 
-1.805 
-1.529 
-1.069 
-0.810 
-0.228 
-1.300 
-1.105 
-1.219 
-0.138 

0.103 
24.517 (0.017) 
13.754 (0.000) 
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Poland 

coef 1-slat 

0.072 1.784 
-0.039 -0.677 
-0.09B -1.721 
-0.031 -0.537 
-0.023 -0.413 
-0.123 -2.156 
-0.039 -0.686 
-0.058 -1.020 
-0.1 06. - 1.856 
-0.047 -0.829 
-0.060 -1.058 
-0.010 -0.181 

0.070 
34.591 (0.001) 
2.8B3 (0.090) 

Slovenia 

coef 

0.061 
-0.072 
-0.084 
-0.074 
-0.050 
-0.089 
-0.012 
-0.015 
-0.055 
-0.028 
-0.055 
-0.053 

t-slal 

2.479 
-2.()94 
-2.413 
-:2.133 
-1.431 
-2.489 
-0.339 
-0.441 
-1.589 
-0.808 
-1.581 
-1.537 

0.155 
27.700 (0.006) 
0.612 (0.434) 

where Rt again indicates stockmarket returns, the intercept c represents the mean return 
for January, and in this case the coefficients a;, represent the difference between the 
return of January and month i. 

The null hypothesis to be tested in this case is that all dummy variable coefficients 
are equal to zero. A negative value of a dummy coefficient would be proof of a january 
effect. The estimation of the coefficients in equation (10.54) will specify which months 
have lower average returns than those obtained in january. 

The summarized results obtained from Asteriou and Kavetsos (2003) for equation 
(10.54) are presented in Table 10.8, while those for the january effect are presented in 
Table 10.9. From these results we see, first, that there are significant seasonal effects 
for five out of the eight countries in the sample (note that bold indicates that the 
coefficients-are signifiGant-in Table 10~8), while-th-ey-alse-feund-evidenee·in favour-· 
of the January effect (bold indicates coefficients in Table 10.9) for Hungary, Poland, 
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Romania, Slovakia and Slovenia. For more details regarding the interpretation of these 
results see Asteriou and Kavetsos (2003) . 

Tests for structural stability 

The dummy variable approach 

The use of dummy variables can be considered as a test for stability of the estimated 
parameters in a regression equation. When an equation includes both a dummy 
variable for the intercept and a multiplicative dummy variable for each of the 
explanatory variables, the intercept and each partial slope is allowed to vary, implying 
different underlying structures for the two conditions (0 and 1) associated with the 
dummy variable. 

Therefore, using dummy variables is like conducting a test for structural stability. In 
essence, two different equations are being estimated from the coefficients of a single 
equation model. Individual t statistics are used to test the significance of each term, 
including a dummy variable, while the statistical significance for the entire equation 
can be established by a Wald test as described in Chapter 5. 

The advantages of using the dummy variable approach when testing for structural 
stability are the following: 

(a) a single equation is used to provide the set of the estimated coefficients for two or 
more structures; 

(b) only one degree of freedom is lost for every dummy variable used in the equation; 

(c) a larger sample is used for the estimation of the model (than the Chow test case that 
we will describe below), improving the precision of the estimated coefficients; and 

(d) it provides us with information regarding the exact nature of the parameter 
instability (i.e. whether or not it affects the intercept and one or more of the partial 
slope coefficients). 

The Chow test for strudural stability 

An alternative way to test for structural stability is provided by the Chow test (Chow, 
1960). The test consists of breaking the sample into two (or more according to the case) 
structures, estimating the equation for each of them, and then comparing the SSR from 
the separate equations with that of the whole sample. 

To illustrate this, consider the case of the Keynesian consumption function for the 
UK data set, examined with the use of dummy variables. In order to apply the Chow 
test the following steps are followed: 

Step 1 Estimate the basic regression equation: 

Yt = fJ1 + fJzXu + llt (10.55) 

.J 
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for three different data sets: 

(a) the whole sample (n), 

(b) the period before the oil shock (n1), and 

(c) the period after the oil shock (n2 ). 

~ 
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Step 2 Obtain the SSR for each of the three subsets and label them as SSR11 , SSR111 and 
SSRn2 respectively as above. 

Step 3 Calculate the following F statistic: 

F = (SSRn- (SSRn 1 + SSR112 ))/k 

(SSRn 1 + SSR112 )/(nl + nz + 2k) 
(10.56) 

where k is the number of parameters estimated in the equation of step 1 (for 
this case k = 2). 

Step 4 Compare the F statistic obtained above with the critical F(k,n
1 
+nz+Zk) for 

the required significance level. If £-statistical> F-critical then we, reject the 
hypothesis Ho that the parameters are stable for the entire data set, and 
conclude that there is evidence of structural instability. 

Note that while the Chow test might suggest that there is parameter instability, it does 
not give us any information regarding which parameters are affected. For this n~ason 
dummy variables provide a better and more direct way of examining structural stability. 

I 

Qu.est~tn:¥ii1< 

Questions 

1 Explain how we can use dummy variables to quantify qualitative informatidn in a 
regression model. Use appropriate examples from the economic theory. 

2 Show what is the combined effect of the use of a dichotomous dummy variable on 
the constant and the slope coefficient (both graphically and mathematically) of the 
simple regression model. 

3 Provide an example of economic theory where the use of seasonal dummy variables 
is required. Explain why when there is a constant included in the model, we cannot 
use all dummies together but need to exclude one dummy that will be the reference 
dummy. What is the meaning of a reference dummy variable? 

4 Describe the steps involved in conducting the Chow test for structural stability. Is the 
Chow test preferable to the dummy variables approach? Explain why or why not. '• 
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Although many econometric models are formulated in static terms, it is quite possible in 
time series models to have relationships where the concept of time plays a more central 
role. So, for example, we might find ourselves with a model that has the following form: 

Yt = a+ floXt + /J1 Xt-1 + fJ2Xr-2 + · · · + fJpXt-p +lit (11.1) 

In this model we have that Yr is not depending on the current value of Xt only, but 
also on past (lagged) values of Xt. There are various reasons why lags might need to 
be introduced in a model. Consider, for example, an exogenous shock stimulating the 
purchase of capital goods. It is unavoidable that some time will elapse from the moment 
the shock occurred till the firm's knowledge of the situation. This can be either because .. 
(a) it requires some time to get the relevant statistical information, (b) it takes time for 
the firm's managers to draw up plans for the new capital project, or (c) the firm might 
want to obtain different prices from competing suppliers of capital equipment, amo!}g 
various other reasons. Therefore, Jagged effects will occur and dynamic models which 
can capture the effects of the time paths of exogenous variables and/or disturbances on 
the time path of the endogenous variables are needed. 

In general there are two types of dynamic models: 

(1) distributed lag models that include lagged terms of the independent (or 
explanatory variables), and 

(2) autoregressive models that include lagged terms of the dependent variable. 

These two types of model are described in this chapter. 

Distributed lag models 

Consider the model: 

Yt =a+ fJoXt + fJ1Xt-1 + fJ2Xr-2 + · · · + fJpXt-p + ut 

p 

=(X + L {J;Xt-i + Ut 
i=O 

(11.2) 

in which the {Js are coefficients of the lagged X terms. With this model the reaction to 
Yt after a change in Xr is distributed over a number of time periods. In the model we 
have p Jagged terms and the current Xt term, so, it takes p + 1 periods for the full effect 
of a change in Xt to influence Yt. 

It is interesting to examine the effect of the {Js: 

(a) The coefficient fJo is the weight attached to the current X (Xt) given by !:J. Yt! L!.X1• 

_. _ It ther.efore, shows_how_much the average change-in-Yt wiU-be-when-Xt-Ehanges 
by one unit. fJo is for this reason called the impact multiplier. 
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(b) f3; is similarly given by t;. Ytf t;.Xt-i and shows the average change in Yr for a unit 
increase in Xt-i• i.e. for a unit increase in X made i periods prior tot. For this reason 
the f3;s are called the interim multipliers of order i. 

(c) The total effect is given by the sum of the effects on all periods: 

p 

L /3; = f3o + f3I + /3z + .. · + /3p 
i=O 

(11.3) 

This is also called the long-run equilibrium effect when the economy is at the steady 
state (equilibrium) leveL In the long-run: 

and therefore: 

X* = Xr = Xr-I = · · · = Xr-p 

Y; =a+ f3oX* + {3 1X* + f3zX* + · · · + f3pX* + ur 

p 

= a +X* L /3; + Ut 

i=O 

(11.4) 

(11.5) 

Distributed lag models can be estimated by simple OLS and the estimators of the {3s 
are BLl)E. The question here is how many lags are required in order to have a correctly 
specified equation? Or, in other wc,rds, what is the optimal lag-length? 

One way to resolve this is to use a relatively large value for p, estimate the model for 
p, p - 1, p - 2, .... lags and choose the model with the lowest value of AIC, SBC or any 
other criterion. However, this approach generates two considerable problems: 

(a) it can suffer from severe multicollinearity problems, because of close relationships 
between Xr,Xr-I,Xt-2• ... ,Xt-p; and 

(!J) a large number of p means a considerable loss of degrees of freedom because we can 
use only the p + 1 to n observations. 

Therefore, an alternative approach is needed to provide methods that can resolve these 
difficulties. The typical approach is to impose restrictions regarding the structure of the 
{3s and then reduce from p + 1 to only a few the number of parameters to be estimated. 
Two of the mo~t popular methods to do this are the Koyck (geometrical lag) and the 
Almon (polynomial lag) transformations which are presented below. 

The Koyck transformation 

Koyck (1954) proposed a geometrically declining scheme for the {3s. To understand this 
consider again the distributed lag model: 

Yr =a+ f3oXr + f3IXt-I + f3zXt-2 + · · · + /3pXt-p +Lit ( 11.6) 

s 
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Koyck made two assumptions: 

(a} all the {3s have the same sign; and 

(b) the {3s decline geometrically as In the following equation: 

/3; = /3oA; (11.7) 

where A. takes values among 0 and 1 and i = 0, 1, 2, ... 
It is easy to see that it is declining. Since A is positive and less than one and all the fJ; 

have the same sign, then /3oA 1 > {30 ;.. 2 > /3oA 3 and so on; and therefore f3J,. > f3z > {33 
and so on (for a graphical depiction of this see Figure 11.1). 

Let us say that we have an infinite distributed lag model: 

Yt =a+ fJoXt + f31Xt-1 + fJ2Xt-2 + · · · + Ut (11-.8) 

Substituting f3; = {30 ;..i we have: 

Yt =a+ f3o;..
0

Xt + f3o;.. 
1 
Xt-1 + f3oi..

2
Xt-2 +···+lit (11.9) 

' For this infinite lag model the immediate impact is given by f3o (because;.. 0 = 1), while 
the long-run effect will be the sum of an infinite geometric series. Koyck transforms 
this model to a much simpler one as follows: · 

Step 1 Lag both sides of equation (11.9) one period to get: 

Yt-1 =a+ f3oA.
0
Xt-1 + f3o)._ 

1
Xt-2 + f3oA

2
Xt-3 + ... + Ut-1 

Step 2 Multiply both sides of (11.10) by A to get: 

6 

5 

4 

3 

2 

A.Yr-1 = Aa + /3oAlXt-l + /3oA2Xt-2 +f3oA.3Xt-3 + ... + A.ur-1 

~-,, ,, 
\\ 
'\ 
\ \ 
' \ ' \ \ \ 

\ .............. 

' ' ' ' ' ' ' ' ,_ 
.............. ----­---

-- lamda = 0. 75 
----lamda=0.5 
-----·lamda=0.25 

--0 -------- ----
0 2 3 4 5 6 7 

(11.10) 

(11.11) 

-Figure 1'C1 Koyck-dlstributedTag for diffe.rent values of lamd-a~~-
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Step 3 Subtract (11.11) from (11.9) to obtain: 

Yt- AYt_ 1 = a(1- A)+ fJoXt + Ut- AUt-1 (11.12) 

or 

Yt = a(1- A)+ fJoXt + AYt-1 + Vt (11.13) 

where Vt = Ut- AUt-1· In this case the immediate effect is fJo and the long-run 
effect is fJo/0 -A) (consider again that in the long run we have Y* = Yt = 
Yt_ 1 =···).So equation (11.13) is now enough to give us both the immediate 
and long-run coefficients very easily. 

The Almon transformation 

An alternative procedure is provided by Almon (1965). Almon assumes that the 
coefficients /Ji can be approximated by polynomials in i, such as: 

/Ji = ((i) = aoi0 + a 1 i
1 + a2i2 + a3 i3 + ... + a,i' (11.14) 

The Almon procedure requires prior selection of the degree of the polynomial (r) as 
well as ,of the largest lag to be used in the model (p). Therefore, unlike the Koyck 
transformation, where the distributed lag is infinite, the Almon procedure must be 
finite. 

Suppose we choose r = 3 and p = 4; then we have: 

fJo = {(0) = ao 

fJ1 =fCO=ao+a1+az+a3 

fJz = {(2) = ao + 2a1 + 4a2 + Ba3 

/33 = {(3) = ao + 3al + 9az + 27a3 

/34 = {(4) = ao + 4a1 + 16az + 64a3 

Substituting these into the distributed lag model of order p = 4 we have: 

Yt =a + (ao)Xt + (ao + a 1 + az + a3)Xt_ 1 

+ (a0 + Za1 + 4az + 8a3)Xt-2 

+ (a0 + 3al + 9a2 + 27a3)Xt-3 

+ (ao + 4al + 16az + 64a3)Xt-4 + Ut 

and factorizing the ais we get: 

Yt =a + ao(Xt + Xt-1 + Xt-2 + Xt-3 + Xt-4) 

+ a 1 (Xt-l + 2Xt-2 + 3Xt-3 + 4Xt-4) 

.. 

(11.15) 
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+ a2(Xr_ 1 + 4Xr-2 + 9Xr-3 + 16Xr_4 ) 

+ a3(Xt-1 + 8Xt-2 + 27Xr-3 + 64Xr_4 ) + Ut (11.16) 

Therefore what is required is to apply appropriate transformations of the Xs such as 
the ones given in parentheses. If a3 is not statistically significant, then a second-degree 
polynomial might be preferable. If we want to include additional terms we can easily 
do that as well. The best model will be either the one that maximizes R2 (for different 
model combinations regarding r and p), or the one that minimizes AIC, SBC or any 
other criteria. · 

Other models of lag structures 

There are several other models for reducing the number of parameters in a distributed 
lag model. Some of the most important ones are the Pascal lag, the gamma l<ig, 
the LaGuerre lag and the Shiller lag. For a full explanation of these models see 
Kmenta (1986). 

Autoregressive models 

Autoregressive models are models that simply include lagged dependent (or 
endogenous) variables as regressors. In the Koyck transformation discussed earlier, we 
saw that Yr_ 1 appears as a regressor, so it can be considered as a case of a distributed 
lag model that was transformed to an autoregressive model. There are two more 
specifications involving lag-dependent variables: 

(a) the partial adjustment model; and 

(b) the adaptive expectations model. 

We will examine these two models in detail below. 

The partial adiustment model 

Suppose that the adjustment of the actual value of a variable Yt to its optimal (or 
desired) level (denoted by Y!) needs to be modelled. One way to do this is through the 
partial adjustment model which assumes that the change in actual Yt (Yt- Yt_ 1) will 
be equal to a proportion of the optimal change (Y!- Yr-1) or: 

Yt- Yt-1 = A(Y!- Yr-1) (11.17) 

where A is the adjustment coefficient, which takes values from 0 to 1, and 1/A denotes 
the speed of adjustment. 

Conside!__!he__!_wo extreme cases: Ja) if A = 1 ther1 l"t = l'; __ <md ther_ef_ore the __ -~ 
adjustment to the optimal level is instantaneous; whilst (b) if A = 0 then Yr = Yr_ 1 
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which means that there is no adjustment of the Yt. Therefore, the closer A. is to unity, 
the faster the adjustment will be. To understand this better, we can use a model from 
economic theory. Suppose v; is the desired level of inventories for a firm i, and that 
this depends on the level of the sales of the firm Xt: 

v; = fJ1 + fJzXt (11.18) 

Because there are 'frictions' in the market, there is bound to be a gap among the actual 
level of inventories and the desired one. Suppose also that only a part of the gap can be 
closed each period. Then the equation that ~ill determine the actual level of inventories 
will be given by: 

Yt = Yt-'-1 + A.(Y;- Yt-1) + Ut (11.19) 

That is, the actual level of inventories is equal to that at time t - 1 plus an adjustment 
factor and a random component. 

Combining (11.18) and (11.19): 

Yt = Yt-1 + A.(fJ1 + fJzXt- Yt-1) + ur 

= fJ1A. + (1- A.)Yt-1 + fJzA.Xt + ur 

From this model we have the following: 

(a) tne short-run reaction of Y to a unit change in X is fJzA.; 

(b) the long-run reaction is given by {J1; and 

(11.20) 

(c) an estimate of {J1 can be obtained by dividing the estimate of fJzA. by one minus the 
estimate of (1- A.), i.e. fJ1 = fJzA./[1- (1- A.)]. 

Here, it is useful to note that the error correction model is also an adjustment model. 
However, we provide a full examination of these kind of models in Chapter 17. 

A computer example of the partial adiustment model 

Consider the money demand function: 

M* = aYb1 Rbz ur 
t t t et (11.21) 

where the usual notation applies. Taking logarithms of this equation we get: 

lnM; =Ina+ b1 ln Yt + bzlnRt + Ut (11.22) 

The partial adjustment hypothesis can be written as: 

_t_- __ t_ M ( M* );,. 
Mt-1 - Mt-1 

(11.23) 

~ 
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where if we take logarithms we get: 

JnMt -lnMt-1 =A. (lnM; -lnM1_J) 

Substituting (11.22) into (11.24) we get: 

lnMt -lnM1_ 1 =A. (Ina+ b1 ln Yt + bzlnR1 + Ut -lnMr-d 

lnMt =A. In a+ A.b1ln Yt + A.bzlnRt + (1- A.) lnMt-l + ).Ut 

or 

lnMt = Yl + yzln Yt + y3inRt + y4lnMt-l + Vt 

(11.24) 

(11.25) 

(11.26) 

(11.27) 

We will use EViews in order to obtain OLS results for this model using data for ~he 
Italian economy. We will use data for gross domestic product (GDP), the consumer price 
index (cpi) the M2 monetary aggregate (M2) and the official discount interest rate (R) 

of the Italian economy. The data are quarterly observations from 1975q 1 until 1997q4. 
First we need to divide both GDP and M2 by the consumer price index in order to obtain 
real GDP and real money balances. We do this by creating the following variables: 

genr lm2_p=log(m2/cpi) 
genr lgdp_p=log(gdp/cpi) 

Then we need to calculate the logarithm of the interest rate (R). We can do that with 
the following command: 

genr lr=log(r) 

Now we are able to estimate the model given in equation (11.27) by OLS by typing the 
following command on the command line: 

ls lm2_p c lgdp_p lr lm2_p(-l) 

the results of which are given in Table 11.1. 
The coefficients have their expected (according to economic theory) signs and all are 

significantly different from zero. The R2 is very high (0.93) but this is mainly because 
one of the explanatory variables is the lagged dependent variable. We leave it as an 
txercise for the reader to test for possible serial correlation for this model (see Chapter 8 
and note the inclusion of the lagged dependent variable). 

From the obtained results we can obtain an estimate for the adjustment coefficient 
(A.) by using the fact that y4 = 1 -A.. So, we have that 1 - 0.959 = 0.041. This tells 
us that 4.1 o/o of the difference between the desired and actual demand for money is 
eliminated in each quarter, or that 16.4% of the difference is eliminated each year. 

The estimated coefficients in Table 11.1 are of the short-run demand for money and 
they are the short-run elasticities with respect to GDP and R respectively. The short-run 
income elasticity is 0.026 and the short-run interest rate elasticity is -0.017. 

rhe-Jong-run-demand·for money was-given-by-equation(-1-1-:-22). Estimates-of these~-­
long-run parameters can be obtained by dividing each of the short-run coefficients by 
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Table 11.1 Results for the Italy Money Supply Example 

Dependent Variable: LM2_P 
Method: Least Squares 
Date: 03102104 Time: 17:17 
Sample (adjusted): 1975:2 1997:4 
Included observations: 91 after adjusting endpoints 

Variable 

c 
LGDP_P 
LA 
LM2_P(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

0.184265 
0.026614 

-0.017358 
0.959451 

0.933470 
0.931176 
0.015605 
0.021187 

251.4942 
1.544176 

Std. Error 

0.049705 
0.010571 
0.005859 
0.030822 

!-Statistic 

3.707204 
2.517746 

-2.962483 
31.12873 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob (F-statistic) 

Pro b. 

0.0004 
0.0136 
0.0039 
0.0000 

1.859009 
0.059485 

-5.439433 
-5.329065 

406.8954 
0.000000 

the estimate of the adjustment coefficient (.\. = 0.041). So, we have that the long-run 
function is: 

lnM; = 4.487 + 0.634ln Yt- 0.4141nRt + Ut (11.28) 

Note t:hat these are the quarterly elasticities. If we want the yearly elasticitie:; we should 
multiply the respective coefficients by 4. 

The adaptive expectations model 

The second of the autoregressive models is the adaptive expectations model, which 
is based on the adaptive expectations hypothesis formulated by Cagan (1956). Before 
understanding the model it is crucial to have a clear picture of the adaptive expectations 
hypothesis. So, consider an agent who forms expectations of a variable Xt. If we denote 

. by the superscript e expectations, then Xf_ 1 is the expectation formed at time t- 1 for 
X in t. • 

The adaptive expectations hypothesis assumes that agents make errors in their 
expectations (given by X1 - Xf_ 1) and also that they revise their expectations by a 
constant proportion of the most recent error. Thus: 

Xf-Xi_ 1 =8(Xt-Xi_ 1) 0<8::5 1 (11.29) 

where fJ is the adjustment parameter. 
If we consider again the two extreme cases we have that: 

(a) if fJ = 0 then Xi= Xf_ 1 and no revision in the expectations is made; while 

(b) if 8 = 1 then Xf = Xt and we have an instantaneous adjustment in the expectations. 

s 
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The adaptive expectations hypothesis can now be incorporated in an econometric 
model. Suppose that we have the following model: 

Yt = lh + {3zX~ + Ut (11.30) 

where, for example, we can think of Yt as consumption and of X~ as expected income. 
Assume, then, that for the specific model the expected income follows the adaptive 
expectations hypothesis, so that: 

xr -Xf_I =8(Xr -X~-I) (11.31) 

If actual X in period t - 1 exceeds the expectations, then we would exp;ct agents to'·. 
revise their expectations upwards. Equation (11.31) then becomes: 

X~ = 8Xt + (1- 8)X~-I 

Substituting (11.32) into (11.30) we obtain: 

Yt = /h + /3z(8Xt + (1- 8)X~_I) + Ut 

= f3I + f3z8Xt + f3z(1- 8)X~-I +lit 

(11:32) 

(11..13) 

In order to estimate the Xf_ I variable from equation (11.33) to obtain an estimable 
econometric model, we need to follow the following procedure: 
Lagging equation (11.30) one period we get: 

Yt-I = f3I + f3zXf_I +ur-I (11.34) 

Multiplying both sides of (11.34) by (1 - 8) we get: 

(1- 8)Yr-I = (1- 8)f3I + (1- 8)f3zXf_I + (l- 8)ut-I (11.35) 

Subtracting (11.35) from (11.33) we get: 

Yt- (1- 8)Yt-I = /h- (1- 8)f3I + f3z8Xt + Ut- (1- B)llt-I (11.36) 

or 

Yt = f3I8 + f328Xr + (1- B)Yr -I+ ut- (1- (})ut-I (11.37) 

and finally: 

Yt = f3i + f32.Xt + f3]Yt-I + Vt (11.38) 

where f3i = f3I 8, {32_ = 132g, f3j = (1 - (}) and Vt = lit - (1 - {})ur-I· Once estimates of 
the /3* s have been obtained, {31, {32 and g can be estimated as follows: 

8 =-r- ,Bj-, -tJr = .tii ana~~2 ~10.-
g (j 

(11.39) 
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Here, it is interesting to mention that through this procedure we are able to obtain an 
estimate of the marginal propensity to consume out of expected income, although we 
do not have data for expected income. 

Tests of autocorrelation in autoregressive models 

It is of very high importance to testfor autocorrelation in models with lagged dependent 
variables. In Chapter 8 we mentioned that in such cases the DW test statistic is not 
appropriate and Durbin's h test should be used instead, or alternatively the LM test for 
<!Utocorrelation. Both tests were presente~ analytically in Chapter 8. 

ihc:erci.:ses 

Exercise 11.1 

Show how we might obtain an estimate of the marginal propensity to consume out 
of expected income, although we do not have data for expected income, using the 
adaptive expectations autoregressive model. 

Exercise 11.2 

Derive the Almon polynomial transformation for p = 5 and r = 4. Explain how to 
p;oceed with the estimation of this model. 

Exercise 11.3 

Explain how we can test for serial correlation in autoregressive models. 

Exercise 11.4 

Show how the Koyck transformation transforms an infinite distributed lag model to an 
autoregressive model. Explain the advantages of this transformation. 

Exercise 11.5 

Assume we have the following distributed lag model: 

Yt = 0.847 + 0.236Xt + 0.366Xt-t + 0.581Xt-2 

+0.324Xt-3 +0.145Xt-4 ( 11.40) 

find (a) the impact effect, and (b) the long-run effect of a unit change in X on Y. 

.. 
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Table 11.2 Results for an adaptive expectations model 
---------------------Dependent Variable: CE 
Method: Least Squares 
Date: 03/02104 Time: 18:00 
Sample (adjusted): 1976:1 1997:4 
Included observations: 88 after adjusting endpoints 

Variable 

c 
YO 
CE(-1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Exercise 11.6 

The model: 

Coefficient 

-7.692041 
0.521338 
0.442484 

0.958482 
0.588722 
0.032454 
0.148036 

161.6191 
0.869852 

Std. Error t-Statistic 

3.124125 
0.234703 
0.045323 

-2.46214e 
2.221233 
9.762089 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 

· F -statistic 
Prob (F-statistic) 

Ct = fh + fJzYt + fJ3Cr-1 + vr 

Prob. 

0.0310 
0.0290 
0.0000 

1.863129·. 
0.055804 

-3.650434 
-3.565979 
49.58733 

0.000000 

(11.41) 

(where CE = aggregate consumer expenditure and YD = personal disposable income) 
was estimated by simple OLS using data for the UK economy. The results are given in 
Table 11.2. Is this model a satisfactory one? Explain (using the adaptive expectations 
hypothesis) the meaning of each of the estimated coefficients. 

Exercise 11.7 

The file cons_us.wfl contains data of consumption expenditure (CE) and personal 
disposable income (PDI) (measured in constant prices) for the US economy. 

(a) Estimate the partial adjustment model forCE by OLS. 

(b) Provide an interpretation of the estimated coefficients. 

(c) Calculate the implied adjustment coefficient. 

(d) Test for serial correlation using Durbin's h method and the LM test. 
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Introduction: basic definitions 

All econometric models covered so far have dealt with a single dependent variable 
and estimations of single equations. However, in modern world economics, 
interdependence is very commonly e~countered. Several dependent variables are 
determined ~imultaneously, therefore appearing both as dependent and explanatory 
variables in a set of different equations. For example, in the single equation case 
that we have examined so far, we had equations such as demanq functions of the 
following form: 

Q1 = lh + fJzPr + 133 Yr + ur (12.1) 

where Q1 is quantity demanded, Pr is the relative price of the commodity, and Yr 
is income. However, economic analysis suggests that price and quantity are typically 
determined simultaneously by the market processes, and therefore a full market model 
is not captured by a single equation but consists of a set of three different equations: 
the demand function, the supply function, and the condition for equilibrium in the 
market of the product. So, we have: 

Q1 = fh + 13zPr + 133 Yt + IIJt 

Q5
1 = YI + Y!Pt + Uzt 

Q1 = Q5
t 

where of course Q~ denotes the quantity supplied. 

( 12'.2) 

(12.3) 

(12.4) 

Equations (12.2), (12.3) and (12.4) are called structural equations of the simultaneous 
equations model, and the coefficients f3 and y are called structural parameters. 

Because price and quantity are jointly determined, they are both endogenous variables, 
and because income is not determined by the specified model, income is characterized 
as an exogenous variable. Note, here, that in the single-equation models, we were using 
the terms exogenous variable and explanatory variable interchangeably, but this is no 
longer possible in simultaneous equations models. So, we have price as an explanatory 
variable but not as an exogenous variable as welL 

Equating (12.3) to (12.2) and solving for P1 we get: 

Pr = fh - YI + ___f!_l__ Yr + ult - uzr 
fJz - Yz 13z - Y2 fJz - Yz 

(12.5) 

which can be rewritten as: 

Pr = 1l'J + 7Tz Yt + VJt (12.6) 

If we substitute (12.6) into (12.3) we get: 

Q = YI + Y2 (1l'J + 1l'2 Yr + VIt) +lilt 

= YI + Y21l'J + Y21l'2 Yt -t- YZ VJt + Uzt 

= 1T3 + JT4 Yr + vzr (12. 7) 
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So, now we have that equations (12.3) and (12.7) specify each ofthe endogenous 
variables in terms only of the exogenous variables, theparameters of the model and 
the stochastic error terms. These two equations are known as reduced form equations and 
the rrs are known as reduced form parameters. In general reduced form equations can be 
obtained by solving for each of the endogenous variables in terms of the exogenous 
variables, the unknown parameters and the error terms .. 

Consequences of ignoring simultaneity 

One of the assumptions of the CLRM states that the error term of an equation should 
be uncorrelated with each of the explanatory variables in this equation. If such a 
correlation exists, then the OLS regression equation is biased. It should be evident from 
the reduced form equations that in cases of simultaneous equation models such a bias 
exists. Recall that the new error terms vlt and Vzt depend on 111t and uu. However, 
to show this more clearly consider the following general form of a simultaneous 
equation model: 

Ylt = a1 + az Yzt + a3Xlt + a4X3t + elt 

Yzt = fJ1 + fJzYit + fJ3X3t + f34Xu + ezt 

(12.8) 

(12.9) 

In this model we have two structural equations, with two endogenous variables (Ytt 
and Yu) and three exogenous variables (Xu,Xzt and X3t). Let us see what happens if 
one of the error trrms increases, assuming everything else in the equations to be held 
constant: 

(a) if elt increases, this cause Ytt to increase due to equation (12.8), then 

(b) if Y It increases (assuming that {Jz is positive) Y zt will then also increase due to the 
relationship in equation (12.9), but 

(c) if Yu increases in (12.9) it also increases in (12.8) where it is an explanatory variable. 

Therefore, an increase in the error term of one equation causes an increase in an 
explanatory variable in the same equation. So the assumption of no correlation among 

· the error te'Im and the explanatory variables is violated leading to biased estimates. 

The identification problem 

Basic definitions 

We saw before that the reduced form equations express the endogenous variables as 
functions of the exogenous variables only. Therefore, it is possible to apply OLS to 
these equations in order to obtain consistent and efficient estimations of the reduced 
form parameters (the rrs). 

A question here is whether we can obtain consistent estimates (the {Js and the ys), 
by going back and solving for those parameters. The answer is that there are three 

.J 
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possible situations: 

(1) it is not possible to go back from the reduced form to the structural form; 

(2) it is possible to go back in a unique way; or 

(3) there is more than one way to go back. 

This problem of being or not being able to go back and determine estimates of the 
structural parameters from estimators of the reduced form coefficients is called the 
identification problem. 

The first situation (not possible to go back) is called underidentification, the second 
situation (the unique case) is called exact identification and the third situatibn (where 
there is more than one way) is called overidentification. 

Conditions for identification 

There are two conditions required for an equation to be identified: the order condition 
and the rank condition. First, we state the two conditions and then we use examples 
to illustrate their use. 

The order condition 

Let:s define as G the number of endogenous variables in the system, and as M the 
number of variables that are missing from the equation under consideratio~ (these 
can be either endogenous, exogenous or lagged endogenous variables). Then the order 
condition states that: 

(a) if M < G - 1 the equation is underidentified; 

(b) if M = G- 1 the equation is exactly identified; and 

(c) if M > G - 1 the equation is overidentified. 

The order condition is necessary but not sufficient. By this we mean that if this 
condition does not hold, then the equation is not identified, but if it does hold then 
we cannot be certain that it is identified, thus we still need to use the rank condition 
to conclude. 

The rank condition 

For the rank condition we first need to construct a table with a column for each variable 
and a row for each equation. Then, for each equation we need to put a .J in the column 
if the variable that corresponds to this column is included in the equation, otherwise 
we put a 0. This gives us an array of .Js and Os for each equation. Then, for a particular 
equation,' we need to do the following: 

(a) delete the row of the equation that is under examination; 

(b) write out the remaining elements of each column for which there is a zero in the 
equat-ion-under-examination; and ~~--
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(c) consider the resulting array: if there are at least G- 1 rows and columns which are 
not all zeros, then the equation is identified, otherwise it is not identified. 

The rank condition is necessary and sufficient, but we first need the order condition to 
tell us whether the equation is exactly identified or overidentified. 

Example of the identification procedure 

Consider the demand and supply model described in equations (12.2), (12.3) and 
(12.4). We first form a table with a column for each variable and a row for each of 
the three equations: 

Qd Qs p y 

Equation 1 ..; 0 ..; .j 
Equation 2 0 .j ..; 0 
Equation 3 .j .j 0 0 

Here we have three endogenous variables (Qd, Q 5 and P), so G = 3 and G- 1 = 2. 
Now consider the order condition. For the demand function we have that the number 

of excluded variables is 1, so M = 1, and because M < G- 1 then the demand function 
is not identified. For the supply function we have that M = 1 and because M = G - 1 
then the supply function is exactly identified . 

Proceeding with the rank condition we need to check only for the supply function 
(because we saw that the demand is not identified). The array we have (after deleting 
the Qs and P columns and the Equation 2 line) will be given by: 

Equation 1 
Equation 2 
Equation 3 

Qd QS p y 

..; 0 ..;..; 
0 ..; ..; 0 
..; ..; 0 0 

Equation 1 
Equation 3 

Qd 

.j 

.j 

y 

.j 
0 

The question is, are there at least G - 1 = 2 rows and columns that are not all zeros? 
The answer is yes, and therefore the rank condition is satisfied and we have that the 
supply function is indeed exactly identified. 

A second example: the macroeconomic model of a 
closed economy 

Consider the simple macroeconomic model for a closed economy described by the 
equations below: 

s 

-------------

Ct = lh +f3zYt 

It = YI + YI Yt + Y3Rt 

Yt = Ct +It + Gt 

(12.10) 

(12.11) 

(12.12) 
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where Cr denotes consumption, Yt is GDP, It is investments, Rt denotes the interest 
rate and Gr is government expenditure. Here we have that Cr, It and Yr are endogenous 
variables, while Rt and Gr are exogenous. First we form a table with five columns (one 
for each variable) and three rows (one for each equation): 

Equation 1 
Equation 2 
Equation 3 

C Y I R G 
-J -J 0 0 0 
0 .J -J -J 0 
-J -J -J 0 -J 

From the table we have that for equation 1, M = 3 (/,Rand G are excluded) while G = 3 
and therefore, M > G - 1 so the consumption function appears to be overidentified. 
Similarly, for equation 2 we have that M = G - 1 and therefore it appears to be 
exactly identified. 

Employing the rank condition for the consumption function, we have (after 
excluding the C and Y columns and the Equation 1 row) the following table: 

I R G 
Equation 2 .J -J 0 
Equation 3 -J 0 .J 

So, there are G - 1 = 2 rows and columns with no all-zero elements ahd therefore it 
is overidentified. For the investment function (:.tfter excluding the I, Y and R coh,.1mns 
and the Equation 2 row) we have: 

C G 
Equation 1 -J 0 
Equation 3 -J -J 

and again there are G - 1 = 2 rows and columns with no all-zero elements so the 
rank condition is again satisfied and we conclude that the investment function is 
indeed identified. 

Estimation of simultaneous 
equation models 

The question of identification is closely related to the problem of estimating the 
structural parameters in a simultaneous equation model. Thus, when an equation 
is not identified, such an estimation is not possible. In cases, though, of exact or 
overidentification there are procedures that allow us to obtain estimates of the structural 
parameters. These procedures are different from simple OLS in order to avoid the 
simultaneit}f bias we presented before. 

In general, in cases of exact identification the appropriate method is the so-called 
method of indirect least squares (ILS), while in cases of overidentified equations the two­
stage least squares (TSLS) method is the most commonly used. The next two sections 
bri('fl~presentthose r>roce<!ures. ___ _ 
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Estimation of an exactly identified equation:. 
the method of indirect least squares 

221 

This method can be used only when the equations of the simultaneous equation model 
are found to be exactly identified. The procedure of the ILS involves the following three 
steps: 

Step 1 Find the reduced form equations, 

Step 2 Estimate the reduced·form parameters by applying simple OLS to the reduced 
form equations, and 

Step 3 Obtain unique estimates of the structural parameters from the estimates of the 
parameters of the reduced form equation in step 2. 

The OLS estimates of the reduced form parameters are unbiased, but when transformed 
the structural parameter estimates they provide are only consistent. In the rare case 
where all of the structural form equations are exactly identified then ILS provides 
estimates that are consistent, asymptotic-efficient and asymptotically normal. 

The ILS method is not commonly used for two reasons: 

(1) Most simultaneous equations models tend to be overidentified. 

(2) If the system has several equations, solving fr>r the reduced form and then for the 
structural form can be very tedious. An alternative is the TSLS method. 

·Estimation of an overidentified equation: 
the method of two-stage least squares 

The basic idea behind the TSLS method is to replace the stochastic endogenous regressor 
(~hich is correlated with the error term and causes the bias) with one that is non­
stochastic and consequently independent of the error term. This involves the following 
two stages (hence two-stage least squares): 

Stage 1 •Regress each endogenous variable which is a regressor as well, on all of the 
endogenous and lagged endogenous variables in the entire system by using 
simple OLS (that is equivalent to estimating the reduced form equations) and 
obtain the fitted values of the endogenous varia.bles of these regressions ch. 

Stage 2 Use the fitted values from stage 1 as proxies or instruments for the endogenous 
regressors in the original (structural form) equations. 

One requirement is that the R2s of the estimate equations in stage 1 should be relatively 
high. This is in order to ensure that Y and Y are highly correlated and therefore Y is a 
good instrument for Y. One advantage of the TSLS method is that for equations that 
are exactly identified, they will yield estimates identical to those obtained from the ILS, 
while TSLS is also appropriate even for overidentified equations. 

s 
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Example: the 15-LM model 

Consider the following IS-LM model: 

Rt = .Bn + .BtzMt + .BnYt + .Bt4Mt-I + ult 

Yt = .Bzt + fJzzRt + .Bz3lr + ult 

(12.13) 

(12.14) 

where R denotes the interest rate, M denotes the money stock, Y is GOP and I is 
investment expenditure. In this model R and Y are the endogenous variables and M 
and I are the exogenous variables. We will leave it as an exercise for the reader to prove 
that equation (12.13) is exactly identified and equation (12.14) is overidentified. 

We want to estimate the model and, because the second equation is ov~ridentified, .. 
we will have to use the TSLS method. The data for this example are in the file simult. wfl 
and are annual time series data from 1972q1 to 1998q3 for the UK economy. 

In order to estimate an equation with TSLS, we can either go to Quick/Estim!lte 
Equation and in the Equation Specification window change the method from the 
default LS- Least Squares (NLS and ARMA) to TSLS- Two-stage Least Squ~res (TSNLS 
and ARMA) and then specify the equation that we want to estimate in the first box 
and the list of instruments in the second; or type the following command in EViews: 

tsls r c rn y rn(-1) @ c m i rn(-1) 

where before the@ symbol is the equation we want to estimate and after the@ symbol 
we include the variable names that we want to use as instruments. The result<S of this 
method are given in Table 12.1. 

The interest rate equation can be viewed as the LM relationship. The coefficient of Y 
is very small and positive (but insignificant), suggesting that the LM function is very 
flat, while increases in the money stock reduce the rate of interest. Also, R2 is very 
small, suggesting that there are variables missing from our equation. 

Table 12.1 TSLS estimation of the R (LM) equation 

Dependent Variable: R 
Method: Two-Stage Least Squares 
Date: 03102/04 Time: 23:52 
Sample(adjusted): 1972:1 1998:3 
Included observations: 107 after adjusting endpoints 
Instrument list: C M I M(-1} 

Variable Coefficient Std. Error t-Statistic 

c 9.069599 5.732089 1.582250 
M -0.008878 0.002614 -3.396474 
y 4.65E-05 6.44E-05 0.722214 
M(-1) 0.008598 0.002566 3.350368 

R-squared 0.182612 Mean dependent var 
Adjusted R-squared 0.158805 S.D. dependent var 
S.E. of regression 2.903549 Sum squared resid 
F -statistic 8.370503 Durbin-Watson stat 
Prob(F -statistic) 0.000049 

Prob. 

0.1167 
0.0010 
0.4718 
0.0011 

9.919252 
3.165781 

868.3518 
0.362635 
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Table 12.2 TSLS estimation of the Y (IS) equation 

Dependent Variable: Y 
Method: Two-Stage Least Squares 
Date: 03/02/04 Time: 23:56 
Sample(adjusted): 1972:1 1998:3 
Included observations: 107 after adjusting endpoints 
Instrument list: C M I M(-1) 

Variable 

c 
A 
I 

A-squared 
Adjusted A-squared 
S.E. of regression 
F-statistic 
Prob(F -statistic) 

Coefficient 

72538.68 
-3029.112 
4.258678 

0.834395 
0.831210 
10112.50 
294.8554 
0.000000 

Std. Error 

14250.19 
921.8960 
0.266492 

t-Statistic 

5.090368 
-3.285742 
15.98049 

Mean dependent var 
S.D.dependentvar 
Sum squared resid 
Durbin-Watson stat 

Table 12.3 The first stage of the TSLS method 

Dependent Variable: Y 
Method: Least Squares 
Date: 03103104 Time: 00:03 
Sample(adjusted): 1969:3 1998:3 
Included observations: 117 after adjusting endpoints 

Variable·· 

c 
M 
I 
M(-1) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
D"urbin-Watson stat 

Coefficient 

60411.05 
6.363346 
1.941795 
-3.819978 

0.992349 
0.992146 
2316.276 
6.06E+08 
-1070.464 
0.523453 

Std. Error 

1561.051 
1.912864 
0.102333 
1.921678 

t-Statistic 

38.69896 
3.326607 

18.97519 
-1.987835 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F-statistic) 
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Prob. 

0.0000 
0.0014 
0.0000 

145171.7 
24614.16 
1.06E+10 
0.217378 

Pro b. 

0.0000 
0.0012 
0.0000 
0.0492 

141712.3 
26136,02 
18.36690 
18.46133 
4885.393 
0.000000 

Estimating the second equation (which can be viewed as the IS relationship) we need 
to type the following command: 

TSLS y c r i @ c m i m(-1) 

the results of which are presented in Table 12.2. 
Interpreting these results, we can say that income and the rate of interest are 

negatively related, according to the theoretical prediction, and income is quite sensitive 
to changes in the rate of interest. Also, a change in investments would cause the 
function to shift to the right, again as theory suggests. The R2 of this specification 
is quite high. 

To better understand the two-stage least squares method we can carry out the 
estimation stage by stage. We will do so for the second equation only. The first stage 
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Figure 12.1 Actual and fitted values of Y 

Table 12.4 The second stage of the TSLS method 

Dependent Variable: YFIT 
Method: Least Squares 
Date: 03103104 Time: 00:14 
Sample(adjusted): 1972:1 1998:3 
Included observations: 107 after adjusting endpoints 

Variable 

c 
RFIT 
I 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

75890.95 
-3379.407 
4.252729 

0.942570 
0.941466 
6030.176 
3.78E+09 
-1081.690 
0.341516 

Std. Error 

8497.518 
549.7351 
0.158912 

t-Statistic 

8.930955 
-6.147337 
26.76155 

Mean dependent var 
S.D. dependent var 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Pro b. 

0.0000 
0.0000 
0.0000 

144905.9 
24924.47 
20.27458 
20.34952 
853.4572 
0.000000 

involves regressing Yon a constant M,l and M(-1), so we need to type the following 
command: 

ls y c m i m ( -1) 

the results of which are presented in Table 12.3. A positive result here is that R2 is very 
high, so the fitted Y variable is a very good proxy for Y. 

Next we need to' obtain the fitted values of this regression equation. This can be 
done by subtracting the residuals of the model from the actual Y variable. The EViews 
command is as follows: 

genr yfit=y-resid 
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Plotting these two variables together by the command: 

plot y yfit 

we see (Figure 12.1) that they are moving very closely together. 
We should do the same for R in order to get the rfit variable and then as the second 

stage estimate the model with the fitted endogenous variables instead of the actual Y 
and R. The command for this is: 

ls yfit c rfit i 

and the results are reported in Table 12.4. 
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An introduction to time series econometrics 

In this section we discuss single equation estimation techniques in a different way from 
Parts II and III of the text. In those parts we were trying to analyse the behaviour and 
variability of a dependent variable by regressing it on a number of different regressors 
or explanatory variables. In the time series econometrics framework, the starting point 
is to exploit the information that we can get from a variable that is available through 
the variable itself. An analysis of a single time series is called a univariate time series, 
and this is the topic of this chapter. In time series econometrics we can also have 
multivariate time series models which will be the topic of discussion in later chapters. 
In general, the purpose of time series analysis_ is to capture and examine thj' dynamics 
of the data. 

As we have mentioned before, traditional econometricians have emphasized the use 
of economic theory and the study of contemporaneous relationships in order to explain 
relationships among dependent and explanatory variables. (From here on we use fhe 
term traditional econometrics to differentiate the econometric analysis examined in 
Parts II and III from the new ('modern') developments of time series econometrics.) 
Lagged variables were sometimes introduced but not in any systematic way, or at least 
not in a way to attempt to analyse the dynamics or the temporal structure of the data. 
There are various aspects to time series analysis but one common theme to them all 
is to fully exploit the dynamic structure in the data, by this we mean that we extract 
as much information as possible from the past history of the series. The two pril)ciple 
types of time series analysis are time series forecasting and dynamic modelling. Time 
series forecasting is unlike most other econometrics in that it is not concerned with 
building structural models, understanding the economy or testing hypothesis. All that 
it is concerned with is building efficient models, which forecast well. This is usually 
done by exploiting the dynamic inter-relationship, which exists over time for any single 
variable. Dynamic modelling on the other hand is still concerned with understanding 
the structure of the economy and testing hypothesis however it starts from the view 
that most economic series are slow to adjust to any shock and so to understand the 
process we must fully capture the adjustment process which may be long and complex. 
Over the past couple of decades the techniques developed in the time series forecasting 
literature have become increasingly useful in econometrics generally. Hence we begin 
this chapter with an account of the basic 'work horse' of time series forecasting, the 
ARIMA model. 

ARIMA models 

Box and Jenkins (1976) first introduced ARIMA models, the term deriving from: 

AR =autoregressive 
I = integrated 
MA = moving average. 

In the next sections we will present all the different. versions of ARIMA models (ln_d ___ _ 
-TiitroduceThe concept of stationarity, which will be extensively analysed. After defining 
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stationarity, we will proceed with the simplest model, the autoregressive of order one 
model, and then continue with our survey of the ARIMA models. Finally, we will briefly 
present the Box-Jenkins approach for model selection and forecasting. 

Stationarity 

A key concept underlying time series processes is that of stationarity. A time series is 
covariance stationary when it has the following three characteristics: 

(a) exhibits mean reversion in that it fluctuates around a constant long-run mean; 

(b) has a finite variance that is time-invariant; and 

(c) has a theoretical correlogram that diminishes as the lag length increases. 

In its simplest terms a time series Yt is said to be stationary if: 

(a) E(Y1) =constant for all t; 

(b) Var(Y1) =constant for all t; and 

(c) Cov(Y1, Yt+k> =constant for all t and all k t= 0, 
or if its mean, its variance and its covariances remain constant over time. ,. 

Thus, these quantities would remain the same whether observations for the time 
series were, for example, from 1975 to 1985 or from 1985 to 1995. Stationarity is 
important because if the. series is non-stationary then all the ~ypical results of the 
classical regression analysis are not valid. Regressions with non-stationary seiies may 
have no meaning and are therefore called 'spurious'. (We will examine and analyse the 
concepts of spurious regressions more analytically in Chapter 16.) 

Shocks to a stationary time series are necessarily temporary; over time, the effects of 
the shocks will dissipate and the series will revert to its long-run mean level. As such, 
long-term forecasts of a stationary series will converge to the unconditional mean of 
the series. 

Autoregressive time series models 

The AR(l) model 

The simplest, purely statistical time series model is the autoregressive of order one 
model, or AR(l) model, which is given below: 

Yt = if>Yt-1 + llt (13.1) 

where, for simplicity, we do not include a constant and lif>l < 1 and u1 is a gaussian 
(white noise) error term. The implication behind the AR(1) model is that the time series 

.. 

~~~~~~-~-~- ---~~---
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behaviour of Yt is largely determined by its own value in the preceding period. So, what 
will happen in tis largely dependent on what happened in ~- 1, or alternatively what 
will happen in t + 1 will be determined by the behaviour of the series in the current 
timet. 

Condition for stationarity 

Equation (13.1) introduces the constraint 1<1>1 < 1, in order to guarantee stationarity as 
defined in the previous section. If we have 1¢1 > 1, then Yt will tend, to get bigger and 
bigger each period and so we would have an explosive series. To illustrate this, consider 
the following example in EViews. 

Example of stationarity in the AR(l) model 

Open EViews and create a new workfile by choosing File/New Workfile. In the workfile 
range choose undated or irregular and define the start observation as 1 and the 
end observation as 500. To create a stationary time series process type the following 
commands in the EViews command line (the bracketed comments provide a description 
of each command): 

smpl 1 1 

genr yt=O 

smpl 2 500 

genr yt=0.4*yt(-1)+nrnd 

smpl 1 500 
plot yt 

[sets the sample to be the first observation , 
only] 
[generates a new variable yt with the value 
of 0] 
[sets the sample to be from the 2nd to the 
5 hundredth observation] 
[creates yt as an AR(l) model with 
¢=0.4] 
[sets the sample bacls to the full sample] 
[provides a plot of the yt series] 

The plot of the Yt series will look like that shown in Figure 13.1. We can see clearly 
that this series has a constant mean and a constant variance, which are the first two 
characteristics of a stationary series. 

If we obtain the correlograr 1 of the series we will see that it indeed diminishes as the 
lag length increases. To do this in EYiews, first double click on yt to open it in a new 
window and then go to Yiew/Correlogram and click <OK>. 

Continuing, if we want to create a time series (say Xt) which has I<!> I > 1, we type the 
following commands: 

smpl 1 1 
genr xt=1 
smpl 2 500 
genr xt = 1.2*xt(-1) + nrnd 
smpl 1 200 
plot xt 

And with the final command we obtain Figure 13.2, where we can see that the series is 
exploding._Note_that-we-specified-the sample tc:H>e-frem-1-te-2QQ;-1'his-is-because-the-­
explosive behaviour is so big that F.Views cannot plot all 500 data values in one graph. 
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4 

2 

0 

-2 

The AR(p) model 

A generalization of the AR(l) model is the AR(p) model; the number in parenthesis 
denotes the order of the autoregtessive process and therefore the number of lagged 
dependent variables that the model will have. For example, the AR(2) model will be an 



f' 

234 Time Series Econometrics 

autoregressive model of order two, and will have the form: 

Yr = ¢1 Yr--1 + ¢zYr-z + ur (13.2) 

Similarly, the AR(p) model will be an autoregressive model of order p, and will have 
p lagged terms as in the following: 

Yt = t/>1 Yr-1 + ¢zYr-z + · · · + t/>pYt-p + ur 

or using the summation symbol: 

p 

Yt = Lt/>iYt-i + Ut 
i=l 

(13.3) 

(13.4) 

Finally, using the lag operator L (the lag operator L has the property: LnY1 = Yt-n)-we 
can write the AR(p) model as: 

Yr(I- t/>1L- tf>zL2 - ·· ·- t/>pLP) = uc 

<I>(L) Yt = lit 

where <I>(L)Yc, is a polynomial function of Yc. 

Stationarity in the AR( p) model 

(I3.5) 

(13.,6) 

The condition for stationarity of an AR(p) process is guaranteed only if the p roots of 
the polynomial equation <l>(z) = 0 are greater than 1 in absolute value, where z is a 
real variable. (This can be alternatively expressed with the following terminology: the 
solutions of the polynomial equation <l>(z) = 0, should lie outside the unit circle.) To 
see this consider the AR(l) process. The condition for the AR(l) process according to 
the polynomial notation reduces to: 

(I- t/>Z) = 0 (13.7) 

being greater than 1 in absolute value. If this is so, and if the first root is equal to A., 

then the condition is: 

I
II 

tA.I = ¢/>I (I3.8) 

lt/>1 < 1 (13.9) 

Also, a necessary but not sufficient reguirement for the AR(p) model to be stationary is 
that the summation of the p autoregressive coefficients should be less than I: 

p 

:L:t~>;< 1 
i=L 

(I3.10) 
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Properties of the AR models 

We start by defining the unconditional mean and the variance of the AR(1) process, 
which are given by: 

E(Yt) = E(Yt-1) = E(Yt+1) = 0 

where Yr+1 = rf> Yt + llt+1. Substituting repeatedly for lagged Yt we have: 

tv ( t t-1 0 . ) Yt+l = r/> • o + r/> u1 + r/> u2 + .. · + r/> Ut+1 

and since lr/>1 < 1, rf>t will be close to zero for large t. Thus, we have that: 

E(Yt+1) = 0 (13.11) 

and 

2 
2 2 2_~ 

Var(Yt) = Var(rf>Yt-1 + Ut) = r/> ay +au -
1 

-~.2 2 
-'f' ay 

(13.12) 

Time'series are also characterized by the autocovariance and the autocorrelation 
functions. The covariance among two random variables Xt and Zt is defined to be: 

Cov(Xt, Zt) = E{[Xt- E(Xt)][Zt- E(Zt)JI (13.13) 

Thus fo1 two elements of the Yr process, let's say Yt and Yt-1• we will have: 

Cov(Yt, Yt-l) = E{[Yt- E(Yt)HYt-l- E<Yt-1)]) (13.14) 

which is called the autocovariance function. For the AR(1) model the autocovariance 
function will be given by: 

Cov(Yt, Yt-1) =EHYtYt-d- [YtE(Yt-1)1- [E(Yt)Yt-11 

+ [E(Yt)E(Yt-l)]J 

=E[YtYt-d 

where E(Yt) = E(Yt-1) = E(Yt+1) = 0. This leads to: 

Cov(Yt, Yt-1) = E[(rf>Yt-1 + ur)Yt-Il 

= E(r/>Yt-1 Yt-1) + E(ut Yt-1) 

=rf>a~ 

J 

(13.15) 
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We can easily show that: 

and in general: 

Cov(Yr, Yt-2) = E(Yr Yr-2) 

= E[(¢>Yr-I + ur)Yr-21 

= E[(¢>(¢>Yr-2 + ui-d + ur)Yr-21 

= E(¢>2 Yt-2 Yr-2) 

= ¢>2cr'¥ 

Y k 2 Cov(Yt, t-k) = ¢> cry 

The autocorrelation function will be given by: 

¢>k u2 k Cov(Yr, Yt-k> = __ Y = ¢> 
Cor(Yr, Yr-k) = JVar(Yr)Var(Yr-k> cr¥ 

(13.16) 

(13.17) 

(13.18) 

So, for an AR(1) series the autocorrelation function (ACF) (and the graph of it which 
plots the values of Cor(Yt, Yr-k) against k and is called correlogram) will decay 
exponentially as k increases. 

Finally, the partial autocorrelation function (PACF) involves plotting the estimated 
coefficient Yt-k from an OLS estimate of an AR(k) process, against k. If the observations 
are generated by an AR(p) process then the theoretical partial autocorrelations will be 
high and significant for up top lags and then zero for lags beyond p. 

Moving average models 

The MA( 1) model 

The simplest moving average model is that of order one, or the MA(l) model, which 
has the form: 

Yt = Ut + Bur~I (13.19) 

Thus, the implication behind the MA(1) model is that Yr depends on the value of the 
immediate past error, which is known at timet. 

The MA(q) model 

The general form of the MA model is an MA(q) model of the form: 

----~-~Yr= ur +-Brur=.1-+-Bzut=-2-+~-t=-Bqur-q --- - (B:-20)----~--
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which can be rewritten as: 

or, using the lag operator: 

q 

Yt =lit+ L 8jUt-j 
i=l 

Yt = {1 +BtL+ 8zL2 + · · · + OqU)ut 

= 8(L)Ut 

237 

(13.21) 

(13.22) 

(13.23) 

Because any MA(q) process is, by definition, an average of q stationary white-noise 
processes, it follows that every moving average model is stationary, as long as q is finite. 

lnvertibility in MA models 

A property often discussed in connection with the moving average processes is that 
of invertibility. A time series Yt is invertible if it can be represented by a finite-order 
MA or convergent autoregressive process. Invertibility is important because the use of 
the ACF and PACF for identification implicitly assumes that the Yt sequence can be 
well-approximated by an autoregressive model. For an example consider the simple 
MA(1) ~ode!: 

Yt = Ut + 8Ut-1 (13.24) 

Bsing the lag operator this can be rewritten as: 

Yt = (1 + 8L)ut. 

Yt 
Ut = (1 +8L) (13,25) 

If 101 < 1, then the left-hand side of (13.25) can be considered as the sum of an infinite 
geometric progression: 

ut = YtO-OL+e 2L2 -e3L3 +···> (13.26) 

(To understand ~his consider the MA(1) process: 

Yt = Ut- 8Ut-1 

Lagging this relationship one period and solving for lit we have: 

Ut-1 = Yt-1 - Out-2 

Substituting this into the original expression we have: 

Yt = ut- O(Yt-l- eut_z) = ut- 8Yt_ 1 + e 2ut-z 

J 
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Lagging the above expression one period and solving for ur_2 and resubstituting we get: 

2y 3 Yt =lit- OYt-l +0 t-2- 0 llt-3 

And repeating this an infinite number of times we finally get the expression (13.26).) 
Thus, the MA(l) process has been inverted into an infinite order AR process with 
geometrically declining weights. Note that for the MA(l) process to be invertible it 
is necessary that 101 < 1. 

In general the MA(q) processes are invertible if the roots of the pol}momial 

8(z) = 0 (13.27) 

are greater than 1 in absolute value. 

Properties of the MA models 

The mean of the MA process will be clearly equal to zero as it is the mean of white noise 
error terms. The variance will be (for the MA(l) model) given by: 

Var(Yt) = Var(ut +(}ut-I) = rr,7 + e2 rrJ = rrJ(l + e2 ) 

The autocovariance will be given by: 

Cov(Yr, Yr-1) = E[(ur + Our-J)(ur-1 + {}!Jt-2)1 

2 2 = E(UtUt-1) +OE(ut-l) + (} E(ut-!Ut-2) 

= euJ 

And since u1 is serially uncorrelated it is easy to see that: 

Cov(Yr, Yr-k) = 0 fork> 1 

(13.28) 

(13.29) 

(13.30) 

(13.31) 

(13.32) 

From this we can understand that for the MA(l) process the autocorrelation function 
will be: 

2 2 

I Orru _ ~ for k = 1 
_ Cov(Yr, Yr-k) = rrJO +(}2)- 1 +e2 

Cor(Yr, Yr-k)- tuar(Yr)Var(Yr-k) 
0 

fork> 1 
(13.33) 

So, if we have an MA(q) model we will expect the correlogram (the graph of the 
ACF) to have q spikes for k = q, and then go down to zero immediately. Also, since 
any MA process can be represented as an AR process with geometrically declining 
coefficients, the partial autocorrelation function (or the PACF)lor anMA [Jrocess should 

-decay slowly. .· · ·---· ·· ···~ .. 
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ARMAmodels 

After presenting the AR(p) and the MA(q) processes, it should be clear to the reader that 
we can have combinations of the two processes to give a new series of models called 
ARMA(p, q) models. The general form of the ARMA(p, q) models is the following: 

The general form of the ARMA model is an ARMA(p, q) model of the form: 

Yt = r/Jt Yt-1 + r/!2 Yt-1 + · · · + r/!pYt-p + Ut 

+8tllt-l +82ut_2 + · ·· + 9qUt-q 

which can be rewritten, using the summations, as: 

p q 

Yt = LrfiiYt-i + Ut + I:e;ut-i 
i=1 i=l 

or, using the lag operator: 

Yt(l- ¢ 1L- rfi2L2 - · · ·- t/JpLP) = (1 + 01L +02L2 + .. · + 9qLq)ut 

Cl>(L) Yt = 8(L)Ut 

(13.34) 

(13.35) 

(13.36) 

(13.37) 

In the ARMA(p, q) models the condition for stationarity has to deal with the AR(p) part 
of the specific" ~ion only. Therefore, we have that the p roots of the polynomial equation 
Cl>(z), = 0 shouia lie outside the unit circle. Similarly, the property of invertibility for the 
ARMA(p, q) models will have to do only with the MA(q) part of the specification and it 
will be that the roots of the 8(z) polynomial should lie outside the unit circle as well. 
)n the next section we will talk about integrated processes and explain the I part of the 
ARIMA models. Here it is useful to note that the ARMA(p, q) model can also be denoted 
as an ARIMA(p,O,q) model. To give an example consider the ARMA(2,3) model, which 
is equivalent to the ARIMA(2,0,3) model and is given below: 

Yt = tP1 Yt-1 + tP2 Yt-1 + ¢2 Yt-2 + Ut 

+l:/tUt_1 +92Ut-2 +9JUt-3 

Integrated processes and 
the ARir.,A models 

An integrated series 

(13.38) 

ARMA models can only be made on time series Yt that are stationary. This means 
that the mean, variance and covariance of the series are constant over time. However, 
most economic and financial time series show trends over time, and so the mean of 
Yt during om' year will be different from its mean in another year. Thus the mean of 
most economic and financial time series is not constant over time, which means that 
the series are non-stationary. In order to avoid this problem, and in order to induce 

s 



f' 

240 Time Series Econometrics 

stationarity, we need to detrend the raw data through a process called differencing. The 
first differences of a series Yt are given by the equation: 

~Yt = Yt- Yt-I (13.39) 

As most economic and financial time series show trends to some degree, we nearly 
always end up taking first differences of the input series. If, after first differencing, a 
series is stationary then the series is also called integrated to order one, and denoted 
I(1)- which completes the abbreviation ARIMA. If the series, even after ftrst differencing 
is not stationary, then we need to take second differences by the equation: 

~~Yt = ~2 Yt = ~Yt- ~Yt-I (13.40) 

If the series becomes stationary after second differences, then it is integrated of order 
two and denoted by I(Z). In general if we difference a series d times in order to induce 
stationarity, the series is called integrated of order d and is denoted by I(d). Thus the 
general ARIMA model is called an ARIMA(p, d, q), with p being the number of lags of 
the dependent variable (the AR terms), d being the number of differences required to 
take in order to make the series stationary, and q being the number of lagged terms of 
the error term (the MA terms). 

ARIMA models 

To give an example of an ARIMA(p, d, q) model, we can say that in general an integrated 
series of order d must be differenced d times before it can be represented by a 
stationary and invntible ARMA process. If this ARMA representation is of order (p, q) 
then the original, undifferenced series is following an ARIMA(p, d, q) representation. 
Alternatively, if a process Yt has an ARIMA(p, d, q) representation, then the ~ d Yt has 
an ARMA(p, q) representation as presented by the equation below: 

~ d Yt (1 - f/!J L - ¢ 2L 2 - · · · - cf>pU') = (1 + 81 L + e2L 2 + · · · + BqL q)ut (13.41) 

Box-Jenkins mo~el selection 

A fundamental idea in the Box-jenkins approach is the principle of parsimony. 
Parsimony (meaning sparseness or stinginess) should come as second nature to 
economists and financial analysts. Incorporating additional coefficients will necessarily 
increase the fit of the regression equation (i.e. the value of the R2 will increase), 
but the cost will be a reduction of the degrees of freedom. Box and jenkins argue 
that parsimonious models produce better forecasts than overparametrized models. 
In general Box and Jenkins popularized a three-stage method aimed at selecting an 
appropriate (parsimonious) ARIMA model for the purpose of estimating and forecasting 
a univariate time series. The three stages are: (a) identification, (b) estimation, and 
(c) diagnostic checking and are presented below. 

We have seen above that a low-order MA model is equivalent !_o a l1~gh-order A"-'R~~­
modeC andsimilarly a low-order AR model is equivalent to a high-order MA model. 
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This gives rise to the main difficulty in using ARIMA models, which is called the 
identification problem. The essence of this is that any model may be given more 
than one (and in most cases many) different representations, which are essentially 
equivalent. How then should we choose the best one and how should we estimate 
it? Defining the 'best' representation is fairly easy and here we use the principle of 
parsimony, this simply means that we pick the form of the model with the smallest 
number of parameters to be estimated. The trick is finding this model. You might think 
that we could simply start with a high-order ARMA model and simply remove the 
insignificant coefficients. Unfortunately this does not work because within this high­
order model will be many equivalent ways of representing the same model and the 
estimation process cannot choose between them. We therefore have to know the form 
of the model before we can estimate it. In this context this is known as the identification 
problem and it represents the first stage of the Box-jenkins procedure. 

Identification 

In the identification stage (this identification should not be confused with the 
identification procedure explained in the simultaneous equations chapter), the 
researcher visually examines the time plot of the series autocorrelation function, and 
partial correlation function. Plotting each observation of the Yt sequence against t 

provides useful information concerning outliers, missing values, and structural breaks 
in the data. We have mentioned before that most economic and financial time series 
are treFlded and therefore non-stationary. Typically, non-stationary variables have a 
pronounced trend (increasing or declining) or appear to meander without a constant 
long-run mean or variance. Missing values and outliers can be corrected at this 
point. At one time, the standard practice was to first-difference any series deemed to 
be non-stationary. 

A comparison of the sample ACF and PACF to those of various theoretical ARIMA 
processes may suggest several plausible models. In theory, if the series is non-stationary 
the ACF of the series will not die down or show signs of decay at all. If this is the case 
then we need to transform the series in order to make them stationary. As we said 
before, a common stationarity-inducing transformation is to take logarithms and then 
first differences of the series. 

Once we have achieved stationarity, the next step is to identify the p and q orders 
of the ARl.MA model. For a pure MA(q) process, the ACF will tend to show estimated 
autocorrelations which are significantly different from zero up to lag q and then it will 
die down immediately after the qth lag. The PACF for MA(q) will tend to die down 
quickly either by an exponential decay or by a damped sinewave. 

Contrary to the MA processes, the pure AR(p) process will have an ACF which will 
tend to die down quickly either by an exponential decay or by a damped sinewave, 
while the PACF will tend to show spikes (significant autocorrelations) for lags up top 
and then it will die down immediately. 

If neither the ACF or the PACF show a definite cut off, then a mixed process is 
suggested. In this case it is difficult to identify the AR and MA orders but not impossible. 
The idea is that we should think of the ACF and PACF of pure AR and MA processes as 
being superimposed onto one another. For example, if both ACF and PACF show signs of 
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Table 13.1 ACF and PACF patterns for possible ARMA(p, q) models 

Model ACF PACF 

Pure white noise All autocorrelations are zero All partial autocorrelations are 
zero 

MA(1) Single positive spike at lag 1 Damped sinewave or exponential 
decay 

AR(1) Damped sinewave or exponential Single positive spike at lag 1 
decay 

ARMA(1,1) Decay (exp. or sinewave) Decay (exp. or sinewave) 
beginning at lag 1 beginning at lag 1 

ARMA(p,q) Decay (exp. or sinewave) Decay (exp. or sinewave) 
beginning at lag q beginning at lag p 

slow exponential decay, then an ARMA(1,1) process may be identified. Similarly, if the 
ACF shows three significant spikes at lags one, two and three and then an exponential 
decay, and the PACF spikes at the first lag and theJ,shows an exponential decay, 
then an ARMA(3, 1) process should be considered. Table 13.1 reports some possible 
combinations of ACF and PACF forms that allow us to detect the order of ARMA 
processes. In general, it is difficult to identify mixed processes, so sometimes mo~e 
than one ARMA(p, q) model might be estimated. This is why the estimation and the 
diagnostic checking stages are important and necessary. 

Estimation 

In the estimation stage, each of the tentative models is estimated and the various 
coefficients are examined. In this second stage, the estimated models are compared 
using the Akaike information criterion (AI C) and the Schwartz Bayesian criterion (SBC). 
We want a parsimonious model, so we will choose the model with the smallest AIC and 
SBC values. Of the two criteria, the SBC is preferable. Also at this stage we have to be 
aware of the common factor problem. The Box-Jenkins approach necessitates that the 
series is stationary and the model invertible. 

Diagnostic checking 

In the diagnostic checking stage we examine the goodness of fit of the model. The 
standard practice at this stage is to plot the residuals and look for outliers and evidence 
of periods in which the model does not fit the data well. We must be careful here to 
avoid overfitting (the procedure of adding another coefficient in an appropriate model). 
The special statistics that we use here are the Box-Pierce statistic (BP) and the Ljung­
Box (LB) Q-statistic (see Ljung and Box, 1979), which serve to test for autocorrelations 
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The Box-Jenkins approach step by step 

The Box-jenkins approach involves the following steps: 

Step 1 Calculate the ACF and PACF of the raw data, and check whether the series is 
stationary or not. If the series are stationary go to step 3, if not go to step 2. 

Step 2 Take the logarithm and the first differences of the raw data and calculate the 
ACF and PACF for the first logarithmic differenced series. 

Step 3 Examine the graphs of the ACF and PACF and determine which models would 
be good starting points. 

Step 4 Estimate those models. 

Step 5 For each of these estimated models: 

(a) check to see if the parameter of the longest lag is significant. If not, then 
you probably have too many parameters, and should decrease the order 
of p and/or q. 

(b) check the ACF,and PACF of the errors. If the model has at least enough 
parameters, then all error ACFs and PACFs will be insignificant. 

(c) check the AIC and SBC together with the adj-R2 of the estimated models to 
detect which model is the parsimonious one (i.e. the one that minimizes 
AIC and SBC and has the highest adj-Rz) . 

Step 6 If changes· in the original model are needed, go back to step 4. 

Exr.mple: the Box-Jenkins approach 

The file ARlMA.wfl contains quarterly data observations for the consumer price index 
(cpi) and gross domestic product (gdp) of the UK economy. We will try to identify the 
un_derlying ARMA model for the gdp variable. 

Step 1 As a first step we need to calculate the ACF and PACF of the raw data. To do 
tqis we need to double click on the cpi variable in order to open the variable 
in a new EViews window. We can then calculate the ACF and PACF and view 
their respective graphs by clicking on View/Correlogram in the window that 
contains the gdp variable. This will give us Figure 13.3. 

From Figure 13.3 we can see that the ACF does not die down at all for all 
lags (see also the plot of gdp to see that it is clearly trended), which clearly 
suggests that the series is integrated and that we need to proceed with taking 
logarithms and first differences of the series. 

Step 2 We take logs and then first differences of the gdp series by typing the following 
commands in the EViews command line: 

genr lgdp =log (gdp) 
genr dlgdp = lgdp - lgdp ( -1) 

J 
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Date: 02126104 Time: 15:31 
Sample: 1980:1 1998:2 
Included observations: 74 

Autocorrelation Partial Correlation AC PAC O-S tat Prob 

. , ......... , . , ........ , 1 0.963 0.963 71.464 0.000 

. , ....... , .*I. I 2 0.922 -0.079 137.85 0.000 . , ....... , .I. I 3 0.878 -0.049 198.98 0.000 

. I****** I .I. I 4 0.833 -0.047 254.74 0.000 

. , •••••• I .I. I 5 0.787 -0.038 305.16 0.000 

. J•••••• I .I. I 6 0.740 -0.021 350.47 0.000 

. I***** I .I. I 7 0.695 -0.002 391.06 • 0.000 

. t•**** I .I. I 8 0.650 -0.040 427.05 0.000 

. I***** I .I. I 9 0.604 -0.029 458.63 o,ooo 
0 , •••• I .I. I 10 0.559 -0.026 486.05 0.000 

Figure 13.3 ACF and PACF of GOP 

-
Date: 02126104 Time: 15:43 
Sample: 1980: 1 1998:2 
Included observations: 73 

Autocorrelation Partial Correlation AC PAC 0-Stat Prob 

. , ... I . I*** I 1 0.454 0.454 15.645 0.000 

. I** I . 1*. I 2 0.288 0.104 22.062 0.000 

. I** I . 1*. I 3 0.312 0.187 29.661 0.000 

. I** I .I. I 4 0.242 0.037 34.303 0.000 

. 1*. I .I. I 5 0.130 -0.049 35.664 0.000 

. I** I . 1*. I 6 0.238 0.174 40.287 0.000 

.I. I .*1. I 7 0.055 -0.187 40.536 0.000 

.*I. I .*I. I 8 -0.085 -0.141 41.149 0.000 

.I. I .I. I 9 -0.010 -0.032 41.158 0.000 

.I. I .I. I 10 -0.020 -0.026 41.193 0.000 

Figure 13.4 ACF and PACF of DLGDP 

and then double click on the newly created dlgdp (log-differenced series) and 
click again on View /Correlogram to obtain the correlogram of the dlgdp series. 

Step 3 From step 2 above we obtain the ACF and PACF of the dlgdp series, provided 
in Figure 13.4. From this correlogram we can see that there are 2 to 3 spikes 
on the ACF, and then all are zero, while there is also one spike in the PACF 
which then dies down to zero quickly. This suggests that we might have up 
to MA(3) and AR(l) specifications. So, the possible models are the ARMA(1,3), 
ARMA(l,2) or ARMA(l,l) models. 

Step 4 We then estimate the three possible models. The command for estimating the 
ARMA(l,3) model is: 

ls dlgdp c ar(l) ma(l) ma(2) ma(3) 

r 
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similarly, for the ARMA(l,2) it is: 

ls dlgdp c ar(l) ma(l) ma(2) 

and for the ARMA(l, 1) it is: 

ls dlgdp c ar(l) ma(l) 

The results are presented in Tables 13.2, 13.3 and 13.4 respectively. 

Step 5 Finally, we have to check the diagnostics of the three alternative models 
to see which model is more appropriate. Summarized results of all three 
specifications are provided in Table 13.5, from which we see that in terms 
of significance of estimated coefficients, the model that is more appropriate 
is probably ARMA(1,3). ARMA(1,2) has one insignificant term (the coefficient 
of the MA(2) term which should be dropped), but when we include both 
MA(2) and MA(3), the MA(3) term is highly significant and the MA(2) term is 
significant at the 90% level. In terms of AIC and SBC we have contradictory 
results. The AIC suggests the ARMA(1,3) model, but the SBC suggests the 
ARMA(1,1) model. The adj-R2 is higher for the ARMA(1,3) model as well. 
So, evidence here suggests that the ARMA(l.3) model is probably the most 
appropriate one. Remember that we need a parsimonious model, so there 
might be a problem of overfitting here. For this we also check the Q-statistics 
of the correlograms of the residuals for lags 8, 16 and 24. We see that only the 

· ARMA(1,3) model has insignificant lags for all three different cases, while 
the other two models have significant (for 90%) lags for the 8th and the 

Table 13.2 Regression results of an ARMA(1 ,3) model 

Dependent Variable: DLGDP 
Method: Least Squares 
Date: 02126104 Time: 15:50 
Sample(adjusted): 1980:3 1998:2 
Included observations: 72 after adjusting endpoints 
Convergence achieved after 10 iterations 
Backcast: 1979:4 1980:2 

Variable Coefficient Std. Error 

c . 0.006817 0.001541 
AR(1) 0.710190 0.100980 
MA(1) -0.448048 0.146908 
MA(2) -0.220783 0.123783 
MA(3) 0.323663 0.113301 

R-squared 0.340617 
Adjusted R-squared 0.301251 
S.E. of regression 0.005590 
Sum squared resid 0.002093 
Log likelihood 273.8799 
Durbin-Watson stat 1.892645 

Inverted AR Roots .71 
Inverted MA Roots .55+.44i 

s 

t-Statistic 

4.423742 
7.032979 

-3.049866 
-1.783625 

2.856665 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F-statistic) 

.55 -.44i 

Pro b. 

0.0000 
0.0000 
0.0033 
0.0790 
0.0057 

0.005942 
0.006687 

-7.468887 
-7.310785 

8.652523 
0.000011 

-.65 
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Table 13.3 Regression results of an ARMA(1,2) model 

Dependent Variable: DLGDP 
Method: Least Squares 
Date: 02126104 Time: 16:00 
Sample(adjusted): 1980:3 1998:2 
Included observations: 72 after adjusting endpoints 
Convergence achieved after 32 iterations 
Backcast: 1980:1 1980:2 

Variable 

c 
AR(1) 
MA{1) 
MA(2) 

R-squared 
Adjusted R·squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Inverted AR Roots 
Inverted MA Roots 

Coefficient 

0.006782 
0.722203 

-0.342970 
-0.124164 

0.286174 
0.254681 
0.005773 
0.002266 
271.0239 
2.023172 

.72 

.56 

Std. Error 

0.001387 
0.114627 
0.171047 
0.130236 

/·Statistic 

4.890638 
6.300451 

-2.005128 
-0.953374 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

-.22 

Table 13.4 Regression results of an ARMA(1, 1) model 

Dependent Variable: DLGDP 
Method: Least Squares 
Date: 02126104 Time: 16:03 
Sample(adjusted): 1980:3 1998:2 
Included observations: 72 after adjusting endpoints 
Convergence achieved after 9 iterations 
Backcast: 1980:2 

Variable Coefficient Std. Error 

c 0.006809 0.001464 
AR{1) 0.742291 0.101186 
MA{1) -0.471431 0.161407 

R-squared 0.279356 
Adjusted R-squared 0.258468 
S.E. of regression 0.005758 
Sum squared resid 0.002288 
Log likelihood 270.6817 
Durbin-Watson stat 1.876198 

Inverted AR Roots .74 
Inverted MA Roots .47 

" 
t-Statistic 

4.651455 
7.335927 

-2.920758 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Pro b. 

0.0000 
0.0000 
0.0489 
0.3438 • .. 

0.005942 
0.006687 

-7.417330 
-7.290849 

.I 

9.087094 
0.000039 

Prob. 

0.0000 
0.0000 
0.0047 

0.005942 
0.006687 

-7.435603 
-7.340742 
13.37388 

0.000012 

16th lag, suggesting that the residuals are serially correlated. So, again here 
the ARMA(l,3) model seems to be the most appropriate. As an alternative 
specification someone might want to go back to step 4 (as step 6 suggests) 
and reestimate a model with an AR(l) term and MA(l) and MA(3) terms only 
to see what happens-to-the diagnostics. We. will leave this as-an-exercise for~~--­
the reader. 
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Table 13.5 Summary results of alternative ARMA(p, q) models 

ARMA(1,3) ARMA(1,2) ARMA(1,1) 

Degrees of freedom 68 69 70 
SSR 0.002093 0.002266 0.002288 
.p(l-stat in parenthesis) 0.71 (7.03) 0.72 (6.3) 0.74 (7.33) 
e1 (t-stat in parenthesis) -0.44 (-3.04) -o.3a (-2.0J -0.47 (-2.92) 
e2(t-stat in parenthesis) -0.22 (-1.78) -0.12 (0.9) 
e3(t-stat in parenthesis) 0.32. (2.85) -
AIC/SBC -7.4688/-7.3107 -7.4173/-7.2908 -7.4356/-7.3407 
Adj R2 0.301 0.254 0.258 
Ljung-Box statistics 0(8) = 5.65(0.22) 0(8) = 9.84(0.08) 0(8) = 11.17(0.08) 
for residuals (sig 0(16) = 14.15(0.29) 0(16) = 20.66(0.08) 9<16) = 19.81(0.07) 
levels in parentheses) 0(24) = 19.48(0.49) 0(24) = 24.87(0.25) 0(24) = 28.58(0.15) 

(i~·~{'i.' z; :~~ ·~~- ·.n;;;. ·tJ1 ~1-~ d '• 
~~(1{e:tt~~~;~* 

Questions 

1 Explain what is the implication behind the AR and MA models by giving examples 
of each. 

2 Define the concepts stationarity and invertibility and state which are the conditions 
for stationarity in the AR models and invertibility for the MA models. 

3 Define and explain the concepts of stationarity and invertibility. "Why are they 
important in the analysis of time series data? Present examples of stationary and 
non-stationary, invertible and non-invertible processes. 

4 Discuss analytically the three stages that are involved in the Box-Jenkins process for 
ARIMA model selection. 

Exercise 13.1 

Show that an MA(l) process can be expressed as an infinite AR process. 

Exercise 13.2 

The file ARIMA. wfl contains quarterly data for the consumer price index (cpi) and gross 
domestic product (gdp) of the UK economy. Follow the steps described in the Example 
for the Box-Jenkins approach regarding gdp for the cpi variable. 
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Introduction 

Recent developments in financial econometrics require the use of models and 
techniques that are able to model the attitude of investors not only towards expected 
returns, but towards risk (or uncertainty) as well. This fact requires models that ~re 
capable of dealing with the volatility (variance) of the series. Such models are the 
ARCH-family of models which we present and analyse in this chapter. 

Conventional econometric analysis views the variance of the disturbance terms as 
constant over time (the homoskedasticity assumption that we analysed in Chapter 7). 
However, mainly financial but also many economic time series exhibit periods of 
unusually high volatility followed by more tranquil periods of low volatility ('wild' 
and 'calm' periods as some financial analysts like to call them). 

Even from a quick look at financial data (see for example Figure 14.1 that plots daily 
returns of the FTSE-100 from 1 Jan 1990 up to 31 Dec 1999) we can see that there 
are certain periods that have higher volatility (and therefore are riskier) than others. 
This means that the expected value of the magnitude of the disturbance terms can be 
greater at certain periods compared to others. Additionally, these riskier times seem 
to be concentrated and followed by periods of lower risk (lower volatility) that are 
again concentrated. ln other words, we observe that large changes in stock returns 
seem to be followed by other large changes and vice versa. This phenomenon is what 
financial analysts call volatility clustering. In terms of the graph it is clear that there 
are subperiods of higher volatility, while it is also clear that after 1997 the volatility of 
the series is much higher than what it used to be in the past. 

Therefore, in such cases it is clear that the assumption of homoskedasticity (or 
constant variance) is very limiting, and in such instances it is preferable to examine 
patterns that allow the variance to depend upon its history. Or, to use more appropriate 
t~rminology, better to examine not the unconditional variance (which is the long-run 
forecast of the variance and can be still treated as constant) but the conditional variance, 
based on our best model of the variable under consideration. 

0.06 

0.04 

0.02 

0.00 

-0.02 

-0.04 

-0.06 I II I I I' I I I I' I II I' I I I I' I I I I' II I I II I I I' II I I' I I I I' II I I' I 

1/01/90 12/02/91 11/01/93 10/02/95 9/01/97 8/02/99 

1-R_FTSEj 

Figure 14.1 Plot of the returns of FTSE-100 
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To understand this better, consider an investor who is planning to buy an asset at 
time t and sell it at time t + 1. For this investor, the forecast of the rate of return of this 
asset alone will not be enough. She/he would be interested in what the variance of the 
return over the holding period will be. Therefore, the unconditional variance is of no 
use either; the investor will want to examine the behaviour of the conditional variance 
of the series to estimate the riskiness of the asset at a certain period of time. 

This chapter will focus on the modelling of the behaviour of conditional variance, or 
more appropriately of conditional heteroskedasticity (from which comes the CH part of 
the ARCH models). The next section presents the first model that proposed the concept 
of autoregressive conditional heteroskedasticity (ARCH) developed by Robert F. Engle 
in his seminal paper 'Autoregressive Conditional Heteroskedasticity with Estimates of 
the Variance of United Kingdom Inflation' published in Econometrica in 1982, and. 
which started a whole new era in applied econometrics with lots of ARCH variations, 
extensions and applications we shall then present the generalized ARCH (GARCH) 
model, followed by an alternative specification. Finally, illustrations of ARCH/GARCH 
models are presented using examples from financial and economic time series. 

The ARCH model 

The first ARCH model was presented by Engle (1982). The model suggests that the 
variance of the residuals at time t depends on the squared error terms from past periods. 
Engle simply suggested that it is better to simultaneously tnodel the mean and the 
variance of a series when we suspect that the conditional variance is not constant. 

Let's see this in a more detailed way. Consider the simple model: 

Yt =a+ fJ'Xt + Ut (14.1) 

where Xt is a k x 1 vector of explanatory variables and f3 is a k x 1 vector of coefficients. 
Normally, we assume that Ut is independently distributed with a zero mean and a 
constant variance a 2 , or in mathematical notation: 

Ut ~ iid N (0, a 2 ) (14.2) 

Engle's idea starts from the fact that he allows the variance of the residuals (cr 2 ) to 
depend on past history, or to have heteroskedasticity because the variance will change 
over time. One way of allowing for this is to have the variance depend on one lagged 
period of the squared error terms as follows: 

2 2 
crt =Yo+Ylut-l (14.3) 

which is the basic ARCH(1) process. 
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The ARCH(l} model 

Following on, the ARCH(1) model will simultaneously model the mean and the 
variance of the series with the following specification: 

Yt =a+ fJ'Xt + Ut 

Utir2t ~ iid N(O, ht) 

h - 2 t- YO+ YIUt-I 

(14.4) 

(14.5) 

where Qt is the information set. Here equation (14.4) is called the mean equation 
and equation (14.5) is called the variance equation. Note that we have changed the 
notation of the variance from a-f to ht- This is in order to keep the same notation from 
now on, throughout this chapter. (The reason that it is better to use ht instead of al 
will become clear to the reader through the more mathematical explanation provided 
later in the chapter.) 

The ARCH(1) model says that when a big shock happens in period t - 1, it is more 
likely that the value of Ut (in absolute terms because of the squares) will be bigger as 
well. That is, when uf- 1 is large/small, the variance of the next innovation Ut is also 
large/small. The estimated coefficient of y 1 has to be positive for positive variance . 

The ARCH(q} model 

In fact, the conditional variance can depend not only on one lagged realization but 
more than one, for each case producing a different ARCH process. For example the 
ARCH(2) process will be: 

2 2 
ht =YO+ YJUt-I + Y2Ut-2 

the ARCH(3) will be given by: 

2 2 2 
ht = YO + YJllt-1 + Y2 11t-2 + Y3 11t-3 

and in general the ARCH(q) process will be given by: 

s 

2 2 2 
ht = YO + YI ut-1 + Y2 11t-2 + · · · + Yq 11t-q 

q 

= YO + L YjliL; 
j=I 

(14.6) 

( 14. 7) 

(14.8) 
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Therefore, the ARCH(q) model will simultaneously examine the mean and the variance 
of a series according to the following specification: 

Yt = a + fJ'Xt + Ut 

Utlf.!t ~ iid N(O,hr) 

q 

llt = YO + L Y;uf_; 
i=l 

(14.9) 

(14.10) 

Again, the estimated coefficients of the ys have to be positive for positive v.ariance. 

Testing for ARCH effects 

Before estimating ARCH(q) models it is important to check for the possible presence 
of ARCH effects in order to know which models require the ARCH estimation method 
instead of the OLS. Testing for ARCH effects was extensively examined in Chapter 7, but 
a short version of the test for qth order autoregressive heteroskedasticity is provided here 
as well. The test can be done along the lines of the Breusch-Pagan test, which entails 
estimation of the mean equation: 

Yt = a + {J'Xt + Ut ,(14.11) 

by OLS as usual (note that the mean equation can have as explanatory variables in 
the Xt vector, autoregressive terms of the dependent variable as well}, to obtain the 
residuals Dr, and then run an auxiliary regression of the squared residuals (fit) upon 
the lagged squared terms (uf_1 , ... , ut-q) and a constant as in: 

·2 ·2 ·2 
Ut =Yo+YIUt-1 +···+yqUt-q+Wt (14.12) 

and then compute the R2 times T. Under the null hypothesis of heteroskedasticity 
(yo = y 1 = · · · = Yq) the resulting test statistic follows a x 2 distribution with q degrees 
of freedom. Rejection of the null suggests evidence of ARCH(q) effects. 

Estimation of ARCH models by iteration 

The presence of ARCH effects in a regression model does not completely invalidate the 
use of OLS estimation, the coefficients will still be consistent estimates, they will not 
however be fully efficient and the estimate of the covariance matrix 9f the parameters 
will be biased leading to invalid 't' statistics. A fully efficient estimator with a valid 
covariance matrix can however be calculated by setting up a model which explicitly 
recognizes the presence of the ARCH effects. However this model can no longer be 

-e-stimated using-a simple-teehnique sueh-as-0cS,---which-has-an-analytical-solution-. -·-· 
Instead we must solve a non-linear maximization problem, which requires an iterative 
computer algorithm to search for the solution to the problem. The method used to 
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estimate ARCH models is a special case of a general estimation strategy known as 
the maximum-likelihood approach. A formal exposition of this approach is beyond 
the scope of this book (see Cuthbertson, Hall and Taylor, 1992), but we will give 
an intuitive account of how this is done here. We assume that we have the correct 
model and we know the distribution of the error process, we then select a set of values 
for the parameters to be estimated, we can then in principle calculate the .Probability 
that the set of endogenous variables, which we have observed in our dataset, would 
actually occur. We then select a set of parameters for our model, which maximize 
this probability. These are then called the maximum-likelihood parameters and they 
have the general property that they are consistent and efficient (under the full set of 
CLRM assumptions OLS is a maximum-likelihood estimator). Except in certain rare 
cases finding the parameters which maximize this likelihood function requires the 
computer to search over the parameter space and hence the computer will perform 
a number of steps (or iterations) as it searches for the best set of parameters. Packages 
such as EViews or Microfit include routines, which do this very efficiently, although 
sometimes if the problem becomes too complex the programme may fail to ~nd a true 
maximum and there are switches within the software to help convergence by adjusting 
a range of options. The following section explains step by step how to use EViews for 
estimating ARCH models, providing different examples. 

Estimating ARCH models in EViews 

The file ARCH.wfl contains daily data for the logarithmic returns FTSE-lCtl (named 
r _ftse) and three more stocks of the UK stockmarket (named r _stock1, r _stock2 and 
r _stock3 respectively). We first consider the behaviour of r _ftse alone. The first step is 

·to check whether the series is characterized by ARCH effects. From the time plot of 
the series (Figure 14.1) we saw clearly that there ar~ periods with larger and smaller 
volatility in the sample, so the possibility of ARCH effects is quite high. 

The first step in our analysis is to estimate an AR(l) model (having this as the mean 
equation for simplicity) for r _ftse using simple OLS. To do this click Quick/Estimate 
Equation, to open the Equation Specification window. In this window we need to 
specify the equation that we want to estimate (by typing it in the white box of the 
Equation Specification window). Our equation for an AR(l) model will be: 

. 
r ftse c r_ftse(-1) 

We then click <OK> to obtain the results shown in Table 14. L 
These results do not interest us by themselves. What we care about is whether there 

are ARCH effects in the residuals of this model, and in order to test for such effects 
we use the Breusch-Pagan ARCH test. In EViews from the ::>quation results window we 
click on View/Residuals Tests/ARCH LM Test ... EViews asks us to specify the number 
of lagged terms to include, which is simply the q term in the ARCH(q) processes. If we 
want to test for an ARCH(l) process we type 1, and for higher orders the number that 
we need to specify for q. Testing for ARCH(l) (by typing 1 and pressing <OK>) we get 
the results of Table 14.2. 

The T * R2 statistic (or Obs*R-squared as EViews presents it) is 46.05 and has a 
probability limit of 0.000. This clearly suggests that we reject the null hypothesis of 

j 
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Table 14.1 A simple AR(1) model for the FTSE-100 

Dependent Variable: A_FTSE 
Method: Least Squares 
Date: 12126103 Time: 15:16 
Sample: 1/0111990 12131/1999 
Included observations: 2610 

Variable Coefficient 

c 
R_FTSE(-1) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

0.000363 
0.070612 

0.004983 
0.004602 
0.009376 
0.229287 
8485.123 
1.993272 

Std. Error 

0.000184 
0.019538 

t-Statistic 

1.975016 
3.614090 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Table 14.2 Testing for ARCH(1) effects in the FTSE-100 

AACHTest: 

F -statistic 
Obs' A-squared 

Test Equation: 
Dependent Variable: AESID" 2 
Method: Least Squares 

46.84671 
46.05506 

Date: 12/26/03 Time: 15:27 
Sample(adjusted).: 1/0211990 12/31/1999 

Probability 
Probability 

Included observations: 2609 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic 

c 7.62E-05 3.76E-06 20.27023 
RESID"2(-1) 0.132858 0.019411 6.844466 

A-squared 0.017652 Mean dependent var 
Adjusted A-squared 0.017276 S.D.dependentvar 
S.E. of regression 0.000171 Akaike info criterion 
Sum squared resid 7.64E-05 Schwarz criterion 
Log likelihood 18926.50 F-statistic 
Durbin-Watson stat 2.044481 Prob{ F -statistic) 

Prob. 

0.0484 
0.0003 

0.000391 
0.009398 

-6.500477 ' .. 
-6.495981 
13.06165 
0.000307 

o.oooodo 
0.000000 

Prob. 

0.0000 
0.0000 

8.79E-05 
0.000173 

-14.50709 
-14.50260 

46.84671 
0.000000 

homoskedasticity, or that ARCH(l) effects are present. Testing for higher-order ARCH 
effects (for example order 6) we get the results shown· in Table 14.3. 

This time the T * R2 statistic is even higher (205.24) suggesting a massive rejection 
of the null hypothesis. Observe also that the lagged squared residuals are all highly 
statistically significant. It is therefore clear for this equation specification that an ARCH 
model will provide better results. · 

In order to estimate an ARCH model we can click on Estimate in our equation 
results window (or in a new workfile by clicking on Quick/Estimate Equation, to 
op~I)_the EquationSpecitication-window-)-to-ge--baek-to-t·he-Equation-Spedfi·catin-n·---­
window, and this time change the estimation method by clicking on the down 
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Table 14.3 Testing for ARCH(6) effects in the FTSE-100 

AACHTest: 

F-statistic 
Obs· A-squared 

Test Equation: 
Dependent Variable: AESifY' 2 
Method: Least Squares 

37.03529 
205.2486 

Date: 12126/03 Time: 15:31 
Sample(adjusted): 1/09/1990 12/31/1999 

Probability 
Probability 

Included observations: 2604 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic 

c 4.30E-05 4.46E-06 9.633006 
AESifY'2(-1) 0.066499 0.019551 3.401305 
AESifY'2(-2) 0.125443 0.019538 6.420328 
AES/0"2(-3) 0.097259 O.Q19657 4.947847 
AESifY'2(-4) 0.060954 0.019658 3.100789 
AES/0"2( -5) 0.074990 O.Q19539 3.837926 
AESifY'2(-6) 0.085838 0.019551 4.390579 

A-squared 0.078821 Mean dependent var 
Adjusted A-squared 0.076692 S.D.dependentvar 
S.E. of regression 0.000166 Akaike info criterion 
Sum squared resid 7.16E-05 Schwarz criterion 
Log likelihood 18971.68 F -statistic 
Durbin-Watson stat 2.012275 Prob( F -statistic) 

.,, 
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0.000000 
0.0,00000 

Prob. 

0.0000 
0.0007 
0.0000 
0.0000 
0.0020 
0.0001 
0.0000 

8.79E-05 
0.000173 

-14.56581 
-14.55004 

37.03529 
0.000000 

arrow in the method setting and choosing the ARCH-Autoregressive Conditional 
,Heteroskedasticity option. In this new window, the upper part is devoted to the mean 
equat~on specification and the lower part to the ARCH specification, or the variance 
equation specification. At the moment in this window there will be some things that 
are not clear to the reader, but they will soon become clear after continuing with the 
rest of this chapter. In order to estimate a simple ARCH(l) model, assuming that the 
mean equation as before follows an AR(1) process, in the mean equation specification 
we type: 

r_ftse c rftse(-1) 

also makihg sure that the ARCH-M part selects None which is the default EViews case. 
For the ARCH specification we need to click on GARCH (symmetric), which is again 
the default EViews case, and in the small boxes type 1 for the Order ARCH and 0 for 
the GARCH. Then by clicking <OK> we get the results shown in Table 14.4. 

Note that it took 10 iterations to reach convergence in estimating this model. The 
model can be written as: 

Yt = 0.0004 + 0.0751 Yt-1 +lit 
(2.25) (3.91) 

lltiQt ~ iid N(O,ht) 

2 ht = 0.000007 + 0.1613111-1 
(35.97) (7.97) 

(14.13) 

(14.14) 
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Table 14.4 An ARCH(1) model for the FTSE-100 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12126103 Time: 15:34 
Sample: 1/0111990 12/31/1999 
Included observations: 2610 
Convergence achieved after 10 iterations 

c 
R_FTSE(-1) 

CoeffiCient 

0.000401 
0.075192 

Std. Error 

0.000178 
0.019208 

z-Statistic 

2.257832 
3.914538 

Variance Equation 

c 
ARCH(1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

7.39E-05 
0.161312 

0.004944 
0.003799 
0.009380 
0.229296 
8518.839 
2.001990 

2.11E~06 

0.020232 
35.07178 

7.973288 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Prob. 

0.0240 
0.0001 

0.0000 
0.0000 

0.000391 
0.009398 

-6.524781 
-6.515789" 

4.316204 
0.004815 

with values of z statistics in parentheses. Note that the estimate of y1 is highly 
significant and positive, which is consistent with the finding from the ARCH test above. 
The estimates of a and fJ from the simple OLS model have changed slightly and become 
more significant. 

In order to estimate a higher-order ARCH model, like the ARCH(6) that we examined 
above, we can again click on Estimate and this time change the Order ARCH to 6 (by 
typing 6 in the small box) leaving 0 for the GARCH. The results for this model are 
presented in Table 14.5. 

Again we have that all the ys are statistically significant and positive, which is 
consistent with our findings above. After estimating ARCH models in EViews we can 
create the conditional standard deviation series by clicking on the estimation results 
window View/Conditional SD Graph. The conditional standard deviation graph for 
the ARCH(6) model is shown in Figure 14.2. 

We can also obtain the variance series from EViews by clicking on Procs/Make 
. GARCH Variance Series. EViews automatically gives names like GARCHOl, GARCH02 
and so on for each of the series. We renamed our obtained variance series as ARCH! 
for the ARCH(!) series model and ARCH6 for the ARCH(6) model. A plot of these two 
series together is presented in Figure 14.3. 

From this graph we can see that the ARCH(6) model provides a conditional variance 
series which is much smoother than that obtained from the ARCH(l) model. We will 
discuss this more fully later. In order to obtain the conditional standard deviation series 
which was plotted above, we can take the square root of the conditional variance series 
with the following command: 

genr-sd_archl-=acr-e-h1 A (1/2) ---fferthe-series-oftheARGH(-1-)model] --------
genr sd_arch6=arch6 A ( 1/2) [for the series of the ARCH(6) model] 
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Table 14.5 An .ARCH(6) model for the FTSE-1 00 

Dependent Variable: A_FTSE 
Method: ML-AACH 
Date: 12126/03 Time: 15:34 
Sample: 1101/1990 1213111999 
Included observations: 2610 
Convergence achieved after 12 iterations 

c 
A_FTSE(-1) 

c 
AACH(1) 
AACH(2) 
AACH(3) 
AACH(4) 
AACH(5) 
ARCH(6) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient 

0.000399 
0.069691 

3.52E-05 
0.080571 
0.131245 
0.107555 
0.081088 
0.089852 
0.123537 

0.004968 
0.001908 
0.009389 
0.229290 
8636.092 
1.991483 

Std. Error 

0.000162 
0.019756 

Variance Equation 

2.58E-06 
0.014874 
0.024882 
0.022741 
0.022652 
0.022991 
0.023890 

z-Statistic 

2.455417 
3.527551 

13.64890 
5.416946 
5.274708 
4.729525 
3.579805 
3.908142 
5.171034 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 

0.000391 
0.009398 

-6.610798 
-6.590567 

F -statistic 
Prob(F -statistic) 

1.623292 
0.112922 

257 

Prob. 

0.0141 
0.0004 

0.0000 
0.0000 
0.0000 
0.0000 
0.0003 
0.0001 
0.0000 

A plot of the conditional standard deviation series for both models is presented in 
Figure 14.4. 

A more mathematical approach 

Cqnsider the simple stationary model of the conditional mean of a series Yt: 

Yt = a + f3'Xt + Ut (14.15) 

. 
It is typical to treat the variance of the error term Var(ut) = a 2 as a constant, but we 
can allow the variance to change over time. To see this better let's decompose the Ut 
term, in a systematic component and a random component as: 

Ut = Zt)h"; (14.16) 

where Zt follows a standard normal distribution with zero mean and variance one, and 
ht is a scaling factor. 
In the basic ARCH( I) model we assume that: 

J 

2 
ht =YO+ Yillt-1 (14.17) 
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Figure 14.2 Conditional standard deviation graph for an ARCH(6) model of the FTSE-100 
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Figure 14;3 Plot of the conditional variance series 
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Figure 14.4 Plot of the conditional standard deviation series 

The process then for Yt is now given by: 

a' I 2 Yt =a+ I' Xt + ZtyYO + Yl 11t-l 
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(14.18) 

And from this expression it is easy to see that the mean of the residuals will be zero 
(E(ut) = 0), because E<zt) = 0. Additionally, the unconditional (long-run) variance of 
the residuals will be given by: 

Var(ut) = E(zf}ECht) = __IQ_ 
1- YI 

(14.19) 

which means that we simply need to impose the constraints YO > 0 and 0 < y 1 < 1 in 
order to have stationarity. 

The intuition behind the ARCH(1) model is that the conditional (short-run) variance 
(or volatility) of the series is a function of the immediate past values of the squared 
error term. Therefore, the effect of each new shock Zt depends on the size of the shock 
in one lagged period. 

An easy way to extend the ARCH(1) process is to add additional, higher-order lagged 
parameters as determinants of the variance of the residuals to change ( 14.17) to: 

q 
• ~ 7 
fit = YO+ L YjU(_j (14.20) 

i=l 

s 
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which denotes an ARCH(q) process. ARCH(q) models are useful when the variability 
of the series is expected to change more slowly than in the ARCH(l) model. However, 
ARCH(q) models are quite often difficult to estimate, because they often yield negative 
estimates of the r;s. To resolve this issue, Bollerslev ( 1986) came up with the idea of the 
generalized ARCH (GARCH) model that we will examine in the next section. 

The GARCH model 

One of the drawbacks of the ARCH specification, according to Engle (1995), was that it 
looked more like a moving average specification than an autoregression. From this, 
a new idea was born which was to include the lagged conditional valiiance terms 
as autoregressive terms. This idea was worked out by Tim Bollerslev, who in 1986 
published a paper entitled 'Generalised Autoregressive Conditional Heteroskedasticity' 
in Journal of Econometrics, starting a new family of GARCH models. 

The GARCH( p, q) model 

The general GARCH(p, q) model has the following form: 

Yt =a+ fJ'Xt +lit 

UtlQt ~ iid N(O,ht) 

p q 

ht = Yo+ L 8;ht-i + L v;uf_; 
i=l i=l 

(14.21) 

(14.22) 

which says that the value of the variance scaling parameter ht now depends both on 
past values of the shocks, which are captured by the lagged squared residual terms, and 
on past values of itself, which are captured by lagged ht terms. 

It should be clear to the reader by now that for p = 0 the model reduces to ARCH(q). 
The simplest form of the GARCH(p,q) model is the GARCH(1, 1) model for which the 
variance equation has the form: 

2 
ht =YO+ 8tht-l + YIUt-1 (14.23) 

This model specification usually performs very well and is easy to estimate because it 
has only three unknown parameters Yo, Yl and 81. 

The GARCH{l,l) as an infinite ARCH(p) process 

To show that the GARCH(1,1) is a parsimonious alternative to an infinite ARCH(q) 
process consider equation (14.23). Successive substitution into the right-hand side of 
(14.23) gives: 

2 
ht =YO+ <'iht-1 + Yl 11t-l 

=Yo+ o(vo + 8ht-2 +-yruf_2)+F1iif_ 1 
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2 · 2h 2 
=--ro + YIUt-l + .Syo + .5 t-2 + .SYlut-2 

=YO+ YJIIt_ 1 + .Syo +.5
2 

(Yo+ .Sht-3 + Ylu¥_3) + .5yluf_2 

.Yo (2 2 2 2 ) = 1 _,s+YI ut-l+.Sut-2+.5 YI 11t-3+··· 

_ YO oo 
- -+ "'. 1-.5 YI L...,sJ-1 112 . 

i=l t-J 
(14.24) 

which shows that the GARCH(1, 1) specification is equivalent to an infinite order AR¢H 
model with coefficients that decline geometrically. For this reason, it is essentiai to 
estimate GARCH(1,1) models as alternatives to high-order ARCH models because with 
the GARCH(1, 1) we have less parameters to estimate and therefore lose fewer degrees 
of freedom. 

Estimating GARCH models in EViews 

Consider again the r-ftse series from the ARCH.wfl file. In order to estimate 
a GARCH model we click on Quick/Estimate Equation, to open the Equation 
Specification window, and again change the estimation method by clicking on 
the dow.n arrow in the method setting and choosing the ARCH-Autoregressive 
Conditional Heter6'1kedasticity option. In this new Equation Specification window, 
the upper part is for the mean equation specification while the lower part is for the 
ARCH/GARCH specification or the variance equation. In order to estimate a simple 
GARCH(l,l) model, assuming that the mean equation as before follows an AR(1) 
process, in the mean equation specification we type: 

r_ftse c rftse(-1) 

making sure that within the ARCH-M part None is selected, which is the default in 
£Views. For the ARCH/GARCH specification we need to click on GARCH (symmetric), 
which is again the default EViews case, and in the small boxes type 1 for the Order 
ARCH and 1 for the GARCH. It is obvious that for higher orders, for example a 
GARCH(4,:l) model, we would have to change the number in the small boxes by typing 
2 for the Order ARCH and 4 for the GARCH. After specifying the number of ARCH and 
GARCH and clic\<ing <OK> we get the required results. Table 14.6 presents the results 
for a GARCH(l,1) model. 

Note that it took only five iterations to reach convergence in estimating this model. 
The model can be written as: 

Yt = 0.0004 + 0.0644 Yt-1 + uc (14.25) 
(2.5 7) (3.05) 

u1ir2t ~ iid N(O,h1) 

111 = 0.0000002 + 0.893ht-l + 0.084zlf_ 1 (14.26) 
(4.049) (59.4]) (7.29) 

.J 
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Table 14.6 A GARCH(1, 1) model for the FTSE-1 00 

Dependent Variable: R_FTSE 
Method: ML -ARCH 
Date: 12126/03 Time: 18:52 
Sample: 1/01/1990 1213111999 
Included observations: 2610 
Convergence achieved after 5 iterations 

c 
R_FTSE(-1) 

Coefficient 

0.000409 
0.064483 

Std. Error z-Statistic 

0.000158 2.578591 
0.021097 3.056426 

Variance Equation 

c 
ARCH(1) 
GARCH(1) 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

2.07E -06 
0.084220 
0.893243 

0.004924 
0.003396 
0.009382 
0.229300 
8677.192 
1.981507 

5.10E-07 4.049552 
0.011546 7.294102 
0.015028 59.43780 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
P rob( F -statistic) 

Prob. 

0.0099 
0.0022 

0.0001 
0.0000 
o.qooo 

0.000391 
0.009398 

-6.645358 
-6.634118 

3.222895 
0.0119,56 

with values of z statistics in parentheses. Note that the estimate of 8 is highly significant 
arid positive as well as the coefficient of the YI term. Taking the variance series for 
the GARCH(l,l) model (by clicking on Procs/Make GARCH Variance Series) we have 
renamed it GARCHll and plotted this series together with the ARCH6 series to obtain 
the results shown in Figure 14.5. 

From this we observe that the two series are quite similar (if not identical) which is 
just because the GARCH term captures a high-order of ARCH terms as we have proved 
before. Therefore, again we say that it is better to estimate a GARCH instead of a high­
order ARCH model due to its easier estimation and the least possible loss of degrees 
of freedom. 

Changing the values in the boxes of the ARCH/GARCH specification to 6 in order 
to estimate a GARCJ-1(6,6) model we obtain the results shown in Table 14.7, where the 
insignificance of all the parameters apart from the ARCH(l) term suggest that it is not 
an appropriate model. 

Similarly, estimating a GARCH(1,6) model gives the results in Table 14.8 where now 
only the ARCH(!) and the GARCH(l) term are significant, while also now some of the 
ARCH lagged terms have a negative sign. Comparing all the models from both the 
ARCH and the GARCH alternative specifications, we conclude that the GARCH(l,l) is 
preferred for the reasons we have discussed. 

Alternative specifications 

There are many alternative specifications that could be analysed to model conditional 
volatility, and some of the more important variants are presented briefly in thisseetion~------­
(Berra-and Higgin~;-(1993) aricfBoilersiev, Engle and Nelson (1994) provide very good 
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Figure 14.5 Plots of the conditional variance series for ARCH(6) and GARCH(1, 1) 

reviews of these alternative specifications, while Engle (1995) collects some of the most 
important papers in the ARCH/GARCH literature.) 

The GARCH in mean or GARCH-M model 

G~RCH-M models allow the conditional mean to depend on its own conditional 
variance. Consider, for example, investors that are risk-averse and therefore require 
a premium as a compensation in order to hold a risky asset. That premium is clearly 
a positive function of the risk (i.e. the higher the risk the higher the premium should 
be). If the tisk is captured by the volatility or by the conditional variance, then the 
conditional variance may enter the conditional mean function of Yr. 

Therefore, the GARCH-M(p,q) model has the following form: 

Yt =a+ p'Xt + Oht +lit 

lltiQt ~ iid N(O, hr) 

p q 

ht = YO + L 8;ht-i + LYillf_i 
i= l i=l 

(14.27) 

(14.28) 

Another variant of the GARCH-M type models is to capture risk not by the variance 
series but using the standard deviation of the series having the following specification 

.J 
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Table 14.7 A GARCH(6,6) model for the FTSE-100 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12126103 Time: 19:05 
Sample: 110111990 1213111999 
Included observations: 2610 
Convergence achieved after 18 iterations 

Coefficient 

c 0.000433 
R_FTSE(-1) 0.065458 

Std. Error z-Statistic 

0.000160 2.705934· 
0.020774 3.150930 

Variance Equation 

c 1.70E-06 7.51E-06 0.227033 
ARCH(1) 0.038562 0.015717 2.453542 
ARCH(2) 0.070150 0.113938 0.615692 
ARCH(3) 0.022721 0.269735 0.084234 
ARCH(4) -0.017544 0.181646 -0.096585 
ARCH(5) 0.011091 0.077074 0.143905 
ARCH(6) -0.017064 0.063733 -0.267740 
GARCH(1) 0.367407 3.018202 0.121730 
GARCH(2) 0.116028 1.476857 0.078564 
GARCH(3) 0.036122 1.373348 0.026302 
GARCH(4) 0.228528 0.819494 0.278864 
GARCH(5) 0.217829 0.535338 0.406900 
GARCH(6) -0.092748 0.979198 -0.094719 

A-squared 0.004904 Mean dependent var 
Adjusted R-squared -0.000465 S.D.dependentvar 
S.E. of regression 0.009400 Akaike info criterion 
Sum squared resid 0.229305 Schwarz criterion 
Log likelihood 8684.637 F-statistic 
Durbin-Watson stat 1.983309 Prob(F ·statistic) 

for the mean and the variance equation: 

Y1 =a+ {J'Xt + o.;h; + u1 

urlnt ~ iid N(O, h1) 

p q 

ht = YO + L 8;ht-i + L Yjuf_i 
i=l i=l 

Prob. 

0.0068 
0.0016 

0.8204 
0.0141 
0.5381 
0.~329 
0.9231 
0.8856 
0.7889 
0.9031 
0.9374 
0.9790 
0.7803 
o.6B41 
0.9245 

0.000391 
' 0.009398 
-6.643400 
-6.609681 

0.913394 
0.543473 

(14.29) 

(14.30) 

GARCH-M models can be linked with asset-pricing models like the Capital Asset 
Pricing Models (CAPM) with lots of financial applications (for more see Campbell, Lo 
and MacKinley, 1997; Hall, Miles and Taylor, 1990). 

Estimating GARCH-M models in EViews 

In order to estimate a GARCH-M model in EViews first click Quick/Estimate Equation 
to open the Estimation Window. We then change the estimation method by click'•,g 
on the down arrow in the-method setting and choosing the ARCH-Autoregressive 
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Table 14.8 A GARCH(1 ,6) model for the FTSE-100 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12126103 Time: 19:34 
Sample: 1/01/1990 12/3111999 
Included observations: 2610 
Convergence achieved after 19 iterations 

c 
R_FTSE(-1) 

Coefficient 

0.000439 
0.064396 

Std. Error z-Statistic 

0.000158 2.778912 
0.020724 3.107334 

Variance Equation 

c 
ARCH(1) 
ARCH(2) 
ARCH(3) 
ARCH(4) 
ARCH(5) 
ARCH(6) 
GARCH(1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

9.12E-07 
0.040539 
0.048341 ' 

-0.027991 
-0.037356 

0.016418 
O.Q15381 
0.934786 

0.004883 
0.001438 
0.009391 
0.229310 
8683.943 
1.981261 

2.79E-07 3.266092 
0.013234 3.063199 
0.025188 1.919235 
0.031262 -0.895354 
0.028923 -1.291542 
0.028394 0.578219 
0.023587 0.652097 
O.Q11269 82.95460 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob( F -statistic) 
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Prob. 

0.0055 
0.0019 

0.0011 
0.0022 
0.0550 
0.3706 
0.1965 
0.5631 
0.5143 
0.0000 

0.000391 
0.009398 

-6646699 
-6.624220 

1.417557 
0.174540 

Conditional Heteroskedasticity option. In this new Equation Specification window, 
the upper part is again for the mean equation specification while the lower part is 
for the ARCH/GARCH specification or the variance equation. In order to estimate a 
GARCH-M(l,l) model, assuming that the mean equation as before follows an AR(l) 
process, in the mean equation specification we type: 

r_ftse c rftse(-1) 

and this time click on either Std.Dev or the Var selections from the ARCH-M part for 
versions (14.29) and (14.27) of the mean equation respectively. 

For the ARCH/GARCH specification we need to click on GARCH (symmetric), which 
is again the default EViews case, and in the small boxes we specify by typing the number 
of the q lags ( 1, 2, ... , q) for the Order ARCH and the number of p lags ( 1, 2, ... , p) for 
the GARCH. Table 14.9 below presents the results for a GARCH-M(l,l) model based on 
the specification that uses the variance series to capture risk in the mean equation as 
given by (14.27). 

Note that the variance term (GARCH) in the mean equation is slightly significant 
but its inclusion substantially increases the significance of the GARCH term in the 
variance equation. Reestimating the above model but this time clicking on the Std.Dev 
from the ARCH-M part, to include the conditional standard deviation in the mean 
equation, we got the results presented in Table 14.10, where this time the conditional 
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Table 14.9 A GARCH-M{1, 1) model tor the FTSE-1 00 

Dependent Variable: R_FTSE 
Method: ML -ARCH 
Date: 12126!03 T1me: 19:32 
Sample: 110111990 1213111999 
Included observations: 2610 
Convergence achieved after 13 iterations 

GARCH 
c 
R_FTSE(-1) 

Coefficient 

6.943460 
-2.39E-05 

0.061006 

Std. Error z-Statistic 

4.069814 1.706088 
0.000311 -0.076705 
0.020626 2.957754 

Variance Equation 

c 
ARCH(1) 
GARCH(1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

7.16E-07 
0.049419 
0.942851 

0.004749 
0.002838 
0.009385 
0.229341 
8682.056 
1.974219 

2.22E-07 3.220052 
0.006334 7.801997 
0.007444 126.6613 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Prob. 

0.0880 
0.9389 
0.0031 

0.0013 
0.0000 
0.0000 

0.000391 
0.009398 

-6.648319 
-6.634831 

2.485254 
0.029954 

Table 14.10 A GARCH-M{1 ,1) for the FTSE-100 {using the standard deviation) 

Dependent Variable: R_FTSE 
Method: ML -ARCH 
Date: 12126/03 Time: 19:36 
Sample: 1/0111990 1213111999 
Included observations: 2610 
Convergence achieved after 13 iterations 

SQR(GARCH) 
c 
R_FTSE(-1) 

Coefficient 

0.099871 
-0.000363 

0.063682 

Std. Error 

0.080397 
0.000656 
0.020771 

z-Statistic 

1.242226 
-0.553837 

3.065923 

Variance Equation 

c 
ARCH(1) 
GARCH{1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

9.23E-07 
0.055739 
0.934191 

0,005128 
0.003218 
0.009383 
0.229253 
8682.025 
1.980133 

2.72E-07 
0.007288 
0.008832 

3.394830 
7.647675 

105.7719 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F-statistic 
Prob(F-statistic) 

Prob. 

0.2142 
0.5797 
0.0022 

0.0007 
0.0000 
0.0000 

0.000391 
0.009398 

-6.648295 
-6.634807 

2.684559 
0.019937 
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standard deviation (or SQR(GARCH)) coefficient is not significant, suggesting that if 
there is an effect of the risk on the mean return this is captured better by the variance. 

The threshold GARCH (TGARCH) model 

A major restriction of the ARCH and GARCH specifications above is the fact that 
they are symmetric. By this we mean that what matters is only the absolute value 
of the innovation and not its sign (because the residual term is squared). Therefore, 
in ARCH/GARCH models a big positive shock will have exactly the same effect in the 
volatility of the series as a big negative shock of the same magnitude. However, for 
equities it has been observed that negative shocks (or 'bad news') in the market have a 
larger impact on volatility than positive shocks (or 'good news') of the same magnitude. 

The threshold GARCH model was introduced by the works of Zakoian (1990) and 
Glosten, Jaganathan and Runkle (1993). The main target of this model is tq capture 
asymmetries in terms of negative and positive shocks. To do that it simply adds into 
the variance equation a multiplicative dummy variable to check whether there is 
statistically significant difference when shocks are negative. 

The specification of the conditional variance equation (for a TGARCH(l,1 )) is 
given by: .. 

ht =YO+ yuf-1 + tJuf_ 1 dt-1 + 8ht-l (14.31) 

where dt takes the value of 1 for lit < 0, and 0 otherwise. So 'good news' and 'bad news' 
have a different impact. Good news has an impact y, while bad news has an impact of 
Y- + 8. If (I > 0 we conclude that there is asymmetry, while if e = 0 the news impact is 
symmetric. TARCH models can be extended to higher order specifications by including 
more lagged terms as follows: 

q <J 

ht =YO+ L(Yi + v;dr_;)uf_; + L 8/Zt-j (14.32) 
i=1 i=1 

Estimating TGARCH models in EViews 

in order to estimpte a TGARCH model in EViews first click Quick/Estimate Equation to 
open the Estimation Window. Then change the estimation method, by clicking on the 
down arrow in the method setting, to choose the ARCH-Autoregressive Conditional 
Heteroskedasticity option. In this new Equation Specification window we again 
have the uppe_r part for the mean equation specification and the lower part for the 
ARCH/GARCH specification or the variance equation. To estimate a TGARCH(p,q) 
model, assuming that the mean equation follows an AR(1) process as before, we typ~ 
in the mean equation specification: 

r ftse c rftse(-1) 

s 
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Table 14.11 A TGARCH(1, 1) model for the FTSE-100 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12127/03 Time: 15:04 
Sample: 110111990 12131/1999 
Included observations: 2610 
Convergence achieved after 11 iterations 

c 
R_FTSE(-1) 

c 
ARCH(1) 
(RESID< 0) • ARCH(t) 
GARCH(1) 

R~squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

Coefficient Std. Error z-Stati.stic 

0.000317 0.000159 1.999794 
2.910336 0.059909 0.020585 

Variance Equation 

7.06E -07 
0.015227 
0.053676 
0.950500 

0.004841 
0.002930 
0.009384 
0.229320 
8692.649 
1.972741 

1.90E- 07 
0.006862 
0.009651 
0.006841 

~.724265 
2.218989 
5.561657 

138.9473 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob( F -statistic) 

Prob. 

0.0455 
0.0036 

0.0002 
0.0265 
0.0000 
0.0000 

0.000391 
0.009398 

-6.656436 
-6.642949 

2.533435 
0.026956 

ensuring also that we clicked on None in the ARCH-M part of the mean,equation 
specification. 

For the ARCH/GARCH specification we need to click on TARCH (asymmetric), and 
in the small boxes specify the number of the q lags (1, 2, ... , q) for the Order ARCH 
and the number of p lags (1, 2, ... , p) for the GARCH. Table 1 ~.11 presents the results 
for a TGARCH(1,1) model. 

Note that because the coefficient of the (RESID < 0)* ARCH(l) term is positive and 
statistically significant, that indeed for the FTSE-100 there are asymmetries in the news. 
Specifically, bad news has larger effects on the volatility of the series than good news. 

The exponential GARCH (EGARCH) model 

The exponential GARCH or EGARCH model was first developed by Nelson (1991), 
and the variance equation for this model is given by: 

q I Ut . q Ut . p 
log(hr) = y + L~i r2-. + L~i r2-. + :Loilog(hr-;) 

i=l -yht-j i=l -yht-j i=l 

(14.33) 

where y, the 1;s, ~sand os are parameters to be estimated. Note that the left-hand side 
is the log of the variance series. This makes the leverage effect exponential instead of 
quadratic, and therefore the estimates of the conditional variance are guaranteed to 
be non-negative. The EGARCH model allows for the testing of asymmetries as well 
as the TARCH. To test for asymmetries the parameters of importance are the ~s. If 
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~1 = $z = · · · = 0, then the model is symmetric. When ~i < 0, then positive shocks 
(good news) generate less volatility than negative shocks (bad news). · 

Estimating EGARCH models in EViews 

In order to estimate an EGARCH model in EViews first click Quick/Estimate Equation 
to open the Estimation Window. Then change the estimation method by clicking the 
down arrow in the method setting to choose the ARCH-Autoregressive Conditional 
Heteroskedasticity option. In this new Equation Specification window we agafn 
have the upper part for the mean equation specification, while the lower part is for 
the ARCH/C¥\RCH specification or the variance equation. In order to estimate an 
EGARCH(p,q) model, assuming that the mean equation as before follows an AR(1) 
process, we type in the mean equation specification: . 

r ftse c rftse(-~) 

again making sure we clicked on None in the ARCH-M part of the mean 
equation specification. 

For the ARCH/GARCH specification we now click on EGARCH, and in the small 
boxes specify the number of the q lags (1, 2, ... , q) for the Order ARCH and the 
number of p lags (1, 2, ... ,p) for the GARCH. Table 14.12 presents the results for an 
EGARCH(1, 1) model. 

"' 
Table 14.12 An EGARCH(1, 1) model for the FTSE-100 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12/26103 Time: 20: 19 
Sample: 110111990 12131/1999 
Included observations: 2610 
Convergence achieved after 17 iterations 

c 
R_FTSE(-1) 

Coefficient 

0.000306 
0.055502 

Std. Error z-Statistic 

0.000156 1.959191 
0.020192 2.748659 

Variance Equation 

c 
I RESI/SOR[GARCH](1) 
RES/SQR[GARCH](1) 
EGARCH(1) 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

J 

-0.154833 
0.086190 

-0.044276 
0.990779 

0.00471 i 
0.002800 
0.009385 
0.229350 
8697.343 
1.964273 

0.028461 -5.440077 
0.012964 6.648602 
0.007395 -5.987227 
0.002395 413.7002 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Prob. 

0.0501 
0.0060 

0.0000 
0.0000 
0.0000 
0.0000 

0.000391 
0.009398 

-6.660033 
-6.646545 

2.465113 
0.030857 
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Note that because the coefficient of the RES/SQR[GARCH](l) term is negative and 
statistically significant, that indeed for the FTSE-100 bad news has larger effects on the 
volatility of the series than good news. 

Adding explanatory variables in the mean equation 

ARCH/GARCH models may be quite sensitive to the specification of the mean equation. 
Consider, for example, again the FTSE-100 return series we examined above. In all our 
analyses we assumed (quite restrictively and without prior information) that a good 
specification for the mean equation would be a simple AR(1) model. It is qtJite obvious. 
that, using daily data, AR models of a higher order would be more appropriate. Also it 
might be more appropriate to use MA terms together with the AR terms. Estimating an 
ARCH(1) and a GARCH(1, 1) modei for the FTSE-100 returns assuming that it follows 
an ARMA(1, 1) specification, in both cases gives results for the mean equation that are 
statistically insignificant. (We leave this as an exercise for the reader. To the mean 

~ equation specification, type: r_ftse c AR(l) MA(1), and then arrange the number of 
ARCH(q) and GARCH(p) terms.) It should be clear that results, or even convergence 
of iterations, might be highly affected by wrong specifications of the mean equation, 
and if research using GARCH models is to be undertaken, the researcher has to be ve'ry 
careful in first identifying the correct specification. 

Adding explanatory variables in the variance equation 

GARCH models also allow us to add explanatory variables in the specification of the 
conditional variance equation. We can have an augmented GARCH(q,p) specifi~ation 
such as the following: 

P q 1n 

fit = Yo + L o;ht-i + L Yiuf_i + L Jl.kxk (14.34) 
i=l i=l k=l 

where xk is a set of explanatory variables that might help to explain the variance. 
As an example consider the case of the FTSE-100 returns again, and let's assume that 
we suspect that the Gulf War (which took place in 1994) affected the FTSE-100 returns 
making them more volatile. We can test this by constructing a dummy variable, named 
Gulf, that will take the value of 1 for observations during 1994 and 0 for the rest of the 
period. Then in the estimation of the GARCH model, apart from specifying as always 
the mean equation and the order of q and p in the variance equation, we can add 
the dummy variable in the box where EViews allows us to enter variance regressors, 
by typing the name of the variable there. Estimation of a GARCH(1,1) model with 
the dummy variable in the variance regression gave the results shown in Table 14.13, 
where we can see that the dummy variable is statistically insignificant, so that we 
can reject the hypothesis that the Gulf War affectep the volatility of the FTSE-100 
returns. Other examples with dummy and regular explanatory variables are given in 
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Table 14.13 A GARCH(1,1) with an explanatory variable in the variance equation 

Dependent Variable: R_FTSE 
Method: ML-ARCH 
Date: 12/27103 Time: 17:25 
Sample: 110111990 1213111999 
Included observations: 2610 
Convergence achieved after 10 iterations 

c 
A_FTSE(-1) 

Coefficient 

0.000400 
0.068514 

Std. Error 

0.000160 
0.021208 

z-Statistic 

2.503562 
3.230557 

Variance Equation 

c 
AACH(1) 
GAACH(1) 
GULF 

A-squared 
Adjusted A-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

2.22E-06 
0.083656 
0.891518 

-4.94E-07 

0.004964 
0.003054 
0.009384 
0.229291 
8677.107 
1.989232 

6.02E-07 
0.013516 
0.016476 
5.96E-07 

3.687964 
6.189428 

54.11098 
-0.829246 

Mean dependent. var 
S.D.dependentvar 
Akaike info criterion 
Schwarz criterion 
F -statistic 
Prob(F -statistic) 

Prob. 

0.0123 
0.0012 

0.0002 
0.0000 
0.0000 
0.4070 

0.000391 
0.009398 

-6.644526 
-6.631039 

2.598278 
0.023694 

the empirical illustration section below for c;~e GARCH model of the UK GOP and the 
effect of sociopolitical instability. 

~ 

Empirical illustrations of 
ARCH/GARCH models 

A GARCH model of jJK GOP and the effect of 
socio-political instability 

Asteriou and Price (2001) used GARCH models to capture the effects of socio-political 
instability in UK GDP. In order to approximate and quantify socio-political instability, 
they constructe~ indices which summarize various variables capturing phenomena 
of social unrest, for the case of the UK and for the period 1960-97 using quarterly 
time series data. Specifically, their indices were constructed by applying the method 
of principal components to the following variables: TERROR, the number of terrorist 
activities which caused mass violence; STRIKES, the number of strikes which were 
caused by political reasons; ELECT, the number of elections; REGIME, a dummy variable 
which takes the value of one for government changes to different political parties, zero 
otherwise; FALKL, a dummy variable which takes the value of 1 for the period of the 
Falkland's war (1982; ql-q4), zero otherwise; and finally GULF, a dummy variable 
which takes ihe value of 1 for the period of the gulf war (1991; ql-q4), zero otherwise. 
Their main results are presented below. 
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Table 14.14 GARCH estimates of GDP growth with political uncertainty proxies 

dependent variable: !:iln( Y1); sample: 1961q2 1997q4 

Parameter 1 2 3 4 

constant 0.003 (3.49) 0.005 (3.78) 0.004 (3.80) 0.006 (5.66) 
!:iln(Y1_ 3) 0.135 (1.36) 0.194 (1.99) 0.186 (1.87) 0.270 (3.42) 
!:iln(Y1_ 4 ) 0.131 (1.23) 0.129 (1.22) 0.122 (1.48) 0.131 (1.29) 
!:iln(/1_ 2 l 0.180 (2.25) 0.132 (1.48) 0.162 (1.92) 
Regime -0.012 ( -4.91) -O.Q12 ( -5.63) 
Terror -0.004 (-2.72) -0.005 ( -2.66) 
Strikes -0.011 (-2.58) -0.015 ( -3.44) 
PC1 -0.005 ( -4.33) 
PC2 -0.003(-2.02) 

Variance Equation 
constant 0.00001 (1.83) 0.00001 (1.66) 0.000006 (1.16) 0.00006 (1.71) 
ARCH(1) 0.387 (3.27) 0.314 (2.44) 0.491 (4.18) 0.491 (4.46) 
GARCH(1) 0.485 (2.95) 0.543 (3.14) 0.566 (6.21) 0.566 (3.36) 
R2 0.006 . 0.099 0.030 0.104 
S.E. of d.v. 0.010 0.010 0.010 O.otO 
S.E. of Reg. 0.010 0.010 0.010 0.010 

Results from GARCH models 

Asteriou and Price (2001) estimated the following model: 

4 4 6 

.t.ln(Yr) = ao +ali L .t.ln(Yr-i) + az; L:.t.ln(lr_;) + LdiXit + ur 
~0 ~0 ~I 

ur ~ N(O, hr) 

hr = b1e'f_ 1 + bzht-I 

(14.35) 

(14.36) 

(14.37) 

That is, the growth rate of GDP (denoted by .t.ln(Y1)) is modelled as an AR(4) process, 
including the growth and four lags of investments (denoted by .t.ln(l1)) plus the 
political instability proxies (Xjt ), where the variance is conditioned on the lagged 
variance and lagged squared residuals. 

Table 14.14, model 1, presents results of a GARCH(l,l) model for GOP growth or 
reference without including political dummies. (In each case the model has been first 
estimated with four lagged terms of GOP per capita and four lagged terms of the rate of 
growth of investment, and after that reduced down to a parsimonious model, including 
only the significant regressors.) Despite the low R2 , the variance part of the model 
is well-fitting. 

Continuing, Asteriou and Price reestimated the above model including in equation 
(14.35) the political dummies. All the dummies entered the equation with the expected 
negative sign while three of them were statistically significant. The results of the 
parsimonious model are shown in Table 14.14 model 2, and from these we observe that 
regime, terror and strikes are highly significant and negative. The variance equation 
is improved and R2 , while it remains relatively low, is increased compared to the 
previous specification. 

The results from the alternative specification, with the inclusion of the PCs in the 
place of the political instability variables (Table 14.14 mod~l-~ __ are similar to the 
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previous model. Negative and significant coefficients were obtained. for the first and 
the third components. 

Asteriou and Price (2001) also estimated all the above specifications without including 
the investment terms. The results for the case o~ the political uncertainty dummies 
are presented in the same table, model 4, and show clearly that the strong negative 
direct impact remains. Thus, the impact of political uncertainty on growth does not 
appear to operate through investment growth, leaving open the possibility of political 
uncertainty affecting the level of investment. 

Results from GARCH-M models 

Asteriou and Price (2001) mainly argued that it is political instability which affects 
uncertainty and thereby growth. So it was of considerable interest for them to allow 
uncertainty to affect growth directly. In order to do this they used the GARCH-M class 
of models, first to test whether uncertainty in GDP (conditioned by the 'in mean' term 
of the GARCH-M model) affects GDP growth, and second whether political instability 
(conditioned by the political dummies and by the PCs in the variance equation) affects 
GDP growth separately. 

The GARCH-M model they estimated may be presented as follows: 

4 4 

to.ln(Yt) = ao + L alito.ln(Yt-i) + L az;t>.lnUt-i) + yht + Ut 
i=O i=O 

et ~ N(O, ht) 

6 

ht = b1uf_ 1 + bzht-l + L:b3;Xit 
i=l 

(14.38) 

(14.39) 

(14.40) 

That is, the growth rate of GDP is modelled as an AR process, including four lags of the 
.. growth rate of investments and the variance of the error term. Equation (14.39) defines 

ht as the variance of the error term in (14.38), and (14.40) states that the variance of 
the error term is in turn a function of the lagged variance and lagged squared residuals 
as· well as the polnical instability proxies Xu. In order to accept the first hypothesis it 
would be necessary that y is non-zero, while in order to accept the second hypothesis 
there should be evidence of positive statistically significant estimates for the coefficients 
of the political instability proxies (b3;). 

Table 14.15 report the results of estimating a GARCH-M(1, 1) model without political 
instability proxies (Table 14.15, model 1). (Again, as in the previous section, the 
reported results ·are only from the parsimonious models.) The model is satisfactory 
given that the parameters (bb bz) are strongly significant. The inclusion of the 'in 
mean' specification turns out to be redundant as y is insignificant, sugge;;;ting that GDP 
uncertainty does not itself affect GDP growth. However, this turns out to be misleading 
and follows from the fact that political factors are ignored. 

tn estimating a GARCH-M(1,1) model inducting in the variance equation the political 
dummies (see Table 14.15, model 2), Asteriou and Price observed that all the political 
instabflity variables - with the exception of REGIME -entered the equation with the 
expected positive sign, indicating that political uncertainty increases the variance of 
GDP growth. All variables were statistically significant. The 'in mean' term is in this 
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Table 14.15 GARCH-M(1,1) estimates with political uncertainty proxies 

Parameter 

constant 
t.ln<Y1_ 3) 
1:> In( Yr-4l 
1:> ln(lv1_2) 
SQR(GARCH) 

constant 
ARCH(1) 
GARCH(1) 
Elect 
Regime 
Faukl 
Strikes 
PC1 
PC2 
PC3 
R2 
S.E. of d.v. 
S.E. of Reg. 

dependent variable: Li ln<Y1J; sample: 1961q2 1997q4 

0.006 (2.67) 
0.154(1.59) 
0.128 (1.24) 
0.136 (1.69) 

-0.498 ( -1.40) 

2 

0.009 (4.22) 
0.175 (1.15) 
0.089 (0.81} 
0.132 (1.33) 

-0.674 ( -3.07) 

Variance Equation 
0.00001 (1.68) 0.00005 (1.21) 
0.335 (3.07) 0.133 ( 1.33) 
0.554 (3.53) 0.650 (4.00) 

0.007 (3.11) 
0.006 (2.84) 
0.002 (5.11) 
0.066 (2.91) 

0.054 
0.010 
0.010 

0.053 
0.0106 
0.0108 

3 

0.007 (4.33) 
0.161 (2.10) 
0.141 (1.84) 
0.126 (1.84} 

-0.444 (-2.42) 

0.000002 r0.80) 
0.460 (4.05) 
0.;580 (6.64) 

0.000047 (1 :45) 
0.000002 (0.09) 
0.000031 (3.20) 
0.064 
0.0106 
0.0107 

case highly significant and negative. The results from the alternative specification, with 
the inclusion of the PCs in the place of the political instability variables (Table 14.15, 
model3) are similar to the previous one, with the exception that positive and significant 
coefficients were obtained only for the fifth component. 

Continuing, Asteriou and Price estimated more general GARCH-M(1,1) models, 
first including the political dummies and the PCs in the growth equation, and 
second including political dummies and PCs in both the growth and the variance 
equation. 

With the first version of the model they wanted to test whether the inclusion of 
the dummies in the growth equation would affect the significance of the 'in mean' 
term which captures the uncertainty of GDP. Their results, presented in Table 14.16, 
showed that GDP growth was significantly affected only by the political uncertainty, 
captured either by the dummies or by the PCs, denoting the importance of political 
factors other than the GARCH process. (We report here only the results from the model 
with the political uncertainty dummies. The results with the PCs are similar but are not 
presented here for economy of space. Tables and results are available from the authors 
upon request.) 

The final and most general specification was used to capture both effects stemming 
from political uncertainty, namely the effect of political uncertainty on GDP growth, 
and its effect on the variance of GDP together. Asteriou and Price's results are presented 
in Table 14.17. After the inclusion of the political dummies in the variance equation, 
the model was improved (the political dummies significantly altered the variance of 
GDP), but the effect on GDP growth came only from the political uncertainty proxies 
that were included in the growth equation. The 'in mean' term was negative but 
insignificant. 
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Table 14.16 GARCri-M(1, 1) estimates with political proxies 

dependent variable: !'J.In(Y1); sample: 1961q2 1997q4 

Parameter Estimate Std. error t-statistic 

constant 0.009 0.003 2.964 
!'J.In(Y1_3) 0.206 0.093 2.203 
!'J.In(Yr-4) 0.123 0.102 1.213 
l'l.ln(/r-4) 0.109 0.088 1.241 
SOR(GARCH) ··-· -0.447 0.365 -1.304 
Regime -0.012 o;002 -5.084 
Terror -0.005 0.001 -3.018 
Strikes -0.012 0.004 -2.753 

Variance Equation 
constant 0.00001 0.000008 1.648 
ARCH(1) 0.285 0.120 2.380 
GARCH(1) 0.575 0.161 3.553 
R2 0.124 
S.E. of d.v. O.Q106 
S.E. of Reg. 0.0103 

Table 14.17 GARCH-M(1, 1) estimates with political proxies 

dependent variable: l'l.ln(Y1); sample: 1961q2 1997q4 

Parameter Estimate Std. error t-.~•atistic 

constant 0.005 0.001 3.611 
D. In( Y1_ 3) 0.172 0.095 1.799 
l'l.(n(Yr-4) 0.123 0.090 1.353 
!'J.In(/r-4) 0.181 0.089 2.023 
SQR(GARCH) -0.169 0.254 -0.667 
Regime -0.013 0.006 -1.925 
Gulf -0.007 0.003 -1.899 
Strikes -0.020 0.006 -3.356 

Variance Equation 
constant 0.00002 0.00001 2.013 
ARCH(1) 0.265 0.126 2.091 
GARCH(1) 0.527 0.171 3.076 
Elect 0.00004 0.00001 2.608 
Regime 0.0001 0.0001 1.131 . 
Falkl 0.00002 0.00002 1.326 
R2 0.141 
S.E. of d.v. 0.0106 
S.E. of Reg. 0.0103 

The final conclusion of Asteriou and Price (2001) was that political instability has 
two identifiable effects. First, some measures impact on the variance of GOP growth, 
while others directly affect growth itself. Instability has a direct impact on growth and 
does not operate indirectly via the conditional variance of growth. 

s 
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Questions 

1 Explain what is the meaning of ARCH and GARCH models showing how each of the 
two is a form of heteroskedasticity. ---

2 Explain how we can test for the presence of ARCH(q) effects in a simple OLS 
estimation framework. 

3 Explain how we may estimate models with ARCH and GARCH effects. 

4 What is meant by the comment that 'GARCH(l,l) is an alternative parsimonious 
process for an infinite ARCH(q) process'. Prove this mathematically. • 

5 Explain the meaning of symmetries in news, and provide appropriate specifications 
for GARCH models that can capture those effects. 

6 What should we be very careful of in estimating ARCH/GARCH models? 

7 Provide a GARCH-M(q,p) model and explain the intuition behind this model. 

8 Explain the effect of the dummy variable in the TARCH model. Why does it enter 
the variance equation in a multiplicative form and what is the rationale behind this? 

Exercise 14.1 

The file arch. wfl contains daily data for the logarithmic returns FTSE-1 00 (named r _Jtse) 
and three more stocks of the UK stockmarket (name r _stock I, r _stock2 and r _stock3 
respectively). For each of the stock series do the following: 

(a) Estimate an AR(l) up to AR(lS) model and test the individual and joint significance 
of the estimated coefficients. 

(b) Compare AIC and SBC values of the above models and, along with the results for 
the significance of th~ coefficients, conclude which will be the most appropriate 
specification. 

(c) Reestimate this specification using OLS and test for the presence of ARCH(p) effects. 
Choose several alternative values for p. 

.. '• 

(d) For the preferred specification of the mean equation, estimate an ARCH(p) model 
and compare your results with the previous OLS results. 

(e) Obtain the conditional variance and conditional standard deviations series and 
rename them with names that will show from which model they were obtained 
(e.g. SD_ARCH6 for the conditional standard deviation of an ARCH(6) process). 

(f) Estimate a GARCH(q,p) model, obtain the conditional variance and standard 
deviation series (rename them again appropriately) and plot them against the series 
you have obtained before. What do you observe? 

(g) Estimate a TGARCH(q,p) model. Test the significance of the TARCH coefficient. Is 
there any evidence of asymmetric effects? · 
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(h) Estimate an EGARCH(q,p) model. How does this affect your results? 

(i) Summarize all models in one table and comment on your results. 

Exercise 14.2 

You are working in a financial institution and your boss proposes to upgrade the 
financial risk-management methodology that the company uses. In particular, in order 
to model the FTSE-100 index your boss suggests estimation using an ARCH(1) process. 
You disagree and wish to convince your boss that a GARCH(1,1) process is better. 

(a) Explain, intuitively first, why a GARCH(l,1) process will fit the returns ofFTSE-100 
better than an ARCH(1) process. (Hint: You will need to refer to the stylized facts 
of the behaviour of stock indices.) 

(b) Prove your point with the use of mathematics. (Hint: You will need to mention 
ARCH(q) processes here.) 

(c) Estimate both models and try to analyse them in such a way that you can convince 
your boss about the preferability of the model you are proposing. Check the 
conditional standard deviation and conditional variance series as well. (Hint: Check 
the number of iterations and talk about computational efficieBcy.) 
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Vector autoregressive (VAR) models 

It is quite common in economics to have models where some variables are not only 
explanatory variables for a given dependent variable, but they are also explained by the 
variables that they are used to determine: In those cases we have models of simultaneous 
equations, in which it is necessary to clearly identify which are the endogenous and 
which are the exogenous or predetermined variables. The decision regarding such a 
differentiation among var!ables was heavily criticiJ.ed by Sims (1980). 

According to Sims (1980), if there is simultaneity among a number of variables, then 
all these variables should be treated in the same ~ay. In other words there should 
be no distinction between endogenous and exogenous variables. Therefore, once this 
distinction is abandoned, all variables are treated as endogenous. This means that in 
its general reduced form each equation has the same set of regressors which leads to 
the development of the VAR models. 

The VAR model 

So, when we are not confident that a variable is really exogenous, we have to treat each 
variable symmetrically. Take for example the time series Yt that is affected by current 
and past values of Xt and, simultaneously, the time series Xt to be a s~ries that is affected 
by current and past values of the Yt series. In this case we will have the simple bivariate 
model given by: 

Yt = lho- f3tzXt + YnYt-1 + YtzXt-1 + uyt 

-Yt = f3zo- fJztYt + YZ!Yt-1 + YzzXt-1 + llxt 

(15.1) 

(15.2) 

where we assume that both Yt and Xt are stationary and Uyt and Uxt are uncorrelated 
white-noise error terms. Equations (15.1) and (15.2) constitute a first-order VAR 
model, because the longest lag length is unity. These equations are not reduced-form 
equations since Yt has a contemporaneous impact on Xt (given by -{321 ), and Xt has a 
contemporaneous impact on Yt (given by -1hz). Rewriting the system with the use of 
matrix algebra, we get: 

or 

where 

·--:-,.-··· ,-.. · 

[ 1 fJ1z] [rr] = [tho] + [Yu 
fJ21 1 Xt f3zo Y2! 

Y!2] [Yt-1] + [Uyt] 
Y21 Xt-1 llxt 

Bzr = ro + r 1zr-I + ur 

B = [fJ~I fJ!2] 1 I 

ft = [Yll Y21 

Zt = [~:l r0 = [fJw] 
fJzo ' 

Y!Z] and ur = [llyt] . 
Y2! llxt 

·--*-·. 

(15.3) 

(1 5.4) 
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Multiplying both sides by s- 1 we obtain: 

zr = A0 + A1zr_ 1 + et (15.5) 

where Ao = s-l ro, A1 = s-l rl and et = n-1ur. 
For purposes of notational simplification we can denote as a;0 the ith clement of the 

vector Ao, a;; the element in row i and column j of the matrix A 1 and e;r as the ith 
element of the vector et. Using this we can rewrite the VAR model as: 

J't = aw + auYt-I + a12xr-1 +ell 

xr = azo + az1Yt-1 + azzXt-1 + ezr 

(15.6) 

(15.7) 

To distinguish between the original VAR model and the system we have just obtained, 
we call the first a structural or primitive VAR system and the second a VARin standard 
(or reduced) form. It is important to note that the new error terms, e11 and ez1, .are 
composites of the two shocks "-vt and Uxt· Since et = s- 1u 1 we can obtain elt and 
ezr as: 

elt = (llyt + f3I2"xr)/(1 - fJ12f!21) 

ezr = (llxt + .Bziurr)/(1- 1312/321) 

(15.8) 

(15.9) 

Since Uyt and llxt are white-noise processes, it follows that both elt and eu are white­
noise processes as well. 

Pros and cons of the VAR models 

The VAR model approach has some very good characteristics. First, it is very simple. 
The econometrician does not have to worry about which variables are endogenous or 
exogenous. Second, estimation is very simple as well, in the sense that each equation 
can be estimated with the usual OLS method separately. Third, forecasts obtained from 
VAR models are in most cases better than those obtained from the far more complex 
simultaneous equation models (see Mahmoud, 1984; McNees, 1986). 

However, on the other hand the VAR models have faced severe criticism on various 
different points. First, they are a-theoretic since they are not based on any economic 
theory. _ Since initially there are no restrictions on any of the parameters under 
estimation, in effect 'everything causes everything'. However, statistical inference 
is often used in the estimated models so that some coefficients that appear to be 
insignificant can be dropped, in order to lead to models that might have an underlying 
consistent theory. Such inference is normally carried out using what are called causality 
tests which are presented in the next section. 

A second criticism concerns the loss of degrees of freedom. If we suppose that we 
have a three-variable VAR model and we decide to include 12 lags for each variable 
in each equation, this will entail estimation of 36 parameters in each equation plus 
the equation constant. If the sample size is not sufficiently large, estimating that large 
a number of parameters will consume many degrees of freedom, creating problems 
in estimation. 
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Finally, the obtained coefficients of the VAR models are difficult to interpret since 
they totally lack any theoretical background. In order to overcome this criticism, the 
advocates of VAR models estimate so-called impulse response functions. The impulse 
response function examines the response of the dependent variable in the VAR to shocks 
in the error terms. The difficult issue here however is defining the shocks. The general 
view is that we would like to shock the structural errors, that is the errors in (15.1) 
or (15.2) which we can interpret easily as a shock to a particular part of the structural 
model. However, we only observe the reduced form errors in (15.6) and (15.7) and these 
are each made up of a combination of the structural errors. So we have to disentangle 
the structural errors in some way and this .is known as the identification problem (this 
is quie different from the Box-Jenkins identification problem mentioned earlier). There 
are a variety of ways of doing this although we are not going to explore these in this 
text. We would stress however that the different methods can give rise to quite different 
results and there is no objective statistical criteria for choosing between these different 
methods. 

Causality tests 

We said before that one of the good features of VAR models is that they allow us to 
test for the direction of causality. Causality in econometrics is somewhat different to 
the concept in everyday use; it refers more to the ability of one variable to predict 
(and therefore cause) the other. Suppose two variables, say Yt and .Yt, affect each other 
with distributed lags. The relationship between those variables can be captured by a 
VAR '!lode!. In this case it is possible to have that (a) Yt causes Xt, (b) Xt causes Yt. 

(c) there is a bi-directional feedback (causality among the variables), and finally (d) the 
two variables are independent. The problem is to find an appropriate procedure that 
aflows us to test and statistically detect the cause and effect relationship among the 
variables. 

Granger (1969) developed a relatively simple test that defined causality as follows: a 
variable Yt is said to Granger-cause Xt, if Xt can be predicted with greater accuracy by 
using past values of the Yt variable rather than not using such past values, all other 
terms remaining unchanged. 

The next section presents the Granger causality test, and will be followed by an 
alternative causality test developed by Sims (1972). 

The Granger causality test 

The Granger causality test for the case of two stationary variables Yt and Xt, involves as 
a first step the estimation of the following VAR model: 

11 m 

Yt = a1 + L f3;xt-i + LYiYt-i + elt (15.10) 
i= 1 i= 1 

11 m 

Xt = az + L fJ;xt-i + L 8;Yt-i + eu (15.11) 
i=1 i=l 

.. ,.--·-:: c-- .-.. ••" 
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where it is assumed that both eyt and Ext are uncorrelated white-noise error terms. In 
this model we can have the following different cases: 

Case 1 The lagged x terms in (15.10) may be statistically different from zero as a group, 
and the lagged y terms in (15.11) not statistically different from zero. In this 
case we have that Xt causes Yt. 

Case 2 The lagged y terms in (15.11) may be statistically different from zero as a group, 
and the lagged x terms in (15.10) not statistically different from zero. In this 
case we have that Yt causes Xt. • 

Case 3 Both sets of x and y terms are statistically different from zero in (15.10) and 
(15.11), so that we have bi-directional causality. • 

Case 4 Both sets of x andy terms are not statistically different from zero in (15.10) 
and ( 15.11 ), so that Xt is independent of Yt. 

The Granger causality test, then, involves the following procedure. First, estimate 
the VAR model given by equations (15.10) and (15.11). Then· check the significance 
of the coefficients and apply variable deletion tests first in the lagged x terms for 
equation (15.10), and then in the lagged y terms in equation (15.11). According to the 
result of the variable deletion tests we may conclude about the direction of causality 
based upon the four cases mentioned above. 

More analytically, and for the case of one equation (we will examine equation ( 15.1 0), 
it is intuitive to reverse the procedure in order to test for equation (15.11)), we perform 
the following steps: · · 

Step 1 Regress Yt on Jagged y terms as in the following model: 

m 

Yt = a1 + L Y;J't-j + elt 

i=l 

(15.12) 

and obtain the RSS of this regression (which is the restricted one) and label it 
as RSSR· 

Step 2 Regress Yt on lagged y terms plus lagged x terms as in the following model: 

n m 

Yt = al + L f3ixt-i + L YjYt--j + CJ t (15.13) 
i=l i=l 

and obtain the RSS of this regression (which now is the unrestricted one) and 
label it as RSSu. 

Step 3 Set the null and the alternative hypotheses as below: 

n 

Ho: L !3i = 0 or Xt does not cause Yt 
i=l 

n 

H1: L /3; 'f 0 or Xt does cause )'t 

i=l 
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Step 4 Calculate the F statistic· for the normal Wald test on coefficient restrictions 
given by: 

F = (RSSR- RSSu)/m 
RSSu/(n- k) 

which follows the Fm,n-k distribution. Here k = m + n + L 

Step 5 If the computed F value exceeds the F-critical value, reject the null hypothesis 
and conclude that x1 causes Yt· 

The Sims causality test 

Sims (1980) proposed an alternative test for causality making use of the fact that in 
any general notion of causality it is not possible for the future to cause the present. 
Therefore, when we want to check whether a variable Yt causes x1, Sims suggests 
estimating the following VAR model: 

n m k 

Yt = a1 + L /J;Xt-i + L YjYt-j + L l;pXt+p + elt (15.14) 
i=l i=l p=l 

n m k 

Xt = az + L O;xt-i + L 8;Yt-i + L ~PYt+p + ezt (15.15) 
i=l i=l p=l 

The new approach here is that apart from lagged values of x and y, there are also 
leading values of x included in the first equation (and similarly leading values of y in 
the second equation). 

Examining only the first equation, if Yt causes Xt then we will expect that there is 
some relationship between y and the leading values of x. Therefore, instead of testing 
for the lagged values of x1 we test for L~=ll;P = 0. Note that if we reject the restriction 
then the causality runs from Yt to Xt, and not vice versa, since the future cannot cause 
the present. 

To carry out the test we simply estimate a model with no leading terms (which is the 
restricted version) and then the model as appears in (15.14) (which is the unrestricted 
model), and then obtain the F statistic as in the Granger test above. 

It is unclear which version of the two tests is preferable, and most researchers use 
both. The Sims test, however, using more regressors (due to the inclusion of the leading 
terms), leads to· a bigger loss of degrees of freedom. 

Computer example: financial 
development and economic growth, 
what is the causal relationship? 

The aim here is to investigate the effects of financial and stockmarket development on 
the process of economic growth in the UK. (This section is heavily based on Asteriou and 
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Price, 2000a.) The importance of the relationship between financial development and 
economic growth has been well recognized and emphasized in the field of economic 
development (see e.g., Gurley and Shaw, 1955; Goldsmith, 1969, among others). 
However, whether the financial system (with emphasis on stockmarkets) is important 
for economic growth more generally is not clear. One line of research stresses the 
importance of the financial system in mobilizing savings, allocating capital, exerting 
corporate control and easing risk management, while, in contrast, a different line of 
research does not mention at ail the role of the financial system in economic growth. 
We discuss the above points and test these questions empirically using the Granger 
causality test for the case of the UK. 

Following standard practice in empirical studies (e.g. Roubini and Sal~-i-Martin, 
1992; King and Levine, 1993a,b) our indicator for economic development is real GOP 
per capita. 

The existing literature suggests as a proxy for financial development ratios of a broi)d 
measure of money, often M2, to the level of nominal GOP or GNP. This ratio directly 
measures the extent of monetization, rather than financial deepening. It is possible that 
this ratio may be increasing because of the monetization process rather than increased 
financial intermediation. An alternative is to deduct active currency in circulation 
from M2 or to use the ratio of domestic bank credit to nominal GOP. In our analysis, 
two alternative proxies of financial development are employed based on two different 
definitions of money. The first is the currency ratio, the ratio of currency to the narrow 
definition of money (MO) (the sum of currency and demand deposits). The second is 
the monetization ratio given by a broader definition of money (M4) over nominal GOP, 
the inverse of velocity. The first variable is a proxy for the complexity of the financial 
market; a decrease in the currency ratio will accompany real growth in the economy, 
especially in its early stages, as there exists more diversification of financial assets and 
liabilities and more transactions will be carried out in the form of non-currency. The 
monetization variable is designed to show the real size of the financial sector. We would 
expect to see the ratio increase (decrease) over time if the financial sector develops faster 
(slower) than the real sector. 

A third measure of financial development is constructed in order to provide more 
direct information on the extent of financial intermediation. This is the ratio of bank 
claims on the private -;ector to nominal GOP (the 'claims ratio'). As it is the supply of 
credit to the private sector which, according to the McKinnon/Shaw inside model, is 
ultimately responsible for the quantity and the quality of investment and, in turn, for 
economic growth, this variable may be expected to exert a causal influence on real GOP 
per capita (Demetriades and Hussein, 1996). 

In order to examine the connection between growth and the stockmarket, we have 
to construct individual indicators of stockmarket development. One important aspect 
of stockmarket development is liquidity (see Bencivenga, Smith and Starr, 1996, and 
Holmstrom and Tirole, 1993), which can be measured in two ways. The first is to 
compute the ratio of the total value of trades of the capital market over nominal GOP. 
The second is to compute the 'turnover ratio', defined as the value of trades of the 
capital market over the market capitalization, where market capitalization equals the 
total value of all listed shares in the capital market. 

Finally, we need data for employment and for the stock of capital in order to construct 
the capital/labour ratio of an implicit Cobb-Oougias productivity function. The data 
for the stock of capital are available for the UK only on a yearly basis. Assuming that 
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capital depreciates with a constant annual depreciation rate of <'l, we applied the implicit 
annual rate to an initial value of the stock of capital for the first quarter of 1970 using 
the quarterly time series for gross fixed capital formation. This enabled us to simulate 
a quarterly time series for the stock of capital. 

The data set used in estimation and testing consists of quarterly observations from the 
UK and the sample period spans from the first quarter of 1970 to the first quarter of 1997, 
with the exception of the turnover ratio which covers the period 1983:q1-1997:ql. 
The data were drawn from the UK's National Income and Expenditure Accounts and 
from Datastream. 

The conventional Granger causality test involves the testing of the null hypothesis 
'x1 does not cause y1', simply by running the following two regressions: 

m n 

Yt = L a;Yt-i + L bjXt-j + et 
i=l i=l 

m 

Y = LaiYt-i + et 
i=l 

and testing b; = 0 for every i. 

(15.16) 

(15.17) 

The testing procedure for the identification of causal directions becomes, however, 
more complex when, as is common in macroeconomic time series, the variables have 
unit roots. In such a case- after testing for the existence of cointegration- it is useful to 
reparametrize the model in the equivalent ECM form (see Hendry et al., 1984; Johansen, 
1988) as follows: 

m n 

f:l.yt = ao +ali L f:l.Xt--i + azk L f:l.Zt-k + 0!3 Ut-1 +lit 
k 

(15.18) 

where ut-1 = Yt-l - a 1xt-I - azZt-1 is the residual of the cointegration equation. 
(This might seem difficult at the moment, but it will become clearer to the reader 
after studying Chapters 16 and 17 that deal with the integration and cointegration of 
time series.) 

The null hypothesis, now, that x does not Granger-causey, given z, is H0 (a 1 = a 3 = 
0). This means that there are two sources of causation for y, either through the lagged 
terms f:l.x <'r through the lagged cointegrating vector. This latter source of causation is 
not detected by a standard Granger causality test. The null hypothesis can be rejected 
if either one or more of these sources affects y (i.e. the parameters are different from 
zero). The hypo'thesis is again tested using a standard F test. Following Granger and 
Lin (1995), the conventional Granger causality test is not valid, because two integrated 
series cannot cause each other in the long run unless they are cointegrated. We therefore 
test for causality among the variables that are found to be cointegrated, using the 
VECM representations for the cointegrated variables. Results of those causality tests are 
presented in Table 15.1. 

Causality in the long run exists only when the coefficient of the cointegrating vector 
is statistically significant and different from zero (Granger and Lin, 1995). In our 
analysis we apply variable deletion (F-type) tests for the coefficient of the cointegrating 
vector and for the lagged valuesof the financial proxies for the GDP per capital VECM 
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Table 15.1 Testing for long-run Granger causality 

Model: 8Yr = ao + a1; L:f16xr-i + a2k L~ 8Zt-k + a3v1-1 + ur 
where y =(GOP per capita); x =(turnover. monetization); z = (K/L ratio) 

x-variable F-statistic Lags Causality relationship 

turnover (8 T) a3 =0 F(1, 71) = 20.26* 1 CVt-1 -+ I:J. y 
a2k = 0 F(1, 71 J = 3.73* 1 I:J.T-" .!\Y 

monetization (8M) a3 = 0 FC1, 74) = 23.60* 6 CVt-1-.. I:J.Y 
a2k = 0 F(6, 74) = 7.30* 6 tJ.M-+ tJ.Y 

Model: I:J.Yr = ao +a, i Lr I:J.Xr-i + a2k L~ I:J.Zr-k + a3Vt-1 + Ut 
where y = (Turnover, Monetization); x = (GOP per capita); z = (K!L ratio) 

y-variable F-statistic Lags Causality relationship 

turnover (8 T) a3 =0 F(1, 71) = 5.88* 1 CVt-1 -+ I:J. y 
a2k =0 F(1, 71) = 1.07 1 I:J.T-1-+ I:J.Y 

monetization (8M) a3 = 0 F(1, 74) = 12.81* 6 CVt-1 -+ tJ, y 
a2k = 0 F(6, 74) = 0.836* 6 tJ.M- I-> tJ. y 

• Denotes the rejection of the null hypothesis of no causality. 

and vice versa (testing for the validity of the supply-leading and demand-following 
hypotheses respectively). The results reported in Table 15.1, show that"there is strong 
evidence in favour of the supply-leading hypothesis. In both cases (turnover ratio and 
monetization ratio) the causality direction runs from the financial proxy var,iable to 
GDP per capita, while the opposite hypothesis- that GDP per capita causes financial 
development - is strongly rejected. Also, we observe in all cases that the coefficients 
of the cointegrating vectors are statistically significant and the F-type tests reject the 
hypothesis that those coefficients are equal to zero, suggesting that in all cases there is 
a long bi-directional causality relationship. 

.... 

'• 

-- .-.. --

\ 
t 

lJ 
u 
u 
u 
u 
u 
l'l 
ij 
l 

I 1 

[·I 

1.1 

[. 

t.~ 

[ ! 

[ ! 

~· ~~ 
f:-: 
~ . 

IL 
l. 

r-



[ __ " 

l 
lJ 
[ 

i 
J 

( 

l "j 
f ' 
l j 

f -

l J 

[ 
l i 

[ -1 

[:' 

r. 
I 

l ' 

f. 
l 

r-
l ~ .. 

r ·; 
I ; 

i 
I 
I 

1 
~ 
~ 
~ 
.f§ 
!u~ 

Non-Stationarity and 
Unit-Root Tests 

Unit roots and spurious regressions 

Testing for unit roots 

Unit-root tests in EViews and Microfit 

Computer example: unit-root tests on various macroeconomic 
variables 

Com-puter example: unit-root tests for the financial development 
and economic growth example 

Questions and exercises 

287 
s 

·' 

288 

295 
299 

302 

303 
305 



f' 

288 Time Series Econometrics 

As we saw in Chapter 13, there are important differences between 5tationary and non­
stationary time series. In stationary time series, shocks will be temporary and over time 
their effects will be eliminated as the series revert to their long-run mean values. On the 
other hand, non-stationary time series will necessarily contain permanent components. 
Therefore, the mean and/or the variance of a non-stationary time series will depend on 
time, which leads to cases where a series (a) has no long-run mean to which the series 
returns, and (b) the variance will depend on time and will approach infinity as time 
goes to infinity. 

We have also discussed ways of identifying non-stationary series. Iri general, we said 
that a stationary series will follow a theoretical correlogram that will die out quickly 
as the lag-length increases, while the theoretical correlogram of a non-stationary time 
series will not die out (diminish or tend to zero) for increasing Jag length. However, this · 
method is bound to be imprecise because a near unit-root process will have the same 
shape of autocorrelation function (ACF) with that of a real unit-root process. Thus, what 
might appear as a unit root for one researcher may appear as a stationary process for 
another. 

The point of this discussion is that formal tests for identifying non-stationarity (or, 
differently stated, the presence of unit roots) are needed. The next section explains 
what a unit root is and discusses the problems regarding the existence of unit roots 
in regression models. We then present formal tests for the existence of unit roots 
followed by a discussion of how we can obtain results for the above tests using 
EViews and Microfit. Finally, results are presented from applications on various 
macroeconomic variables. 

Unit roots and spurious regressions 

What is a unit root? 

Consider the AR(1) model: 

Yt = t/>Yt-1 + Ut 

where er is a white-noise process and the stationarity condition is It/>/ < 1. 
In general we can have three possible cases: 

(16.1) 

Case 1 1¢1 < 1 and therefore the series is stationary. A graph of a stationary series for 
¢ = 0.67 is presented in Figure 16.1. 

Case 2 /¢1 > 1 where in this case the series explodes. A graph of a series for¢ = 1.26 
is given in Figure 16.2. 

Case 3 ¢ = 1 where in this case the series contains a unit root and is non-stationary. 
A graph of a series for¢= 1 is given in Figure 16.3. 
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Figure 16.1 
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Plot of a stationary AR(1) model 
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Figure 16.2 Plot of an exploding AR(1) model 
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Figure 15.3 Plot of a non-stationary AR(1) model 

In order to reproduce the graphs and the series which are stationary, exploding and 
non-stationary, we type the following commands in EV!ews (or in a program fi'le 
and run the program): 

smpl @first ®first+l 
genr y=O 
genr x=O 
genr z=O 
smpl ®first+l ®last 
genr Z=0.67*z(·l)+nrnd 
genr y=1.16*y(-l)+nrnd 
genr x=x(-l)+nrnd 
plot y 
plot x 
plot z 

So if ifJ = 1 then Yt contains a unit root. Having ifJ = 1 and subtracting Yt-1 from both 
sides of equation (16.1) we get: 

Yt- Yt-1 = Yt-1- Yt-1 + et 

fiYt = et (16.2) 

and because et is a white-noise process then we have that fiYt is a stationary series. 
Therefore, after differencing Yt we obtained stationarity. 

Definition 1 A series .Yt is integrated of order one (denoted by Yt ~ 1(1)) and 
contains a unit root, if Yt is non-stationary but fiYt is stationary. 
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In general a non-stationary time series Yt might need to be differenced more than once 
before it becomes stationary. Then, a series Yt that becomes stationary after d numbers 
of differences is said to be integrated of order d. 

Definition 2 A series Yt is integrated of order d (denoted by Yt ~ J(d)) if Yt is 
non-stationary but t..dyt is stationary; where t..yr = Yt - Yt-1 and 
t..2yt = t..(t..yr) = f>.Yt- f>.Yt-1• etc. 

We can summarize the above information under a general rule: 

(

number of times the) ( number ) 
order of series needs to be = of (integrat~on) = differenced in_order unit roots 

of a senes to become stationary 

Spurious regressions 

Most macroeconomic time series are trended and therefore in most cases are non­
stationary (see for example time plots of the GDP, money supply and CPI for the UK 
economy). The problem with non-stationary or trended data is that the standard OLS 
regression procedures can easily lead to incorrect conclusions. It can be shown that in 
these cases the norm is to get very high values of R2 (sometimes even higher than 0.95) 
and very high values of t-ratios (sometimes even higher than 4) while the variables 
used in the analysis have no interrelationships. 

_Many economic series typically have an underlying rate of growth, which may or 
may not be constant, for example GDP, prices or the money supply all tend to grow at 
a regular annual rate. Such series are not stationary as the mean is continually rising 
however they are also not integrated as no amount of differencing can make them 
stationary. This gives rise to one of the main reasons for taking the logarithm of data 
before subjecting it to formal econometric analysis. If we take the log of a series, which 
exhibits an average growth rate we will tum it into a series which follows a linear trend 
and which is integrated. This can be easily seen formally. Suppose we have a series x, 
which increases by 10% every period, thus; 

Xt = l.lxr-1 

If we then take t)l.e log of this we get 

log(xr) = log(l.l) + log(xr-1) 

Now the lagged dependent variable has a unit coefficient and each period it increases 
by an absolute amount equal to log(l.l) which is of course constant. This series would 
now be 1(1). 

More formally, consider the model: 

Yt = fh + fJzxr + ur (16.3) 

... - --,---c---------.. '• 'liP"'"""--;--~--



292 Tim~ Series Econometrics 

where constant lit is the error term. The assumptions of the CLRM require both f't and 
Xt to have a zero and constant variance (i.e. to be stationary). In the presence of non­
stationarity then the results obtained from a regression of this kind are totally spurious 
(using the expression introduced by Granger and Newbold, 1974) and these regressions 
are called spurious regressions. 

The intuition behind this is quite simple, over time we expect any non-stationary 
series to wander around, as in Figure 16.3, so over any reasonably long sample the 
series will either drift up or down. If we then consider two completely unrelated series 
which are both non stationary we would expect that either they will both go up or down 
together, or one will go up while the other goes down. If we then performed a regression 
of one series on the other we would then find either a significant positive relationship 
if they are going in the same direction or a significant negative one if they ere going in 
opposite directions even though really they are both unrelated. This is the essence of a 
spurious regression. 

A spurious regression usually has a very high R2 , t statistics that appear to provide 
significant estimates, but the results may have no economic meaning whatsoever. This 
is because the OLS estimates may not be consistent, and therefore the tests of statistical 
inference are not valid. 

Granger and Newbold (1974) constructed a Monte Carlo analysis generating a large 
number of Yt and x 1 series containing unit roots following the formula~;: 

Yt = Yt-1 + eyt 

Xt = Xt-1 +ext 

where eyt and ext aer artificially generated normal random numbers. 

(16.4) 

'(16.5) 

Since Yt and x1 are independent of each other, any regression between them should 
give insignificant results. However, when they regressed the various YtS to the XtS as 
shown in equation (16.3), they surprisingly found that they were unable to reject the 
null hypothesis of fh = 0 for approximately 75% of their cases. They also found that 
their regressions had very high R2 s and very low values of DW statistics. 

To see the spurious regression problem we can type the following commands in 
EViews (or in a program file and run the program file several times) to see how many 
times we can reject the null of {Jz = 0. The commands are: 

smpl ®first ®first+l 
genr y=O 
genr x=O 
smpl ®first+l ®last 
genr y=y(-l)+nrnd 
genr x=x(-l)+nrnd 
scat(r) y x 
smpl ®first ®last 
ls y c x 

An example of a scatter plot of y against :x obtained in this way is shown in Figure 16.4. 
The estimated equation was: 

r't = -1.042- 0.576xt; R2 = 0.316; DW = 0.118 

(-1.743) (-9.572) 
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Figure 16.4 Scatter plot of a spurious regression example 

Granger and Newbold (1974) proposed the following 'rule of thumb' for detecting 
spurious regressions: If R2 > DW-statistic or if R2 ~ 1 then the regression 'must' 
be spurious. 

To understa11d the problem of spurious regression better, it might be useful to use an 
example with real economic data. Consider a regression of the logarithm of real GDP 
(y) to the logarithm of real money supply (m) and a constant. The results obtained from 
such a regression are the following: 

Yt = 0.042 + 0.453mt; R2 = 0.945; DW = 0.221 

(4.743) (8.572) 

Here we see very good t-ratios, with coefficients that have the right signs and more or 
less plausible magnitudes. The coefficient of determination is very high (R2 = 0.945), 
but there i~a high degree of autocorrelation (DW = 0.221). This shows evidence of the 
possible existence of spurious regression. In fact, this regression is totally meaningless 
because the money supply data are for the UK economy and the GOP figures are for 
the US economy. Therefore, although there should not be any significant relationship, 
the regression seems to fit the data very well, and this happens because the variables 
used in this example are, simply, trended (non-stationary). 

So, the final point is that econometrician::. should be very careful when working with 
trended variables. 

Explanation of the spurious regression problem 

In a slightly more formal way the source of the spurious regression problem comes from 
the fact that if two variables, x andy, are b. stationary then in general any linear 
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combination of them will certainly be stationary. One important linear combination 
of them is of course the equations error, and so if both variables are stationary the error 
in the equation will also be stationary and have a well-behaved distribution. However 
when the variables become non-stationary then of course we can not guarantee that 
the errors will be stationary and in fact as a general rule (although not always) the error 
itself becomes non-stationary and when this happens we violate the basic assumptions 
of OLS. If the errors 'INere non-stationary we would expect them to wander around and 
eventually get large. But OLS because it selects the parameters so as to make the sum of 
the squared errors as small as possible will select any parameter which'gives the smallest 
error and so almost any parameter value can result. 

The simplest way to examine the behaviour of lit is to rewrite (16.3) as 

lit = Yt - lh - fJzxt (16.6) 

or, excluding the constant {31 (which only affects the Ut sequence by rescaling it): · 

ur = Yt - fJzxr ( 16. 7) 

If Yt and x 1 are generated by equations (16.4) and (16.5), then if we impose the initial 
conditions Yo = xo = 0 we get that: 

t t 

Ut = L eyi - {Jz L exi ·(16.8) 
i=l i=l 
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From equation (16.8) we have that the variance of the error term will tend to become 
infinitely large as t increases. Moreover, the error term has a permanent component in 
that Etet+l = et for all i > 0. Hence, the assumptions of the CLRM are violated, and 
therefore any t test, F test or R2 values are unreliable. 

In terms of equation (16.3) there are four different cases to discuss: 

Case 1 Both Yt and Xt are stationary and the CLRM is appropriate with OLS estimates 
being BLUE. 

Case 2 Yt and Xt are integrated of different orders. In this case the regression equations 
are meaningless. Consider, for example, the case where Xt now follows the 
stationary process Xt = c/JXt-1 +ext with lf/JI < 1. Then equation (16.8) is now 

. t 0 

Ut = I: ey; -{Jz I: f/J'ext-i· Although the expression Li=l cp'ext-i is convergent, 
the et sequence still contains a trend component. 

Case 3 Yt and Xt are integrated of the same order and the llt sequence contains a 
stochastic trend. In this case we have spurious regressions and it is often 
recommended to reestimate the regression equation in first differences or to 
re-specify it. 

Case 4 Yt and Xt are integrated of the same order and the Ut sequence is stationary. 
In this special case, Yt and Xt are said to be cointegrated. We will examine 
cointegration in detail in the next chapter. For now it is sufficient to know 
that testing for non-stationarity is extremely important because regressions 
in the form of (16.3) are meaningless if cases 2 and 3 apply . 

Testing for unit roots 

Testing for the order of integration 

A test for the order of integration is a test for the number of unit roots, and ir -follows 
the steps described below: 

Step 1 Test Yt to see if it is stationary. If yes then Yt ~ /(0); if no then Yt ~ l(n); n > 0. 

Step 2 Take first differences of Yt as !}.Yt = Yt -Yt-1• and test !}.Yt to see if it is stationary. 
If yes then Yt ~ !(1); if no then Yt ~ !(n);n > 0. 

Step 3 Take second differences of Yt as !}. 
2yt = !}.Yt - /}.,Vt-1, and test !}. 2yt to see if itis 

stationary. If yes then Yt ~ /(0); if no then Yt ~ l(n); n > 0. Etc. .. till we find 
th~t it is stationary and then we stop. So, for example if !}.3yt ~ /(0), then 
!}.2Yt ~ /(1), and !}.Yt ~ /(2), and finally Yt ~ /(3); which means that Yt needs 
to be differenced three times in order to become stationary. 

The simple Dickey-Fuller test for unit roots 

Dickey and Fuller ( 1979, 1981) devised a procedure to formally test for non-stationarity. 
The key insight of their test is that testing for non-stationarity is equivalent to testing _ 
for the existence of a unit root. Thus the obvious test is the following which is based 
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on the simple AR(1) model of the form: 

Yt = tPYt-I +lit (16.9) 

What we need to examine here is whether c/J is equal to 1 (unity and hence 'unit root'). 
Obviously, the null hypothesis is Ho: ¢ = 1, and the alternative hypothesis is H1: tP < 1. 

We can obtain a different (more convenient) version of the test by subtracting Yt-I 

from both sides of (16.9): 

Yt- Yt-I = tPYt-I- Yt-I +lit 

LlYt-I = (1/J- 1)J'r-l +lit 

LlYt-I = YYt-I +lit (16.10) 

where of course y = (1/J - 1). Then, now the null hypothesis is H0 : y = 0 and .the 
alternative hypothesis is Ha: y < 0, where if y = 0 then y1 follows a pure random­
walk model. 

Dickey and Fuller (1979) also proposed two alternative regression equations that can 
be used for testing for the presence of a unit root. The first contains a constant in the 
random-walk process as in the following equation: 

L'lJ't-1 = CI'Q + YYt-1 + Ut (16.11) 

This is an extremely important case, because such processes exhibit a definite trend 
in the series when y = 0 (as we illustrated in Chapter 13), which is often the case for 
macroeconomic variables. 

The second case is to also allow, a non-stochastic time trend in the model, so as 
to have: 

LlYt-I = ao + azt + YYt-l + Ut (16.12) 

The Dickey-Fuller test for stationarity is then simply the normal 't' test on the 
coefficient of the Jagged dependent variable Yt-I from one of the three models (16.10, 
16.11 or 16.12). This test docs not however have a conventional 't' distribution and so 
we must use special critical values which were originally calculated by Dickey and Fuller. 

MacKinnon (1991) tabulated appropriate critical values for each of the three above 
models and these are presented in Table 16.1. 

In all cases the test concerns whether y = 0. The DF-test statistic is the t statistic for 
the lagged dependent variable. If the DF statistical value is smaller in absolute terms 

Table 16.1 Critical values for the OF test 

Model 

L'.Yt-1 = YYt-1 + Ut 
L'.Yt-1 = ao + YYt-1 + Ut 
L'.Yt-1 =ao+a2l+l'Y1-1 +ur 
Standard critical values 

1% 

-2.56 
-3.43 
-3.96 
-2.33 

5% 

-1.94 
-2.86 
-3.41 
-1.65 

Note: Critical values are taken from MacKinnon (1991). 

-~ 

10% 

-1.62 
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than the critical value then we reject the null hypothesis of a unit root and conclude 
that Yt is a stationary process. 

The a~gmented Dickey-Fuller (ADF) test for unit roots 

As the error term is unlikely to be white noise, Dickey and Fuller extended their test 
procedure suggesting an augmented version of the test which includes extra lagged 
terms of the dependent variable in order to eliminate autocorrelation. The lag length 
on these extra terms is either determined by the Akaike Information Criterion (AlC) 
or Schwartz Bayesian Criterion (SBC), or more usefully by the lag length necessary to 
whiten the residuals (i.e. after each case we check whether the residuals of the ADF 
regression are autocorrelated or not through LM tests and not the DW test). 

The three possible forms of the ADF test are given by the following equations: 

p 

l'l.yt = YYt-1 + L /3;l'l.Yt-i + Ut 
i=1 

p 

l'l.yt = ao + VYt-1 + L /3;l'l.Yt-i + Ut 
i=1 

p 

l'l.yt = ao + YYt-1 + azt + L /3;l'l.Yt-i + Ut 
i=l 

(16.13) 

(16.14) 

(16.15) 

The difference between the three regressions again concerns the presence of the 
deterministic elements ao and azt. The critical values for the ADF tests are the same as 
those given in Table 16.1 for the DF test. 

Unless the econometrician knows the actual data-generating process, there is a 
question concerning whether it is most appropriate to estimate (16.13), (16.14) or 
( 16.15). Dol dado, Jenkinson and Sosvilla-Rivero ( 1990) suggest a procedure which starts 
from the estimation of the most general model given by (16.15) and then answering a 
set of questions regarding the appropriateness of each model and moving to the next 
model. This procedure is illustrated in Figure 16.5. It needs to be stressed here that, 
although useful, this procedure is not designed to be applied in a mechanical fashion. 
Plotting tHe data and observing the graph is sometimes very useful because it can clearly 
indicate the presence or not of deterministic regressors. However, this procedure is the 
most sensible way to test for unit roots when the form of the data-generating process 
is unknown. · 

The Phillips-Penon test 

The distribution theory supporting the Dickey-Fuller tests is based on the assumption 
that the error terms are statistically independent and have a constant variance. So, when 
using the ADF methodology we have to make sure that the error terms are uncorrelated 
and that they really have a constant variance. Phillips and Perron ( 1988) developed 
a generalization of the ADF test procedure that allows for fairly mild assumptions 

J 
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Estimate the model 
~ Y1= a0 + ]'Y1_ 1+ a2t+L.{J~ Y1~;+ u1 

Is r=O? NO STOP: Conclude that 
there is no uniJ root 

YES: Test for the presence of the trend 7 
Is ot2 =0? STOP: Conclude NO given that Is r=O? I YES.,, ...... that Y1 has a unit 

;·=0? root 

YES 

Estimate the model 
~ Y1= a0 + ;·Y1_ 1 + L./1;~ Y1_;+ u1 

NO STOP: Conclude that 

Is ;·=0? there is no unit root 

YES: Test for the presence of the constant NO / 
; 

~ 

Is !Xo=O? NO IYES~ given that ...... Is )'=0? 
STOP: Conclude 
that Y1 has a unit 

~ 

}'=0? 
root 

YES 

~ STOPe Cood,do 
Estimate the model that there is no 

~ Yt=i'Yt-l + L.P;~ Y,_;+ u, unit root 

Is ;•=0? 

YES STOP: Conclude 
that Y1 has a unit 

root 

Figure 16.5 Procedure for testing for unit-root tests 

Source: Enders (1995). 

. 

concerning the distribution of errors. The test regression for the Phillips-Perron (PP) 
test is the AR(l) process: 

L':I.Yt-1 = ao + YYt-1 + et (16.16) 

While the ADF test corrects for higher order serial correlation by adding lagged 
differenced terms on the right-hand side, the pp test makes a correction to the t statistic 
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of the coefficient y from the AR(1) regression to account for the serial correlation in et. 
So, the PP statistics are just modifications of the ADF t statistics that take into account 
the less restrictive nature of the error process. The expressions are extremely complex to 
deri.ve and are beyond the scope of this text. However, since many statislical packages 
(one of them is EViews) have routines available to calculate these statistics, it is good 
for the researcher to test the order of integration of a series performing the PP test as 
well. The asymptotic distribution of the PP t statistic is the same as the ADF t statistic 
and therefore the MacKinnon (1991) critical values are still applicable. As with the ADF 
test, the PP test can be performed with the inclusion of a constant, a constant and 
linear trend, or neither in the test regression. 

Unit-root tests in EViews and Microfit 

Performing unit-root tests in EViews 

The OF and ADF test 

Step 1 Open the file gdp_uk.wfl in EViews by clicking File/Open/Workfile and then 
choosing the file name from the appropriate path. 

Step 2 Let's assume that we want to examine whether the series named GDP contains 
a unit root. Double click on the series named 'gdp' to open the series window 
and choose View/Unit Root Test ... In the unit-root test dialog box that 
appears, choose the type of test (i.e. the' Augmented Dickey-Fuller test) by 
clicking on it. 

Step 3 

Step 4 

Step 5 

Step 6 

We then have specify whether we want to test for a unit root in the level, 
first difference, or second difference of the series. We can use this opt'·Jn to 
determine the number of unit roots in the series. As we noted in the theory 
section, we first start with the level and if we fail to reject the test in levels we 
continue with testing for the first differences and so on. So here we first click 
on 'levels' in the dialog box to see what happens in the levels of the series and 
then continue, if appropriate, with the first and second differences. 

We also have to specify which model of the three ADF models we wish to use 
(i.e. whether to include a constant, a constant and linear trend, or neither in 
the test regression). For the model given by equation (16.13) click on 'none' 
in the dialog box; for the model given by equation (16.14) click on 'intercept'; 
and fo~ the model given by equation (16.15) click on 'intercept and trend'. 
The choice of the model is very important since the distribution of the test 
statistic under the null hypothesis differs among these three cases. 

Finally, we have to specify the number of lagged dependent variabies to be 
included in the model in order to correct for the presence of serial correlation 

Having specified these options, click <OK>: to carry out the test. EViews reports 
the test statistic together with the estimated test regression. 

Step 7 We reject the null hypothesis of a unit root against the one-sid.ed alternative 
if the ADF statistic is less than (lies to the left of) the critical value, and we 
conclude that the series is stationary. 

s 
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Step 8 After running a unit-root test, we should examine the estimated test regression 
reported hy EViews, especially if unsure about the Jag structure or deterministic 
trend in the series. We may want to rerun the test equation with a different 
selection of right-hand variables (add or delete the constant, trend, or lagged 
differences) or Jag order. 

The PP test 

Step 1 Open the file 'pp. wfl' in EViews by clicking File/Open/Workfile and then 
choosing the file name from the appropriate path. 

Step 2 Let's assume that we want to examine whether the series GDP contains a unit 
root. Double click on the series named 'gdp' to open the series window and 
choose View/Unit Root Test ... In the unit-root test dialog box that appears, 
choose the type of test (i.e. the Phillips-Perron test) by clicking on it. 

Step 3 We then have to specify whether we want to test for a unit root in the level, 
first difference, or second difference of the series. We can use this option .to 
determine the number of unit roots in the series. As we said in the theory 
section we first start with the level and if we fail to reject the test in levels we 
continue with testing for the first differences and so on. So here we first click 

. on 'levels' to see what happens in the levels of the series, and then continue, 
if appropriate, with the first and second differences. 

Step 4 We also have to specify which model of the three we need to use (i.e. whether 
to include a constant, a constant and linear trend, or neither in the test 
regression). For the random walk model click on 'none' in the dialog box, 
for the random walk with drift model click on 'intercept', and for the random 
walk with drift and with deterministic trend model click on 'intercept and 
trend'. 

Step 5 Finally, for the PP test we specify the lag truncation to compute the Newey­
West heteroskedasticity and autocorrelation (HAC) consistent estimate of the 
spectrum at zero frequency. 

Step 6 Having speCified these options, click <OK> to carry out the test. EViews reports 
the test statistic together with the estimated test regression. 

Step 7 We reject the null hypothesis of a unit root against the one-sided alternative 
if the ADF statistic is less than (lies to the left of) the critical value. 

Performing unit-root tests in Microfit 

The OF and ADF test 

Step 1 Open the file 'exdaily.fit' in Microfit by clicking File/Open and then choosing 
the file name from the appropriate path. 
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Step 2 Let's assume that we want to examine whether the series named EUS (which 
is the US/UK exchange rate) contains a unit root. In the process editor type: 

ADF EUS(12) 

where the number in parenthesis specifies the maximum number of lagged 
dependent variables that we want our model to include. Click <GO>. 

Step 3 Microfit presents two alternative panels of results. The first is for a model that 
includes an intercept but not a trend, which is the model given by equation 
(16.14). The second panel gives results for a model that includes both an 
intercept and a trend, which is the same as that given by equation (16.15). 
Microfit does not give results for the first model that does not include either 
an intercept or a trend. 

Step 4 The reported results include DF and ADF statistics for 0, 1, 2, ... , 12 lags. These 
are statistical values for 13 different cases depending on the number of lags 
included in each case. Apart from the DF and ADF test statistics, we also 
have results for the AIC and SBC. We can use those two criteria to specify 
the appropriate number of lags to be included by minimizing both AIC and 
SBC. If they contradict, usually the SBC is preferable. 

Step S Having specified which model is appropriate to examine according to the lag 
structure, we then reject the null hypothesis of a unit root against the one­
sided alternative if the DF/ ADF statistic is less than (lies to the left of) the 
critical value, which is also reported by Microfit under e;Jch panel of results. 

Note that although Microfit provides, very conveniently and quickly, results for,,13 
different cases of different numbers of lagged dependent variables (while in order to 
do that in EViews we have to repeat the procedure 13 times, each time specifying a 
different number of lags), Microfit: does not give us any details about the regression 
equation estimated in order to obtain those statistics. It is something like a black box 
in terms of information regarding the equation, and therefore in some cases where we 
might suspect a close unit root it might be preferable to obtain the test manually by 
running ea'ch regression model in the single editor. 

In case we need to do that, we first have to define the new variable l'>.eust by typing 
in the process editor: 

deus = eus- ells( -1) 

and then going to the single editor and specifying the regression by typing: 

deus c ells( -1 )deus ( 1 - 4} 

which will give us at statistic for e!IS(-1) that will be equivalent to the ADF(4) statistic 
for the previous test. · 

There is no standard procedure for performing the PP test in Microfit. 

J 
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Computer example: unit-root tests on 
various macroeconomic variables 

The data used in this example (see file unionization.wfl) are mainly drawn 
from !lztemational Historical Statistics (Mitchell, 1998), where data on trade union 
membership, employment, unemployment rates, population, wages, prices, industrial 
production and GDP are available for most of the 1892-1997 period. We have also used 
some other sources (e.g. various issues of Employment Gazette, Labour Market Trmds and 
OECD Main Economic Indicators) to amend and assure the quality of the data. (Data on 
capital stock were derived from the gross fixed capital formation series, assuming a rate 
of depreciation of 10% per year. The capital stock series is a little sensitive iQ respect of 
the initial value assumed, and for the period 1950-90 is highly correlated (r = 0.9978) 
with the UK capital stock series constructed by Nehru and Dhareshwar, 1993.) Our aim 
is to apply tests which will determine the order of integration of the variables. We will 
apply two asymptotically equivalent tests: the augmented Dickey-Fuller (ADF) test and 
the Phillips-Perron (PP) test. 

We begin the ADF test procedure by examining the optimal lag length using Akaike's 
Final Prediction Error (FPE) criteria, before proceeding to identify the probable 
order of stationarity. The results of the tests for all the variables and for the three 
alternative models are presented in Table 16.2, first for their logarithmic levels 
(the unemployment and unionization rate variables are not logarithmed as they are 
expressed in percentages) and then (in cases where we found that the series co,ntain 
a unit root) for their first differences, and so on. The results indicate that each of the 
series is non-stationary ~hen the variables are defined in levels. But first-differencing 
the series removes the non-stationary components in all cases and the null hypothesis 

Table 16.2 Augmented Dickey-Fuller test results 

Model: ~Yt = c1 + bYt-1 + C;lt + L:~= 1 dk~Yt-k + v1; Ho: b = 0; Ha: b > 0 

Unit-root tests at logarithmic levels 
Variables Constant Constant and trend None k 

GOP per capita (y/1) -0.905 -2.799 -0.789 4 
Unionization rate (TUO) -1.967 -1.246 -0.148 4 
Unemployment (Un) -2.435 -2.426 -1.220 4 
Wages (w) -1.600 -1.114 -3.087* 4 
Employment (I) -1.436 -2.050 -1.854 4 
Capital/labour (k/1) -0.474 -2.508 2.16h 4 

Unit-root tests at first differences 
Variables Constant Constant and trend None k 

GOP per capita ( ~ )(y 1 I) -6.163* -6.167* -6.088* 4 
Unionization rate(~ TUO) -3.102* -3.425* .,-3.086* 4 
Unemployment (~Un) -4.283 -4.223 -4.305* 4 
Wages(~w) -3.294* -3.854* - 4 
Employment (~I) -4.572* -4.598* -4.115* 4 
Capital/labour ( ~ ( k 1 I)) -3.814* -3.787* - 4 

Notes: • Denotes significance at the 5% level and the rejection of the null hypothesis of non-stationarity. Critical values 
obtained from Fuller (1976) are -2.88, -3.45 and -1.94 for the first, second and third model respectively. The optimal 
lag lengths k were chosen according to Akaike's FPE test. 
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Non-Stationarity and Unit-Root Tests 

Table 16.3 Phillips-Perron test results 

Model: ~Yt = JJ. + PYt_:1 + et; Ho: p = 0; Ha: p > 0 

Unit-root tests at logarithmic levels 
Variables Constant Constant and trend k 

GOP per capita (y; I) -2.410 -2.851 4 
Unionization rate (TUO) -1.770 -0.605 4 
Unemployment (Un) -2.537 -2.548 4 
Wages (w) 2.310 -0.987 4 
Employment (I) -1.779 -2.257 4 
Capital/labour (k/1) -0.199 -2.451 4 

Unit-root tests at first diHerences 
Variables Constant Constant and trend k 

GOP per capita (~(yj/)) -11.107* 
Unionization rate(~ TUD) -5.476* 
Unemployment (t.Un) -8.863* 
Wages (~w) -4.621* 
Employment(~/) -7.958* 
Capital/labour(~(kfl)) -10.887* 

-11.050* 
-5.637* 
-8.824* 
-5.071* 
-7.996* 

-10.849* 

4 
4 
4 
4 
4 
4 

Notes: • Denotes significance at the 5% level and the rejection of the 
null hypothesis of non-stationarity. Critical values obtained from Fuller 
(1976) are -2.88, -3.45 and -1.94 for the firs!, second and third model 
respectively. The optimal lag lengths k were chosen according to Akaike's 
FPE test. 

303 

of nqn-stationarity is clearly rejected at the 5% significance level suggesting that all our 
variables are integrated of order one, as was expected. (There is an exception for the 
more restricted model and for the wages and capital/labour variables, where the tests 
fndicate that they are 1(0). However, the robustness of the two first models allows us to 
treat the variables as 1(1) and proceed with cointegration analy'sis.) 

The results of the Phillips-Perron tests are reported in Table 16.3, and are not 
fundamentally different from the respective ADF results. (The lag truncations for the 
Bartlett kernel were chosen according to the Newey and West, 1987, suggestions.) 
Analytically the results from the tests in the levels of the variables clearly point to 
the presence of a unit root in all cases. The results after first-differencing the series 
robustly reject the null hypothesis of the presence of a unit root, suggesting therefore 
that the s~ries are integrated of order one. 

Computer example: unit-root tests for the 
financial development and 
economic growth example 

Consider again the data we described in the Computer Example of the previous chapter 
for the Granger causality tests. Here we report results of tests for unit roots and orders 
of integration of all the variables (see file finance.wfl). 

We begin the ADF test procedure by examining the optimal lag length using Akaike's 
FPE criteria; then we proceed to identify the probable order of stationarity. The results 
of the tests for all the variables and for the three alternative models are presented in 
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Table 16.4 Augmented Dickey-Fuller test results 

Model: f'>Yt = c, +by,_, + c2t +I:~= I dk f'>Yt-k + v,; Ho: b,; 0; Ha: b > 0 

Unit-root tests at logarithmic levels 
Variables Constant Constant and trend None k 

GOP per capita ( Y) -0.379 -2.435 3.281* 1 
Monetization ratio (M) -0.063 -1.726 1.405 4 
Currency ratio (CUR) -1.992 1.237 1.412 9 
Claims ratio ( CLJ -2.829 -2.758 1..111 7 
Turnover ratio ( T) -1.160 -2.049 -1.84 2 
Capital/labour ( K J -0.705 -2.503 -2.539 2 

Unit-root tests at first differences 
Variables Constant Constant and trend None k 

GOP per capita (f'>Y) -6.493* -6.462* - 1 
Monetization ratio (f'>M) -3.025* -4.100* -2.671* 4 
Currency ratio (f'>CUR) -3.833* -4.582* 2.585* 5 
Claims ratio (L'>CL) -6.549* -6.591* -6.596* 3 
Turnover ratio (f'> T) -6.196* -6.148* -5.452* 2 
Capital/labour (t1K) -2.908* -3.940* - 2 

Notes: • Denotes significance at the 5% level and the rejection of the null hypothesis of non-stationarity. 
Critical values obtained from Fuller (1976) are -2.88. -3.45 and -1.94 for the first. second and third 
model respectively. The optimal lag lengths k were chosen according to Akaike"s FPE test. 

Table 16.5 Phillips-Perron test results 

Model: f'>Yt = 1-L + PYt-1 + e,; Ho: p = 0; Ha: p > 0 

Unit-root tests at logarithmic levels 
Variables Constant Constant and trend k 

GOP per capita ( Y) -0.524 -2.535 4 
Monetization ratio (M) -0.345 -1.180 4 
Currency ratio (CUR) -2.511 -0.690 4 
Claims ratio (CLl -4.808* -4.968* 4 
Turnover ratio ( T) -0.550 -3.265 3 
Capital/labour (K) -1.528 ·-2.130 4 

Unit-root tests at first differences 
Variables Constant Constant and trend k 

GOP per capita (f'>Y) -8.649* -8.606* 4 
Monetization ratio (6M) -7.316* -7.377* 4 
Currency ratio (6-CUR) -11.269* -11.886* 4 
Claims ratio {t,.CL) - - -
Turnover ratio (f'> T) -11.941* -11.875* 3 
Capital/labour (6K) -4.380* -4.301* 4 

Notes: • Denotes significance at the 5% level and the rejection of the null hypotheSis of 
non-stationarity. Critical values obtained from Fuller (1976) are -2.88, -3.45 and -1.94 
for the first, second and third model respectively. The optimal lag lengths k were chosen 
according to Akaike's FPE test. 
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Table 16.4, first for their logarithmic levels and then (in cases where we found that 
the series contain a. unit root) for their first differences, and so on. The results indicate 
that each of the series in non-stationary when the variables are defined in levels. But 
first-differencing the series removes the non-stationary components in all cases and 
the null hypothesis of non-stationarity is clearly rejected at the 5% significance level, 
suggesting that all our variables are integrated of order one, as was expected. 

The results of the Phillips-Penon tests are reported in Table 16.5, and are not 
fundamentally different from the respective ADF results. (The lag truncations for 
the Bartlett kernel were chosen according to Newey and West's (1987) suggestions.) 
Analytically, the results from the tests on the levels of the variables clearly point to 
the presence of a unit root in all cases except the, claims ratio, which appears to be 
integrated of order zero. The results after first-differencing the series robustly reject the 
null hypothesis of the presence of a unit root, suggesting therefore that the series are 
integrated of order one. 

{~ :t~ {f!: ~~~ 'lf ~ ~:~~ :~~~ ,$. (:~ :~. ~<-_3 :1.'i .• t 

Questions 

1 Explain why it is important to test for stationarity. 

2 Describe how someone can test for stationarity. 

3 Explain the term spurious regression and provide an example from economic time­
series data. 

EXercise 16.1 

The file gdp_uk.wfl contains data for the UK GDP in quarterly frequency from 1955 
until 1998. Check for the possible order of integration of the GDP variable using both 
the ADF and the PP tests following the steps described in Figure 16.5. 

Exercise 16.2 

The file Korea.wfl contains data from various macroeconomic indicators of the Korean 
economy. Check for the order of integration of all the variables using both the ADF 
and PP tests. Summarize your results in a table and comment on them. 

Exercise 16.3 

The file Nelson_Pioser. wfl contains data from various macroeconomic indicators of the 
US economy. Check for the order of integration of all the vanables using both the ADF 
and PP tests. Summarize your results in a table and comment on them. 
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(ointegration and 
Error-Correction Models 

Introduction: what is cointegration? 

Cointegration and the error-correction mechanism (ECM): 
a general approach 

Cointegration and the error-correction mechanism: a more 
mathematical approach 

Testing for cointegration 

Computer examples of cointegration 

Questions and exercises 
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Cointegration and Error-Correction Models 

Introduction: what is cointegration? 

Cointegration: a general approach 
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The main message from Chapter 16 was that trended time series can potentially create 
major problems in empirical econometrics due to spurious regressions. We have also 
said before that most macroeconomic variables are trended and therefore the spurious 
regression problem is highly likely to be present in most macroeconometric models. 
One way of resolving this is to differen~e the series successively until stationarity 
is achieved and then use the stationary series for regression analysis. However, this 
solution is not ideal. There are two main J?roblems with using first differences. If the 
model is correctly specified as a relationship between y and x (for example) and we 
difference both variables then implicitly we are also differencing the error process 
in the regression. This would then produce a non-invertible moving average error 
process and would present serious estimation problems. The second problem is that 
if we difference the variables the model can no longer give a unique long run solution. 
By this we mean that if we pick a particular value for x then regardless of the initial 
value for y the dynamic solution for y will eventually converge on a unique value. So, 
for example, if y = O.Sx and we set x = 10 then y = S. But if we have the model in 
differences, Yt- Yt-1 = O.S(Xt- Xt-ll then even if we know that x = 10 we cannot 
solve for y without knowing the past value of y and x and so the solution for y is not 
unique given x. The desire to have models which combine both short-run and long-run 
properties, and which at the same time maintain stationarity in all of the variables, has 
led t9 a reconsideration of the problem of regression using variables that are measured 
in their levels. '" 

The basic idea behind this chapter follows from our explanation of spurious 
regression in Chapter 16 and in particular equation (16.8) which showed that if the two 
variables are non-stationary then we can represent the error as a combination of two 
cumulated error processe~. These cumulated error processes are often called stochastic 
trends and normally we would expect that they would combine to produce another 
non-stationary process. However in the special case that X and Y are really related then 
we would expect them to move together and so the two stochastic trends would be very 
similar to each other and when we combine them together it should be possible to find 
a combination of them which eliminates the non-stationarity. In this special case we 
say that the variables are cointegrated. In theory, this should only happen when there 
is really a ~elationship linking the two variables together and so cointegration becomes 
a very powerful way of detecting the presence of economic structures. 

Cointegratim:t then becomes an over-riding requirement for any economic model 
using non-stationary time series data. If the variables do not cointegrate then we 
have the problems of spurious regression and econometric work becomes almost 
meaningless. On the other hand if the stochastic trends do cancel then we have 
cointegration and, as we shall see later, everything works even more effectively than 
we previously would have thought. 

The key point here is that if there really is a genuine long-run relationship between 
Yt and Xt. then although the variables will rise over time (because they are trended), 
there will be a common trend that links them together. For an equilibrium, or long-run 
relationship to exist, what we require, then, is a linear combination of Yt and Xt that 
is a stationary variable (an 1(0) variable). A linear combination of Yt and Xt can be 
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directly taken from estimating the following regression: 

Yt = f3I + f3zXt +lit (17.1) 

and taking the residuals: 

ftr = Yr - fh - SzXt (17.2) 

If iit ~ 1 (0) then the variables l't and Xr are said to be cointegrated. 

Cointegration: a more mathematical approach 

To put it differently, consider a set of two variables { Y, Xi that are integrated of order 
1 (i.e. {Y,XJ ~ 1(1)) and suppose that there is a vector {81 ,112 ) which gives a linear 
combination of {Y,XJ which is stationary, denoted by: 

e1 l't + e2X 1 = u1 -ltD) (17.3) 

then the variable set { Y, XJ is called the cointegration set, and the coefficients vector 
{81, 8z} is called the cointegration vector. What we are interested in is the long-ru'n 
relationship, which for l'r is: 

v; = f3Xt ' (17.4) 

In order to see how this comes from the cointegration method, we can normalize (17.3) 
for Yt to give: 

Bz 
Yt = --Xt +et ei 

(17.5) 

where now Y* = -(8z/f3J)Xt. which can be interpreted as the long-run or equilibrium 
value of Yt (conditional on the values of Xt). We will come back to this point when 
discussing the error-ClJfrection mechanism later in the chapter. 

For bivariate economic f(l) time series processes cointegration often manifests itself 
by more or less parallel plots of the series involved. As we have said before, we are 
interested in detecting long-run or equilibrium relationships and this is mainly what 
the concept of cointegration allows. 

The concept of cointegration was first introduced by Granger (1981) and elaborated 
further by Engle and Granger (1987), Engle and Yoo (1987), Phillips and Ouliaris 
(1990), Stock and Watson (1988), Phillips (1986 and 1987) and johansen (1988, 1991, 
1995a), among others. Working in the context of a bivariate system with at most 
one cointegrating vector, Engle and Granger (1987) give the formal definition of 
cointegration among two variables as follows: 

Definition 1 Time series Yr and Xt are said to be cointegrated of order d, b where 
d ::: b ::: 0, written as Yt, Xt ~ CJ (d, ~). if (a) both series are integrated 
of order d, (b) there exists a linear combination of these variables, 

'• 

L: 

I .r u 

u 
Ll 

n \ .. 

u 
ll 
u 
! l 

l 
\_; 

r 

[. 

L 
j"i 

[. 
I 

··--rw -
I I : 
ii\ 

' )· 
, ' I ; I , 



r . 
I . . 
I 
~· 

( 

i 
( 

I I 
I 

I~ 

I ; 
~I 
(· __ !. 

I 

~ 

l 
r I 

i 
) 

i-' 
\ 
~ 

i 
!_,· 

I 

I 

~~~ ' 
I 
I' 

t 

:· 

., 

-- .,..-

Cointegration and Error-Correction Models 309 

say fh Yt + {JzXr which is integrated of order d-b. The vector Uh, {32 ) 

is called the cointegrating vector. 

A straightforward generalization of the above definition can be made for the case of n 
variables as follows: 

· Definition 2 If Zr denotes an n x 1 vector of series ZIt, Z 2t, Z3t, ... , Z11r and (a) each 
Zit is !(d); (b) there exists an n x 1 vector f3 such that z;13 ~ l(d- b) 

then ZiCI(d, b). 

For empirical econometrics, the most interesting case is where the series transformed 
with the use of the cointegrating vector become stationary, that is when d = b, and the 
cointegrating coefficients can be identified as parameters in the long-run relationship 
between the variables. The next sections of this chapter will deal with these cases. 

Cointegration and the error-correction 
mechanism (ECM): a general approach 

The problem 

We sqid before that when we have non-stationary variables in a regression model 
then we may get results that are spurious. So if we have Yt and Xr that are both 1(1), 
then if we regress: 

Yr = fJ1 + f!zXr + ur (17.6) 

we will not generally get satisfactory estimates of [3 1 and /Jz. 
One way of resolving this is to difference the data in order to ensure stationarity of 

our variables. Therefore, after that we will have that 6 Yt ~ 1(0) and 6Xt ~ /(0), and 
the regression model will be: 

6Yt = a1 + az6X1 + 6u1 (17. 7) 

In this case the regression model may give us correct estimates of the a1 and az 
parameters and the spurious equation problem has been resolved. However, what we 
have from equation ( 17. 7) is only the short-run relationship between the two variable!>. 
Remember that in the long-run: 

v; = fJ1 + fJzXr ( 17 .8) 

so 6 Yt is bound to give us no information about the l011g·run behaviour of our 
model. Knowing that economists are mainly interested in long-run relationships this 
constitutes a big problem, and in order to resolve this the concept of cointegration and 
the ECM are very useful. 
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Cointegration (again) 

We said before that Yt and Xr are both I (1 ). In the special case that there is a linear 
combination of Yt and Xr, that is /(0), then Yr and Xr are cointegrated. Thus, if this is 
the case the regression of equation (17 .6) is no longer spurious, and it also provides us 
with the linear combination: 

llt = Yt - fi1 - fizXt (17.9) 

that connects Yt and Xt in the long run. 

The error-correction model (ECM) 

If, then, Yr and Xt are cointegrated, by definition ftr ~ /(0). Thus, we can express the 
relationship between Yt and Xr with an ECM specification as: 

~Yt = ao + b1~Xt- JTiit-1 + Yt (17.10) 

which will now have the advantage of including both long-run and short-run 
information. In this model, b1 is the impact multiplier (the short-run effect) that 
measures the immediate impact that a change in Xr will have on a change in 'yt· On 
the other hand JT is the feedback effect, or the adjustment effect, and shows hbw much 
of the disequilibrium is being corrected, i.e. the extent to which any disequilibrium in 
the previous period effects any adjustment in Yr. Of course itr-I = Yr-1- fh- ~zXr-J, 
and therefore from this equation we also have f3z being the long-run response (note 
that it is estimated by equation (17.7)). 

Equation ( 17 .10) now emphasizes the basic approach of cointegration and error­
correction models. The spurious regression problem arises because we are using non­
stationary data but in equation (17 .1 0) everything is stationary, the change in X and Y is 
stationary because they are assumed to be /(1) variables and the residual from the levels 
regression (17.9) is also stationary by the assumption of cointegration. So equation 
(17.10) fully conforms to our set of assumptions about the classic linear regression 
model and OLS should perform well. 

Advantages of the ECM 

The ECM is important and popular for many reasons: 

1 Firstly, it is a convenient model measuring the correction from disequilibrium of the 
previous period which has a very good economic implication. 

2 Secondly, if we have cointegration ECMs are formulated in terms of first differences, 
which typically eliminate trends from the variables involved, they resolve the 
problem of spurious regressions. 
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3 A third very important advantage of ECMs is the ease with which they can fit into 
the general-to-specific approach to econometric modelling, which is in fact a search 
for the most parsimonious ECM model that best fits the given data sets. 

4 Finally the fourth and most important feature of the ECM comes from the fact that 
the disequilibrium error term is a stationary variable (by definition of cointegration). 
Because of this, the ECM has important implications: the fact that the two variables 
are cointegrated implies that there is some adjustment process which prevents the 
errors in the long-run relationship becoming larger and larger. 

Cointegration and the error-correction 
mechanism: a more mathematical 
approach 

A simple model for only one lagged term of X and Y 

The concepts of cointegration and the error-correction mechanism (ECM) are very 
closely related. To understand the ECM it is better to think first of the ECM as 
a convenient reparametrization of the general linear autoregressive distributed lag 
(ARDL) model. 

Consider the very simple dynamic ARDL model describing the behaviour of Y in 
terms of X as follows: 

Yt = ao + a1 Yt-l + YoXt + YlXt-1 + Ut (17.11) 

where the residual Lit ~ iid(O, a 2 ). 

In this model the parameter YO denotes the short-run reaction of Yt after a change in 
Xt. The long-run effect is given when the model is in equilibrium where: 

v; = f3o + p1x; 

and for simplicity assume that 

Thus, it is given by: 

x; =Xt =Xt-1 = ··· =Xt-p 

v; = ao + a1 v; + Yox; + Yix; + ut 

Y((l- a1) = ao +(Yo+ YI)x; + Ut 

yt = ~ + YO + YI Xt + llt 
1- a1 1- a 1 

Yt = f3o + fJ1Xt + Ut 

(17.12) 

(17.13) 

(17.14) 

So, the long-run elasticity between Y and X is captured by {31 = (Yo+ YI )/(1- a1 ). Here, 
we need to make the assumption that a 1 < 1 in order that the short-run model (17 .11) 
converges to a long-run solution. 
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We can then derive the ECM which is a reparametrization of the original 
( 17 .11) model: 

" 

~Yt = Yo~Xt- (1- a)[Yt-1- f3o- fJ1Xt-Il +lit 

~Yt = Yo~Xt- JT[Yt-1- f3o- fJIXt-Il +lit 

Proof that the ECIVI is a reparametrization 
of.the.ARDL·-·· . 

To show .that this is the same as the original model substitute the long-run solutions 
.· for f:lo = ao/(1 - a1 )imd f:lt = (Yo+ y1}!(1 ~ a1) to give: - · · 

.A Yt = Yo~x,, (1-~ a)[' Yr-~- 1 ao - ~0 +r,k,_,]· +Ut ·. (17.17) 
~-- .·. . ··. . . --: . -a, .. __ ·:·.- -:-:-.af . ,_, .... -"-. .-·· 

. 1:1 Yt = roi!.Xt- (1- a)Yr-1 ;_ ao+<ro +r1)Xr~1 +'ut (17.18) 

· .. Yt- Yt-1 = YoXt- y~Xt-1 - Yr-~ -i- aYt-1 :::_ ao- YoXt-.1- :_ YlXt.,.~ + Ut 
' ,· .· -· ' ' .. ', ' (17.19) .. 

' a'nd by rearranging and cancelling out terms that are added and subt~acted ai the . ''' 
•same time we get: ·: .; ' 

.:,· 
':·:·;··.· "·;: .. ·, 

_ ;,'i;_ -~~i~h ·.is th~ -:~at:t~·:t~1-~·~~~,o~.igin,al_,_r.r:o~~)- · 

(17.15) 

(17.16) 

What is of importance here is that when the two variables Y and X are cointegrated, 
the ECM incorporates not only short-run but also long-run effects. This is because the 
long-run equilibrium Yt-1 - f3o- fJJXt-1 is included in the model together with the 
short-run dynamics captured by the differenced term. Another important advantage is 
that all the terms in the ECM model are stationary and standard OLS is therefore valid. 
This is because if Y and X are /(1), then~}' and ~X are 1(0), and by definition if Y and 
X are cointegrated then their linear combination (Yt-1 - f3o - fJJ Xt-1) ~ 1(0). 

A final very important point is that the coefficient JT = (1 - a 1) provides us with 
information about the speed of adjustment in cases of disequilibrium. To understand 
this better, consider the long-run condition. When equilibrium holds, then (Yt-I -

f3o- tJ1X,_ 1) = 0. However, during periods of disequilibrium this term will no longer 
be zero and measures the distance the system is away from equilibrium. For example, 
suppose that due to a series of negative shocks in the economy (captured by the error 
term ut) Yt starts to increase less rapidly than is consistent with (17.14). This causes 
(Yt-1 -flo -fh X1_ 1) to be negative because Y,_ 1 has moved below its long-run steady­
state growth path. However, since JT = (1- a 1) is positive (and because of the minus 
sign in front of JT) the overall effect is to boost ~ Yr back towards its long-run path as 
determined by Xt in equation (17.14). The speed of this adjustment to equilibrium is 
dependent upon the magnitude of (1 - a 1 ). We will Cliscuss the magnitude of JT in the 
next section. 
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A more general model for large numbers of lagged terms 

Consider the following two-variable Yt and Xr ARDL: 

11 m 

Yt = J.1. + z=a;Yt-i + LYiXt-i + Ut (17 .21) 
i=l i=O 

Yt = J.1. +a! Yt-! + ... + anYt-ll + voXt + nXt-1 + ... + YmXt-m + Ut (17 .22) 

We would like to obtain a long-run solution of the model, whi<:h would be defined as 
the point where Yt and Xt settle down to constant steady-state levels Y* and x··, or 
more simply when: 

Y* = f3o + fhX* (17.23) 

and again assume X* is constant 

X* =Xt =Xt-1 = ··· =Xt-m 

So, putting this condition into (17.21), we get the long-run solution as: 

y* = J.1. + LYi X* 
1- :La; 1- :La; 

y• = J.1. + (YJ + Y2 + · · · + Ym) X* 
1 -a! - az- ···-a, 1 - a1 - az- · · ·- iln 

(17.24) 

or 

Y* = Bo + B1X* (17.25) 

which means that we can define Y* conditional on a constant value of X at time t as: 

Y* =Bo +B1Xr (17.26) 

Now, here there is an obvious link to the discussion of cointegration in the previous 
section. Dl'i!ning etas the equilibrium error as in equation (17.4) before, we get that: 

er = Yt- Y* = Yt -Bo +B1Xt (17.27) 

Therefore, what we need is to be able to estimate the parameters Bo and B1 . Clearly 
Bo and B1 can be derived by estimating equation (17.21) by OLS and then calculating 
A= J.l./(1- L: a;) and B = L: y;f(l- :La;). However, the results obtained by this method 
are not transparent and calculating the standard errors will be very difficult. However, 
the ECM specification cuts through all these difficulties. 

Take the following model which (although it looks q•_1ite different) is a 
reparametrization of (17.21): 

n-1 m-1 

t:.Yr = J.1. + L a;t:.Yr-i + L y;t:.Xt-i + e1 Yr-I + e2Xt-! +lit (17.28) 
i=l i=O 

s 
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Note: For n = 1 the second term on the left-hand side of (17.28) disappears. From this 
equation we can see with a bit of mathematics that: 

m 

Oz = L Yi (17.29) 
i=l 

which is the numerator of the long-run parameter, B1; and that: 

81 = - (1 -t a;) 
1=1 

(17.30) 

So, the long-run parameter Bo is given by Bo = 1;01 and the long-run parameter B1 = 
-e2;e1. Therefore the level terms of Y1 and X 1 in the ECM tell us exclusively about 
the long-run· parameters. Given this, the most informative way to write the ECM is 
as follows: · 

n-1 m-1 

Yt = 1..1. + L a;L'.Yt-i + L y;L'.Xt-i + 111 (vr-1 -: -
02 

Xr-1) + ur 
i=l i=O 1 81 

(17.31) 

n-1 m-1 

Yt = 1..1. + L a;L'.Yt-i + L y;L'.Xt-i -rr(Yt-1- fio- fiixr-I) +lit (17.32) 
i=1 i=O 

where rr = 0. Furthermore, knowing that Y1_1 - fio - fi1x1_ 1 = e1, our equilibrium 
error, we can rewrite (17.31) as: 

n-1 m-1 

L'.Yt = /..1. + L a;L'. Yt-i + L y;L'.Xt-i- rret-1 + Et (17.33) 
i=l i=O 

What is of major importance here is the interpretation of rr. rr is the error-correction 
coefficient and is also called the adjustment coefficient. In fact rr tells us how much of 
the adjustment to equilibrium takes place each period, or how much of the equilibrium 
error is corrected. Consider the following cases: 

(a) If rr = 1 then 100% of the adjustment takes place within the period, or the 
adjustment is instantaneous and full. 

(b) If rr = 0.5 then 50% of the adjustment takes place each period. 

(c) If rr = 0 then there is no adjustment, and to claim that Y( is the long-run part of 
Y1 does not make sense any more. 

What is important is to connect this with the concept of cointegration. Because of 
cointegration, e1 ~ /(0) and therefore er-1 ~ /(0) as well. Thus, in equation (17.33), 
which is the ECM representation, we have a regression that contains only /(0) variables 
and allows us to use both long-run information and short-run disequilibrium dynamics, 
which is the most important feature of the ECM. 
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Testing for cointegration 

Cointegration in single equations: the Engle-Granger 
approach 

Granger (1981) introduced a remarkable link between non-stationary processes and 
the concept of long-run equilibrium; this link is the concept of cointegration defined 
above. Engle and Granger (1987) further formalized this concept by introducing a very 
simple test for the existence of cointegrating (i.e. long-run equilibrium) relationships. 

In order to understand this approach (which is often called the EG approach) consider 
the following two series Xt and Yt, and the following cases: 

(a) If Yt ~ I(O) and Xt ~ 1(1), then every linear combination of those two series 

(b) 

lh Yt + OzXt (17.34) 

will result in a series that will always be 1(1) or non-stationary. This will happen 
because the behaviour of the non-stationary I ( 1) series will dominate the behaviour 
of the I (0) one. 

If we have that both Xt and Yt are I(1), then in general any linear combination of 
the two series, say 

e1 Yt + OzXt (17.35) 

will also be I(1). However, although this is the more likely case, there are exceptions 
to this rule, and we might find in rare cases that there is a unique combination of 
the series as in (17.35) above that is I(O). If this is the case then we say that Xt and 
Yt are co integrated of order ( 1, 1). 

Now the problem is how can we estimate the parameters of the long-run equilibrium 
relationship and make sure whether or not we have cointegration. Engle and Granger 
proposed a straightforward method which involves four steps: 

Step 1 : test the variables for their order of integration 

By definition, cointegration necessitates that the variables be integrated of the same 
order. Thus the first step is to test each variable to determine its order of integration. The 
Dickey-Fuller and the augmented Dickey-Fuller tests can be applied in order to infer 
the number of unit roots (if any) in each of the variables. We can differentiate three 
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cases which will either lead us to the next step or will suggest stopping: 

(a) if both varjables are stationary (/(0)), it is not necessary to proceed since standard · 
time series methods apply to stationary variables (in other words we can apply 
classical regression analysis); , 

(b) if the variables are integrated of different order, it is possible to conclude that they 
are not cointegrated; 

(c) if both variables are integrated of the same order then we proceed with step two. 

Step 2: estimate the long-run (possible cointegrating) relationship 

If the results of step 1 indicate that both Xr and Yt are integrated of the same order 
(usually in economics 1(1)), the next step is to estimate the long-run equilibrium 
relationship of the form: 

Yt = fh + f3zXr + er (17.36) 

and obtain the residuals of this equation. 
If there is no cointegration, the results obtained will be spurious. However, if the 

variables are cointegrated, then OLS regression yields 'super-consistent' estimators for 
the cointegrating parameter ~2 . · 

Step 3: check for (cointegration) the order of integration of the residualli 

In order to determine if the variables are actually cointegrated, denote the estimated 
residual sequence from this equation by et. Thus, er is the series of the estimated 
residuals of the long-run relationship. If these deviations from long-run equilibrium 
are found to be stationary, then Xr and Yt are cointegrated. 

In fact we perform a DF test on the residual series to determine their order of 
integration. The form of the DF test is the following: 

n 

l:iet = alet-1 + L~>S;I:iet-i + Vt 
i=l 

(17.37) 

Note that because et is a residual we do not include a constant nor a time trend. 
The critical values differ from the standard ADF values, being more negative (typically 
around -3.5). Critical values are provided in Table 17.1. 

Obviously, if we find that et ~ 1(0) then we can reject the null that the variables Xr 
and Yt are not cointegrated. Similarly if we have a single equation with mcire than just 
one explanatory variable. 

Step 4: estimate the error-correction model 

If the variables are cointegrated, the residuals from the equilibrium regression can be 
used to estimate the error-correction model and to analyse the long-run and short­
run effects of the variables as well as to see the adjustment coefficient, which is 
the coefficient of the lagged residual terms of the long-run relationship identified in 
step 2. At the end we always have to check for the adequacy qf the model by performing 
diagnostic tests. 
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Table 17.1 Critical values for the null of no 
cointegration 

No lags 
Lags 

1% 

-4.07 
-3.73 

5% 

-3.37 
-3.17 

317 

10% 

-3.3 
-2.91 

Important note. It is of major importance to note that the critical values for the 
cointegration test (the ADF test on the residuals) are not the same as the standard 

. critical values of the ADF test used for testing stationarity. In fact in order to have more 
robust conclusions regarding the evidence of cointegration, the critical values are more 
negative than the standard ADF ones. Engle and Granger (1987), in their seminal paper, 
performed their own Monte Carlo simulations in order to construct critical values for 
the cointegration tests, and these values are shown in Table 17 .1. There are two sets of 
critical values; the first is for no lagged dependent variable terms in the augmentation 
term (i.e. for the simple DF test), and the second is for including lagged dependent 
variables (i.e. for the ADF test). A more comprehensive set of critical values may be 
found in Mackinnon (1991), which is now the primary source. 

Drawbacks of the EG approach 

One of the best features of the EG approach is that it is both very easy to 
understand and to implement. However, there are important shortcomings of the 
Engle-Granger methodology: 

1 One very important issue has to do with the order of the variables. When estimating 
the long-run relationship, one has to place one variable in the left-han<;! side and use 
the others as regressors. The test does not say anything about which of the variables 
can be used as regressor and why. Consider, for example, the case of just two variables, 
Xt and Yt. One can either regress Yt on Xr (i.e. Yt = a+ f3Xt +lilt) or choose to 
reverse the order and regress Xr on Yr (i.e. Xr = a+ f3Yt + llzr}. It can be shown, 
with asymptotic theory, that as the sample goes to infinity the test for cointegration 
on the residuals of those two regressions is equivalent (i.e. there is no difference in 
testing for unit roots in lilt and tlzt}. However, in practice, in economics we rarely 
have very big samples and it is therefore possible to find that one regression exhibits 
cointegration while the other doesn't. This is obviously a very undesirable featu_re of 
the EG approach. The problem obviously becomes far more complicated when we 
have more than two variables to test. 

2 A second problem is that when there are more than two variables there may be 
more than one cointegrating relationship, and the Engle-Grang~r procedure using 
residuals from a single relationship cannot treat this possibility. So, the most 
important problem is that it does not give us the number of cointegrating vectors. 

3 A third and final problem is that it relies on a two-step estimator. The first step is to 
,senerate the residual series and the second step is to estimate a regression for this 
series in order to see if the series is stationary or not. Hence, any error introduced in 
the first step is carried into the second step. " 
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All these problems are resolved with the use of the Johansen approach that we will 
examine later. 

The EG approach in EViews and Microfit 

The EG approach in EViews 

The EG test is very easy to perform and does not require any· more knowledge 
regarding the use of EViews. For the first step, ADF and PP tests on all variables are 
needed to determine the order of integration of the variables. If the variables (let's say 
X and Y) are found to be integrated of the same order, then the second step involves 
estimating the long-run relationship with simple OLS. So the command here is simply: 

ls X c Y 

or 

ls Y c X 

depending on the relationship of the variables (see the drawbacks of the EG approach). 
We then need to obtain the residuals of this relationship which are given by: 

genr res_OOO=resid 

where instead of 000 a different alphanumeric name can be entered to identify the 
residuals under question. The third step (the actual test for cointegration) is a unit-root 
test on the residuals, the command for which is: 

adf res 000 

for no lags, or 

adf (4) res 000 

for 4 lags in the augmentation term, and so on. A crucial point here is that the critical 
values for this test are not those reported in EViews, but the ones given in Table 17.1 
in this text. 

The EG approach in Microfit 

In Microfit, after testing for the order of integration of the variables, for the second 
step we go to the single editor (by pressing the single button) and specify the equation 
we need to estimate and click Start to get the estimation results in the results window. 
Closing these results we go to the Post Regression Menu window and from this, after 
choosing 2. Move to Hypothesis Testing, we choose choice 3. Unit Root Test on 
the Residuals. Microfit asks us to determine the number of lags and then presents the 
ADF test results for this unit-root test. Again we have to remember to compare the test 
statistics with the appropriate critical values of Table 17.1.· 
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Cointegration in multiple equations and 
the Johansen approach 
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It was mentioned before that if we have more than two variables in the model, 
then there is a possibility of having more than one cointegrating vector. By this we 
mean that the variables in the model might form several equilibrium relationships 
governing the joint evolution of all the variables. In general, for n number of variables 
we can have only up to n- 1 cointegrating vectors. Therefore, when n = 2, which is 
the simplest case, we can understand that if cointegration exists then the cointegrating 
vector is unique. 

Having n > 2 and assuming that only one cointegrating relationship exists, where 
there are actually more than one, is a very serious problem that cannot be resolved 
by the EG single-equation approach. Therefore, an alternative to the EG approach is 
needed and this is the johansen approach for multiple equations. 

In order to present this approach, it is useful to extend the single-equation error­
correction model to a multivariate one. Let's assume that we have three variables, Yt, 
Xt and Wt which can all be endogenous, i.e. we have that (using matrix notation for 
Zt = [Yt,Xt, Wt]) 

Zt = A1Zt-1 + A2Zt-2 + · · · + AkZt-k + Ut (17.38) 

which is comparable to the single-equation dynamic model for two variables Yt and 
Xt given in (17.21). Thus, it can be reformulated in a vector error-correction model 
(VECM) as follows: 

liZt = r 1 AZt_ 1 + f 2AZt_2 + · · · + fk_ 1 AZt-k- 1 + llZt-1 + Ut (17 .39) 

where fi =(I- A1-A2 - .. ·-Ak) (i = 1, 2, ... ,k-1) and IT= -(I-A1 -A2- .. · -Ak). 
Here we need to carefully examine the 3 x 3 n matrix. (The n matrix is 3 x 3 due to 
the fact that we assume three variables in Zt = [Yt,Xt, Wr].) The n matrix contains 
information regarding the long-run relationships. We can decompose n = rx{J' where 
a will include the speed of adjustment to equilibrium coefficients while {J' will be the 
long-run matrix of coefficients. 

Therefore the {J'Zt_ 1 term is equivalent to the error-correction term (Yr_ 1 - fJo­
,B1Xr-1) in the single-equation case, except that now {J'Zt-1 contains up to (n- 1) 

vectors in a multivariate framework. 
For simplicity we assume that k = 2, so that we have only two lagged terms, and the 

model is then the following: 

or 

( ~Yt\ (~Yt-1) (Yt-1) ~xt.l = r1 ~Xt-1 + n Xt-1 + et 

~Wt} ~Wt-1 Wt-1 

( 
~Yt) ( ~Yt-1) (all 
~Xt = f1 ~Xt-1 + a21 
~Wt ~Wt-1 a31 

~ 

·~ 

a12) (fJ11 
a22 fl12 
a23 

.... ------ , -

fJZI 
fJ22 

fJ31 Xt-1 + et 
) (

Yt-1) 

f332 Wt-1 

(17.40) 

(17.41) 
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Let us now analyse only the error-correction part of the first equation (i.e. for ~ Yr on 
the left-hand side) which gives: ' ·• . . 

n 1Zr--1 =Clau.Bu + a12.B12l [aufJZI -+ a1z.Bzzl 

( 

Yr-I) 
[aii.83I + a12f13z)) Xr-I 

Wr-l 

where n 1 is the first row of the n matrix. 
Equation ( 17 .42) can be rewritten as: 

n 1 Zr-I =au (fJu Yr-1 + llziXr-1 + fJ:n Wr-l l 

+a12(fJ12Yr-1 +.flzzXr-1 +f:l3zWr-1l 

(17.42) 

(17 .43) 

which shows clearly the two cointegrating vectors with their respective speed of 
adjustment terms a11 and a12. · 

Advantages of the multiple equation approach 

So, from the multiple equation approach we can obtain estimates for both cointegrating 
vectors (17.43), while with the simple equation we have only a linear combination of 
the two long-run relationships. 

Also, even if there is only one cointegrating relationship (for example the first 
only) rather than two, with the multiple equation approach we can calculate all three 
differing speeds of adjustment coefficients (au a21 a31 )'. 

Only when a21 = a3 1 = 0, and only one cointegrating relationship exists, can we 
then say that the multiple equation method is the same (reduces to) as the single­
equation approach, and therefore there is no loss from not modelling the determinants 
of .6.Xr and .6. Wr. Here, it is good to mention as well that when a 21 = a31 = 0, is 
equivalent to Xr and Wr being weakly exogenous. 

So, summarizing, only when all right-hand variables in a single equation are weakly 
exogenous does the single-equation approach provide the same result as a multivariate 
equation approach. 

The Johansen approach (again) 

Let us now go back and examine the behaviour of the n matrix under different 
circumstances. Given that Zt is a vector of non-stationary I (1) variables, then aZt-l 

are /(0) and nZt_1 must also be /(0) in order to ha\'e that lit ~ /(0) and therefore to 
h,ave a well-behaved system. 
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In general there are three cases for llZt-1 to be 1(0): 

Case 1 When all the variables in Zt are stationary. Of course this case is totally 
uninteresting since it implies that there is no problem of spurious regression 
and the simple VARin levels model can be used to model this case. 

Case 2 When there is no cointegration whatsoever and therefore the n matrix is an 
n x n matrix of zeros because of no linear relationships among the Zt. In this 
case the appropriate strategy is to use a VAR model in first differences with no 
long-run ~lements due to the non-existence of long-run relationships. 

Case 3 When there exists up to (n-1) cointegrating relationships of the form P'Zt-l ~ 
1(0). In this particular case, r ~ (n- 1)cointegrating vectors exist in p. This 
simply means that r columns of P form r linearly independent combinations 
of the variables in Zt, each of which is stationary. Of course there will also be 
(n- r) common stochastic trends underlying Zt. 

Recall that n = rxf3' and so in case 3 above, although the n matrix will always be 
dimensioned n x n the a and f3 matrices will be dimensioned n x r. This therefore 
imposes a rank of r on the n matrix which amounts to imposing that there are only 
r linearly independent rows to this matrix. So underlying the full size n matrix is a 
restricted set of only r cointegrating vectors given by f3' Zt-l· Reduced rank regression, 
of this type, has been available in the statistics literature for many years but it was 
introduced into modern econometrics and linked with the analysis of non-stationary 
data by Johansen (1988). 

Going back to the three different cases considered above regarding the rank of the 
matrix n we have: 

Case 1 When n has a full rank (i.e. there are r = 11 linearly independent columns) 
then the variables in Zt are 1(0). 

Case 2 When the rank of n is zero (i.e. there are no linearly independent columns) 
then there are no cointegrating relationships. 

Case 3 When n has a reduced rank (i.e. there are r ::= (n - 1) linearly independent 
columns) and therefore there are r::: (n- 1) cointegrating relationships. 

Johansen (1988) developed a methodology that tests for the rank of n and provides 
estimates of a and p through a procedure known as reduced-rank regression, but 
the actual procedure is quite complicated and beyond the scopes of this text [see 
Cuthbertson, Hall and Taylor (1992) for more details]. 

The steps of the Johansen approach in practice 

Step 1: testing the order of integration of the variables 

As with the EG approach, the first step in the Johansen approach is to test for the order 
of integration of the variables under examination. We said before that most economic 
time series are non-stationary and therefore integrated. Indeed the issue here is to 

j 
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have non-stationary variables in order to detect among them stationary cointegrating 
relationship(s) and avoid the problem of spurious regressions. It is clear that the most 
desirable case is when all the variables are integrated of the same order and then to 
proceed with the cointegration test. However, it is important to stress here that this is 
not always the case, and that even in cases where a mix of 1(0), 1(1) and 1(2) variables 
are present in the model, cointegrating relationships might well exist. The inclusion of 
these variables, though, will massively affect our results and more consideration should 
be applied in such cases. 

Consider for example the inclusion of an 1(0) variable. In a multivariate framework 
for every 1(0) variable included in the model the number of cointegrating relationships 
will increase correspondingly. We said before that the Johansen approach amounts to 
testing for the rank of n (i.e. finding the number of linearly independent columns in n), 
and since each 1(0) variable is stationary by itself, it forms a cointegrating relationship 
by itself and therefore forms a linearly independent vector in n. 

Matters become more complicated when we include 1(2) variables. Consider for 
example a model with the inclusion of two 1(1) and two 1(2) variables. There is a 
possibility that the two 1(2) variables cointegrate down to an 1(1) relationship, and 
then this relationship may further cointegrate with one of the two l(l) variables to 
form another cointegrating vector. In general, situations with variables in differing 
orders of integration are quite complicated, although the positive thing is that it is 
quite common in macroeconomics to have J(l) variables. Those who are interested in 
further details regarding the inclusion of I (2) variables can refer to Johansen's {199Sb) 
paper that develops an approach to treat /(2) models. 

Step 2: setting the appropriate log length of the model 

The issue of finding the appropriate (optimal) lag length is very important because we 
want to have Gaussian error terms (i.e. standard normal error terms that do not suffer 
from non-normality, autocorrelation, heteroskedasticity etc.). Setting the value of the 
lag length is affected by the omission of variables that might affect only the short-run 
behaviour of the model. This is due to the fact that omitted variables instantly become 
part of the error term. Therefore, very careful inspection of the data and the functional 
relationship is necessary before proceeding with estimation in order to decide whether 
to include additional variables. It is quite common to use dummy variables to take into 
account short-run 'shocks' to the system, such as political events that had important 
effects on macroeconomic conditions. 

The most common procedure in choosing the optimal lag length is to estimate a 
VAR model including all our variables in levels (non-differenced data). This VAR model 
should be estimated for a large number of lags, then reducing down by reestimating 
the model for one lag less until we reach zero lags (i.e. we estimate the model for 12 
lags, then 11, then 10 and so on until we reach 0 lags). 

In each of these models we inspect the values of the AIC and the SBC criteria, as 
well as the diagnostics concerning autocorrelation, heteroskedasticity, possible ARCH 
effects and normality of the residuals. In general the model that minimizes AIC and 
SBC is selected as the one with the optimal lag lengtp. This model should also pass all 
the diagnostic checks. · 
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Step 3: choosing the appropriate model regarding the deterministic 
components in the multivariate system 

323 

Another important aspect in the formulation of the dynamic model, .is whether an 
intercept and/or a trend should enter either the short-run or the long-run model, or 
both models. The general case of the VECM including all the various options that can 
possibly happen is given by the following equation: 

AZ1 ~r 1 AZ1_ 1 + · · · +fk-1 AZH-1 +a ( f:) (Z,C 1 1 t) 

+ p.z + &zt + ur (17.44) 

And for this equation we can see the possible cases. We can have a constant (with 
coefficient p. 1) and/or a trend (with coefficient &1) in the long-run model (the 
cointegrating equation (CE)), and a constant (with coefficient p.z) and/or a trend (with 
coefficient &2) in the short-run model (the VAR model). 

In general five distinct models can be considered. Although the first and the fifth 
model are not that realistic, we present all of them for reasons of complementarity. 

Model 1 No intercept or trend in CE or VAR (<'l1 = &z = J.L1 = J.LZ = 0). In this case 
there are no deterministic components in the data or in the cointegrating 
relations. However, this is quite unlikely to occur in practice, especially as 
the intercept is generally needed in order to account for adjustments in the 
units of measurements of the variables in (Zt_ 1 1 t). 

Model 2 Intercept (no trend) in CE, no intercept or trend in VAR (&1 = 82 = J.Lz = 0). 
This is the case where there are no linear trends in the data, and therefore 
the first differenced series have a zero mean. In this case the intercept is 
restricted to the long-run model (i.e. the cointegrating equation) to account 
for the unit of measurement of the variables in (Zt-1 1 t). 

Model 3 Intercept in CE and VAR, no trends in CE and VAR (81 = 8z = 0). In this 
case there are no linear trends in the levels of the data, but we allow both 
specifications to drift around an intercept. In this case it is assumed that the 
Jntercept in the CE is cancelled out by the intercept in the VAR, leaving just 
one intercept in the short-run model. 

Model 4 Intercept in CE and VAR, linear trend in CE, no trend in VAR (&z = 0). In 
this rnodel we include a trend in the CE as a trend-stationary variable in 
order to take into account exogenous growth (i.e. technical progress). We 
also allow for intercepts in both specifications while there is no trend in the 
short-run relationship. 

Model 5 Intercept and quadratic trend in the CE intercept and linear trend in 
VAR. This model allows for linear trends in the short-run model and 
thus quadratic trends in the CE. Thus, in this final model everything is 
unrestricted. However, this model is very difficult to interpret" from an 
economics point of view, especially since the variables are entered as logs, 
because a model like this would imply an implausible ever-increasing or 
ever-decreasing rate of change. 
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So, the problem is which of the five different models is appropriate in testing for 
cointegration. We said before that the first and the last (fifth) model are not that likely 
to happen, and that they are also implausible in terms of economic theory, therefore 
the problem reduces to a choice of one of the three remaining models (models 2, 3 
and 4). Johansen (1992) suggests that we need to test the joint hypothesis of both the 
rank order and the deterministic components, applying the so-called Pantula principle. 
The Pantula principle involves the estimation of all three models and the presentation 
of the results from the most restrictive hypothesis (i.e. r = numbe.r of cointegrating 
relations= 0 and model 1) through the least restrictive hypothesis, i.e. r = number of 
variables entering the VAR- 1 = n- 1 and model 4). The model-selection procedure 
then comprises moving from the most restrictive model, at each stage comparing the 
trace test statistic to its critical value, stopping only when we conclude for the first time 
that the null hypothesis of no cointegration is not rejected. 

Step 4: determining the rank of nor the number of cointegroting vectors 

According to Johansen (1988) and Johansen and Juselius (1990), there are two methods 
(and corresponding test statistics) for determining the number of cointegrating 
relations, and both involve estimation of the matrix n. This is a k x k matrix with 
rank r. The procedures are based on propositions about eigenvalues. 

(a) One method tests the null hypothesis, that Rnnk(n) = r against the hypothesis that 
the rank is r + 1. So, the null in this case is that there is cointegrating vectors and 
that we have up to r cointegrating relationships, with the alternative suggesting 
that there is (r + 1) vectors. 

The test statistics are based on the characteristic roots (also called eigenvalues) 
obtained from the estimation procedure. The test consists of ordering the largest 
eigenvalues in descending order and considering whether they are significantly 
different from zero. To understand the test procedure, suppose we obtained n 
characteristic roots denoted by )q > A.z > A.3 > · · · > A. 11 • H the variables under 
examination are not cointegrated, the rank of n is zero and all the characteristic 
roots will equal zero. Therefore (1- 5.;) will be equal to 1 and since ln(l) = 0, each 
one of the expressions will be equal to zero for no cointegration. On the other 
hand, if the rank of n is equal to 1, then 0 < A. 1 < 1 so that the first expression 
(1 - 5.;) < 0, while all the rest will be equal to zero. To test how many of the 
numbers of the characteristic roots are significantly different from zero this test 
uses the following statistic: 

A.max(r, r + 1) = -T ln(l- 5.,+1) (17.45) 

As we said before, the test statistic is based on the maximum eigenvalue and because 
of that is called the maximal eigmvalue statistic (denoted by A. max). 

(b) The second method is based on a likelihood ratio test about the trace of the 
matrix (and because of that it is called the trace statistic). The trace statistic 
considers whether the trace is increased by adding more eigenvalues beyond the 
rth eigenvalue. The null hypothesis in this case is that the number of cointegrating 
vectors is less than or equal to r. From the previous analysis it should be clear that 
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when all~; = 0, then the trace statistic is equal to zero as well. On the other hand, 
the closer the characteristic roots are to unity the more negative is the ln(l - j_;) 

term and, therefore, the larger the trace statistic. This statistic is calculated by: 

11 

Atrace(r) = -T L lnO-~r+l) 
i=r+l 

(17.46) 

The usual procedure is to work downwards and stop at the value of r which is 
associated with a test statistic that exceeds the displayed critical value. Critical 
values for both statistics are provided by Johansen and]uselius (1990) (these critical 
values are directly provided from both EViews and Microfit after conducting a test 
for cointegration using the johansen approach). 

Step 5: testing for weak exogeneity 

After determining the number of cointegrating vectors we need to proceed with tests of 
weak exogeneity. Remember that the II matrix contains information about the long-run 
relationships, and that II = afJ', where a represents the speed of adjustment coefficients 
and fJ is the matrix of the long-run coefficients. From this it should be clear that when 
there are r ~ n-1 cointegrating vectors in {J, then this automatically means that at least 
(n - r) columns of a are equal to zero. Thus, once we have determined the number of 
co111tegrating vectors, we should proceed with testing which of the variables are weakly 
exogenous. 

A very useful feature of the johansen approach for cointegration is that it allows us to 
test for restricted forms of the cointegrating vectors. Consider the case given by (17.40), 
and from this the following equation: 

( 
LlYt) ( LlYt-1) (all 
LlXt = r1 6Xt-t + azl 
6Wt 6Wt-l a31 

a12) (.811 azz ,a12 
a23 

.821 
fJzz 

.831 Xt-l + et )( Yt-1) 

.83Z Wt-1 
( 17.47) 

In this equation we can see that testing for weak exogeneity with respect to the long run 
parameters js equivalent to testing which of the rows of a are equal to zero. A variable 
Z is weakly exogenous if it is only a function of lagged variables and the parameters 
of the equation generating Z are independent of the parameters generating the other 
variables in the system. If we now think of the variable Y in (17.47), it is clearly a 
function of only lagged variables but in the general form above the parameters of the 
cointegrating vectors (,8) are clearly common to all equations and so the parameters 
generating Y cannot be independent of those generating X and W as they are the same 
parameters. However if the first row of the a matrix were all zeros then the ,Bs would 
drop out of the Y equation and it would be weakly exogenous. So a joint test that a 
particular row of a is zero is a test of the weak exogeneity of the corresponding variable. 
If a variable is found to be weakly exogenous we can drop it as an endogenous part of 
the system. This means that we can drop the whole equation for that variable although 
it will continue to feature on the right-hand side of the other equations. 
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Step 6: testing for linear restrictions in the cointegrating vectors 

An important feature of the Johansen approach is that it allows us to obtain estimates 
of the coefficients of the matrices a and /3, and then test for possible linear restrictions 

·regarding those matrices. Especially for matrix p, the matrix that contains the long­
run parameters, this is very important because it allows us to test specific hypotheses 
regarding various theoretical predictions from· an economic theory point of view. So, 
for example, if we examine a money-demand relationship, we might be interested in 
testing restrictions regarding the long-run proportionality between money and prices, 
or the relative size of income and interest-rate elasticities of demand for money and so 
on. For more details regarding testing linear restrictions in the Johansen framework see 
Enders (1995) and Harris (1997). 

The Johansen approach in EViews and Microfit 

The Johansen approach in EViews 

£Views has a specific command for testing for cointegration using the Johansen 
approach under group statistics. Consider the file money_ita.wfl, which has quarterly 
data from 197Sq1 to 1997q4 for the Italian economy and for the following variables: 

lm2_p =the log of the real money supply measured by the M2 definition 

deflated by the consumer price index (cpi); 

lgdp_p =the log of real income (again deflated by the CPl); and 

r =the interest rate representing the opportunity cost of holding money. 

The first step is to determine the order of integration of the variables. To do this 
we apply unit-root tests on all three variables that we want to test for cointegration. We 
apply the Doldado, Jenkinson and Sosvilla-Rivero (1990) procedure for choosing the 
appropriate model and we determine the number of lags according to the SBC criterion. 
For example, for M2 the model with constant and trend showed that the inclusion of 
the trend was not appropriate (because its coefficient was statistically insignificant), 
and we therefore estimated the model that includes only a constant. This model was 
found to .be appropriate and we concluded from that model that there is a unit root in 
the series (because the ADF statistic was bigger than the So/o critical value). The results 
of all tests for levels and first differences ate presented in Table 17 .2. 

The second step is to determine the optimal lag length. Unfortunately, EViews does 
not allow us to automatically detect the lag length (while Microfit does), so we need 
to estimate the model for a large number of lags and then reduce down to check for 
the optimal value of AIC and SBC (as described in step 1 of the Johansen approach). 
By doing this we found that the optimal lag length was 4 lags (not surprising for 
quarterly data). 

We then need to apply the Pantula principle to decide which of the three models 
to choose in testing for cointegration. We therefore test each one of the three models 
for cointegration in Microfit by opening Quick/Group Statistics/Cointegration Test. 
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Table 11.2 Unit-root test results 

Variables Model ADF-stat. 

ADF tests in the levels 
lm3_p constant no trend -2.43 
lgdp_p constant and trend -2.12 
r constant and trend -2.97 

ADF tests in first differences 
lm3_p constant no trend -4.45 
lgdp_p constant no trend -4.37 
R constant and trend -4.91 

Table 17.3 Cointegration test results (model 2) 

Date: 04107/04 Time: 17:14 
Sample{adjusted): 1976:2 1997:4 
Included observations: 87 after adfusting endpoints 
Trend assumption: No deterministic trend (restricted constant) 
Series: LGDP _P LM2_P R 
Lags interval (in first differences): 1 to 4 
Unrestricted Cointegration Rank Test 

Hypothesized Eigenvalue 
No. ofCE(s) 

None•• 0.286013 
At most1' 0.139113 
At most2 0.098679 

Trace 
statistic 

51.38016 
22.07070 

9.038752 

5% 
critical value 

34.91 
19.96 

9.24 

327 

No. of lags 

2 
4 
2 

2 
4 
2' 

1% 
critical value 

41.07 
24.60 
12.97 

Note:'("') denotes rejection of the hypothesis at the 5%(1%) level. Trace test indicates 2 cointegrating equation(s) at 
the 5% level and 1 cointegrating equation(s) at the 1% level. 

Then in the series list window we enter the names of the series to check for 
cointegration, for example: 

lgdp_p lm2_p r 

then press <OK>. The five alternative models explained in the theory are given under 
labels 1, 2, 3, 4 and 5. There is another option (option 6 in EViews) that compares all 
these models together. In our case we wish to estimate models 2, 3 and 4 (because as 
noted earlier models 1 and 5 occur only very rarely). To estimate model 2 we select 
that model, and specify the number of lags in the bottom-right corner box that has the 
(default by EViews) numbers '1 2' for inclusion of two lags. We change the '1 2' to '1 
4' for four lags, and click <OK> to get the results. Note that there is another box that 
allows us to include (by typing their names) variables that will be treated as exogenous. 
Here we usually put variables that are either found to be /(0) or dummy variables that 
possibly affect the behaviour of the model. 

The results of this model are presented in Table 17.3 (we present only the results of 
the trace statistic needed for the Pantula principle; later on we will check all the results 
reported in the cointegration results window). 

Doing the same for models 3 and 4 (in the untitled group window select 
View;Cointegration Test and simply change the model by clicking next to 3 or 4, 
we get the results reported in Tables 17.4 and 17.5. 
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Table 17.4 Cointegration test results (model3) 

Date: 04107104 Time: 17:27 
Sample(adjusted): 1976:2 1997:4 
Included observations: 87 after adjusting endpoints 
Trend assumption: Linear deterministic trend 
Series: LGDP_P LM2_P R 
Lags interval (in first differences): 1 to 4 
Unrestricted Cointegration Rank Jest 

Hypothesized Eigenvalue 
No. ofCE(s) 

None 0.166219 
At most 1 0.108092 
At most 2 0.000271 

Trace 
statistic 

25.79093 
9.975705 
0.023559 

5% 
critical value 

29.68 
15.41 
3.76 

1% 
critical value 

35.65 
20.04 
• 6.65 

Note:"( .. ) denotes rejection of the hypothesis at the 5%(1%) level. Trace test indicates no cointegration at both the 
5% and 1% levels. 

Table 17.5 Cointegra!ion test results (model4) 

Date: 04/07104 Time: 17:27 
Sample(adjusted): 1976:2 1997:4 
Included observations: 87 after adjusting endpoints 
Trend assumption: Linear deterministic trend (restricted) 
Series: LGDP_P LM2_P R 
Lags interval (in first differences): 1 to 4 

Unrestricted Cointegration Rank Test 

Hypothesized Eigenvalue Trace 
No. ofCE(s) statistic 

None•• 0.319369 52.02666 
At most 1 0.137657 18.55470 
At most 2 0.063092 5.669843 

5% 
critical value 

42.44 
25.32 
12.25 

1% 
critical value 

48.45 
30.45 
16.26 

Note:"(*") denotes rejection of the hypothesis at the 5%(1%) level. Trace test indicates 1 cointegrating equation(s) at 
both the 5% and 1% levels. 

r 

0 
1 
2 

n-r 

3 
2 
1 

Table 17.6 The Pantula principle test results 

Model2 

51.38016 
22.0707 

9.038752 

Model3 

25.79093* 
9.975705 
0.023559 

Note: • Indicates the first time that the null cannot be rejected. 

Model4 

52.02666 
18.5547 
5.669843 

We then collect the trace statistics for all three models together as in Table 17.6 to 
choose which model is appropriate. We start with the smaller number of cointegrating 
vectors r = 0, and check whether the trace statistic for model2 rejects the null, if yes we 
proceed to the right, checking whether the third model rejects the null, and so on. In 
our case, model 3 suggests that the trace statistic is smaller than the 5% critical value; 
so this model does not show cointegration, and we stop our analysis at this point. 
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For illustrative purposes for the use of EViews only, we consider the results from 
model 2 where only two cointegrating vectors were found to exist. From the full results 
(reported in Table 17.7) we see that both the trace and the maximal eigenvalue statistics 
suggest the existence of two cointegrating vectors. EViews then reports results regarding 
the coefficients of the a and p matrices, first unnormalized and then normalized. After 
establishing the number of cointegrating vectors, we proceed with the estimation of 
the ECM by clicking on Procs;Make Vector Autoregression. EViews here gives us two 
choices of VAR types; first, if there is no evidence of cointegration we can estif!Iate tile 
unrestricted VAR (by clicking on the corresponding button), or, if there is cointegration 
we can estimate the VECM. If we estimate the VECM we need to specify (by clicking 
on· the Cointegration menu), which model we want and how many numbers of 
cointegrating vectors we want to have (determined from the previous step), and also 
to impose restrictions on the elements of the a and p matrices by clicking on the VEC 
restrictions menu. The restrictions are entered as b(1, 1) = 0 for the {311 = 0 restriction. 
More than one restriction can be entered and they should he separated by commas. 

The Johansen approach in Microfit 

In order to use the Johansen approach in Microfit, we first go to the multi window 
by pressing the multi button. Then from the Multivariate Menu we can choose 
Unre~tricted VAR and specify the equation we want in the corresponding box. Here 
we enter the names of the variables we want to check for cointegration in order to 
determine the optimal lag length from the unrestricted VAR. After typing the names of 
the variables we click on Start, which takes us to theUnrestricted VAR post estimation 
menu. From this menu we choose option 4. Hypothesis testing and lag order 
selection in the VAR. Here we choose option 1. Testing and selection criteria for 
order (lag-length) of the VAR and obtain the results reported in Table 17 .8. 

In this table we see the AIC and SBC together with some other statistics regarding 
estimations of simple VARs for 13 different lag structures (from lags 12 to 0). The aim is 
to choose the model that minimizes AIC and SBC. In this particular case both statistics 
suggest a lag length of 6 as optimal (see bold values in the table). 

In order !O test for cointegration among the variables we now go to the Multivariate 
Menu and choose Cointegrating VAR Menu. Five different options are offered, 
corresponding to the models of the structure of deterministic components examined 
in the theoretic(ll explanation of the Johansen approach above. In order to apply the 
Pantula principle, again all three models (models 2, 3 and 4; we leave out models I. and 
S) should be estimated. By choosing the model and clicking on Start we get the results 
for the maximal and the trace eigenvalue statistics together with their respective critical 
values. If the statistical values are bigger than the critical ones, we reject the null of no 
cointegration in favour of the alternative. After that we close the results and, following 
the Cointegrating VAR post estimation menu, specify the number of cointegrating 
relationships (that we determined by the trace and max statistics before) in choice 2, 
set the cointegrating vectors in choice 3 and so on, until choice 6 that leads us to the 
Long Run Structural Modelling Menu from which we can impose restrictions on the 
coefficients of the cointegrating vectors. 
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Table 17.7 Full results from the cointegration test (model 2) 

Date: 04107/04 Time: 17:41 
Sample(adjusted): 1975:4 1997:4 
InCluded observations: 89 after adjusting endpoints 
Trend assumption: No deterministic trend (restricted constant) 
Series: LGDP_P LM2_P R 
Lags interval (in first differences): 1 to 2 
Unrestricted Cointegration Rank Test 

Hypothesized Eigenvalue 
No. ofCE(s) 

None·· 0.219568 
At most 1·· 0.193704 
At most 2 0.075370 

Trace 5% 
statistic critical value 

48.20003 34.91 
26.13626 19.96 

6.974182 9.24 

1% 
critical value 

41.07 
24.60 
12.97 

Note:*(*") denotes rejection of the hypothesis at the 5%(1%) level. Trace test indicates 2 cointegrating equation(s) at 
both the 5% and 1% levels. 

Hypothesized Eigenvalue Max-Eigen 5% 1% 
No.ofCE(s) statistic critical value critical value 

None• 0.219568 22.06377 22.00 26.81 
At most 1* 0.193704 19.16208 15.67 20.20 
At most2 0.075370 6.974182 9.24 12.97 

Note:*(**) denotes rejection of the hypothesis at the 5%(1%) level. Max-eigenvalue test indicates 2 cointegrating 
equation(s) at the 5% level, and no cointegration at the 1% level. 

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b = 1): 

LGDP_P 

-5.932728 
4.415826 
0.991551 

LM2_P 

4.322724 
-0.328139 
-17.05815 

Unrestricted Adjustment Coefficients (alpha): 

D(LGDP_P) 
D(LM2_P) 
D(R) 

1 Cointegrating Equation(s): 

0.004203 
0.001834 
0.228149 

R 

-0.226210 
0.158258 
0.113204 

0.001775 
-0.001155 
-0.399488 

Log likelihood 

Normalized cointegrating coefficients (std. err. in parentheses) 
LGDP _P LM2_P A 
1.000000 -0.728623 0.038129 

(0.61937) (0.01 093) 

Adjustment coefficients (std. err. in parentheses) 
D(LGDP _P) -0.024938 

(0.00583) 
D(LM2_P) -0.010881 

(0.00895) 
D(R) -1.353545 

(0.73789) 

·' 

c 
10.33096 

-11.15663 
27.97470 

3.68E-05 
0.003556 

-0.139878 

415.4267 

c 
-1.741351 
(1.17467) 
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Table 17.7 Continued 

2 Cointegrating Equation(s): Log likelihood 

Normalized cointegrating coefficients (std. err. in parentheses) 
LGDP _P LM2_P R 
1.000000 0.000000 0.035579 

(0.01765) 
0.000000 1.000000 -0.003500 

Adjustment coefficients (std. err. in parentheses) 
D(LGDP _P) -0.017100 

(0.00712) 
D(LM2_P) -0.015981 

(0.01112) 
D(R) -3.117614 

(0.86005) 

(0.02933) 

0.017588 
(0.00417) 
0.008307 
(0.00652) 
1.117312 
(0.50413) 

425.0077 

c 
-2.615680 
(0.24340) 
-1.199974 
(0.40446) 
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Table 17.8 Test statistics and choice criteria for selecting the order of the VAF! model 

Basedon258observations from 1974Mt to 1995M6. OrderofVAR = 12 
List of variables included in the unrestricted VAR: 
FF tTL 

Order LL AIC SBC LR test Adjusted LR test 

12 -1326.9 -1354.9 -1460.2 
11 -1327.1 -1351.1 -1349.3 CHSQ(4) = 0.44302 [.979] 0.40181 (.982] 
10 :-1328.1 -1348.1 -1339.2 CHS0(8) = 2.4182 (.965] 2.1932 (.975] 
9 ·1328.5 -1344.5 -1328.4 CHSQ (12) = 3.0913 [.995] 2.8037 [.997] 
8 -1332.1 -1354.1 -1320.9 CHSO (16) = 10.2877 (.851] 9.3307 (.899] 
7 -1334.4 -1352.4 -1312.1 CHSQ (20) = 14.8836 [.783] 13.4991 [.855] 
6 -1335.7 -1359.7 - 1402.4 CHSQ (24) = 17.6463 (.820] 16.0048 [.888] 

·5 -1336.9 -1356.9 -1392.5 CHSQ (28) = 20.0586 [.862] 18.1927 [.921] 
4 -1337.2 -1353.2 -13C1.6 CHS0(32) = 20.5527 [.941] 18.6409 [.971] 
3 -1338.3 -1350.3 -1371.6 CHSQ(36) = 22.8243 (.957] 20.7011 (.981] 
2 -1341.0 -1349.0 -1363.2 CHSO (40) = 28.1570 [.920] 25.5377 (.963] 
1 -1345.4 -1349.4 -1356.5 CHSO (44) = 36.9251 (.766] 33.4902 (.875] 
0 -2836.3 -1336.3 -1336.3 CHSO (48) = 3018.8 (.000] 2738.0 (.000] 

Note: AIC = Akaike information criterion; SBC = Schwarz Bayesian criterion. 

Comp~ter examples of cointegration 

Here we again examine the test results from Asteriou and Price (2000a). The results 
for the order of integration of the variables included in their analysis were presented 
in the second computer example of Chapter 16. Once the stationarity order has been 
established, we can move to cointegration tests. 

Table 17.9 reports the results from using the Engle-Granger (EG) (1987) cointegration 
methodology. We first regressed GDP per capita to the capital/labour ratio and to every 
financial development proxy (one at each specification). The test statistics pr~sented 
in Table 17.9 are the augmented Dickey-Fuller tests relating to the hypothesis of a unit 
root in the cointegrating regression residuals of each specification. The results of the 
first method indicate that the hypothesis of the existence of a bivariate cointegrating 
relationship between the level of GDP per capita and each of the financial development 
proxies is clearly rejected in all cases (the critical value is -3.3 7, see Table 17 .1). 
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Table 17.9 Engle-Granger cointegration tests 

Variables in cointegrating vector 

\'', K, M 
Y, K, CUR 
Y, K, CL 
Y,K, T 

ADF statistic 

-2.6386 
-2.1290 
-2.0463 
-3.3999 

k 

4 
6 
4 
4 

n 

109 
109 
104 
85 

Note: k is the degree of augmentation of the ADF test, determined by the FPE test; n is the number of observations 
used in the first step of the Engle-Granger procedure. 

However, as is well-known, the Engle-Granger procedure suffers from various 
shortcomings. One is that it relies on a two-step estimator; the first step is to generate 
the error series and the second is to estimate a regression for this series in order to see if 
the series is stationary or not. Hence, any error introduced by the researcher in the first 
step is carried into the second step, in particular the misspecification in the short-r_un 
dynamics. The Johansen (1988) maximum likelihood method circumvents the use of 
two-step estimators and, moreover, can estimate and test for the presence of multiple 
cointegrating vectors. The Johansen (1988) test also allows us to test restricted versions 
of the cointegrating vectors and speed of adjustment parameters. 

Thus, we continue testing for cointegration with the Johansen method. First, we 
test for the presence of cointegrating vectors introducing in each case only one 
financial development proxy variable, then we proceed to include all four financial 
development proxies. 

Monetization ratio 

We want to test for the existence of cointegration relations among per capita GOP and 
the financial development variables. The first proxy variable for financial development 
is the monetization ratio. The Johansen method is known to be sensitive to the Jag 
length (see Banerjee eta/., 1993), and we therefore estimate the VAR system comprising 
the monetization ratio, the capital/labour ratio and GOP per capita for various lag 
lengths and calculate the respective Akaike information criterion (AI C) and the Schwarz 
Bayesian criterion (SBC) in order to determine the appropriate Jag length for the 
cointegration test. Nine alternative VAR(p), p = I, 2, ... , 9, models were estimated over 
the same sample period, namely 1972ql- 1997ql, and as to be expected the maximized 
values of the log-likelihood (LL) increase with p. Both criteria indicated that the optimal 
lag length is two. The results shown in Table 17.10 show that the log-likelihood ratio· 

•statistlcs suggest a VAR of order 7. By construct, both the AIC and the SBC suggest the 
use of two lags. Initially, we test for cointegration using only two lags in the VAR system. 

We also need to determine the appropriate restrictions on the intercept and trends 
in the short- and long-run models. For this, we use the Pantula principle; that is, we 
estimate all three alternative models and move from the most restrictive model to the 
least restrictive model, comparing the trace or the maximal eigenvalue test statistic 
to its critical value, stopping (and therefore choosing the model) only when the null 
hypothesis is not rejected for the first time. The results from the three estimating models 
are presented in Table 17.11. The first time that the null hypothesis is not rejected is 
for the first model (restricted intercepts, no trends in the levels of the data) and we can 
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Table 17.10 Test statistics and choice criteria for selecting the order of the VAR 

Based on 101 obs. from 1972q1 to 1997q1 
Variables included in the unrestricted VAR: Y, K, M 

Order LL AIC sac LR test 

8 1092.2 1014.2 912.1 
7 1089.4 1020.4 930.1 x2(9) ;, 5.62 [.777] 

6 1068.0 1008.0 929.5 x2(18) = 48.33 [.OOOJ 
5 1064.1 1013.1 946.3 x2(27) = 56.21 [.001) 
4 1060.7 1018.7 963.7 x2(36) = 62.97 [.0041 
3 1051.1 1018.1 974.9 x2(45) = 82.15 [.0011 
2 1045.1 1021.1 989.7 x2(54) = 94.13 [.001] 
1 938.8 968.8 949.2 x2(63) = 2i6.58 [.OOOJ 
0 284.5 275.5 270.7 x2(72) = 1615.1 [.OOOJ 

Note: AIC = Akaike information criterion; SBC = Schwarz Bayesian criterion. 

Table 17.11 The Pantula principle for the monetization ratio 
proxy variable, k = 2 

Ho r n-r Mode/1 Mode/2 Mode/3 

A max test 
0 3 40.68 19.96 31.21 
1 2 13.13' 4.56 13.65 
2 1 3.69 0.07 4.17 

A trace test 
0 3 57.50 29.60 42.03 
1 2 4.56' 4.46 17.82 
2 1 0.07 0.07 4.17 

Note: ·Denotes the first time when the null hypothesis is not rejected for the 
90°/~ significance level. 

Adjusted LR test 

4.17 [.900] 
35.89 [.007] 
41.74 [.035] 
46.76 [.0108] 
61.00 [.056] 
69.90 [.072] 

160.82 [.000] 
1199.4 [.000] 

see that both the trace and the maximal eigenvalue test statistics suggest the existence 
of one cointegrating relationship. 

The results of the cointegration test are presented in Table 17.12. We observe one 
cointegration vector which is given in the last row of the table, and the monetization 
ratio and the capital/labour ratios show the expected positive signs. However, the model 
selected suggests that there is no constant in the cointegrating vector. This may be 
interpreted as evidence that the technological parameter in the production function is 
not significant; and that all the technological innovation is driven by the monetization 
ratio, but this is implausible. Also, the corresponding vector error-correction model 
(VECM) suffers from residual serial correlation and non-normality. This suggests that 
the lag length chosen may be too small and an alternative lag length might be used. 

Thus, we reestimated the model for a lag-length of seven. (We also included 
intervention dummies for residual outliers to help accommodate non-normality) The 
results in Table 17.13 indicate that the appropriate model this time has unrestricted 
intercepts and no trends, which is consistent with economic theory predictions; 
namely, that there is a stochastic trend in technical progress (see Greenslade, Hall 
and Henry, 1999). 
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Table 17.12 Cointegration test based on Johansen's max. likelihood method: k = 2 

Null 
hypothesis 

Amax rank tests 
Ho:r=O 
Ho: r::; 1 
Ho: r:::: 2 

Alternative 
hypothesis 

Ha r > 0 
Ha r > 1 
Ha r > 2 

Amax rank value 
40.68. 
13.13 
3.69 

A trace rank tests Atrace rank value 
Ho : r = 0 Ha : r = 1 57.50• 
Ho : r = 1 Ha : r = 2 16.82 
Ho : r = 2 Ha : r = 3 3.69 
Normalized ecm: Y = 0.408* K + 0.286* M + 8.392 

-Critical values 

95% 

22.04 
15.87 
9.16 

34.8'7 
20.18 

9.16 

90% 

19.86 
13.81 
7.53 

31.39 
17.78 

7.53 

Note: 107 observations from 1970q3 to 1997q1. ("."")denote rejection of the null hypothesis for the 5% and 10% 
significance levels respectively. Critical values from Ostervald-Lenum (1992). 

Table 17.13 The Pantula principle for the monetization ratio proxy variable, k = 7 

Ho r n- r1 Model1 Mode/2 Model3 

A max test 
0 3 32.29 29.20 42.60 
1 2 27.27 8.76. 12.8Q 
2 1 8.58 0.19 8.61 

A trace test 
0 3 69.32 38.17 t/4.02 
1 2 36.35 8.96. 21.41 
2 1 8.58 0.13 8.61 

Note: • Denotes the first time when the null hypothesis is not rejected for the 90% significance level. 

Table 17.14 Cointegration test based on Johansen's max. likelihood method: k = 7 

Null 
hypothesis 

A max rank tests· 
Ho:r=O 
Ho: r::; 1 
Ho: r::;; 2 

A trace rank tests 

Alternative 
hypothesis 

Ha r > 0 
Ha r > 1 
Ha r > 2 

Ho:r=O Ha r=1 
Ho : r = 1 Ha r = 2 
Ho : r = 2 Ha r = 3 

Normalized ecm: Y = 0.376* K + 0.335* M 

Amax rank value 
29.20. 

8.76 
0.19 

A trace rank value 
38.17" 

8.96 
0.19 

Critical values 

95% 90% 

21.12 19.02 
14.88 12.98 
8.07 6.50 

31.54 28.78 
17.86 15.75 
8.07 6.50 

Notes: 102 observations from 1971q1 to 1997q1. ("."")denote rejection of the null hypothesis for the 5% and 10% 
significance levels respectively. Critical va.lues from Ostervald-Lenum (1992). 

' The results for the cointegration tests are presented in Table 17.14. Again we conclude 
that there exists one cointegrating relationship (as in the case with the two lags) which 
is reported in the last row of the table. We observe a strong positive relationship between 
the monetization ratio and the GOP per capita, which provides evidence in favour of the 
hypothesis that there is a link between financial development and economic growth. 
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Table 17.15 Summary results from lhe VECMs and diagnostic tests 

6.Y 6.K 6.M 

constant 0.904 (4.507) -0.141 (-1.488) -0.908 (-2.775) 
ecm(-1) -0.208 (-4.49) 0.004 (1.54) 0.280 (2.78) 
R2 0.79 0.75 0.79 
S.E. of regression 0.006 0.002 0.01 

x~_c_(4) 0.639 2.748 8.195 

X~orm<2l 0.776 5.995 5.585 

X~e1 (1) 2.511 0.067 2.993 

drch(4) 1.445 4.781 3.239 

Note: • Rejects null hypothesis at 5% significance level. t statistics in parentheses. 

Table 17.1 S reports summary results from the VECMs and the bas.ic diagnostics about 
the residuals of each error-correction equation. Namely, we present the coefficients 
and the corresponding t statistics for the ecmt-l component which in our case have 
the expected signs and are statistically significant in the equations of Y and M. The 
insignificance of the ECM component for the capital/labour variable indicates that 
this ratio is weakly exogenous to the model. The diagnostic tests involve x 2 tests 
for the hypothesis that there is no serial correlation; that the residual follow the 
normal distribution; that there is no heteroskedasticity; and lastly that there is no 
autoregre_ssive conditional heteroskedasticity. In all equations the diagnostics suggest 
that the reslduals are Gaussian as the Johansen method presupposes. 

Turnover ratio 

Continuing, we proceed with the next financial development proxy variable which 
is the turnover ratio. The results of the tests for the lag length of this model (which 
includes GOP per capita, turnover ratio, capital/labour ratio, intercept and various 
structural dummy variables) are reported in Table 17.16 and indicate a lag length of 
order 2. All three alternative measures of the order of lag length agree for this choice. 
In this case the selected model is the one with the unrestricted intercept but ·not trend 
in the levels. of the data, consistent with our expectations (see Table 17 .17). The results 
of the cointegration test are presented in Table 17 .18. We observe one cointegration 
vector reported in the same table with the expected signs, indicating that there exists 
a positive long-run relationship between GDP per capita and the turnover ratio. Again 
the diagnostics reported in Table 17.19 show that the error terms are Gaussian. The 
ECM coefficients have the expected signs and are statistically significant and different 
from zero. However, the low coefficient on C:!;Jital is hard to interpret. 

Claims and currency ratios 

Extending our analysis to the other two financial development proxy variables (claims 
and currency ratios) we found in both cases that the suitable model was the second 
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Table 17.16 Test statistics and choice criteria for selecting the order of the VAR 

Based on 77 obs. from 1978q1 to 1997q1 
List of variables included in the unrestricted VAR: Y, K, T 

Order LL AIC SBC LR test Adjusted LR test 

8 692.6 614.6 523.2 
7 685.3 616.3 535.4 x2(9) = 14.54[.104) 9.63 [.381) 
6 679.9 619.9 549.6 x2(18) = 25.24[.118] 16.72 [.542) 
5 672.0 621.0 561.2 x2(27) = 41.17 [.040] 27.26 [.449) 
4 667.2 625.2 576.0 x2(36) = 50.80 [.052) 33.64 [.581) 
3 664.4 631.4 592.7 x2(45) = 56.42 [.118] 37.37 [.783) 
2 649.4 625.3 597.2 x2(54) = 86.55 [.0031 57.32 [.353) 
1 606.8 591.8 574.3 x2(63) = 171.48 [.000] 113.58 [.000] 
0 170.4 164.4 157.3 x2(72) = 1044.4 [.000] 691.75 [.000] 

Note: AIC = Akaike information criterion; SBC = Schwarz Bayesian criterion. 

Table 17.17 The Pantula principle for the turnover ratio proxy variable 

Ho r n-r Model1 Mode/2 Mode/3 

;._max test 
0 3 49.86 24.11 27.76' 
1 2 23.74 8.67' 17.96 
2 1 7.34 0.55 0.43 

i.. trace test 
0 3 49.86 33.43 54.19 
1 2 23.74 9.23. '26.43 
2 1 7.34 0.55 8.46 

Note: • Denotes the first time when the null hypothesis is not rejected for the 90% significance level. 

Table 17.18 Cointegration test based on Johansen's max. likelihood method 

Null 
hypothesis 

Amax rank tests 
Ho:r=O 
Ho: r:::: 1 
Ho: r:::: 2 
Atrace rank tests 

Alternative 
hypothesis 

Ha: r > 0 
Ha: r > 1 
Ha: r > 2 

Ho : r = 0 Ha r = 1 
Ho : r = 1 Ha r = 2 
Ho : r = 2 Ha r = 3 

Normalised ecm: Y = 0.376* K + 0.335* M 

Amax rank value 
24.11" 
8.67 
0.55 

).trace rank value 
33.43. 
9.23 
0.55 

Critical values 

95% 90% 

21.12 19.02 
14.88 12.98 
8.07 6.50 

31.54 28.78 
17.86 15.75 
8.07 6.50 

Note: 83 observations from 1976q3 to 1997q1. r.'") denote rejection of the null hypothesis for the 5% and 10% 
significance levels respectively. Critical values form Ostervald-Lenum (1992). 

(unrestricted intercept, no trends), but there is no cointegration relationship among 
those variables and the GDP per capita (see Tables 17.20 and 17.21). 

Thus, with the Johansen procedure we found strong evidence of cointegration 
between two of the four financial development proxies (monetization and the turnover 
ratio) and GDP per capita. 
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Table 17.19 Summary results from the VECMs and diagnostic tests 

6Y 6K 

ecm(-1) -0.025 ( -4.29) 0.006 (2.283) 
R2 0.59 0.77 
S.E. of Regression 0.005 0.0027 

x~.c.<4l 6.48 5.56 

X~orm(2) 0.18 3.01 

X~el(1) 0.93 0.06 

X~rch<4l 3.89 11.45 

Note: • Rejects null hypothesis at 5% significance level. t statistics in parentheses. 

Table 17.20 The Pantula principle for the claims ratio proxy variable 

Ho r n-r Mode/1 Mode/2 

A max test 
0 3 39.60 13.27* 
1 2 11.04 9.60 
2 1 7.60 0.24 

A trace test 
0 3 58.25 23.12. 
1 2 18.65 9.58 
2 1 0.06 0.24 

Note: • Denotes the first time when the null hypothesis is not rejected for the 90% significance level. 

Table 17.21 The Pantula principle for the currency ratio proxy variable 

Ho r n-r Mode/1 Mode/2 

A max test 
0 3 39.11 11.20. 
1 2 7.70 7.51 
2 1 6.13 0.09 

A trace test 
0 3 52.95 18.81. 
1 2 13.84 7.60 
2 1 6.13 0.09 

Note: • Denotes the first time when the null hypothesis is not rejected for the 90% significance level. 

A model with more than one financial development 
proxy variable · 

337 

6T 

0.44 (2.61) 
0.42 
0.171 
3.03 

4.40 

1.04 

1.88 

Mode/3 

31.73 
12.88 
9.34 

53.96 
22.22 

9.34 

Mode/3 

32.00 
10.87 

7.37 

50.25 
18.25 
7.37 

In this section we examine a specification which includes more than one financial 
development proxy. First we estimated a model including all four proxy variables; 
the selected lag length was two (see Table 17.22) and the appropriate model includes 
unrestricted intercepts but no trends in the VECMs (Table 17.23). 

The results for the cointegration test are reported in Table 17 .24. This time 
we have two coint~grating vectors, which is consistent with the previous 
findings of cointegration among monetization and GDP per capita, and turnover 
and GDP per capita. The results from the VECM for all those variables are 
reported in Table 17 .25, and indicate that the claims ratio and the currency 

-...----;- ·.-
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Table 17.22 Test statistics and choice criteria for selecting the order of the VAR 

Based on 77 obs. from 1978q1 to 1997q1 
List of variables included in the unrestricted VAR: Y, K, T, M, CL, CUR 

Order LL AIC SBC LR test Adjusted LR test 

8 1421.4 1121.4 769.8 
7 1363.1 1099.1 789.7 x2(36) = 16.67 [.000] 40.91 [.264) 
6 1312.6 1084.6 817.4 x2(72J = 17.67 [.OOOJ 76.32 [.341) 
5 1287.0 1095.0 869.9 x2(108) = 268.94 [.000] 94.30 [.823) 
4 1254.7 1098.7 915.8 x2(144) = 333.54 [.000] . 116.95 [.952] 
3 1225.3 1105.3 964.6 x2(180) = 392.33 [.000] 137.57 [992) 
2 1190.3 1106.3 1007.9 x2<216) = 462.23 [.OOOJ 162.08 [.998) 

1129.5 1081.5 1025.2 x2(252) = 583.96 [.000] 294.76 [.987) 
0 90.47 378.4 364.4 x2(288) = 2061.9 [.000] 723.01 [.000) 

Note: AIC = Akaike information criterion; SBC = Schwarz Bayesian criterion. 

Table 17.23 The Pantula principle for all the financial dev. ratio proxy variables 

Ho r n-r Model1 Model2 Model3 
--

J.. max test 
0 6 51.37 51.12 56.60 
1 5 41.90 34.65 47.95 
2 4 29.81 18.37" 24.B6 
3 3 17.37 10.80 17.20 
4 2 7.50 5.79 10.80 
5 1 5.70 0.86 5.76 

J.. trace test 
0 6 153.68 121.99 163.23 
1 5 102.31 70.86 106.23 
2 4 60.40 36.20* 58.67 
3 3 30.58 17.46 33.80 
4 2 13.21 6.66 16.60 
5 1 5.70 0.86 5.79 

Note: • Denotes the first time when the null hypothesis is not rejected for the 90% significance level. 

ratio should be treated as weakly exogenous variables in the cointegrating 
model. Therefore, we reestimated treating those two proxies as exogenous 
variables. However, while the results then clearly indicated the existence of one 
cointegrating vector with the correct - according to the theory - signs of the 
coefficients for the capital/labour ratio and the financial proxies, we were in all cases 
unable to accept the exogeneity test conducted after that. 

Thus, we finally estimated a model including the financial development proxies, 
which we found are cointegrated with per capita GDP (namely the turnover and the 
monetization ratio). The results of the test for cointegration of this model are presented 
in Table 17 .26. It is clear that we have one cointegrating vector which is reported in 
the same table. From these results, we observe a positive relationship between GOP per 
capita and the capital/labour ratio with a higher coefficient than from the previous 
cases, and also positive relationships between the dependent variable and the two 
financial development ratios. We do not wish to claim too much about the results of this 
final specification, but it seems to capture some of the implications of the underlying 
economic theory and at least is consistent with the previous findings of the tests for 
cointegration for each variable reflecting financial development separately. 
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Table 17.24 Cointegration test based on Johansen's max. likelihood method 

Null 
hypothesis 

Alternative 
hypothesis 

Critical values 

95% 90% 

Amax rank tests 
H0 :r=0 
Ho: r:::: 1 
Ho: r:::: 2 
H0 : r:::: 3 
Ho: r:::: 4 
H0 : r:::: 5 

Ha: r > 0 
Ha: r > 1 
Ha: r > 2 
Ha: r > 3 
Ha: r > 4 
Ha: r > 5 

Amax rank value 
51.12" 
34.65" 
18.37 
10.80 

5.79 
0.86 

Atrace rank tests Atrace rank Vqlue 

39.83 
33.64 
27.42 
21.12 
14.88 
8.07 

Ho : r = 0 Ha : r = 1 121.99" 95.87 
Ho : r = 1 Ha : r = 2 70.86" 70.49 
H0 : r = 2 Ha : r = 3 36.20 48.88 
H0 :r=3 H8 :r=4 17.46 31.54 
H0 :r=4 Ha:r=5 6.66 17.86 
Ho : r = 5 Ha : r = 6 0.86 8.07 

Normalised ecm1: Y = 0.138*K + 0.130*M + 0.252*CUR + 0.098*Cl + 0.058* T 
Normalised ecm2: Y = 0.231 * K + 0.200* M + 0.279* CUR + 0.007* CL + 0.089* T 

36.84 
31.02 
24.99 
19.02 
12.98 
6.50 

91.40 
66.23 
45.70 
28.78 
15.75 
6.50 

Noles: 83 observations from 1976q3 to 1997q1. (" ... )denote rejection of the null hypothesis for the 5% and 10% 
significance levels respectively. Critical values form Ostervald-Lenum (1992). 

constant 
ecm1(-1) 
ecm2(-1) 
R2. 
S.E.of 
Regression 

x§.c_C4l 

X~orm(2J 
X~el(1) 
X~rch(4) 

Table 17.25 Summary results from the VECMs and diagnostic tests 

6 }" tl.K tl.M I'!. CUR tl.CL tl.T 

1.27(4.88) -0.26(-1.93) -0.01(-0.32) -0.14(-0.35) -0.01(-1.14) -29.3(-2.57) 
0.007(1.2) -0.007(-0.2) 0.01(1.79) -0.01(-1.14) -1.52(-5.91) 0.03(0.18) 

-0.03( -5.1 B) 0.007(2.27) 0.01 ( 1.80) -0.004( -0.44) -0.33( -1.31) 0.35(1. 78) 
0.59 0.70 0.52 0.40 0.52 0.23 
0.005 0.003 0.1 0.009 0.25 0.19 

3.95 8.69 13.95. 

0.52 3.32 15.53. 

0.85 0.08 0.0001 

5.43 1.71 3.16 

3.43 

7.31" 

0.62 

2.32 

15.18" 

69.74" 

0.004 

2.54 

22.29. 

1.49 

0.64 

0.89 

Table 17.26 Cointegration test based on Johansen's max. likelihood method 

Null 
hypothesis 

Amax rank tests 
Ho:r=O 
Ho: r:::: 1 
Ho: r:::: 2 
Ho: r:::: 3 

Alternative 
hypothesis 

~ r>O 
~ r>1 
~ f>2 
~ f>3 

A max rank value 
30.24. 
14.29 

5.07 
0.02 

Atrace rank tests A trace rank value 
Ho : r = 0 Ha r = 1 49.63• 
Ho : r = 1 Ha r = 2 19.39 
Ho : r = 2 Ha r = 3 5.09 
Ho : r = 3 Ha r = 4 0.02 

Normalised ecm: Y = 0.122* K + 0.11 0* M + 0.073* T 

Critical values 

95% 90% 

27.42 24.99 
21.12 19.02 
14.88 12.98 
8.07 6.50 

48.88 45.70 
31.54 28.78 
17.86 15.75 
8.07 6.50 

Notes: 83 observations fJom 1976q3 to 1997q1. ( .... )denote rejection of the null hypothesis for the 5% and 10% 
significance levels respectively. Critical values form Ostervald-Lenum ( 1992). 
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Questions 

1 Explain the meaning of cointegration. Why is it so important for economic analysis? 

2 Why is it necessary to have serjes that are integrated of the same order in order to 
possibly have cointegration? Give examples. 

3 What is the error-correction model? Prove that the ECM is a reparametrization of the 
ARDL model. 

4 What are the good features of the ECM that make it so popular in modern 
econometric analysis? 

5 Explain step by step how can one test for cointegration using the EG approach. 

6 State the drawbacks of the Engle-Granger (EG) approach, and discuss these drawbacks 
in face of its alternative (i.e. the Johansen approach). 

7 Is it possible to have two l(l) variables and two 1(2) variables, in a Johansen test 
for cointegration, and find that the 1(2) variables are cointegrated with the 1(1)? 
Explain analytically. 

Exercise 17.1 

The file korea_phillips.wfl contains data for wages and unemploymt>nt for ti1e Korean 
economy. Test for cointegration among those two variables with the EG approach and 
comment on the validity of the Phillips curve theory for the Korean economy. 

Exercise 17.2 

The file cointegration.wfl contains data on three variables (x, y and z). Test the variables 
for their order of integration and then apply the EG approach for the three different 
pairs of variables. In -,..·hich of the pairs do you find cointegration? 

Exercise 17.3 

Use the file in exercise 2 and verify your results by using the Johansen approach. Include 
all three variables in a multivariate Johansen cointegration test. What is your result? 
Can you identify the cointegrating vector(s)? 

Exercise 17.4 

The files Norway.wfl, Sweden.wfl and Finland.wfl contain data for gross domestic 
product and various financial proxies as in the computer example for the UK case 
presented in this chapter. For each of these countries test for cointegration among 
the pairs of the variables applying both the EG and the Johansen approach as in the 
computer example. After determining whether or nol cointegration exists, estimate the 
respective ECMs. ' 
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Introduction: the advantages of 
panel data 

f' 

Panel Data Econometrics 

Panel data estimation is often considered to be an efficient analytical method in 
handling econometric data. Panel data analysis has become popular among social 
scientists because it allows the inclusion of data for N cross-sections (e.g., countries, 
households, firms, individuals, etc.) and T time periods (e.g., years, quarters, 
months, etc.). The combined panel data matrix set consists of a time series for each 
cross-sectional member in the data set, and offers a variety of estimation methods. In 
this case, the number of observations available increases by including developments 
over time. 

A dataset which consists only of observations of N individuals at the same point 
in time is referred to as a cross section dataset. Some cross section datasets also exist over 
time so that we may have a number of cross section samples taken at different points in 
time. These datasets do not however constitute a panel dataset as we can not gene~ally 
follow the same individual member though time. Examples of such datasets would be 
household surveys which are repeated every year but where different households are 
surveyed each year and so we cannot follow the same household through time. A true 
panel dataset would allow us to follow each individual in the panel over a number of 
periods. 

If the panel has the same number of time observations for every variable and every 
individual it is known as a balanced panel. Often we work with unbalanced panels 
where we have different numbers of time observations for some of the individuals. 
When a panel is unbalanced this does not cause any major conceptual problems but 
the data handling from a computer point of view may become a little more complex. 

The basic idea behind panel data analysis comes from the notion that the individual 
relationships will all have the same parameters. This is sometimes known as the pooling 
assumption as we are in effect pooling all the individual together into one dataset 
and imposing a common set of parameters across them. If the pooling assumption is 
correct then panel data estimation can offer some considerable advantages. (a) The 
sample size can be increased considerably by using a panel and hence much better 
estimates can be obtained. (b) Under certain circumstances the problem of omitted 
variables which might cause biased estimates in a single individual regression may not 
occur in a panel context Of course the disadvantage of panel estimation is that if the 
pooling assumption is not correct then we may have problems. Although even in this 
case, which is often referred to as a heterogeneous panel (because the parameters are 
different across the individuals) we would normally expect the panel data estimator to 
give some representative average estimate of the individual parameters. However, we 
would warn that there are certain circumstances in which this may not happen and 
panel techniques can give quite biased results. 

A common problem of time-series estimations is that while estimating samples with 
very few observations, it is difficult for the analyst to obtain significant t-ratios or F­
statistics from regressions. This problem is common with annual data estimations, since 
there are very few annual series which extend more than SO years. An efficient solution 
to the problem is to 'pool' the data into a 'panel' of time series from different cross­
sectional units. This pooling of the data generates differences among the different cross­
sectional or time-series observations that can actually be captured with the inclusion of 
dummy variables. This use of dummies to capture systematic differences among panel 

_ observations result_s_ in whatls_l<_!l()Wn a~[ixed-e@c!s model._the e<~_siestway of dealing_ 
with pooled data. An alternative method is called the random-effects model. 
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The linear panel data model 

A panel data set is formulated by a sample that contains N cross-sectional units (i.e. 
countries) that are observed at different T time periods. Consider for example a simple 
linear model with one explanatory variable as given by: 

yit = a + f3Xit + llit (18.1) 

whei:e the variables Y and X have both i and t subscripts for i = 1, 2, ... , N sections 
and t = 1, 2, ... , T time periods. If our sample set consists of a constant T for all 
cross-sectional units, or in other words if we obtain a full nest of data both across 
countries and across time, then the data set is called balanced. Otherwise when 
observations are missing for the time periods of some of the cross-sectional units then 
the panel is called unbalanced. 

In this simple panel the coefficients a and f3 do not have any subscripts, suggesting 
that they will be the same for all units and for all years. We can introduce some degree of 
heterogeneity in this panel by relaxing the fact that the constant a should be identical 
for all cross-sections. To understand this consider a case where in our sample we have 
different countries (for example high and low-income, OECD and non-OECD, and so 
on), and that we expect differences in their behaviour. Thus our mode! becomes: 

Yit = ai + f3Xu + uit (18.2) 

where, ai can now differ for each country in the sample. At this point someone may 
wonder whether the f3 coefficient should also vary across different countries. However, 
this would require a separate analysis for each one of the N cross-sectional units and 
this is the pooling assumption which is the basis of panel data estimation. 

Different methods of estimation 

In general, simple linear panel data models can be estimated using three different 
methods: (a) with a common constant as in equation (18.1), (b) allowing for fixed 
effects, anq (c) allowing for random effects. 

The common constant method 

The common constant method (also called the pooled OLS method) of estimation 
presents results under the principal assumption that there are no differences among 
the data matrices of the cross-sectional dimension (N). In other words the model 
estimates a common constant a for all cross-sections (common constant for countries). 
Practically, the common constant method implies that there are no differences between 
the estimated cross-sections and it is useful under the hypothesis that the data set is a 
priori homogeneous (e.g. we have a sample of only high-income countries, or EU-only 
countries, etc). However, this case is quite restrictive and cases of more interest involve 
the inclusion of fixed and random effects in the method of estimation. 

s 



f' 

346 Pa11e/ Data Econometrics 

The fixed effects method 

In the fixed effects method the constant is treated as group (section)-specific. This means 
that the model allows for different constants for each group (section): So the model is 
similar to that of (18.1). The fixed effects estimator is also known as the least-squares 
dummy variables (LSDV) estimator because in order to allow for different constants for 
each group, it includes a dummy variable for each group. To understand this better 
consider the following model: 

Yit = a; + lh X lit + f:JzX Zit + · · · + f:JkXkit + ll;c (18.3) 

which can be rewritten in a matrix notation as: 

Y =Da+XP' +u (18.4) 

where we have: 

C) (;6 0 ... 

nM Yz iT 
Y= ' D= . 

~'I! NTxl 0 0 

(XJI XJ2 ... 
Xlk) xzi xzz xzk 

X= . 

XNJ XN2 X~k NTxk 

(18.5) 

and 

(
al) (P1) az Pz 

01 = p' = 

a~ Nxl, L kxl 

(18.6) 

where the dummy variable is the one that allows us to take different group-specific 
estimates for each of the constants for every different section. 

Before assessing the validity of the fixed effects method, we need to apply tests to 
check whether fixed effects (i.e. different constants for each group) should indeed 
be included in the model. To do this the standard F -test can be used to check fixed 
effects against the simple common constant OLS method. The null hypothesis is that 
all the constants are the same (homogeneity), and that therefore the common constant 
method is applicable: 

· Ho : a1 = az = · · · =aN (18.7) 
--------
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The F statistic is: 

F = (RjE- R~c) /(N- 1) 

( 1- RJE) /(NT- N- k) ~ F(N- 1, NT- N- k) 
(18.8) 

where RjE i~ the coefficient of determination of the fixed effects model and R~c is the 
coefficient of determination of the common constant model. IfF-statistical is bigger 
than. the F-critical then we reject the null. 

The fixed effects model has the following properties: 

(1) It essentially captures all effects which are specific to a particular individual and 
which do not vary over time. So if we had a panel of countries the fixed effects 
would take full account of things such as geographical factors, natural endowments 
and any other of the many basic factors which vary between countries but not over 
time. Of course this means that we can not add extra variables which also do not 
vary over time, such as country size for example, as this variable will be perfectly 
co-linear with the fixed effect. 

(2) In some cases it may involve a very large number of dummy constants as some 
panels may have many thousand individual members, for example large survey 
panels. In this case the fixed effect model would use up N degrees of freedom. 
This is not in itself a problem as there will always be many more data points 
than N. However i~omputationally it may be impossible to actually calculate many 
thousand different constants. In this case many researchers would transform the 
model by differencing all the variables or be taking deviations from the mean for 
each variable, which has the effect of removing the dummy/constants and avoids 
the problem of estimating so many parameters. However differencing the model, 
in particular may be undesirable as it may distort the parameter values and can 
certainly remove any long run effects. 

It is also possible to extend the fixed effect model by including a set of time dummies 
as well. This is known as the two way fixed effect model and it has the further advantage 
of capturing any effects which vary over time but are common across the whole panel. 
For example if we were considering firms in the UK they might all be affected by a 
common exchange rate and the time dummies would capture this. 

The fixed effect model is a very useful basic model to start from; however, traditionally, 
panel data estimation has been mainly applied to datasets where N is very large and in 
this case a simplifying assumption is sometimes made which gives rise to the random 
effects model. 

The random effects method 

An alternative method of estimating a model is the random effects model. 
The difference between the fixed effects and the random effects method is that the 
latter handles the constants for each section not as fixed, but as random parameters. 
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Hence the variability of the constant for each section comes from the fact that: 

a;= a+ v; 

where v; is a zero mean standard random variable. 
The random effects model therefore takes the following form: 

Yit =(a+ v;) + thXlit + f3zXzit + · · · + f3kX.kit + 11it 

Yit =a+ fliXlit + /3zXz;r + · · · + fikXkit + (v; + u;c) 

(18.9) 

(18.10) 

(18.11) 

One obvious disadvantage of the random effects approach is that we need to make 
specific assumptions about the distribution of the random component. Also, if the 
unobserved group-specific effects are correlated with the explanatory variables, then 

. the estimates will be biased and inconsistent. However, the random effects model has 
the following advantages: 

1 It has fewer parameters to estimate compared to the fixed effects method. 

2 It allows for additional explanatory variables that have equal value for all observ­
ations within a group (i.e. it allows us to use dummies). 

Again in order to use random effects we have to be very careful to check whether. there 
is any meaning to using them for our model compared to the fixed effects model. 
Comparing the two methods, one might expect that the use of the random effects 
estimator is superior compared to the fixed effects estimator, because the former is the 
GLS estimator and the latter is actually a limited case of the random effects model, as it 
corresponds to cases where the variation in individual effects is relatively large. But on 
the other hand the random effects model is built under the assumption that the fixed 
effects are uncorrelated with the explanatory variables, an assumption that in practice 
creates strict limitations in panel data treatment. 

In general, the difference between the two possible ways of testing panel data models 
is this: the fixed effects model assumes that each country differs in its intercept term, 
whereas the random effects model assumes that each country differs in its error term. 
Usually, when the panel is balanced (i.e. contains all existing cross-sectional data), one 
might expect that the fixed effects model will work best. In other cases, where the 
sample contains limited observations of the existing cross-sectional units, the random 
effects model might be more appropriate. 

The Hausman test 

The Hausman test is formulated to assist in making a .choice between the fixed effects 
and random effects apprbaches. Hausman (1978) adapted a test based on the idea 
that under the hypothesis of no correlation, both OLS and GLS are consistent" but 
OLS is inefficient, while under the alternative OLS is consistent but GLS is not. More 
specifically, Hausman assumed that there are two estimators Po and fi 1 of the parameter 
vector {3 and he added two hypothesis-testing procedures. Under Ho, both estimators 
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are consistent bu! Po is inefficient, and under H1, Po is consistent and efficient, but p1 
is inconsistent. 

For the panel data the appropriate choice between the fixed effects and the random 
effects methods investigates whether the regressors are correlated with the individual 
(unobserved in most cases) effect. The advantage of the use of the fixed effects estimator 
is that it is consistent even when the estimators are correlated with the individual effect. 
In other words, given a panel data model where fixed effects would be appropriate the 
Hausman test investigates whether random effects estimation could be almost as good. 
According to Ahn and Moon (2001), the Hausman statistic may be viewed as a distance 
measure between the fixed effects and the random effects estimators. Thus we actually 
test H0 , that random effects are consistent and efficient, versus H1, that random effects 
are inconsistent (as the fixed effects will be always consistent). The Hausman test uses 
the following test statfstic: 

AFE ARE AFE ARE 1 AFE ARE 2 
H = (fJ - fJ )'[Var({J ) - Var({J )]- (fJ - fJ ) -~ x (k) (18.12) 

If the value of the statistic is large, then the difference between the estimates is 
significant, so we reject the null hypothesis that the random effects model is consistent 
and we use the fixed effects estimators. In contrast, a small value of the Hausman 
statistic implies that the random effects estimator is more appropriate. 

Computer examples with panel data 

Inserting panel data in EViews 

One difficulty in working with panel data is that it is quite different from what we have 
seen so far using EViews. To use panel data requires specific data manipulation in order 
to insert the data in EViews in a way that will allow us to get results from the different 
panel methods of estimation we have seen above. 

Consider the following case: assume we have a data set formed of three variables 
(Y; X and£), and that we have panel data for those three variables for eight different 
sections (i.e. i = 1, 2, ... , 8) and for 40 different time periods (i.e. t = 1, 2, ... , 40), for 
example yearly data from 1960 to 1999. We want to enter these data into EViews to 
estimate a panel regression of the form: 

Yu =a;+ fhXu + f3zEu + uit (18.13) 

To do this we follow the following steps: 

Step 1 Create a workfile. As a first step we need to create a new EViews workfile by 
going to File/New/Workfile and setting values for the start and end periods 
of our data set (in our case 1960 to 1999). 

Step 2 Create a pool object. The next step is to create a pool object. To do this we go 
to Object/New Object and from the list of objects click on Pool, provide a 
name for our pool object in the top right-hand corner of the window Name 
for the object (let's say basic) and click <OK>. The pool object window will 

J 
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open with the first line reading: 

Cross Section Identifiers: (Enter identifiers below this line) 

In this window we enter names for our cross-section dimension. If, for 
example, we have different countries we can enter the names of the countries, 
specifying short names (up to three letters for each) to have an equal number 
of letters for the description of each. If we have different individuals, we 
could enter numbers instead of the names of the individuals and keep a log 
file in E"cel to record numbers against names. Again in setting numbers as 
identifiers, an equal number of digits should be used for each section. 

Step 3 Enter the identifiers. In our example we have eight different sections so we can 
enter the identifiers with either names or numbers as we choose. Because we 
do not have (in this specific example) any information about the nature of 
the cross-sectional dimension, we may simply enter numbers for identifiers 
as follows: 

Cross Section Identifiers: (Enter identifiers below this line) 
01 
02 
03 
04 
OS 
06 
07 
08 

Step 4 Generate a variable. We can now proceed to generate variables that can be read 
in EViews as panel data variables. To do this click on the button Poo!Genr in 
the Pool Object window. This opens the generate series by equation window, 
in which we specify our equation. Let's say that we want first to enter the Y 
variable; to Jo so we type: 

y_?=O 

and click <OK>. This will create eight different variables in the Workfile 
window, namely the variables y_Ol, y_02, y_03, ... , y_08. To explain this a 
bit more, it is the question mark symbol (?) that instructs EViews to substitute 
each of the cross-section identifiers at that point; and we have also used the 
underscore(_) symbol to make the names of the variables easy to see. 

Step 5 Copying and pasting data from Excel. To do this we need to first explain how 
the data should look in Excel. If we open the eight variables (y_Ol, y_02, 
y_03, ... , y_08) created from the previous step in a group (to do this select 
all eight variables and double click on them to go to group) we will have a 
matrix of 40 x 8 dimensions of zeros; 40 because of the number of years in 
our file and 8 because of the number of cross-sections. This matrix is viewed 
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as what we call'years down- sections across', so it looks like: 

section 1 section 2 section 3 . . . . section 8 
1960 
1961 
1962 

1999 

Therefore, it is very important that we have our data in the same format in 
Excel. If, for example, the downloaded data were in tl?-e form 'sections down­
years across', we would have to transform them before entering them in 
EViews. (A simple way of doing this would be to select all the data, then copy 
the data (Edit/Copy) and finally paste the data into a different sheet using 
the Paste Special function (Edit/Paste Special) after ciicking on the choice 
transpose, in order to reformat the data as we require.) 

When we have the data in Excel as we want them (i.e. 'years down -
sections across'), then we simply copy all the data (the values of the data 
only, not the years or the variables/sections names) and then paste the data 
into the EViews group window with the zero values. In order to edit the group 
window and paste the data we need to activate the window by pressing the 
edit+/- button, and then go on Edit/Paste. After that we press the edit+/­
button once more to deactivate the window. 

The same proc:>dure should be followed for the rest of the variables (X 
and E). The file pand_test.xls contains the raw data in Excel and the file 
panel_test.wfl the same data transferred in EViews. 

. As a second example, consider the data in the file panel_eu.xls, that contains data 
fot the 15 EU countries (soN= 15) for the years 1960-99 unbalanced (so max T = 40) 
for three variables, GDP growth, gross fixed capital formation as % of GDP and FDI 
inflows as% of GOP. The reader should try as an exercise to transfer the data from Excel 
to EViews. (The result is in a file labelled panel_test.wfl.) We have used the following 
cross-section identifiers: 

BEL for Belgium 
DEN for Denmark 
DEU f<:?r Germany 
ELL for Greece 
ESP for Spain 
FRA for France 
IRE for Ireland 
ITA .for Italy 
LUX for Luxembourg 
NET for Netherlands 
OST for Austria 
POR for Portugal 
RFI for Republic of Finland 
SWE for Sweden 
UKA for United Kingdom 

s 
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Note that only the three letters should be written as names for the cross-section 
identifiers in the pool object. We have also used the following variable names 
GDPGR95_?, FDITOGDP _?and GFCFTOGDP _?(see file panel_eu.wfl). 

Table 18.1 Common constant 

Dependent Variable: Y_? 
Method: Pooled Least Squares 
Date: 04103/04 Time: 22:22 
Sample: 1960 1999 
Included observations: 40 
Number of cross-sections used: 8 
Total panel (balanced) observations: 320 

Variable 

c 
X_? 
E_? 

R-squared 
Adjusted R·squared 
S.E. of regression 
Log likelihood 
Durbin-Watson stat 

Coefficient 

50.27199 
0.496646 
1.940393 

0.739693 
0.738051 
2.689525 
-769.1500 
1.061920 

Std. Error 

2.040134 
0.018320 
0.153886 

t·Statistic 

24.64151 
27.10964 
12.60930 

Mean dependent var 
S.D.dependentvar 
Sum squared resid 
F -statistir 
Prob( F ·statistic) 

Table 18.2 Fixed effects 

Dependent Variable: Y_ ? 
Method: Pooled Least Squares 
Date: 04103/04 Time: 22:23 
Sample: 1960 1999 
Included observations: 40 
Number of cross-sections used: 8 
Total panel (balanced) observations: 320 

Variable 

X_? 
E_? 

Fixed Effects 

01-C 
02-G 
03-G 
04-G 
05-G 
06-G 
07-C 
08-C 

R-squared 
Adjusted R-squared 
S.E. of regression 
Log likelihood 
Durbin-Watson stat 

Coefficient 

0.473709 
1.845824 

53.24391 
53.35922 
52.37416 
52.89543 
52.64917 
53.34308 
52.76667 
51.85719 

0.746742 
0.739389 
2.682644 
-764.7575 
1.030970 

Std. Error 

0.021889 
0.157163 

t-Statistic 

21.64181 
11.74465 

Mean dependent var 
S.D.dependentvar 
Sum squared resid 
F -statistic 
Prob( F ·statistic) 

Prob. 

0.0000 
0.0000 
0.0000 

105.2594 
5.254932 
2293.034 
450.3965 
0.000000 

Prob. 

0.0000 
0.0000 

105.2594 
5.254932 
2230.940 
914.0485 
0.000000 
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Estimating a panel data regression 

After transferring the data into EViews, panel data estimation is done by the use of 
the pool object. Always double click on pool object (labelled as basic) and work from 
there. Let us assume that we have the panel_ test file open and that we want to estimate 
the following tpodel: 

Yit =a;+ !hX;t + f3zEit + uit (18.14) 

To do so from the basic (pool object) we should first click on the Estimate button. The 
Pooled Estimation window opens which asks us to provide names for the dependent 
variable and the regressors. For the model above we need to insert as dependent 
variable Y_? (the ? indicates that the computer will include the data for all cross­
sections from 1 to 8) and as regressors in the field that says common coefficients we 
include X_? and E_?. We also have the option to change the sample (by typing different 

Table 18.3 Random effects 

Dependent Variable: Y_? 
Method: GLS (Variance Components) 
Date: 04103104 Time: 22:24 
Sample: 1960 1:J99 
Included observations: 40 
Number of cross-sections used: 8 . 
Total panel (balanced) observations. :)20 

Variable 

c· 
X_? 
E_? 

Random Effects 

01-C 
02-G 
03-C 
04-C 
05-C 
06-C 
07-C 
08-C 

Coefficient 

47.30772 
0.523554 
2.220745 

0.258081 
-2.415602 

0.848119 
-1.775884 

1.190163 
-1.573142 

0.472518 
2.995747 

Std. Error 

1.340279 
0.012030 
0.149031 

GLS Transformed Regression 

A-squared 
Adjusted A-squared 
S.E. of regression 
Durbin-Watson stat 

A-squared 
Adjusted A-squared 
S.E. of regression 
Durbin-Watson stat 

0.716534 
0.714746 
2.806617 
1.140686 

Mean dependent var 
S.D.dependentvar 
Sum squared resid 

Unweighted Statistics including Random Effects 

0.594095 
0.591534 
3.358497 
0.796605 

Mean dependent var 
S.D.dependentvar 
Sum squared resid 

t-Statistic 

35.29692 
43.52132 
14.90118 

Prob. 

0.0000 
0.0000 
0.0000 

105.2594 
5.254932 
2497.041 

105.2594 
5.254932 
3575.601 
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starting and ending periods in the corresponding box), to include cross-section­
specific coefficients for some of the explanatory variables (to induce heterogeneity -
we will examine this later), and to choose a number of different estimation techniques 
including the common constant, fixed effects and random effects methods that we have 
examined before. By clicking next to common constant we get the results presented in 
Table 18.1. 

The interpretation of the results is as standard. If we want to take the fixed effects 
estimator we should click on estimate again, leave the equation specification as it is 
and click on the button next to fixed effects instead of common constant. The results 
are given in Table 18.2. Similarly we can obtain results for random effects, and these 
are given in Table 18.3. 

We leave it to the reader to estimate a model (using the data in the panel_eu.wfl 
file) that examines the effects of gross fixed capital formation and FDI inflows to gdp 
growth for the IS EU countries. 
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A dynamic model is characterized by the presence of a lagged dependent variable among 
the regressors. The basic model is: ' 

Y;,t = a; + tJiXu + y Yi,t-1 + Uj,t (19.1) 

where y is a scalar, and 1J and X;,r are each k x 1. Dynamic models are very 
important, especially in economics, because many economic relationships are dynamic 
in nature and should be modelled as such. The time dimension of panel data (unlike 
cross-sectional studies) enables us to capture the dynamics of adjustment~ 

In this simple dynamic model the only heterogeneity comes from the individual 
intercepts a; which are allowed to vary among different sections. However, sometimes 
in economics it is necessary to induce more heterogeneity in order to find spe_cific 
coefficients for different groups for some cases. Later we will consider the mean 
group and pooled mean group estimators that allow for larger heterogeneity in panel 
data models. 

The problem with the dynamic panels is that the traditional OLS estimators are biased 
and, therefore, different methods of estimation need to be introduced. These issues are 
examined analytically in the next sections of this chapter. 

Bias in dynamic panels 

Bias in the simple OLS estimator 

The simple OLS estimator for simple static panels is consistent as n or T ~ oo only 
when all explanatory variables are exogenous and are uncorrelated with the individual 
specific effects. However, due to the fact that the OLS estimator ignores the error­
component structure of the model, it is not efficient. Also, things are quite different 
when the model includes a lagged dependent variable. 

Consider the basic model presented in equation (19.1) which can be rewritten 
(omitting the X;,r regressors for simplicity) as: 

Y;,t =a;+ yY;,t-1 + u;,t (19 .2) 

It is easy to show that the OLS estimator for this model will be seriously biased due 
to correlation of the lagged dependent variable with the individual specific effects (a;) 
either random or fixed. Since Y;,t is a function of a;, then Y;,t- 1 is a function of a; as 
well. Therefore Yi,t-b which is a regressor in the model, is correlated with the error 
term and this obviously causes OLS estimators to be biased and inconsistent even if the 
error terms are not serially correlated. (The proof of this is quite difficult and requires 
lots of calculations using matrix algebra, beyond the scope of this text. Readers who 
would like a better insight into dynamic panels should read Baltagi (1995) chapter 8, 
or Hsiao (1986) chapter 6.) ~~---~------
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Bias in the fixed effects model 

The bias and inconsistency of the OLS estimator stems from correlation of the lagged 
dependent variable with the individual specific effects. It might therefore be thought 
that the within-transformation of the fixed effects model, given by: 

Y;,t- Y; = y(Yi,t-1- Yi,t-1) + (u;,t- ii;) (19.3) 

would eliminate the problem because now the individual effects (a;) are cancelled out. 
However, the problem is not solved that easily. 

Consider again the model· in equation (19.1) which can be rewritten as: 

Y;,t = ll·i + yYi,t-1 + Ui,t (19.4) 

- T -
where J..Li are now fixed effects. Let Y; = 1/T Lt=l Y,,r; Y;,t-l = ljT 

:Lf;:1
1 Y;,r- 1 and ii; = 1fT :LT= 1 ui,t· It can be shown again that the fixed estimator 

will be biased for small 'fixed' T. The bias this time is caused by having to eliminate 
the unknown individual effects (constants) from each observation, which creates a 
bias ljT between the explanatory variables in the 'within' transformed model and 
the residuals. Because Y;,r is correlated with ii; by construction (consider that ii; is an 
average containing ui,t-1> which is obviously correlated with Yi,t-1), (Yi,t-1- Yi,t-1) 

will be correlat:od with (u;,t - ii;) even if u;r are not serially correlated. 

Bias in the random effects model 

The problem with the generalized least-squares (GLS) method of estimation of the 
random dfects model is similar to that of the least-squ.Jres dummy variables (LSDV) 
estimation of the fixed effects model. In order to apply GLS, we have to quasi-demean 
the data. This demeaning unavoidably causes the quasi-demeaned dependent variable 
to be correlated with the quasi-demeaned residuals, and therefore the GLS estimator 
will also be biased and inconsistent. 

Solutions to the bias problem (due to the 
dynamic nature of the panel) 

There are two proposed solutions to the bias problem presented above. One is to 
introduce exogenous variables in the model. If exogenous variables are added (to a first­
order autoregressive process), the bias in the OLS estimator is reduced in magnitude but 
remains positive. The coefficients on the exogenous variables arc biased towards zero. 
However, the LSDV estimator, for small T, remains biased even with added exogenous 
variables. A second way is to use the instrumental variable methods proposed by Anderson 
and Hsiao (1981 and 1982) and Arellano and Bond (1991). The instrumental variable 
methods are quite complicated and beyond the scope of this text, but we mention them 
here since they are widely used in panels with small T dimensions. These instrumental 
variable estimators are sometime referred to as GMM estimators. 
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Bias of heterogeneous slope parameters 

All Panel data models make the basic assumption that at least some of the parameters 
are the same across the panel; this is sometimes refered to as the pooling assumption. 
Serious complications can arise if this assumption is not true and we can again get 
bias arising in both static and dynamic panels under certain circumstances. When the 
pooling assumation does not hold we refer to a panel as a heterogeneous panel, this 
simply means that some of the parameters actually vary across the pa!"lel. If we impose a 
constant parameter assumption incorrectly then serious problems may arise. Consider 
the following heterogeneous static model: 

Y;,t = Jli + PjX; + u;,t (19.5) 

where heterogeneity is introduced, for example, because we consider as cross-sections 
a large number of countries that are in differing stages of economic development, 
or have different institutions, customs etc. For simplicity assume that we have only 
one explanatory variable, Xif, and also suppose that the now heterogeneous P; 
coefficients are: 

P; = fi + v; (1~.6) 

In this case, Pesaran and Smith (1995) prove that both the Fixed Effects (FE) and the 
Random Effects (RE) estimators may be inconsistent. 

Consider now the dynamic autoregressive distributed lag (ARDL) model: 

Y;,t =a;+ y;Y;,t-1 + P;X;t + e;,t (19.7) 

where all coefficients are allowed to vary across cross-sectional units. If we want to 
consider long-run solutions we have that: 

/3; 
e; = 1- Y; (19.8) 

is the long-run coefficient of Xit for the ith cross-sectional unit. Using this we can 
rewrite equation (19. 7) as: 

~Y;,t =a;- (1- y;)(Y;,1_ 1 - e;X;1) + e;,t 

or substituting (1 - y;) with¢;: 

6-Y;,t =a;- ¢;(Y;,1_ 1 - O;X;1) + e;,t 

Let's consider now a random coefficients model, which will mean that: 

¢; = ¢ + v; 

e; = (} + w; 

(19.9) 

(19.10) 

(19.11) 

(19.12) 
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where v; and w; are two iid error terms. From this we have that the original coefficients 
in (19.7) are: 

{3; = B;c/J; = Bcp + cpw; + Bv; + w;v; (19.13) 

Having that y = 1-¢, and that f3 = Bcp, and substitutingthese two in (19.7) we get: 

Y;,t = a; + Yi Yi,t-1 + {J;X;,t + v;,t 

u;,t = e;,t- v;Y;,t-l + (c/Jw; + Bv; + w;v;)X;,t 

(19.14) 

(19.15) 

From this analysis, it is clear that v;,t and Y;,t-1 are correlated and therefore both the 
FE and the RE estimators are now inconsistent. This is an expected result given that we 
know that the FE and RE estimators are inconsistent for small T and infinite N. The 
big problem, here, is that both estimators will be inconsistent even for T -+ oo and 
N-> oo. 

Solutions to heterogeneity bias: 
alternative methods of estimation 

Pesaran, Shin and Smith (1999) suggest two different estimators in order to resolve the 
bias due to heterogeneous slopes in dynamic panels. These are the mean group (MG) 
estimator and the pooled mean gr···~•P (PMG) estimator. Both methods are presented 
briefly below. 

The mean group estimator 

The MG estimator derives the long-run parameters for the panel from an average of the 
long-run parameters from ARDL models for individual countries. For example, if the 
ARDL is the following 

Y;,t =a;+ y;Yi,t-1 + {J;Xit + e;,t (19.16) 

for country 'i, where i = 1, 2, ... , N, then the long-run parameter 8; for country i is: 

{3; 
B; = 1- Yi 

and the MG estimators for the whole panel will be given by: 

. 1 N 
B =- "B­NLl 

i=l 

. 1 N 
a- " -NLa; 

i=l 

(19.17) 

(19.18) 

(19.19) 
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It can be shown that MG estimation with sufficiently high lag orders yields super­
consistent estimators of the long-run parameters even when the regressors are /(1) (see 
Pesaran, Shin and Smith, 1999). The MG estimators are consistent and have asymptotic 
normal distributions for N and T sufficiently large. However, when T is small, the MG 
estimator of the dynamic panel data model is biased and can lead to misleading results, 
and therefore should be used cautiously. 

The pooled mean group (PMG) estimator 

Pesaran and Smith (1995) show that, unlike in static models, pooled dynamic 
heterogeneous models generate estimates that are inconsistent even in large samples. 
(The problem cannot be solved by extending the sample, as it flows from heterogeneity: 
extending the dimension of the cross-section increases the problem. Baltagi and Griffin 
( 1997) argue that the efficiency gains of pooling the data outweigh the losses from .the 
bias induced by heterogeneity. They support this argument in two ways. First, they 
informally assess the plausibility of the estimates they obtain for a model of gasoline 
demand using different methods. This is hard to evaluate as it relies upon a judgement 
about what is 'plausible'. Monte Carlo simulations would make the comparison clearer. 
Second, they compare forecast performance. However, this is a weak test to apply to 
the averaging technique, which is designed only to estimate long-run parameters and 
not the short-run dynamics. Baltagi and Griffin do not consider the next method to be 
discussed, (the PMG.) In the type of data set we are considering Tis sufficiently I:uge to 
allow individual country estimation. Nevertheless, we may still be able to ex;ploit the 
cross-section dimension of the data to some extent. Pesaran and Smith (1995) observe 
that while it is implausible that the dynamic specification is common to all countries, it 
is at least conceivable that the long-run parameters of the model may be common. They 
propose estimation by either averaging the individual country estimates, or by pooling 
the long-run parameters, if the data allows,. and estimating the model as a system. 
Pesaran, Shin and Smith (1999) (henceforth PSS) refer to this as the pooled mean group 
estimator, or PMG. It combines the efficiency of pooled estimation while avoiding the 
inconsistency problem flowing from pooling heterogeneous dynamic relationships. 

The PMG method of estimation occupies an intermediate position between the MG 
method, in which both the slopes and the intercepts are allowed to differ across 
countries, and the classical fixed effects method in which the slopes are fixed and 
the intercepts are allowed to vary. In PMG estimation, only the long-run coefficients 
are constrained to be the same across countries, while the short-run coefficients are 
allowed to vary. 

Setting this out more precisely, the unrestricted specification for the ARDL system of 
equations for t = 1, 2, ... , T time periods and i = 1, 2, ... , N countries for the dependent 
variable Y is: 

p q 

Y;c = L )..;; Y;,t-i + L 8;;xi,t-i + 11-; +£it (19.20) 

i= 1 i=l 

where Xi,t-j is the (k x 1) vector of explanatory variables for group i and lli represents 
the fixed effect~ In principle the panel can be unbalanced and p and q may vary across 
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countries. This model can be reparametrized as a VECM system: 

p-1 

t1Yit = B;CYi,t-1- .8/Xu-1> + L n;L'1Y;,t-i 
i=1 

q-1 

+ L yf;t1X;,t-j + /-tj + Ejt 

i=1 

361 

(19.21) 

where the {3; are the"long-run parameters and B; are the equilibrium (or error)-correction 
parameters. The pooled mean group restriction is that the elements of fJ are common 
across countries: 

p-1 

L'1Yit = B;(Yi,t-1- .B'xi,t-1) + L Yijl1Yi,t-i 
i=1 

q-1 

+ L yf;t1x;,t-j + 1-ti + Ei,t 
i=1 

(19.22) 

Estimation could proceed by OLS, imposing and testing the cross-country restrictions 
on fJ. However, thfs would be inefficient as it ignores the contemporaneous residual 
covariance. A natural estimator is Zellner's SUR method, which is a form of feasible 
GLS .. However, SUR estimation is orhy p9ssible if N is smaller than T. Thus PSS suggest 
a maximum likelihood estimator. All the dynamics and the ECM terms are free to 
vary. Again it is proved by PSS that under some regularity assumptions, the parameter 
estimates of this model are consistent and asymptotically normal for both stationary 
and non-stationary 1(1) regressors. Both MG and PMG estimations require selecting the 
appropriate lag length for the individual country equations. This selection was made 
using the Schwarz Bayesian criterion. 

There are also issues of inference. PSS argue that in panels, omitted group-specific 
factors or measurement errors are likely to severely bias the country estimates. It is 
a commonplace in empirical panels to report a failure of the 'poolability' tests based 
on the group parameter restrictions. (For example, Baltagi and Griffin (1997, p. 308) 
state that although the poolability test is massively failed (F(l02,396) = 10.99; critical 
value abo"ut 1.3), 'like most researchers we proceed to estimate pooled models'.) So PSS 
propose a Hausman test. This is based on the result that an estimate of the long-run 
parameters in tre model can be derived from the average (mean group) of the country 
regressions. This is consistent even under heterogeneity. However, if the parameters 
are in fact homogeneous, the PMG estimates are more efficient. Thus we can form the 
test statistic: 

H = q'[var(qW 1 q ~ xf 

where q is a (k x 1) vector of the difference between the mean group and PMG 
estimates and var(ij) is the corresponding covariance matrix. Under the null that the two 
estimators are consistent but one is efficient, var(cj) is easily calculated as the difference 
between the covariance matrices for the two underlying parameter vectors. If the 
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poolability assumption is invalid, then the PMG estimates are no longer consistent 
and we fail the test. 

Application: the effects of uncertainty in 
economic growth and investments 

Asteriou and Price (2000) examine the interactions between uncertainty, investment 
and economic growth, using panel data for a sample of 59 industrial and developing 
countries between 1966 and 1992 to estimate the reduced form equation: 

~y"; t = ao; + a1 ;II; t + a;~k; t +~'it 
I I I I I 1 

(19.23) 

in order to explore the possible effects of uncertainty on economic growth and 
_investments. The data used in their analysis are annual observations for GDP per capita 
(worker) (Yit) and capital per capita (k;t) taken from the Penn World Tables. Prior to 
estimation of the main model, they estimate GARCH(1, 1) models for GOP per capita 
growth in order to obtain the variance series, used as uncertainty proxies (ll;,t> in the 
subsequent analysis. 

Evidence from traditional panel data estimation 

Asteriou and Price begin by estimating their m~in model using traditional panel data 
techniques: i.e. fixed effects and random effects. Acknowledging that these methods 
of estimation are inappropriate, they report them partly to illustrate how misleading 
they may be. The results are presented in Table 19.1, which reports estimates of 
equation (19.23) for three alternative cases: first, assuming that the constant in the 
model is common and homogeneous for all countries, which is a rather restrictive 
assumption; second, assuming fixed effects; and third, assuming the existence of 
random effects (the country-specific constants have been omitted from Table 19.1). 
In all cases (see columns (a), (c) and (d) of Table 19.1), the reported coefficients are 
similar and significant. Where capital growth is included, the uncertainty proxy enters 
the equation negatively, so that higher levels of uncertainty are associated with lower 
levels of growth. Capital growth has the expected positive sign. However, when the 
growth rate of capital per capita term is excluded from the equation, the uncertainty 
proxy coefficients obtained are positive and highly significant (see columns (b), (d) and 
(f) of Table 19.1). This implies investment is increasing in uncertainty. But regressions 
of the growth rate of capital on uncertainty (not reported) reveal that uncertainty has 
a significant negative impact. These results are therefore hard to interpret. 

Mean group and pooled mean group estimates 

Next, Asteriou and Price (2000) estimate and report results of the MG and PMG 
methodology. Table 19.2 shows the effects of uncertainty on GDP per capita growth in 
three cases: pooling only the effect of uncertainty; pooling only capital; and pooling 

'• 

l~ 

u 
u 
u 
u 
u 
u 
u 
u 
[ 1 

[ ~ j 

[ ·] 

[ 1 

r·_ 

r- ! 

v· ll ~ 
[ :I ... l 



l-·~ 

u 
r • :·I 
I • 

I l.J 

[j 

ll 
IJ 

I 1 
u 

i 
j 

!J 
J 

.i 

r 1 I. 

t· 
(. 

I .. 

f ·.1 

t' j 

•, 

363 

Table 19.1 Results from traditional panel data estimation 

Variable Common constant Fixed effects Random effects 

(a) (b) (c) (d) (e) (f) 

constant 0.01 0.01 0.01 0.02 
(12.6) (5.13) (8.5) (9.7) 

h;,t -0.10 0.63 -0.06 0.92 -0.08 0.48 
(-5.7) (13.5) (-2.6) (13.5) ( -4.1) (14.0) 

"'-k;,t 0.12 0.10 0.11 
(7.2) (6.4) (6.7) 

R2 0.05 0.08 0.14 0.11 0.13 0.05 

Note: t statistics in parentheses in this and subsequent tables. 

Table 19.2 MG and PMG estimates: dep. var. output growth 

Variable PMG estimates MG estimates h-test 

coef. t-ratio coef. t-ratio 

A. common parameter on h 
Common long-run coefficients 
h -0.061 -1.891 -26.618 -1.967 3.85[0.05] 
Unrestricted long-run coefficients 
C,.k 0.086 1.323 -0.214 -0.487 
Error-cor;ection coefficients 

~32.988 :. </> -0.952 -0.926 -22.300 

B. common parameter on i';.k 
Common long-run coefficients 
D.k 0.061 3.324 -0.214 -0.487 1.19[0.27) 
Unrestricted long-run coefficients 
h -10.325 -1.762 -26.618 -1.967 
Error-correction coefficients 

"' 
-0.929 -25.798 -0.926 -22.300 

C. common parameter on c,.k and h 
Common long-run coefficients 
C,.k 0.160 7.949 -0.214 -0.487 2.21[0.14) 
h -0.027 -1.019 -26.618 -1.967 3.86[0.05) 
Joint Hausman test: 3.89[0.14] 
Error-correction coefficients 

"' 
-0.945 -35.920 -0.926 -22.300 

Table 19.3 MG and PMG es·1imates: dep. var. capital growth 

Variable PMG estimates MG estimates h-test 

coef. t-ratio coef. t-ratio 

h -5.956 -4.310 -316.0 -1.003 0.97[0.33) 

Error-correction coefficients 
</> -0.345 -5.972 -0.414 -7.409 
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both uncertainty and capital. The results show that the Hausman test reje{:ts pooling 
of the long-run variance term, but accepts pooling of the capital stock effect. The joint 
test in column (c) accepts, but the individual test rejects. Thus the key results are 
in column (b). (The inefficient MG results are given for comparison; the ~k term is 
incorrectly signed but insignificant.) The PMG coefficient on ~k is on the small side 
but correctly signed and significant. (As usual in growth studies, one has a potential 
difficulty interpreting these results, as the equation is specified in first differences. These 
are marginal effects we are observing.) The impact of uncertainty is apparently large, 
but the variance terms are small. The (average) error-correction coefficients reported 
show adjustment is rapid, 93% occurring within one year. Compared to the traditional 
estimates, the variance effect is larger by two orders of magnitude. • 

Table 19.2 shows the effect of uncertainty over and above that working through 
investment, while Table 19.3 reports the direct impact on investment. Th~ PMG 
specification is easily accepted by the Hausman test. As discussed above, the impact 
of uncertainty is ambiguous, but we expect a negative coefficient; this is the case. 
Thus the conclusion from this application is that certainly MG and PMG estimators are 
appropriate for a dynamic heterogeneous panel of this nature, while the results from the 
estimation suggest that uncertainty (as proxied by the variance series of GARCH(l,l) 
models of the GOP per capita) negatively affects both growth rates and investments. 
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Panel data studies, until very recently, have ignored the crucial stationarity (ADF and 
Phillips-Perron) and cointegration (Engle-Granger and Johansen) tests. However, with 
the growing involvement of macroeconomic applications in the panel data tradition, 
where a large sample of countries constitute the cross-sectional dimension providing 
data over lengthy time series, the issues of stationarity and cointegration have emerged 
in panel data as well. This was mainly due to the fact that macro panels had both large 
N and T compared to micro panels with large N but small T. Consider, for example, 
the Penn World Tables data (available from the NBER at http://www.nber.org) where 
data are available for a large set of countries and at least some of the variables (GDP for 
example) are expected to have unit roots. This has brought a whole new set of problems 
in panel data analysis that were previously ignored. 

Although the relative literature on time-series studies successfully answers 
stationarity issues, the adoption and adjustment of similar tests on panel data is yet in 
progress, mainly due to the complexity of considering relatively large T and N samples 
in the later studies. We can summarize the major differences between time-series and 
panel unit-root tests as follows: 

1 Panel data allows us to test the various approaches with different degrees of 
heterogeneity between individuals. 

2 In the panel data analysis, so far, one cannot be sure as to the validity of rejecting·a 
unit root. 

3 The power of panel unit-root tests increases with an increase inN. This power intrease 
is much more robust than in the size of the one observed in the standard low-power 
DF and ADF tests applied for small samples. 

4 The additional cross-sectional components incorporated in panel data models 
provide better properties of panel unit-root tests, compared with the low-power 
standard ADF for time-series samples. 

Panel unit-root tests 

Both DF and ADF unit-root tests are extended to panel data estimations, to consider 
cases that possibly exhibit the presence of unit roots. Most of the panel unit-root 
tests are based on an extension of the ADF test by incorporating it as a component in 
regression equations. However, when dealing with panel data, the estimation procedure 
is more complex than that used in time series. The crucial factor in panel data estimation 
appears to be the degree of heterogeneity. In particular it is important to realize that all 
the individuals in a panel may not have the same property, that is to say they may not 
all be stationary or non-stationary (or cointegrated or not cointegrated). So if we carry 
out a panel unit root test where some of the panel have a unit root and some do not 
the situation becomes quite complex. 

A wide variety of procedures have been developed with an emphasis on the attempt to 
combine information from the time series dimension with that obtained from the cross­
sectional dimension, hoping that in taking into account the cross-sectional dimension 
the inference about the existence of unit roots will be more precise and straightforward. 

However, a variety of issues arise from this: one is. that some of the tests proposed 
require balanced panels (not missing any data for either i or t), whereas others allow 
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for unbalanced panel setting. A second issue has to do with the formulation of the null 
hypothesis; one may form the null as a generalization of tlie standard DF test (i.e. that 
all series in the panel are assumed to be non-stationary) and reject the null if some 
of the series in the panel appear to be stationary, while on the other hand one can 
formulate the null hypothesis in exactly the opposite way, presuming that all the series 
in the panel are stationary processes, and rejecting it when there is sufficient evidence 
of non-stationarity. In both cases, the consideration of a set of time series leads to a 
'box-score' concept, wherein one makes an inference on the set of the series depending 
on the predominating evidence. 

Another important theoretical consideration in the development of the panel unit­
roots literature has to do with the asymptotic behaviour of a panel's N and T 
dimensions. Various assumptions can be made regarding the rates at whic)1 these 
parameters tend to infinity. One may fix, for example, N and let T go to infinity and 
after that let N tend to infinity. Alternatively, one may allow the two indices to tend to 
infinity at a controlled rate, i.e. as T = T(N), while a third possibility is to allow both 
N and T to tend to infinity simultaneously (see Phillips and Moon, 2000). All these are 
quite complicated issues and beyond the scope of this text. In the next section our aim 
is to present as simply as possible the major tests for unit roots and cointegration in 
panels and provide guidelines on how to apply these tests in applied econometric work. 

The Levin and Li~ (I.L) test 

One of the first panel unit-root tests was that developed by Levin and Lin ( 1992). (The 
test was originally presented in a working paper by Levin and Lin in 1992. Their work 
was finally published in 2002 with Chu as co-author (see Levin, Lin and Chu, 2002) 
but the test is still abbreviated as LL by the initials of the first two authors.) Levin and 
Lin adopted a test that can actually be seen as an extension of the DF test. Their model 
takes the following form: · 

n 

~Y;,t =a;+ pY;,t-1 + L cPk~Yi,t-k + 8;t + et + Ujt 

k=l 

(20.1) 

This model allows for two-way fixed effects, one coming from the a; and the second 
from the Or. So we have both unit-specific fixed effects and unit-specific time trends. 
The unit-specific fixed effects are a very important component because they allow for 
heterogeneity since the coefficient of the lagged Y; is restricted to be homogeneous 
across all units of the panel. 

The null hypothesis of this test is that: 

H0: p = o 
H0 : p < o 

Like most of the unit root tests in the literature, the LL test also assumes that the 
individual processes are cross-sectionally independent. Under this assumption, the test 
derives conditions for which the pooled OLS estimator of p will follow a standard 
normal distribution under the null hypothesis. 

s 
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Thus, the LL test may be viewed as a pooled DF or ADF test, potentially with different 
lag lengths across the different sections in the panel. 

The lm, Pesaran and Shin (IPS) test 

The major drawback of the LL test is that it restricts p to be homogeneous across all i. 
lm, Pesaran and Shin (1997) extende!Lthe_ LL test allowing heterogeneity on the 
coefficient of the Y;,r- 1 variable and proposing as a basic testing procedure one based 
on the average of the individual unit-root test statistics. 

The IPS test provides separate estimations for each i section, allowing different 
specifications of the parametric values, the residual variance and the lag lehgths. Their 
model is given by: 

11 

t.. Y· t =a·+ p· Y· t-1 + """¢kt.. Y· t-k + 8·t + u·r i, I l l, L_. I, I I (20.2) 
k=1 

while now the null and the alternative hypotheses are formulated as: 

Ho: P; = 0 for all i 

Ho: p < 0 for at least one i 

Thus, the null of this test is that all series are non-stationary processes under the 
alternative that a fraction of the series in the panel are assumed to be stationary. This is 
in sharp contrast with the LL test, which presumes that all series are stationary under 
the alternative hypothesis. 

Im, Pesaran and Shin (1997) formulated their model under the restrictive assumption 
that T should be the same for all cross-sections, requiring a balanced panel to compute 
the t test statistic. Their t statistic is nothing else than the average of the individual 
ADF t-statistics for testing that Pi = 0 for all i (denoted by tp; ): 

- 1 N 
t = N LtPi (20.3) 

1=1 

Im, Pesaran and Shin (1997) also showed that under specific assumptions tp; 

converges to a statistic denoted as t;T which they assume that is iid and that also 
has finite mean and variance. They then computed values for the mean (E[t;TIP; = 1]) 

and for the variance (Var[t;TIP; = 1]) of the t;T statistic for different values of N and 
lags included in the augmentation term of equation (20.1). Based on those values, they 
then constructed the IPS statistic for testing for unit roots in panels given by: 

./FJ (t- 1/N Li:1 E[t;TIP; =OJ) 

tiPS= JVar[t;TIP; = 0] 
(20.4) 

which they have proved follows the standard normal distribution as T _,. oo followed 
by N _,. oo sequentially. The values of E[t;TIP; = 0] ana Var[t;TIP; = 0] are given in their 
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paper. Finally, they also suggested a group mean Lagrange multiplier test for testing for 
panel unit roots. Performing Monte Carlo simulations they proved that both their LM 
and t statistics have better finite sample properties that the LL test. 

The Maddala and Wu (MW) test 

Maddala and Wu (1999) attempted to improve to some degree the drawbacks ofall 
previous tests by proposing a model that could also be estimated with unbalanced 
panels. Basically, Maddala and Wu are in line with the assumption that a heterogeneous 
alternative is preferable, but they disagree with the use of the average ADF statistics by 
arguing that it is not the most effective way of evaluating stationarity. Assuming that 
there are N unit-root tests, the MW test takes the following form: 

N 

n = -2 :LtnJr; 
i=l 

(20.5) 

where Jr; is the probability limit values from regular DF (or ADF) unit-root tests for 
each cross-section i. Because -2lnJr; has a x2 distribution with 2 degrees of freedom, 
the n statistic will follow a x2 distribution with 2N degrees of freedom as T; ~ oo 
for finite N. In order to consider the dependence between cross-sections, Maddala and 
Wu propose obtaining the Jr;-values by using bootstrap procedures by arguing that 
correlations between groups can induce significant size distortions for the tests. (The 
bootstrapping method of estimation is quite complicated and therefore not presented 
in thrs text. For this reason, and only for illustrative purposes in the examples given in 
the next section for the MW test, we use Jr values that are given by the standard OLS 
method of the DF (or ADF) tests.) 

Computer examples of panel unit-root tests 

Consider the data in the panel __ unit_root.wfl file for 14 EU countries (Luxembourg 
is excluded due to iimited data availability) and for the years 1970-99. We have two 
variables, namely GDP per capita (GDPPC) and FDI inflows. First we want to calculate 
the t statistic from the IPS (1997) paper. In order to do that we estimated 14 different 
regression 'equations of the standard ADF unit-root test using first only a constant 
and then a constant and a trend in the deterministic components. From those tests 
we extracted the_ ADF test statistics for each section which we report in Table 20.1. 
The t statistic is simply the average from the individual ADF statistics so we can put 
the data in Excel and calculate the average of theN= 14 different ADF statistics. The 
t statistic is also reported in Table 20. L Finally we calculated the t1p5 statistic given 
by equation (20.4). The commands for these calculations in Excel are quite easy and 
are indicated for the first two cases in Table 20.1 (where E[t;y I Pi = 0] = -1.968 and 
Var[t;ylP; = 0] = 0.913 are taken by the IPS paper for N = 25 and number of lags equal 
to 4. We have used the same number of lags (i.e. 4) for all ADF models for simplicity. 
If the lag length is different for each case the formula is slightly more complicated 
because the mean of the E[t;rlP; = 0] = -1.968 and the Vcn[t;rlP; = 0] = 0.913 need 
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Table 20.1 IPS panel unit-root tests 

Belgium 
Denmark 
Germany 
Greece 
Spain 
France 
Ireland 
Italy 
Netherlands 
Austria 
Portugal 
Finland 
Sweden 
Unil.ed Kingdom 

t-bar 
IPS-stat 

ADF critical 
IPS critical 5% 

Intercept 

FOil NFL 

2.141 
5.873 
2.852 

-2.008 
-1.099 

1.991 
2.718 

-0.478 
2.104 

-0.140 
-1.257 

1.448 
3.921 
1.010 

1.362* 
1 0.172'' 

-2.985 
-1.960 

GOP PC 

0.963 
1.872 
0.603 
2.466 
1.169 

-0.189 
2.726 
0.620 
1.804 
1.061 
1.810 

-0.008 
-0.013 

2.088 

1.212 
9.6"12 

-2.959 
-1.960 

Intercept and trend 
----
FOil NFL GOP PC 

1.304 -1.797 
3.381 -1.981 
2.561 -2.900 

-2.768 -0.156 
-2.958 -1.917 

0.558 -4.038 
2.465 1.357 

-2.392 -2.211 
1.271 . -0.990 

-0.517 -2.!366 
-2.250 -0.443 

0.809 -2.303 
4.900 -2.361 

-0.996 -1.420 

0.379 -1.718 
9.191 0.980 

-3.603 -3.561 
-1.960 -1.960 

Notes:'= AVERAGE(B4:B17); "= (SORT(14)*(B19- (-1.968)))/(SORT(0.913)). 

Table 20.2 Maddala and unit-root tests 

Intercept Intercept and Trend 
---

FDI/NFL GOP PC FDIINFL GOP PC 
-

pi -21n(pi) pi -21n(pi) pi -21n(pi) pi -21n(pi) 

Belgium 0.045 2.685' 0.345 0.925 0.209 1.361 0.085 2.142 
Denmark 0.000 9.858 0.073 2.275 0.003 4.955 0.059 2.457 
Germany 0.010 3.984 0.552 0.516 0.020 3.413 0.008 4.209 
Greece 0.061 2.433 0.021 3.360 0.014 3.725 0.877 0.1 "14 
Spain 0.286 1.089 0.253 1.193 0.008 4.149 0.067 2.346 
France 0.061 2.428 0.852 0.140 0.583 0.468 0.000 6.639 
Ireland 0.014 3.731 0.012 3.876 0.024 3.241 0.187 1.455 
Italy 0.638 0.390 0.541 0.533 0.028 3.110 0.037 2.869 
Netherlands 0.049 2.621 0.083 2.159 0.220 1.315 0.332 0.958 
Austria 0.890 0.101 0.299 1.049 0.571 0.487 0.008 4.180 
Portugal 0.226 1.293 0.082 2.169 0.039 2.821 0.662 0.359 
Finland .0.164 1.570 0.994 0.005 0.429 0.735 0.030 3.038 
Sweden 0.001 6.074 0.990 0.009 0.000 7.875 0.027 3.148 

United Kingdom 0.325 0.976 0.047 2.653 0.332 0.957 0.169 1.547 
MWstat 39.233 .. 20.862 38.611 35.461 
MW critical 41.330 

Notes: • =- 2*1og(C5); •• = Sum(C5:C19). 

to be used instead. We leave this as an exercise for the reader.). From the results we 
see that, first, from the simple ADF test for each section we have unit roots in all cases 
apart from the rare exception of France for the GDPPC with trend and intercept which 
appears to be trend-stationary. However, from the t1ps we conclude that the whole 
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panel is stationary because the statistical values are clearly bigger than the critical value 
(distributed under the normal distribution). · 

For the Maddala and Wu test, the results are reported in .Table 20.2. Here the first 
column reports statistics regarding the p values (n) for each of the 14 cross-sections: 
Then in the next column we calculate the value -2ln ni for each of the cross-sections 
and at the end . we take the sum of these values in order to construct the MW 
statistic giveri by equation (20.5). The basic commands in Excel are reported belowf 
Table 20.2. 

In general, panel unit-root tests are quite tedious and complicated, so various 
routines have been developed in order to achieve easy and effective calculations of 
these statistics. Unfortunately these algorithms are not performed in tests using user­
friendly econometric packages like EViews and Microft, and they are not easy to find 
either. Panel unit-root tests are a very new topic in econometrics and developments 
in this area need to be followed at higher levels of research which are beyond the 
scope of this text. To our knowledge there is no econometric~ textbook yet (even from 
textbooks that examine panel data only) that discusses these issues in a simplified 
context. 

Panel cointegration tests 

Introduction 

The motivation towards testing for cointegrati<m is primarily linked with the provision 
of investigating the problem of spurious regressions. which exists only in the presence 
of non-stationarity. The cointegration test among two variables is a formal way of 
investigating between: 

1 a simple spurious regression where both X it and Yit are integrated of the same order 
and the residuals of regressing Yit to Xit (i.e. the uit sequence of this panel data 
model) contains a stochastic trend; or 

2 the special case in which, again, both Xit and Yit are integrated of the same order, 
but this time the uit sequence is stationary. 

Normally in the first case we apply first differences to reestimate the regression equation, 
while in the second case we conclude that the variables Xit and l'u are cointegrated. 
Thus, in or'der to test for cointegration it is important to ensure that the regression 
variables are a priori integrated of the same order. 

There are different possible tests for cointegration in panels, and the best-known 
cointegration tests are based on the Engle and Granger cointegration relationship. 
In the time series framework the remarkable outcome of the Engle-Granger (1987) 
procedure is that if a set of variables are cointegrated, then there always exbts an 
error-correcting formulation of the dynamic model, and vice versa. Their analysis 
consists of a standard ADF test on the residuals Ut under the null H0 : the variables 
are not cointegrated, versus the alternative Ha: the variables are cointegrated. If we 
observe that the ADF statistic is less than the appropriate critical value, we reject the null 
that there are no cointegrating relationships between the variables and we continue 
with the estimation of the ECM. The Engle-Granger procedure can also be used for the 
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estimation of either heterogeneous or homogeneous panels, under the hypothesis of a 
single cointegrating vector, as we will show below. 

The Kao test 

Kao (1999) presented DF and ADF-type tests for cointegration in panel data. Consider 
the model: 

Yit = a; + {3X;t + u;t (20.6) 

. 
According to Kao, the residual-based cointegration test can be applied to equation: 

uit = euit-I + vit (20.7) 

where flu is the estimated residuals from equation (20.6) above. The OLS estimate of p 

is given by: 

A L~1 "LJ=2uituit-I 
p= N T 2 

Li=I Lt=2 11 ;t 
(20.8) 

and its corresponding t statistic is given by: 

(jj - l)J'L!1 L.T=2 u~ 
tp = N T A 2 

1/(NT) L;=1 Lt=2 <uit- Pllit-I) 
(20.9) 

Kao proposed four different DF-type tests that are given below: 

./NT(jj- 1) + 3../N 
DFp= ~ 

v10.2 
(20.10) 

DFt = Fl25tp + .JI.B75N (20.11) 

* ../NT(jj- 1) + 3../Na3 ;a-Ju 
DFP = ---;======::==----___.;..=.. 

J3 + 36aj;(Sa6u) 
(20.12) 

* tp + ../6Nau/(2aou) 
DF t = """f=:::::===:==='=:::::=:====::= 

J aJuf(2a3) + 3&3 /(lOaJu> 
(20.13) 

of which the first two (DF p and DFt) are for cases where the relationship between the 
regressors and the errors is strongly exogenous, and the last two (DF~ and DF;) are for 
cases where the relationship between the regressors and the errors is endogenous. 

Kao (1999) also proposes an ADF test, where one can run the following regression: 

II 

u;,t = Plli,t-I + L tPjl:iu;,t·-j + vu 
j=l 

(20.14) 
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The null hypothesis for this test as well as for the OF tests is that of no cointegration, 
and the ADF test statistic is calculated by: 

ADF = tADF + ...f6Nav/(2aov) 
Jo-fiv!(2ah + 3a3 ;noa-z) Ov 

(20.15)· 

where tADF is the ADF statistic of regression (20.14). All five test statistics follow the 
standard normal distribution. 

Kao's test imposes homogeneous cointegrating vectors and AR coefficients, but it 
does not allow for multiple exogenous variables in the cointegrating vector. Another 
drawback is that it does not add~ess the issue of identifying the cointegrating vectors 
and the cases where more than one cointegrating vector exists. 

The McCoskey and Kao test 

McCoskey and Kao (1998) use a Lagrange multiplier test on the residuals. The major 
contribution of this approach is that it tests for the null of cointegration rather than 
the null of no cointegration. The model is: 

where 

yit =a; + f3;Xit + uit 

t 

ll;t = tl L e;i + eit 
i=l 

(20.16) 

(20.17) 

Thus, the test is analogous to the locally best unbiased invariant for a moving average 
unit root and is also free of nuisance parameters. The null hypothesis is then H0 : () = 0, 
implying that there is cointegration in the panel, since for (} = 0, eit = uit. The 
alternative Ha: () f. 0, is the lack of cointegration. The test statistic is obtained by 
using the following equation: 

LM = 1/N L~I 1/Tz L:T-z s~ 
s* (20.18) 

where S;t is the partial sum process defined as S~ = L:f=l u;i and s* is defined as 

s* = 1/NTL:f:1 L[=zu~. 
Estimation of the residuals can be applied by using OLS estimators and, more 

specifically, through the use of either FMOLS (fully modified O~S) or the DOLS 
(dynamic OLS) estimator. · 

The Pedroni tests 

Pedroni (1997, 1999 and 2000) proposed several tests for cointegration in panel data 
models that allow considerable heterogeneity. Pedroni's approach differs from that 
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of McCoskey and Kao presented above in assuming trends for the cross-sections and 
in considering as the null hypothesis that of no cointegration. The good features of 
Pedroni's tests are the fact they allow for multiple regressors, for the cointegration 
vector to vary across different sections of the panel, and also for heterogeneity in the 
errors across cross-sectional units. 

The panel regression model that Pedroni proposes has the following form: 

M 

Y;,t = a; + 8t + L fJm;Xmi,t + ll;,t 
111=1 

(20.19) 

Seven different cointegration statistics are proposed to capture the within and 
between effects in his panel, and his tests can be classified into two categories. The first 
category includes four tests based on pooling along the 'within' dimension (pooling 
the AR coefficients across different sections of the panel for the unit-root test on the 
residuals). These tests are quite similar to those discussed above, and involve calculating 
the average test statistics for cointegration in the time series framework across the 
different sections. The test statistics of these tests are given below: 

1 the panel v statistic 

T2N3!2 
3 2 - 2 •2) y2N I ·zf·NT = (L::~ 1 L::f=l L

11
iuit 

2 the panel p statistic 

T../N (LN "T f-2 (•2 -2 • )) 
T.fNZpNT= i=1Lt=1 11i !lit 16-uit-J,.i 

(LN "T t-2 •2) 
i= 1 Lt= 1 1li11it 

3 the panel t statistic (non-parametric) 

ZtNT = 
N T 

-2 ""L"-2 -2 
UNT ~ ~ 11i11it-1 

i=1 t=1 

--2 -2 ·2 • 
( 

N T ) ti {;Llli (uit-16-uit- ;,.;) 

4 the panel t statistic (parametric) 

ZtNT = 
-*2 . ·-2 -*2 ·-2 -*2 -*2 -N T (N T ) 
uNT~{;Lui11it-1 E{;Lu;(uit-16-uit -J,.;) 

(20.20) 

(20.21) 

(20.22) 

(20.23) 

The second category includes three tests based on pooling the 'between' dimension 
(averaging the AR coefficients for each member of the panel for the unit-root test on 
the residuals). So, for these tests the averaging is. done in pieces and therefore the 
limiting_distribJJJLQDS..Me based QO_p_i.ece_wise nuro_erator and denominator _terms. 
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These test statistics are given below: 

5 the group p statistic (parametric) 

T 
1.7- LT (it2 " -2 - ) 

vNZpNT=T./FJ t=1 it-1'-"uit-A.; 

L~ ("'T "2 . 
1=1 L..t=1 tlit-1 

6· the group t statistic (non-parametric) 

../NztNT-1 = .JNI: I lcrl I:uft- 1 L (uft- 1 t.uft- X;) 
N II . T ) T 

i=l \ ~ t=1 t=1 

7 the group t statistic (parametric) 

ffiZ;NT-I ~ ffi~ ( T ) T s~2 ~ u~2 ~ (11~2 t.u~2 ) 
1 ~ zt-1 ~ zt-1 rt 

t=1 t=1 

375 

(20.24) 

(20.25) 

(20.26) 

A major drawback of the above procedure is the restrictive a priori assumption of a 
unique cointegrating vector. 

The Larsson et al. test 

Larsson et a/. (2001), contrary to all the above tests, based their test on Johansen's 
(i98l'l) maximum likelihoori estimator, avoiding using unit-root tests on the residuals 
and contemporaneously relaxing the assumption of a unique cointegrating vector (thus 
this model allows us to test for more multiply-cointegrating vectors). The model that 
tHey proposed starts from the assumption that the data generating process for each 
of the cross-sections can be represented by an ECM specification. So, we have the 
following model: 

n 

t.Y;,t = n;Y;,t-1 + L r;kt.Yi,t-k + u;,t 
k=l 

(20.27) 

Larsson et a/. propose the estimation of the above model separately for each cross­
section using maximum likelihood methods for the calculation of the trace statistic 
for each cross-sectional unit LR;y. Then, the panel rank trace statistic, LRNT• can be 
obtained as the average of theN cross-sectional trace statistics. The null and alternative 
hypotheses for this test are: 

Ho: rank(n;) = r; :::: r for all i = 1, ... , N 

Ha: rarzk(n;) = p for all i = 1, ... , N 

(20.28) 

(20.29) 

where pis the num.ber of variables that we use in order to test for possible co integration 
among them. 
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The standardized panel cointegration rank trace test-statistic (denoted by YLR) is then 
given by: 

.,/N(LRNT- E[Zk)) 
YLR = /Var(Zk) 

(20.30) 

where LRNT is the average of the trace statistic for each cross-sectional unit, and E[Zkl 
and Var[Zkl are the mean and variance of the asymptotic trace statistic reported in 
Larsson et al. (2001). · 

Computer examples of panel 
cointegration tests 

In order to perform the panel cointegration tests in EViews the algorithm provided 
freely by Pedroni (downloadable from http://fmwww.bc.edu/repec/bocode/m/multi­
pc2d-pedroni.prg) was used in the panel_unit_root.wfl data set. Unfortunately again, 
as with the panel unit-root tests, these algorithms cannot be used in conventional 
programs like EViews. The results for the seven Pedroni test statistics are reported in 
Table 20.3. , 

The mean and variance used for calculating the Pedroni statistics were obtained from 
Pedroni (1999, table 2); the number of lag truncations was set to four. The Pedro~i tests 
are all one-sided. All statistics, with the exception of the v statistic, have a critical value 
of -1.64, which means that if the statistical value is bigger than -1.64 then this implies 
rejection of the null of no cointegration. From our results we can see that in all cases we 
have strong evidence for existence of cointegration among the FDIINFL and the GDPPC 
variables. The v statistic has a critical value of 1.64; so if v statistic > 1.64 then we can 
reject the null of no cointegration. In our case we again reject the null and conclude in 
favour of cointegration. Finally, the McCoskey and Kao LM test is again one-sided with 
a critical value of 1.64 (thus LM-statistic > 1.64 implies rejection of the null hypothesis 
of cointegration). The mean and variance used for calculating the McCoskey and Kao 
statistic were taken from McCoskey and Kao (1998) table 2. 

We continue by applying the Larsson eta/. (2001) test. In order to do so we check 
for cointegration using the johansen approach for the three variables in the file 
(FDITOGDP, GDPGR9S and GFCFTOGDP) for each of the 13 EU countries (Luxembourg 
and Netherlands are excluded due to insufficient data). From this test we take the trace 
statistics and report them in Excel as in Table 20.4. 

Table 20.3 Panel cointegration tests 

panel v statistic 
panel p statistic 
panel t statistic (non-parametric) 
panel t statistic (parametric) 
group p statistic 
group t statistic (non-parametric) 
group t statistic (parametric) 

McCoskey and Kao LM statistic 

Notes: Nsecs = 14, Tperiods = 30, no. regressors = 1. 

8.25 
-5.11 
-5.02 
-5.01 
-4.71 
-6.25 
-6.33 

-4.32 
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. Non-Stationary Panels 

Table 20.4 Larsson eta/. (2001) panel cointegration test results 

Belgium 
Denmark 
Germany 
Greece 
Spain 
France 
Ireland 
Italy 
Austria 
Portugal 
Finland 
Sweden 
United Kingdom 
5% critical 
LRNT 
YLwtest 
E(Zk) 
Var(Zk> 
N 

r=O 

30.874* 
28.272 
43.978* 
32.213* 
39.212* 
28.347 
33.003* 
33.614* 
33.238* 
44.678* 
36.948* 
46.346* 
28.427 
29.68 
35.319a 
14.764b 
14.955 
24.733 
13 

r = 1 

8.829 
11.352 
10.007 
12.482 
16.135* 
12.154 
8.207 

14.078 
14.364 
21.654* 

8.745 
19.704* 

9.781 
15.41 
12.884 
7.552 
6.086 

10.535 
13 

f=2 

2.007 
0.256 
0.351 
2.943 
3.225 
2.041 
0.346 
0.385 
0.439 
4.212 
1.148 
3.234 
3.634 
3.76 
1.863 
1.760 
1.137 
2.212 

13 

Notes: The values for E(Zk) and Var(Zk) were obtained from Larsson eta/. (2001) 
a= AVEAAGE(B3:B15); b = (SQAT(B24)"(B19·B22)/(SQAT(B23))). 

The command for the cointegration test in EViews is: 

cciint gdpgr95_bel fditogdp_bel gfcft.:·•.Jdp_bel 

377 

for the case of Belgium (which is why we use the cross-section identifier bel), and 
changing the cross-section identifier for every other group. The model we have chosen 
for this test is the one that inc:udes a linear deterministic trend in the data and intercept 
in both CE and VAR. The lag length, for simplicity, ·was chosen in all cases to be equal 
to 1. After obtaining the statistics it is very easy to do the calculations (simply taking 
the average of all the trace statistics for each section) in order to compute LRNT• and 
then using the E[Z1d and Var[Zk] obtained from Larsson et al. (2001) to calculate: 

..fN(LRNT- E[Zk]) 
YLR = --'-J-F.V.'=;=a'=r(;:;:;Zc=k;:-)- (20.31) 

The commands for the calculations in Excel are given in Table 20.4. From the 
results for the individual cointegration tests we see that we can reject the null of 
no cointegration and accept that there is one cointegrating vector for all the cases 
apart from three (Denmark, France and UK suggest no cointegration among their 
variables) and also reject the null of only one cointegrating vector in favour of two 
cointegrating vectors for three out of the 13 cases (Spain, Portugal and Sweden). 
However, the YLR statistic suggest that in the panel we have two cointegrating vectors 
based on the fact that the statistical values are bigger than the 1.96 critical value of the 
normal distribution. 
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About Microfit 

Creating a file and importing data 

To input data directly from the keyboard is the most basic method of entering data . 
First make sure that you know: 

• the frequency of the data (whether the data are undated, or are annual, half-yearly, 
quarterly or monthly); 

• the number of variables in the dataset; and 

• sample period of observations. 

To input a new data set, click on the [File] menu and then choose [new ... ]. A window 
will open with different options for data frequency, start and end dates and number of 
variables. Under frequencies there are the following options: 

[Undated) This option is relevant for entering cross-sectional observations and Microfit 
assumes that the observations are unordered, and asks how many observations you 
have. If we have data containing variables such as employment, output, and investment . 
on a number of firms, then each firm represents an observation and the number of 
observations will be equal to the number of firms in y•x1r dataset. If we have time-series 
covering the period from 1990 to 2000 inclusive and wish to enter them as undated, 
the number of observations in the data will equal 11. 

[Annually, Half-yearly, Quarterly and Monthly) All these choices are for time series data. 
The program supplies the dat.es and you do not need to type them in. However, you 
will be asked to specify the dates for the start and end of your data by typing them in 
the corresponding cells. The next step is to type in and specify the number of variables 
you wish to have in your file. 

Entering variable names 

The variables window contains the default variable names X1, X2, X3, etc. You can 
enter your own choice of variables and/or add a description if you wish. When you are 
entering the desired names keep in mind the following: 

• A valid variable can be at most 9 characters long and must begin with a letter not 
a symbol. 

• MFit is not case sensitive. Lower- and upper case letters are treated as 
equivalent. 

• The underscore (_) character is allowed. 

• Variable descriptions can be up to 80 characters long. 

----~- -------· 
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380 Panel Data Econometrics 

• You can return to the variables window to edit your data by clicking the 
variables button. 

• When you have finished entering your observations, click CLOSE. 

Copying/pasting data 

Pasting data in Microfit 

To paste data from the clipboard into the Data Editor, choose Paste Data from the Edit 
menu. Then choose the frequency of your data by clicking the appropriate button. 
When you have finished entering your information, press OK. You will be asked to 
specify whether the variable names (up to 9 characters) and/or variable description (up 
to 80 characters) is included in the copied area of your data set. This relates to the 
format in which your copied data appear on the clipboard. 

Copying data from MFit to the clipboard 

Move to the Data Editor and choose Copy from the Edit menu. A dialog appears giving 
you various choices about how much of the data you want to copy and in what format. 
The complete data set is selected by default. If you want to copy less that the full 
set, specify the first and the last variable and/or observation on the appropriate. field. 
By default, variable names are copied to the first row of the clipboard and variable 
descriptions are copied to the second row. If you want to disable either of these options, 
remove the tick as appropriate. 

Saving data 

To save your current data file, select [Save as ... ] from the File menu or click the 'Save' 
button. Then select the type of file in which you want to save your data from the drop­
down list. If you are working with a file you have already saved previously, you save it 
again by choosing [Save] from the File menu. 

Description of Mfit tools 

The rectangular buttons across the top of the Command Editor are used to access other 
parts of the application. 

[PROCESS]: when the data has been successfully inserted, the program opens the 
Command Editor. This is MFit's gateway to data transformations and 
preliminary data analyses. 

[VARIABLES]: to view your variables and edit their names and/or descriptions. 

[DATA]: to view your data. 

[SINGLE]: to access the Single Equation Estimatio_n window. 

[MULTI]: to access the System Estimation window. 
-· ··-··--------·-----
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Creating a constant term · 

To create a constant term, click on the CONSTANT button in the process menu or choose 
Constant (intercept) from the EDIT. Constant is a variable with all it~ all elements 
equal to unity and asks you to supply a name (C, CON, INT and ALPHA are the most 
common choices). 

Basic commands in Mfit 

The Command Editor is where you can type one or more formula(e.) or command(s). 
The different formulae need to be separated by semicolons (;). Standard arithmetic 
operators such as+,-,/,* can also be used as well as a wide ral1ge of built-in functions. 
For example, to create a new variable (e.g. LOGX) which is the logarithm of an existing 
variable (e.g. X) you need to type in the Command Editor (PROCESS]: 

LOGX = LOG(X) (21.1) 

and then click on (GO]. This operation places the natural logarithm of X in LOGX. 
Click on the (VARIABLES] and [DATA] buttons underneath the FILE to view the new 
variable. In this context, you can also create the first differences (returns) of the series. 
To create a new variable (e.g. D1X) which is the first differences of the series of an 
existing variable (e.g. X), type: -~ 

D 1 X = X - X ( -1) if the variable is daily, yearly or undated 

D1X =X - X ( -4) if,the variable is quarterly 

DlX =X- X (-12) if the variable is monthly 

in the Command Editor [PROCESS] and then click on GO. 

About EViews 

We need to familiarize ourselves with the following main areas in the EViews window: 

The title bar 

The title bar, labelled EViews, is at the very top of the main window. When £Views is 
the active program in Windows, as is usual in windows the title bar colour is enhanced; 
when another program is active, the title bar will be lighter. EViews may be activated 
by clicking anywhere in the EViews window or by using A It+ Tab to cycle between 
applications until the EViews window is active. 

The main menu 

Just below the title bar is the main menu. If we move the cursor to an entry in the 
main menu and left-click on it, a drop-down menu will appear. Clicking on an entry in 

J 

--------------
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382 Panel Data Econometrics 

the drop-down menu selects the highlighted item. Some of the items in the drop-down 
may be black, others grey; grey items are not available, to be executed. 

The command window 

Below the menu bar is an area called the command window, in which EViews 
commands may be typed. The command is executed as soon as you hit ENTER. The 
vertical bar in the command window is called the insertion point, and shows where the 
letters that you type on the keyboard will be placed. As with standard word processors, if 
we type something in the command area, we can move the insertion point by pointing 
to and clicking on a new location. If the insertion point is not visible, it probably 
means that the command window is not active; simply click anywhere in the command 
window to activate it. 

We can move the insertion point to previously executed commands, edit the existing 
command, and then press ENTER to execute the edited version of the command. 
The command window supports Windows cut-and-paste so that we can easily move 
text between the command window, other EView:; text windows, and other Windows 
programs. The contents of the command area may also be saved directly into a text file 
for later use (make certain that the command window is active by clicking anywhere 
in the window, and then select File/Save As from the main menu). 

If we enter more commands than will fit in the command window, EViews turns tile 
window into a standard scrollable window. Simply use the scroll bar or up and down 
arrows on the right-hand side of the window to see various parts of the list of previously 
executed commands. 

You may find that the default size of the command window is too large or small for 
your needs. It can be resized by placing the cursor at the bottom of the command 
window, holding down the mouse button and dragging the window up or down. 
Release the mouse button when the command window is the desired size. 

The status line 

At the very bottom of the window is a status line which is divided into several sections. 
The left section will sometimes contain status messages sent to you by EVie,,·s. These 
messages can be cleared manually by clicking on the box at the far left of the status 
line. The next section shows the default directory that EViews uses to look for data and 
programs. The last two sections display the names of the default database and workfile. 

The work area 

The area in the middle of the window is the work area where EViews displays the 
various object windows that it creates. Think of these windows as similar to the sheets 
of paper you might place on your desk as you work. The windows will overlap each 
other with the foremost window being in focus or active. Only the active window ha~ 
a darkened titlebar. When a window is partly covered, you can bring it to the top 
by clicking on its titlebar or on a visible portion of the window. You can also cycle 
through the displayed windows by pressing the F6 or CTRL+ TAB keys. Alternatively, 
you may directly select a window by clicking on the window menu item, and selecting 
the desired name. You can move a window by clickii1g on its title bar and dragging the 
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Practicalities in Using EViews and Microfit 383 

window to a new location, or change the size of a window by clicking at the lower-right 
corner and dragging the corner to a new location. 

Creating a workfile and importing data 

To create a workfile to hold your data, select File/New /Workfile, which opens a dialogue 
box to provide information about the data. Here we specify the desired frequency of 
the data set, for example daily, 5 days a wee!,, and the start and end dates for example 
01:01:85 and 12:31:99 (note the order of month, then day, then year). 

After filling out the dialogue, click on OK EViews will create an untitled workfile, 
and display the workfile window. For now, notice that the workfile window displays 
two pairs of dates: one for the range of dates contained in the workfile, and the second 
for the c•Jrrent workfile sample. Note also that the workfile contains the coefficient 
vector C and the series RESID. All EViews workfiles will contain these two objects. 

Copying and pasting data 

Copying data 

The next step is to copy and paste the data. Note that while the following discussion 
involves an example using an Excel spreadsheet, these basic principles apply for any 
other Windows applications. The first step is to highlight the cells to be imported 
into EViews. Note that if we include in our selection column headings, these will be 
used as EViews variable names, so '\<'.'(;' don't leave empty cells after the variable name 
but start with the data. Since EViews understands dated data, and we are going to 
create a daily workfile, we do not need to copy the date column. Instead, click on 
the column label Band drag to the column label desired. The selected columns of the 
spreadsheet will be highlighted. Select Edit/Copy to copy the highlighted data to the 
clipboard. 

Pasting intq new series 

Select Quick/Empty Group (Edit Series). Note that the spreadsheet opens in edit mode 
so there is no need to click the Edit +/- button. If we are pasting in the series names, 
we click on the up arrow in the scroll bar to make room for the series names. Place the 
cursor in the upper-left cell, just to the right of the second observation label. Then select 
Edit/Paste from the main menu (not Edit+/- in the toolbar). The group spreadsheet 
will now contain the data from the clipboard. 

You may now close the group window and delete the untitled group without 
losing the two series. Note that when importing data from the clipboard, 
EViews follows the Windows standard of tab-delimited free-format data with one 
observation per line. Since different applications use different whites pace and delimiter 
characters, attempting to cut-and-paste from non-standard applications may produce 
unanticipated results. 
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Posting into existing series 

We can import data from the clipboard into an existing EViews series or group 
spreadsheet by using Edit/Paste in the same fashion. There are only a few additional 
issues to consider: 

To paste several series, first open a group window containing the existing series. The 
easiest way to do this is to click on Show, and then type the series names in the 
order they appear on the clipboard. Alternatively, we can create an untitled group 
by selecting the first series, click/select each subsequent series (in order), and then 
double-click to open. 

2 Next, make certain that the group window is in edit mode. If not, press the Edit 
+/- button to toggle between edit mode and protected mode. Place the cursor in 
the target cell, and select Edit/Paste. · 

3 Finally, click on Edit+/- to return to protected mode. 

Verifying the doto 

First we verify that the data have been read correctly. Here we create a group object 
that allows us to examine all our series. Click on the name of the first variable in 
the workfile window, and then press Ctr! and click on all the rest of them (do not 
include resid and c). All of the new series should be highlighted. Now place the cursor 
anywhere in the highlighted area and double-click the left mouse button. EViews will 
open a popup menu providing several options. Choose Open Group. EViews will create 
an untitled group object containing all four of the series. The default window for the 
group shows a spreadsheet view of the series, which we can compare with the top of 
the Excel worksheet to insure that the first part of the data have been read correctly. 
We can use the scroll bars and scroll arrows on the right side of the window to verify 
the remainder of the data. 

Once satisfied that the data are correct, save the workfile by clicking Save in 
the workfile window. A save dialog will open, prompting for a workfile name and 
location; enter a name and click ·oK. EViews will save the workfile in the specified 
directory with the name specified. A saved workfile can be opened later by selecting 
File/Open/Workfile from the main menu. 

Examining the data 

We can use basic EViews tools to examine the data in a variety of ways. 
For example, if we select View/Multiple Graphs/Line from the group object toolbar, 
EViews displays line graphs of each of the series. We can select View/Descriptive 
Stats/Individual Samples to compute descriptive statistics for each of the series. Click 
on View/Correlations, for example, to display the correlation matrix of the selected 
(grouped) series. 

We can also examine characteristics of the individual series. Since the regression 
analysis below will be expressed in either logarithms or growth rates (first differences 
in logarithms; or returns), we can construct var.iables with the genr command 
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Practicalities in Using EViews and Microfit 385 

Commands, operators and functions 

The GENR command 

The genr command generates new series according to an equatiop specified by the user, 
in either of two ways. The first is to press genr from the workfile area. A new window 
pops up, which asks us to enter the equation required. We need to define a new name 
and then enter the equation next to the name (foilowed by the = sign). For example, 
if we want to take the logarithm of series XOI we can write: 

LXOl = LOG(XOI) (21.2) 

Which will generate a new series named LXOI which will be the logarithm of XOI (note 
that you can choose whichever name you like before the= sign). 

Another way is to use the command line where you can simply write: 

genr lxOl = log(x01) (21.3) 

and get the same result as before. This way is sometimes very convenient because you 
might have to take logs of tenths of series that we named them like x?? (? denotes 
number from 1 to 9). We can then return to the command line and change only the 
numbers in each case. 

Obviously taking logarithms is one of the many things we can use for generating 
new series. The following tables show the basic operators, mathematiEal functions and 
time series functions that can be used with the genr command. 

Operators 

All of the operators described in Table 21.1 may be used in expressions involving series 
and scalar values. When applied to a series expression, the operation is performed for 
each observation in the current sample. The precedence of evaluation is listed below. 
Note that you can enforce order-of-evaluation using appropriate parentheses. 

Mathematical functions 

The functions listed in Table 21.2 are designed to perform basic mathematical 
operations. When applied to a series, they return a value for every observation in 
the current sample. When applied to a matrix object, they rc~urn a value for every 
element of the matrix object. The functions will return NA (not applicable) values for 
observations where ihe input values are NAs, and for observations where the input 

Table 21.1 Operators 

Expression Operator 

+ 

" 

Add X+ y 
Subtract x - y 
Multiply x· y 
Divide xjy 
Raise to the power xl\ y 

Description 

Adds the contents of x and y 
Subtracts the contents of y from x 
Multiplies the contents of x by y 
Divides the contents of x by y 
Raises x to the power of y 
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Table 21.2 Mathematical function 

Function Name Examples/description 

@abs(x); abs(x) 
@ceiling(x) 
@exp(x); exp(x) 
@fact(x) 
@floor(x) 
@inv(x) 

Absolute value 
Smallest integer 
Exponential, ex 
Factorial, x! 
Largest integer 
Reciprocal, 1/x 
Natural logarithm ln(x) 
Square root 

@abs(-3) = 3; abs(2) = 2 
@ceiling(2.34) = 3; @ceiling(4)=4 
@exp(1) = 2.71813 
@fact(3) = 6;@fact(O) = 1 
@floor(1.23) = 1; @floor(3) = 3 
@inv(2) = 0.5 

@log(x) 
@sqrt(x) 

@log(2) = 0.693; log(2.71813)=1 
@sqrt(9) = 3; sqr(4) = 2 · 

Function 

d(x) 
d(x,n) 
d(x. n, s) 
dlog(x) 
dlog(x,n) 
dlog(x, n, s) 
@movav(x,n) 

@movsum(x, n) 
@pch(x) 
@pcha(x) 
@pchy(x) 
@seas(n) 

Table 21.3 Time series functions 

Name and description 

First difference; (1 - L)X = X - X ( -1) 
nth order difference; (1 - L)n X 
nth order difference with a seasonal difference at s; (1- L)n(1- L5 )X 
First difference of the logarithm 
nth order difference of the logarithm 
nth order difference of the logarithm with a seasonal difference at s 
n·period backward moving average; 

@movav(x,3) =(X+ X(-1) + X(-2))/3 
n-period backward moving sum; @movsum(x,3) =X+ X(-1) + X(-2) 
One-period percentage change (in decimal) 
One-period percentage change annualized (in decimal) 
One-year percsntage change (in decimal) 
Seasonal dummy: returns 1 when the quarter or month equals n and 0 
otherwise 

values are not valid. For example, the square-root function @sqrt, will return NA values 
for all observations that are less than zero. Note that the logarithmic functions are 
base-e (natural logarithms). To convert the natural logarithm into loglO, you should 
use the relationship: loglO(x) = loge(X)jloge 10. 

Time series functions 

The functions in Tablt 21.3 facilitate working with time series data. Note that NAs will 
be returned for observations for which lagged values are not available. For example, 
d(x) returns a missing value for the first observation in the workfile, since the lagged 
value is not available. 
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Adaptive expectations model, 208, 211-18 
Adjusted R2, defined, 65-6 
Akaike information criterion, defined, 66 

ADF tests and, 302 
ARIMA modelling and, 242 

Almon lag procedure, 207-8 
AR(1), see First-order autoregressive process 
AR{p), see pth-order autoregressive process 
ARCH effects and ARCH models, 252 
ARCH models, general approach, 250-2 

computer example, 243-7 
mathematical approach, 257-60 

ARCH tests for heteroskedasticity, 124 
computer example, 126 
steps for, 125 

ARIMA models, defined, 230 
.computer example, 243-7 
estimating and forecasting with, 242-3 

Augmented Dickey-Fuller test (ADF), general, 
296-7 

cointegration equation and, 315-17 
computer example, 299-300, 302-5 
steps for, 299-300 

Autocorrelation, defined, 134 
ARCH tests and, 124 
causes of, 134 
computer examples, 143, 145, 147, 151 
consequences of ignoring, I36-9 
detecting, graphical method, 139 
detecting, tests for, 139-48 
first-order, 135 
higher-order, 135-6 
lagged dependent variable and, I45-6 
residual plot and, 139 
resolving, I48-54 

Autoregressive (AR) Models, 208-13, 231-6 
Auxiliary regressiom, 90, 9I 

heteroskedastici ty and, I 09-16 
LM test approach and, 109-16 

Bar diagram, 13 
Base year, defined, 16-I7 

Best linear unbiased estimators 
in multiple regression, 63-5 
in simple regression, 34-6 

Box-Cox transformation, I65-6 
computer example, 174-7 

Breusch-Godfrey test, I43-4 
computer example, I45 

Breusch-Pagan test, 108-10 
computer example, 117-20 

Causality, defined, 28I 
computer example, 283-6 
Granger causality test, 2) ~-3 
Sims causality test, 283 
testing for, 28I-3 

Chi-square test, defined, 70 
Chow test, defined, 201-2 
Cobb-Douglas production function, 45 

double log model and, I64-S 
Cochrane-Orcutt iterative procedure, I 52 

vs Hildreth-Lu search procedure, IS2-3 
Coefficients 

correlation, 135 
dummy, I85-9 
first-order autocorrelation, I35 
testing linear restrictions of, 68-72 
testing the significance of the OLS, 

40-I 
Cointegration, defined, 307 

computer example, 33I-9 
and the ECM, general approach, 309-11 
and the ECM, mathematical approach, 

31I-IS 
Engle and Granger approach, 315-18 
johansen approach, 319-31 
mathematical approach, 308-9 
in panel data, 371-6 
testing for, 3IS-18, 319-31 

Conditional variance, 249-50 
Confidence interval, 41 
Consistency of OLS estimators, 36-7 
Constant returns to scale, 69 
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Constant term 
creating in Microfit, 381 
dummy variables and, 185-6 

Consumer price index, 94 
Consumption income relationship, 46 
Correia tion 

first-order serial, see Autocorrelation 
spurious, 307 

Correlogram 
for ARIMA models, 232, 236 

Cross-section data, defined, 8 

Data, 8-10 
base period and, 16-17 
cross-sectional, 8 
entering in EViews, 383-4 
entering in Microfit, 379 
panel, 9-10 
time series, 8-9 

Diagnostic checking in ARIMA modelling, 242 
Dickey-Fuller tests 

computer example, 302-5 
performing in EViews, 299-300 
performing in Microfit, 300-1 

Differencing, 18-19, 150, 151,240 
Distributed lag models, 204-8 

Almon transformation and, 207-8 
Koyck transformation and, 205-7 

Double-log model, 164-5 
Dummy variables, defined, 184 

Chow test, 201-2 
effect of. 184-9 
seasonal, 195-6 
slope shift using, 190-1 
structural change testing, 201-2 
trap, 193 

Durbin h-test, 145-7 
Durbin-Watson test 

for serial correlation, 140-3 
tables, 141 

Dynamic models 
in panel data, 356-62 
in time series data, 204-13 

Econometrics, defined, 2 
use of, 2 

Efficiency of the OLS coefficients, 34 
E-GARCH model, 268-9 

computer example, 269 
Equation 

reduced form, 217-18 
simultaneous, 216-21 

Error(s) 
correction model, see Error-correction model 
measurement, 166-9 
normality of, 169 
specification, 15 7 
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Error-correction model, defined, 310 
cointegration and, 309-12 
computer example, 331-9 

Estimation 
with ARIMA models, 242 

Index 

of simultaneous equation models, 220-1 
using dummy variables, 196-201 

Estimator(s) 
best linear unbiased, 34-6, 63-5 
consistency, 34, 63 
efficiency, 34 
unbiasedness, 33, 63 

EViews software, basics, 381-4 
Exact identification, 218 
Exact multicollinearity, 86-8 
Excel programme and OLS estimation, 47-52 

F-form of the likelihood ratio test, 70-1 
Finite prediction error, 66 
First-order autocorrelation coefficient, 135 
First-order autoregressive process (AR(1)), 

defined,231 
miscellaneous derivations with, 235 

Fitted straight line, 25-6 
Fixed effects model, 346-7 
F-test for overall significance, 71-2 
Function(s) 

autocorrelation, 135-6 
Cobb-Douglas production, 45, 74, 164 

Functional forms 
double-log, 164-5 
including interaction terms, 163 
linear-log, 161-2 
logarithmic, 164 
log-linear, 164 
polynomial, 162-3 
reciprocal, 162 

GARCH models, defined, 260 
computer examples, 260-2 

General to specific approach, 1 78-9 
Generalized least squares, 127 
G!esjer test, 111-12 

computer example, 120 
GMM estimators, 357 
Goldfeld-Quandt test, 114-16 

computer example, 121-3 
Goodness of fit, defined, 37 

measurement of, 38-9 
Granger causality test, 281-3 

computer example, 283-6 
steps for, 282-3 

Hendry/LSE approach, 178-9 
Heteroskedasticity 

computer examples, 117-26 
consequences of, 103-6 
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Heteroskedasticity- (corJtinued) 
defined, 101 
illustration of, 101 
resolving, 126-31 
testing for, 107-17 

Heteroskedasticity consistent estimation 
method, 128-9 

Hildreth-Lu search procedure, 152-3 
vs Cochrane-Orcutt research procedure, 152 

Histogram, 12, IS 
Homoskedasticity, 101 
Hypothesis testing 

confidence intervals and, 41 
p-valt~e approach, 41 
steps to, 40 

Identification problem, defined, 217 
lm, Pesaran and Shin panel unit-root test, 

368-9 
Indirect least squares, 220, 221 
Instrumental variables, 221-2 
Integrated of order d, 240, 291 
Integrated of order one, 290 
Integration 

Dickey-Fuller tests of, 295-7 
Phillips-Penon tests of. 297-9 
testing for the order of, 295 

Intercept- term 
creating in Microfit, 381 
dummy variables and, 190 

Jnvertibility in MA models, 237-8 

Joint significance, 71-2 

Kao panel cointegration test, 372-3 
Keynesian model, 46 
Koyck lag model, 205-6 

Lagged dependent variables 
adaptive expectations model and, 211-13 
partial adjustment model and, 208-9 
serial correlation and, 213 

Lagrange multiplier (LM) test, 74-5 
for adding variables, 72 
for heteroskedasticity, I 08-14 
in Microfit and EViews, 75 
for omitting variables, 73 
for serial correlation, 143-5 

Larsson eta/. panel cointegration test, 375-6 
Least squares method, defined, 26 

derivation of so!•1tions for the multiple 
model, 57-9 

derivation of solutions for the simple 
model, 26--8 

derivation of solutions with matrix algebra, 
59-60 

J 

Levin and Lin panel unit-root test, 367-8 
Likelihood ratio test, 72 

F-form of, 70-1 
Linear-log model, 161-2 
Li'-\ng-Box test statistic, 242 
Log-linear model, 164 
Log-log model, 164 

395 

Long-run behaviour, error-correction model 
and, 310-15 

Maddala and Wu panel unit-root 
test, 369 

Marginal effect 
of functional forms, 161-5 
interpretation of, 165-6 

Marginal propemity to consume, 46 
McCoskey and Kao panel cointegration 

test, 373 
Mean group estimator, 383--4 
Models(s) 

adaptive expectations, 211-18 
ARCH, 250--2 
ARIMA, 240 
autoregressive, 208-13 
distributed lag, 204-8 
double-log, 164-5 
dynamic, 204 
E-GARCH, 268-<J 
error correction, 310 
fixed effects, 346-7 
GARCH, 260 
GARCH-M, 263-4 
'!endry/LSE approach, 178-9 
Keynesian, 46 
Koyck, 205-6 
with lagged dependent 

variables, 208 
linear panel data, 345 
linear-log, 161-2 
log-linear, 164 
log-log, 164 
partial adjustment, 208-9 
polynomial, 162-3 
random effect, 347-8 
reciprocal, 162 
TGARCH, 267 
VAR, 279-80 

Modelling 
general to specific, 178-9 
Hendry/LSE approach, 178-9 
simple to general, 177 

Moving average models, 236-8 
Multicollinearity 

computer examples, 92-7 
consequences of, 87-8, ~9-91 
defined, 86-8 
detecting, 91 
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Multicollinearity- (continued) 
exact, see perfect 
imperfect, 88-9 
perfect, 86-8 

Multiple regression 
computer examples, 67-8 
defined, 56 
goodness of fit and, 66 
hypothesis testing and, 68 

Non-nested models, tests for, 173-4 
Nonstationarity, defined, 288 

and spurious regression, 288 
and unit roots, 288-305 

OLS, see Ordinary least squares 
Omitted variables, 72-3 

LM tests for, 73 
Wald test and, 73 

Ordinary Least Squares, defined, 26 
GLS procedure and, 127 
heteroskedasticity and consequences, 10:~-5 
serial correlation and consequences, 136-9 

Overidentification, defined, 218 
Overparametrized model, 219 

Panel data, defined, 9 
advantages of, 344 
cointegration and, 371-6 
dynamic, 355 
fixed effects, 346-7 
heterogeneous, 358 
inserting in EViews, 349-54 
random effects, 347-8 
unit root tests, 366-71 

Park test, 114, 121 
Partial adjustment modei, 208-9 

computer example, 209-11 
Partial autocorrelation function, 236, 242 
Pedroni panel cointegration test, 373-5 
Perfect multicollinearity, 86-8 
Pooled mean group estimator, 360-2 
Pooling assumption, 344, 358 
Production function, 45 
pth order autoregressive process (AR(p)), 136 
p-value approach, 41 

Qualitative information, defined, 184 
dummy variables and, 184-6 
with multiple categories, 192-4 
slope term and, 187-8 
with two categories, 189-96 

1' 

Redundant variables, 72-3 
Regression 

Dickey-Fuller, 295--6 . 
spurious, 291-3 
sum of squares, 37 
of X on Y, 24 

Index 

Regressions specification error test (RESET), 
171-4 

Residual, defined, 16 
Robust inference, 106 

Sample, change in Microfit, 13 
Seasonal dummies, 195-6 

application, 198-201 
Serial correlation, see Autocorrelation 
Significantly different from zero, 41 
Simple linear regression model, 24 

computer examples, 42-3 
interpretation of coefficients, 43 

Simple to general modelling, 177 
Simultaneous equation model, 216 

consequences of ignoring simultaneity, 217 
estimation of, 220-1 
identification problem, 217· 
structure of reduced forms, 217-18 

Specification error, defined, 
157, 161 

Spurious correlation, 291-3 
Spurious regression, 291-3 
Stationarity, defined, 231 
Stationary time series, 231 
Structural change, 201-2 

Test(ing) 
for autocorrelation, 139-48 
for causality, 281-3 
for cointegration, Engle-Granger approach, 

315-18 
for cointegration, johansen approach, 

319-31 
of goodness of fit, 71 
for heteroskedasticity, 107-17 
hypothesis, 68-70 
individual coefficients, 68 
for the joint significance of 

the Xs, 71-2 
linear restrictions, 68.,-70 
for misspecification, 169-74 
for structural change, 201-2 

Time series data, 8 
Time series models, see ARIMA models 
Total sum of squares, 37 
t test, 70, 7 4 

Unbiasedr.~ess of OLS coefficients R2 adjusted for degrees of freedom, 65 
Random effects model, 347-8 multiple regression, 63 

. ---·-----simple-re..gression,-33-4 .. Re.c!p_rocal ti:.<msJo_rmation, .. l62 
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Unit roots, defined, 308 
Dickey-Fuller test and, 296-7 
panel data and, 366-71 
Phillips-Perron test, 297-9 

Variable(s) 
dummy, 184 
instrumental, 221-2 
lagged dependent, 208 
LM test for adding, 73 
omitted, 72-3 
qualitative, 184 
redundant, 72-3 

s 

Variation 
coefficient of, 37-8 
explained, 37 
total, 37 
unexplained, 37 

Vector autoregressive (VAR) models, 
279-86 

Wald test, defined, 70 
computer example, 75-7 
performing in EViews and Microfit, 73 

Weighted least squares, 127 
White's test, 116-17 
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